
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Multi-Level Partitioning Methodologies

and their Applications in Modern IC Design

Diploma Thesis

George Raphael Goudroumanis

ggeorgios-r@uth.gr

Supervisor: Christos P.Sotiriou

Volos, September 2023

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Μεθοδολογίες Πολυεπίπεδης Κατάτμησης Κυκλωμάτων

και οι Εφαρμογές τους στη Σχεδίαση Ολοκληρωμένων

Κυκλωμάτων στις Μέρες μας

Διπλωματική Εργασία

Γιώργος Ραφαήλ Γκουντρουμάνης

ggeorgios-r@uth.gr

Επιβλέπων: Χρήστος Σωτηρίου

Βόλος, Σεπτέμβριος 2023

iii
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Approved by the Examination Committee:

Supervisor Christos P.Sotiriou

Professor, Department of Electrical and Computer Engineering,

University of Thessaly, chsotiriou@e-ce.uth.gr

Member Georgios Stamoulis

Professor, Department of Electrical and Computer Engineering,

University of Thessaly, georges@e-ce.uth.gr

Member Fotios Plessas

Professor, Department of Electrical and Computer Engineering,

University of Thessaly, fplessas@e-ce.uth.gr

v
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Acknowledgements

I would like to express my heartfelt gratitude to Professors G. Stamoulis, F. Plessas, and

C.P.Sotiriou for their invaluable support and guidance throughout the completion of my mas-

ter’s thesis. Each of them played a significant role in shaping the course of my research and

academic journey. Specially professor C.P.Sotiriou mentorship extended beyond academia,

and I am truly grateful for the personal and professional growth I’ve experienced under his

guidance.

I would like to offer a special word of thanks to a dear friend and valuable mentor of

mine, N. Sketopoulos. His unwavering support and encouragement as long as his patience,

and genuine interest in my work were pivotal in overcoming various technical and personal

challenges during our collaboration started long before this thesis. Furthermore, I would like

to wholeheartedly thank T.Asimaki and my colleagues and friends from CASLAB who were

always there to support me both technically and spiritually throughout my journey so far.

vii
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

George Raphael Goudroumanis

ggeorgios-r@uth.gr

ix
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

x Abstract

Diploma Thesis

Multi-Level Partitioning Methodologies

and their Applications in Modern IC Design

George Raphael Goudroumanis

ggeorgios-r@uth.gr

Abstract

This research was carried out during my master thesis dissertation and presents an in-

novative Multi-Level Partitioning algorithm specifically designed for VLSI circuits. As a

divide-and-conquer framework, this algorithm is capable of partitioning large scale designs

of million of gates into a manageable number of groups. This process main targets are to

reduce the connectivity of the produced groups, also known as cutsize, while preserving of

the partitions area balance in minimum execution time. However, the established partitioning

frameworks such as MLpart [1], hMETIS [2] [3], KaHyPar[4] [5] [6], PaToH [7] SpecPart

[8] [9] and GAP [10] [11] do not produce a result aware of the other VLSI characteristics such

as timing and the following Physical Design steps mend to be executed afterward producing

suboptimal results regarding these aspects. On the other hand, the introduced algorithm was

developed as part of a greater PnR tool aiming to assist on various aspects of the ASIC flow.

To support our claims, we developed an extensive experimental methodology comparing

results of forty-two (44) designs obtained by the following academic contests, DAC2012[12],

ISDP 2005/6[13], ISPD 2011[14] and ICCAD 2015[15], ICCAD 2022/23 [16]. Note the last

contest, i.e. ICCAD 2023, was for 3D Integrated Circuits, where we took place. Moreover, we

compare 2 industrial designs and 5 open source large scale designs namely b19 [17], Leon3mp

[17], Netcard [17], jpeg_ecoder [17] and vga_lcd decoder [17]. The presented results include

all aforementioned partitioning tools, exploring some of their tuning parameters based on

the values proposed in their paper. There are three prisms under which we evaluated the

algorithms, each one focuses on one aspect of the ASIC flow. The first category compares the

results based on the classic metrics attached to partitioning evaluation, cutsize, area balance

ratio, execution time. The second focuses on the timing analysis of the design, introducing

the top thousand delay and slack paths’ distribution. The third part, presents our results in the

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Abstract xi

context of a 3D CAD PnR tool measuring the total cost produced by an external, unbiased

evaluator.

To perform all these experiments and conclude our evaluation, we had to integrate all tools

including ours in a grater framework enabling the communication with the outer world. This

way, we developed the necessary code to combine both our tool and the other ones with an

internal framework supporting industrial formats files parsers and a database able to provide

the necessary function to load and evaluate the results of all tools based on the introduced

metrics. Furthermore, this suite includes an integrated static timing analysis engine, which is

mandatory to evaluate the results for timing driven operations. The code of our tools and the

wrappers needed to integrate the other tools with the general framework was developed in

C/C++ programming language. On the other hand, the scrips to extract the experiments and

evaluate the results were developed in BASH, TCL and Python.

As regarding the first comparison section, the comprehensive analysis of the results es-

tablishes our algorithm as an exceptional option to partition large circuits into few and loosely

connected sub-circuits. This is evident in the partitions it generates, boasting a cutsize three to

twelve times smaller and an area balance ratio seven times to thirty times lower. Remarkably,

these advancements are achieved while maintaining a relatively equal execution time, under

an hour, compared to the other tools. Considering the second point of comparison, after the

data analysis the results also proved that our approach produces far more suitable groups to

address the timing driven placement challenge. We safely came up to this conclusion based

on the top thousand delay and slack paths’ fragmentation reduction by four times to seven

times in both cases. As regarding the third comparison point, related to 3D design flow, we

compare the results based on the produced tier vias and the achieved tier utilisation ratio.

Keywords:
Electronic Design Automation (EDA),Multi-Level, VLSI, ASIC flow, 3DChip Design, Tim-

ing Driven, Cloud Computing, Machine Learning,

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

xii Περίληψη

Διπλωματική Εργασία

Μεθοδολογίες Πολυεπίπεδης Κατάτμησης Κυκλωμάτων και οι

Εφαρμογές τους στη Σχεδίαση Ολοκληρωμένων Κυκλωμάτων στις

Μέρες μας

Γιώργος Ραφαήλ Γκουντρουμάνης

ggeorgios-r@uth.gr

Περίληψη

Αυτή η έρευνα πραγματοποιήθηκε κατά τη διάρκεια της μεταπτυχιακής μου διατριβής και

παρουσιάζει έναν καινοτόμο αλγόριθμο κατάτμησης πολλαπλών επιπέδων ειδικά σχεδια-

σμένο για κυκλώματα VLSI. Ως ένας αλγόριθμος διαίρει και βασίλευε, είναι ικανός να δια-

χωρίσει κυκλώματα μεγάλης κλίμακας εκατομμυρίων πυλών σε έναν μικρότερο πιο διαχει-

ρίσιμο αριθμό ομάδων. Κύριοι στόχοι αυτής της διαδικασίας είναι η μείωση των συνδέσεων

μεταξύ των παραγόμενων ομάδων, γνωστή και ως cutsize, με ταυτόχρονη διατήρηση πα-

ρεμφερούς εμβαδού των ομάδων σε ελάχιστο χρόνο εκτέλεσης. Ωστόσο, τα καθιερωμένα

εργαλεία κατάτμησης όπως τα MLpart [1], hMETIS [2] [3], KaHyPar[4] [5] [6], PaToH [7]

SpecPart [8] [9] and GAP [10] [11] δεν παράγουν αποτέλεσμα με βάση τα υπόλοιπα χα-

ρακτηριστικά των κυκλωμάτων VLSI όπως ο χρονισμός και τα επόμενα βήματα Φυσικής

σχεδίασης που πρέπει να εκτελεστούν στη συνέχεια, παράγοντας μη βέλτιστα τελικά απο-

τελέσματα σε σχέσει με τις αντίστοιχες μετρικές. Από την άλλη πλευρά, ο προτεινόμενος

αλγόριθμος αναπτύχθηκε ως μέρος ενός ευρύτερου εργαλείου PnR.

Για να υποστηρίξουμε τον ισχυρισμό μας, αναπτύξαμε μια εκτεταμένη πειραματική με-

θοδολογία συγκρίνοντας τα αποτελέσματα σαράντα δύο (42) ακαδημαϊκών κυκλωμάτων από

τους ακόλουθους διαγωνισμούς 2D CAD, DAC 2012[12], ISDP 2005/6[13], ISPD 2011[14]

and ICCAD 2015[15], ICCAD 2022/23 [16] στον οποίο και συμμετείχαμε, 2 βιομηχανικά και

5 ανοικτού κώδικα κυκλώματα μεγάλης κλίμακας τα οποία είναι το b19 [17], Leon3mp [17],

Netcard [17], jpeg_ecoder [17] και vga_lcd decoder [17]. Τα αποτελέσματα που παρουσιά-

ζονται περιλαμβάνουν όλα τα γνωστά εργαλεία κατάτμησης όπως αναφέρθηκε προηγουμέ-

νως, διερευνώντας ορισμένες από τις παραμέτρους τους με βάση τις τιμές που προτείνονται

στις αντίστοιχες έρευνες τους. Υπάρχουν τρία πρίσματα βάσει των οποίων αξιολογήσαμε

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Περίληψη xiii

τους αλγορίθμους, καθένα από τα οποία εστιάζει σε μια πτυχή της ροής ASIC. Η πρώτη

κατηγορία συγκρίνει τα αποτελέσματα με βάση τις κλασικές μετρικές που συνδέονται με

την αξιολόγηση της κατάτμησης κυκλωμάτων, cutsize, area balance ratio, execution time. Η

δεύτερη επικεντρώνεται στην ανάλυση χρονισμού του σχεδίου, εισάγοντας ως μετρική την

κατανομή των κορυφαίων χιλίων μονοπατιών καθυστέρησης. Το τρίτο μέρος, παρουσιάζει

τα αποτελέσματά μας στο πλαίσιο ενός εργαλείου 3D CAD PnR.

Για να εκτελέσουμε όλα αυτά τα πειράματα και να ολοκληρώσουμε την αξιολόγησή μας,

έπρεπε να ενσωματώσουμε όλα τα εργαλεία, συμπεριλαμβανομένου του δικού μας, σε ένα

ευρύτερο πλαίσιο που επιτρέπει την επικοινωνία με τον εξωτερικό κόσμο. Με αυτόν τον

τρόπο, αναπτύξαμε τον απαραίτητο κώδικα για να συνδυάσουμε τόσο το δικό μας εργαλείο

όσο και τα άλλα με ένα εσωτερικό εργαλείο που υποστηρίζει αναγνώστες αρχείων βιομηχανι-

κών προδιαγραφών και μια βάση δεδομένων ικανή να παρέχει την απαραίτητη λειτουργικό-

τητα για τη φόρτωση και την αξιολόγηση των αποτελεσμάτων όλων των εργαλείων με βάση

τις καινούργιες μετρικές. Επιπλέον, αυτή η σουίτα περιλαμβάνει μια ενσωματωμένη μηχανή

στατικής ανάλυσης χρονισμού, η οποία είναι υποχρεωτική για την αξιολόγηση της καταλ-

ληλότητας των αποτελεσμάτων μας για λειτουργίες που καθοδηγούνται από τον χρονισμό.

Ο κώδικας των εργαλείων μας και των διεπαφών που απαιτήθηκαν αναπτύχθηκε σε γλώσσα

προγραμματισμού C/C++. Από την άλλη πλευρά, τα scrips για την εξαγωγή των πειραμάτων

και την αξιολόγηση των αποτελεσμάτων αναπτύχθηκαν σε BASH, TCL και Python.

Όσον αφορά την πρώτη ενότητα σύγκρισης, η ολοκληρωμένη ανάλυση των αποτελεσμά-

των καθιερώνει τον αλγόριθμό μας ως μια εξαιρετική επιλογή για την κατάτμηση ενός μεγά-

λου κυκλώματος σε λίγα και σποραδικά συνδεδεμένα υπο-κυκλώματα. Αυτό είναι εμφανές

στις κατατμήσεις που παράγει, διαθέτοντας ένα cutsize τρεις έως δώδεκα φορές μικρότερο

και έναν λόγο ισοζυγίου εμβαδού επτά έως τριάντα φορές μικρότερο. Είναι αξιοσημείωτο ότι

αυτές οι εξελίξεις επιτυγχάνονται διατηρώντας έναν σχετικά ίσο χρόνο εκτέλεσης, κάτω από

μία ώρα, σε σύγκριση με τα άλλα εργαλεία. Λαμβάνοντας υπόψη το δεύτερο σημείο σύγκρι-

σης, μετά την ανάλυση των δεδομένων τα αποτελέσματα απέδειξαν επίσης ότι η προσέγγισή

μας παράγει πολύ πιο κατάλληλες ομάδες για την αντιμετώπιση της πρόκλησης τοποθέτησης

με γνώμονα τον χρονισμό δείχνοντας 4 έως 7 φορές καλύτερο αποτέλεσμα.

Λέξεις-κλειδιά:
Electronic Design Automation (EDA),Multi-Level, VLSI, ASIC flow, 3DChip Design, Tim-

ing Driven, Cloud Computing, Machine Learning

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

xiv Περίληψη

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Table of contents

Acknowledgements vii

Abstract x

Περίληψη xii

Table of contents xv

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Electronic Design Automation (EDA) . 2

