UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Multi-Level Partitioning Methodologies

and their Applications in Modern IC Design

Diploma Thesis

George Raphael Goudroumanis

ggeorgios-r@uth.gr

Supervisor: Christos P.Sotiriou

Volos, September 2023

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

ITANEIIIZTHMIO GOEXXAAIAX
ITOAY TEXNIKH ~2XOAH
TMHMA HAEKTPOAOT'QN MHXANIKOQN KAI MHXANIKOQN YITOAOI'TETOQN

Me0Boooroyieg ITolvenineong Katatunong Kvkiopdtmv
Kot ot EQappoyég tovg otn Xyeoiaon Olokinpopévev
Kvkhopatov otic Mépec nog

Aumdopotikn Epyoacia

INopyoc Pagani I'kovvtpoopavng
ggeorgios-r@uth.gr

Emprénov: Xpnotoc Zonpiov

Boliog, Zentéufplog 2023

1ii
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Approved by the Examination Committee:

Supervisor Christos P.Sotiriou
Professor, Department of Electrical and Computer Engineering,

University of Thessaly, chsotiriou@e-ce.uth.gr

Member Georgios Stamoulis
Professor, Department of Electrical and Computer Engineering,

University of Thessaly, georges@e-ce.uth.gr

Member Fotios Plessas
Professor, Department of Electrical and Computer Engineering,

University of Thessaly, fplessas@e-ce.uth.gr

v

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Acknowledgements

I would like to express my heartfelt gratitude to Professors G. Stamoulis, F. Plessas, and
C.P.Sotiriou for their invaluable support and guidance throughout the completion of my mas-
ter’s thesis. Each of them played a significant role in shaping the course of my research and
academic journey. Specially professor C.P.Sotiriou mentorship extended beyond academia,
and I am truly grateful for the personal and professional growth I’ve experienced under his
guidance.

I would like to offer a special word of thanks to a dear friend and valuable mentor of
mine, N. Sketopoulos. His unwavering support and encouragement as long as his patience,
and genuine interest in my work were pivotal in overcoming various technical and personal
challenges during our collaboration started long before this thesis. Furthermore, I would like
to wholeheartedly thank T.Asimaki and my colleagues and friends from CASLAB who were

always there to support me both technically and spiritually throughout my journey so far.

vii
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

DISCLAIMER ON ACADEMIC ETHICS
AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work / con-
tributions of third parties for which the permission of the authors / beneficiaries is required
and are not a product of partial or complete plagiarism, while the sources used are limited
to the bibliographic references only and meet the rules of scientific citing. The points where
I have used ideas, text, files and / or sources of other authors are clearly mentioned in the
text with the appropriate citation and the relevant complete reference is included in the bib-
liographic references section. I also declare that the results of the work have not been used
to obtain another degree. I fully, individually and personally undertake all legal and admin-
istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism.

The declarant

George Raphael Goudroumanis

ggeorgios-r@uth.gr

X
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

X Abstract

Diploma Thesis

Multi-Level Partitioning Methodologies
and their Applications in Modern IC Design

George Raphael Goudroumanis
ggeorgios-r@uth.gr
Abstract

This research was carried out during my master thesis dissertation and presents an in-
novative Multi-Level Partitioning algorithm specifically designed for VLSI circuits. As a
divide-and-conquer framework, this algorithm is capable of partitioning large scale designs
of million of gates into a manageable number of groups. This process main targets are to
reduce the connectivity of the produced groups, also known as cutsize, while preserving of
the partitions area balance in minimum execution time. However, the established partitioning
frameworks such as MLpart [1], h(METIS [2] [3], KaHyPar[4] [5] [6], PaToH [7] SpecPart
[8][9] and GAP [10][11] do not produce a result aware of the other VLSI characteristics such
as timing and the following Physical Design steps mend to be executed afterward producing
suboptimal results regarding these aspects. On the other hand, the introduced algorithm was
developed as part of a greater PnR tool aiming to assist on various aspects of the ASIC flow.

To support our claims, we developed an extensive experimental methodology comparing
results of forty-two (44) designs obtained by the following academic contests, DAC 2012[12],
ISDP 2005/6[13], ISPD 2011[14] and ICCAD 2015[15], ICCAD 2022/23 [16]. Note the last
contest, i.e. I[CCAD 2023, was for 3D Integrated Circuits, where we took place. Moreover, we
compare 2 industrial designs and 5 open source large scale designs namely b19[17], Leon3mp
[17], Netcard [17], jpeg_ecoder [17] and vga lcd decoder [17]. The presented results include
all aforementioned partitioning tools, exploring some of their tuning parameters based on
the values proposed in their paper. There are three prisms under which we evaluated the
algorithms, each one focuses on one aspect of the ASIC flow. The first category compares the
results based on the classic metrics attached to partitioning evaluation, cutsize, area balance
ratio, execution time. The second focuses on the timing analysis of the design, introducing

the top thousand delay and slack paths’ distribution. The third part, presents our results in the

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Abstract X1

context of a 3D CAD PnR tool measuring the total cost produced by an external, unbiased
evaluator.

To perform all these experiments and conclude our evaluation, we had to integrate all tools
including ours in a grater framework enabling the communication with the outer world. This
way, we developed the necessary code to combine both our tool and the other ones with an
internal framework supporting industrial formats files parsers and a database able to provide
the necessary function to load and evaluate the results of all tools based on the introduced
metrics. Furthermore, this suite includes an integrated static timing analysis engine, which is
mandatory to evaluate the results for timing driven operations. The code of our tools and the
wrappers needed to integrate the other tools with the general framework was developed in
C/C++ programming language. On the other hand, the scrips to extract the experiments and
evaluate the results were developed in BASH, TCL and Python.

As regarding the first comparison section, the comprehensive analysis of the results es-
tablishes our algorithm as an exceptional option to partition large circuits into few and loosely
connected sub-circuits. This is evident in the partitions it generates, boasting a cutsize three to
twelve times smaller and an area balance ratio seven times to thirty times lower. Remarkably,
these advancements are achieved while maintaining a relatively equal execution time, under
an hour, compared to the other tools. Considering the second point of comparison, after the
data analysis the results also proved that our approach produces far more suitable groups to
address the timing driven placement challenge. We safely came up to this conclusion based
on the top thousand delay and slack paths’ fragmentation reduction by four times to seven
times in both cases. As regarding the third comparison point, related to 3D design flow, we

compare the results based on the produced tier vias and the achieved tier utilisation ratio.

Keywords:
Electronic Design Automation (EDA), Multi-Level, VLSI, ASIC flow, 3D Chip Design, Tim-

ing Driven, Cloud Computing, Machine Learning,

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Xii Hepiinyn

Authopoatikny Epyacio

Meg0Bodoroyieg Iorveninednc Kartatunong Kvkhopdatov kot ot
E@appoyég tovg otn Xyediaon Orokinpopévov Kokhopatomv otig
Mépeg pog

TINopyog Papani I'kovvrpovpavng
ggeorgios-r@uth.gr

IHepiinyn

Av 1 €peuva TPayHaTomoOnKe Katd Tr SLAPKELN TG LETOTTUYIOKNG OV SlatpPng Kot
TapoLGtalel Evav KAoTOHo aAYOPIOLO KOTATUNONG TOAAATAMY EMTEd®V €0KE oYedL0-
opévo yuo kokhopoto VLSI. Qg évag alyopiBpog dwaipet ko Bacileve, givat tkavog va oto-
YOPICEL KUKADUATO PEYAANG KALOKOG EKATOUUVPIOV TUADY GE EVaV UIKPOTEPO MO LOUYEL-
pico apBpd opddmv. Koprot 6tdyot avtig g dtadikaciog eival) peimwon tov cuvdécemv
petalld TV TapayOUEVOV OPAd®V, YVOOTH Kol O¢ cutsize, Pe TauTOXpovrn SloThpnon mo-
PELPEPOVS EUPAOOL TV OUAO®V GE EAdYIGTO ¥pOVO ekTéAEONG. 20TOGO, TO Kablepmpéva
epyoieia katdatunong ommg ta MLpart [1], h(METIS [2] [3], KaHyPar[4] [5] [6], PaToH [7]
SpecPart [8] [9] and GAP [10] [11] dev mapdyovv amotéhespo pe Paorn ta vdAouma yo-
POKTNPLOTIKA TV KuKA®pdtov VLSI 60nmg o ypoviopodg kot ta enduevo Prpoata Gucikng
oYE010ONC TOV TPEMEL VO EKTEAEGTOVV GTI| GUVEXELN, TOpdyovTag Un PEATIOTA TEAMKE OUTo-
TEAEGLOTO O GYECEL LUE TIG AVTIOTOLXES UETPIKES. ATTO TNV GAAAN TAELPE, O TPOTEWVOUEVOG
alyopOpog avamtiydnke g LEPOG £vOG evpvTEPOL pyaieiov PnR.

['o va vrootnpifovpe TOV 1IGXVPICUO HOG, AVATTUENUE U0 EKTETOUEVT] TEWPOUOTIKY UE-
BodoAoyia cuykpivovtag Ta amoteAécpata copdvTo dVOo (42) akadnUoiKdOV KUKA®UATOV oo
T0Vg akdlovbovug dtaywviopovg 2D CAD, DAC 2012[12], ISDP 2005/6[13], ISPD 2011[14]
and ICCAD 2015[15], ICCAD 2022/23 [16] otov omtoio Kot GUUUETELYOE, 2 Bropmyovikd Kot
5 0vVOIKTOU KMOTKO KUKAMUATO pLeyaAng kApakog Ta omoia ivat to b19 [17], Leon3mp [17],
Netcard [17], jpeg_ecoder [17] kot vga led decoder [17]. Ta amoteAéspoto Tov TopovcLd-
Covtou mepriapBdvovy OAa to yvootd epyaleio KATATUNONG OTMG OvOQPEPONKE TPOTYOLLLE-
VOGS, OEPELVMOVTOG OPICUEVES OO TIG TOPAUETPOVS TOVS [e Bom TIC TIUEG TOV TpoTEIVOVTOL

oTIS avtioTolyes £pevuveg Tovg. YTapyouvv tpia mpiopata Pacel tov omoimv a&loloyfcape

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Lepiinym xiil

ToVG aAyopiBuovg, kabéva amd ta omoio eotidlel oe pa mroyn g pong ASIC. H mpadtn
Katnyopiot GUYKPIVEL To OmOTELEGHOTO e PAom TIC KAUGIKES HETPIKEG TOL GUVOEOVTOL UE
v alohdynon g katdTunong kukhopdtov, cutsize, area balance ratio, execution time. H
JEVTEPN EMKEVIPAOVETOL GTNV OVAALGT YPOVIGLOD TOV GYEDIOV, EIGAYOVTOG MG LETPIKT TNV
KATOVOUT TOV KOpueaimv yiMov povoratiov kabvotépnong. To tpito pépog, mapovctalet
T AMOTEAEGLOTA oG 6TO TTAio1o evog epyareiov 3D CAD PnR.

[No va ekteAécovpe OO VT TO TEPALLOTO KO VO, OAOKANPADOGOVE TNV aELOAOYNON O,
EMPETE VO EVOOUOTOCOVE O TOL EPYAAELRL, CLUTEPIAAUPAVOUEVOL TOL KOV HOG, GE £V
EVPVTEPO TAOIGLO TOV EMTPENEL TNV EMKOWVOVIA pe ToV e€MTEPIKO KOOUO. Mg avTdV TOV
TPOTO, OVOTTOEALLE TOV OTOPAITITO KMOKO Y10 VO GUVOVAGOVLE TOGO TO O1KO LOG EPYOAELD
0G0 KoL To AAAO LE EVa E6MTEPIKO epYareio TOV vTooTNPilel avayvdoTeS apyeimv rounyovi-
KOV TPOdSypap®V Kot pid fAcT 0EG0UEVOV TKOVT VO TOPEXEL TV OTOPOITI TN AELTOVPYIKO-
TNTO Y10 TN POPTMOT) Kol TNV 0ELOAGYTOT TV OMOTEAECUATMOV OAMV TOV EPYOAEIDV e Bdon
TG KOVOUPYlEG LeTPIKES. EmmAéov, autn 1 covita mepthapBavel pio eVEmUATOUEVT UNYOVY
OTOTIKYG OVAALGNG YPOVIGHOV, 1| OTTOl0 Elval VITOYPEMTIKY Yot TNV ASl0AOYNON TNG KATOA-
ANAOTNTOG TOV OTOTEAEGUATOV LLOG Y10l AEITOVPYIES TOL KOO0 YOUVTOL OtO TOV XPOVIGLO.
O k®dwag TV pyalel®V LG Kot TOV SETAPOV TOL ATaLTONKAY avoTTOYXONKE GE YADCTO
npoypoppatiopot C/C++. Amd v dAAn mhevpd, ta scrips yio v e£aymyn TV TEPAUATOV
Kot TV a&loAdynon tov orotelecpudtov avantoydnkav ce BASH, TCL kot Python.

Oocov apopd v TpdTN EVOTNTA GOYKPIONG, 1] OAOKANPOUEVT AVAAVCT| TOV OTOTEAEGLLA-
TOV KaO1EpOVEL TOV aAYOPIOUO HOG G o EEAPETIKT ETIAOYT Y10 TNV KATATUNOT EVOG PEYA-
AOV KUKADUATOG G€ Alya Kol GTTOPOOIK(GUVOESEUEVA VITO-KVKADHOTA. AVTO ivol EQEOVEG
OTIG KATOTUNOELS TOL ToPAyel, dtafETovTag Eva cutsize TPELg £mG OMOEKN POPEC UIKPOTEPO
Kot évav Adyo teoluyiov epfadol entd Emg Tpravia popég pikpotepo. Eivar a&loonpeioto ot
avTég o1 e€eMEelg emTLYYAVOVTAL O10TNPADVTAS VOV GXETIKE (G0 YpOVO EKTEAEOTG, KAT® Omd
pia opa, oe cOykpion pe ta GAAa epyaleio. Aappdvovtog vroyn To deVTEPO oMpeio cOyKpL-
OMNG, LETA TNV OVAALGT TMV JEGOUEVMV TO ATOTEAEGLLATA ATESEEAV ETIONG OTL 1) TPOGEYYION
LoG ToPAyeL TOAD O KOTAAANAEG OULAOES Y10l TNV OVTILETOTION THG TPOKANONG TOTOOETNONG

LE YVOUOVO TOV XPOVIoUO Oelyvovtag 4 £mG 7 opEC KAADTEPO OMOTEAEC L.

AéCarc-kAre10nd:
Electronic Design Automation (EDA), Multi-Level, VLSI, ASIC flow, 3D Chip Design, Tim-

ing Driven, Cloud Computing, Machine Learning

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Xiv Lepiinym

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Table of contents

Acknowledgements

Abstract
Iepiinyn

Table of contents
List of figures
List of tables

Abbreviations

1 Introduction

1.1 Electronic Design Automation (EDA)
1.2 Novel ASIC Designflow
1.3 Multi-Level ASICflow

1.3.1 Introduction of Multi-Level flow in EDA

1.3.2 Multi-Level ASIC flowsteps
1.4 Multi-Level ASIC design Flow applications
1.5 ThesisOutline

2 Background
2.1 Introduction
2.2 Terminologies and Definitions
2.2.1 GraphRepresentation.
2.2.2 Physical Design Oriented definitions

XV

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

vii

Xii

XV

Xix

xxi

xxiii

0 9 AN N W

10

xvi

Table of contents

2.2.3 Timing Analysis Oriented definitions

224 Veycleflow

2.3 Multi-Level Placement Application

2.3.1 Algorithm overview and objectives

2.3.2 Placement Algorithm types
2.3.3 Existing Industrial Tools
2.4 3D Chip Design flow Application
2.4.1 3D Flow Overview and Objectives
2.4.2 Different flow types
2.43 Modern Challenges

3 Related Work

3.1 Introduction

3.2 Multi-Level Clustering

3.2.1 Algorithm Overview and Objectives

3.2.2 Algorithmtypes
3.2.3 Existing algorithms and tools

3.3 Multi-Level Partitioning

3.3.1 Algorithm overview and objectives

3.3.2 Algorithmtypes

3.3.3 Existing algorithms and tools

4 Our Contribution

4.1 Introduction
4.2 Multi-Level Clustering Phase

4.2.1 Top Level Algorithm Presentation

4.2.2 Algorithm Parameters Presentation

4.2.3 Core Algorithm Presentation
4.2.4 Post-processing algorithm
4.2.5 72nd” Version of the Algorithm
4.2.6 Macro aware Clustering technique
4.3 Multi-Level Partitioning

4.3.1 Top-Level Partitioning Algorithm

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Table of contents Xvii
4.3.2 FM algorithm optimisations 62

4.3.3 Gain Value Calculation 66

434 Heap Strategies e 69

4.3.5 Unfolding Strategies, 71

4.3.6 Level Skipping and repeating flow 73

43.7 3DASICFlowExtention. 74

5 Comparative Results 77
5.1 Introduction 77

5.2 Experimental Methodology 78
5.2.1 Experimental framework 78

5.2.2 Evaluation Metricsand Tools 79

5.3 ComparisonResults 81

6 Conclusions 85
6.1 Conclusions e 85

6.2 FutureWork L 86
Bibliography 87
APPENDICES 95
A Benchmarks Suite Tables 97
A Analytical Comparison Results Tables 101

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

List of figures

1.1

1.2

1.3
1.4

1.5
1.6
1.7
1.8

2.1

2.2
23

24

Abstract flow chart of the Application Specific Integrated Circuit Design
flow [18]. o

Detailed flow chart presenting the physical design process of the ASIC flow

Screenshot from ANSYS RedHawk thermal analysis tool [20].
Presenting the number of transistors used in produced well-known chips from

70s until now, perfectly aliened with the prediction of Gordon Moore’s law

Presenting the intuition of VLSI circuit clustering algorithm [22]..
Presenting the intuition of VLSI circuit partitioning algorithm [23]..
Mock floorplan in an IC layout editor window [24].
2.5Dversus 3D IC designs [25].

a) Simple fanout of 3 NAND gates starting be a same type gate driver. b) The
red line presents the longest path of the sub-circuit. ¢) The top left sub figure
presents the Half Perimeter Wire Length of the net. The other images present

alternative methods of estimating the net wire length [26].

o O 0 9 O

14

The three phases of the multilevel V-Cycle k-way graph partitioning flow [27]. 17

The left-hand side image presents the initial positions of circuit cells into
the die and the forces represented by the black lines, while the second im-
age presents the final positions of the cells after the force directed algorithm
operation [28].. L
During the log sum exponential placement method, such a mathematical ex-
pression must be minimized, in order to assign the circuit gates into their

optimal positions.

XiX

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

18

XX

List of figures

2.5

2.6

2.7

3.1
3.2
3.3
34

3.5
3.6

4.1

4.2
4.3

44
4.5

4.6

4.7

5.1

A conceptual view of a 3D IC chip, with a through-silicon-via (TSV) used as
interconnect between two dies or wafers [29].
2.5D-IC assembly that includes two substrates (silicon interposer + organic
package) [30].
Different bonding technologies for 3D Integration circuit according to fabri-

cation approach. [31].

General clusters approach on a directed graph [32]
Broad classification of clustering algorithms [33].
Different edge coarsening techniques and the coarsening they induce [2]. . .
Clustering a pair of objects A and C using either the First Choice or the Best
Choice [34]. e

22

23

23

26
28
29

30

Maps of random walks on complex networks reveal community structure [35] 31

Generalizable Approximate graph Partitioning (GAP) [10].

Simplified Multi-Level Clustering algorithm operation overview step-by-step

Second version of Multi-Level Clustering algorithm flow overview [36]. . .
Present the placement result of four of the under review benchmarks contain-
ing large objects [12]. o
Complete V-Cycle flow followed in order to extract K-Way partitions

The top side chart presents the progression of cutsize with respect to the ten-
tative moves, while the bottom side chart presents the progression of cutsize
with respect to the tentative mooves collectively with all FM iterations.
Presents the W shape flow alternative to the 1/ shape flow which, in the
situation of a poorly formed clustering level, reverts to the coarsening phase..
Following that, it comes back to the partitioning method from the beginning,
reproducing the partitions. Depending on the clustering quality outcome, this
back and forth might be repeated numerous times.

Comparative results of four partitioning tools against ours in 3D designs. . .

Benchmarks collections used for the evaluation of the algorithm features and

the over all tool against other well-established tools.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

41

50
53

56

63

67

74
75

List of tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

Algorithm main Parameters, where value N stands as hierarchy levels . . .

46

First algorithm version Clustering QORs results using the open-source designs. 54

Second algorithm version Clustering QORs results using the open-source de-

SIZNS. v v v e e e e e e e e e e e e e e e e e

The first part of the table present the novel algorithm version Clustering
QORs results. The second part present the large objects aware algorithm ver-

sion Clustering QORs results. Both parts use the same designs with macros.

Presents the evaluation of gain value calculation strategies as regarding the

standard partitioning metrics.o

Presents the evaluation of heap size strategies as regarding the standard par-

titioning Metrics. e e e e e e e e

This table presents the results of two of the unfolding strategies for a set
of benchmarks, which the one coloured blue include large objects while the

otheronenot. Lo

This table presents the results of two of the unfolding strategies for a set
of benchmarks, which the one coloured blue include large objects while the

otheronenot.,

ICCAD 2015 benchmarks results. The table includes the results of four dif-
ferent partitioning results, requesting 50, 100, 300 and 500 partitions each
time, and the values represent the ratio of the other tools result over our pro-

posed algoirthm.

XX1

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

55

58

69

70

72

72

XXii List of tables

5.2 ISPD 2004/05/06/11 benchmarks results. The table includes the results of
four different partitioning results, requesting 50, 100, 300 and 500 partitions

each time, and the values represent the ratio of the other tools result over our

proposed algoirthm. 82
A.1 ISPD 2005, 2006 and 2011 designs characteristics. 98
A.2 DAC 2012 and ICCAD 2015 designs characteristics. 99

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Abbreviations

IC
VLSI
EDA
ASIC
PnR
SOC
NOC
1P
QOR

Integrated Circuit

Very Large Scale Integrated circuit
Electronic Design Automation
Application Specific Integrated Circuit
Placement and Routing

System On Chip

Network Of Chips

Intelectual Property

Quality Of Results

XXxiil

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 1

Introduction

In the ever-evolving landscape of modern technology, the demand for faster, more effi-
cient, and increasingly complex electronic systems has become an inherent part of our daily
lives. From smartphones to autonomous vehicles, from smart cities to advanced medical de-
vices, electronic systems are at the heart of innovation and progress. These systems are the
result of complex and highly specialized design processes, requiring meticulous attention
to detail and precision. In this context, Electronic Design Automation (EDA) emerges as a
critical driving force, empowering engineers and designers to navigate the intricate path of

electronic system development.

The objective of this master’s thesis is to delve into the realm of Electronic Design Au-
tomation, a multidisciplinary field that combines computer science, electrical engineering,
and mathematics. EDA encompasses a spectrum of tools, techniques, and methodologies
aimed at automating various stages of electronic system design, from conceptualization and
specification to physical realization and verification. EDA’s fundamental goal is to expedite
the design process, enhance its accuracy, and facilitate the creation of increasingly sophisti-

cated electronic systems that meet the demands of today’s technology-driven world.

In detail, this work analyses in depth the partitioning step of the Multi-Level EDA flow,
a significant but underappreciated factor of the broad EDA flow. Due to the fact that the
processing power requirements during the early stages of EDA in the digital design industry
were met by the simultaneously ongoing growth of computers, this part of EDA has remained
rather unexplored. However, in modern times, the rapid increase of components inside an
IC, forces even the most capable and cutting-edge supercomputers to yield because of the

enormous amount of computations needed for the design and simulation of the circuit.

1

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2 Chapter 1. Introduction

1.1 Electronic Design Automation (EDA)

EDA is a software industry which is basically used for designing electronic systems such
as integrated circuits and printed circuit boards. EDA tools enable engineers and designers
to model, simulate, and test electronic systems digitally before physical prototypes are built.
This significantly reduces the cost of product development by minimizing the need for ex-
pensive hardware prototypes and repeated testing cycles. As a result, companies can bring
innovative products to market more efficiently and cost-effectively. On top of that, this time-
to-market advantage is particularly crucial in fast-paced industries like consumer electronics
and telecommunications, where being the first to market can translate into a competitive edge

and higher profitability.

Under the umbrella of EDA software are included a comprehensive suite of tools, method-
ologies, and processes crucial for the efficient and effective design, verification, and opti-
mization of electronic systems. Starting by the translation of logical circuit descriptions into
physical layouts for ICs and PCBs, EDA allows engineers to predict and analyze the behavior
of electronic systems using the rest assets of the suit including logic synthesis, timing analy-
sis, and power analysis tools. Furthermore, design for manufacturability (DFM) and design
for testability (DFT) tools are integral components of EDA, focusing on ensuring that de-
signs can be produced reliably and cost-effectively while maintaining high test coverage and
efficient fault detection. Last but not least, a list of simulation tools are provided analyzing
the thermal and electromagnetic profile of the circuit. Of course for different circuits types
(3D, NoCs) and applications (Space, Low Power) there are multiple flows and variations of

these tools ensuring the high-quality standards.

In this sector, businesses like Cadence Design Systems Inc., Synopsys Inc., Siemens
EDA, ANSYS, and Xilinx are directly involved. However, they and their affiliated com-
panies, have spread their network of engineers across the globe, having sites almost at every
capital city, with major presence in the United States, United Kingdom, China, and Middle
East. Based on 2021 numbers the revenue of Electronic Design Automation software market
was over eleven billion (11.36B$) dollars, and it is estimated that by 2030 this number will
reach the twenty-five billions (25.70B$). Additionally, the semiconductor industry revenue
in 2021 was fifty hundred ninety-five billions (595B$), and it is forecasted that by 2024 it
will reach six hundred thirty point nine (630.9B$) billions.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

1.2 Novel ASIC Design flow 3

1.2 Novel ASIC Design flow

EDA software is an entire collection
of tools assisting engineers to create high-
quality chips. These tools are combined into
the ASIC design flow which, based on the
circuit characteristics, can vary from quite
simple, as presented in Figure 1.1, to rather
complicated. It is cautious to proceed deeper
into the topic’s fundamentals in order to
have a better understanding of it.
The process begins by describing of the
chip requirements and functionalities in a
high level hardware description language,
such as Verilog, providing the engineer an
initial glimpse of the chip’s behaviour. Fol-
lowing that, the produced description must
be translated from high level commands into
gate level representation. This step is called
synthesis and alongside with the translation
aims to create a directed circuit graph which
do not violate the longest path limitations,
maximum area and maximum power con-
sumption limitations. Due to the earliness of
this stage, the information to check these vi-
olations is harvested from the Process De-
sign Kit (PDK) which is used for the par- Figure 1.1: Abstract flow chart of the Appli-
ticular design. By the end of this step, a file cation Specific Integrated Circuit Design flow
called netlist is created, which will be used [18].
afterwards in the following steps. Finally, by
performing a behavioural simulation using this file as input, the front end of the flow is con-

sidered finished.

Advancing towards the rest of the flow, as presented in Figure 1.2, the first step is the

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4 Chapter 1. Introduction

floorplan of the chip. During this step, the shape of the chip is determined alongside with the
placement of the pins based on which the communication with the environment is achieved.
The shape and the pin placement is usually predetermined, but there are cases where the chip
is partitioned into submodules and each one of them could be handled as independent blocks,
keeping these attributes flexible. The next step is the power planing of the chip, during which
the supply and ground nets are created. This step is in charge to create the power grid, ensuring
that the appropriate voltage value will reach all the circuit gates, while at the same time the

power consumption of the chip will be preserved at the lowest point.

Figure 1.2: Detailed flow chart presenting the physical design process of the ASIC flow [19].

The next step, reaching the end of the ASIC flow, is the placement of the standard cells and
macros. Throughout this step, the cells and macros are going to be placed inside the core of
the chip, trying to maintain the minimum wirelength and routing congestion. That means that
the cells must find a sweet spot in which the connectivity lines among the gates instances are
as small as possible while the congestion occurred from their intersections is also limited. It
is rather undeniable that the NP hard problem of the design placement requires sophisticated
and complex algorithms to achieve a high-quality solution, which is going to be the base of
the rest PnR flow. Following the original solution, several post placement techniques are used
to address issues such as cell legalization or to prepare the solution for future steps such as
clock tree synthesis and optimizations, as well as area and timing recovery.

The other half of the back end flow is the routing of the design. This phase is segmented
in three subsequent phases, namely clock route, global route and detail route. The first one
considers only the clock network, including the cells added during the clock tree synthesis,
as mentioned before. The importance of the clock accuracy at the arrival time of the pulses

in the flip-flops, is the reason why this special net is routed before any other. As expected

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

1.2 Novel ASIC Design flow 5

in literature there are also many post-processing algorithms aiming at different issues. The
second phase performs a quick and dirty routing of the gates to get a better assessment of the
chip wire congestion. The third and final step performs the detail routing of the chip, where
all the rules and guidelines of the PDK must be followed. Such rules effecting the spacing of
the metals, the directions of the metals, the maximum density of metals in a specific region

and the minimum overlap of the wires during the change of direction.

Proceeding to the end of the flow, af-
ter the successful place and route of the cir-
cuit, it is time to evaluate the result and en-
sure its functionality. There are several as-
pects which might affect the functionality,
the manufacturability and the testability of
the chip. Thus, it is important to use a Static
Timing Analysis engine which will anal-

yse the circuit and will report among other Figure 1.3: Screenshot from ANSYS Red-
important information if the longest timing

Hawk thermal analysis tool [20].

path violates the requested clock period. Af-

ter that, the verification of the geometry must be performed to ensure that the produced result
can be manufactured using the specified PDK. Finally, the Design Rules Check (DRC) anal-
ysis must be applied to ensure that there is no obvious threat to the chip functionality. Of
course there are many other check points, verification algorithms even entire tools to verify

that the produced layout has the same output with the initial simulation and that after the

manufacturing the chip will have the anticipated behaviour.

Without further ado, the final phase of the ASIC flow is reached. Here the engineer has to
verify the thermal, electromagnetic and test coverage profile of the chip. So, utilising highly
sophisticated and complex tools, firstly must verify that the chip’s test vectors reach over
99.5% of the chip possible inputs. After that, the maximum allowed temperature of the chip
will not be exceeded during chip’s operation, causing catastrophic failure. Finally, it must be
verified that the electromagnetic behaviour of the chip is nominal and will not jeopardize the

integrity of its signals by cross talking and will not affect the surrounding systems.

From the brief abstract presented above, it is clarified that the ASIC flow is an extremely

complicated and time-consuming collection of steps which often are repeated many times

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

6 Chapter 1. Introduction

before the extraction of the final product which will be sent to be printed. So it is of great
importance to speed up this flow while ensuring its high quality result, if we are to continue
developing larger, more complex and powerful chips to sustain our society’s tremendous

evolution.

1.3 Multi-Level ASIC flow

1.3.1 Introduction of Multi-Level flow in EDA

The concept of Multi-Level or hierarchical ASIC design flow has been around for decades.
Even though it’s challenging to pinpoint the exact first appearance of this approach, it can
be traced back to the early days of ASIC design, when engineers started grappling with the
growing complexity of their designs. One notable milestone in the evolution of multi-level
design methodologies was the emergence of Hardware Description Languages (HDLs) like
VHDL and Verilog. These languages provided a standardized way to discretise the circuit
in blocks based on the logical functionality at various levels of abstraction, facilitating the

hierarchical design process.

Figure 1.4: Presenting the number of transistors used in produced well-known chips from 70s

until now, perfectly aliened with the prediction of Gordon Moore’s law [21].

However, as chips became progressively more complex, their logical functions could not

be divided into balanced loosely connected submodules. Thus, various algorithms and metrics

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

1.3.2 Multi-Level ASIC flow steps 7

were emerged in this flow by the researchers of the time, aiming to create a specified number
of area balanced sparsely connected groups of instances, dividing the circuit into smaller rela-
tively equivalent blocks. The first approaches, in the early 1980s, did not produce substantial
results, able to establish the algorithmic partitioning of the chip as standard practice. The
reasons of this outcome are located in the significant computational time required to produce
the results, alongside with the lack of developed tools to utilise this result

In our days, the complexity of the chips combined with the billions of devices placed in a
chip renders the algorithmic partitioning rather necessary. Based on Moore law, the amount
of instances placed within a chip will be doubled every six to eighteen months. As presented
in Figure 1.4 the trillion transistor circuits are not so far, which means the even the initial
partitions of the chip most probably will must be partitioned again in order to process them
in reasonable time, as each one of these will contain millions of instances. In essence, the
Multi-Level ASIC design flow in a few years will stand as a cornerstone in the semiconductor
industry, streamlining complex design processes and permitting the production of cutting-

edge electronic devices and systems with trillions of devices.

1.3.2 Multi-Level ASIC flow steps

As the Multi-Level ASIC design flow
in the forthcoming years will be an essen-
tial step to address the larger circuits, it is
prudent to present an outline of its steps
in order to become acquainted with it. The
flow starts with a process called clustering

Figure 1.5: Presenting the intuition of VLSI or coarsening, aiming to group the heavily
circuit clustering algorithm [22]. connected instances of the circuit reducing
the instances from many millions, billions or
even trillion of devices into a few hundred thousand groups. The reason that the flow is called
multilevel is that this step gradually merge the instances into bigger objects, creating levels
of abstraction, trying to avoid the merging of large objects leading to unbalanced groups.
Usually in literature and in this work, these groups are referred to as clusters.
The second step of the flow is called partitioning or uncoarsening and its objective is

to further reduce the clusters into a specified number of groups, trying to simultaneously

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

8 Chapter 1. Introduction

preserve the area balance and reduce the intergroup connectivity. The produced objects are
commonly known as partitions. Even though both of these steps aim to reduce the number
of instances, there are key differences distinguishing the algorithms apart and compelling the
order of their execution. The first algorithm groups the instances based on their connectivity,
aiming to reduce their count in to a much smaller number while preserving the area balance.
On the other hand, the second algorithm targets to create a specific amount of groups with
minimum connections between them with the area balance intact. The stricter policy of the
second algorithm makes it quite inefficient when a significant amount of objects needs to be
taken under consideration, making the first operation mandatory towards the completion of
its task.

In some cases, a third step on that flow
can be added as a post process optimisation
step targeted on the specific metric which
the engineer needs to improve. Such metrics
could be the timing of the circuit, the power
consumption, the inter partition connectiv-
ity or the area ratio of the groups. Some of
the algorithms to address the previous met-
rics are the reduction of delay path fragmen-

Figure 1.6: Presenting the intuition of VLSI

tation, the separation of power hungry cells circuit partitioning algorithm [23].
into different partitions, the cell replication

and the incremental moves of objects from partition to partition respectively.

1.4 Multi-Level ASIC design Flow applications

Continuing to the next flow steps, the engineer must perform a Multi-Level placement
algorithm. This one will place the partitions as if they were standard cells, and then it will
proceed to each one of the partitions to place their enclosed objects. This algorithm is much
quicker and scalable compared to the novel placement algorithm, which will try to handle the
entire circuit at once. Considering the scalability of this process, each one partition could be
distributed into a distant server to complete the novel ASIC flow as an independent chip and

then recombined with the other partitions into a predefined floorplan as puzzle pieces. This

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

1.4 Multi-Level ASIC design Flow applications 9

could significantly reduce the back end elapsed time, saving valuable time for chip testing

and evaluation.

One more interesting application of cir-
cuit partitioning can be located in 2.5D and
3D ASIC design flow. This new technology
aims towards the integration of multiple ICs
in the same substrate connected as a NOC or

one on top of the other respectively. Starting

from the first approach, which is already in
use the lasts decades, the separation of the Fjgure 1.7: Mock floorplan in an IC layout ed-
ICs is performed based on the modules” hi- jtor window [24].

erarchy creating IP blocks. The second idea

1s much newer and aims to reduce the distance of inter die routes as they increase signifi-
cantly the circuit delay due to their thickness. In both of these technologies, the separation of
the circuit either in regions or in tiers respectively can be performed by the designer based
on the netlist modules. However, during the latest years the integration of multiple technolo-
gies, i.e. coexistence of 130nm devices alongside with 22nm devices, arises new challenges
in this flow regarding the timing closure and power consumption of the chip which could
be addressed by an algorithmic partitioning approach. Both applications are further analysed
in the following chapters, accompanied by comprehensive experiments using industrial and

academic designs.

Figure 1.8: 2.5D versus 3D IC designs [25].

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

10 Chapter 1. Introduction

1.5 Thesis Outline

Despite, the substantial value of the Multi-Level flow, the tools targeted to support that
cause are limited. The most known are the MLpart [1], h(METIS [2] [3], KaHyPar[4] [5] [6],
PaToh [7] SpecPart [8] [9] and GAP [10] [11] which will be further analysed in the following
chapters. The contribution of this work is to introduce a new partitioning tool targeted entirely
to VLSI circuits. This one consists of two updated clustering and partitioning methodologies,
one for each step of the multilevel flow respectively, and a post-processing optimisation al-
gorithm.

The rest of the thesis is organised as follows. The second chapter delves into the neces-
sary background knowledge to keep up with the thesis and then focuses on the other related
works and tools, analysing their advantages and disadvantages. Following that, it will be pre-
sented the existing work related to the previous referred applications of chip partitioning,
accompanied by the description of their flow and their basic algorithms. The next chapter,
manifests the contribution of this work by turning the spotlight on the developed algorithms
and heuristics integrated on the existing infrastructure to manage outperform the existing
state-of-the-art tools. To endorse our claims, the next chapter includes the results and the ex-
perimental methodology, confirming the superiority of our approach regarding the reviewed
metrics. The final chapter contains the remaining work which should be done in order to

construct a complete bullet-proofed tool, proceeded by the conclusions of this analysis.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 2

Background

2.1 Introduction

The background chapter serves as an educational portal to our in-depth investigation of
multi-level circuit partitioning, a domain that supports the development of cutting-edge elec-
tronic systems. This chapter sets the foundation for our analytical journey by explaining the
key terms and definitions required to understand the complexities of this topic. We begin this
illuminating journey by delving into the following key points.

In our first category, we build the groundwork by defining basic terms. This involves
introducing Directed Acyclic Graphs (DAGs) and Hypergraphs as fundamental represen-
tation tools in circuit design. We distinguish between Nets and Flylines, two fundamen-
tal yet nuanced design aspects. Furthermore, we define the roles of the integral Nodes and
C'omponents that comprise the graph representation of circuits. Following that, we go into
the idea of Vcycle, investigating its application in partitioning strategies. We also investigate
the semantics of C'lusters and Partitions, giving light on their function in BackEnd de-
sign. Finally, we discuss interpretations such as fanout, cliques, and routes, which influence
partitioning techniques, as long as the timing-oriented aspects like slack and gate delay.

Understanding these terminologies will provide readers with the necessary language and
basic knowledge to navigate the complex and dynamic world of multi-level circuit partition-
ing. These ideas not only serve as stepping stones for our later assessments of partitioning
approaches and optimization tactics, but they also equip us to deal with the changing issues
given by modern electronic systems. We can start the analysis with the confidence that a solid

foundation will pave the way for innovative solutions in this ever-changing industry.

11

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

12 Chapter 2. Background

2.2 Terminologies and Definitions

2.2.1 Graph Representation

In the field of Very Large-Scale Integration (VLSI) circuit design, graphical representa-
tions play a pivotal role in modelling the complex interconnections and dependencies between
various components of an integrated circuit. Two primary graphical models often used for this
purpose are Directed Acyclic Graphs (DAGs) and hypergraphs. These representations have
distinct characteristics, and understanding their differences is essential for selecting the most

suitable model for a particular design task.

A Directed Acyclic Graph (DAG) is mathematically represented as a set of vertices and
directed edges [37]. The set of vertices is denoted as V' and consists of unique elements,
expressed as V' = {vy, vy, v3,...,v,}, Where v; represents the ith vertex, and n is the total
number of vertices. The connections between vertices are represented by a set of directed
edges, denoted as F, where each directed edge is an ordered pair of vertices indicating the
direction of the connection: £ = {(v;,v;) | v;,v; € V}. Importantly, a DAG is charac-
terized by its acyclic nature, meaning there are no closed loops or cycles within the graph.
This acyclic property is expressed as a condition ensuring that no sequence of directed edges
can return to the same vertex. The mathematical representation of a DAG allows for precise
analysis and manipulation, making it a fundamental concept in various mathematical and
computer science contexts, including graph theory and data structure implementations.

DAGs are widely employed in VLSI circuit design due to their simplicity and efficiency
in capturing the hierarchical and sequential nature of circuits [38]. A DAG consists of nodes
(vertices) and directed edges (arcs) connecting them. In the context of VLSI, each node typi-
cally represents a logical component or a cell, while the directed edges represent the logical or
data flow between these components. One of the key characteristics of DAGs is their acyclic
nature, which means there are no closed loops or cycles in the graph. This acyclic property
is particularly important because it ensures that signals do not encounter infinite feedback
loops, guaranteeing predictable and finite signal propagation times. This is crucial in VLSI
design, where accurate timing analysis is essential to prevent issues such as signal skew and
metastability.

A hypergraph is mathematically represented as a set of hyperedges and vertices [37].

The set of vertices is denoted as V' and consists of unique elements, expressed as V' =

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.2.1 Graph Representation 13

{v1,v9,v3,...,v,}, where v; represents the ith vertex, and n is the total number of vertices. In
contrast to a standard graph, a hypergraph includes a set of hyperedges, denoted as £, which
connects more than two vertices. Each hyperedge is represented as a subset of vertices, and

the set of hyperedges can be expressed as:

E — {617627637"‘767%}

Here, each e; is a subset of vertices, indicating the complex relationships that may involve
multiple components simultaneously. The flexibility of hypergraphs is particularly valuable
when dealing with non-hierarchical and complex connections in various contexts such as
VLSI circuit design and relational databases. Hypergraphs do not have the acyclic property
found in Directed Acyclic Graphs (DAGs), and this flexibility allows for the representation
of cyclic dependencies, shared structures, and multiple connections. The mathematical rep-
resentation of a hypergraph provides a foundation for understanding complex relationships
and is a vital concept in mathematical modeling, data analysis, and various fields where non-
binary relationships are significant.

As regarding VLSI circuits, hypergraphs, on the other hand, provide a more expressive
and flexible representation for VLSI circuits compared to DAGs. In a hypergraph, nodes
are still used to represent components, but edges are replaced by hyperedges, which can
connect more than two nodes. A hyperedge can represent complex interconnections that may
involve multiple components simultaneously. The flexibility of hypergraphs is valuable when
dealing with more intricate aspects of VLSI design, such as shared buses, buses with multiple
drivers, or components with multiple inputs or outputs. Hypergraphs allow for a concise
representation of these complex relationships, making them particularly useful in scenarios
where DAGs might become convoluted due to multiple connections.

The most fundamental difference is that DAGs are acyclic, while hypergraphs are not
constrained by this property. Hypergraphs allow the representation of cyclic dependencies,
which can be beneficial in some scenarios, but may also introduce complexities that need
to be carefully managed. Hypergraphs are more complex and expressive than DAGs due to
the presence of hyperedges. This complexity can be an advantage when modelling intricate
circuit structures, but can also make analysis and manipulation more challenging. DAGs are
generally more straightforward and intuitive for representing hierarchical and sequential re-
lationships, while hypergraphs provide greater flexibility when dealing with non-hierarchical

and complex connections, albeit at the cost of increased complexity.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

14 Chapter 2. Background

2.2.2 Physical Design Oriented definitions

In the realm of digital circuit design, the notions of cir-
cuit fanout, paths, and gates cliques play crucial roles in
understanding and optimizing the behaviour and structure
of complex circuits. These concepts provide essential in-
sights into signal propagation, logical pathways, and effi-
cient circuit organization. In this section, we delve into the
definitions and significance of circuit fanout, paths, and

gates cliques.

Circuit fanout refers to the number of logic gates or
components that a single output signal can drive or feed
into. In other words, it quantifies the capacity of a signal
to be distributed to multiple destinations within a digital
circuit. A high fanout implies that a signal is distributed to
many gates, which can potentially lead to issues like signal
degradation, increased propagation delay, and power con-
sumption. Conversely, low fanout values indicate a more
localized signal distribution, which can be advantageous
in reducing signal integrity concerns and improving cir-
cuit performance.

In the context of digital circuits, a path represents a

. . Figure 2.1: a) Simple fanout of 3
logical sequence of interconnected gates and components

,) NAND gates starting be a same
that connect an input to an output. Paths are instrumental

)))) . type gate driver. b) The red line
in understanding the signal flow and logical dependencies

. .)) i presents the longest path of the
within a circuit. They help in analysing propagation de-
.. .)) sub-circuit. ¢) The top left sub
lays, critical paths, and overall circuit behaviour. Identify-

) o ..)) i figure presents the Half Perime-
ing and optimizing critical paths is essential for ensuring

.) . .)) ter Wire Length of the net. The
the efficient operation of a digital circuit, especially in ap-

o o) o other images present alternative
plications where timing constraints are critical.
methods of estimating the net
The half-perimeter wire length is a metric used to mea-
wire length [26].
sure the total wire length required for interconnections in

a digital circuit. It is computed as half of the sum of the

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.2.3 Timing Analysis Oriented definitions 15

width and height of the layout or the integrated circuit. The half-perimeter wire length is
a valuable indicator of the wire’s spatial requirements and plays a role in minimizing wire
congestion, which can be especially critical in high-density integrated circuits.

Design Rule Checks (DRCs) are a set of rules and constraints that ensure that a digital
circuit’s physical layout adheres to the fabrication technology’s capabilities and specifica-
tions. DRCs encompass guidelines related to minimum feature sizes, spacing, and clearances
between components. Verifying compliance with DRCs is a crucial step in the design process

to avoid manufacturing defects and ensure the physical correctness of the circuit layout.

2.2.3 Timing Analysis Oriented definitions

Continuing, in digital circuit design, timing constraints are pivotal in ensuring that a cir-
cuit operates correctly and reliably. They provide critical guidelines for managing signal tim-
ing, and several metrics, such as Total Negative Slack, Worst Negative Slack, and gate delay,
are employed to assess and optimize circuit performance. In this section, we delve into these
essential concepts and their roles in digital circuit design.

Timing constraints are a set of guidelines and specifications that dictate when signals
must arrive at their intended destinations within a digital circuit. They encompass parameters
like setup time, hold time, clock-to-q delay, and clock frequency. These constraints ensure
that signals meet the required timing specifications and allow for correct circuit operation,
completing a set of instructions in the appropriate time period.

The first one is, Total NegativeSlack (TNS) is a crucial metric used to evaluate the
overall timing performance of a digital circuit. It quantifies the total amount by which the
actual signal arrival times exceed the required timing constraints. A positive TNS indicates
that all signals meet their timing requirements, while a negative TNS signifies that some
signals are failing to meet the constraints. Addressing negative TNS is essential to prevent
issues like signal skew, data loss, or incorrect circuit operation.

Proceeding to the next one, which is Worst NegativeSlack (WNS) identifies the most
critical timing violation within a circuit. It represents the most negative slack value among all
signals in the design, highlighting the specific signal that is furthest from meeting its timing
constraints. Addressing the WNS is of paramount importance because it directly points to the
weakest link in the circuit’s timing performance. Improving the WNS often leads to overall

performance enhancement.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

16 Chapter 2. Background

Furthermore, gate delay refers to the time taken by a logic gate to process an input signal
and produce the corresponding output. It is a fundamental parameter in digital circuit design
and directly influences the signal propagation delay within the circuit. Reducing gate delay is
a common optimization goal to minimize signal propagation time and enhance circuit speed.

Finally, Longest path delay, as the name suggests, is the delay along the most extended
path in a digital circuit. It represents the maximum time it takes for a signal to travel from
the input of the circuit to the output through the longest chain of gates and interconnections.
Identifying and managing the longest path delay is essential for meeting overall circuit timing

constraints, as it often dictates the circuit’s maximum achievable operating frequency.

2.2.4 Vcycle flow

Last but not least, the final definition that we should mention is the V-cycle flow. The
V-cycle flow is the main approach, as regarding the multilevel hypergraph partitioning algo-
rithm, and is based on the concept of the multilevel paradigm. This flow aims to partition a
hypergraph into k roughly equal parts, with the goal of minimizing the number of hyperedges
connecting vertices in different parts. The algorithm consists of three phases: coarsening, ini-
tial partitioning, and uncoarsening and refinement.

In the coarsening phase, a sequence of successively coarser hypergraphs is constructed.
This is achieved by merging groups of vertices together to form single vertices in the next
level coarse hypergraph. There are multiple different algorithms for coarsening, like edge
coarsening, hyperedge coarsening and first choice algorithm. These algorithms select pairs
of vertices or hyperedges to be merged based on different criteria, such as heavy-edge maxi-
mal matching or independent sets of hyperedges. In the initial partitioning phase, a balanced
random bisection of the coarsest hypergraph is computed. This partitioning is then carried
along in the uncoarsening phase. During the uncoarsening and refinement phase, the bisec-
tion is successively projected to the next level finer hypergraph. At each level, an iterative
refinement algorithm, such as the Fiduccia-Mattheyses (FM) or Kernighan—Lin (KL) algo-
rithm, is used to further improve the bisection. The Vcycle flow is a powerful and efficient
multilevel hypergraph partitioning algorithm. It utilizes innovative coarsening schemes and
refinement algorithms to consistently produce high-quality partitionings. The algorithm has
been extensively evaluated and compared to other algorithms, demonstrating its superiority

in terms of both partitioning quality and runtime.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.3 Multi-Level Placement Application 17

Figure 2.2: The three phases of the multilevel V-Cycle k-way graph partitioning flow [27].
2.3 Multi-Level Placement Application

2.3.1 Algorithm overview and objectives

Multi-Level Placement is a critical phase in the Application-Specific Integrated Circuit
(ASIC) design process. Its primary objective is to efficiently place the logical components,
such as gates and flip-flops, onto the physical layout of an integrated circuit. Unlike traditional
placement algorithms, Multi-Level Placement leverages a hierarchy of abstraction levels to
optimize performance, power consumption, and manufacturability simultaneously.

The algorithm aims to achieve several key objectives. Firstly, it optimizes the circuit’s
timing characteristics by reducing critical path delays and ensuring that setup and hold time
requirements are met. Secondly, it minimizes wire length, a fundamental aspect of place-
ment, by carefully arranging components to lower interconnect delays, power consumption,
and manufacturing costs. Additionally, it addresses power efficiency by strategically placing
components to minimize wire capacitance and dynamic power. Lastly, Multi-Level Place-
ment focuses on ensuring signal integrity, addressing issues like electromigration and voltage
drop, which are crucial for circuit reliability and robustness.

Hierarchical placement methods start with a global placement phase, which initializes

the initial placement of hiearchy modules. This phase focuses on high-level interconnections

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

18 Chapter 2. Background

Figure 2.3: The left-hand side image presents the initial positions of circuit cells into the
die and the forces represented by the black lines, while the second image presents the final

positions of the cells after the force directed algorithm operation [28].

and provides a rough floorplan. Subsequently, the detailed placement phase optimizes the
positions of the enclosed components at a finer granularity. It considers local interactions,
maintaining legal distances, and meeting design rules. Legalization is another critical aspect,

ensuring that the placement adheres to the physical design rules, such as minimum spacing.

2.3.2 Placement Algorithm types

Due to the fact that placement algorithms in the context of digital circuit design play a
crucial role in determining the physical locations of logical components, it is more impor-
tant to discuss the existing algorithm types [39]. There are two common types of placement
algorithms are the "Force-Directed” placement algorithm [40] and the ”Logarithmic Sum-
Exponential” (LSE) placement algorithm. These algorithms differ in their approaches and
optimization strategies.

The Force-Directed placement algorithm [40] is a physics-inspired approach used in dig-
ital circuit design. It views logical components as particles in a system and mimics physical
forces to optimize their placement. Components are represented as nodes in a graph, and
attractive forces exist between connected components, while repulsive forces act between
unconnected ones. These forces are iteratively calculated, causing components to move until
a stable and optimized placement is achieved. Force-directed algorithms are often employed
in initial placement stages due to their speed and effectiveness in minimizing wire length.

On the other hand, the Logarithmic Sum-Exponential (LSE) placement algorithm [41]

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.3.2 Placement Algorithm types 19

Figure 2.4: During the log sum exponential placement method, such a mathematical expres-

sion must be minimized, in order to assign the circuit gates into their optimal positions.

takes a mathematical approach, presented in Figure 2.4, to placement optimization. It seeks
to minimize a cost function, typically a weighted sum of wire length and other objectives,
through mathematical optimization techniques. LSE placement algorithms are particularly
useful when strict constraints are in place, such as minimum spacing or design rule require-
ments. They leverage convex optimization and a logarithmic barrier function to handle com-
plex placement problems with multiple objectives, ensuring that the placement meets vari-
ous constraints and trade-offs. A typical evaluation function is presented below in figure 2.4,

which must be minimized in order to achieve the optimal gates position.

Of course, there are other approaches such as constraint-based placement [42] which takes
into account various design constraints, such as minimum spacing, area constraints, and rout-
ing resources. These constraints are explicitly defined and enforced throughout the placement
process. Constraint-based approaches are crucial for ensuring the manufacturability and re-
liability of the layout. One more method called Genetic Algorithms [43] are inspired by bio-
logical evolution. They employ techniques like selection, crossover, and mutation to evolve
and optimize placement solutions. Genetic Algorithms are useful for exploring a wide search

space and are adaptable to various placement objectives and constraints.

It is important to mention that the placement phase is often divided into global place-
ment and detailed placement. Global placement establishes an initial arrangement, focusing
on high-level interconnections and overall quality metrics, while detailed placement refines
this arrangement to meet design rules and optimize component positions at a finer granu-
larity. Designers often combine these approaches at various stages to meet specific design
requirements, enabling the efficient, high-performance, and reliable implementation of dig-
ital circuits. The choice of placement method is tailored to the objectives and constraints of

each design, allowing for a flexible and adaptable approach in the placement phase.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

20 Chapter 2. Background

2.3.3 Existing Industrial Tools

Hierarchical placement tools are vital for managing the intricacies of modern digital cir-
cuit designs, providing the means to break down complex layouts into manageable hierarchi-
cal blocks or modules while preserving the design hierarchy. Among the notable industrial
tools known for their hierarchical placement capabilities are Cadence Innovus, Synopsys
ICC2, Mentor Graphics Olympus-SoC, ANSYS RedHawk-SC, and Magma Talus.

Starting by Cadence, Innovus is a well-regarded tool offering robust hierarchical place-
ment support, enabling multi-level hierarchies and efficient handling of large designs. It ex-
cels at achieving a balanced trade-off between runtime and quality, making it a favoured
choice for intricate ASIC and FPGA projects. Moving on to Synopsys ICC2, another promi-
nent tool, specializes in hierarchical placement for complex designs. It empowers designers
to manage multi-level hierarchies, ranging from block-level to chip-level placement. ICC2
stands out for its proficiency in timing-driven placement and global optimizations, enhancing
design performance.

Continuing, Mentor Graphics Olympus-SoC is optimized for system-on-chip (SoC) de-
signs and offers comprehensive hierarchical placement capabilities. It excels in handling hier-
archical blocks, enhances scalability, and integrates seamlessly with other EDA tools, making
it a preferred option for complex SoC projects. On the other hand, ANSYS RedHawk-SC,
primarily a power integrity tool, also features hierarchical placement and optimization capa-
bilities. It emphasizes power-aware placement and is widely utilized in designs with stringent
power constraints, such as mobile and IoT devices. Magma Talus is a versatile tool offering
hierarchical placement solutions, focusing on hierarchical optimization, clock tree genera-
tion, and signal integrity. It is often the choice for larger designs where optimizing hierarchi-

cal placement is paramount for overall performance.

2.4 3D Chip Design flow Application

2.4.1 3D Flow Overview and Objectives

A 3D ASIC (Three-Dimensional Application-Specific Integrated Circuit) flow is a design
and manufacturing process that involves the creation of integrated circuits in multiple layers

or “’stacks” in three dimensions [44]. Unlike traditional 2D ASIC design, where components

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.4.2 Different flow types 21

are placed on a single silicon die, 3D ASICs are designed to have components stacked on top
of each other in multiple layers. These layers are interconnected using through-silicon vias
(TSVs), allowing for vertical integration. This approach offers several advantages, including
improved performance, reduced power consumption, smaller form factors, and the ability to
integrate different technologies on separate layers, a concept known as heterogeneous inte-
gration.

Through-Silicon Vias (TSVs) are essential for enabling communication between the dif-
ferent layers of a 3D ASIC [44]. TSVs are vertical interconnections that penetrate the silicon
layers, facilitating power and signal distribution between the stacked components. Designing
and manufacturing 3D ASICs comes with its set of unique challenges. These challenges in-
clude managing heat dissipation in a compact space, ensuring precise alignment of TSVs, and
optimizing the placement and routing of components in three dimensions. Specialized tools
and methodologies tailored for 3D design are required to address these challenges effectively.

3D ASICs have a broad range of applications, particularly in fields like data centres [45],
where they can enhance the performance and efficiency of data processing and memory sys-
tems. The form factor is significantly reduced in 3D ASICs, making them suitable for portable
devices [46]. The manufacturing of 3D ASICs demands advanced semiconductor fabrication
techniques. Stacking multiple layers of components requires precision in aligning and bond-
ing the individual dies together. Companies and foundries that specialize in 3D IC technology
play a crucial role in this manufacturing process.

Heterogeneous integration is another notable aspect of 3D ASICs [47]. These chips can
combine different types of components on separate layers, allowing for the integration of di-
verse technologies within a single package. As technology continues to advance, 3D ASICs
are becoming more prominent, especially in applications where compact size and high per-
formance are essential considerations. This evolution in IC design is shaping the future of

semiconductor technology and its applications.

2.4.2 Different flow types

Various techniques are used in the realm of three-dimensional (3D) stacking in integrated
circuits, each catering to different design requirements and applications. One such technique
is Monolithic 3D Integration (M3DI) [48], which entails the vertical stacking of multiple

layers of transistors on a single silicon substrate, interconnected through Monolithic Inter-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

22 Chapter 2. Background

tier Vias (MIVs) [49], offering notable improvements in performance and power efficiency.
Another popular method is 3D IC Stacking, which involves stacking separate dies, each of
which contains a whole integrated circuit, on top of one another and connecting them with
TSVs[50]. This method allows for the integration of various technologies or functionality on
different dies. It is especially useful when various components require independent produc-
tion procedures. TSV Technology is a critical component of 3D stacking. TSVs are vertical
interconnects that pass between silicon layers, allowing communication between different
levels or dies. These TSVs can be used in 3D IC stacking [51] to create a dense network of

interconnections, allowing for better performance and interconnectivity.

The usage of silicon interposers [52] as

a bridge between many dies within a pack-

age is introduced by stacking. These inter- [et tavers
posers include TSV networks and allow for T8V —f—— dovice layer 2
the integration of multiple dies. This ap- }metal layore
proach is ideal for applications that need

the integration of numerous dies in a single Ii—l device layer 1

package, such as high-performance comput-)]
Figure 2.5: A conceptual view of a 3D IC chip,
ing or complex networking systems. Mean- - . .
with a through-silicon-via (TSV) used as inter-
while, 2.5D Stacking is a hybrid of complete
connect between two dies or wafers [29].
3D stacking and classic 2D techniques [53].
It entails merging numerous dies onto an in-
terposer, which is typically made of silicon. While it does not attain the same vertical density
as complete 3D stacking, it is less expensive and more adaptable. 2.5D stacking is widely
used in high-performance computing and artificial intelligence applications where form fac-

tor constraints are less stringent.