1.2 Novel ASIC Design flow . 3

1.3 Multi-Level ASIC flow . 6

1.3.1 Introduction of Multi-Level flow in EDA 6

1.3.2 Multi-Level ASIC flow steps . 7

1.4 Multi-Level ASIC design Flow applications 8

1.5 Thesis Outline . 10

2 Background 11

2.1 Introduction . 11

2.2 Terminologies and Definitions . 12

2.2.1 Graph Representation . 12

2.2.2 Physical Design Oriented definitions 14

xv
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

xvi Table of contents

2.2.3 Timing Analysis Oriented definitions 15

2.2.4 Vcycle flow . 16

2.3 Multi-Level Placement Application . 17

2.3.1 Algorithm overview and objectives 17

2.3.2 Placement Algorithm types . 18

2.3.3 Existing Industrial Tools . 20

2.4 3D Chip Design flow Application . 20

2.4.1 3D Flow Overview and Objectives 20

2.4.2 Different flow types . 21

2.4.3 Modern Challenges . 23

3 Related Work 25

3.1 Introduction . 25

3.2 Multi-Level Clustering . 26

3.2.1 Algorithm Overview and Objectives 26

3.2.2 Algorithm types . 27

3.2.3 Existing algorithms and tools . 28

3.3 Multi-Level Partitioning . 32

3.3.1 Algorithm overview and objectives 32

3.3.2 Algorithm types . 32

3.3.3 Existing algorithms and tools . 36

4 Our Contribution 43

4.1 Introduction . 43

4.2 Multi-Level Clustering Phase . 44

4.2.1 Top Level Algorithm Presentation 45

4.2.2 Algorithm Parameters Presentation 46

4.2.3 Core Algorithm Presentation . 48

4.2.4 Post-processing algorithm . 51

4.2.5 ”2nd” Version of the Algorithm 52

4.2.6 Macro aware Clustering technique 54

4.3 Multi-Level Partitioning . 57

4.3.1 Top-Level Partitioning Algorithm 58

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Table of contents xvii

4.3.2 FM algorithm optimisations . 62

4.3.3 Gain Value Calculation . 66

4.3.4 Heap Strategies . 69

4.3.5 Unfolding Strategies . 71

4.3.6 Level Skipping and repeating flow 73

4.3.7 3D ASIC Flow Extention . 74

5 Comparative Results 77

5.1 Introduction . 77

5.2 Experimental Methodology . 78

5.2.1 Experimental framework . 78

5.2.2 Evaluation Metrics and Tools . 79

5.3 Comparison Results . 81

6 Conclusions 85

6.1 Conclusions . 85

6.2 Future Work . 86

Bibliography 87

APPENDICES 95

A Benchmarks Suite Tables 97

A Analytical Comparison Results Tables 101

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

List of figures

1.1 Abstract flow chart of the Application Specific Integrated Circuit Design

flow [18]. 3

1.2 Detailed flow chart presenting the physical design process of the ASIC flow

[19]. 4

1.3 Screenshot from ANSYS RedHawk thermal analysis tool [20]. 5

1.4 Presenting the number of transistors used in produced well-known chips from

70s until now, perfectly aliened with the prediction of Gordon Moore’s law

[21]. 6

1.5 Presenting the intuition of VLSI circuit clustering algorithm [22]. 7

1.6 Presenting the intuition of VLSI circuit partitioning algorithm [23]. 8

1.7 Mock floorplan in an IC layout editor window [24]. 9

1.8 2.5D versus 3D IC designs [25]. 9

2.1 a) Simple fanout of 3 NAND gates starting be a same type gate driver. b) The

red line presents the longest path of the sub-circuit. c) The top left sub figure

presents the Half Perimeter Wire Length of the net. The other images present

alternative methods of estimating the net wire length [26]. 14

2.2 The three phases of the multilevel V-Cycle k-way graph partitioning flow [27]. 17

2.3 The left-hand side image presents the initial positions of circuit cells into

the die and the forces represented by the black lines, while the second im-

age presents the final positions of the cells after the force directed algorithm

operation [28]. 18

2.4 During the log sum exponential placement method, such a mathematical ex-

pression must be minimized, in order to assign the circuit gates into their

optimal positions. 19

xix
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

xx List of figures

2.5 A conceptual view of a 3D IC chip, with a through-silicon-via (TSV) used as

interconnect between two dies or wafers [29]. 22

2.6 2.5D-IC assembly that includes two substrates (silicon interposer + organic

package) [30]. 23

2.7 Different bonding technologies for 3D Integration circuit according to fabri-

cation approach. [31]. 23

3.1 General clusters approach on a directed graph [32] 26

3.2 Broad classification of clustering algorithms [33]. 28

3.3 Different edge coarsening techniques and the coarsening they induce [2]. . . 29

3.4 Clustering a pair of objects A and C using either the First Choice or the Best

Choice [34]. 30

3.5 Maps of random walks on complex networks reveal community structure [35] 31

3.6 Generalizable Approximate graph Partitioning (GAP) [10]. 41

4.1 SimplifiedMulti-Level Clustering algorithm operation overview step-by-step

[36]. 50

4.2 Second version of Multi-Level Clustering algorithm flow overview [36]. . . 53

4.3 Present the placement result of four of the under review benchmarks contain-

ing large objects [12]. 56

4.4 Complete V-Cycle flow followed in order to extract K-Way partitions . . . 63

4.5 The top side chart presents the progression of cutsize with respect to the ten-

tative moves, while the bottom side chart presents the progression of cutsize

with respect to the tentative mooves collectively with all FM iterations. . . 67

4.6 Presents the W shape flow alternative to the V shape flow which, in the

situation of a poorly formed clustering level, reverts to the coarsening phase..

Following that, it comes back to the partitioning method from the beginning,

reproducing the partitions. Depending on the clustering quality outcome, this

back and forth might be repeated numerous times. 74

4.7 Comparative results of four partitioning tools against ours in 3D designs. . . 75

5.1 Benchmarks collections used for the evaluation of the algorithm features and

the over all tool against other well-established tools. 80

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

List of tables

4.1 Algorithm main Parameters, where value N stands as hierarchy levels . . . 46

4.2 First algorithm version Clustering QORs results using the open-source designs. 54

4.3 Second algorithm version Clustering QORs results using the open-source de-

signs. 55

4.4 The first part of the table present the novel algorithm version Clustering

QORs results. The second part present the large objects aware algorithm ver-

sion Clustering QORs results. Both parts use the same designs with macros. 58

4.5 Presents the evaluation of gain value calculation strategies as regarding the

standard partitioning metrics. 69

4.6 Presents the evaluation of heap size strategies as regarding the standard par-

titioning metrics. 70

4.7 This table presents the results of two of the unfolding strategies for a set

of benchmarks, which the one coloured blue include large objects while the

other one not. 72

4.8 This table presents the results of two of the unfolding strategies for a set

of benchmarks, which the one coloured blue include large objects while the

other one not. 72

5.1 ICCAD 2015 benchmarks results. The table includes the results of four dif-

ferent partitioning results, requesting 50, 100, 300 and 500 partitions each

time, and the values represent the ratio of the other tools result over our pro-

posed algoirthm. 81

xxi
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

xxii List of tables

5.2 ISPD 2004/05/06/11 benchmarks results. The table includes the results of

four different partitioning results, requesting 50, 100, 300 and 500 partitions

each time, and the values represent the ratio of the other tools result over our

proposed algoirthm. 82

A.1 ISPD 2005, 2006 and 2011 designs characteristics. 98

A.2 DAC 2012 and ICCAD 2015 designs characteristics. 99

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Abbreviations

IC Integrated Circuit

VLSI Very Large Scale Integrated circuit

EDA Electronic Design Automation

ASIC Application Specific Integrated Circuit

PnR Placement and Routing

SOC System On Chip

NOC Network Of Chips

IP Intelectual Property

QOR Quality Of Results

xxiii
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 1

Introduction

In the ever-evolving landscape of modern technology, the demand for faster, more effi-

cient, and increasingly complex electronic systems has become an inherent part of our daily

lives. From smartphones to autonomous vehicles, from smart cities to advanced medical de-

vices, electronic systems are at the heart of innovation and progress. These systems are the

result of complex and highly specialized design processes, requiring meticulous attention

to detail and precision. In this context, Electronic Design Automation (EDA) emerges as a

critical driving force, empowering engineers and designers to navigate the intricate path of

electronic system development.

The objective of this master’s thesis is to delve into the realm of Electronic Design Au-

tomation, a multidisciplinary field that combines computer science, electrical engineering,

and mathematics. EDA encompasses a spectrum of tools, techniques, and methodologies

aimed at automating various stages of electronic system design, from conceptualization and

specification to physical realization and verification. EDA’s fundamental goal is to expedite

the design process, enhance its accuracy, and facilitate the creation of increasingly sophisti-

cated electronic systems that meet the demands of today’s technology-driven world.

In detail, this work analyses in depth the partitioning step of the Multi-Level EDA flow,

a significant but underappreciated factor of the broad EDA flow. Due to the fact that the

processing power requirements during the early stages of EDA in the digital design industry

were met by the simultaneously ongoing growth of computers, this part of EDA has remained

rather unexplored. However, in modern times, the rapid increase of components inside an

IC, forces even the most capable and cutting-edge supercomputers to yield because of the

enormous amount of computations needed for the design and simulation of the circuit.

1
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2 Chapter 1. Introduction

1.1 Electronic Design Automation (EDA)

EDA is a software industry which is basically used for designing electronic systems such

as integrated circuits and printed circuit boards. EDA tools enable engineers and designers

to model, simulate, and test electronic systems digitally before physical prototypes are built.

This significantly reduces the cost of product development by minimizing the need for ex-

pensive hardware prototypes and repeated testing cycles. As a result, companies can bring

innovative products to market more efficiently and cost-effectively. On top of that, this time-

to-market advantage is particularly crucial in fast-paced industries like consumer electronics

and telecommunications, where being the first to market can translate into a competitive edge

and higher profitability.

Under the umbrella of EDA software are included a comprehensive suite of tools, method-

ologies, and processes crucial for the efficient and effective design, verification, and opti-

mization of electronic systems. Starting by the translation of logical circuit descriptions into

physical layouts for ICs and PCBs, EDA allows engineers to predict and analyze the behavior

of electronic systems using the rest assets of the suit including logic synthesis, timing analy-

sis, and power analysis tools. Furthermore, design for manufacturability (DFM) and design

for testability (DFT) tools are integral components of EDA, focusing on ensuring that de-

signs can be produced reliably and cost-effectively while maintaining high test coverage and

efficient fault detection. Last but not least, a list of simulation tools are provided analyzing

the thermal and electromagnetic profile of the circuit. Of course for different circuits types

(3D, NoCs) and applications (Space, Low Power) there are multiple flows and variations of

these tools ensuring the high-quality standards.

In this sector, businesses like Cadence Design Systems Inc., Synopsys Inc., Siemens

EDA, ANSYS, and Xilinx are directly involved. However, they and their affiliated com-

panies, have spread their network of engineers across the globe, having sites almost at every

capital city, with major presence in the United States, United Kingdom, China, and Middle

East. Based on 2021 numbers the revenue of Electronic Design Automation software market

was over eleven billion (11.36B$) dollars, and it is estimated that by 2030 this number will

reach the twenty-five billions (25.70B$). Additionally, the semiconductor industry revenue

in 2021 was fifty hundred ninety-five billions (595B$), and it is forecasted that by 2024 it

will reach six hundred thirty point nine (630.9B$) billions.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

1.2 Novel ASIC Design flow 3

1.2 Novel ASIC Design flow

Figure 1.1: Abstract flow chart of the Appli-

cation Specific Integrated Circuit Design flow

[18].

EDA software is an entire collection

of tools assisting engineers to create high-

quality chips. These tools are combined into

the ASIC design flow which, based on the

circuit characteristics, can vary from quite

simple, as presented in Figure 1.1, to rather

complicated. It is cautious to proceed deeper

into the topic’s fundamentals in order to

have a better understanding of it.

The process begins by describing of the

chip requirements and functionalities in a

high level hardware description language,

such as Verilog, providing the engineer an

initial glimpse of the chip’s behaviour. Fol-

lowing that, the produced description must

be translated from high level commands into

gate level representation. This step is called

synthesis and alongside with the translation

aims to create a directed circuit graph which

do not violate the longest path limitations,

maximum area and maximum power con-

sumption limitations. Due to the earliness of

this stage, the information to check these vi-

olations is harvested from the Process De-

sign Kit (PDK) which is used for the par-

ticular design. By the end of this step, a file

called netlist is created, which will be used

afterwards in the following steps. Finally, by

performing a behavioural simulation using this file as input, the front end of the flow is con-

sidered finished.

Advancing towards the rest of the flow, as presented in Figure 1.2, the first step is the

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4 Chapter 1. Introduction

floorplan of the chip. During this step, the shape of the chip is determined alongside with the

placement of the pins based on which the communication with the environment is achieved.

The shape and the pin placement is usually predetermined, but there are cases where the chip

is partitioned into submodules and each one of them could be handled as independent blocks,

keeping these attributes flexible. The next step is the power planing of the chip, during which

the supply and ground nets are created. This step is in charge to create the power grid, ensuring

that the appropriate voltage value will reach all the circuit gates, while at the same time the

power consumption of the chip will be preserved at the lowest point.

Figure 1.2: Detailed flow chart presenting the physical design process of the ASIC flow [19].

The next step, reaching the end of theASIC flow, is the placement of the standard cells and

macros. Throughout this step, the cells and macros are going to be placed inside the core of

the chip, trying to maintain the minimum wirelength and routing congestion. That means that

the cells must find a sweet spot in which the connectivity lines among the gates instances are

as small as possible while the congestion occurred from their intersections is also limited. It

is rather undeniable that the NP hard problem of the design placement requires sophisticated

and complex algorithms to achieve a high-quality solution, which is going to be the base of

the rest PnR flow. Following the original solution, several post placement techniques are used

to address issues such as cell legalization or to prepare the solution for future steps such as

clock tree synthesis and optimizations, as well as area and timing recovery.

The other half of the back end flow is the routing of the design. This phase is segmented

in three subsequent phases, namely clock route, global route and detail route. The first one

considers only the clock network, including the cells added during the clock tree synthesis,

as mentioned before. The importance of the clock accuracy at the arrival time of the pulses

in the flip-flops, is the reason why this special net is routed before any other. As expected

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

1.2 Novel ASIC Design flow 5

in literature there are also many post-processing algorithms aiming at different issues. The

second phase performs a quick and dirty routing of the gates to get a better assessment of the

chip wire congestion. The third and final step performs the detail routing of the chip, where

all the rules and guidelines of the PDK must be followed. Such rules effecting the spacing of

the metals, the directions of the metals, the maximum density of metals in a specific region

and the minimum overlap of the wires during the change of direction.

Figure 1.3: Screenshot from ANSYS Red-

Hawk thermal analysis tool [20].

Proceeding to the end of the flow, af-

ter the successful place and route of the cir-

cuit, it is time to evaluate the result and en-

sure its functionality. There are several as-

pects which might affect the functionality,

the manufacturability and the testability of

the chip. Thus, it is important to use a Static

Timing Analysis engine which will anal-

yse the circuit and will report among other

important information if the longest timing

path violates the requested clock period. Af-

ter that, the verification of the geometry must be performed to ensure that the produced result

can be manufactured using the specified PDK. Finally, the Design Rules Check (DRC) anal-

ysis must be applied to ensure that there is no obvious threat to the chip functionality. Of

course there are many other check points, verification algorithms even entire tools to verify

that the produced layout has the same output with the initial simulation and that after the

manufacturing the chip will have the anticipated behaviour.

Without further ado, the final phase of the ASIC flow is reached. Here the engineer has to

verify the thermal, electromagnetic and test coverage profile of the chip. So, utilising highly

sophisticated and complex tools, firstly must verify that the chip’s test vectors reach over

99.5% of the chip possible inputs. After that, the maximum allowed temperature of the chip

will not be exceeded during chip’s operation, causing catastrophic failure. Finally, it must be

verified that the electromagnetic behaviour of the chip is nominal and will not jeopardize the

integrity of its signals by cross talking and will not affect the surrounding systems.

From the brief abstract presented above, it is clarified that the ASIC flow is an extremely

complicated and time-consuming collection of steps which often are repeated many times

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

6 Chapter 1. Introduction

before the extraction of the final product which will be sent to be printed. So it is of great

importance to speed up this flow while ensuring its high quality result, if we are to continue

developing larger, more complex and powerful chips to sustain our society’s tremendous

evolution.

1.3 Multi-Level ASIC flow

1.3.1 Introduction of Multi-Level flow in EDA

The concept ofMulti-Level or hierarchical ASIC design flow has been around for decades.

Even though it’s challenging to pinpoint the exact first appearance of this approach, it can

be traced back to the early days of ASIC design, when engineers started grappling with the

growing complexity of their designs. One notable milestone in the evolution of multi-level

design methodologies was the emergence of Hardware Description Languages (HDLs) like

VHDL and Verilog. These languages provided a standardized way to discretise the circuit

in blocks based on the logical functionality at various levels of abstraction, facilitating the

hierarchical design process.

Figure 1.4: Presenting the number of transistors used in produced well-known chips from 70s

until now, perfectly aliened with the prediction of Gordon Moore’s law [21].

However, as chips became progressively more complex, their logical functions could not

be divided into balanced loosely connected submodules. Thus, various algorithms andmetrics

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

1.3.2 Multi-Level ASIC flow steps 7

were emerged in this flow by the researchers of the time, aiming to create a specified number

of area balanced sparsely connected groups of instances, dividing the circuit into smaller rela-

tively equivalent blocks. The first approaches, in the early 1980s, did not produce substantial

results, able to establish the algorithmic partitioning of the chip as standard practice. The

reasons of this outcome are located in the significant computational time required to produce

the results, alongside with the lack of developed tools to utilise this result

In our days, the complexity of the chips combined with the billions of devices placed in a

chip renders the algorithmic partitioning rather necessary. Based on Moore law, the amount

of instances placed within a chip will be doubled every six to eighteen months. As presented

in Figure 1.4 the trillion transistor circuits are not so far, which means the even the initial

partitions of the chip most probably will must be partitioned again in order to process them

in reasonable time, as each one of these will contain millions of instances. In essence, the

Multi-Level ASIC design flow in a few years will stand as a cornerstone in the semiconductor

industry, streamlining complex design processes and permitting the production of cutting-

edge electronic devices and systems with trillions of devices.

1.3.2 Multi-Level ASIC flow steps

Figure 1.5: Presenting the intuition of VLSI

circuit clustering algorithm [22].

As the Multi-Level ASIC design flow

in the forthcoming years will be an essen-

tial step to address the larger circuits, it is

prudent to present an outline of its steps

in order to become acquainted with it. The

flow starts with a process called clustering

or coarsening, aiming to group the heavily

connected instances of the circuit reducing

the instances frommanymillions, billions or

even trillion of devices into a few hundred thousand groups. The reason that the flow is called

multilevel is that this step gradually merge the instances into bigger objects, creating levels

of abstraction, trying to avoid the merging of large objects leading to unbalanced groups.

Usually in literature and in this work, these groups are referred to as clusters.

The second step of the flow is called partitioning or uncoarsening and its objective is

to further reduce the clusters into a specified number of groups, trying to simultaneously

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

8 Chapter 1. Introduction

preserve the area balance and reduce the intergroup connectivity. The produced objects are

commonly known as partitions. Even though both of these steps aim to reduce the number

of instances, there are key differences distinguishing the algorithms apart and compelling the

order of their execution. The first algorithm groups the instances based on their connectivity,

aiming to reduce their count in to a much smaller number while preserving the area balance.

On the other hand, the second algorithm targets to create a specific amount of groups with

minimum connections between them with the area balance intact. The stricter policy of the

second algorithm makes it quite inefficient when a significant amount of objects needs to be

taken under consideration, making the first operation mandatory towards the completion of

its task.

Figure 1.6: Presenting the intuition of VLSI

circuit partitioning algorithm [23].

In some cases, a third step on that flow

can be added as a post process optimisation

step targeted on the specific metric which

the engineer needs to improve. Such metrics

could be the timing of the circuit, the power

consumption, the inter partition connectiv-

ity or the area ratio of the groups. Some of

the algorithms to address the previous met-

rics are the reduction of delay path fragmen-

tation, the separation of power hungry cells

into different partitions, the cell replication

and the incremental moves of objects from partition to partition respectively.

1.4 Multi-Level ASIC design Flow applications

Continuing to the next flow steps, the engineer must perform a Multi-Level placement

algorithm. This one will place the partitions as if they were standard cells, and then it will

proceed to each one of the partitions to place their enclosed objects. This algorithm is much

quicker and scalable compared to the novel placement algorithm, which will try to handle the

entire circuit at once. Considering the scalability of this process, each one partition could be

distributed into a distant server to complete the novel ASIC flow as an independent chip and

then recombined with the other partitions into a predefined floorplan as puzzle pieces. This

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

1.4 Multi-Level ASIC design Flow applications 9

could significantly reduce the back end elapsed time, saving valuable time for chip testing

and evaluation.

Figure 1.7: Mock floorplan in an IC layout ed-

itor window [24].

One more interesting application of cir-

cuit partitioning can be located in 2.5D and

3D ASIC design flow. This new technology

aims towards the integration of multiple ICs

in the same substrate connected as a NOC or

one on top of the other respectively. Starting

from the first approach, which is already in

use the lasts decades, the separation of the

ICs is performed based on the modules’ hi-

erarchy creating IP blocks. The second idea

is much newer and aims to reduce the distance of inter die routes as they increase signifi-

cantly the circuit delay due to their thickness. In both of these technologies, the separation of

the circuit either in regions or in tiers respectively can be performed by the designer based

on the netlist modules. However, during the latest years the integration of multiple technolo-

gies, i.e. coexistence of 130nm devices alongside with 22nm devices, arises new challenges

in this flow regarding the timing closure and power consumption of the chip which could

be addressed by an algorithmic partitioning approach. Both applications are further analysed

in the following chapters, accompanied by comprehensive experiments using industrial and

academic designs.

Figure 1.8: 2.5D versus 3D IC designs [25].

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

10 Chapter 1. Introduction

1.5 Thesis Outline

Despite, the substantial value of the Multi-Level flow, the tools targeted to support that

cause are limited. The most known are the MLpart [1], hMETIS [2] [3], KaHyPar[4] [5] [6],

PaToh [7] SpecPart [8] [9] and GAP [10] [11] which will be further analysed in the following

chapters. The contribution of this work is to introduce a new partitioning tool targeted entirely

to VLSI circuits. This one consists of two updated clustering and partitioning methodologies,

one for each step of the multilevel flow respectively, and a post-processing optimisation al-

gorithm.

The rest of the thesis is organised as follows. The second chapter delves into the neces-

sary background knowledge to keep up with the thesis and then focuses on the other related

works and tools, analysing their advantages and disadvantages. Following that, it will be pre-

sented the existing work related to the previous referred applications of chip partitioning,

accompanied by the description of their flow and their basic algorithms. The next chapter,

manifests the contribution of this work by turning the spotlight on the developed algorithms

and heuristics integrated on the existing infrastructure to manage outperform the existing

state-of-the-art tools. To endorse our claims, the next chapter includes the results and the ex-

perimental methodology, confirming the superiority of our approach regarding the reviewed

metrics. The final chapter contains the remaining work which should be done in order to

construct a complete bullet-proofed tool, proceeded by the conclusions of this analysis.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 2

Background

2.1 Introduction

The background chapter serves as an educational portal to our in-depth investigation of

multi-level circuit partitioning, a domain that supports the development of cutting-edge elec-

tronic systems. This chapter sets the foundation for our analytical journey by explaining the

key terms and definitions required to understand the complexities of this topic. We begin this

illuminating journey by delving into the following key points.

In our first category, we build the groundwork by defining basic terms. This involves

introducing Directed Acyclic Graphs (DAGs) and Hypergraphs as fundamental represen-

tation tools in circuit design. We distinguish between Nets and Flylines, two fundamen-

tal yet nuanced design aspects. Furthermore, we define the roles of the integral Nodes and

Components that comprise the graph representation of circuits. Following that, we go into

the idea of Vcycle, investigating its application in partitioning strategies. We also investigate

the semantics of Clusters and Partitions, giving light on their function in BackEnd de-

sign. Finally, we discuss interpretations such as fanout, cliques, and routes, which influence

partitioning techniques, as long as the timing-oriented aspects like slack and gate delay.

Understanding these terminologies will provide readers with the necessary language and

basic knowledge to navigate the complex and dynamic world of multi-level circuit partition-

ing. These ideas not only serve as stepping stones for our later assessments of partitioning

approaches and optimization tactics, but they also equip us to deal with the changing issues

given by modern electronic systems. We can start the analysis with the confidence that a solid

foundation will pave the way for innovative solutions in this ever-changing industry.

11
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

12 Chapter 2. Background

2.2 Terminologies and Definitions

2.2.1 Graph Representation

In the field of Very Large-Scale Integration (VLSI) circuit design, graphical representa-

tions play a pivotal role inmodelling the complex interconnections and dependencies between

various components of an integrated circuit. Two primary graphical models often used for this

purpose are Directed Acyclic Graphs (DAGs) and hypergraphs. These representations have

distinct characteristics, and understanding their differences is essential for selecting the most

suitable model for a particular design task.

A Directed Acyclic Graph (DAG) is mathematically represented as a set of vertices and

directed edges [37]. The set of vertices is denoted as V and consists of unique elements,

expressed as V = {v1, v2, v3, . . . , vn}, where vi represents the ith vertex, and n is the total

number of vertices. The connections between vertices are represented by a set of directed

edges, denoted as E, where each directed edge is an ordered pair of vertices indicating the

direction of the connection: E = {(vi, vj) | vi, vj ∈ V }. Importantly, a DAG is charac-

terized by its acyclic nature, meaning there are no closed loops or cycles within the graph.

This acyclic property is expressed as a condition ensuring that no sequence of directed edges

can return to the same vertex. The mathematical representation of a DAG allows for precise

analysis and manipulation, making it a fundamental concept in various mathematical and

computer science contexts, including graph theory and data structure implementations.

DAGs are widely employed in VLSI circuit design due to their simplicity and efficiency

in capturing the hierarchical and sequential nature of circuits [38]. A DAG consists of nodes

(vertices) and directed edges (arcs) connecting them. In the context of VLSI, each node typi-

cally represents a logical component or a cell, while the directed edges represent the logical or

data flow between these components. One of the key characteristics of DAGs is their acyclic

nature, which means there are no closed loops or cycles in the graph. This acyclic property

is particularly important because it ensures that signals do not encounter infinite feedback

loops, guaranteeing predictable and finite signal propagation times. This is crucial in VLSI

design, where accurate timing analysis is essential to prevent issues such as signal skew and

metastability.

A hypergraph is mathematically represented as a set of hyperedges and vertices [37].

The set of vertices is denoted as V and consists of unique elements, expressed as V =

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.2.1 Graph Representation 13

{v1, v2, v3, . . . , vn}, where vi represents the ith vertex, and n is the total number of vertices. In

contrast to a standard graph, a hypergraph includes a set of hyperedges, denoted as E, which

connects more than two vertices. Each hyperedge is represented as a subset of vertices, and

the set of hyperedges can be expressed as:

E = {e1, e2, e3, . . . , em}

Here, each ei is a subset of vertices, indicating the complex relationships that may involve

multiple components simultaneously. The flexibility of hypergraphs is particularly valuable

when dealing with non-hierarchical and complex connections in various contexts such as

VLSI circuit design and relational databases. Hypergraphs do not have the acyclic property

found in Directed Acyclic Graphs (DAGs), and this flexibility allows for the representation

of cyclic dependencies, shared structures, and multiple connections. The mathematical rep-

resentation of a hypergraph provides a foundation for understanding complex relationships

and is a vital concept in mathematical modeling, data analysis, and various fields where non-

binary relationships are significant.

As regarding VLSI circuits, hypergraphs, on the other hand, provide a more expressive

and flexible representation for VLSI circuits compared to DAGs. In a hypergraph, nodes

are still used to represent components, but edges are replaced by hyperedges, which can

connect more than two nodes. A hyperedge can represent complex interconnections that may

involve multiple components simultaneously. The flexibility of hypergraphs is valuable when

dealing with more intricate aspects of VLSI design, such as shared buses, buses with multiple

drivers, or components with multiple inputs or outputs. Hypergraphs allow for a concise

representation of these complex relationships, making them particularly useful in scenarios

where DAGs might become convoluted due to multiple connections.

The most fundamental difference is that DAGs are acyclic, while hypergraphs are not

constrained by this property. Hypergraphs allow the representation of cyclic dependencies,

which can be beneficial in some scenarios, but may also introduce complexities that need

to be carefully managed. Hypergraphs are more complex and expressive than DAGs due to

the presence of hyperedges. This complexity can be an advantage when modelling intricate

circuit structures, but can also make analysis and manipulation more challenging. DAGs are

generally more straightforward and intuitive for representing hierarchical and sequential re-

lationships, while hypergraphs provide greater flexibility when dealing with non-hierarchical

and complex connections, albeit at the cost of increased complexity.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

14 Chapter 2. Background

2.2.2 Physical Design Oriented definitions

Figure 2.1: a) Simple fanout of 3

NAND gates starting be a same

type gate driver. b) The red line

presents the longest path of the

sub-circuit. c) The top left sub

figure presents the Half Perime-

ter Wire Length of the net. The

other images present alternative

methods of estimating the net

wire length [26].

In the realm of digital circuit design, the notions of cir-

cuit fanout, paths, and gates cliques play crucial roles in

understanding and optimizing the behaviour and structure

of complex circuits. These concepts provide essential in-

sights into signal propagation, logical pathways, and effi-

cient circuit organization. In this section, we delve into the

definitions and significance of circuit fanout, paths, and

gates cliques.

Circuit fanout refers to the number of logic gates or

components that a single output signal can drive or feed

into. In other words, it quantifies the capacity of a signal

to be distributed to multiple destinations within a digital

circuit. A high fanout implies that a signal is distributed to

many gates, which can potentially lead to issues like signal

degradation, increased propagation delay, and power con-

sumption. Conversely, low fanout values indicate a more

localized signal distribution, which can be advantageous

in reducing signal integrity concerns and improving cir-

cuit performance.

In the context of digital circuits, a path represents a

logical sequence of interconnected gates and components

that connect an input to an output. Paths are instrumental

in understanding the signal flow and logical dependencies

within a circuit. They help in analysing propagation de-

lays, critical paths, and overall circuit behaviour. Identify-

ing and optimizing critical paths is essential for ensuring

the efficient operation of a digital circuit, especially in ap-

plications where timing constraints are critical.

The half-perimeter wire length is a metric used to mea-

sure the total wire length required for interconnections in

a digital circuit. It is computed as half of the sum of the

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.2.3 Timing Analysis Oriented definitions 15

width and height of the layout or the integrated circuit. The half-perimeter wire length is

a valuable indicator of the wire’s spatial requirements and plays a role in minimizing wire

congestion, which can be especially critical in high-density integrated circuits.

Design Rule Checks (DRCs) are a set of rules and constraints that ensure that a digital

circuit’s physical layout adheres to the fabrication technology’s capabilities and specifica-

tions. DRCs encompass guidelines related to minimum feature sizes, spacing, and clearances

between components. Verifying compliance with DRCs is a crucial step in the design process

to avoid manufacturing defects and ensure the physical correctness of the circuit layout.

2.2.3 Timing Analysis Oriented definitions

Continuing, in digital circuit design, timing constraints are pivotal in ensuring that a cir-

cuit operates correctly and reliably. They provide critical guidelines for managing signal tim-

ing, and several metrics, such as Total Negative Slack, Worst Negative Slack, and gate delay,

are employed to assess and optimize circuit performance. In this section, we delve into these

essential concepts and their roles in digital circuit design.

Timing constraints are a set of guidelines and specifications that dictate when signals

must arrive at their intended destinations within a digital circuit. They encompass parameters

like setup time, hold time, clock-to-q delay, and clock frequency. These constraints ensure

that signals meet the required timing specifications and allow for correct circuit operation,

completing a set of instructions in the appropriate time period.

The first one is, TotalNegativeSlack (TNS) is a crucial metric used to evaluate the

overall timing performance of a digital circuit. It quantifies the total amount by which the

actual signal arrival times exceed the required timing constraints. A positive TNS indicates

that all signals meet their timing requirements, while a negative TNS signifies that some

signals are failing to meet the constraints. Addressing negative TNS is essential to prevent

issues like signal skew, data loss, or incorrect circuit operation.