Finally, there is die-on-wafer [54] [55]. Stacking is the process of stacking one or more
full dies on top of a wafer containing integrated circuits. When particular components, like as
sensors or advanced memory, must be incorporated into a wafer containing digital logic, this
approach is often used. It allows for the mixing and matching of diverse technologies within
a single package. These various 3D stacking approaches enable designers and manufactur-
ers to adjust their integration tactics to satisfy specific design needs, maximize performance,

increase power efficiency, and solve form factor concerns. The specific application, design

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.4.3 Modern Challenges 23

Figure 2.6: 2.5D-1C assembly that includes two substrates (silicon interposer + organic pack-

age) [30].

requirements, and accessible manufacturing capabilities all influence the choice of a partic-

ular 3D stacking approach.

Figure 2.7: Different bonding technologies for 3D Integration circuit according to fabrication

approach. [31].

2.4.3 Modern Challenges

Three-dimensional (3D) chip integration, while offering numerous advantages, presents

several notable challenges [56] [44]. One of the primary concerns is heat dissipation. As

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

24 Chapter 2. Background

components are stacked vertically in 3D integration, heat generated in one layer can affect
the layers above and below, potentially leading to thermal issues, rendering effective thermal
management solutions essential to prevent overheating.

Another challenge lies in the design and reliability of Through-Silicon Vias (TSVs),
which serve as critical vertical interconnects. Designing TSVs to be both reliable and man-
ufacturable is a complex task. Factors like TSV placement, fill materials, and TSV-induced
stress must be carefully addressed to ensure proper functionality. Designing for 3D integra-
tion introduces increased complexity, as designers need to consider vertical placement, TSVs,
and thermal management in addition to traditional 2D design considerations. Designing for
manufacturability and ensuring proper alignment across multiple layers require intricate and
precise methodologies.

The manufacturing process for 3D integration is another area of challenge. It involves
wafer thinning, die stacking, and microassembly. Precision manufacturing is crucial to en-
sure that dies are correctly aligned, bonded, and rigorously tested. Heterogeneous integration,
which involves integrating different technologies or materials in 3D, can be challenging due
to differences in thermal expansion coefficients and material properties. Managing these vari-
ations is essential to prevent stress-induced failures. Testing 3D integrated devices is more
challenging than traditional 2D chips. Accessing and testing individual layers can be com-
plex, and techniques for ensuring high yield and detecting and repairing defective components
are critical. Furthermore, the lack of industry-wide standards for 3D integration hinders in-
teroperability between different vendors and tools. The development of common standards
is crucial to promote adoption and ensure compatibility.

Lastly, as devices become smaller and more power-efficient, power delivery and signal
integrity can become challenges in 3D integration. Ensuring that power is distributed ef-
fectively, and that signals maintain their integrity, is a critical aspect of overcoming these
challenges. Addressing these issues requires a collaborative effort between semiconductor
manufacturers, designers, and researchers to develop new technologies, tools, and best prac-
tices specific to 3D integration. Despite the difficulties, the benefits of improved performance

and energy efficiency continue to drive research and innovation in this field.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 3

Related Work

3.1 Introduction

Partitioning circuits is a key and difficult challenge in the ever-changing environment
of electrical design automation. As the demand for increasingly complicated and efficient
integrated circuits grows, so does the need for improved circuit partitioning approaches. This
chapter serves as the starting point for our research of multi-level circuit partitioning, a topic
that is critical in the creation of complex electronic systems.

This chapter aims to provide a comprehensive background for our investigation into
multi-level circuit partitioning, with a particular focus on the foundational concepts, historical
developments, and the contemporary challenges faced in this intricate field. By understand-
ing the complexities and intricacies of multi-level circuit partitioning, we can pave the way
for innovative approaches and solutions that address the ever-growing demands of modern
electronic systems. To achieve this, we will delve into the historical evolution of circuit par-
titioning techniques, the key drivers necessitating its advancement, and the state-of-the-art
methodologies that researchers and engineers employ to tackle the challenges presented by
today’s cutting-edge technologies.

Our journey through this chapter will lay the groundwork for the subsequent discussions
and analyses of various partitioning techniques, optimization strategies, and the potential
for advancements in multi-level circuit partitioning. It is our hope that this exploration will
not only contribute to the scholarly discourse on this subject but also inspire practical, real-
world solutions for the design and implementation of complex integrated circuits in an era of

unprecedented technological innovation.

25

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

26 Chapter 3. Related Work

3.2 Multi-Level Clustering

3.2.1 Algorithm Overview and Objectives

Multi-level clustering techniques are critical in the design of Very Large Scale Integration
(VLSI]) circuits. These algorithms provide a methodical approach to dealing with the com-
plexities and challenges of current semiconductor devices, which are made up of millions, if
not billions, of transistors and interconnections. Because of the overwhelming complexity, a
disciplined mechanism for grouping circuit components into meaningful groups is required,
and multi-level clustering serves this goal well. Multi-level clustering approaches, which are
tailored specifically for VLSI design, aim to expedite the design process by facilitating the
decomposition of large-scale circuits into more manageable and optimal sub-modules. This
hierarchical architecture provides a number of advantages for VLSI designers and engineers,
as it streamlines the design process while allowing for a more ordered and systematic ap-

proach to addressing the complexity of VLSI circuits.

Multi-level clustering techniques are
used for area and power optimization in ad-
dition to complexity control. Given the ne-
cessity of decreasing chip space and power
consumption in VLSI circuits, these meth-
ods aid in identifying crucial locations that
demand special attention, enabling effi-
cient resource allocation and power distribu-
tion.Furthermore, improving signal integrity
is a major goal of multi-level clustering in
VLSI design. The algorithms aid in the orga-
Figure 3.1: General clusters approach on a di-
nization of components to minimize signal
rected graph [32]

interference and path lengths, resulting in
dependable and high-performance circuitry.

Manufacturability and yield enhancement are also important factors in VLSI design, and
multi-level clustering can help with both. These algorithms lead to increased yield, cheaper
production costs, and enhanced manufacturability by arranging components in ways that mit-

igate manufacturing difficulties. Furthermore, multi-level clustering techniques strive to im-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.2.2 Algorithm types 27

prove overall circuit performance. They boost speed, reduce latency, and maximize resource
efficiency inside the VLSI circuit by isolating important modules and optimizing their con-
nections. Finally, considering the constant increase in the complexity of VLSI circuits, the
scalability of these methods is critical. Multi-level clustering algorithms are built to be scal-
able, allowing for larger and more complex designs without losing performance or economy,

ensuring their relevance in an ever-changing industry.

3.2.2 Algorithm types

Multi-Level Clustering algorithms are particularly valuable in the modern semiconductor
industry because all of the above listed objectives are critical for the chip manufacturing
process. As aresult, it is necessary to discuss the many ways that are currently being employed
in industry to handle this ASIC flow stage. The also called hierarchical clustering techniques,
can be broadly categorized into a few categories, as presented in Figure 3.2, with the most
known of them to be the agglomerative and divisive approaches [57].

The more commonly used of the two is agglomerative hierarchical clustering [58]. It starts
with each data point as a separate cluster and then merges smaller clusters into bigger ones.
The procedure begins with the assumption that each data point is a separate cluster. The algo-
rithm then iteratively merges the two closest clusters, continuing until all data points are part
of a single, comprehensive cluster. One of the distinguishing characteristics of agglomera-
tive clustering is the generation of a dendrogram, which is a tree-like structure that depicts the
clustering hierarchy. The dendrogram’s branches represent the merging of clusters at various
phases. You can determine the amount of granularity in your clusters by visually studying
the dendrogram and selecting an acceptable cut-off point. This allows for greater freedom in
analysing the data and comprehending the links between data points, making it applicable to
a wide range of applications.

Divisive hierarchical clustering [59], on the other hand, adopts a different strategy. It
first groups all the data points into a single cluster before repeatedly breaking them up into
smaller clusters. Although less popular, this strategy has its advantages in some contexts.
The technique divides a cluster periodically into two smaller clusters, eventually resulting in
a tree-like structure like a dendrogram but showing the division of clusters. When you assume
that data naturally falls into a layered or hierarchical structure, dividing hierarchical clustering

can be helpful. But compared to agglomerative clustering, it is frequently computationally

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

28 Chapter 3. Related Work

Figure 3.2: Broad classification of clustering algorithms [33].

more demanding and sophisticated, which restricts where it can be used.

Of course, there are more sub-categories addressing the clustering phase, each one ex-
ploiting different circuit characteristics. The most well-explored between them are the par-
titional clustering methods like K-Means [60] partition data into non-overlapping clusters,
and density-based approaches such as DBSCAN [61] which excel at discovering clusters
with varying shapes and sizes. Another subset of methods is the non-parametric algorithms
like Mean-Shift which they find cluster centres by shifting towards high-density regions,
exploiting circuits levels, while probabilistic methods like Gaussian Mixture Models model
data as a mixture of Gaussian distributions. Finlay, the analysis would be incomplete if the
Spectral clustering approach [62] was not included, which employs eigenvalues for cluster

formation, utilising the Laplacian matrix of the circuit.

3.2.3 Existing algorithms and tools

In previous paragraphs are presented the objectives and main types of clustering ap-
proaches. To complete the presentation of the clustering phase related work, it is necessary
to bring forward the most used and well established tools of this area of interest. The first
method is called edgecoarsening [2]. In this method, a heavy-edge maximal matching of the

vertices of the hypergraph is computed to select the pairs of vertices. These vertices are then

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.2.3 Existing algorithms and tools 29

Figure 3.3: Different edge coarsening techniques and the coarsening they induce [2].

merged together to form a single vertex in the next level coarse hypergraph. The heavy-edge
maximal matching is a matching that maximizes the weight of the edges in the matching.
The weight of an edge is the sum of the weights of the vertices it connects. The matching
is called maximal because it is not possible to add any more edges to the matching without
violating the matching property. The edge coarsening method is preferred when the hyper-
edges are relatively small and the weights of the vertices are not too different from each other.
This is because the heavy-edge maximal matching may not be able to capture the important
structure of the hypergraph when the hyperedges are large or the weights of the vertices are

significantly different from each other.

Another similar approach is the First Choice (FH) [63] which is a method used in hyper-
graph partitioning algorithms to determine how groups of vertices should be merged together
in the next level coarse hypergraphs. It starts by creating an empty list of groups and then
iterates through each vertex in the hypergraph. For each vertex, the algorithm checks if it is
highly connected to any vertex already in a group. If it is, the vertex is added to that group.
If not, a new group is created with the vertex as the only member. This process continues
until all vertices have been assigned to a group. The resulting groups of vertices are then
merged together to form single vertices in the next level coarse hypergraph. The goal of the
FirstChoice algorithm is to create groups of vertices that are well-connected within them-
selves, which can help improve the efficiency of subsequent refinement algorithms in the

partitioning process.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

30 Chapter 3. Related Work

Figure 3.4: Clustering a pair of objects A and C using either the First Choice or the Best
Choice [34].

The next clustering algorithm discussed in [34] is called the best-choice bottom-up clus-
tering algorithm. The algorithm starts by initializing a priority queue (PQ) with all objects
in the netlist. Then enters a loop where it continues to cluster objects until the target number
of objects is reached. In each iteration of the loop, the algorithm picks the top tuple (u, v,
d) from the PQ, which represents the pair of objects with the highest clustering score. These
objects are then clustered together to create a new object u’. After clustering, the netlist is
updated to reflect the new object u” and its connections. The algorithm then calculates the
closest object v’ to u’ and its clustering score d’. This information is inserted into the PQ.
The algorithm also includes a lazy-update technique to reduce the runtime. Instead of updat-
ing clustering scores for all neighbor objects after each clustering operation, the algorithm
marks them as invalid. Only when an object is picked from the top of the PQ, its clustering
score is updated if necessary. This lazy-update approach significantly reduces the number
of score update operations on the PQ, leading to faster runtime. Additionally, the algorithm
includes methods for controlling cluster sizes and handling fixed blocks. Cluster sizes can be
indirectly controlled by using a clustering score function that is inversely proportional to the
size of the cluster objects. Direct size control can also be applied by imposing hard or soft

bounds on the cluster sizes.

Finally, a new approach to effective circuit clustering called RW-ST (Random Walk - Self-

Tuning) algorithm is presented in paper [64]. The goal of the paper is to reduce the problem

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.2.3 Existing algorithms and tools 31

size of layout synthesis algorithms by condensing the circuit netlist. The RW-ST algorithm
is based on a random walk in the circuit netlist graph. The algorithm starts by constructing
a random walk in the netlist graph. A random walk is a stochastic process that moves from
the current module to a random adjacent module. The cover time of the random walk is the
expected length of the walk that visits all vertices in the graph. The paper shows that the cover
time of a random walk in a d-regular graph of n nodes is O(n?) and O(nlogn), which means

that a single random walk can sample the entire netlist graph.

Following, the algorithm identifies cy-
cles in the random walk. A cycle is a subse-
quence of nodes in the walk that starts and
ends at the same node. The cycles repre-
sent potential clusters in the netlist. The al-
gorithm then computes the sameness value
for each pair of nodes in the netlist. The
sameness value measures the commonality
of the sets of nodes visited in cycles origi-
nating from each pair of nodes. Based on the
sameness values, the algorithm clusters node
pairs with sameness greater than zero. The
clusters are formed by merging the nodes
that have high sameness values. The result- Figure 3.5: Maps of random walks on complex
ing clusters represent the condensed netlist. networks reveal community structure [35]
The algorithm also introduces a quality mea-
sure called DS (Degree-Separation) to evaluate the effectiveness of the clustering. The DS
quality of a clustering is the weighted average of the cluster degree and cluster separation.
The cluster degree is the average number of nets incident to each module in the cluster, and
the cluster separation is the average length of the shortest path between two nodes in the
cluster. The higher the DS quality, the better the clustering. The paper presents experimen-
tal results comparing the RW-ST algorithm with other clustering methods. The results show
that RW-ST consistently produces better clusterings in terms of DS quality. The algorithm is
also applied to two-phase Fiduccia-Mattheyses partitioning, and it is shown to improve the

solution quality compared to standard FM partitioning.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

32 Chapter 3. Related Work

3.3 Multi-Level Partitioning

3.3.1 Algorithm overview and objectives

Partitioning algorithms play a crucial role in electronic design automation (EDA) for the
optimization and decomposition of complex digital circuits. These algorithms are designed to
break down a large circuit into a predefined number of smaller, more manageable sub-circuits,
facilitating further optimization and enhancing the efficiency of circuit implementation. In
this section, we provide an overview of partitioning algorithms and outline their primary ob-
jectives. Multi-level circuit partitioning algorithms operate on the principle of hierarchical
decomposition. They divide the original circuit into smaller components in a hierarchical
fashion, starting from the entire design and proceeding to smaller granularity levels. This
approach is essential for various stages of digital design, including logic synthesis, place-
ment, and routing. The goal is to achieve a partitioning that balances the trade-offs between
partition size and complexity, ultimately optimizing the circuit’s performance and ease of
implementation.

In achieving these goals, partitioning algorithms pursue several key objectives. First and
foremost, they seek to minimize the number of cut nets, which represent the connections
between partitions. Minimising cutsize, is critical for applications like parallel static timing
analysis [65] where each inter-partition connection stands as unconstraint path, introducing
notable error in the analysis. Simultaneously, these algorithms strive to minimise the area
ratio between the larger and smaller partition to produce area balanced groups of gate level
instances. This objective is vital for cloud based operations [66], as the number of instances
in each block, which is assigned into a different agent, is proportional to the computational
load of each agent. Also, the third target of partitioning algorithms is to minimise critical
path fragmentation in order to produce a result suitable for timing driven operations. The
final objective is aligned with the first one, assigning an extra notion of criticality into the
timing critical paths. These paths are the longest paths of the circuits, which most often have

the greatest path delay, significantly affecting the timing closure of the circuit.

3.3.2 Algorithm types

Due to the importance of Multi-Level partitioning in semiconductor industry, there are

many partitioning approaches in the literature addressing the previously described objectives.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.2 Algorithm types 33

The most well-established methods between them are the recursive bipartitioning, the kway
partititioning and the flow based approaches. Furthermore, there are more recent techniques
introducing machine learning methodologies towards that cause, showing notable improve-

ments on the quality metrics results.

The recursive bipartitioning algorithm begins with the whole digital circuit and system-
atically divides it into two roughly equal sub-circuits, hence the bipartitioning” designation.
The division is performed recursively, meaning that each of the two resulting sub-circuits
can themselves be subdivided in the same manner, creating a hierarchical structure of par-
titions. The primary objective of this method is to minimize the cut, which represents the
number of connections (or nets) that cross the boundary between the two sub-circuits. By do-
ing so, it ensures that the logical connectivity of the circuit is maintained while optimizing for
performance or other design criteria. This recursive process continues until a predetermined

granularity level is achieved, or specific design constraints are met.

Moving on to the second approach, where £ represents the number of partitions desired,
which is typically specified by the designer. The primary objective of the k-way partitioning
method is to create balanced partitions with roughly the same number of components or nodes
in each partition. These balanced partitions help optimize various aspects of the circuit, such
as performance, area utilization, and manufacturability. The method is often guided by a
cost function, which may include minimizing the number of connections between partitions
(cut) or optimizing other design criteria like meeting area constraints. The k-way partitioning
process can be iterative, where partitions are refined in each step to approach a more balanced
and optimized solution. The choice of k can have a significant impact on the quality of the
partitioning, as it affects the granularity of the divisions. A smaller 'k’ can lead to finer-

grained partitions, while a larger £ may produce coarser partitions.

Both of the previous categories often utilise a version of either Fiduccia-Mattheyses (FM)
[67] or Kernighan-Lin (KL) [68] partitioning algorithms to create the initial partitions or op-
timise the final result. Both of these algorithms are presented in Algorithm 1 and Algorithm
2 respectively. Their main idea is to iteratively test tentative moves of objects between par-
titions to determine the minimum achievable cutsize. However, even though this exhaustive
method is effective, it is quite expensive to be introduced in newer circuits. Thus, more mod-
ern studies are based on their fundamental idea introducing additional heuristics to reduce

their execution time overhead.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

34 Chapter 3. Related Work

Algorithm 1 Fiduccia-Mattheyses (FM) Algorithm
Require: Graph G representing the circuit, Initial partitioning

Ensure: Balanced partitioning with minimized cut size
bestPartitioning < Initial partitioning
minCutSize < CalculateCutSize(G, bestPartitioning)
moved <— True
while moved do
moved < False
for each cell cin G do
currentPartition < PartitionOf{(c)
gain <— CalculateGain(c, currentPartition)
if gain > 0 then
for each neighbor n of c do
gain — gain + CalculateGain(n, currentPartition) — —
CalculateGain(n, OtherPartition(n))
end for
Move c to the other partition
moved < True
Update cut size
Update balance criterion
end if
end for
if cut size is smaller than minCutSize then
bestPartitioning <— Current partitioning
minCutSize < Current cut size
end if

end while

return bestPartitioning

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.2 Algorithm types

35

Algorithm 2 Kernighan-Lin (KL) Algorithm

Require: Graph G representing the circuit, Initial partitioning
Ensure: Balanced partitioning with minimized cut size
bestPartitioning <— Initial partitioning
minCutSize < CalculateCutSize(G, bestPartitioning)
moved < True
while moved do
moved < False
for each cell pair a in one partition and b in the other partition do
gain < CalculateGain(a, b)
if gain > 0 then
Swap cells a and b between partitions
moved < True
Update cut size
Update balance criterion
end if
end for
if cut size is smaller than minCutSize then
bestPartitioning <— Current partitioning
minCutSize <— Current cut size
end if

end while

return bestPartitioning

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

36 Chapter 3. Related Work

Last but not least, the flow based algorithms use network flow algorithms to partition
a circuit into two or more subcircuits with balanced weights and minimum net cuts [69].
Network flow algorithms are based on the concept of finding the maximum amount of flow
that can pass through a network of nodes and edges, where each edge has a capacity and a
cost. A network flow algorithm can also find the minimum cut of the network, which is the
minimum capacity of edges that need to be removed to disconnect the network. The goal is
to find a partition of the network that balances the weights of the nodes in each subcircuit
and minimizes the cost of the edges that cross the subcircuits. Such algorithms are the Min-
net-cut partitioning, which tries to minimize the number of nets that cross the subcircuits,
regardless of their weights or costs, the Min-cut partitioning, which targets to minimize the
total weight or cost of the nets that cross the subcircuits and the Ratio-cut partitioning, which
aims to minimize the ratio of the cut size to the subcircuit size, which is a measure of how

balanced and compact the subcircuits are.

3.3.3 Existing algorithms and tools

Continuing with our analysis, it is necessary to review the existing tools, some of which
will be used to evaluate our proposed algorithm. The first and oldest tool is named MLpart,
presented in [1], targeted to partition hypergraphs. The MLpart algorithm is a multilevel par-
titioning algorithm presented in VLSI CAD physical design. It is a fundamental optimization
technique that aims to divide the nodes of a hypergraph into groups of approximately equal
total weight while minimizing the number of hyperedges that are cut. The algorithm follows
a three-step process: clustering, top-level partitioning, and refinement or uncoarsening. In the
clustering step, the hypergraph nodes are combined into clusters based on their connectivity,
resulting in a smaller, clustered hypergraph. This step is repeated until there are only a few
hundred clusters left, creating a hierarchy of clustered hypergraphs.The top-level partition-
ing step requires an initial solution generation. This is done by assigning nodes to partitions
in decreasing order of size using a biased random selection method. The goal is to keep the
slacks (the difference between the assigned area and the maximum allowed area) approxi-
mately equal while introducing randomness. Once all partitions reach their minimal required
cell area, slacks are computed relative to the maximal allowed areas. The top-level partition-
ing is performed using the CLIP-FM algorithm with the requested tolerance for the original

partitioning problem. The best solution from three independent starts is further refined using

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.3 Existing algorithms and tools 37

the LIFO-FM algorithm. CLIP-FM is slower but produces better solutions, while LIFO-FM
balances solution quality and runtime. The refinement or uncoarsening stage involves pro-
jecting solutions from one level to the next and iteratively improving them using the FM
algorithm. This stage may stop before reaching the lowest-level hypergraph, and clustering
or refinement may be resumed earlier than usual. The hMETIS partitioning program intro-
duced additional heuristics such as hyperedge removal and V-cycling, which are critical to
its performance but require careful tuning. The MLpart algorithm improves on the baseline
implementation by introducing several new techniques. One technique is the use of a relaxed
move acceptance criterion, which accepts moves that do not increase the violation of balance
constraints. Another technique is the randomization of gain computation at the beginning
of each pass, which is done by computing gains of legal moves in a random order. The al-
gorithm also includes a preferential placement technique that encourages the movement of

nodes adjacent to fixed nodes.

The second and relatively newer tool is
hMETIS presented in [2], [3]. The hMETIS
algorithm 1s a multilevel hypergraph par-
titioning algorithm that aims to find high-
quality solutions for partitioning large and
irregular hypergraphs. It is designed to scale
well to very large hypergraphs and requires relatively small amounts of time. This tool also
consists of the basic three Vcycle phases coarsening, initial partitioning, and uncoarsening /
refinement. As mentioned before, in the coarsening phase, the algorithm successively reduces
the size of the hypergraph by grouping vertices into disjoint clusters and collapsing them into
a single vertex. To do so, this process is performed using various coarsening schemes, such as
edge coarsening, hyperedge coarsening, or modified hyperedge coarsening. Once the coarser
hypergraphs are obtained, the initial partitioning phase begins. In this phase, the smallest hy-
pergraph is partitioned using a bisection algorithm. The bisection algorithm aims to divide
the hypergraph into two equal-sized partitions while minimizing the number of hyperedges
cut. This initial partitioning serves as the starting point for the subsequent refinement phase.
The uncoarsening and refinement phase is where the solution of the smallest hypergraph
is projected to the next level finer graph and iteratively refined to improve the quality of

the partitioning. The refinement algorithm used in this phase is a variation of the Fiduccia-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

38 Chapter 3. Related Work

Mattheyses (FM) algorithm. The FM algorithm iteratively tries to find subsets of vertices in
each partition that can be moved to other partitions to improve the partitioning quality without
violating the balance constraint. This iterative process continues until no further improvement
can be made. Throughout the algorithm, randomization is used to select vertices for matching
in the coarsening phase and to determine the order of vertex movements in the refinement
phase. This randomization introduces some level of randomness into the algorithm, but it also

allows for exploration of different possible solutions.

The next tool in our list is the KaHy-
Par (Karlsruhe Hypergraph Partitioning) [4],
[5], [6]. This framework is a high-quality
hypergraph partitioning algorithm that aims
to divide a hypergraph into balanced and
heavily-connected partitions. It employs a
multi-level approach, combining various
heuristics and techniques to achieve superior
solution quality. The algorithm consists of
several key components and phases. Firstly,
KaHyPar uses a semi-dynamic hypergraph
data structure that allows efficient vertex
and hyperedge deletions and reversals. This
data structure is designed to support the partitioning process without considering insertions
of additional vertices or nets. To compute the partitions, KaHyPar supports both direct k-way
partitioning and recursive bisection (RB) approaches. In direct k-way partitioning, the hyper-
graph is directly partitioned into k blocks, while in RB, a bipartition of the initial hypergraph is
computed recursively until k blocks are obtained. KaHyPar employs two preprocessing tech-
niques to improve the partitioning process. The first technique is pin sparsification, which
reduces the number of pins (connections) in the hypergraph to speed up the overall process.
The second technique is community-aware coarsening, which infers information about the
community structure of the hypergraph to guide the coarsening process. The coarsening phase
reduces the size of the hypergraph by merging vertices and hyperedges to create a coarser rep-
resentation. KaHyPar uses a coarsening algorithm that restricts contractions to blocks of the

previous solution and uses either the old or a newly computed solution as the initial par-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.3 Existing algorithms and tools 39

tition. For generating the initial partition, KaHyPar employs a portfolio-based approach. It
uses multiple algorithms or heuristics to create different initial partitions and selects the best
one based on certain criteria. To refine the initial partition, KaHyPar utilizes a localized local
search algorithm. It applies V-cycles, which involve n-level coarsening and refinement, to
improve the solution quality. The flow-based refinement phase further improves the solution
quality by optimizing the connectivity metric. KaHyPar uses flow algorithms to compute
maximum flows in the hypergraph and adjusts the partition accordingly. In addition to these
components, KaHyPar incorporates a memetic algorithm, which is a genetic algorithm that
also employs local search. It evolves a population of solutions using recombination operators
with more than two parents, ensuring that the offspring is no worse than the parents. This

allows for extensive exploration of the global solution space.

Another worth mentioning tool, is the
PaToH [7] (Partitioning Tool for Hyper-
graphs) which is also a hypergraph parti-
tioning specialised tool. The PaToH starts by
coarsening the original hypergraph into a se-
quence of smaller hypergraphs. This coars-
ening is achieved by merging disjoint sub-
sets of vertices into clusters, where each
cluster forms a single vertex in the coarsened hypergraph. The weight of each vertex in the
coarsened hypergraph is equal to the sum of the weights of its constituent vertices in the orig-
inal hypergraph. The net set of each vertex in the coarsened hypergraph is the union of the net
sets of its constituent vertices. After the coarsening phase, the algorithm proceeds to the ini-
tial partitioning phase. Here, a bipartition is found for the coarsest hypergraph using various
initial partitioning techniques. The goal is to find a balanced bipartition that minimizes the
cutsize. PaToH includes different random partitioning methods as well as variations of the
Greedy Hypergraph Growing (GHG) algorithm for this step. Finally, the uncoarsening phase
begins, where the bipartition found in the previous step is projected back to the original hy-
pergraph. This projection is achieved by assigning the constituent vertices of each cluster in
the coarsened hypergraph to the same part in the original hypergraph. The resulting partition
is then refined using iterative improvement heuristics based on the Kernighan-Lin (KL) and

Fiduccia-Mattheyses (FM) algorithms. These heuristics aim to further minimize the cutsize

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

40 Chapter 3. Related Work

by swapping or moving vertices between parts while maintaining balance. Throughout the
algorithm, PaToH provides various customization options, such as different coarsening and
refinement algorithms, as well as parameters to control the balance and cutsize objectives.
The algorithm also supports multi-constraint hypergraph partitioning, where each vertex has

multiple weights associated with it, and partitioning with fixed vertices.

The latest update on partitioning tools
is named SPECpart [8], [9], and it is de-
signed by the same authors with MLpart
framework. SpecPart is a supervised spec-
tral framework for hypergraph partitioning
solution improvement. It addresses two lim-
itations of state-of-the-art hypergraph parti-
tioners: (i) the reliance on local neighborhood structure during hypergraph coarsening without
fully considering the global structure, and (ii) the potential stagnation on local minima during
refinement heuristics. The SpecPart algorithm consists of several key components. First, it
incorporates pre-computed hint solutions into a generalized eigenvalue problem. By solving
this problem, SpecPart obtains high-quality vertex embeddings that capture the balanced par-
titioning objective and global hypergraph structure. This step leverages initial high-quality
solutions from multilevel partitioners as hints. Next, SpecPart constructs a family of trees
from the vertex embedding. These trees distill the cut structure of the hypergraph and serve
as a basis for exploring a large space of candidate solutions. A tree-sweeping algorithm is
used to partition the trees efficiently and generate potential solutions. To further improve the
initial solutions, SpecPart introduces a novel cut overlay method. It computes clusters by re-
moving the hyperedges cut by any of the initial solutions. The resulting clustered hypergraph
is smaller and often contains an improved solution that can be computed optimally using
an Integer Linear Programming (ILP) formulation. Finally, SpecPart lifts the improved solu-
tions to a coarsened hypergraph, where an ILP partitioning instance is solved to alleviate local
stagnation. This step helps overcome the limitations of refinement heuristics getting trapped
in local minima. The SpecPart algorithm has been validated on multiple benchmark sets,
including the ISPD98 VLSI Circuit Benchmark Suite, Titan23 Suite, and Industrial Bench-
mark Suite. Experimental results demonstrate that SpecPart can substantially improve the

cutsize by more than 50% compared to leading partitioners hMETIS and KaHyPar for some

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.3 Existing algorithms and tools 41

Figure 3.6: Generalizable Approximate graph Partitioning (GAP) [10].

benchmarks. The algorithm’s performance is influenced by several parameters, including the
number of eigenvectors, the number of trees, the number of best solutions, the number of
iterations of ISSHP, the number of random cycles, and the threshold of the number of hyper-
edges. These parameters can be tuned using autotuning techniques to optimize the algorithm’s

performance.

Last but not least, we discuss a machine learning approach called Generalizable Approx-
imate Graph Partitioning (GAP) [10], [11]. This algorithm is a deep learning framework de-
signed to solve the problem of graph partitioning. Graph partitioning involves dividing the
nodes of a graph into balanced partitions while minimizing the number of edges that are cut
across the partitions. This is a combinatorial optimization problem that has been traditionally
approached using heuristics and approximation algorithms. GAP takes a different approach
by leveraging deep learning techniques. It consists of two main components: the graph rep-
resentation learning module and the graph partitioning module. The graph representation
learning module is responsible for generating node embeddings, which capture the structural
information of the graph. These embeddings are then fed into the graph partitioning module,
which assigns each node to a specific partition based on the learned representations. The key
innovation of GAP lies in its ability to generalize to unseen graphs. Unlike traditional ap-
proaches that optimize the partitioning for each individual graph, GAP is trained on a set of
graphs and can then be used to produce performant partitions on unseen graphs. This general-
ization is achieved by learning the representation of the graph while jointly optimizing for the
partitioning loss function. This allows GAP to adapt to different graph structures and produce
efficient partitions across a wide variety of graphs. To train the GAP model, a differentiable
loss function is defined that represents the partitioning objective. This loss function uses a

continuous relaxation of the normalized cut, which is a commonly used metric for evaluating

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

42 Chapter 3. Related Work

the quality of graph partitions. The network parameters are then optimized using backpropa-
gation, allowing the model to learn to generate balanced partitions with minimum edge cut.
In the experimental evaluation, GAP is compared against hAMETIS, a widely used graph par-
titioning algorithm. The performance of GAP is evaluated on both real and synthetic graphs,
including widely used machine learning models, scale-free graphs, and random graphs. The
results show that GAP achieves competitive partitions while being up to 100 times faster
than hMETIS. Furthermore, GAP demonstrates its ability to generalize to unseen graphs,
producing partitions with low edge cut and high balancedness.

All the presented tools have the V-cycle flow in common, either as the main flow, fol-
lowing its steps one by one, or as a general approach employing only the ideas of coarsening
and refinement steps as presented in GAP and KaHyPar. This persistence of the literature on
this flow led us to decide to utilise this flow on our tool also. The second worth mentioning
point of this presentation is that none of these frameworks utilise any other circuit character-
istics to produce the results apart from the circuit graph connectivity. This is a major issue
considering that the partitioning phase is at the early stages of the ASIC flow, because the
following steps will use a suboptimal result regarding timing, power and other related con-
straints. To address this issue, our approach, by taking as input the industrial PDKs formats,
encompass all the gate characteristics during the initial separation and optimisation process

of the clustering and partitioning phase.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 4

Our Contribution

4.1 Introduction

In previous chapter was thoroughly analysed the importance of Multi-Level flow. How-
ever, it is rather obvious that most of the existing algorithms and methodologies are outdated
or insufficient to address the complex challenges posed by the ever-evolving semiconduc-
tor landscape. The statistics and Moore’s Law predictions suggest that sooner than later the
Multi-Level flow will be integrated in standard ASIC design flow as it will become manda-
tory. This highly possible outcome led us to research this topic and come up with a portfolio
of solution in areas of interest aligned with our expertise. Thus, based on the literature and on
the industry feedback, we observed that one of the most complicated and crucial steps was
the initial partitioning of the chip. Given that this step affects the placement phase, which
affects all the other afterwards, it is of paramount importance to produce high quality results.

The current chapter presents a cutting edge partitioning tool able to tackle advanced mod-
ern semiconductor challenges following the clasic V-cycle flow. Starting the analysis, this
section discusses two multilevel clustering methods developed and optimised by our team
and also exhibits various optimisation steps which are implemented or will be in the foresee-
able future, as they would have significant impact in the QOR. The next part of this chapter
introduces the core multilevel partitioning approach, combining both a recursive bipartition-
ing and a kway partitioning algorithm to extract area balanced groups of instances with min-
imum cutsize. This section is the most complex and yet important of this work, as it presents
all the introduced execution time and quality results optimisations techniques developed for

this thesis.

43

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

44 Chapter 4. Our Contribution

4.2 Multi-Level Clustering Phase

Our algorithm, addressing the clustering phase, as every other related approach, is tar-
geted to create fairly balanced, loosely connected groups of objects. Its key difference is that
it utilises circuit oriented metrics to assign a notion of criticality to its decisions supporting
the rest of the ASIC flow, while, at the same time, is aware of the common practices often
used before the engineer reach this step of the flow. Even though, the algorithm outline seems
quite simple, there are many critical details to ensure high quality results in minimum execu-
tion time regardless of the design. Because of that, it is important to analyse the algorithm,
targeting to highlight all these features, rendering it a superior alternative to the most of the
current state-of-the-art tools.

Starting from the beginning our clustering algorithm operates at a gate-level netlist, coars-
ening it to a number of levels, where each clustering level, above the standard cell level, i.e.
Level 1, contains a set of lower level clusters and unclustered standard cells. Each standard
cell or object must be uniquely assigned to a cluster, at each clustering level, creating a hi-
erarchy, which will be used by the multi-level partitioning algorithm described below. Our
algorithm is targeted to create area balanced clusters both within the same level and across
the levels of hierarchy. Balancing object areas, as much as possible, is also very important,
as clusters become the new operational grain. Especially, in force-directed placement for ex-
ample, as object area is typically a function of the spreading force [39], the more uneven the
cluster areas, the more pronounced the spread forces between clusters, reducing sensitivity
to cluster-to-cluster connectivity. The second objective of the algorithm is to group instances
based on net fanout or timing metrics to assist the following operations of the ASIC flow, i.e.
the placement and the routing phase. In modern EDA tools, the majority of the algorithms
are targeted to reduce the timing violations and the high fanout nets of the design, as both of
them jeopardise the performance and the power consumption of the chip respectively. Last
but not least, through the clustering phase, the reduction of the adjacency matrix density is
required, which indicates the reduction of inter-cluster connections. We could consider each
external cluster connection as a dependency, preventing the exploitation of the divide-and-
conquer nature of the algorithm and as a result reducing its effectiveness on algorithms such
as extraction and signoff timing phases. These steps require each cluster to be as much as
possible isolated from the rest of the circuit, as every outgoing connection introduces notable

error in their analysis.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.1 Top Level Algorithm Presentation 45

4.2.1 Top Level Algorithm Presentation

To further understand the innovation of this approach, it is wise to analyse the steps of the
algorithm to highlight the previous theoretical quality targets through a thorough inspection
of them. The toplevel algorithm outline of the algorithm can be found below in this section,
as long as the core algorithm growing the clusters.

Initiating the review of the algorithm, clusters are created by assigning standard cells to
them, based on a single seed net, which has a notion of criticality, introduced by the previous
referred quality metrics, with nets sorted by that critical parameter as shown in the first line
of the algorithm. This will typically be fanout, with increasing or decreasing order, however
it may also be a timing aware metric as slack or delay. Then, at lines 3-9, and with the ini-
tial level set to 1, the function grow mlclusters () is called, which corresponds to the
core clustering algorithm, presented in Algorithm 4. The conditional at line 10 checks the
clustering termination condition, i.e. the current level objects, against the F'O parameter. If
cluster creation is saturated for the current level, line 8 exits the loop. Then, at line 11, a
post-clustering flattening is performed to abolish inferior quality clusters by flattening them

at their level.

Algorithm 3 Clustering Algorithm Top-Level
Input: Netlist (Standard Cells, Nets), Sorting Order (O), Final Objects Number (F'O), Level Reduction

(LR), Upper Area Bound Ratio (U BR), Level Upper Area Bound Ratio (LU B R), Minumum Clusters per
Level (M CL).

Output: Set of Clusters per Level, up to a computed Maximum Level, satisfying input parameters.

—_—

: SN =sort nets(Nets, O); // sort nets based on specified order O //
: 1 =1;//1evel 0 is standard cell level //
. repeat

/I grow current level clusters //

2
3
4
5: |clusters(l)] = grow mlclusters(Netlist,l);
6 I=1+1,;
7 if (|clusters(l)] < M CL) then
8 break;
// cluster creation saturated at current level //

9: endif

10: until (| objects(l)| < FO); // clustering exit condition //

11: flatten mlclusters(clusters per I, mazxlevel);

// post clustering Flattening step to guarantee M N M //

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

46 Chapter 4. Our Contribution

4.2.2 Algorithm Parameters Presentation

Before we continue further on the core algorithm, it is wise to take a step back and review
the parameters of the algorithm, as they significantly affect the operation of the algorithm and
its quality of results. The algorithm has nine tuning parameters responsible to determine the
methods which will be used as long as the permissible limits.

Initiating the parameters review, we could not start by the most important of them, called
Level Upper Bound Ratio LU BR. This variable determines the maximum allowed ratio be-
tween the smallest and largest area cluster of the current level. During the operation of the
algorithm, this parameter is altered based on the ratio achieved on the previous level and
the number of the current level. This modification allows the algorithm to start grouping
the objects with more flexibility during the first levels, while as the clusters become bigger
and bigger this flexibility must be reduced to avoid the grouping of large heavily connected

objects which results in unbalanced clusters.

Parameter Name Interpretation
Level Upper Bound Ratio (LU BR) e
mazareacluster(N)

Upper Bound Ratio (UBR)

mazareacluster(N—1)

Method evaluating the balancing
Area Bound Type (ABT)

factor of the clusters

#ofobjects(N)
#ofobjects(N—1)

Level Reduction (L R) Ratio

)) termination condition,
Final Objects (F'O) Number

when objects < F'O

Nets sorting criticalit e
Nets Sorting Type (NST) & y typ

Fanout, Delay or Slack

) Nets sorting order
Nets Sorting Order (IVSO)

Increasing or Decreasing

o alternative termination
Minimum Clusters per Level (M C'L)

condition

.. post clustering
Minimum Number of Members (M N M)

flattening constraint

Table 4.1: Algorithm main Parameters, where value N stands as hierarchy levels

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.2 Algorithm Parameters Presentation 47

The next one, is the Upper Bound Ratio U B R parameter, controlling the area growth of
clusters through levels. This parameter is closely related with the continuous one, Area Bound
Type ABT. In order to prevent the unpredictable growth of clusters during the hierarchy
levels, the first parameter, determined by the user, enforces a specific area balancing factor
between the current and previous level clusters. However, due to the fact that it is not that
trivial to decide if the average or maximum area cluster of the previous level should be used,
the second parameter introduces four metrics to evaluate the area balancing through levels.
The first metric is called M AX and considers only the maximum area cluster of the previous
level. The second one is called MIN — M AX and creates a range of values based on the
maximum area cluster of the previous level, in which the clusters of the current level must be
included to be considered as valid. The third method is called AV ERAGE — AVERAGE
and evaluates the maximum allowed area for the current level based on the average area
cluster of the previous level and the average area cluster of the current level until this stage
while the final approach, called AVERAGE — M AX, utilises the average cluster of the

previous level and the maximum area cluster of the current level so far.

Continuing to the next two parameters, named Level Reduction LR and Final Objects
Number F'O, it controls the amount of levels that will be produced during the clustering
algorithm. The first one computes the expected reduction of clusters number in each level,
while the second one sets the lower limit of level clusters. Thus, combining those two param-
eters, we could theoretically predict the produced levels of the algorithm. However, because
of the post-processing algorithms performed in each level and various artefacts regarding the
connectivity of the design and area balancing of previous levels, this prediction is not guar-
anteed. Despite that, these parameters work as soft restrictions for the algorithm to produce

a high-quality result, creating minimum levels of hierarchy.

The following two parameters adjust the criticality factor assigned to every net of the
design, based on which the clustering algorithm will assess and perform the grouping of the
gates. Starting by the criterion type, which either will be physical aware i.e. net Fanout
degree or timing aware i .e. gatepin delay or slack, the user can select the mode by assign-
ing the respective value to the N.ST variable. On top of that, the ordering of the nets will
significantly affect the outcome of the algorithm as in some case the criterion should be used
as pulling force while in others as pushing force. The user is able to switch between these

modes by changing the value of the VSO variable.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

48 Chapter 4. Our Contribution

Last but not least, the final parameters tune the post-processing algorithm referred as
flattening step. As briefly mentioned before, this step aims to demolish small clusters which
would jeopardise the divide-and-conquer nature of the algorithm. To determine the amount
of objects consisting a small cluster, the M CL sets the lower limit of objects per cluster,
while to prevent the annihilation of all level clusters and the M N M value sets the minimum
allowed clusters number per level. Also, the last variable is used as early exit condition in

case that the algorithm do not succeed to create enough clusters at the current level.

4.2.3 Core Algorithm Presentation

In an abstract perspective, the core clustering algorithm consists of two phases, Phase I
is seed creation, while Phase II is clusters fill-in. Phase I completes when the level reduction
ratio is satisfied by the number of generated seed clusters or there are no available seed nets
remain. The following step will then grow the formed clusters until there are no more gates
to group or the area balance constraints disallow any further moves. A thorough pseudocode
of the core algorithm is presented in Algorithm 4.

The main loop, lines 4-32, of Algorithm 4 grows clusters one sorted net at a time, to
control the area bounds and ensure that the cluster area is balanced as much as possible. If in
Phase I, the loop selects j as the current seed net, line 4, in Phase I, lines 5-7, j is the next
seed net. Function get net candidate object, line 8, identifies a candidate standard
cell or object to group with the current net. This corresponds to the lowest area, unclustered
standard cell or object of the current net, again to ease the area balancing. If the net is covered,
this indicates that the entire net fanout has been clustered, so no candidate has been found.
Thus, the inflation of this cluster will stop and the algorithm will continue with the rest of the
seed nets.

Upon an unsuccessful candidate, the next attempt will take place when the net is revisited
by the for loop, as netcovered will be 1, line 9. If a candidate has been identified, then function
check area and insert is called, line 12. If the area bounds are violated, by adding the
standard cell or object to the cluster, the latter returns a result of 0. In Phase I, the loop will
then consider the next net. The algorithm will move to Phase II when the condition of line 29
is satisfied. Phase II exits when all nets set fail to add further standard cells or objects to any
cluster, line 23, and the clusters created at the current level are returned, line 24. Note that a

successful clustering step resets the failed nets counter, line 17.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.3 Core Algorithm Presentation 49

Algorithm 4 Multi-level Clustering Core Algorithm, i.e. grow mlclusters () function

of Algorithm 3.
Input: Netlist (StandardCells, Nets), Sorted Nets (SN), Level Reduction (L R), Upper Area Bound Ratio (U B R), Level Upper Area

Bound Ratio (LU BR), Minimum Clusters per Level (M CL), Current Level (1)

Output: Set of Clusters at current Level, ensuring area balance between them and aiming for their number to be > (TlR) X previous level

Clusters.
1: // clusterednets = list of nets corresponding to current level clusters //
2: // miclusternets[j] = additional nets associated to cluster of seed net j, related to cluster cell net contents //
3: phase=1;
4: for (j in Sorted Nets SN) do
5: if (phase ==2) then
6: j = next clustered net in clusterednets; // clusters fill-in phase //
7: endif
8: (netcovered, candidate) = get _net candidate object(j,l);
9: if (netcovered == 1) then
10: continue
11: else
12: // check area bounds, and if satisfied, insert candidate into mlcluster of net j //
result =
check area and insert(j, candidate, UBR, LUBR,l);
// result indicates whether area bounds are satisfied //
13: if (result == 1) then
14: if (phase ==1) then
15: clusterednets = clusterednets U j;
16: else if (phase == 2) then
17: failednets = 0;
// reset failed nets count upon successful clustering //
18: end if
19: else if (result == 0) then
20: // clustering candidate of net j failed //
21: if (phase == 2) then
22: failednets = failednets + 1;
23: if (failednets == |clusterednets|) then
24: return clusters;
// all candidate nets failed; clustering Phase II ends //
25: end if
26: end if
27: end if
28: endif
29: if (Jobjects())| > (124BEDL) then
30: phase = 2; // move from phase 1 to phase 2, i.e. fill-in phase //
31: end if
32: end for

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

50 Chapter 4. Our Contribution

Figure 4.1: Simplified Multi-Level Clustering algorithm operation overview step-by-step

[36].

An additional complication is that at every level of clustering, clusters of previous levels
will exist. Thus, the total number of objects at level L, line 29 of Algorithm 4, and line 9
of Algorithm 3, include (i) clusters of level L, (i1) any other clusters of any level 7, which
have no parents up to level L, and (iii) any unclustered standard cells at level L. This set

represents the Total Number of Objects at Level L. Similarly, at the last level of

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.4 Post-processing algorithm 51

clustering, F'O represents the desired Total Number of Objects at the last level. Note that
using the Total Number of Objects at Level L is preferable to considering solely the clusters
of Level L, as the former provides a more complete picture of the complexity, However, as
mentioned above, the F'O criterion may indeed not be satisfied. This may occur if no more
clusters may be grown past a certain level by Algorithm 4. As the key difference between
clustering and partitioning, the first one is a bottom-up algorithm, which makes it harder to
predict and satisfy the exact number of resultant objects at the Top-Level. A brief overview

of the algorithm operation is presented below in Figure 4.1.

4.2.4 Post-processing algorithm

As mentioned before, to eliminate poor-quality clusters a post-processing approach has
been introduced which either destroys the problematic cluster and releases its children into
the level or emerges its children with its parent objects. The algorithm is performed right after
the creation of the clusters’ hierarchy, i . e . line 10 in Algorithm 3. The algorithm completes
in three phases, namely Top-down, Bottom-up and Clean up. All of them have the same end
goal, approaching it from different perspectives in order to resolve all possible corner cases.

Top-down flattening operates from the last to the first clustering level, identifying clusters
which do not satisfy the M N M parameter. If this is the case, members of the cluster may
be collapsed, by 1 level of clustering, to reveal their children. This will increase the original
cluster’s members. Instead of arbitrary collapsing members of the M N M violating cluster,
we sort its members by area, and identify its minimum area child. This is done to ensure that
we identify the minimum area solution while satisfying the M N M goal. Unfortunately, this
phase is not sufficient to satisfy the M N M goal. This is because a cluster may not have any
cluster members, but solely standard cells. This necessitates the usage of bottom-up flattening
as well. Bottom-up flattening works in the opposite way, from the first to the last clustering
level. If a cluster’s members are less than M N M, and, considering its parent cluster, the fol-
lowing holds |M N M — childmembers| > |M N M — (parentmembers + childmembers —
1)|, then the cluster is collapsed.

Last but not least, a Clean-up step is also performed during Bottom-Up clustering, which
collapses any leftover clusters with few members. Any cluster with members less than 20%
of M N M will be collapsed. An example as to why Clean-up is necessary is the following.

If a cluster was to end up with 40 single standard cell clusters, for an M N M of 20, only

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

52 Chapter 4. Our Contribution

20 of the 40 would be collapsed, ending up with 20 standard cells and 20 single standard
cell clusters. The Clean-up step resolves such corner cases, but it can lead to unclustered
standard cells or more clusters than had been requested. The unclustered standard cells or the
greater number of final clusters can be filtered at a post-clustering step, such as partitioning.
This work focuses only on the clustering step, while the experiments gives an insight on

clustering QoR, that impact on partitioning and placement steps.

4.2.5 72nd” Version of the Algorithm

Even though, the described algorithm and the post-processing method appear sophisti-
cated and well-designed, the findings were unexpected. The main problem was that the algo-
rithm used to create substantially more levels than the expected, while the grouping at each
level was of poor-quality, as very few objects were grouped together, leaving a significant
amount of standard cells completely unclustered at each level. This feature could compromise
the entire ML ASIC flow, as the objects’ number at the final level was not notably reduced as
it should be. To overcome this obstacle, we came up with a second version of the algorithm
which is perfectly aligned with the basic pillars of the first one, introducing some new fea-
tures. Due to the fact that this project was truly extensive, minor details of the second version
should be omitted to keep the length of this report reasonable.

The basic new feature could be located in line 10 of Algorithm 4. As it can be recalled,
the previous algorithm skipped the covered seed nets, while in this version, it looks for new
candidates in the connections of the seed net fanout, giving a sense of depth first search in
the algorithm. The idea behind this approach was that the previous version used to come to
an abrupt halt during the growing of the clusters as the seed nets were overlapping. Thus,
there were two available options to tackle this issue. The first one was to spread the seed nets
towards the logic levels of the circuit, and the second to prevent the precipitously exiting by
inserting more candidates to process. The first idea is substantial more complex to be im-
plemented, as there are numerous heuristics and assumptions that should be included. Still,
it is one of our future goals to include it into our algorithm, as it could yield better quality
results. The second strategy, on the other hand, has been implemented, showing substantial
gains in results. Delving into the details of the new feature, the same metrics and methods
are introduced for the additional gate candidates in order to be sorted and used accordingly.

The user has the ability to select different order and criticality metric to assign into the initial

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.5 72nd” Version of the Algorithm 53

Figure 4.2: Second version of Multi-Level Clustering algorithm flow overview [36].

and supplementary candidates. This detail is critical, as this way the grouping of the circuit
instances obtains a perception of weights adjusted to the circuit level. This is why the algo-
rithm produces groups suitable to be used in timing driven oriented operations, i.e. the
critical delay paths distribution remains low, while at the same time the fanout distribution
of the critical nets follows the same trend. The flow presented in Figure 4.2 stands as a proof

of concept of the newly introduced feature, showing better results, considering the number

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

54 Chapter 4. Our Contribution

Level Area Through Levels Unclusterd

Design Levels

Area Ratio Components

Industrial 1 14 104.49 1.59 2011

Industrial 2 18 802.89 1.56 246

vga lcd 2 18 802.89 1.56 246
b19 57 62.20 1.11 1
jpeg 26 1870.80 1.38 0
leon3 20 25.94 1.22 2

netcard 25 27.78 1.27 4250

Table 4.2: First algorithm version Clustering QORs results using the open-source designs.

of levels as long as the required number of steps to complete.

The previous Table 4.2 and Table 4.3 proves the substantial improvement achieved by
this small modification of the algorithm as regarding the required levels number, the level
area ratio balance of the clusters and the final level unclustered components number. These
results highlight the notable reduction in these metrics without worsening the fourth metric,
considering the area ratio of the average cluster across two consecutive levels. This could be
translated as that the clusters are able to grow larger inside the level absorbing more objects
while at the same time they respect the area balance constraints regarding the inner level and
through hierarchy. The execution time overhead and the memory consumption was purposely
excluded from the results, as both versions complete their operations in a few seconds in all

considered benchmarks.

4.2.6 Macro aware Clustering technique

In order to facilitate a generic algorithm able to work with all kinds of circuits, it is not
possible to exclude the handling of circuit macros. Macros are usually large objects specified
as standard cells, such as SRAMs or other pre-characterised subcircuits. The problem with
macros during the clustering phase is that, because of their vast area and high number of
connections, they tend to have high criticality and gain, but bringing together such an object,
even with the smallest object, may cause irreparable area imbalance to the clusters. In such

circumstances, the pull force towards other objects may be so strong that this group could

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.6 Macro aware Clustering technique 55

Level Area Through Levels Unclusterd

Design Levels

Area Ratio Components

Industrial 1 9 10.43 1.01 1253

Industrial 2 8 10.13 1.18 231

vga lcd 8 10.13 1.18 231
b19 5 8.16 1.28 0
jpeg 5 10.72 1.27 0
leon3 5 15.09 1.33 0
netcard 25 6.67 0.97 1

Table 4.3: Second algorithm version Clustering QORs results using the open-source designs.

continue to absorb standard cells through levels even though it violates the area balance cri-
teria. A set of groups including such a case can not be used afterwards into a partitioning or

placement algorithm, as both of them utilise objects area into their cost functions.

Algorithm 5 Objects Areas Outliers Detection Algorithm
Input: List of objects areas sorted in ascending order sorted_objects list[]

Output: Lower area bound lower_area_bound, Upper area bound upper _area_bound.
1: lower quartile area = sorted objects list[0.25 * size]
2: upper_quartile area = sorted_objects_list[0.75 * size]
3: IQR =upper_quartile - lower quartile
4: lower_area_bound = lower_quartile_area - [1.5 * IQR]
5

: upper_area_bound = upper_quartile area + [1.5 * IQR]

To avoid such cases, our algorithm encompasses a method to detect and exclude such
objects which their area exceeds a dynamic upper bound limit. It is important to clarify that
our approach do not detect macros as they are a specific type of objects, instead it generally
detects large objects. However, most of the time they include the majority of macros. To
detect these objects, our algorithm exploits the concept of statistical outliers, translating
them into an upper and lower dynamic area bound limit respectively. In our case, only the
upper limit is useful because it can broadly classify the objects areas into regular and large.
By the end of objects separation, performed by the Algorithm 5, the algorithm marks the
violating objects in order to be excluded from all operations in the next level run. Thus, it

is ensured that an object large enough, such as a RAM, will not be grouped with any other

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

56 Chapter 4. Our Contribution

object during this level. However, it would be a mistake to permanently exclude an object
from this phase, but considering that the clusters are growing through levels, eventually the
outliers will be vanished, and all the objects of the level will be considered to be grouped,

maintaining the area balance.

Figure 4.3: Present the placement result of four of the under review benchmarks containing

large objects [12].

Using a small but representative set of benchmarks, we evaluated this method, regard-

ing the novel clustering metrics, against the second version of the algorithm. The Table 4.4

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3 Multi-Level Partitioning 57

presents the obtained results. To further support the intuitive understanding of this topic, we
exhibit in Figure 4.3 the placement of some of the benchmarks to understand the difference
between the included large objects and the standard cells of the designs. The presented re-
sults show an important reduction of level area ratio in some cases, such as case four and
five, while at the same time the execution time is reduced. On the other hand, we can observe
cases such as the first, the second, the sixth and the seventh where the area ratio remained the
same or slightly increased. However, this behaviour is observed on designs with relatively

small number of instances, rendering the method suboptimal for these kinds of benchmarks.

It is important to mention at this point that the achieved area balance is not suitable for
almost any kind of applications. Yet, due to the fact that the clusters of the final level, across
benchmarks, are a few tens of thousands in number the final partitions most are able to respect

the user defined constraints or at least produce a result close enough to the requested.

4.3 Multi-Level Partitioning

Continuing towards the main contribution of this thesis, the heuristics and methodologies
considering the Multi-Level partitioning phase of the ASIC flow are presented in this section.
The top-level partitioning technique is explained briefly in this section, followed by a set
of optimizations that improve the quality and increase the operational spectrum of both the
novel FM and the Vcycle flow. The input of this methodology is the hierarchy of levels
created by the clustering phase, as long as the physical and timing characteristics of the circuit

components. The output contains a set of partitions, including only gate-level instances.

The objective of this algorithm is to create as many partitions as the user requested, re-
specting as much as possible the predetermined area balance in reasonable execution time
utilising minimum memory resources. This challenge was particularly difficult as the core
algorithm of our partitioning approach is the Fiduccia—Mattheyses (FM), which as described
before is an exhaustive method having significant performance issues whenever it is used for
large scale circuits. Despite all that, we managed to achieve our goal, introducing a set of

heuristics which will be thoroughly analysed in the following sections.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

58 Chapter 4. Our Contribution
Design ‘ Novel Algoirthm
Levels | Unclustered | AreaRatio | Exec Time
adaptecl 9 664 93.44 35.695
adaptec3 16 2012 403.30 74.35
adaptec4 16 3228 458.44 105.663
adaptec5 18 3975 1643.95 271.471
bigbluel 10 1060 216.59 45.695
newbluel 8 2201 146.79 40.95
newblue3 15 9837 306.20 65.92
newblue6 18 4845 834.34 412.61
Design ‘ Large Objects Awareness
Levels | Unclustered | AreaRatio | Exec Time
adaptecl 9 863 94.28 44916
adaptec3 14 3325 457.09 84.59
adaptec4 15 4896 311.63 72.10
adaptec5 17 5751 1351.18 180.74
bigbluel 10 1426 157.02 34.99
newbluel 8 2260 145.14 30.383
newblue3 14 10997 265.42 62.231
newblue6 17 6953 601.53 330.33

Table 4.4: The first part of the table present the novel algorithm version Clustering QORs
results. The second part present the large objects aware algorithm version Clustering QORs

results. Both parts use the same designs with macros.

4.3.1 Top-Level Partitioning Algorithm

Proceeding to present our partitioning approach, it is wise to present the outline of our
proposed partitioning algorithm, Algorithm 6, as it includes the FM in various steps of the
process. Our partitioning approach consists of two phases. Much like the clustering method-
ology, the first phase creates the required partitions while the second refines them, produc-
ing the final result. As noted in previous sections, the key difference with the clustering is

that the number of partitions is non-negotiable and must be achieved. To do that, the initial

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.1 Top-Level Partitioning Algorithm 59

partitioning phase utilises the recursive bipartitioning and the second the kway-partitioning
approaches respectively, as they described in the respective sections accordingly.