Proceeding to the next one, which is WorstNegativeSlack (WNS) identifies the most

critical timing violation within a circuit. It represents the most negative slack value among all

signals in the design, highlighting the specific signal that is furthest from meeting its timing

constraints. Addressing theWNS is of paramount importance because it directly points to the

weakest link in the circuit’s timing performance. Improving the WNS often leads to overall

performance enhancement.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

16 Chapter 2. Background

Furthermore, gate delay refers to the time taken by a logic gate to process an input signal

and produce the corresponding output. It is a fundamental parameter in digital circuit design

and directly influences the signal propagation delay within the circuit. Reducing gate delay is

a common optimization goal to minimize signal propagation time and enhance circuit speed.

Finally, Longest path delay, as the name suggests, is the delay along the most extended

path in a digital circuit. It represents the maximum time it takes for a signal to travel from

the input of the circuit to the output through the longest chain of gates and interconnections.

Identifying and managing the longest path delay is essential for meeting overall circuit timing

constraints, as it often dictates the circuit’s maximum achievable operating frequency.

2.2.4 Vcycle flow

Last but not least, the final definition that we should mention is the V-cycle flow. The

V-cycle flow is the main approach, as regarding the multilevel hypergraph partitioning algo-

rithm, and is based on the concept of the multilevel paradigm. This flow aims to partition a

hypergraph into k roughly equal parts, with the goal of minimizing the number of hyperedges

connecting vertices in different parts. The algorithm consists of three phases: coarsening, ini-

tial partitioning, and uncoarsening and refinement.

In the coarsening phase, a sequence of successively coarser hypergraphs is constructed.

This is achieved by merging groups of vertices together to form single vertices in the next

level coarse hypergraph. There are multiple different algorithms for coarsening, like edge

coarsening, hyperedge coarsening and first choice algorithm. These algorithms select pairs

of vertices or hyperedges to be merged based on different criteria, such as heavy-edge maxi-

mal matching or independent sets of hyperedges. In the initial partitioning phase, a balanced

random bisection of the coarsest hypergraph is computed. This partitioning is then carried

along in the uncoarsening phase. During the uncoarsening and refinement phase, the bisec-

tion is successively projected to the next level finer hypergraph. At each level, an iterative

refinement algorithm, such as the Fiduccia-Mattheyses (FM) or Kernighan–Lin (KL) algo-

rithm, is used to further improve the bisection. The Vcycle flow is a powerful and efficient

multilevel hypergraph partitioning algorithm. It utilizes innovative coarsening schemes and

refinement algorithms to consistently produce high-quality partitionings. The algorithm has

been extensively evaluated and compared to other algorithms, demonstrating its superiority

in terms of both partitioning quality and runtime.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.3 Multi-Level Placement Application 17

Figure 2.2: The three phases of the multilevel V-Cycle k-way graph partitioning flow [27].

2.3 Multi-Level Placement Application

2.3.1 Algorithm overview and objectives

Multi-Level Placement is a critical phase in the Application-Specific Integrated Circuit

(ASIC) design process. Its primary objective is to efficiently place the logical components,

such as gates and flip-flops, onto the physical layout of an integrated circuit. Unlike traditional

placement algorithms, Multi-Level Placement leverages a hierarchy of abstraction levels to

optimize performance, power consumption, and manufacturability simultaneously.

The algorithm aims to achieve several key objectives. Firstly, it optimizes the circuit’s

timing characteristics by reducing critical path delays and ensuring that setup and hold time

requirements are met. Secondly, it minimizes wire length, a fundamental aspect of place-

ment, by carefully arranging components to lower interconnect delays, power consumption,

and manufacturing costs. Additionally, it addresses power efficiency by strategically placing

components to minimize wire capacitance and dynamic power. Lastly, Multi-Level Place-

ment focuses on ensuring signal integrity, addressing issues like electromigration and voltage

drop, which are crucial for circuit reliability and robustness.

Hierarchical placement methods start with a global placement phase, which initializes

the initial placement of hiearchy modules. This phase focuses on high-level interconnections

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

18 Chapter 2. Background

Figure 2.3: The left-hand side image presents the initial positions of circuit cells into the

die and the forces represented by the black lines, while the second image presents the final

positions of the cells after the force directed algorithm operation [28].

and provides a rough floorplan. Subsequently, the detailed placement phase optimizes the

positions of the enclosed components at a finer granularity. It considers local interactions,

maintaining legal distances, and meeting design rules. Legalization is another critical aspect,

ensuring that the placement adheres to the physical design rules, such as minimum spacing.

2.3.2 Placement Algorithm types

Due to the fact that placement algorithms in the context of digital circuit design play a

crucial role in determining the physical locations of logical components, it is more impor-

tant to discuss the existing algorithm types [39]. There are two common types of placement

algorithms are the ”Force-Directed” placement algorithm [40] and the ”Logarithmic Sum-

Exponential” (LSE) placement algorithm. These algorithms differ in their approaches and

optimization strategies.

The Force-Directed placement algorithm [40] is a physics-inspired approach used in dig-

ital circuit design. It views logical components as particles in a system and mimics physical

forces to optimize their placement. Components are represented as nodes in a graph, and

attractive forces exist between connected components, while repulsive forces act between

unconnected ones. These forces are iteratively calculated, causing components to move until

a stable and optimized placement is achieved. Force-directed algorithms are often employed

in initial placement stages due to their speed and effectiveness in minimizing wire length.

On the other hand, the Logarithmic Sum-Exponential (LSE) placement algorithm [41]

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.3.2 Placement Algorithm types 19

Figure 2.4: During the log sum exponential placement method, such a mathematical expres-

sion must be minimized, in order to assign the circuit gates into their optimal positions.

takes a mathematical approach, presented in Figure 2.4, to placement optimization. It seeks

to minimize a cost function, typically a weighted sum of wire length and other objectives,

through mathematical optimization techniques. LSE placement algorithms are particularly

useful when strict constraints are in place, such as minimum spacing or design rule require-

ments. They leverage convex optimization and a logarithmic barrier function to handle com-

plex placement problems with multiple objectives, ensuring that the placement meets vari-

ous constraints and trade-offs. A typical evaluation function is presented below in figure 2.4,

which must be minimized in order to achieve the optimal gates position.

Of course, there are other approaches such as constraint-based placement [42] which takes

into account various design constraints, such as minimum spacing, area constraints, and rout-

ing resources. These constraints are explicitly defined and enforced throughout the placement

process. Constraint-based approaches are crucial for ensuring the manufacturability and re-

liability of the layout. One more method called Genetic Algorithms [43] are inspired by bio-

logical evolution. They employ techniques like selection, crossover, and mutation to evolve

and optimize placement solutions. Genetic Algorithms are useful for exploring a wide search

space and are adaptable to various placement objectives and constraints.

It is important to mention that the placement phase is often divided into global place-

ment and detailed placement. Global placement establishes an initial arrangement, focusing

on high-level interconnections and overall quality metrics, while detailed placement refines

this arrangement to meet design rules and optimize component positions at a finer granu-

larity. Designers often combine these approaches at various stages to meet specific design

requirements, enabling the efficient, high-performance, and reliable implementation of dig-

ital circuits. The choice of placement method is tailored to the objectives and constraints of

each design, allowing for a flexible and adaptable approach in the placement phase.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

20 Chapter 2. Background

2.3.3 Existing Industrial Tools

Hierarchical placement tools are vital for managing the intricacies of modern digital cir-

cuit designs, providing the means to break down complex layouts into manageable hierarchi-

cal blocks or modules while preserving the design hierarchy. Among the notable industrial

tools known for their hierarchical placement capabilities are Cadence Innovus, Synopsys

ICC2, Mentor Graphics Olympus-SoC, ANSYS RedHawk-SC, and Magma Talus.

Starting by Cadence, Innovus is a well-regarded tool offering robust hierarchical place-

ment support, enabling multi-level hierarchies and efficient handling of large designs. It ex-

cels at achieving a balanced trade-off between runtime and quality, making it a favoured

choice for intricate ASIC and FPGA projects. Moving on to Synopsys ICC2, another promi-

nent tool, specializes in hierarchical placement for complex designs. It empowers designers

to manage multi-level hierarchies, ranging from block-level to chip-level placement. ICC2

stands out for its proficiency in timing-driven placement and global optimizations, enhancing

design performance.

Continuing, Mentor Graphics Olympus-SoC is optimized for system-on-chip (SoC) de-

signs and offers comprehensive hierarchical placement capabilities. It excels in handling hier-

archical blocks, enhances scalability, and integrates seamlessly with other EDA tools, making

it a preferred option for complex SoC projects. On the other hand, ANSYS RedHawk-SC,

primarily a power integrity tool, also features hierarchical placement and optimization capa-

bilities. It emphasizes power-aware placement and is widely utilized in designs with stringent

power constraints, such as mobile and IoT devices. Magma Talus is a versatile tool offering

hierarchical placement solutions, focusing on hierarchical optimization, clock tree genera-

tion, and signal integrity. It is often the choice for larger designs where optimizing hierarchi-

cal placement is paramount for overall performance.

2.4 3D Chip Design flow Application

2.4.1 3D Flow Overview and Objectives

A 3DASIC (Three-Dimensional Application-Specific Integrated Circuit) flow is a design

and manufacturing process that involves the creation of integrated circuits in multiple layers

or ”stacks” in three dimensions [44]. Unlike traditional 2D ASIC design, where components

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.4.2 Different flow types 21

are placed on a single silicon die, 3D ASICs are designed to have components stacked on top

of each other in multiple layers. These layers are interconnected using through-silicon vias

(TSVs), allowing for vertical integration. This approach offers several advantages, including

improved performance, reduced power consumption, smaller form factors, and the ability to

integrate different technologies on separate layers, a concept known as heterogeneous inte-

gration.

Through-Silicon Vias (TSVs) are essential for enabling communication between the dif-

ferent layers of a 3D ASIC [44]. TSVs are vertical interconnections that penetrate the silicon

layers, facilitating power and signal distribution between the stacked components. Designing

and manufacturing 3D ASICs comes with its set of unique challenges. These challenges in-

clude managing heat dissipation in a compact space, ensuring precise alignment of TSVs, and

optimizing the placement and routing of components in three dimensions. Specialized tools

and methodologies tailored for 3D design are required to address these challenges effectively.

3D ASICs have a broad range of applications, particularly in fields like data centres [45],

where they can enhance the performance and efficiency of data processing and memory sys-

tems. The form factor is significantly reduced in 3DASICs, making them suitable for portable

devices [46]. The manufacturing of 3D ASICs demands advanced semiconductor fabrication

techniques. Stacking multiple layers of components requires precision in aligning and bond-

ing the individual dies together. Companies and foundries that specialize in 3D IC technology

play a crucial role in this manufacturing process.

Heterogeneous integration is another notable aspect of 3D ASICs [47]. These chips can

combine different types of components on separate layers, allowing for the integration of di-

verse technologies within a single package. As technology continues to advance, 3D ASICs

are becoming more prominent, especially in applications where compact size and high per-

formance are essential considerations. This evolution in IC design is shaping the future of

semiconductor technology and its applications.

2.4.2 Different flow types

Various techniques are used in the realm of three-dimensional (3D) stacking in integrated

circuits, each catering to different design requirements and applications. One such technique

is Monolithic 3D Integration (M3DI) [48], which entails the vertical stacking of multiple

layers of transistors on a single silicon substrate, interconnected through Monolithic Inter-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

22 Chapter 2. Background

tier Vias (MIVs) [49], offering notable improvements in performance and power efficiency.

Another popular method is 3D IC Stacking, which involves stacking separate dies, each of

which contains a whole integrated circuit, on top of one another and connecting them with

TSVs[50]. This method allows for the integration of various technologies or functionality on

different dies. It is especially useful when various components require independent produc-

tion procedures. TSV Technology is a critical component of 3D stacking. TSVs are vertical

interconnects that pass between silicon layers, allowing communication between different

levels or dies. These TSVs can be used in 3D IC stacking [51] to create a dense network of

interconnections, allowing for better performance and interconnectivity.

Figure 2.5: A conceptual view of a 3D IC chip,

with a through-silicon-via (TSV) used as inter-

connect between two dies or wafers [29].

The usage of silicon interposers [52] as

a bridge between many dies within a pack-

age is introduced by stacking. These inter-

posers include TSV networks and allow for

the integration of multiple dies. This ap-

proach is ideal for applications that need

the integration of numerous dies in a single

package, such as high-performance comput-

ing or complex networking systems. Mean-

while, 2.5D Stacking is a hybrid of complete

3D stacking and classic 2D techniques [53].

It entails merging numerous dies onto an in-

terposer, which is typically made of silicon. While it does not attain the same vertical density

as complete 3D stacking, it is less expensive and more adaptable. 2.5D stacking is widely

used in high-performance computing and artificial intelligence applications where form fac-

tor constraints are less stringent.

Finally, there is die-on-wafer [54] [55]. Stacking is the process of stacking one or more

full dies on top of a wafer containing integrated circuits. When particular components, like as

sensors or advanced memory, must be incorporated into a wafer containing digital logic, this

approach is often used. It allows for the mixing and matching of diverse technologies within

a single package. These various 3D stacking approaches enable designers and manufactur-

ers to adjust their integration tactics to satisfy specific design needs, maximize performance,

increase power efficiency, and solve form factor concerns. The specific application, design

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

2.4.3 Modern Challenges 23

Figure 2.6: 2.5D-IC assembly that includes two substrates (silicon interposer + organic pack-

age) [30].

requirements, and accessible manufacturing capabilities all influence the choice of a partic-

ular 3D stacking approach.

Figure 2.7: Different bonding technologies for 3D Integration circuit according to fabrication

approach. [31].

2.4.3 Modern Challenges

Three-dimensional (3D) chip integration, while offering numerous advantages, presents

several notable challenges [56] [44]. One of the primary concerns is heat dissipation. As

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

24 Chapter 2. Background

components are stacked vertically in 3D integration, heat generated in one layer can affect

the layers above and below, potentially leading to thermal issues, rendering effective thermal

management solutions essential to prevent overheating.

Another challenge lies in the design and reliability of Through-Silicon Vias (TSVs),

which serve as critical vertical interconnects. Designing TSVs to be both reliable and man-

ufacturable is a complex task. Factors like TSV placement, fill materials, and TSV-induced

stress must be carefully addressed to ensure proper functionality. Designing for 3D integra-

tion introduces increased complexity, as designers need to consider vertical placement, TSVs,

and thermal management in addition to traditional 2D design considerations. Designing for

manufacturability and ensuring proper alignment across multiple layers require intricate and

precise methodologies.

The manufacturing process for 3D integration is another area of challenge. It involves

wafer thinning, die stacking, and microassembly. Precision manufacturing is crucial to en-

sure that dies are correctly aligned, bonded, and rigorously tested. Heterogeneous integration,

which involves integrating different technologies or materials in 3D, can be challenging due

to differences in thermal expansion coefficients andmaterial properties. Managing these vari-

ations is essential to prevent stress-induced failures. Testing 3D integrated devices is more

challenging than traditional 2D chips. Accessing and testing individual layers can be com-

plex, and techniques for ensuring high yield and detecting and repairing defective components

are critical. Furthermore, the lack of industry-wide standards for 3D integration hinders in-

teroperability between different vendors and tools. The development of common standards

is crucial to promote adoption and ensure compatibility.