The first method is used to optimally separate the circuit into partitions, avoiding the
random distribution of the cells. This way, the exact number of partitions will be created
unless the objects are not enough. In previous section was mentioned that a binary tree is
created and at each tree-node an FM algorithm is performed to assign objects into the children
nodes until the leaf nodes are reached. The main drawback of this initiative is that if the
bisection at each node is performed producing perfectly balanced partitions, the final result
will be imbalanced, unless if the requested number of groups is a power of two. To avoid this
problematic situation, have to implement a routine to assign partitioning area ratios to each
intermediate node of the binary tree, which the bisection algorithm must respect.

Our routine ensures perfectly area balanced leaf nodes. This challenge is addressed by
computing the required percentage of the circuit which must be included in each partition,
and assigning it into every leaf node. Afterwards, the two children partitions will compute
the ratio of their assigned percentage as:

LHS percentage

RHS percentage
and the produced number will be assigned into the parent node. This procedure will continue
until the root node is reached. Then, starting from the root node, the bisection algorithm will
start to operate, assigning the produced objects lists to each children node respectively. In
this routine there are many corner cases which are covered in our implementation, but it will
not be mentioned in this report owing to space restrictions.

It is obvious that after the assignment of the ratios the forward traversal which recursively
bisects the nodes is 100% vectorised, which means that it is completely parallelisable. We also
implement a multithread version of recursive bipartitioning methodology, yielding notable
execution time improvement. By the end of this procedure, a post-processing area balancing
algorithm is performed if needed, else the next phase begins. This optimisation method will
be comprehensively described in the following sections, as it is used in more than one time
during the entire partitioning phase.

The next phase, the so-called refinement phase, utilises the kway-partitioning ap-
proach, as many groups are created and have to be optimised concurrently. As highlighted
before, the novel FM is designed to bisect the circuit instead of splitting it into multiple

groups, thus the initial FM had to be extended in order to address this challenge also. As was

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

60 Chapter 4. Our Contribution

Algorithm 6 Top-Level Partitioning Algoirthm
Input: Netlist (Standard Cells, Nets), Clusters Hierarchy, Partitions Number PN, Area Balance Factor

ABF, Gain Type GT, Post Processing Optimisation Phase PPOP, FM type F'MT, Level Unfolding
Strategy LUF'.

Output: Set of Partitions, satisfying input parameters.

1: Hierarchy_Level = get mlclusters maxlevel ();

2: initial phase = 1;
3: repeat
4 if (initial phase == 1) then
5 objects =get level objects (Hierarchy Level);
6: initialise recursive bipartitioning binary tree(Netlist, PN);
7 status = recursive bipartitioning MT (objects, ABF, GT, FMT);
8 if (status == -1) then
9 /* error status, the algorithm must exit */
10: break;
11: else if (status == -2) then
12: /* warning status, not enough objects, to fill in all partitions, in this level */
13: Hierarchy Level = Hierarchy Level - 1;
14: continue;
15: else
16: Hierarchy Level = Hierarchy Level - 1;
17: initial phase =0
18: end if
19: optimise area();
20: endif

21: unfold partitions_level (Hicrarchy_Level, Clusters Hierarchy, LUF');
22: objects=get level objects (Hierarchy Level);
23: if (check level constraints () ==TRUE) then

24 status = kway_partitioning (objects, ABF, GT, FMT)
25: if (status == -1) then

26: /* error status, the algorithm must exit */

27: break;

28: else

29: optimise area();

30: Hierarchy Level = Hierarchy Level - 1;

31: end if

32: endif

33: until (Hierarchy Level == 0)
34: optimise cutsize (PPOP)

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.

3.1 Top-Level Partitioning Algorithm 61

Algorithm 7 Recursive Bipartitioning Binary Tree Initialisation

Input: Netlist (Standard Cells, Nets), Partitions Number PN

Output: Set of Clusters per Level, up to a computed Maximum Level, satisfying input parameters.

—_—

16:
17:

: tree_nodes_number =2 * PN)-1;

: tree_nodes = initialise tree (tree_nodes number);

: for each node in tree_nodes backwards do

if node ==TRUFE then
/* compute circuit percentage which must be included in this partition */
/* this value will be used only to compute the parent note bisection area ratio */
area_percentage = 100/ PN;
assign area percentage (node, area percentage)

else
/* compute ratio based on children nodes area percentage */
ratio =node.LHS child_area_percentage / node. RHS child area_percentage;
assign ratio(node, ratio)
/* compute node area percentage as the combination of its children */
area_percentage = node.LHS child_area_percentage + node. RHS child_area_percentage;
assign area percentage (node, area percentage)

end if

end for

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

62 Chapter 4. Our Contribution

presented, the FM utilises two sorted heaps, one for each partition, to obtain the gains of the
objects towards this partition. To extend its operation to multiple partitions, we modified it
to maintain as many sorted heaps as the number of partitions storing the gains of the object.

It is not that far-fetched, that this heuristic will explode the memory consumption, creating
a relatively low upper bound on the number of partitions and instances that this approach can
handle within reasonable time and resources. That prospect disproves our initial claims of
efficiency in large scale circuits, leaving us with no other option rather than to address this
issue. This way, we came up with four policies which trim the heap lengths into a manageable
size to ensure the quality and effectiveness of our method. These polices are completely
tunable by the user, but also can be combined into a framework to automatically trim the
heap lengths based on the initial size and the contents of each one of them specifically.

Apart from the cutsize optimisation step included in the second phase, it must gradually
unfold the inserted hierarchy of clusters, mapping the assigned objects of previous level parti-
tions into the next one. Even though this stage seems as a straight-forward technique, it holds
as a key aspect of the over all performance, as it depends vastly on the provided clustering
hierarchy, affecting the number of instances which will be taken under consideration by the
optimisation step. Thus, keeping in mind the necessity of efficiency in our work, we devised
five partition unfolding algorithms to better automatically adapt to the specified clustering
hierarchy.

The V-cycle approach predicts that the kway algorithm is performed at each level af-
ter the mapping and the unfolding of current level objects into the next one. However, to
further reduce the computational costs, we alter the novel Vcycle flow by skipping or re-
peating levels with certain characteristics. Thus, unnecessary initialisations are avoided on
levels with few dozens of objects and on the other hand levels overloading by objects are
treated accordingly to avoid endless runs compromising the efficiency of the algorithm. All
the briefly presented optimisation features of this section are assiduously discussed in the

following sections.

4.3.2 FM algorithm optimisations

Until now, we have mentioned several times that we altered the novel FM algorithm to
better match the requirements of our goal. Before we further dive deeper into case specific

optimisations, we believe that it is the best opportunity to present the overview of our mod-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.2 FM algorithm optimisations 63

LEVEL 0

LEVEL 1

LEVEL 2

Figure 4.4: Complete V-Cycle flow followed in order to extract K-Way partitions

ified FM algorithm. In previous section was mentioned that the algorithm consists of one
loop iterating through all objects in sorted order, locking their positions to eventually find
the minimum cutsize value. Our proposal, as presented in Algorithm 8, utilises two nested
loops iterating through all objects in sorted order, temporarily locking them to detect a local

minimum of cutsize at each inner loop. This method yields a significantly better outcome,

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

64 Chapter 4. Our Contribution

since the testing order of the objects has a big impact on the final results.

Algorithm 8 Proposed FM algorithm
Input: Level Objects, Partitions Number PN.

Output: Objects list representing partitions.
I: initialise heaps (PN);
. extract partition cutsize and gains mlobjects();
. repeat
sort_heaps();

store partitions_characteristics(&gain, &arearatio, &object);

pop_larger gain_heap node();

get object characteristics(&area, &destination partition);

2
3
4
5
6: repeat
7
8
9

if (check object movement for area violations(arearatio) ==T RU E) then

10: store violating object (object);

11: continue;

12: else

13: pop_all other identical instances (object);
14: end if

15: reinsert all violating objects into heaps();
16: move_object (destination_partition);

17: update partitions characteristics();

18: store_movement_logistics();

19: until (FM_tentative iterations evaluation() == TRUE)
20: detect minimum cutsize();

21: until (FM_iterations evaluation() == TRUE)

22: return(create_objects_lists());

Even though this algorithm covers only a few lines of code, each one of them hides un-
derneath a sophisticated method to perform its task at the best performance. If we start from
the beginning, the very first line of the algorithm holds the majority of the execution time
overhead. Like mentioned before, the data structures, storing all this information, are sorted
binary heaps to reduce the computational time required to preserve them sorted. A binary

heap considered sorted when the following rule holds.
((heap_nodeli| > heap_node|2 * i|) AN D(heap_node[i] > heap node[(2 i) + 1]))

Thus, the removal of the larger heap node or the insertion of a new one requires maximum

log nodes base 2 operations to resort the heap. This way, a significant amount of execution

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.2 FM algorithm optimisations 65

time was saved, as this operation is performed every time a new FM iteration begins, without

affecting the final product quality.

The second line will be skipped for now and will be discussed in the next section. Right
after that, the enclosed loop begins to pop one by one the nodes of the heaps to test their
tentative movements. Each insertion of the heaps include an object, a destination partition and
a gain of the object towards this partition. The algorithm has to evaluate if the area balance
ratio that will occur in case that the object move into that partition violates the specified
bounds. If the object movement is marked as invalid, then the object has to be stored with the
rest of the area violating objects in order to be reinserted into the heaps later in the process.
In other case, regarding if the algorithm works in a bisection or kway mode has to pop out all
the other identical nodes, specifically the other possible movements of this object, and then
reinsert all the previously declared violating objects into the heaps. The intuition behind this
decision is the after this movement, the area ratio might change just enough in order for a

previous invalid verdict to change into an acceptable action.

The following three lines are the core procedure of this algorithm, transferring the objects
between partitions and logging and updating their movement statistics. The details of these
procedures will remain hidden for this report, to preserve a reasonable length. However, the
outline is that each movement modifies the cutsize and area ratio of the partitions and based
on this information the evaluation checkpoints in lines nineteen and twenty-one respectively
determine if the algorithm will continue or not. Also, based on the logging of the movements,
the algorithm in line twenty locates the minimum achieved cutsize so far and reverts the state
of the partitions into that log state. The next FM iteration will start from that state, considering

it as the initial distribution of the objects into the partitions.

To fully understand the proposed algorithm, it is mandatory to analyse the exit condi-
tions previously referred, as they notably can alter its operation. The first algoirthm, named
FM tentative iterations evaluation () determinesifthe tentative moves should
stop or not. The has three modes based on which decides the exit condition of the inner loop.
The first and more exhaustive mode signals the loop to exit whenever the heaps are empty,
while the second raises the exit flag whenever a negative value of gain is reached. This is a
greedy approach and because the negative gain value means that the current move will prob-
ably increase the partitions cutsize we terminate the inner loop to start over using positive

values. The last of the three methods is called Early Exit FM and for each movement

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

66 Chapter 4. Our Contribution

compute the slew between the minimum cutsize so far and the current value to decide if
the exit condition is met or not. The boundary value, above which the exit flag is raise, is
determined by the user. The next checkpoint controls the outer loop of the algoirithm and
is called FM_iterations evaluation (). This one also integrates the previous three
modes but in a different way. The exhaustive mode allows the achieved cutsize value to be
lower or equal to the previous iteration result, while the greedy mode breaks the loop if the
current value is lower than the previous. On the other hand, the third one, Early Exit
mode, exits if the reduction of cutsize value is not greater than a specified boundary chosen
by the user. All of these heuristics were discovered through extensive experiments based on
modern industrial and academic designs.

The charts in Figure 4.5 present an industrial circuit behaviour using the exhaustive meth-
ods. The conclusions that can be extracted by the first chart are that the progression of the
cutsize through the tentative moves presents hills and sinks as the novel FM algorithm pre-
dicts, making necessary to maintain the hill climbing nature of the algorithm. However, on
the bigger picture, it is quite recognisable from the created V-Cycle that the hill climbing
tolerance effort must be tolerated for a narrow range of values before the algorithm give up.
From the second chart, we can observe that the after the fifth FM iteration, the minimum
cutsize has been very slowly reduced. On top of that, after the first iteration the reduction of
cutsize is performed on the first few tentative moves while the rest of them perform only neg-
ative moves. This information in addition to the previous conclusions extracted from the first
chart renders the third approach as the most efficient considering the performance-quality
trade off. The second one, addresses cases where a quick and dirty result is enough, while the

exhaustive approach, scenarios that even the slightest reduction in cutsize value is helpful.

4.3.3 Gain Value Calculation

During the previous section, the second line of the Algorithm 8 was skipped, as it is
an excellent opportunity to define the gain value and to analyse the ways we compute it in
our methodology. Thus, it would be a same if this analysis was underestimated by the other
equally important information provided in the previous section. So to start, the gain value
could be compared with the pulling force applied into an object by other partitions to move it
from its current one. The most well-known approach is to assign a value, as gain, proportional

to the connectivity of the object with the rest of the partitions. In the background chapter, we

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.3 Gain Value Calculation 67

Figure 4.5: The top side chart presents the progression of cutsize with respect to the tentative
moves, while the bottom side chart presents the progression of cutsize with respect to the

tentative mooves collectively with all FM iterations.

mentioned two types of circuit connectivity representations, the first one was the directed

graph and the second was the hypergraph. In our approach, both of these representations are

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

68 Chapter 4. Our Contribution

used where they best correspond to the current phase of the algorithm.

Using the directed graph representation, the gain of an object can be computed as the
number of inter-partition connections of the object minus the number of intra-partition con-
nections. In a more simplified manner, External — Internal connections number. The first
approach does not integrate any circuit oriented characteristic, while the other one, which
is a bit more complicated, considers the gain of an object based on its nets. In this way, an
object increases its gain by 1 towards a partition if it is the only object of the net laying in the
current partition and a portion or the entire net exists on the other partition in which the gain
is referred to. In continuation of this, the object reduces it gain by 1 in case that the entire
net is located into one partition and preserves the gain intact in case that the net is evenly
distributed into partitions. Due to the simplicity of the first approach, the computation of the
value and update of data structures are of very low-cost while the second one because of the
nets’ consideration require significantly more processing power and memory consumption

to evaluate the gain and update the respective structures.

Even if the second approach seems more well-suited for our goal, the first one yields the
best results. If we consider the complexity of nets into a densely connected design, it is most
probably that initially each partition will maintain a portion of many nets and only a few
will be completely grouped together or at only one object will be excluded. This can cause
degenerate cases where the heaps contain almost exclusively zero gains nodes, restraining
the algorithm to perform really movements without significantly improving the cutsize but
instead spending execution time and memory resources. On the other hand, the first repre-
sentation at the early levels of the algorithm creates a better assignment of gains, performing
many more high-gain movements and as a result notably improving the cutsize. However,
as the levels of the algorithm proceed this representation correlates, and we can observe a
significant reduction into the quality and amount of objects swaps. In this situation, the nets
based approach will be performed, because the majority of the nets are either totally grouped
or have missed one or two objects, and as more detailed and circuit oriented to approach will

refine all these spots and will provide and high quality result.

The Table 4.5 presents the results of eight benchmarks evaluating the gain value calcu-
lation methods introduced before. The results are obvious rendering the per flyline method
as the best choice for the coarsening phase of the algorithm. Starting by the first case where

we can observe 100% increment in execution time overhead and almost 50% increment in

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.4 Heap Strategies

69

Design per_flylines per_nets
Exec Time | Cutsize | Area Ratio | Exec Time | Cutsize | Area Ratio
Industrial 1 17.405 22023 3.498 36.835 33570 3.500
Industrial 2 25.282 58243 3.500 475.696 65878 3.500
b19 31.015 38188 3.500 327.222 65027 3.500
jpeg 43.348 73463 3.500 500.872 95612 3.500
leon3 1050.561 | 138738 3.500 5023.114 | 203939 3.500
netcard 2168.491 | 288981 3.500 - - -
adaptecl 60.979 65678 3.500 - - -
adaptec2 835.725 83585 12.475 - - -

Table 4.5: Presents the evaluation of gain value calculation strategies as regarding the stan-

dard partitioning metrics.

cutsize value towards the largest ones where the execution time increment reaches 500% in-
crement in execution time, it is self-explanatory that the second method is suitable for local
optimisation steps. The dashes in the lower right part of the table indicate the high execution

time of these cases, which led us to skip the completion of these experiments.

4.3.4 Heap Strategies

In previous paragraphs, it was mentioned many times the concern regarding the mem-
ory consumption and execution time overhead required to store and maintain the modified
FM binary heaps. Of course, this issue could not be overlooked, and thus we propose four
strategies able to address this issue without sacrificing much of the partitioning QOR. All the
methodologies are targeted to reduce the length of the heaps at each iteration of the algorithm
as they are recreated every time, by avoiding inserting objects with small or negative gain.
The methods are organised on an ascending scaled basis, from the most strict towards the
exhaustive approach, gradually limiting the insertion of objects into them.

The first strategy. which is the strictest method effects both the heaps’ length and the
allowed number FM iterations, disabling the heel climbing nature of the algorithm. In detail,
this strategy for each object detects the movement with the greater gain and allows only this
one to be inserted into the heaps, while at the same time permits only one FM iteration.
These characteristics render it the most time efficient method, having a small quality penalty.

The second approach, aiming to balance the time quality trade off, enables the heel climbing

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

70 Chapter 4. Our Contribution

Design low effort ‘ normal effort ‘ high effort

Exec . Area Exec . Area Exec . Area
Cutsize Cutsize Cutsize

Time Ratio Time Ratio Time Ratio

Industrial 1 13.882 33,802 1.762 16.128 21,538 3.500 16.353 21,534 | 3.499

Industrial 2 91.144 112,482 | 3.500 23.452 56,902 3.500 22.213 56,426 | 3.500

b19 277.179 94,149 1.158 29.934 38,188 3.500 30.308 38,297 | 3.500
jpeg 1,432.354 | 202,030 | 3.500 39.444 75,956 3.500 36.008 75,700 | 3.500
leon3 489.591 | 287,143 | 3.500 | 1,102.813 | 138,738 | 3.500 610.281 | 136,292 | 3.500

netcard 271.872 | 432,575 | 3.500 | 2,526.849 | 288,981 3.500 1,865.148 | 287,285 | 3.500

adaptecl 132.423 | 115,708 | 1.232 52.637 65,678 3.500 49.190 61,396 | 3.500

adaptec2 123.594 | 150,659 | 14.840 | 698.191 83,585 | 938.914 12.573 83,199 | 12.475

Table 4.6: Presents the evaluation of heap size strategies as regarding the standard partitioning

metrics.

feature of the FM, while instead of allowing only one movement per object this approach
inserts the top ten gain movements. The number ten is determined experimentally, aiming to
replace it by an automated algorithm in the near future.

Moving on to the two last modes, which are the most detailed and exhaustive, the exe-
cution time increases dramatically while the cutsize outcome improves marginally. The third
mode retains the same notions as the FM iterations, but loosens the object movement inser-
tion limitations even further by allowing all movements towards partitions that comprise a
portion of the object connections to be entered. As a result, the FM algorithm has greater flex-
ibility to make a wrong decision regarding the gain value in order to improve the area ratio
of the partitions. The last mode is the exhaustive mode, encompassing every movement, and
is not advised for use except in circumstances when exceedingly thorough circuit separation
is required regardless of execution time.

The Table 4.6 presents the results of heap size strategies. The numbers indicate the low
effort method as the fastest for the majority of the cases, while on the other hand it produces
the worst cutsize results. In general the results endorse the hypothesises based on which these
methods were introduced. However, there are cases where these do not hold, such as in the
fourth design, where the low effort method is substantially more time-consuming rather than
the others. This could happen due to the inappropriate combination of the unfolding strategy,
which will be explained below, and heap size strategy, leading to substantially increase the

amount of objects required to be handled in the lower levels.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.5 Unfolding Strategies 71

4.3.5 Unfolding Strategies

Unfortunately, there are cases where even the strictest heap strategy can lead to be inserted
millions of objects into the heaps, compromising the algorithm and reducing its effectiveness.
An auxiliary measure to ensure the effective and gradually handling of the objects at each
level is to exploit the imported clustering hierarchy characteristics. During the unfolding of
the clusters from one level to another, their connections with other gates or smaller level
clusters are already examined in the current level. This way, to further reduce the size of the
heaps instead of inserting bidirectionally these connections, it is preferable to insert only the
one direction starting from the currently unfolded objects.

Also, in large circuits there are cases where objects and their connections are completely
included into the same partition, and they have no interaction with the outer world. As a
result, it 1s ensured that they will enter the heaps having a large negative gain value. These
simple ideas inspired us to create five distinct techniques for managing the number of current
level movable objects based on the outcome of the unfolding process and the contribution of
object connections into cutsize.

For the better understanding of these techniques, they can be described by a Venn Di-
agram of two intersecting circles. The first mode, depicted by the first circle, allows only
the current level unfolded objects to be deemed moveable and enter the heaps, preventing
this way the reevaluation of the previous level objects contributing to the cutsize. The sec-
ond approach, represented by the second circle, allows all the current level objects having
inter-partition connections to enter the heaps, rendering a more detailed mode as the number
of these objects will be considerably larger than the previous technique. The third scheme
stands as the intersection of these modes, allowing only the current level unfolded objects
which have cross partition connections to be considered as movable for this level. It is ob-
vious that this is the most rigorous of all methods, significantly reducing the heaps entries.
The next mode is the union of these sets approaching the fifth and final method, which is the
universe of the Venn diagram, including all level objects.The last two methods are used in
relatively smaller circuits to improve the quality of results, as the savings in objects with the
first three methods are limited to a few hundred objects.

The previous Table 4.7 and Table 4.8 includes a set of results regarding the presented
unfolding strategies. The blue coloured benchmarks include large objects, and they are the

larger in terms of instances number. From this table, it is observed that for small designs such

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

72

Chapter 4. Our Contribution

On Cut and Unfolded

Exec Time | Cutsize | Area Ratio | Exec Time | Cutsize | Area Ratio
Industrial 1 20.765 20,010 3.498 22.857 18,703 3.500
Industrial 2 40.791 52,015 3.500 47.230 50,277 3.500
b19 42.080 29,794 3.500 63.471 28,228 3.500
jpeg 66.545 54,194 3.500 111.184 44,983 3.500
leon3 2272985 | 111,116 3.500 2305.853 | 101,585 3.500
netcard 6376.440 | 249,056 3.500 5059.119 | 249,376 3.500
adaptecl - - - 969.061 40,116 3.500
adaptec2 - - - 971.795 59,365 13.335
adaptec3 - - - 2,346.700 | 74,249 10.668
adaptec4 - - - 1,902.323 43,881 3.500
adaptec5 - - - 9,776.844 | 129,713 5.887

Table 4.7: This table presents the results of two of the unfolding strategies for a set of bench-

marks, which the one coloured blue include large objects while the other one not.

Design ‘ Unfolded on Cut ‘ Unfolded ‘
Exec Time | Cutsize | Area Ratio | Exec Time | Cutsize | Area Ratio

Industrial 1 18.694 22,392 3.499 18.694 21,651 3.498
Industrial 2 34.676 58,396 3.500 32.603 57,662 3.500
b19 58.187 38,188 3.500 47.243 35,222 3.500
jpeg 39.958 74,017 3.500 65.469 50,127 3.500
leon3 916.663 138,738 3.500 397.786 125,847 3.500
netcard 1808.874 | 288,981 3.500 255.838 | 279,523 3.500
adaptecl 286.331 65,678 3.500 308.040 42,902 3.500
adaptec2 681.017 83,585 12.475 319.581 70,001 12.564
adaptec3 6,483.530 | 122,083 10.653 2393.446 | 94,107 10.599
adaptec4 95.865 93,081 3.500 360.759 52,157 3.500
adaptecS | 29,994.876 | 211,733 5.903 10,735.438 | 203,455 5.951

Table 4.8: This table presents the results of two of the unfolding strategies for a set of bench-

marks, which the one coloured blue include large objects while the other one not.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.6 Level Skipping and repeating flow 73

as the first the different strategies have minor impact on the QORs while as the number of
instances increase the effects are more profound. The next thing we have to mention is the
partitions area ratio, which is stabilised near three point five, which were the user request,
even for the larger objects with the macros in them. Continuing, we should justify the dashes
in the upper part of the table, which are standing as no result due to large execution time
overhead. In detail, the explanation is really simple and has to do with the fact that as the
circuit size is increased, the number of objects having inter partition connection will increase.
As a result, the number of objects that the core algorithm will have to handle will reach
prohibiting values. However, in fourth case, we can observe a contradictory behaviour as the
first strategy is more efficient than the others in terms of execution time. This is perfectly
normal as the effectiveness of the strategies is not related only on the circuit size but also on

the graph connectivity characteristics such as density.

4.3.6 Level Skipping and repeating flow

Until now, we discussed only point optimisations and methodologies regarding the FM
algorithm or the construction of the necessary data structures. Only in the previous section,
we briefly considered effects of the clusters’ hierarchy into the partitioning level, introducing
the unfolded objects. Still, even in that section, we took as granted that the clustering result
is of high quality and is suitable to be used for our purpose. Unfortunately, this is not always
the case, as during a clustering level the grouped number of objects varies from a few dozens
of objects to a few millions of objects. This variation must be predicted from the partitioning
methodology in order to appropriately adjust its internal algorithms.

Our approach, as mentioned in Algorithm 6 in line twenty-three, checks this corner case
before the top level algorithm proceed to the refinement phase of the current level. In case
that only a bunch of objects are marked as moveable, based on the unfolding techniques, for
this level, the algorithm will skip it and will assign its objects into the next one. This way,
a clustering hierarchy containing a lot of levels grouping only a small portion of objects in
each one of them combined with an inappropriate selection of unfolding strategy, will not be
a problem for the algorithm as it can quickly unfold enough levels as if they were one and
proceed with the level refinement handling a sufficient amount of objects to notably improve
the cutsize. Another advantage of using this heuristic is that the structures of the FM method

that would have been constructed for each skipped level without improving the quality of

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

74 Chapter 4. Our Contribution

results are not initialized and destroyed, saving a large amount of execution time.

The second checkpoint ensures that the current level mapping did not mark as movable
more objects than the algorithm can handle. However, if that is the case, our proposed algo-
rithm has two alternatives to effectively reduce the number of objects in this level. The first
one is to select a stricter unfolding strategy and reextract the movable objects of the level.
This alternation of strategies has effect only on the current level, consuming only a small
amount of execution time comparatively with the execution time that would have been spent
by FM to perform all these movements. The second technique arises because the first quick
hack might not solve the problem, and a more robust approach is required. the second method
flow is called the IV shape because in cases like that stops the refinement phase and re-enters
the coarsening phase altering the sets of parameters to achieve better clustering results. Af-
terwards, it starts over from the initial phase to recreate the partitions. An intuitive model of

this flow is presented in Figure 4.6 below.

Figure 4.6: Presents the IV shape flow alternative to the V' shape flow which, in the situation
of a poorly formed clustering level, reverts to the coarsening phase.. Following that, it comes
back to the partitioning method from the beginning, reproducing the partitions. Depending

on the clustering quality outcome, this back and forth might be repeated numerous times.

4.3.7 3D ASIC Flow Extention

The final part of our contribution includes the modifications which had to be performed
in our methodologies [70], [71] to support multiple technologies oriented tier assignment
algorithm. During this thesis we took part into the ICCAD 2023 3D macro aware placement

contest in which we submitted a complete project. One of the contest main requirements was

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.7 3D ASIC Flow Extention 75

to support placement with multiple technologies, one for each tier. Thus, the flow we followed
was to place the cells into one tier, as if they were all assigned all into the bottom tier and
then used our partitioning tool to bisect the circuit assigning the objects into the respective
tier. There are two catches with this flow. The first one is that the contest requires specific
utilisation percentage in each tier, and the second is that each object has different area in each
technology. Thus, the arbitrary movement of objects into the upper tier is not an efficient
option.

To tackle these obstacles, we developed an algorithm which detects and sorts the objects
based on their ratio between the bottom and top technology in descending order. This way,
in order to ensure that our result will not violate the tiers’ utilization, we replaced the initial
random partitions assignment algorithm. The new one assigns the objects with the maximum
ratio into the top tier, which encompass the smaller nanonmeter technology, aiming to enclose
as many objects as possible, while the remaining objects are assigned into the lower tier.
Afterwards, we continue to the optimisation phase as described in previous section respecting
the tiers area balance by assigning different area into the objects according to their tiers.

The Figure 4.7 presents a comparison of four of the well-known tools against our own
in 3D design flow during the tier assignment phase. In this phase, the partitioning tools must
separate the circuit into 2 partitions respecting the utilisation ratio requested by the user. The

orange cells indicate that the tool failed to respect the required utilisation.

Figure 4.7: Comparative results of four partitioning tools against ours in 3D designs.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 5

Comparative Results

5.1 Introduction

In previous section, we thoroughly discussed our proposed algorithm regarding Multi-
Level Partitioning phase, claiming that the heuristics and methodologies presented yield sig-
nificantly better results than the other well-known approaches. To back up our statements, in
this section we present a comprehensive set of experiments addressing each one of these op-
timisation steps presented both in clustering and in partitioning sections respectively. Also,
to prove that our complete tool stands as an excellent complete alternative to the other es-
tablished tools, we exhibit a comprehensive set of experiments proving the superiority of
our methodology in the partitioning oriented metrics. Furthermore, as stated numerous times
throughout the thesis, the partitions generated by this tool must be of sufficient quality to be
utilized in the subsequent ASIC flow steps. This way we also present a set of experiments
including 3D placement utilising partitions generated from all the previous compared tools.

The outline of this chapter continues as follows. The next section presents thoroughly the
experimental methodology followed to compare our tool against the other well-established
tools mentioned before, describing the framework in which the tools were had to be integrated
and the tools parameters values investigated during the experimental phase. Following that,
the points of the comparison are analysed for both the partitioning oriented part and the 3D
part of the analysis. Also, includes both an overview and the analytical tables of the experi-
ments conducted during the comparison with the other tools using the designs with the large
objects in them. Last but not least, the final section includes the 3D application results re-

garding the scores achieved against the contest upper limits.

77

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

78 Chapter 5. Comparative Results

5.2 Experimental Methodology

5.2.1 Experimental framework

In order to test all these algorithms and features, we had to integrate them into a greater
framework supporting additional features necessary for the extraction and the analysis of the
results. This framework is a proprietary suite of tools addressing the entire novel ASIC flow
and some of its extensions, necessary for our work. One of the most useful feature of this tool
for our project is its ability to parse and store efficiently industrial format files such as LIB,
LEF, DEF and netlist files. For this reason, all the C/C++ language code development and
the other tools’ evaluation took place inside this framework, translating the imported circuit

information into the appropriate format each time for each tool.

Another important feature of this tool is the integrated static timing analysis engine, which
was used to evaluate the effectiveness of our algorithm for timing driven operation. Also, the
integrated placement algorithm extended to support Multi-Level and 3D flow was used to
measure the results related to half perimeter wire-length and design density. Beyond these
standalone tools, it contains a set of auxiliary features such as python and TCL command
line interface as long as a sophisticated Graphic User Interphase (GUI) combined with data
analysis features such as histograms and scatter plots which significantly assist the analysis

of the partitioning results.

Apart from the framework tool in which we developed the approach, a comprehensive set
of designs must be utilised to thoroughly test the proposed algorithm and heuristics. Because
of the method’s size and complexity, a design suit large enough to cover as many scenarios
as feasible must be formed in order to obtain a fair assessment of the algorithm against well-
established tools. This way, we gathered almost seventy designs mainly academic to evaluate
the various parts of the algorithm against other approaches and assess its effectiveness in
following ASIC flow steps. Namely, the suit includes the cases from the following EDA
contests DAC 2012[12], ISDP 2005/6[13], ISPD 2011[14] and ICCAD 2015[15], 2 industrial
designs and 5 open source large scale designs namely b19 [17], Leon3mp [17], Netcard [17]
and jpeg_ecoder [17]. All these designs accompanied by their characteristics, including their
components, nets, macros and IOs numbers as long as their use case in the current analysis,

are presented in Figure 5.1.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

5.2.2 Evaluation Metrics and Tools 79

5.2.2 [Evaluation Metrics and Tools

The most significant step in evaluating an algorithm is determining the quality measures
that will be used to evaluate the approach, as well as the other tools that will be utilized as
reference points. In our case, the metrics which will be used are the following. As regard-
ing the clustering phase, the number of hierarchy levels, the area ratio at each level and the
area ratio through levels will be used as physical design quality metrics. Also, to check the
timing driven operations eligibility of the clusters hierarchy, we will measure the delay and
slack distribution of the top thousand critical nets. In order to be suitable for timing driven
operations, the clusters of each level should prevent the creation of snake-paths entering
and exiting multiple clusters. A clustering result separating the critical paths into multiple
groups is not suitable for timing driven operations, as in case that the clusters are distributed
into multiple servers the timing annotations of these paths will introduce significant error,
making the associated operation, such as routing, to perform incorrect optimisations. Con-
sidering the partitioning phase, we will measure the cutsize, the partitions area balance and
the skipped or repeated levels of each design. Of course, the timing driven metrics will also

be evaluated for the partitioning result.

However, these measurements, are useless unless the reference points are not established.
To do this, we employed four well-known external tools, namely the h(METIS [2] [3], KaHyPar[4]
[5] [6] and PaToH [7], using their results as reference points. The other three tools were not
tested as the MLpart is already thoroughly evaluated with all the other existing tools, the
SpecPart is a post-processing optimisation tool already tested with hMetis and KaHyPar [8],
[9] and lastly we could not set up and run the GAP framework due to lack of computational
resources. These tools were run as stand-alone programs within the general framework, im-
porting the circuit information in the format that they required. The retrieved output product
was parsed from the wrapper framework in order to initialize the corresponding partitioning
structures. All the tools used for this evaluation have a set of parameters that could be ex-
plored in order to detect the best case scenario for each one of them. however, this analysis
would take substantially more time to complete, risking considering our algorithm outdated,
as hundreds of millions of tests would be required for each tool. Instead of that, we used their
proposed parameters as they presented them in their respective introduction papers, and so

we did for our algorithm aiming into a fair comparison of the results.

The benchmarks are exhibited below, in Figure 5.1, accompanied by their important in-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

80 Chapter 5. Comparative Results

formation. The information included in the tables is the number of the gate instances included
in the circuit, the number of the macros included in the design obtained by the respective con-
test benchmark suite representation paper, the number of the 10 ports of the circuit and the
number of the nets. Last but not least, the tables include the PDK name used to for the re-
spective benchmark. Most of them use the ASAP7 7nm PDK [72] while the others use the
NANDGATE 90nm PDK. Both of them are open-source, and the reason we chose them was
to be easy for everyone to reproduce and cross-check our results. It is important to highlight
the range of experiments used to evaluate the algorithm. In our suite, we have cases from a
few thousand gates all the way to a few million gates. Also, we used both cases with and with-
out macros, as long as benchmarks both densely and loosely connected. This way, we tried
to test all types of designs to safely conclude into the best choice as regarding the partitioning

tools.

Figure 5.1: Benchmarks collections used for the evaluation of the algorithm features and the

over all tool against other well-established tools.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

5.3 Comparison Results 81

DACI12 ICCAD 2015
50 100 300 500 50 100 300 500 50 100 | 300 | 500
. . Top 1000
CutSize CutSize
Fanout Distribution
hMetis 3.95 3.23 3.07 | 3.21 4.79 3.28 2.35 2.25 1.03 | 0.77 | 0.63 | 0.70
Patoh 2.39 1.92 1.93 2.06 3.31 2.31 1.72 1.67 | 0.57 | 0.37 | 0.26 | 0.25

Kahypar 237 1.89 1.88 | 2.00 || 3.22 | 2.22 1.66 1.62 | 0.53 | 0.35 | 0.25 | 0.26

Kahypar MT | 3.70 2.79 | 2.55 | 2.63 || 4.73 3.23 2.30 220 | 1.06 | 0.72 | 0.57 | 0.59

Top 1000 Delay

AreaRatio AreaRatio
Paths Distribution
hMetis 940 | 1445 | 1053 | 1.78 || 5.72 | 8.07 9.75 4.63 | 7.58 | 4.78 | 459 | 4.26
Patoh 11065 | 6792 | 4467 | 1531 || 3396 | 22040 | 12409 | 10978 | 2.95 | 2.22 | 2.27 | 2.23
Kahypar 839 80 1300 | 533 19 370 8159 | 3942 | 3.02 | 2.07 | 2.09 | 2.05
Kahypar MT | 12.28 | 11.53 | 7.09 | 2.60 || 6.25 | 7.25 6.29 535 | 6.85 | 493 | 446 | 4.19

Top 1000 Slack

Execution Time Execution Time
Paths Distribution
hMetis 2.08 1.68 1.38 1.07 2.09 1.88 1.32 090 | 452 | 4.18 | 4.21 | 4.18
Patoh 0.90 1.31 0.88 | 0.80 1.02 1.15 0.81 054 | 297 | 3.11 | 3.62 | 3.77

Kahypar 2.48 353 | 452 | 534 || 452 | 825 | 21.15 | 28.76 | 3.02 | 3.05 | 3.31 | 3.34

Kahypar MT | 0.17 0.20 | 0.27 | 0.31 0.10 0.11 0.12 0.12 | 439 | 4.18 | 4.17 | 4.15

Table 5.1: ICCAD 2015 benchmarks results. The table includes the results of four different
partitioning results, requesting 50, 100, 300 and 500 partitions each time, and the values

represent the ratio of the other tools result over our proposed algoirthm.

5.3 Comparison Results

At this point, we have reached the core evaluation of our tool. In this section, we will
present you the results against the four other tools mentioned before. In Table 5.1 we can
observe the results of the ICCAD and DAC contests, while on the Table 5.2 we can observe
the results of the ISPD contests. Due to the large amount of results, these tables contain a
compressed form of the results, while the analytical tables can be found in the Appendices
section. The tables presented in Appendices contain the ratio of the result produced by the
tool specified in the header of the row over our tool result. The tables are populated by such
a value for all benchmark, and each metric specified at the top of the columns for each one

of the requested partitions number mentioned in the header of the columns.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

82 Chapter 5. Comparative Results

ISPDO06 ISPD11
50 100 300 500 50 100 300 500
CutSize CutSize
hMetis 6.647 | 5.461 4.286 5.400 3.987 3.023 2.899 2.946
Patoh 5773 | 4427 3.505 4.428 2.378 1.794 1.867 1.956

Kahypar 5.790 | 4.401 3.486 4.404 2.381 1.749 1.795 1.881
Kahypar MT | 7.061 5.345 4.174 5.236 3.671 2.604 2.454 2.478

AreaRatio AreaRatio
hMetis 3.26 6.24 10.14 3.69 8.37 12.82 11.33 4.38
Patoh 9.16 | 1530.30 | 1277.05 | 3261.35 || 4455.35 | 2157.42 | 420.45 | 174.37
Kahypar 11.12 | 76.64 187.23 | 268.06 || 1152.26 10.64 | 1916.99 | 673.49
Kahypar MT | 5.05 7.19 7.77 8.00 11.90 9.09 6.01 4.40
Execution Time Execution Time

hMetis 3.987 | 3.363 2.463 1.506 2.397 2.157 1.504 1.158
Patoh 0.669 | 0.590 0.519 0.346 0.986 1.275 1.270 0.947

Kahypar 1.167 1.221 1.248 0.833 2.008 3.304 5.007 4.975
Kahypar MT | 0.237 | 0.266 0.297 0.241 0.213 0.255 0.348 0.351

Table 5.2: ISPD 2004/05/06/11 benchmarks results. The table includes the results of four
different partitioning results, requesting 50, 100, 300 and 500 partitions each time, and the

values represent the ratio of the other tools result over our proposed algoirthm.

The tables in this section contain the average value obtained by the analytical tables for
each benchmark group, based on the contests they belong, for each metric and partitions
number. For example, the first cell of the Table 5.1 reports the average cutsize ratio achieved
between all DAC 2012 benchmarks against hMetis requesting 50 partitions. This result can
be explained as that our algorithm achieves 3.95 times better cutsize on average for all DAC

2012 benchmarks against hMetis requesting 50 partitions.

Starting the comparison by the main metric which is cutsize we can observe that our ap-
proach produces substantially better results having a range of results starting by 1.62 all the
way up to 5.4 times better average cutsize against all other tested tools. Continuing to the sec-
ond metric, which is the area ratio, we can also detect that our approach outperforms all other
tools with significant improvement. The extremely large numbers which can be found in this
category inside the tables are cases where the other tools failed to create balanced partitions

and the average value got skewed upwards, so they should be not taken under consideration

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

5.3 Comparison Results 83

as absolute values, rather as indicators of incorrect result. However, regarding the third met-
ric which is the runtime we can observe that KaHyPar MT and PaToH are significantly faster
than our approach, approximating 0.8 and 0.2 times respectively.

Moving on, to the second set of metrics regarding timing characteristics, only the ICCAD
contest benchmarks could be evaluated by our internal STA engine as the other academic
designs had problems with dangling nets or undriven pins. Nevertheless, even from this small
set of designs, we can extract some important indications about the suitability of the algorithm
result for timing driven operations. For the first metric called fanout distribution, we evaluated
the top thousand fanouts of the circuits. The results shown that our algorithm tend to break the
large fanouts into many partitions, approximately five times over the other tools. On the other
side, regarding the top delay ad slack paths distribution, the results prove that our algorithm
separates three to seven times less the critical paths rather than the other frameworks. It is
important to mention, that the number of separations for the first metric is less than 7, for the
delay paths distribution metric is less than forty and for the slack path distribution metric less
than thirteen.

Considering the placement application, the first metric indicates that the result is suitable
as the partitions will be loosely connected, and the enclosed objects will be placed without be-
ing significantly affected by the other objects included in other partitions. That holds because
the separation of the top fanout will reduce the cutsize, and as a results the partitions’ connec-
tivity, by separating of the forward logic cone into the first level which have the fewer con-
nections compared with a deeper level. Furthermore, timing-wise, the second metric proves
that our tool will produce partitions which are applicable to timing driven operations as the
critical path will most likely be separated only a few times enabling the timing analysis on

each one of the partitions without introducing as much error as the other approaches.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 6

Conclusions

6.1 Conclusions

Reaching the final sections of this thesis, it is important to summarise the obtained knowl-
edge into a few paragraphs. First thing first, the Multi-Level flow will be necessary and thus
established as the standard flow very soon. Because of that, the development of new par-
titioning and Multi-Level oriented tools in general is vital to meet the expectations of the
rapidly-evolving semiconductor industry. However, these tools must be VLSI oriented in
order to take under consideration the ASIC flow characteristics and produce high quality
results.

Targeting more on the main topic of this thesis, there are many partitioning tools pub-
lished in the literature, but yet there are unaddressed issues regarding modern applications
such as 3D aware partitioning and Multi-Level placement aware partitioning. To address
these issues 1s required great attention to detail and deep understanding of the VLSI theory to
exploit every possible characteristic of the circuit, aiming to yield high quality results. These
characteristics are physical-design oriented such as fanouts, gates areas and distances, timing
analysis oriented such as paths distributions gates drives strengths and gate delays, as long as
power aware such as gates switching activity and dynamic power consumption. Our proposed
methodology, considering all these features, yield better results compared to the other tested
approaches as regarding the ASIC flow application driven metrics presented in the previous
sections. It is obvious that in order to exploit such characteristics, it is necessary to integrate
the tool inside a closed loop optimisation framework with many other analyses tools such

as power and timing analysers to extract these values and use them as quality metrics inside

85

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

86 Chapter 6. Conclusions

an optimisation loop. Unfortunately, the necessary frameworks to support this attempt are
limited, with the most known of them being the OpenRoad project [73]. Despite all that, |
believe that the industry requirements will motivate more researchers to be involved with this

never-ending research area.

6.2 Future Work

Having all these in our mind, we believe that our approach, even though it produces
impressive results as regrading the novel partitioning metrics and the timing aware metrics
it has the first weak point in the execution time and the second on the amount of parameters
needed to be tuned for each design specifically to extract the optimal results. This way, the
first and more important thing that we will address is the speed-up of the approach by further
analysing step-by-step its sub-algorithms to detect and resolve its time consumption hotspots.
The next major target will be to create an automated algorithm, deciding the values of the
algorithm’s tuning parameters at the beginning of the tool and during its operation if that is
needed. Of course, by the description of the problem the first idea is to introduce a machine
learning methodology which will analyse the design characteristics and the progress of the
partitioning algorithm and based on those should modify the respective tool variables by a
factor to produce the optimal result.

Also, three promising avenues for future research in the realm of ASIC design are the fur-
ther exploration of 3D design flow, the investigation of partition-based Static Timing Anal-
ysis (STA) techniques, and the development of a distributed ASIC design flow. Further in-
vestigating 3D design flow entails adapting and optimizing current design methodologies
for three-dimensional integration, considering emerging technologies like stacked memory,
through-silicon vias and heterogenous chips. Enhancing partition-based STA involves break-
ing down complex designs into more manageable segments and developing efficient algo-
rithms for the static timing analysis, removing the pessimism and error introduced by the
critical path separation. The creation of a distributed ASIC design flow aims to facilitate col-
laborative work across dispersed agents, involving considerations such as data exchange, se-
curity, and the integration of cloud-based tools. These areas present opportunities for further
advancing ASIC design in the face of evolving technologies and growing design complexi-

ties.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Bibliography

[1] C. J. Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel circuit partitioning,” in Pro-
ceedings of the 34th annual Design Automation Conference, pp. 530-533, 1997.

[2] G.Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph partition-
ing: Application in vlsi domain,” in Proceedings of the 34th annual Design Automation

Conference, pp. 526-529, 1997.

[3] G. Karypis and V. Kumar, “A hypergraph partitioning package,” Army HPC Research
Center, Department of Computer Science & Engineering, University of Minnesota,

1998.

[4] L. Gottesbiiren, M. Hamann, S. Schlag, and D. Wagner, “Advanced flow-based multi-
level hypergraph partitioning,” arXiv preprint arXiv:2003.12110, 2020.

[5] L. Gottesbiiren, T. Heuer, and P. Sanders, “Parallel flow-based hypergraph partitioning,”
arXiv preprint arXiv:2201.01556, 2022.

[6] L. Gottesbiiren, T. Heuer, P. Sanders, and S. Schlag, “Scalable shared-memory hyper-
graph partitioningl1,” in 2021 Proceedings of the Workshop on Algorithm Engineering
and Experiments (ALENEX), pp. 16-30, SIAM, 2021.

[7] U. V. Catalyiirek and C. Aykanat, “Patoh (partitioning tool for hypergraphs),” in Ency-
clopedia of parallel computing, pp. 1479-1487, Springer, 2011.

[8] I. Bustany, A. B. Kahng, I. Koutis, B. Pramanik, and Z. Wang, “Specpart: A supervised
spectral framework for hypergraph partitioning solution improvement,” in Proceedings
of the 41st IEEE/ACM International Conference on Computer-Aided Design, pp. 1-9,
2022.

87

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

88 Bibliography

[9] 1. Bustany, A. B. Kahng, 1. Koutis, B. Pramanik, and Z. Wang, “K-specpart: A su-
pervised spectral framework for multi-way hypergraph partitioning solution improve-

ment,” arXiv preprint arXiv:2305.06167, 2023.

[10] A.Nazi, W. Hang, A. Goldie, S. Ravi, and A. Mirhoseini, “Gap: Generalizable approx-
imate graph partitioning framework,” arXiv preprint arXiv:1903.00614, 2019.

[11] A. Gatti, Z. Hu, T. Smidt, E. G. Ng, and P. Ghysels, “Deep learning and spectral embed-
ding for graph partitioning,” in Proceedings of the 2022 SIAM Conference on Parallel
Processing for Scientific Computing, pp. 25-36, SIAM, 2022.

[12] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei, “The dac 2012 routability-driven
placement contest and benchmark suite,” in Proceedings of the 49th Annual Design

Automation Conference, pp. 774-782, 2012.

[13] G.-J.Nam, C.J. Alpert, and P. G. Villarrubia, “Ispd 2005/2006 placement benchmarks,”

in Modern Circuit Placement: Best Practices and Results, pp. 3—12, Springer, 2007.

[14] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J. Nam, and J. A. Roy, “The ispd-2011
routability-driven placement contest and benchmark suite,” in Proceedings of the 2011

international symposium on Physical design, pp. 141-146, 2011.

[15] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan, “Iccad-2015 cad contest in incremen-
tal timing-driven placement and benchmark suite,” in 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 921-926, IEEE, 2015.

[16] K.-S. Hu, L.-J. Lin, Y.-H. Huang, H.-Y. Chi, Y.-H. Wu, and C.-F. C. Shen, “2022 iccad
cad contest problem b: 3d placement with d2d vertical connections,” in Proceedings
of the 41st IEEE/ACM International Conference on Computer-Aided Design, pp. 1-5,
2022.

[17] J. Jung, I. H.-R. Jiang, G.-J. Nam, V. N. Kravets, L. Behjat, and Y.-L. Li, “Opendesign
flow database: The infrastructure for vlsi design and design automation research,” in
2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1—-
6, IEEE, 2016.

[18] M. Anand, S. Ravi, K. Chouhan, and S. M. Ahmed, “Data self-healing technique using

asic level security mechanisms,”

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Bibliography 89

[19] D. S. ROY, “Placement and Routing for ASIC,” July 2020.
[20] “Ansys RedHawk-SC | SoC Power Integrity & Reliability Software.”
[21] “Intel will outpace Moore’s Law, CEO Pat Gelsinger says.”

[22] C.J, “A Semi-Persistent Clustering Technique for VLSI Circuit Placement - ppt down-

load.”

[23] “10/25/ VLSI Physical Design Automation Prof. David Pan Office: ACES Lecture 3.
Circuit Partitioning. - ppt download.”

[24] “Floorplan (microelectronics),” May 2023. Page Version ID: 1156157622.
[25] D. Medhat, “2.5/3D IC Reliability Verification Has Come A Long Way,” Aug. 2022.

[26] M. Xu, G. Gréwal, S. Areibi, C. Obimbo, and D. Banerji, “Near-linear wirelength esti-
mation for fpga placement,” Canadian Journal of Electrical and Computer Engineer-

ing, vol. 34, no. 3, pp. 125-132, 2009.

[27] G. Jie and B. Jeremic, “Draft report on parallel, finite element method for inelastic

problems,”

[28] D. Papa, N. Viswanathan, I. L. Markov, G. Nam, C. Sze, Z. Li, and C. Alpert, “Physical
synthesis with clock-network optimization for large systems on chips,” IEEE Micro,

vol. 31, pp. 51-62, jul 2011.

[29] F. A. Hussin, T. E. C. Yu, T. Yoneda, and H. Fujiwara, “Redsocs-3d: Thermal-safe test
scheduling for 3d-stacked soc,” in 2010 IEEE Asia Pacific Conference on Circuits and
Systems, pp. 264-267, IEEE, 2010.

[30] “Dissolving The Barriers In Multi-Substrate 3D-IC Assembly Design.”

[31] J. Fan and C. S. Tan, “Low temperature wafer-level metal thermo-compression bond-
ing technology for 3d integration,” Metallurgy-Advances in Materials and Processes,

vol. 52, no. 2, pp. 302-311, 2012.
[32] “File:Graph-representation-of-the-modular-scale-free-network-The-nodes-are-

colored-according.png - Wikipedia,” Oct. 2008.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

90 Bibliography

[33] V. Mehta, S. Bawa, and J. Singh, “Analytical review of clustering techniques and prox-

imity measures,” Artificial Intelligence Review, vol. 53, pp. 5995-6023, 2020.

[34] C. Alpert, A. Kahng, G.-J. Nam, S. Reda, and P. Villarrubia, “A semi-persistent clus-
tering technique for vlsi circuit placement,” in Proceedings of the 2005 international

symposium on Physical design, pp. 200-207, 2005.

[35] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal
community structure,” Proceedings of the national academy of sciences, vol. 105, no. 4,

pp. 1118-1123, 2008.

[36] N. K. YreTdmovog, “3d ic cad placement flows and algorithms yielding improved

ppa,” 2021.

[37] A. Bretto, “Hypergraph theory,” An introduction. Mathematical Engineering. Cham:
Springer, vol. 1, 2013.

[38] D. A. Papa and I. L. Markov, “Hypergraph partitioning and clustering.,” Handbook of
Approximation Algorithms and Metaheuristics, vol. 20073547, pp. 61-1, 2007.

[39] K. Shahookar and P. Mazumder, “Vlsi cell placement techniques,” ACM Computing
Surveys (CSUR), vol. 23, no. 2, pp. 143-220, 1991.

[40] A.Kennings and K. P. Vorwerk, “Force-directed methods for generic placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,

no. 10, pp. 20762087, 2006.

[41] B. B. Ray, S. Das, K. Hazra, N. Patra, and S. K. Mohanty, “An optimized hpwl model
for vlsi analytical placement,” in 2015 International Conference on Information Tech-

nology (ICIT), pp. 7-12, IEEE, 2015.

[42] A.S.LaPaugh, “Vlsilayout algorithms,” in Algorithms and theory of computation hand-
book: Special topics and techniques, pp. 8-8, 2010.

[43] D. Zaporozhets, D. V. Zaruba, and V. V. Kureichik, “Representation of solutions in
genetic vlsi placement algorithms,” in Proceedings of IEEE East-West Design & Test
Symposium (EWDTS 2014), pp. 1-4, IEEE, 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Bibliography 91

[44] K. Sakuma, 3D integration in VLSI Circuits: implementation technologies and appli-
cations. CRC Press, 2018.

[45] E. Ozer, K. Flautner, S. Idgunji, A. Saidi, Y. Sazeides, B. Ahsan, N. Ladas, C. Nicopou-
los, 1. Sideris, B. Falsafi, ef al., “Eurocloud: energy-conscious 3d server-on-chip for

green cloud services,” in Workshop on Architectural Concerns in Large Datacenters in

conjunction with ISCA, vol. 10, 2010.

[46] S.Oh, M. Cho, X. Wu, Y. Kim, L.-X. Chuo, W. Lim, P. Pannuto, S. Bang, K. Yang, H.-S.
Kim, et al., “lot 2—the internet of tiny things: Realizing mm-scale sensors through 3d

die stacking,” in 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 686-691, IEEE, 2019.

[47] M. O. Agyeman, A. Ahmadinia, and A. Shahrabi, “Heterogeneous 3d network-on-chip
architectures: area and power aware design techniques,” Journal of Circuits, Systems

and Computers, vol. 22, no. 04, p. 1350016, 2013.

[48] S. Wong, A. El-Gamal, P. Griffin, Y. Nishi, F. Pease, and J. Plummer, “Monolithic 3d
integrated circuits,” in 2007 International Symposium on VLSI Technology, Systems and
Applications (VLSI-TSA), pp. 1-4, IEEE, 2007.

[49] H. Zhuang, J. Lu, K. Samadi, Y. Du, and C.-K. Cheng, “Performance-driven placement
for design of rotation and right arithmetic shifters in monolithic 3d ics,” in 2013 In-
ternational Conference on Communications, Circuits and Systems (ICCCAS), vol. 2,

pp. 509-513, IEEE, 2013.

[50] M. Koyanagi, T. Fukushima, and T. Tanaka, “High-density through silicon vias for 3-d
Isis,” Proceedings of the IEEE, vol. 97, no. 1, pp. 49-59, 2009.

[51] D.K. Nayak, S. Banna, S. K. Samal, and S. K. Lim, “Power, performance, and cost com-
parisons of monolithic 3d ics and tsv-based 3d ics,” in 2015 IEEE SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), pp. 1-2, IEEE, 2015.

[52] R. Wang, K. Chakrabarty, and S. Bhawmik, “Interconnect testing and test-path schedul-
ing for interposer-based 2.5-d ics,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 1, pp. 136149, 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

92 Bibliography

[53] X. Zhang, J. K. Lin, S. Wickramanayaka, S. Zhang, R. Weerasekera, R. Dutta, K. F.
Chang, K.-J. Chui, H. Y. Li, D. S. Wee Ho, et al., “Heterogeneous 2.5 d integration on
through silicon interposer,” Applied physics reviews, vol. 2, no. 2, 2015.

[54] J.-Q. Lu, S. Devarajan, A. Zeng, K. Rose, and R. Gutmann, “Die-on-wafer and
wafer-level three-dimensional (3d) integration of heterogeneous ic technologies for
rf-microwave-millimeter applications,” MRS Online Proceedings Library, vol. 833,

pp. 211-216, 2004.

[55] M. Hella, S. Devarajan, J.-Q. Lu, K. Rose, and R. Gutmann, “Die-on-wafer and wafer-
level 3d integration for millimeter-wave smart antenna transceivers,” in The 2005 IEEE
Annual Conference Wireless and Micrwave Technology, 2005., pp. 125-128, 1EEE,
2005.

[56] Y. Du, K. Samadi, and K. Arabi, “Emerging 3dvlsi: Opportunities and challenges,”
in 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference
(S3S), pp. 1-5, IEEE, 2015.

[57] S. K. Popat and M. Emmanuel, “Review and comparative study of clustering tech-
niques,” International journal of computer science and information technologies, vol. 5,

no. 1, pp. 805-812, 2014.

[58] D. Miillner, “Modern hierarchical, agglomerative clustering algorithms,” arXiv preprint

arXiv:1109.2378, 2011.

[59] R. Manikandan, P. Swaminathan, and R. Sujitha, “Unimodular hypergraph based clus-
tering approaches for vlsi circuit partitioning,” International Journal of Engineering

and Technology, vol. 5, no. 3, pp. 2755-2758, 2013.

[60] S. Na, L. Xumin, and G. Yong, “Research on k-means clustering algorithm: An im-
proved k-means clustering algorithm,” in 2010 Third International Symposium on in-

telligent information technology and security informatics, pp. 63—67, leee, 2010.

[61] K. Khan, S. U. Rehman, K. Aziz, S. Fong, and S. Sarasvady, “Dbscan: Past, present and
future,” in The fifth international conference on the applications of digital information

and web technologies (ICADIWT 2014), pp. 232-238, IEEE, 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Bibliography 93

[62] S. White and P. Smyth, “A spectral clustering approach to finding communities in
graphs,” in Proceedings of the 2005 SIAM international conference on data mining,
pp. 274-285, SIAM, 2005.

[63] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,” in Proceedings
of the 36th annual ACM/IEEE design automation conference, pp. 343-348, 1999.

[64] Hagen and Kahng, “A new approach to effective circuit clustering,” in 1992 IEEE/ACM
International Conference on Computer-Aided Design, pp. 422—427, IEEE, 1992.

[65] G. Guo, T.-W. Huang, and M. Wong, “Fast sta graph partitioning framework for multi-
gpu acceleration,” in 2023 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), pp. 1-6, IEEE, 2023.

[66] T. Verbelen, T. Stevens, F. De Turck, and B. Dhoedt, “Graph partitioning algorithms
for optimizing software deployment in mobile cloud computing,” Future Generation

Computer Systems, vol. 29, no. 2, pp. 451459, 2013.

[67] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network
partitions,” in Papers on Twenty-five years of electronic design automation, pp. 241—

247, 1988.

[68] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,”
The Bell system technical journal, vol. 49, no. 2, pp. 291-307, 1970.

[69] S.K. Lim, D. Xu, et al., “Large scale circuit partitioning with loose/stable net removal
and signal flow based clustering,” in 1997 Proceedings of IEEE International Confer-
ence on Computer Aided Design (ICCAD), pp. 441-446, IEEE, 1997.

[70] N. Sketopoulos, C. Sotiriou, and S. Simoglou, “Abax: 2d/3d legaliser supporting look-
ahead legalisation and blockage strategies,” in 2018 Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), pp. 1469—1472, IEEE, 2018.