Lastly, as devices become smaller and more power-efficient, power delivery and signal

integrity can become challenges in 3D integration. Ensuring that power is distributed ef-

fectively, and that signals maintain their integrity, is a critical aspect of overcoming these

challenges. Addressing these issues requires a collaborative effort between semiconductor

manufacturers, designers, and researchers to develop new technologies, tools, and best prac-

tices specific to 3D integration. Despite the difficulties, the benefits of improved performance

and energy efficiency continue to drive research and innovation in this field.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 3

Related Work

3.1 Introduction

Partitioning circuits is a key and difficult challenge in the ever-changing environment

of electrical design automation. As the demand for increasingly complicated and efficient

integrated circuits grows, so does the need for improved circuit partitioning approaches. This

chapter serves as the starting point for our research of multi-level circuit partitioning, a topic

that is critical in the creation of complex electronic systems.

This chapter aims to provide a comprehensive background for our investigation into

multi-level circuit partitioning, with a particular focus on the foundational concepts, historical

developments, and the contemporary challenges faced in this intricate field. By understand-

ing the complexities and intricacies of multi-level circuit partitioning, we can pave the way

for innovative approaches and solutions that address the ever-growing demands of modern

electronic systems. To achieve this, we will delve into the historical evolution of circuit par-

titioning techniques, the key drivers necessitating its advancement, and the state-of-the-art

methodologies that researchers and engineers employ to tackle the challenges presented by

today’s cutting-edge technologies.

Our journey through this chapter will lay the groundwork for the subsequent discussions

and analyses of various partitioning techniques, optimization strategies, and the potential

for advancements in multi-level circuit partitioning. It is our hope that this exploration will

not only contribute to the scholarly discourse on this subject but also inspire practical, real-

world solutions for the design and implementation of complex integrated circuits in an era of

unprecedented technological innovation.

25
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

26 Chapter 3. Related Work

3.2 Multi-Level Clustering

3.2.1 Algorithm Overview and Objectives

Multi-level clustering techniques are critical in the design of Very Large Scale Integration

(VLSI) circuits. These algorithms provide a methodical approach to dealing with the com-

plexities and challenges of current semiconductor devices, which are made up of millions, if

not billions, of transistors and interconnections. Because of the overwhelming complexity, a

disciplined mechanism for grouping circuit components into meaningful groups is required,

and multi-level clustering serves this goal well. Multi-level clustering approaches, which are

tailored specifically for VLSI design, aim to expedite the design process by facilitating the

decomposition of large-scale circuits into more manageable and optimal sub-modules. This

hierarchical architecture provides a number of advantages for VLSI designers and engineers,

as it streamlines the design process while allowing for a more ordered and systematic ap-

proach to addressing the complexity of VLSI circuits.

Figure 3.1: General clusters approach on a di-

rected graph [32]

Multi-level clustering techniques are

used for area and power optimization in ad-

dition to complexity control. Given the ne-

cessity of decreasing chip space and power

consumption in VLSI circuits, these meth-

ods aid in identifying crucial locations that

demand special attention, enabling effi-

cient resource allocation and power distribu-

tion.Furthermore, improving signal integrity

is a major goal of multi-level clustering in

VLSI design. The algorithms aid in the orga-

nization of components to minimize signal

interference and path lengths, resulting in

dependable and high-performance circuitry.

Manufacturability and yield enhancement are also important factors in VLSI design, and

multi-level clustering can help with both. These algorithms lead to increased yield, cheaper

production costs, and enhanced manufacturability by arranging components in ways that mit-

igate manufacturing difficulties. Furthermore, multi-level clustering techniques strive to im-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.2.2 Algorithm types 27

prove overall circuit performance. They boost speed, reduce latency, and maximize resource

efficiency inside the VLSI circuit by isolating important modules and optimizing their con-

nections. Finally, considering the constant increase in the complexity of VLSI circuits, the

scalability of these methods is critical. Multi-level clustering algorithms are built to be scal-

able, allowing for larger and more complex designs without losing performance or economy,

ensuring their relevance in an ever-changing industry.

3.2.2 Algorithm types

Multi-Level Clustering algorithms are particularly valuable in the modern semiconductor

industry because all of the above listed objectives are critical for the chip manufacturing

process. As a result, it is necessary to discuss themanyways that are currently being employed

in industry to handle this ASIC flow stage. The also called hierarchical clustering techniques,

can be broadly categorized into a few categories, as presented in Figure 3.2, with the most

known of them to be the agglomerative and divisive approaches [57].

Themore commonly used of the two is agglomerative hierarchical clustering [58]. It starts

with each data point as a separate cluster and then merges smaller clusters into bigger ones.

The procedure begins with the assumption that each data point is a separate cluster. The algo-

rithm then iteratively merges the two closest clusters, continuing until all data points are part

of a single, comprehensive cluster. One of the distinguishing characteristics of agglomera-

tive clustering is the generation of a dendrogram, which is a tree-like structure that depicts the

clustering hierarchy. The dendrogram’s branches represent the merging of clusters at various

phases. You can determine the amount of granularity in your clusters by visually studying

the dendrogram and selecting an acceptable cut-off point. This allows for greater freedom in

analysing the data and comprehending the links between data points, making it applicable to

a wide range of applications.

Divisive hierarchical clustering [59], on the other hand, adopts a different strategy. It

first groups all the data points into a single cluster before repeatedly breaking them up into

smaller clusters. Although less popular, this strategy has its advantages in some contexts.

The technique divides a cluster periodically into two smaller clusters, eventually resulting in

a tree-like structure like a dendrogram but showing the division of clusters.When you assume

that data naturally falls into a layered or hierarchical structure, dividing hierarchical clustering

can be helpful. But compared to agglomerative clustering, it is frequently computationally

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

28 Chapter 3. Related Work

Figure 3.2: Broad classification of clustering algorithms [33].

more demanding and sophisticated, which restricts where it can be used.

Of course, there are more sub-categories addressing the clustering phase, each one ex-

ploiting different circuit characteristics. The most well-explored between them are the par-

titional clustering methods like K-Means [60] partition data into non-overlapping clusters,

and density-based approaches such as DBSCAN [61] which excel at discovering clusters

with varying shapes and sizes. Another subset of methods is the non-parametric algorithms

like Mean-Shift which they find cluster centres by shifting towards high-density regions,

exploiting circuits levels, while probabilistic methods like Gaussian Mixture Models model

data as a mixture of Gaussian distributions. Finlay, the analysis would be incomplete if the

Spectral clustering approach [62] was not included, which employs eigenvalues for cluster

formation, utilising the Laplacian matrix of the circuit.

3.2.3 Existing algorithms and tools

In previous paragraphs are presented the objectives and main types of clustering ap-

proaches. To complete the presentation of the clustering phase related work, it is necessary

to bring forward the most used and well established tools of this area of interest. The first

method is called edgecoarsening [2]. In this method, a heavy-edge maximal matching of the

vertices of the hypergraph is computed to select the pairs of vertices. These vertices are then

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.2.3 Existing algorithms and tools 29

Figure 3.3: Different edge coarsening techniques and the coarsening they induce [2].

merged together to form a single vertex in the next level coarse hypergraph. The heavy-edge

maximal matching is a matching that maximizes the weight of the edges in the matching.

The weight of an edge is the sum of the weights of the vertices it connects. The matching

is called maximal because it is not possible to add any more edges to the matching without

violating the matching property. The edge coarsening method is preferred when the hyper-

edges are relatively small and the weights of the vertices are not too different from each other.

This is because the heavy-edge maximal matching may not be able to capture the important

structure of the hypergraph when the hyperedges are large or the weights of the vertices are

significantly different from each other.

Another similar approach is the First Choice (FH) [63] which is a method used in hyper-

graph partitioning algorithms to determine how groups of vertices should be merged together

in the next level coarse hypergraphs. It starts by creating an empty list of groups and then

iterates through each vertex in the hypergraph. For each vertex, the algorithm checks if it is

highly connected to any vertex already in a group. If it is, the vertex is added to that group.

If not, a new group is created with the vertex as the only member. This process continues

until all vertices have been assigned to a group. The resulting groups of vertices are then

merged together to form single vertices in the next level coarse hypergraph. The goal of the

FirstChoice algorithm is to create groups of vertices that are well-connected within them-

selves, which can help improve the efficiency of subsequent refinement algorithms in the

partitioning process.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

30 Chapter 3. Related Work

Figure 3.4: Clustering a pair of objects A and C using either the First Choice or the Best

Choice [34].

The next clustering algorithm discussed in [34] is called the best-choice bottom-up clus-

tering algorithm. The algorithm starts by initializing a priority queue (PQ) with all objects

in the netlist. Then enters a loop where it continues to cluster objects until the target number

of objects is reached. In each iteration of the loop, the algorithm picks the top tuple (u, v,

d) from the PQ, which represents the pair of objects with the highest clustering score. These

objects are then clustered together to create a new object u’. After clustering, the netlist is

updated to reflect the new object u’ and its connections. The algorithm then calculates the

closest object v’ to u’ and its clustering score d’. This information is inserted into the PQ.

The algorithm also includes a lazy-update technique to reduce the runtime. Instead of updat-

ing clustering scores for all neighbor objects after each clustering operation, the algorithm

marks them as invalid. Only when an object is picked from the top of the PQ, its clustering

score is updated if necessary. This lazy-update approach significantly reduces the number

of score update operations on the PQ, leading to faster runtime. Additionally, the algorithm

includes methods for controlling cluster sizes and handling fixed blocks. Cluster sizes can be

indirectly controlled by using a clustering score function that is inversely proportional to the

size of the cluster objects. Direct size control can also be applied by imposing hard or soft

bounds on the cluster sizes.

Finally, a new approach to effective circuit clustering called RW-ST (RandomWalk - Self-

Tuning) algorithm is presented in paper [64]. The goal of the paper is to reduce the problem

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.2.3 Existing algorithms and tools 31

size of layout synthesis algorithms by condensing the circuit netlist. The RW-ST algorithm

is based on a random walk in the circuit netlist graph. The algorithm starts by constructing

a random walk in the netlist graph. A random walk is a stochastic process that moves from

the current module to a random adjacent module. The cover time of the random walk is the

expected length of the walk that visits all vertices in the graph. The paper shows that the cover

time of a random walk in a d-regular graph of n nodes is O(n2) and O(nlogn), which means

that a single random walk can sample the entire netlist graph.

Figure 3.5: Maps of randomwalks on complex

networks reveal community structure [35]

Following, the algorithm identifies cy-

cles in the random walk. A cycle is a subse-

quence of nodes in the walk that starts and

ends at the same node. The cycles repre-

sent potential clusters in the netlist. The al-

gorithm then computes the sameness value

for each pair of nodes in the netlist. The

sameness value measures the commonality

of the sets of nodes visited in cycles origi-

nating from each pair of nodes. Based on the

sameness values, the algorithm clusters node

pairs with sameness greater than zero. The

clusters are formed by merging the nodes

that have high sameness values. The result-

ing clusters represent the condensed netlist.

The algorithm also introduces a quality mea-

sure called DS (Degree-Separation) to evaluate the effectiveness of the clustering. The DS

quality of a clustering is the weighted average of the cluster degree and cluster separation.

The cluster degree is the average number of nets incident to each module in the cluster, and

the cluster separation is the average length of the shortest path between two nodes in the

cluster. The higher the DS quality, the better the clustering. The paper presents experimen-

tal results comparing the RW-ST algorithm with other clustering methods. The results show

that RW-ST consistently produces better clusterings in terms of DS quality. The algorithm is

also applied to two-phase Fiduccia-Mattheyses partitioning, and it is shown to improve the

solution quality compared to standard FM partitioning.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

32 Chapter 3. Related Work

3.3 Multi-Level Partitioning

3.3.1 Algorithm overview and objectives

Partitioning algorithms play a crucial role in electronic design automation (EDA) for the

optimization and decomposition of complex digital circuits. These algorithms are designed to

break down a large circuit into a predefined number of smaller, moremanageable sub-circuits,

facilitating further optimization and enhancing the efficiency of circuit implementation. In

this section, we provide an overview of partitioning algorithms and outline their primary ob-

jectives. Multi-level circuit partitioning algorithms operate on the principle of hierarchical

decomposition. They divide the original circuit into smaller components in a hierarchical

fashion, starting from the entire design and proceeding to smaller granularity levels. This

approach is essential for various stages of digital design, including logic synthesis, place-

ment, and routing. The goal is to achieve a partitioning that balances the trade-offs between

partition size and complexity, ultimately optimizing the circuit’s performance and ease of

implementation.

In achieving these goals, partitioning algorithms pursue several key objectives. First and

foremost, they seek to minimize the number of cut nets, which represent the connections

between partitions. Minimising cutsize, is critical for applications like parallel static timing

analysis [65] where each inter-partition connection stands as unconstraint path, introducing

notable error in the analysis. Simultaneously, these algorithms strive to minimise the area

ratio between the larger and smaller partition to produce area balanced groups of gate level

instances. This objective is vital for cloud based operations [66], as the number of instances

in each block, which is assigned into a different agent, is proportional to the computational

load of each agent. Also, the third target of partitioning algorithms is to minimise critical

path fragmentation in order to produce a result suitable for timing driven operations. The

final objective is aligned with the first one, assigning an extra notion of criticality into the

timing critical paths. These paths are the longest paths of the circuits, which most often have

the greatest path delay, significantly affecting the timing closure of the circuit.

3.3.2 Algorithm types

Due to the importance of Multi-Level partitioning in semiconductor industry, there are

many partitioning approaches in the literature addressing the previously described objectives.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.2 Algorithm types 33

The most well-established methods between them are the recursive bipartitioning, the kway

partititioning and the flow based approaches. Furthermore, there are more recent techniques

introducing machine learning methodologies towards that cause, showing notable improve-

ments on the quality metrics results.

The recursive bipartitioning algorithm begins with the whole digital circuit and system-

atically divides it into two roughly equal sub-circuits, hence the ”bipartitioning” designation.

The division is performed recursively, meaning that each of the two resulting sub-circuits

can themselves be subdivided in the same manner, creating a hierarchical structure of par-

titions. The primary objective of this method is to minimize the cut, which represents the

number of connections (or nets) that cross the boundary between the two sub-circuits. By do-

ing so, it ensures that the logical connectivity of the circuit is maintained while optimizing for

performance or other design criteria. This recursive process continues until a predetermined

granularity level is achieved, or specific design constraints are met.

Moving on to the second approach, where k represents the number of partitions desired,

which is typically specified by the designer. The primary objective of the k-way partitioning

method is to create balanced partitions with roughly the same number of components or nodes

in each partition. These balanced partitions help optimize various aspects of the circuit, such

as performance, area utilization, and manufacturability. The method is often guided by a

cost function, which may include minimizing the number of connections between partitions

(cut) or optimizing other design criteria like meeting area constraints. The k-way partitioning

process can be iterative, where partitions are refined in each step to approach a more balanced

and optimized solution. The choice of k can have a significant impact on the quality of the

partitioning, as it affects the granularity of the divisions. A smaller ’k’ can lead to finer-

grained partitions, while a larger k may produce coarser partitions.

Both of the previous categories often utilise a version of either Fiduccia-Mattheyses (FM)

[67] or Kernighan-Lin (KL) [68] partitioning algorithms to create the initial partitions or op-

timise the final result. Both of these algorithms are presented in Algorithm 1 and Algorithm

2 respectively. Their main idea is to iteratively test tentative moves of objects between par-

titions to determine the minimum achievable cutsize. However, even though this exhaustive

method is effective, it is quite expensive to be introduced in newer circuits. Thus, more mod-

ern studies are based on their fundamental idea introducing additional heuristics to reduce

their execution time overhead.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

34 Chapter 3. Related Work

Algorithm 1 Fiduccia-Mattheyses (FM) Algorithm
Require: Graph G representing the circuit, Initial partitioning

Ensure: Balanced partitioning with minimized cut size

bestPartitioning← Initial partitioning

minCutSize← CalculateCutSize(G, bestPartitioning)

moved← True

while moved do

moved← False

for each cell c in G do

currentPartition← PartitionOf(c)

gain← CalculateGain(c, currentPartition)

if gain > 0 then

for each neighbor n of c do

gain ← gain + CalculateGain(n, currentPartition) −

CalculateGain(n,OtherPartition(n))

end for

Move c to the other partition

moved← True

Update cut size

Update balance criterion

end if

end for

if cut size is smaller than minCutSize then

bestPartitioning← Current partitioning

minCutSize← Current cut size

end if

end while

return bestPartitioning

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.2 Algorithm types 35

Algorithm 2 Kernighan-Lin (KL) Algorithm
Require: Graph G representing the circuit, Initial partitioning

Ensure: Balanced partitioning with minimized cut size

bestPartitioning← Initial partitioning

minCutSize← CalculateCutSize(G, bestPartitioning)

moved← True

while moved do

moved← False

for each cell pair a in one partition and b in the other partition do

gain← CalculateGain(a, b)

if gain > 0 then

Swap cells a and b between partitions

moved← True

Update cut size

Update balance criterion

end if

end for

if cut size is smaller than minCutSize then

bestPartitioning← Current partitioning

minCutSize← Current cut size

end if

end while

return bestPartitioning

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

36 Chapter 3. Related Work

Last but not least, the flow based algorithms use network flow algorithms to partition

a circuit into two or more subcircuits with balanced weights and minimum net cuts [69].

Network flow algorithms are based on the concept of finding the maximum amount of flow

that can pass through a network of nodes and edges, where each edge has a capacity and a

cost. A network flow algorithm can also find the minimum cut of the network, which is the

minimum capacity of edges that need to be removed to disconnect the network. The goal is

to find a partition of the network that balances the weights of the nodes in each subcircuit

and minimizes the cost of the edges that cross the subcircuits. Such algorithms are the Min-

net-cut partitioning, which tries to minimize the number of nets that cross the subcircuits,

regardless of their weights or costs, the Min-cut partitioning, which targets to minimize the

total weight or cost of the nets that cross the subcircuits and the Ratio-cut partitioning, which

aims to minimize the ratio of the cut size to the subcircuit size, which is a measure of how

balanced and compact the subcircuits are.

3.3.3 Existing algorithms and tools

Continuing with our analysis, it is necessary to review the existing tools, some of which

will be used to evaluate our proposed algorithm. The first and oldest tool is named MLpart,

presented in [1], targeted to partition hypergraphs. The MLpart algorithm is a multilevel par-

titioning algorithm presented in VLSI CAD physical design. It is a fundamental optimization

technique that aims to divide the nodes of a hypergraph into groups of approximately equal

total weight while minimizing the number of hyperedges that are cut. The algorithm follows

a three-step process: clustering, top-level partitioning, and refinement or uncoarsening. In the

clustering step, the hypergraph nodes are combined into clusters based on their connectivity,

resulting in a smaller, clustered hypergraph. This step is repeated until there are only a few

hundred clusters left, creating a hierarchy of clustered hypergraphs.The top-level partition-

ing step requires an initial solution generation. This is done by assigning nodes to partitions

in decreasing order of size using a biased random selection method. The goal is to keep the

slacks (the difference between the assigned area and the maximum allowed area) approxi-

mately equal while introducing randomness. Once all partitions reach their minimal required

cell area, slacks are computed relative to the maximal allowed areas. The top-level partition-

ing is performed using the CLIP-FM algorithm with the requested tolerance for the original

partitioning problem. The best solution from three independent starts is further refined using

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.3 Existing algorithms and tools 37

the LIFO-FM algorithm. CLIP-FM is slower but produces better solutions, while LIFO-FM

balances solution quality and runtime. The refinement or uncoarsening stage involves pro-

jecting solutions from one level to the next and iteratively improving them using the FM

algorithm. This stage may stop before reaching the lowest-level hypergraph, and clustering

or refinement may be resumed earlier than usual. The hMETIS partitioning program intro-

duced additional heuristics such as hyperedge removal and V-cycling, which are critical to

its performance but require careful tuning. The MLpart algorithm improves on the baseline

implementation by introducing several new techniques. One technique is the use of a relaxed

move acceptance criterion, which accepts moves that do not increase the violation of balance

constraints. Another technique is the randomization of gain computation at the beginning

of each pass, which is done by computing gains of legal moves in a random order. The al-

gorithm also includes a preferential placement technique that encourages the movement of

nodes adjacent to fixed nodes.

The second and relatively newer tool is

hMETIS presented in [2], [3]. The hMETIS

algorithm is a multilevel hypergraph par-

titioning algorithm that aims to find high-

quality solutions for partitioning large and

irregular hypergraphs. It is designed to scale

well to very large hypergraphs and requires relatively small amounts of time. This tool also

consists of the basic three Vcycle phases coarsening, initial partitioning, and uncoarsening /

refinement. Asmentioned before, in the coarsening phase, the algorithm successively reduces

the size of the hypergraph by grouping vertices into disjoint clusters and collapsing them into

a single vertex. To do so, this process is performed using various coarsening schemes, such as

edge coarsening, hyperedge coarsening, or modified hyperedge coarsening. Once the coarser

hypergraphs are obtained, the initial partitioning phase begins. In this phase, the smallest hy-

pergraph is partitioned using a bisection algorithm. The bisection algorithm aims to divide

the hypergraph into two equal-sized partitions while minimizing the number of hyperedges

cut. This initial partitioning serves as the starting point for the subsequent refinement phase.

The uncoarsening and refinement phase is where the solution of the smallest hypergraph

is projected to the next level finer graph and iteratively refined to improve the quality of

the partitioning. The refinement algorithm used in this phase is a variation of the Fiduccia-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

38 Chapter 3. Related Work

Mattheyses (FM) algorithm. The FM algorithm iteratively tries to find subsets of vertices in

each partition that can bemoved to other partitions to improve the partitioning quality without

violating the balance constraint. This iterative process continues until no further improvement

can be made. Throughout the algorithm, randomization is used to select vertices for matching

in the coarsening phase and to determine the order of vertex movements in the refinement

phase. This randomization introduces some level of randomness into the algorithm, but it also

allows for exploration of different possible solutions.

The next tool in our list is the KaHy-

Par (KarlsruheHypergraph Partitioning) [4],

[5], [6]. This framework is a high-quality

hypergraph partitioning algorithm that aims

to divide a hypergraph into balanced and

heavily-connected partitions. It employs a

multi-level approach, combining various

heuristics and techniques to achieve superior

solution quality. The algorithm consists of

several key components and phases. Firstly,

KaHyPar uses a semi-dynamic hypergraph

data structure that allows efficient vertex

and hyperedge deletions and reversals. This

data structure is designed to support the partitioning process without considering insertions

of additional vertices or nets. To compute the partitions, KaHyPar supports both direct k-way

partitioning and recursive bisection (RB) approaches. In direct k-way partitioning, the hyper-

graph is directly partitioned into k blocks, while in RB, a bipartition of the initial hypergraph is

computed recursively until k blocks are obtained. KaHyPar employs two preprocessing tech-

niques to improve the partitioning process. The first technique is pin sparsification, which

reduces the number of pins (connections) in the hypergraph to speed up the overall process.

The second technique is community-aware coarsening, which infers information about the

community structure of the hypergraph to guide the coarsening process. The coarsening phase

reduces the size of the hypergraph bymerging vertices and hyperedges to create a coarser rep-

resentation. KaHyPar uses a coarsening algorithm that restricts contractions to blocks of the

previous solution and uses either the old or a newly computed solution as the initial par-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.3 Existing algorithms and tools 39

tition. For generating the initial partition, KaHyPar employs a portfolio-based approach. It

uses multiple algorithms or heuristics to create different initial partitions and selects the best

one based on certain criteria. To refine the initial partition, KaHyPar utilizes a localized local

search algorithm. It applies V-cycles, which involve n-level coarsening and refinement, to

improve the solution quality. The flow-based refinement phase further improves the solution

quality by optimizing the connectivity metric. KaHyPar uses flow algorithms to compute

maximum flows in the hypergraph and adjusts the partition accordingly. In addition to these

components, KaHyPar incorporates a memetic algorithm, which is a genetic algorithm that

also employs local search. It evolves a population of solutions using recombination operators

with more than two parents, ensuring that the offspring is no worse than the parents. This

allows for extensive exploration of the global solution space.

Another worth mentioning tool, is the

PaToH [7] (Partitioning Tool for Hyper-

graphs) which is also a hypergraph parti-

tioning specialised tool. The PaToH starts by

coarsening the original hypergraph into a se-

quence of smaller hypergraphs. This coars-

ening is achieved by merging disjoint sub-

sets of vertices into clusters, where each

cluster forms a single vertex in the coarsened hypergraph. The weight of each vertex in the

coarsened hypergraph is equal to the sum of the weights of its constituent vertices in the orig-

inal hypergraph. The net set of each vertex in the coarsened hypergraph is the union of the net

sets of its constituent vertices. After the coarsening phase, the algorithm proceeds to the ini-

tial partitioning phase. Here, a bipartition is found for the coarsest hypergraph using various

initial partitioning techniques. The goal is to find a balanced bipartition that minimizes the

cutsize. PaToH includes different random partitioning methods as well as variations of the

Greedy Hypergraph Growing (GHG) algorithm for this step. Finally, the uncoarsening phase

begins, where the bipartition found in the previous step is projected back to the original hy-

pergraph. This projection is achieved by assigning the constituent vertices of each cluster in

the coarsened hypergraph to the same part in the original hypergraph. The resulting partition

is then refined using iterative improvement heuristics based on the Kernighan-Lin (KL) and

Fiduccia-Mattheyses (FM) algorithms. These heuristics aim to further minimize the cutsize

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

40 Chapter 3. Related Work

by swapping or moving vertices between parts while maintaining balance. Throughout the

algorithm, PaToH provides various customization options, such as different coarsening and

refinement algorithms, as well as parameters to control the balance and cutsize objectives.

The algorithm also supports multi-constraint hypergraph partitioning, where each vertex has

multiple weights associated with it, and partitioning with fixed vertices.

The latest update on partitioning tools

is named SPECpart [8], [9], and it is de-

signed by the same authors with MLpart

framework. SpecPart is a supervised spec-

tral framework for hypergraph partitioning

solution improvement. It addresses two lim-

itations of state-of-the-art hypergraph parti-

tioners: (i) the reliance on local neighborhood structure during hypergraph coarseningwithout

fully considering the global structure, and (ii) the potential stagnation on local minima during

refinement heuristics. The SpecPart algorithm consists of several key components. First, it

incorporates pre-computed hint solutions into a generalized eigenvalue problem. By solving

this problem, SpecPart obtains high-quality vertex embeddings that capture the balanced par-

titioning objective and global hypergraph structure. This step leverages initial high-quality

solutions from multilevel partitioners as hints. Next, SpecPart constructs a family of trees

from the vertex embedding. These trees distill the cut structure of the hypergraph and serve

as a basis for exploring a large space of candidate solutions. A tree-sweeping algorithm is

used to partition the trees efficiently and generate potential solutions. To further improve the

initial solutions, SpecPart introduces a novel cut overlay method. It computes clusters by re-

moving the hyperedges cut by any of the initial solutions. The resulting clustered hypergraph

is smaller and often contains an improved solution that can be computed optimally using

an Integer Linear Programming (ILP) formulation. Finally, SpecPart lifts the improved solu-

tions to a coarsened hypergraph, where an ILP partitioning instance is solved to alleviate local

stagnation. This step helps overcome the limitations of refinement heuristics getting trapped

in local minima. The SpecPart algorithm has been validated on multiple benchmark sets,

including the ISPD98 VLSI Circuit Benchmark Suite, Titan23 Suite, and Industrial Bench-

mark Suite. Experimental results demonstrate that SpecPart can substantially improve the

cutsize by more than 50% compared to leading partitioners hMETIS and KaHyPar for some

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

3.3.3 Existing algorithms and tools 41

Figure 3.6: Generalizable Approximate graph Partitioning (GAP) [10].

benchmarks. The algorithm’s performance is influenced by several parameters, including the

number of eigenvectors, the number of trees, the number of best solutions, the number of

iterations of ISSHP, the number of random cycles, and the threshold of the number of hyper-

edges. These parameters can be tuned using autotuning techniques to optimize the algorithm’s

performance.

Last but not least, we discuss a machine learning approach called Generalizable Approx-

imate Graph Partitioning (GAP) [10], [11]. This algorithm is a deep learning framework de-

signed to solve the problem of graph partitioning. Graph partitioning involves dividing the

nodes of a graph into balanced partitions while minimizing the number of edges that are cut

across the partitions. This is a combinatorial optimization problem that has been traditionally

approached using heuristics and approximation algorithms. GAP takes a different approach

by leveraging deep learning techniques. It consists of two main components: the graph rep-

resentation learning module and the graph partitioning module. The graph representation

learning module is responsible for generating node embeddings, which capture the structural

information of the graph. These embeddings are then fed into the graph partitioning module,

which assigns each node to a specific partition based on the learned representations. The key

innovation of GAP lies in its ability to generalize to unseen graphs. Unlike traditional ap-

proaches that optimize the partitioning for each individual graph, GAP is trained on a set of

graphs and can then be used to produce performant partitions on unseen graphs. This general-

ization is achieved by learning the representation of the graph while jointly optimizing for the

partitioning loss function. This allows GAP to adapt to different graph structures and produce

efficient partitions across a wide variety of graphs. To train the GAP model, a differentiable

loss function is defined that represents the partitioning objective. This loss function uses a

continuous relaxation of the normalized cut, which is a commonly used metric for evaluating

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

42 Chapter 3. Related Work

the quality of graph partitions. The network parameters are then optimized using backpropa-

gation, allowing the model to learn to generate balanced partitions with minimum edge cut.

In the experimental evaluation, GAP is compared against hMETIS, a widely used graph par-

titioning algorithm. The performance of GAP is evaluated on both real and synthetic graphs,

including widely used machine learning models, scale-free graphs, and random graphs. The

results show that GAP achieves competitive partitions while being up to 100 times faster

than hMETIS. Furthermore, GAP demonstrates its ability to generalize to unseen graphs,

producing partitions with low edge cut and high balancedness.

All the presented tools have the V-cycle flow in common, either as the main flow, fol-

lowing its steps one by one, or as a general approach employing only the ideas of coarsening

and refinement steps as presented in GAP and KaHyPar. This persistence of the literature on

this flow led us to decide to utilise this flow on our tool also. The second worth mentioning

point of this presentation is that none of these frameworks utilise any other circuit character-

istics to produce the results apart from the circuit graph connectivity. This is a major issue

considering that the partitioning phase is at the early stages of the ASIC flow, because the

following steps will use a suboptimal result regarding timing, power and other related con-

straints. To address this issue, our approach, by taking as input the industrial PDKs formats,

encompass all the gate characteristics during the initial separation and optimisation process

of the clustering and partitioning phase.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 4

Our Contribution

4.1 Introduction

In previous chapter was thoroughly analysed the importance of Multi-Level flow. How-

ever, it is rather obvious that most of the existing algorithms and methodologies are outdated

or insufficient to address the complex challenges posed by the ever-evolving semiconduc-

tor landscape. The statistics and Moore’s Law predictions suggest that sooner than later the

Multi-Level flow will be integrated in standard ASIC design flow as it will become manda-

tory. This highly possible outcome led us to research this topic and come up with a portfolio

of solution in areas of interest aligned with our expertise. Thus, based on the literature and on

the industry feedback, we observed that one of the most complicated and crucial steps was

the initial partitioning of the chip. Given that this step affects the placement phase, which

affects all the other afterwards, it is of paramount importance to produce high quality results.

The current chapter presents a cutting edge partitioning tool able to tackle advanced mod-

ern semiconductor challenges following the clasic V-cycle flow. Starting the analysis, this

section discusses two multilevel clustering methods developed and optimised by our team

and also exhibits various optimisation steps which are implemented or will be in the foresee-

able future, as they would have significant impact in the QOR. The next part of this chapter

introduces the core multilevel partitioning approach, combining both a recursive bipartition-

ing and a kway partitioning algorithm to extract area balanced groups of instances with min-

imum cutsize. This section is the most complex and yet important of this work, as it presents

all the introduced execution time and quality results optimisations techniques developed for

this thesis.

43
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

44 Chapter 4. Our Contribution

4.2 Multi-Level Clustering Phase

Our algorithm, addressing the clustering phase, as every other related approach, is tar-

geted to create fairly balanced, loosely connected groups of objects. Its key difference is that

it utilises circuit oriented metrics to assign a notion of criticality to its decisions supporting

the rest of the ASIC flow, while, at the same time, is aware of the common practices often

used before the engineer reach this step of the flow. Even though, the algorithm outline seems

quite simple, there are many critical details to ensure high quality results in minimum execu-

tion time regardless of the design. Because of that, it is important to analyse the algorithm,

targeting to highlight all these features, rendering it a superior alternative to the most of the

current state-of-the-art tools.

Starting from the beginning our clustering algorithm operates at a gate-level netlist, coars-

ening it to a number of levels, where each clustering level, above the standard cell level, i.e.

Level 1, contains a set of lower level clusters and unclustered standard cells. Each standard

cell or object must be uniquely assigned to a cluster, at each clustering level, creating a hi-

erarchy, which will be used by the multi-level partitioning algorithm described below. Our

algorithm is targeted to create area balanced clusters both within the same level and across

the levels of hierarchy. Balancing object areas, as much as possible, is also very important,

as clusters become the new operational grain. Especially, in force-directed placement for ex-

ample, as object area is typically a function of the spreading force [39], the more uneven the

cluster areas, the more pronounced the spread forces between clusters, reducing sensitivity

to cluster-to-cluster connectivity. The second objective of the algorithm is to group instances

based on net fanout or timing metrics to assist the following operations of the ASIC flow, i.e.

the placement and the routing phase. In modern EDA tools, the majority of the algorithms

are targeted to reduce the timing violations and the high fanout nets of the design, as both of

them jeopardise the performance and the power consumption of the chip respectively. Last

but not least, through the clustering phase, the reduction of the adjacency matrix density is

required, which indicates the reduction of inter-cluster connections. We could consider each

external cluster connection as a dependency, preventing the exploitation of the divide-and-

conquer nature of the algorithm and as a result reducing its effectiveness on algorithms such

as extraction and signoff timing phases. These steps require each cluster to be as much as

possible isolated from the rest of the circuit, as every outgoing connection introduces notable

error in their analysis.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.1 Top Level Algorithm Presentation 45

4.2.1 Top Level Algorithm Presentation

To further understand the innovation of this approach, it is wise to analyse the steps of the

algorithm to highlight the previous theoretical quality targets through a thorough inspection

of them. The toplevel algorithm outline of the algorithm can be found below in this section,

as long as the core algorithm growing the clusters.

Initiating the review of the algorithm, clusters are created by assigning standard cells to

them, based on a single seed net, which has a notion of criticality, introduced by the previous

referred quality metrics, with nets sorted by that critical parameter as shown in the first line

of the algorithm. This will typically be fanout, with increasing or decreasing order, however

it may also be a timing aware metric as slack or delay. Then, at lines 3-9, and with the ini-

tial level set to 1, the function grow_mlclusters() is called, which corresponds to the

core clustering algorithm, presented in Algorithm 4. The conditional at line 10 checks the

clustering termination condition, i.e. the current level objects, against the FO parameter. If

cluster creation is saturated for the current level, line 8 exits the loop. Then, at line 11, a

post-clustering flattening is performed to abolish inferior quality clusters by flattening them

at their level.

Algorithm 3 Clustering Algorithm Top-Level
Input: Netlist (Standard Cells, Nets), Sorting Order (O), Final Objects Number (FO), Level Reduction

(LR), Upper Area Bound Ratio (UBR), Level Upper Area Bound Ratio (LUBR), Minumum Clusters per

Level (MCL).

Output: Set of Clusters per Level, up to a computed Maximum Level, satisfying input parameters.

1: SN = sort_nets(Nets, O); // sort nets based on specified order O //

2: l = 1; // level 0 is standard cell level //

3: repeat

4: // grow current level clusters //

5: |clusters(l)| = grow_mlclusters(Netlist, l);

6: l = l + 1;

7: if (|clusters(l)| <MCL) then

8: break;

// cluster creation saturated at current level //

9: end if

10: until (|objects(l)| < FO); // clustering exit condition //

11: flatten_mlclusters(clusters per l,maxlevel);

// post clustering Flattening step to guaranteeMNM //

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

46 Chapter 4. Our Contribution

4.2.2 Algorithm Parameters Presentation

Before we continue further on the core algorithm, it is wise to take a step back and review

the parameters of the algorithm, as they significantly affect the operation of the algorithm and

its quality of results. The algorithm has nine tuning parameters responsible to determine the

methods which will be used as long as the permissible limits.

Initiating the parameters review, we could not start by the most important of them, called

Level Upper Bound Ratio LUBR. This variable determines the maximum allowed ratio be-

tween the smallest and largest area cluster of the current level. During the operation of the

algorithm, this parameter is altered based on the ratio achieved on the previous level and

the number of the current level. This modification allows the algorithm to start grouping

the objects with more flexibility during the first levels, while as the clusters become bigger

and bigger this flexibility must be reduced to avoid the grouping of large heavily connected

objects which results in unbalanced clusters.

Parameter Name Interpretation

Level Upper Bound Ratio (LUBR) maxareacluster(N)
minareacluster(N)

Upper Bound Ratio (UBR) maxareacluster(N)
maxareacluster(N−1)

Area Bound Type (ABT)
Method evaluating the balancing

factor of the clusters

Level Reduction (LR) Ratio #ofobjects(N)
#ofobjects(N−1)

Final Objects (FO) Number
termination condition,

when objects ≤ FO

Nets Sorting Type (NST)
Nets sorting criticality type

Fanout, Delay or Slack

Nets Sorting Order (NSO)
Nets sorting order

Increasing or Decreasing

Minimum Clusters per Level (MCL)
alternative termination

condition

Minimum Number of Members (MNM)
post clustering

flattening constraint

Table 4.1: Algorithm main Parameters, where value N stands as hierarchy levels

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.2 Algorithm Parameters Presentation 47

The next one, is the Upper Bound Ratio UBR parameter, controlling the area growth of

clusters through levels. This parameter is closely related with the continuous one, Area Bound

Type ABT . In order to prevent the unpredictable growth of clusters during the hierarchy

levels, the first parameter, determined by the user, enforces a specific area balancing factor

between the current and previous level clusters. However, due to the fact that it is not that

trivial to decide if the average or maximum area cluster of the previous level should be used,

the second parameter introduces four metrics to evaluate the area balancing through levels.

The first metric is calledMAX and considers only the maximum area cluster of the previous

level. The second one is called MIN −MAX and creates a range of values based on the

maximum area cluster of the previous level, in which the clusters of the current level must be

included to be considered as valid. The third method is called AV ERAGE − AV ERAGE

and evaluates the maximum allowed area for the current level based on the average area

cluster of the previous level and the average area cluster of the current level until this stage

while the final approach, called AV ERAGE − MAX , utilises the average cluster of the

previous level and the maximum area cluster of the current level so far.

Continuing to the next two parameters, named Level Reduction LR and Final Objects

Number FO, it controls the amount of levels that will be produced during the clustering

algorithm. The first one computes the expected reduction of clusters number in each level,

while the second one sets the lower limit of level clusters. Thus, combining those two param-

eters, we could theoretically predict the produced levels of the algorithm. However, because

of the post-processing algorithms performed in each level and various artefacts regarding the

connectivity of the design and area balancing of previous levels, this prediction is not guar-

anteed. Despite that, these parameters work as soft restrictions for the algorithm to produce

a high-quality result, creating minimum levels of hierarchy.

The following two parameters adjust the criticality factor assigned to every net of the

design, based on which the clustering algorithm will assess and perform the grouping of the

gates. Starting by the criterion type, which either will be physical aware i.e. net Fanout

degree or timing aware i.e. gatepin delay or slack, the user can select the mode by assign-

ing the respective value to the NST variable. On top of that, the ordering of the nets will

significantly affect the outcome of the algorithm as in some case the criterion should be used

as pulling force while in others as pushing force. The user is able to switch between these

modes by changing the value of the NSO variable.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

48 Chapter 4. Our Contribution

Last but not least, the final parameters tune the post-processing algorithm referred as

flattening step. As briefly mentioned before, this step aims to demolish small clusters which

would jeopardise the divide-and-conquer nature of the algorithm. To determine the amount

of objects consisting a small cluster, the MCL sets the lower limit of objects per cluster,

while to prevent the annihilation of all level clusters and theMNM value sets the minimum

allowed clusters number per level. Also, the last variable is used as early exit condition in

case that the algorithm do not succeed to create enough clusters at the current level.

4.2.3 Core Algorithm Presentation

In an abstract perspective, the core clustering algorithm consists of two phases, Phase I

is seed creation, while Phase II is clusters fill-in. Phase I completes when the level reduction

ratio is satisfied by the number of generated seed clusters or there are no available seed nets

remain. The following step will then grow the formed clusters until there are no more gates

to group or the area balance constraints disallow any further moves. A thorough pseudocode

of the core algorithm is presented in Algorithm 4.

The main loop, lines 4-32, of Algorithm 4 grows clusters one sorted net at a time, to

control the area bounds and ensure that the cluster area is balanced as much as possible. If in

Phase I, the loop selects j as the current seed net, line 4, in Phase II, lines 5-7, j is the next

seed net. Function get_net_candidate_object, line 8, identifies a candidate standard

cell or object to group with the current net. This corresponds to the lowest area, unclustered

standard cell or object of the current net, again to ease the area balancing. If the net is covered,

this indicates that the entire net fanout has been clustered, so no candidate has been found.

Thus, the inflation of this cluster will stop and the algorithm will continue with the rest of the

seed nets.

Upon an unsuccessful candidate, the next attempt will take place when the net is revisited

by the for loop, asnetcoveredwill be 1, line 9. If a candidate has been identified, then function

check_area_and_insert is called, line 12. If the area bounds are violated, by adding the

standard cell or object to the cluster, the latter returns a result of 0. In Phase I, the loop will

then consider the next net. The algorithm will move to Phase II when the condition of line 29

is satisfied. Phase II exits when all nets set fail to add further standard cells or objects to any

cluster, line 23, and the clusters created at the current level are returned, line 24. Note that a

successful clustering step resets the failed nets counter, line 17.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.3 Core Algorithm Presentation 49

Algorithm 4Multi-level Clustering Core Algorithm, i.e. grow_mlclusters() function

of Algorithm 3.
Input: Netlist (StandardCells,Nets), Sorted Nets (SN), Level_Reduction (LR), Upper Area Bound Ratio (UBR), Level Upper Area

Bound Ratio (LUBR), Minimum Clusters per Level (MCL), Current Level (l)

Output: Set of Clusters at current Level, ensuring area balance between them and aiming for their number to be≥ (1
LR

)× previous level

Clusters.

1: // clusterednets = list of nets corresponding to current level clusters //
2: //mlclusternets[j] = additional nets associated to cluster of seed net j, related to cluster cell net contents //

3: phase = 1;

4: for (j in Sorted Nets SN) do

5: if (phase == 2) then

6: j = next clustered net in clusterednets; // clusters fill-in phase //

7: end if

8: (netcovered, candidate) = get_net_candidate_object(j, l);

9: if (netcovered == 1) then

10: continue

11: else

12: // check area bounds, and if satisfied, insert candidate into mlcluster of net j //

result =

check_area_and_insert(j, candidate, UBR, LUBR, l);

// result indicates whether area bounds are satisfied //

13: if (result == 1) then

14: if (phase == 1) then

15: clusterednets = clusterednets ∪ j;

16: else if (phase == 2) then

17: failednets = 0;

// reset failed nets count upon successful clustering //

18: end if

19: else if (result == 0) then

20: // clustering candidate of net j failed //

21: if (phase == 2) then

22: failednets = failednets + 1;

23: if (failednets == |clusterednets|) then

24: return clusters;

// all candidate nets failed; clustering Phase II ends //

25: end if

26: end if

27: end if

28: end if

29: if (|objects(l)| ≥ (
|objects(l-1)|

LR
) then

30: phase = 2; // move from phase 1 to phase 2, i.e. fill-in phase //

31: end if

32: end for

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

50 Chapter 4. Our Contribution

Figure 4.1: Simplified Multi-Level Clustering algorithm operation overview step-by-step

[36].

An additional complication is that at every level of clustering, clusters of previous levels

will exist. Thus, the total number of objects at level L, line 29 of Algorithm 4, and line 9

of Algorithm 3, include (i) clusters of level L, (ii) any other clusters of any level i, which

have no parents up to level L, and (iii) any unclustered standard cells at level L. This set

represents the Total Number of Objects at Level L. Similarly, at the last level of

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.4 Post-processing algorithm 51

clustering, FO represents the desired Total Number of Objects at the last level. Note that

using the Total Number of Objects at Level L is preferable to considering solely the clusters

of Level L, as the former provides a more complete picture of the complexity, However, as

mentioned above, the FO criterion may indeed not be satisfied. This may occur if no more

clusters may be grown past a certain level by Algorithm 4. As the key difference between

clustering and partitioning, the first one is a bottom-up algorithm, which makes it harder to

predict and satisfy the exact number of resultant objects at the Top-Level. A brief overview

of the algorithm operation is presented below in Figure 4.1.

4.2.4 Post-processing algorithm

As mentioned before, to eliminate poor-quality clusters a post-processing approach has

been introduced which either destroys the problematic cluster and releases its children into

the level or emerges its children with its parent objects. The algorithm is performed right after

the creation of the clusters’ hierarchy, i.e. line 10 in Algorithm 3. The algorithm completes

in three phases, namely Top-down, Bottom-up and Clean up. All of them have the same end

goal, approaching it from different perspectives in order to resolve all possible corner cases.

Top-down flattening operates from the last to the first clustering level, identifying clusters

which do not satisfy the MNM parameter. If this is the case, members of the cluster may

be collapsed, by 1 level of clustering, to reveal their children. This will increase the original

cluster’s members. Instead of arbitrary collapsing members of the MNM violating cluster,

we sort its members by area, and identify its minimum area child. This is done to ensure that

we identify the minimum area solution while satisfying theMNM goal. Unfortunately, this

phase is not sufficient to satisfy theMNM goal. This is because a cluster may not have any

cluster members, but solely standard cells. This necessitates the usage of bottom-up flattening

as well. Bottom-up flattening works in the opposite way, from the first to the last clustering

level. If a cluster’s members are less thanMNM , and, considering its parent cluster, the fol-

lowing holds |MNM−childmembers| > |MNM−(parentmembers+childmembers−

1)|, then the cluster is collapsed.

Last but not least, a Clean-up step is also performed during Bottom-Up clustering, which

collapses any leftover clusters with few members. Any cluster with members less than 20%

of MNM will be collapsed. An example as to why Clean-up is necessary is the following.

If a cluster was to end up with 40 single standard cell clusters, for an MNM of 20, only

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

52 Chapter 4. Our Contribution

20 of the 40 would be collapsed, ending up with 20 standard cells and 20 single standard

cell clusters. The Clean-up step resolves such corner cases, but it can lead to unclustered

standard cells or more clusters than had been requested. The unclustered standard cells or the

greater number of final clusters can be filtered at a post-clustering step, such as partitioning.

This work focuses only on the clustering step, while the experiments gives an insight on

clustering QoR, that impact on partitioning and placement steps.

4.2.5 ”2nd” Version of the Algorithm

Even though, the described algorithm and the post-processing method appear sophisti-

cated and well-designed, the findings were unexpected. The main problem was that the algo-

rithm used to create substantially more levels than the expected, while the grouping at each

level was of poor-quality, as very few objects were grouped together, leaving a significant

amount of standard cells completely unclustered at each level. This feature could compromise

the entire ML ASIC flow, as the objects’ number at the final level was not notably reduced as

it should be. To overcome this obstacle, we came up with a second version of the algorithm

which is perfectly aligned with the basic pillars of the first one, introducing some new fea-

tures. Due to the fact that this project was truly extensive, minor details of the second version

should be omitted to keep the length of this report reasonable.

The basic new feature could be located in line 10 of Algorithm 4. As it can be recalled,

the previous algorithm skipped the covered seed nets, while in this version, it looks for new

candidates in the connections of the seed net fanout, giving a sense of depth first search in

the algorithm. The idea behind this approach was that the previous version used to come to

an abrupt halt during the growing of the clusters as the seed nets were overlapping. Thus,

there were two available options to tackle this issue. The first one was to spread the seed nets

towards the logic levels of the circuit, and the second to prevent the precipitously exiting by

inserting more candidates to process. The first idea is substantial more complex to be im-

plemented, as there are numerous heuristics and assumptions that should be included. Still,

it is one of our future goals to include it into our algorithm, as it could yield better quality

results. The second strategy, on the other hand, has been implemented, showing substantial

gains in results. Delving into the details of the new feature, the same metrics and methods

are introduced for the additional gate candidates in order to be sorted and used accordingly.

The user has the ability to select different order and criticality metric to assign into the initial

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.5 ”2nd” Version of the Algorithm 53

Figure 4.2: Second version of Multi-Level Clustering algorithm flow overview [36].

and supplementary candidates. This detail is critical, as this way the grouping of the circuit

instances obtains a perception of weights adjusted to the circuit level. This is why the algo-

rithm produces groups suitable to be used in timing driven oriented operations, i.e. the

critical delay paths distribution remains low, while at the same time the fanout distribution

of the critical nets follows the same trend. The flow presented in Figure 4.2 stands as a proof

of concept of the newly introduced feature, showing better results, considering the number

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

54 Chapter 4. Our Contribution

Design Levels
Level Area

Ratio

Through Levels

Area Ratio

Unclusterd

Components

Industrial 1 14 104.49 1.59 2011

Industrial 2 18 802.89 1.56 246

vga_lcd 2 18 802.89 1.56 246

b19 57 62.20 1.11 1

jpeg 26 1870.80 1.38 0

leon3 20 25.94 1.22 2

netcard 25 27.78 1.27 4250

Table 4.2: First algorithm version Clustering QORs results using the open-source designs.

of levels as long as the required number of steps to complete.

The previous Table 4.2 and Table 4.3 proves the substantial improvement achieved by

this small modification of the algorithm as regarding the required levels number, the level

area ratio balance of the clusters and the final level unclustered components number. These

results highlight the notable reduction in these metrics without worsening the fourth metric,

considering the area ratio of the average cluster across two consecutive levels. This could be

translated as that the clusters are able to grow larger inside the level absorbing more objects

while at the same time they respect the area balance constraints regarding the inner level and

through hierarchy. The execution time overhead and the memory consumption was purposely

excluded from the results, as both versions complete their operations in a few seconds in all

considered benchmarks.

4.2.6 Macro aware Clustering technique

In order to facilitate a generic algorithm able to work with all kinds of circuits, it is not

possible to exclude the handling of circuit macros. Macros are usually large objects specified

as standard cells, such as SRAMs or other pre-characterised subcircuits. The problem with

macros during the clustering phase is that, because of their vast area and high number of

connections, they tend to have high criticality and gain, but bringing together such an object,

even with the smallest object, may cause irreparable area imbalance to the clusters. In such

circumstances, the pull force towards other objects may be so strong that this group could

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.2.6 Macro aware Clustering technique 55

Design Levels
Level Area

Ratio

Through Levels

Area Ratio

Unclusterd

Components

Industrial 1 9 10.43 1.01 1253

Industrial 2 8 10.13 1.18 231

vga_lcd 8 10.13 1.18 231

b19 5 8.16 1.28 0

jpeg 5 10.72 1.27 0

leon3 5 15.09 1.33 0

netcard 25 6.67 0.97 1

Table 4.3: Second algorithm version Clustering QORs results using the open-source designs.

continue to absorb standard cells through levels even though it violates the area balance cri-

teria. A set of groups including such a case can not be used afterwards into a partitioning or

placement algorithm, as both of them utilise objects area into their cost functions.

Algorithm 5 Objects Areas Outliers Detection Algorithm
Input: List of objects areas sorted in ascending order sorted_objects_list[]

Output: Lower area bound lower_area_bound, Upper area bound upper_area_bound.

1: lower_quartile_area = sorted_objects_list[0.25 * size]

2: upper_quartile_area = sorted_objects_list[0.75 * size]

3: IQR = upper_quartile - lower_quartile

4: lower_area_bound = lower_quartile_area - [1.5 * IQR]

5: upper_area_bound = upper_quartile_area + [1.5 * IQR]

To avoid such cases, our algorithm encompasses a method to detect and exclude such

objects which their area exceeds a dynamic upper bound limit. It is important to clarify that

our approach do not detect macros as they are a specific type of objects, instead it generally

detects large objects. However, most of the time they include the majority of macros. To

detect these objects, our algorithm exploits the concept of statistical outliers, translating

them into an upper and lower dynamic area bound limit respectively. In our case, only the

upper limit is useful because it can broadly classify the objects areas into regular and large.

By the end of objects separation, performed by the Algorithm 5, the algorithm marks the

violating objects in order to be excluded from all operations in the next level run. Thus, it

is ensured that an object large enough, such as a RAM, will not be grouped with any other

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

56 Chapter 4. Our Contribution

object during this level. However, it would be a mistake to permanently exclude an object

from this phase, but considering that the clusters are growing through levels, eventually the

outliers will be vanished, and all the objects of the level will be considered to be grouped,

maintaining the area balance.

Figure 4.3: Present the placement result of four of the under review benchmarks containing

large objects [12].

Using a small but representative set of benchmarks, we evaluated this method, regard-

ing the novel clustering metrics, against the second version of the algorithm. The Table 4.4

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3 Multi-Level Partitioning 57

presents the obtained results. To further support the intuitive understanding of this topic, we

exhibit in Figure 4.3 the placement of some of the benchmarks to understand the difference

between the included large objects and the standard cells of the designs. The presented re-

sults show an important reduction of level area ratio in some cases, such as case four and

five, while at the same time the execution time is reduced. On the other hand, we can observe

cases such as the first, the second, the sixth and the seventh where the area ratio remained the

same or slightly increased. However, this behaviour is observed on designs with relatively

small number of instances, rendering the method suboptimal for these kinds of benchmarks.

It is important to mention at this point that the achieved area balance is not suitable for

almost any kind of applications. Yet, due to the fact that the clusters of the final level, across

benchmarks, are a few tens of thousands in number the final partitions most are able to respect

the user defined constraints or at least produce a result close enough to the requested.

4.3 Multi-Level Partitioning

Continuing towards the main contribution of this thesis, the heuristics and methodologies

considering theMulti-Level partitioning phase of the ASIC flow are presented in this section.

The top-level partitioning technique is explained briefly in this section, followed by a set

of optimizations that improve the quality and increase the operational spectrum of both the

novel FM and the Vcycle flow. The input of this methodology is the hierarchy of levels

created by the clustering phase, as long as the physical and timing characteristics of the circuit

components. The output contains a set of partitions, including only gate-level instances.

The objective of this algorithm is to create as many partitions as the user requested, re-

specting as much as possible the predetermined area balance in reasonable execution time

utilising minimum memory resources. This challenge was particularly difficult as the core

algorithm of our partitioning approach is the Fiduccia–Mattheyses (FM), which as described

before is an exhaustive method having significant performance issues whenever it is used for

large scale circuits. Despite all that, we managed to achieve our goal, introducing a set of

heuristics which will be thoroughly analysed in the following sections.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

58 Chapter 4. Our Contribution

Design Novel Algoirthm

Levels Unclustered AreaRatio Exec Time

adaptec1 9 664 93.44 35.695

adaptec3 16 2012 403.30 74.35

adaptec4 16 3228 458.44 105.663

adaptec5 18 3975 1643.95 271.471

bigblue1 10 1060 216.59 45.695

newblue1 8 2201 146.79 40.95

newblue3 15 9837 306.20 65.92

newblue6 18 4845 834.34 412.61

Design Large Objects Awareness

Levels Unclustered AreaRatio Exec Time

adaptec1 9 863 94.28 44.916

adaptec3 14 3325 457.09 84.59

adaptec4 15 4896 311.63 72.10

adaptec5 17 5751 1351.18 180.74

bigblue1 10 1426 157.02 34.99

newblue1 8 2260 145.14 30.383

newblue3 14 10997 265.42 62.231

newblue6 17 6953 601.53 330.33

Table 4.4: The first part of the table present the novel algorithm version Clustering QORs

results. The second part present the large objects aware algorithm version Clustering QORs

results. Both parts use the same designs with macros.

4.3.1 Top-Level Partitioning Algorithm

Proceeding to present our partitioning approach, it is wise to present the outline of our

proposed partitioning algorithm, Algorithm 6, as it includes the FM in various steps of the

process. Our partitioning approach consists of two phases. Much like the clustering method-

ology, the first phase creates the required partitions while the second refines them, produc-

ing the final result. As noted in previous sections, the key difference with the clustering is

that the number of partitions is non-negotiable and must be achieved. To do that, the initial

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.1 Top-Level Partitioning Algorithm 59

partitioning phase utilises the recursive bipartitioning and the second the kway-partitioning

approaches respectively, as they described in the respective sections accordingly.

The first method is used to optimally separate the circuit into partitions, avoiding the

random distribution of the cells. This way, the exact number of partitions will be created

unless the objects are not enough. In previous section was mentioned that a binary tree is

created and at each tree-node an FM algorithm is performed to assign objects into the children

nodes until the leaf nodes are reached. The main drawback of this initiative is that if the

bisection at each node is performed producing perfectly balanced partitions, the final result

will be imbalanced, unless if the requested number of groups is a power of two. To avoid this

problematic situation, have to implement a routine to assign partitioning area ratios to each

intermediate node of the binary tree, which the bisection algorithm must respect.

Our routine ensures perfectly area balanced leaf nodes. This challenge is addressed by

computing the required percentage of the circuit which must be included in each partition,

and assigning it into every leaf node. Afterwards, the two children partitions will compute

the ratio of their assigned percentage as:

LHS_percentage
RHS_percentage

and the produced number will be assigned into the parent node. This procedure will continue

until the root node is reached. Then, starting from the root node, the bisection algorithm will

start to operate, assigning the produced objects lists to each children node respectively. In

this routine there are many corner cases which are covered in our implementation, but it will

not be mentioned in this report owing to space restrictions.

It is obvious that after the assignment of the ratios the forward traversal which recursively

bisects the nodes is 100% vectorised, whichmeans that it is completely parallelisable.We also

implement a multithread version of recursive bipartitioning methodology, yielding notable

execution time improvement. By the end of this procedure, a post-processing area balancing

algorithm is performed if needed, else the next phase begins. This optimisation method will

be comprehensively described in the following sections, as it is used in more than one time

during the entire partitioning phase.

The next phase, the so-called refinement phase, utilises the kway-partitioning ap-

proach, as many groups are created and have to be optimised concurrently. As highlighted

before, the novel FM is designed to bisect the circuit instead of splitting it into multiple

groups, thus the initial FM had to be extended in order to address this challenge also. As was

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

60 Chapter 4. Our Contribution

Algorithm 6 Top-Level Partitioning Algoirthm
Input: Netlist (Standard Cells, Nets), Clusters Hierarchy, Partitions Number PN , Area Balance Factor

ABF , Gain Type GT , Post Processing Optimisation Phase PPOP , FM type FMT , Level Unfolding

Strategy LUF .

Output: Set of Partitions, satisfying input parameters.

1: Hierarchy_Level = get_mlclusters_maxlevel();

2: initial_phase = 1;

3: repeat

4: if (initial_phase == 1) then

5: objects = get_level_objects(Hierarchy_Level);

6: initialise_recursive_bipartitioning_binary_tree(Netlist, PN);

7: status = recursive_bipartitioning_MT(objects, ABF, GT, FMT);

8: if (status == -1) then

9: /* error status, the algorithm must exit */

10: break;

11: else if (status == -2) then

12: /* warning status, not enough objects, to fill in all partitions, in this level */

13: Hierarchy_Level = Hierarchy_Level - 1;

14: continue;

15: else

16: Hierarchy_Level = Hierarchy_Level - 1;

17: initial_phase = 0

18: end if

19: optimise_area();

20: end if

21: unfold_partitions_level(Hierarchy_Level, Clusters Hierarchy, LUF);

22: objects = get_level_objects(Hierarchy_Level);

23: if (check_level_constraints() == TRUE) then

24: status = kway_partitioning(objects, ABF, GT, FMT)

25: if (status == -1) then

26: /* error status, the algorithm must exit */

27: break;

28: else

29: optimise_area();

30: Hierarchy_Level = Hierarchy_Level - 1;

31: end if

32: end if

33: until (Hierarchy_Level == 0)

34: optimise_cutsize(PPOP)

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.1 Top-Level Partitioning Algorithm 61

Algorithm 7 Recursive Bipartitioning Binary Tree Initialisation
Input: Netlist (Standard Cells, Nets), Partitions