[71] N. Sketopoulos, C. Sotiriou, and V. Pavlidis, “Metal stack and partitioning exploration
for monolithic 3d ics,” in 2020 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pp. 398403, IEEE, 2020.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

94 Bibliography

[72] X. Xu, N. Shah, A. Evans, S. Sinha, B. Cline, and G. Yeric, “Standard cell library de-
sign and optimization methodology for asap7 pdk,” in 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 999-1004, IEEE, 2017.

[73] T. Ajayi, V. A. Chhabria, M. Fogaga, S. Hashemi, A. Hosny, A. B. Kahng, M. Kim,
J. Lee, U. Mallappa, M. Neseem, et al., “Toward an open-source digital flow: First

learnings from the openroad project,” in Proceedings of the 56th Annual Design Au-

tomation Conference 2019, pp. 1-4, 2019.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

APPENDICES

95

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Appendix A

Benchmarks Suite Tables

97

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

98

Appendix A. Benchmarks Suite Tables

Name Components # | Macros # | IO Pins # | Nets# | Library
adaptec1 5.72E+05 542 1 583328
adaptec2 4.57E+05 543 1 469444
adaptec3 9.69E+05 723 1 992555
adaptec4 1.09E+06 1329 1 1125036
adaptec5 2.15E+06 646 1 2183992
bigbluel 5.98E+05 559 1 606381
bigblue2 8.30E+05 3313 1 882507

§ bigblue3 1.65E+06 675 1 1694238 | 5

% | newbluel | 4.73E+05 390 1 486413 | <
newblue2 6.61E+05 1171 1 711078
newblue3 8.32E+05 690 1 923452
newblue4 1.47E+06 569 1 1506429
newblue5 1.84E+06 1052 1 1927347
newblue6 2.71E+06 1376 1 2771776
newblue? 4.39E+06 6151 1 4624383
superbluel 7.98E+05 432 6521 823024
superbluel0 1.05E+06 1619 15141 1086013
superbluel2 1.27E+06 89 1580 1293531

g superbluel5 1.07E+06 153 10556 | 1080519 5

6‘21 superbluel8 4.59E+05 207 3978 469076 2
superblue2 9.51E+05 654 8047 991109
superblue4 5.59E+05 306 6623 581127
superblue5 7.09E+05 784 4082 787292

Table A.1: ISPD 2005, 2006 and 2011 designs characteristics.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Name Components # | Macros # | IO Pins # | Nets# | Library
superbluell | 9.26E+05 1458 6872 | 959056
superbluel2 | 1.27E+06 89 1580 | 1293531
superblue14 6.05E+05 340 5473 629772
superbluel6 6.71E+05 419 4448 697660

~ superbluel9 | 4.95E+05 286 3735 | 512053 _
EQC) superblue2 9.51E+05 654 8047 991109 2
superblue3 9.08E+05 575 6482 933398
superblue5 7.09E+05 784 4082 | 787292
superblue6 | 9.52E+05 565 5380 | 1006801
superblue? 1.32E+06 419 6499 1340566
superblue9 8.11E+05 272 4014 | 834024
superbluel 1.21E+06 3787 3787 | 1215302
superbluel0 | 1.88E+06 1696 1696 | 1897736 %
- superbluel6 | 9.82E+05 101 101 999559 ?g
g superbluel8 | 7.68E+05 653 653 771215 ?%
§ superblue3 | 1.21E+06 2074 2074 | 1224311 E
T | superblue4 | 7.96E+05 3471 3471 802245 2
superblue5 1.09E+06 1872 1872 1096924 §
superblue? 1.93E+06 4910 4910 | 1933334
Industrial 1 0.5E+05 0 2176 60883 A
o | Industrial 2 1.4E+05 0 1159 147960 <
2 b19 2.2E+05 0 47 | 225884 |
N 59!
5 ipeg 6.7E+05 0 67 674353 5
© 1 leon3mp 6.5E+05 0 333 | 758278 %
netcard 9.6E+05 0 1846 | 1058447 | #

Table A.2: DAC 2012 and ICCAD 2015 designs characteristics.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Appendix A

Analytical Comparison Results Tables

101

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Appendix A. Analytical Comparison Results Tables

102

99¢°0vE | v6SYCC | 18916 | 8E9'L6 | €6L°0I LLY'S 005°¢ 00S°¢ | 8I0LOC | ¥CCIOC | 0SS66 | 061C8 smQ
0sTSS [ovy'cy | CIT9C | 6S6°1¢C L6y LOT 8CY°LS 080°5¢C SE0FT | SI86Y6 | ¥I1SE6 | SSPLO6 | 010988 | LA TedAuex %
198°68 | ¥P0°€9 | L60'SY | SI9LE | €58°0¢ 0L6°ST LTE9 Y96y | 0EP0€8 | 8CTYII8 | PLOOBL | SEISSL yoyed m,
C68°S8I | LY 091 | SLY'SIT | 60’16 | €LL8CT 095 vy 099 989°C | 0EIST8 | 969018 | 968LLL | LBEBSL TedAuex E
S9T69¢ | EV0EVE | 090°LEE | €8ETEE | LEO6CY L1979 YSO'L1 LYTL | 9SST86 | 60L196 | LEYSTO | LSL86S Siowy
9ST°LST | €19V | #S9°SOT | 688901 | VIE VI SLY'LY 0CI' 11 0v6'v | LLOLST | TTTLOT | ¥STEIT | o6yl smo
€00C9 | 9v6'8Y | BOESE | YOEEC | COBBIE €981 I7€7201 006 T¥ | TSLOLY | 8SISS8 | €€TIT8 | €€166L | LN TedAyey 9
09088 | 9VTEL | 608°SS | LTETY | STI'S9LOCT | 61+°LE0OBOT | 888°0V916 | LCL'TIT | L8YYSL | ¥ISYEL | 16100L | 6TLILY yored W
C0S°1€C | 6€6°¢6l | CBI'SYI | LCLBIL | CITILI $86°¢90L 129°LT C06°IT | 6EYCSL | 9900€L | ¥TLTO9 | CTE6LI9 TedAyey E
VIE0YY | C0S¥SS | ¥6S0€S | 9CLI8S | 086°LIT L8S0ST SE9YS 998°1C | 815006 | TEVSLY | €C6CEY | 810008 spowy
6€6'8L | 0L9C8 | 6VCSY | SOty [SL6YE 959611 08L°91 P89 | S6vIcl | SE9LET | 66¥STI | 66816 smQ
IvI°SE | 8CS9T | OSL'LI 0L el I¥17°08¢ (428944 €0v'6L Y9€'9€ | 60S6TH | SEE8TY | 8¥696E | 91S6LE | LN TedAyey Q
LITYS | TCSSPy | S€ovy | €SLYT | 9€1°69L89Y | 9E1°69L89Y | LITLSLIT | 8S0°0T | €L89SE | SSEVPE | SSPSIE | 19066C yojed m
€E0°0€T | LIBCOT | SETLL | LY9'ES | 0€L98I v16°101 [€Cviol VLS ET | 8LLYIE | SOLOVE | TVICIE | L9SS6T TedAyex E
6€0 VLT | €L9°C9T | SSSCST | 06¥'LST | 69C9C1 9C0°'L1¢ L6909 9G8°61 | 98YSHy | €8S6CY | 909¢01 | VEBBLE spowy
090 V€L | LCL6L | YEEIY | S09°6E | €CE6 0scy €91 0yl CPIEST | 09LETT | 0C69L | 950¢€9 smQo
0SE Iy | €¢5°0€ | €8C91 0€8°CI 62¢£'69 SEI6€ L0TCI TOL'L | ¥1TSTS | 60SYIS | ¥61S6v | ¥80¥8Y | LIN TedAyey =
186CS | SYTTCS [0v°LC | TCV'9T | 0€6°0CLI S9S6¢€11 8CEL SOLY | SEVSOY | 86EVSY | 6991¢EY | YOLSTY yored W
SSL'LTT | 8SSOIT | €I8¥8 | 089°€9 | SSE6l 9L0°01 SCL'S SLL'Y | 9€L99Y | LSTIVSY | 9T¢€6ly | S9TLIY TedAyex E
6EY CLT | TSTE9T | C99°9pI | 8E6'EVI | 8EY'LE €9¢'LS €8CCI Y89 v | CTC08YS | TICTES | TEVLOS | €S8S8Y spowy
008 00€ 001 0¢ 008 00¢€ 001 0s 008 00¢ 00T 0¢
QWL UONNOIXY oneyeary 9zZ1IgIN)

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

103

009°CLE | 69L°LET | TPSPEL | 168°0ST | C68°LOI 060°8¢ 8CT6 ey Lov6LE | 9TEY9E | 8SYPST | 00966C smQ
89C19 0S8°0S | 619°CE | 9L8°SC | 898'LLY 09L9LC ¥760°0L LT9'9E | TLSTIET | 090SEET | 68STOTI | €€T09TT | LN tedAyey <
0%70°001 LI96IT | S¥S09 | CETTs €CSTO8T00T | STI'S9LOTT | €CT'PE09 | 08S9T | 0610SIT | SSLITIT | C86¥SOI | €CTSYLO yoyed MM
[18°€ST | LI9T91C | €6L°091 | €S0°89T | v¥¥ 0T8SY S69°CIIC (1483 Y6€6 | BILOVIT | €€S60IT | LSLLYOT | LYOTIOI TedAyex -
CeELTYS | TrSEey | OvESSY | TYO'SIS | €90°0SC L66°1¢EE 8LS6S 9€ECT | 90VL6ET | T89L9ET | CTEBVIET | TTILITI Showy
£68°061 60C'88 | COLLL | OVLB9 | OLS'E 005°¢€ 005°¢ 005°¢ cle60cT | €L88EI 9SYSL €918¢ smQo
0cr 65 I16°6€ €65 1T | ThSLI vIEEll 0L8 VL 166°6€ 88L°TE | 099869 | 60vL89 | LOL099 | TS8ISY9 | LN IedAyey o
691 VL C0L99 | 8CLOY | 08S°0E | CEVPI ILLCT €€9°01 299°8 0S008S | TSOLSS €690CS | L8STOS yored HM
81 9¢1 88T 10T | CS6'69 | $8S°SS | 608°¢l e0rel L6901 VLY’ €66L9S | SO88YS | 8OLEIS | 991661 TedAyex -
L86'SLE | 09F'9LE | 0T8'STE | 008°LOE | 9V8PS 198°8¢C1 veC 1y L60°6T | 9¢v0CL | €OvE0L 16L8LY €05€S9 showy
660°CSI G8E9L | 09L°L9 | 0SS'I9 | 00S°€ 005°€ 005°€ L80°€ 926591 0S8LY1 19001 ¢STT6 smQ
CL6'9S 6cevy | LSO'TE | SS89C | SYL8T LSTLI Pee8 clrs V6E8LS | 0SSE€9S | LBTICS 1LE0TS | LN TedAuey -
clIe8L 8L8LY | L96'6Y | €80°SE | TTSCI 0Sy'L 0cTs eIy 8creoy | L8I6LY | Tlovvy | 668STY yojed Mm@
0CL0LT | vov 161 | 8LECOT | €10°'T6 | ¥LO'6 1099 TS SSLE €E€8E0S | 0L6C8Y | PSESHY | 9900¢d TedAyey -
0cL V61 9CTY0T | ¥96'8LT | 9¥0'I8T | 0991 YT 1e yesS c61'C GEET09 | 8986LS €0STYS | 0L990S spowy
6¥78°00LT | 0T899E | 6S0°68C | SLTSTC | LST 6 8SY'1C ¢66°S 00S°¢ PCEOLY | S9€16€ | 69906C | 89V8LI E0)
LLT BT 600°L8 SOV'E9 | SOI'IS | LTO'SLI Y9¢€°L6 ¥19°6¢ SLTLY | L80S88T | S6I¥S8T | SSSLOST | 898SSLI | LN TedAuey 0
S5 691 6€8°CEl | SY1'96 I8€°L6 €CSTO8T00T | SP0°89L8E | 69C91 6€C’L | LTI69LIOT | LO6ESOT | LLTYOIT | LYSOPSI yoyed m.
EEV'6CS | 8CL00V | 66S°10€ | 196°€0E | evI6lI 8€8 91 ¥8E°0Y CIE9 | LEETLOT | 961¥YI1 | T90S8ST | 66CEVSI TedAyex E
810°0L6 | ¥¥E006 | 8YEVY8 | 8SICI8 | CLTLY L6v'L9 10204 €018 €9L8C61 | 61ST68T | OVLOE8T | YOL6ILI Showy
008 00¢€ 001 0s 008 00¢€ 00T 0s 008 00¢€ 00T 0¢
QUWIL] UONNIIXH oneyeary =74\ ilg)

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

Appendix A. Analytical Comparison Results Tables

104

E€ST°L6T | 986°LIT | S96'L¥T | SO8°601 | 00S°€ 005°¢ 005°¢ 00S°¢ 91051 96100¢ | 81C99C | 0L0TSI smQ
0669 | TOL'LS [S9°€e | ¢8ICE | OICEY 8ISTE 80 €1 801°S 608SYET | 8EVETET | 00L88CTT | T0699CT | LN tedAyey A
eI eo6 10C°08 | 88I'CS €8sy | CIlEl 19€°01 8EL'8 206°¢ 0€S8STT | TLISEIT | ¥¥SS8OT | 1886101 yored HW
Y29°€6C | LO6'9CY | €91°S6T | ¥C9TOC | 18901 ICL°6 €00l 611°S 8LSISIT | C60TETIT | 9109801 | 08ELSOI TedAuex =
6€6°60S | LOTI9Y | SO0°'80¥ | 8LL8SY | 09L1C YrLCe 666'L $99°¢ [88YBET | CILTOEL | 9SE€6IET | 098S8CI Showy
S6C61C | 801'9CI | €LT°09 | LB88CS | 8ST6LT €E6'CL [44 04! €80°01 Yovicl €0€LST 009¥91 VISTCI smo
C8LTE | SCL'IT | 0S8'TI 6SL'8 280198 L68°98¢ L9G°S61 8589 T9S8EL | ¥6ELTL | SEVIIL | 6L6869 | LN TedAyey o
96C°S8 | 9SY'ITI | €6L°TIT | 9CL'681 | 00S0LBIITI | €86°E€C98ST | CTELOLECST | 8TY9S S19609 | CLLE6S | SO06¥9S | 0810%S yored Wm
[LETET | CSLTIT | 8¥9°08 | LTLO8 | TSS'LSIBEY | 98L8OTCST | 8LOVIEE] C96°66€1 | 6C9C09 | 61vE6S | L6CTLYS | 80TOSS TedAyey &
€6V'€9C | 8SY'6VC | 8VL'LIT | ¥ESEST | 861651 0€s°€6¢ [L9°LTI] EI'vv 99819L | 8980SL | 8¥90EL 10CLOL spowy
CEIC9T | 1CC90T | C89°9S | OP9°ES | PBESHI ¢ET 68 YLETT 690°01 €81001 99¢6¢€1 611091 860C¢C1 smQ
6v0°L9 | 9S8°SY | 9LY'VC | TPO'0T | 600°LEVI V8E'LLS SLO8IC L8618 L6909S | LEV8FS | SI9€TS | 66911S | LN tedAyex Q
COL'IL | €168 | OLI'CY | €E€6'LE | C9S'LTLBBE [8L€9EV6T | 9vE8COVC | CCL'SIL Iv66Ey | €EITCy | v6796¢ IvS18¢€ yojed HM
ELTCTIT | TVO'OIT | OIL€9 | TIESY9 | CISSPLLL CITTT9S¢ L¥9°60C1 L06°SC ITSTEY | 069L1V | LS6V6E 1606LE TedAyex £
SSY'IvE | L¥S6l¢ | 9€TL8C | 086°'L0E | 980°S96 Y18vCCl SCLYST 8LOVL 9v8L8S | S8T8IS eYrLES | PEILOS spowy
66801 | 1EV'69 | 09v'8S | YOTVE | €LT068 £9¢e° STy Y6 Ce L9TPY1 eIcLEl 99011 60756 89816 smQo
ITLIE | L6STT | L6TTCI 961°8 188°CCC 81y evl SLS'SE C09°LT LLOLTY | 98190% | TOLYSE | 0861LE | LA TedAuex =
VLL6Y | 8961y | 9SEVC | LSOVC | 9ST°60S59¢ 9¢1°6059S | 899°9¥IVI LL998Y 19691¢€ | TL900E | VESOLT | OP9SYT yored Hw
£€69°66 | 8LOV8 | LI8ES I8¢°6y | vYL'SELI 96L 911 8V ECl Sev'sl [€6STe | LEEBOT 1CL89T 1¥905C TedAyex &
LI E8T | TYO'LST | 69L°EVT | 098°S9T | €OV 'SSI 18¥°91¢C 68y €99°¢l 8LO8CY | LTCSIV | SLIC6E | 8TYELE Spowy
008 00¢€ 001 0¢ 008 00¢€ 001 0s 008 00€ 00T 0s
QWL UONNOIXY oneyeary =74(N1119)

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

105

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Appendix A. Analytical Comparison Results Tables

106

960°065 | 6£9°88¢ | COV'L8C | 8ST6ICT | OVSC8I e8L'IS 6556 Yo'y 0L9Y6T | LOESTE | 6S98CE | LETLYI smQ
8€0°101 (42402 SSLEE ¥88°LT ereeey YSLOLE SEVY91 8VE8S | 986CC8 | v¥SYO8 ILTITI9L | 689€TL | LN TedAuey m
LSL'LTT | OV8TET 126991 8LL'E8 960°T0S98T | 0TS 06EES | CLL'ICI 9L9°61 | L6LYI9 | PIBLLS | 0€90LY [LLETY yoed Hm
cre ey | 9s8°IIS 8SS'LLT | 900°9¢T 006°8¢891 v’ Lcoy | YOV Y6EC | 191°8 81C06S | 8TBESS I6v6Ly | C899CY TedAuex W
[60°8VE | LTL'LSE I8I°CIE Iy sve | €10°86¢ 901°LIY L68°C01 €60'cy | 601896 | 9CT€LE6 | 0S0L98 | 96TSI9L spowy
SETSITY | 0ELYCSY | TIS98ETL | VLS EI6 | LS6'8 sor's 005°€ 005°€ 6vsevL | 6vS6vL | 8SI8SS | LO6VIC smQo
8VS'LTC | SPSLSI 0¥0°L6 €60°9L 09801 L1865 LY ST 1€L°61 | ¥L8T99€ | ¥LYI09€ | €FLLOSE | T0TISHE | LIN tedAyey S
91¢€°69¢ [€TTLT | 8COVST | evvEol €08°CICe9 | LSO'TY 8S8'L PEL'9 | S6EEEIE | 98EELOE | YETOSO6T | CEITLBT yored Wm
EVLTC8 | ¥08998 | 88ECIS | 0€9'8¥Y [+0°9L C95°8S 86L°L 9L09 | 89S8IIE | L6TLYOE | ¥E€C8C6T | 10SL98C TedAyex &
S81°98CC | ¥S9°8ICC | 688°Y9CC | - ¢65°8¢ 880°06 T6L°LT - 0EvPyLE | 0SL0B9E | TS8YLSE - spawy
VIELILT | T88°908 10S°Ccy | 9CT88y | 00S°€ 00S°¢ 005°¢ 00S°¢€ 9619¢€C I8CC9Y | 09L£6E | O0ECIVC smQ
LL6'E9T Y0 I€El 6£5°¢S 1Y 4% 1T se €LY 9T LEV'S Yy | SL6TYET | 09€96TT | 11017TT | €88S81T | LN tedAuey S
99t°00¢ 1€ 881 617 STl Syeol 6898 901’8 €v6'9 9Ty | LYLOLOT | 99TEE0T | STEOSO6T | 88S8O6SI yoed llm
YrCE8S | 8LS6LY | 661°LYE | OETLIE | SE66 0¥S'8 €er9 S68°S | COILSOC | OLTICOC | 9LTLY61 | 6858061 TedAyex &
61S¥e9l | 191°0¢vl | vPTSE0l | - LETVI 866'1¢C L8TY - 8STEOVC | 69S8SEC | 86LSLTT - spowy
Co1°E6S | Cevv8y | COL'ELC | 9TEE9C | 80LPE 12504 ey 005°¢ 689181 CEBCIS | €LE6OS | 86LOVE smo
Y01°€01 9€€9L 0CI'LY LSO'8E 0Sv°801 $09°99 SILYT 98S°01 | 0L9809T | 6TLILST | SET88FT | €180tF1 | LIN tedAyey e
SIS 691 6LELET 611°¢0I1 6€S 101 850°981¢C9 I8LBEITE | 0C9°0I 0S8°L | 69610€T | 6LESYCT | 6SSYYIT | OV19801 yored HW
L90°8EY | SLY'6SE €C6'0ST | 6C1°081 0€CSs8 C91°LI1 6LE01 0S€8 | 668L8CT | LIELECT | C696CIT | ¥0ESLOT TedAuex &
068°6LIT | TOI'09CT | 009°CCIT | 009°CIVI | 61ET9 LEEVOT Lev'Ll Or1'9 | ¥T6TSIT | L6L609T | STOLTST | 9699971 spawy
008 00¢€ 001 0s 008 00¢€ 00T 0s 008 00¢€ 001 0S
QUWIL] UONNIIXH oneyeary zZ1IgIN)

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

107

LS9SST 796G €SI vS$9'18 920°¢6 | L8ISICI $8E6ES LyL 8y L9Y'TC LLYLOT | L98SIT | 868CEI | TCOOVI smQo
ySS08 989°6¢ YL 81 010°LT LITESY 760°9LS [LTT61 $99°86 09€T9% | ¥290¥Y | LYEOTY | 9LY68E | LIN tedAyey Mc
6L8°SS1 878°L8I 086°I¥1 | 0C9°0CT | CEO'ECTBLE | TE6 ETCBLE | 996°896C9L | VIL'698CST | €VCILE | 9LTISE | $#8S00€ | 69589C yoed Hm
§SSC96¢E | 619°86LC | BCI'LLIT | T91°€Y9 | 09CL60E0OE | 0SO'86Y 186'66 [81°1v VLILSE | 9T9CEE | TTSELT | 196¥¥T TedAyex W
800°ELT 290°L0C | CI0°891 €SL6LT | 61V 18 8LT89L 885°€81 I¥9°19 L98YES | LOVO0S | SPBO9Y | €1E8IY spowy
86€°09C | LL9SOC | €L8'SYI 891°9CI | 68S°SS 8V0 11 00¢°¢ 005°¢€ 06£CCC | SOS80T | 680EV1 | LSBCIL smQo
woey S89°v¢ €SI91 ISL°Cl €LSE9¢E 925961 02869 061y SEPYOS | S0668% | S99L9% | 61+9SH | LN TedAyey M
968°LLI 788°8E1 9¢1°68 €EE'0CI | 0TS'SE6ST 19L°6v1v VILTT G816 69T68¢ | CCIL9E | vPIOEE | SP8I0E yored Hm
evI9Sy | €8T°L0E | 999vET | 66%°0CT | YOV 09C1 VIL €6l 01LCT 92611 S96SLE | S98C9¢ | 88SEIE | 0€896C TedAyex W
SYT08C | SO086¥C | 8E0'E€CC | PICI8T | OCLELC 8CTOVE LIT°L6 0C8'8¢ O0LT6ES | SEEETS | 89SL6Y | COE8IY snowy
e 0ST 91°S01 ITE6L Y198y | CEI'ST G968 005°¢ 00S°¢ [L9SLT | 98E€8ET | TOVPEL | 90LCOT smQo
819°06 ecev9 LSE0E 0vy'0¢ [SS°LOT SECIIIT ¢59°0¢ SEV'IT STS6LS | 8L909S | 6€vHTS | 1T6TIS | LN TedAyey m
18L°081 618071 SO06'LLT | €18°9L | 988'81€00T | Y09 L LT9V1 Y2601 LLYTLY | 6C00VY | S8IC8E | ¥LSISE yoed Hm
9v1°018 BILYSS | ¥OL0TE | SP8VLI | CTLI'LIC 6L8°SCE €881 €886 065291 | TITIEEY | 6C089€ | SSPSPE TedAyex W
LOB'E0C | LTTSOC | 9LO9LT | 09L°691 | 6€0°06 LLTO91 LOT 1Y 08591 SL8OEY | 61L809 | 6¥S99S | 1S0¢€ES shoty
80C°S0y | S8CICE | SE6°0VC | L8998T | OVS T8I €8LIS 6556 Yov'y 0L9Y6C | LOEBTE | 6S98CE | LECLYI smo
9LL9L 0revs L60°ST 8681 erecey PSLOLE SEr 91 8YE8S 98678 | ¥¥Sy08 | ILII9L | 689€TL | LN tedAyey m
8ITvIC | S8I'CCC | OI9°I91 8SY'C8 | 960°T0S98T | OIS06EES | CTLLICI 9L9°61 LO6LYT9 | VIBLLS | 0€90LY | TLLECY yored Hm
YToe9y | €90°€SS | 0L6°€TE | €S8°8FI | 0068C891 €Y' LT6Y YOv'16£C 191°8 81C06S | 8TBESS | 16VOLY | T8IICY TedAuex W
ESLCSY | vor'0Sy | 6€9°1SE | TOE6LE | TLSE9C eeTShY $60°901 129°1¢ 01296 | STE0E6 | 81L898 | T¥L8IL spawy
008 00€ 00T 0s 008 00¢€ 00T 08 008 00€ 00T 0s
JQUWIL] UONNIIXH oneyeary 0z1gIN)

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

108 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

109

88S8YC | 6LI'TIC | L9ELYT | SOI'C8I | 9CL 61T Y8L'ES 6V 01 vy S6901¢ eSLI0E | v688YC | CHLTTT smo
105766 105766 SIT°0¥ 109°0¢ [L6°L8E I89°ELT el LOoT 988°I¢S 9L6618 €TISE8 | 888E8L | SEOSSL | LN TedAyey |
S6S'LIE | LC8TIT | TOL6ET | 0S8VOC | 98S8VOLIS | 98S8YOLIS | 6L1°6CCE 65081 €CCSLY | LLOBEY | OSTISS | Coceoy yored MM
€68°SSYI | OIL°€COT | €8L°C6S | 9SL8IY | 9SETrICE LYEILI 905°9¢ L16V1 90199 [S0SC9 | PLESSS | €8986Y TedAyex W
€C6°68¢ | YSTIVY | EPPISE | 6C1°C8E | 8887681 SS816¢ Oy 011 806°6¥ YOESYOT | 6661001 | €LEBI6 | LSISIS Showy
PeL6ee ILE L8 89¢ 81 | ILV'6CI | OCL'LIY €16'901 6vL ST 696'9 €50€CC | €I89CC | LS8PPCT | 8ESOII smo
8ISy ey ce 9LLTC 1€9°91 991888 OVL'LLY 0€8191 L1T06 $806€9 | SLELT9 | T9SE09 | 978885 | LN ledAyey |
e8 o1 06¢€°SCI SEEPL | 0€L99 | C81TI09S0T | 90THTSSIT | 6S0°688EIT | 0LETIIVI 180661 | VESCTLY | VELOEY | 6L1€6¢E yored Mm
928'06¢ | 09T'86E | T06'0TC | €08°9LI | 690°80588 LEO6IE 888'LY €8L°81 SOT68y | €€9L9v | 66¥81Y | LS606E TedAyex W
699°LST | ¥68°9SC | 9PV661 | VSO IPT | €88°€SS 8V1'LY8 SEV'ILI 96°SL 8ILLOL | PLSSEL 190289 | 990C19 spowy
V88°LOY | 6S8°98C | CETIET | LL8'SOT | 8SL'L8T 68999 G8¢ECI 8€0°S Isevie | T8L60E | SCOvve | L686IC smo
868°LII1 SLEYL €8Sty | 0LE€9C | 0S¥'86¢C 66¢°L8I 091°8L 819°6¢ 0CSST8 €6SL08 | 6ELILL | €TPLEL | 1N TedAyey |
66L°LOE | 96T SLT | 96T €Ol | SEVPCI | TLI'99616E | T8 EETI0I LEESTTT e8Y°Cl 99v989 | 1688E9 | £¥0C9S | 0S98IS yojed WM
[ST88ET | 609°€9€T | 0S8°90L | 169°LTY | €COVCOSLL | ¥19°TEOT VoL’ SE 816Gl 861¢€69 €50799 | tvP9tes | 830I1vS TedAyey m,
S69°SvE | 950°0CE | SSICLT | 16690€ | L8ETCIT 699°LCE 681°9L S€6'8¢ 6€8CCTI | 9S08STT | S9ETEOT | 9T06C8 spowy
LOLISY | €L6'86C | 9TEE6I | ¥SSOIT | 6L6°€89 0LV ETT ce8'81 €688 LY099C | S8TT8T [LTYET | 96110¢€ smQo
S089L 0€L'TS 78S°9C | VEL'ET I81°89L¢€ 6L5°0LCT 088°0S¥ [€6°S6¢ 9L0S6L | 6EETLL | YIEPEL | L¥990L | LN TedAuyey | o
CIO'I8C | ¥P6'S9C | 6SYVTCOE | 6ECLET | 606 V6TCOST | 606 V6ICOST | €CI'6L96S6 | CIL'€896S6 | CLVYILS | LTOLES | LSTOVY | 69LEOV yojed MM
OLL6YY | S8STILE | 9€EVIT | ¥II'S61 | 606161C6ST | 606 161C6ST | 910°€86 SET'TOPIR 96S6vS | 6VSOIS | 88IEEY | SEV68E TedAyex W
L890OVY | 898 VLY | CITEVE | 8STH9¢E | V6L SSTT V19 T€EE S6L°¢SOI ¢s00re 970€S8 | 9LLOEB | VLLEBL | SLLOVL Spowy
008 00€ 00T 0s 008 00¢€ 00T 0s 008 00¢ 00T 0S
QWL [UOTINOIXH oneyeary 9zZIgIND

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

110 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

111

¥10°66¢ [T¥'¥6¢ S6ETIT | 96€961 | 00L°€EST SY8 S 886 0899 £5€08¢ 16€00 | 9891¥¢ | LCIIIC smQ
8STISI 9€0°6L G98'8E | v 1€ | 896'ISI 10S°€01 8LLTOT 879779 STISS6 | LLITE6 | #9T098 | 660S6L | LN tedAyey m
08C°09¢ | P0OB'LEE €L0°6CC | L88BYI | T0L'6EYYT | 08E6EVYC | CLO'LIYYT | €VLBO6TT | T6991L I86599 | 8066VS | SvECoY yored u,lom
VIS LLY | LVLT9E [9€°8€C | 696°SIT | LCOTOLYEE | LO6CILIC | LLY €8I [TL°TT ¥20LOL ELSTY9 | L66EES [9180¢ TedAyex W
€81°06€ | vI¥'88€ | 668°L9E | 095°96¢€ | 1€L90I 0€0°col 005 v¢€ 181°6C 6€IPSIT | €68L80T | T6SYIOL | €L0C06 Showy
Yy 90C | TvT6lC | ¥8€'88 9668 | 6LC08 9¢¢’LT 6CCS 005°€ er609C | €806LC | 0ITSET | I8CTEOI smo
LS9 STl ¢8S°18 088'9¢ IST'0E | 899°0SI L0001 1€0°6€ 9¢0°1¢ 8€€0S9 | TITEEY | 9VTLLS | €9T6SS | LN TedAuyey | —
[€0VIE | O8L°LIC | SO6°EST | 66L°C6 | €EEVELOIL ¢CT8E901 IST'86L6 | LEI'SIO6I | LES66Y [28SSYy | 986ILE | €E€ISTE yored MM
00S°9¢€€l | I8EOIIL | 081°9€S | ST890C | CST60¥V6C | €EVS96 088°IT 9¢C 11 €6L0SY | €6SYIY | LILOSE | €S680¢ TedAyex W
LIEE9Y | LYTY6E | 679°09€ | 6CF LEE | €9S5°901 885°9¢CI y10°€S ¥8CLT ¢S9T0L €CLSLY I8¥CE9 | S6£08S snowy
LY818C | CCL'S6I 0817°6€1 | €I¥'STI | ¥SOC8T YL1°89 0r6°'11 61¢S a8Y0I€ | PE988C | LIOL6C | €60STC smQO
S80°611 680°C9 SST6¢ 198°'SC | LZ800C 60T el SOL Ty 9L8°CC OveEYSL 19292L | 60L089 | 68S¥S9 | LN Teduey | o
eIS'sye | SSETI0C | CoEe6l | Th8VIL | ¥E6'0CC 180°¥CI 906°C¢ 66C°Cl VCI68S | ¥8OLSS [LEE9Y | 9C961Y yojed WM
€GE'8LOC | 8YO'08ET | CTECLY9 | ¥96°6CS | 6STL6E ISv'16 80S¥09¢ | S9TEl EYCLSS €0IECS | 06SL9Y | 6CELIY TedAyex W
S86'ISE | SLTLTE | 9SY'08C | LI6GTEE | LEV'LTI LTSI 6vC6€ LLS 61 09LSTIT | €9¥9S0T | COILT6 | 9LB8CL showy
S6L°LSY | 6¥1°S89 [STS8C | 88EVET | ITSTLI ovL Sy SCTL'6 8y [LY8YY | L8O6OY | TSS60Y | 0€618C SO
681011 SY0°LOT eorcs | 6T6vE | CISIIC SO¥'LST LSL'TS 1CL 81 69€PSIT | L8TOTIT | I¥SOE0T | $T6996 | LN TedAuey |
Y10°S0S | PE6'I8E | LELTLT | 118891 | CEV'6E6CST | €C0°66C6€8 | £VE98CE | 96V VI 01¥C96 | P8CLL8 | LTETCL | 9LILE9 yored MM
019°68€T | 9CI'LCIT | 089°1€9 | 06V ¥Ch | COI'LLCS 617661 8¢0°0¢ 8L8E] 99SPE6 | 686898 | o6EEevL | €IS0€9 TedAyex m.
C88°L8Y | CELCLY | ¥EOCTY | 0ES6IS | T8LEII 09€91¢ 0S6°L9 CLS™81 0006671 | €vE9EVT | €98ELTT | LOTILOI Showy
008 00¢€ 00T 0s 008 00¢€ 00T 0¢ 008 00¢€ 00T 0s
oI [UOTINOIXH oneyeary 0z1IgIN)

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

112 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

113

€IL°98S | TP 91E | 9YTYOCT | €ITOIT | 6L6°€89 ¥90°CI1 CcE881 €588 LY099T | TCY6LT ILTYeT | 96110¢€ smQo
8EY8 ¢S6°'SS 6LL°0¢ CLS VT I81°89L¢ 6L5°0LCC 088°0St [€6°56¢ 9L0S6L | 6EETLL | ¥IEVEL | L¥990L | LN TedAyey Qm
ITE6CE | 9SS ELT | PLT98E | €68VCC | TES9S00L ¢E€S9500L €0S°9S00L | 8E€8'9S00L | 8OISLS | €LYPYPCS | LSTOVY | 91000% yojed Mw
SOV'LTS | 8¥¥6Cy | €C8°6ST [18°90C | 606 761C6ST | 606161C6ST | 910°€86 SET'TOPI8 | 9SS6vS | 6VSOIS | 88IEEY | SEPORE TedAuex W
SIT8EY | SLEVYY | CLEL6E | 9ST'8SE | 998°GC8C SI6'1S8¢ 0S1°8S01 6LTLYC LESTSY [6LLT8 | TO6ST8L | VLESYL spowy
LIS8LI 8CLETI SS6'V91 €69°181 | S06°C8Y 81°0CI VILGI SLS L9€0ST | L6TYCT | LEEIIT | 99CELI sImQ
8V8 18 SIT°68 (44 h%3 ¢SL0C | ¥95°0SC 66L 181 cloey L99°€€ 8EESHY | 6VI9TF | 90TL6E | ¥1€S8E | LN TedAyey ﬁw.lo.w
¢68°66C | LIL'8SE | 8S6'6SC | COI'SST | ¥VO'6ILYI 80€°S6971 6S6°SSEVT | €STSOLET | TI¥88E | 06L£9€ | 08¥SOE | LT9S9T yored Hm
€0LTCOE | LLTILIT | 8EY 9001 | YLI'TO9 | 9C1°TCT691 S09° 9% ¢8¢°6¢ CCLTT 0668S¢ | €vIBEE | T9EI8T | CI89ST TedAyey Ww
0S6°S€1 cesTIcl 6L91CI SCLCST | 0L9°6C1 LEB'BTT S0CT9¥ ITT°ET LLEESL | 968169 | ¥S09SS | 61L00Y spowy
S9E€9LE ILET9C | 0CLCTC | CTLOPPI | 00S°€ 00S°¢€ 005°¢ 005°¢ L6Y96Y | €S8SSE | 69VvPT | 19¥8YI smQo
0L 81 9¢6°011 861°¢S LOV'IE | LS6VL £88°6¢ 19T°¢¢ S90°¢l ISSPL6 | L169Y6 | ST1I88 | 6TC918 | LIN tedAuey %c
109°€€E | 8YTY8T | 908°61C | SEEL6 | 9S8°8SHT CS8CY8T 696 VLSL | LL8'68EIT | 889EL8 | E£8EVCS 186169 | 1ST0€9 yoed Hm
L6ETLOT | STI'ELL | 98€€CIE | 65V 06 | SL6'ET ¥8E€CI Yol S0¢'L 6911L8 T106L18 | ¥6SSOL | ¥T¥0S9 TedAuexy W
LLTLIE €00°TT¢ 89C°ILC | TSE0IE | VIv'88 Ly€001 1L8°SC [10€°TT C086CCI | TE€SILIT | STLISOT | C080¢€6 spowy
[E18YE | 99L°0CC | €ST8YI €eeCel | Tov'IoY 869 11 [0T°LT S6¢E°L C6990€ | L6EIYE | 96ESE | £9061C E0)
€T I8I 600911 ¥90°€L 991°€9 | TSP e8I 867601 6cECY 0€861 YLOLT6 | TLEOLS | SLLSOL | 8LLGOL | LN TedAyey ﬂc
996'69Y | £6C10S €L8'STC | LYTTTT | LIV 18€6C 129'18€6C Y8LT8EOC | 9TTLITLT | €9VTTL | 90v6C9 | 68878y | 08VSIY yoed 11m
919°0vST | T9L'LOCT | TOE09TT | 90T IT8 | ¥9L°S66 evSPrel LOB'TE S90°S T LTIT89 ITIE09 | €8669% | OIVO¥ TedAuex W
r'1E6 €LSTI8 | VOO'LIL | €SVLOL | €09°9LIT SE6 18I LTy 6y 69C° L1 S6S6101 | 0€06L6 | LETTTO | 0S9¢€E8 spowy
008 00¢€ 001 0s 008 00€ 00T 0% 008 00€ 001 0s
QWIL] UONNOIXH oneyeary 0Z1IGIN)

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

114 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

115

S6C oIl 6SECLS CLYOYE | LY9°66C ¥98°CS LTIE6¢ 8C6'L L8S09 SLIV69 | vC89CY | CIV8LY | 90£6¢EC smQo

LO8' LY 1L0°8Y 00€°LT | 866£°61 299°SI1 9eC LTI T16L9¢ L8Y°0C T00¥691 | 176991 | €98TI9T | 00¥9IST | LN TedAuey M
[10€° 1Y€ 967 80% Y68°L9E | ¥6C19¢€ | SI9LTYLYOT | 00860611 | ¥OL6VLTO6VE | 990°LLSOL | OSTLLTT | O9ILYCI | €8€O8IT | €VIICIL yored u,lm
ELEOVLIT | TLT00SOT | 61L°CELT | CITT169 | 18V 61191l LLETCI 95189 08S°8¢8 | 60TYECI | LETIOIT | LY8SCIT | 6069801 TedAyex pmmr
[LL80S 108905 09v°6Ccy | 8E6'6CY 9¢C°901 0Zy 601 800°¢Y £8C°ST 8100CTLT | ST9€69T | 0S06€91 | ¥0L06ST Showy
626017 LET6VC 88T I9T | 8EY'LII LY1've 9CEL1 0L0°S 661°¢€ LTELOY | 91001Y | ¥vv66C | VH8YEL smQo

LLL'YS IweETE LSE0C | 019TCSI 6€1°8I1 68699 (42183 (414! SOLETOT | 8S9¥66 | 9S6916 | SL6LO6 | LN TedAuey | —
LT98¢EC 101°S61 8PES6l | YITLEIL 690181 086°SEIYS | 8060€009% 0088 LTSOVL | LYISIL | T68S99 | SLITCI yored WM
ev0'6v08 | 0STLI999 | 69CTOLT | S96°C89 | SS6°€010EC | 806°0£0091 0€L9LLT 8V9°11 C6S9IL | TS0S69 | 8S88TY erere6s TedAyey W
OrtL8E 196°Cly 0€Er6e | SIL°LI9C 80€CII $99°9¢1 Syiey COELI LYLOSOT | 6¥VI¥COT | 8VL696 | 66016 spawy
£99°8¢ 0¥7L799¢C 9€L91 88 Sl | 966° 101 SLL 90T SLEIT 998°L IT6CYC | 681CET | S9E61C | OV68El smQ
SELYS SIT"8¢ 10€°0¢ 00€6l 080°CL8 ey E8Y 7€0°691 9SLV8 L9T6€9 | 06TLT9 | 668709 | L69L8S | LN IedAuyey | o
8LL'LET 89911 09L¥8 61669 | T6999Y9¥ [LE 999V [LE99Y9Y [Ty | S80L6Y | 06L8LY | 00S9CY | 18698¢ yojed MM
122%1Y% Ly 6vE 0€S°€ET | SEVOST | 6CSPP69S 88L°106VC | 80V VY 990°0¢ ISSE6Y | LSLSOY | 8YCTCY | CEVP6E TedAyex W
9L8°09¢ YL eve 901°6€C | 86€°€9C | CTI6'LSS SIv'6€L VLS OLT 98918 Y6CE9L | 0TCCEL | 026089 | 901CI9 showy
760°€6€ 908°91¢C (474! [T6°00T | 008°1€C LSTSS [44°A0! 898t 0220CC | LLS60T | 9I8LOC | TYLLSI SO
SIy'c9 SSy'8¢ 99t°0¢ i ad! L6TYTS 9T 8¢ €LY €01 SLY'8S 7969¢S | 9€LTTS €91¢6Y | PSPoLy | LN TedAuey | <
€0C0v1 6C8 V11 98L°801 ¢81°6L | ¥I0'T8081 LSO T808T 9LT 18081 9L0°99891 | 8TESEY | 06080% 19065€ | SOEEIE yored MM
I8L°€0¥ [LT°8¥C €LLOST S06'86 | S00°CLCE 89L°S6£9C IS€1¢€ SLY vl LEVOTY 16596¢€ I2SEve | 8L66IE TedAuex m.
90" 191 C89°6L1 0L 6v1 080°9ST | 1C9°LyE 66L°C1S 891°901 €10y S00T6S | 68LELS $890¥S ££eC0s Showy

008 00€ 00T 0s 008 00¢€ 001 0s 008 00€ 001 0¢
QWL [UONINOIXH oneyeary 9zZ1IgIND

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

116 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

117

126°09¢C 80L V61 LIOZ'LET | LyL 611 £C6'99 LTY'CE 6LL8 0L6'¢ 901CLE | 89ELVE [€CLLT | SOSIIT smQ

166°8¢ 6967 8C9°¢l S06°01 ¥€6'6¢C 901°CLIT el 1L 8SLTC 606LTL | ¥6980L | 60LIL9 | 9TT8%9 | LN TedAuey | o
L18861 PEB 161 €89°681 | €89°SOI | CoV'IT6VLL | 000°09001€ | 000°0€0SST | TTT'ISYPE | L6€9SS | €10CHS SI8L6Y | 8L989Y yored MM
8EELIEET | 9S9°SY09 | 6€LT8YI | SIP'899 | 9€LB6LTC 00t COvCl 88¢€°8CT 956'1¢C 91T16ES | vPYEIS | Ly6vOv | 98YCEY TedAyex m,
¢STLLT CEL9LT | SS9°E0C | ¥6590C S0STve cSEEVe €699 886°¢€C 6cEEyL | 809LCL | VL6689 €59LS9 Showy
£€80°56¢ 9CLLEE ITL20C | L8O'6VI LLEB6 S0T 08 86L°CI SLY'S 8IE0PS | LO9SSSY | LLBS6C | vrSeol smQo

€LEEY SE9°ty 650°9¢ ey ol 917°90¢ €99°96¢ 8L V01 LTS8y YEVPITL | 6SE€8801 | STSTFOI | 881€001 | LN TedAuey M
evL 6vC 6817'9CC | 86€V0C | PSLEST | T9TILITEL | T9TILITEL | 668°LLYCIT | Y8IYCECT | SSOPE8 | STOT6L | 9EL90L | PSS9 yored M
LOL9LOTT | L€0°EB9S | 060°0C8T | VLS E9L | 000°C68¥8S | €80°08LIOVI | 069°8910C 9019 0SCST8 | 90€68L | LOSYOL | 8OILY9 TedAyex m,
6L 95y IS 19 | €9v' vy | T6T98¢E L8S9S¢E 69C°6SY 8CE98 L10°CY 9¥86€IT | T98LIIT | $61SSOT | 9S¥S00I snawy
60€'8S¢ CSSTICT | SLYEET | POEVEL 926'S6 90T 8y S00°¥1 CLy'S 9108LE | LYESTY | 6S¥8VC | BIVLLI smQ

SI0vv 01Tve 1og6l 06e¢cl rTove [LS°SCI 816°6€ 5961 I8YETL | ¥TL6OL | TSB0L9 | 9T80S9 | LN TedAyey M
1442]! 89T €81 [61°€ST 00L°08 090°TTIL6 | VIL¥CEOSI 1 X4A°144! 97891 6L¥9SS | 09LSTS | 6V8SLY | 6CISEY yojed Mm
LYO'LTIY | 6L1°C66C | CIY'9C01 | 9T 0Cy IVL 69YL Y2ovS6S CIe98s¢€ LLTYT 890LYS | €6S1CS | 8TICLY | 0L9¢hY TedAyex pmw
€0¢° 8¢ CCOV8C | 981'1SC | SY8'LET 60690C 94401K4 S€9°8¢ 01761 LS66EL | O8L9IL | 8TBILY | 968LV9 spowy
a81°0¢ey 90v°SSC | 60EIE€T | TROEEL 8861 9LS01 00S°¢ 00S°¢ 9LL60E | TBSY6T | voCTYIC | CThy8Yl sImo

LIT'TE 001°¢€C G8S°¢El IvC el 006°68¢C I8L°€81 92499 Y0L'ST OLVILL | €966SL | SYEIEL | LELL6Y | LN TedAuey m
0L0°861 LLS19C | 6€¥'SST | 8€B'SYI | 8CI9TSYOI €L9°8S8Y9 LY1'660% ¥60°¢ LSE009 | SEBIBS [€ESES | 080L6Y yored Mm
Yer'8C911 | 8CTL9CKY | CI0'806 | 9€€'888 | OITELYY 901°1¢91¢ 9L6°S6S 6L1°1 r6S9S | LETOSS | 0S6¥0S eLyioy TedAyex W
Y89 vCE PS6°S€E | SS80SC | 60S1€C 861 1LC 18€°06¢ vC8°C9 198°%¢C CESEO6L | LLYILL | 06€6EL Iv¥969 Showy

008 00¢€ 00T 0¢ 008 00€ 001 0¢ 008 00€ 001 0¢
QUWIL] UONNIIXH oneyeary 0z1IGIN)

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

118 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

119

P8 1111 66€°L69 ariove | 8PL'10€ 0€6°09 1243 €1s’6 vy LYE9SL | 99T90L | 809LSS | TY8¥OY smQo
6167011 6L9°CL 0TeLE ¥9¢€°8¢ SSY'ILT Y6S°LST 6v9°9¢ 891°0¢ OPSTILT | ¥9¥€991 | 68SISST | STI89FT | LN TedAyey .muw
8CTYIY 696°68¢ P8 SST | 9S€9SE | S6S9LSSSOT | CTLELSTTSY | 0L6°0991€ | COT8LOY | €¥P8OET | COVLICI | STYIIL | ¥C16C01 yojed M
C¢S6°019¢€9 | CIV'6LCST | SOV 8VIYy | CSOCSLI 8SI'LTeeE 000°9€5501 8V 8ILY 1€9°9 68016CT | €S9¥ECT | 1C68LOT | 1S69001 TedAyey m.
¥60°618 SI819L ITST0L | CCE999 601°01¢ LL88TC €CsCs 8CO0'LI €9C0VLT | CTIS889T | 0699LST | 06800ST spowy
0€6°8¢C¢ 8L1°80C °69°¢el 6vS el 118°8C1 0€9°8S LLO'IT 0LL9 yseocy 1968¢t | 001€IT | 969861 smo
CI86¢ eSIIe VoL V1 6€6'11 CCeTLY ev0° ey ECOPVLI S€0'68 €77966 | SLI8L6 | SYov¥6 | 9TLTI6 | LN TedAuyey |
LS6'CI1 L1€961 6T S61 LI ¥0T | 080°LLET66T | 080°LLETO6T | COL6EEITC | €€0°0COET | PTCLSL | 8B8LYTL €L0089 | TELOSI yoyed MM
968CIEE | CEl'6681 61T°SYS | 986'7V€C | 080°LLET6OI | CTOL6EEICT 66¢°801 yeecl eYPSCL | SPLLES | VEL6SY | 8165€9 TedAyex W
[4CA143 ¢es9ce €S0°IST | L6E°S8T SYL €99 TL9 10L°681 02819 GOIBTOT | 8€0000T | 89¥196 | 8TYECO Spowy
008 00€ 00T 0% 008 00¢€ 00T 0S 008 00¢ 00T 0s
QI [UOT)NOIX oneyeary ozISIND

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

Appendix A. Analytical Comparison Results Tables

120

6ve’l SYe'l 8¢l LG 6696 18C°8 €CC8 | 68CY | TEL'S | L8I9 | €€6°C | 6L6'] smoO
L80°S 1¥0°S | TS6'v | €I8% | 9L9VE | €6L'1€ | 890°9T | 916°CT | ¥86°€ | 1S'€ | €0ST | T6I'T | LN TedAyey /m
SE6'v | YOOV | LO6'E | CIVE | LLTOC | €V9°LT | 8€B'II | 1056 | 68CT | LOTT | ¥YIT'T | CSO'I yoyed ,Mm
99017 | 986°€ | 898°C | SPL'E | ¥90°61 | EVTLI | 6CI'Cl | L6CCI | CTLOT | Vel | ¥LO'T | SCO'I TedAyex W
¥60'S | LLOS SS6'v | LO6F | COL'PE | 9pECe | LO69VC | 189°CC | 8OSY | 19S°¢ | ST9°C I'c Siowy
90L1 IL9°T 651 I6v'1 8VCT9 | SLES I19°¢ ELVC | CIYY | TvIYy | S09°C | LLL'T smo
8ST'L | 8LOL | 6€6'9 | 699 | TLETIT | 6SL°0T | 69681 | LS6'ST | 61%'C | LOET | S¥6'T | 616'T | LN TedAyey m
€0L9 S€9 CL6Y | SLLE | SOI'CI | 88I'IT | €CS'8 eSY'L | 19CT | CSTT | 99T1°T | L8O'I yored Mm
896°S 9L°¢ | ¥20°S | 6Cl'S | SE€01 CL66 | 8T08 | 9S8 el'r | TL0°T | ¥IO'T | 920°L TedAyey m.
10CL | 8YI'L | 6L89 €L9 9¢°TC | 656°0C | 8Y8I | CI0°LI | TCE€C | 6¥8C | 6¥VI'C | L] spowy
81 L9%'1 I9L°1 VL1 8L1'8 | 9€L9 | BEI9 vI'e | L9SS | 66V | ¥9S°€ | CI91 smQo
v8Y' I | €OF'IT | €€6°01 | 8STOI | 8LI'8E | L66'SE | TICTE | 891+C | S8F'T | 61TT | 9S6'T | 1€6'T | LIN TedAyey m
YeLOT | 601 | 6818 | 60¥'9 | T8L6I | 8681 | LSLTCL | TL96 | LOT'T | 9CI'T | 690°T | ¢¥0'l yojed Mm
6€0°01 | LSL'6 | 6118 SCLO | TELLT | TT'LT | LLOTT | 8ST°6 | LIT'T | 9%0°'T | €00°T | 100°I TedAyey m.
EISTIT | €0V 1T | 1801 | ¥8Y°OI | €8L°8C | ¥6S°LE | 9OVC8C | 1¥¥'9CT | 6VL'T | 8CY'T | 11T | TV6'1 showy
169°C | €LY'C | S90°C | LIS'T €¢0'8 | LSO 126°S | 886'C | 690°C | 9s6°¢ | 1I0°C | 9Pl smo
€I9°IL | 9IT'IL | 9166 | ¥TI'6 | 1#T9E | 1€THE | 9LS'8T | L8S'IT | 66L°C | 98¥'C | S60°T | 120°CT | LN TedAyey | —
¢CT8 | TO8'L | TETH I9L°G | 86°81 | COCTLI | ¥ECIT | SOT'OT | 90T'T | 9911 | €II'T | CLO'T yoyed MM
6LEL | LvI'L | LOT9 | ¥8I'C | 96581 | S8SI | LIV'TI L86 611 el'T | 8€0'T | 600°1 TedAyex W
I20CT | 68911 | 98CO0I | vEL'6 | TIL'LE | TLTSE | TCO'LT | ¥LTIT | TIY'E | BO8'C | CLTT | €V6'1 Spowy
008 00¢€ 00T 0s 008 00¢€ 001 0¢ 008 00¢€ 00T 0s

uonnqLysI syred Yoe[S 0001 dor

uonnquysi(syred Aejed 0001 doy

uonnquysiq moueq 01 dox,

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

121

TT8T | 6891 | €TLT | TI9T | ¥€6'6 | ¥LL'S | 6VL'9 | 618% | €90F | 8I8'E | ¥LI'E | ¥60°C sInQ

9919 | 9119 | 616°S | T99'S | EP¥'LE | 661VE | TS9'9T | STOT | 888°C | LSS'T | €60°C | #10°C | LN TedAyey | o
$68'S | 6V'S | ITHY | T¥EY | LES'ST | SEVLT | €S9TT | 806’8 | LVET | 8¥TT | 9SI'T | 1TI'T yored MM
LTS | 690°S | 6S¥'¥ | 161'F | TS9'8T | 890°LI | ISS'IT | #¥S'8 | 60S'T | 66T 1 | 90T | TIO'I TedAyex =
9LT'9 | LTL'9 | €98°S | SL8'S | 990°8E | 66L'SE | 8SS'ST | 8TL'ET | 9I'E€ | TOL'T | vLI'T | S86'I spauy

PEOT | €09'T | 9L9'T | T8S'T | TSEL | 9TF'S | 90v'¥ | 998°C | 9L8'S | LLL'S | €EL'T | ¥8TT smQ

9LT'S | 9ST'S | 190°S | 606'% | +¥'LE | $I'SE | €0T'8T | 8TE'ET | TLI'E | 6S9°T | SSI'T | ¥96'T | LN TedAuey | 3
96LF | 8ETY | SO0V | €6L°€ | TI6'8T | €1TO1 | 9TSHT | #8I'TT | TITT | 191'T | €ET'T | TII'T yoed mm
€90'% | LS6'C | SPL'E | 6IL°C | 9TE9T | 6LSET | 6ILTI | €PL'IT | 990°'T | 6€0°T | #2O'T | +00'1 TedAyex 5
€61°S | TOI'S | #0'S | S86'F | TOE9E | 60S'SE | 806°LT | 68T'ST | 619°€ | T10€ | 9TET | €66'1 spouy

6197 | ¥SO'T | ¥IS'T | 6EF'T | 601°9 | SOS9 | €L8°S | 9S8% | 8099 | S86'S | S8I'Y | 8TI'E smnQ

LSL'9 L'9 | L9S9 | 9€€9 | €96'1T | I81°IT | 980°61 | 85991 | S9L'T | L9¥'T | 180°C | SL6'T | LN TedAyey | o
TIE9 | 809 | 6€S | 6T8F | SOTEL | T69TL | LTT6 | 8TTS | ¥LTT | LITT | ¥I'T | 9601 yoyed m
vCo'S | S6¥'S | 9L8'F | ¥81'F | STE'IT | 8Y'OT | 1€8'8 | SE0L | ISTT | 88T'T | 120'T | 8I0'I TedAyex =
89L°9 | 61L9 | ¥6¥'9 | 9S¥'9 | S6v'TT | TIT | €SSLL | ¥I'LT | ILTE | TIL'T | 18T | 1961 spowy

LO9T | TO9'T | 8€9°T | €9ST | TS9'L | TIEL | €S8°€ | ¥88T | 8II'S | SS6'E | ¥8F'C | TOL'T smnQ

IT€9 | ¥LTY | Y09 | SLE'S | ¥P9'LE | T10°SE | TL'BT | 6EI'ET | IS9'E | €9I'E | SEET | S80T | LN Teddyey | =
TOL'S | TOV'S | 9SSt | 9€8°¢ | 8I1¢8I ST | 8T6'TI | L9Y'8 | 19TT | 661°T | 660°'T | 690'T yored Mm
981°S | 190°S | TES'Y | ¥98°€ | 8TOE'LT | 8LO9T | SL9OT | €0T'8 | ¥8%'1 | TCETL | 990°T | 9201 TedAyey w
6€€9 | PLT9 | €60°9 | S00'9 | €LS'8E | SEOLE | S9E'6T | 60€9T | 80SY | 69°€ | 19S°T | 1S0°T spouy

00S 00€ | 001 0S 00S 00€ 001 0S 00S | 00¢ | 001 0S

uonnqLISI syred YoB[S 0001 dor

uonnquisi syied Aejog 0001 doy

uonnquysig moueq 0001 dor,

Institutional Repository - Library & Information Centre - University of Thessaly

13/07/2024 00:33:54 EEST - 3.142.172.148

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Electronic Design Automation (EDA)
	Novel ASIC Design flow
	Multi-Level ASIC flow
	Introduction of Multi-Level flow in EDA
	Multi-Level ASIC flow steps

	Multi-Level ASIC design Flow applications
	Thesis Outline

	Background
	Introduction
	Terminologies and Definitions
	Graph Representation
	Physical Design Oriented definitions
	Timing Analysis Oriented definitions
	Vcycle flow

	Multi-Level Placement Application
	Algorithm overview and objectives
	Placement Algorithm types
	Existing Industrial Tools

	3D Chip Design flow Application
	3D Flow Overview and Objectives
	Different flow types
	Modern Challenges

	Related Work
	Introduction
	Multi-Level Clustering
	Algorithm Overview and Objectives
	Algorithm types
	Existing algorithms and tools

	Multi-Level Partitioning
	Algorithm overview and objectives
	Algorithm types
	Existing algorithms and tools

	Our Contribution
	Introduction
	Multi-Level Clustering Phase
	Top Level Algorithm Presentation
	Algorithm Parameters Presentation
	Core Algorithm Presentation
	Post-processing algorithm
	"2nd" Version of the Algorithm
	Macro aware Clustering technique

	Multi-Level Partitioning
	Top-Level Partitioning Algorithm
	FM algorithm optimisations
	Gain Value Calculation
	Heap Strategies
	Unfolding Strategies
	Level Skipping and repeating flow
	3D ASIC Flow Extention

	Comparative Results
	Introduction
	Experimental Methodology
	Experimental framework
	Evaluation Metrics and Tools

	Comparison Results

	Conclusions
	Conclusions
	Future Work

	Bibliography
	APPENDICES
	Benchmarks Suite Tables
	Analytical Comparison Results Tables

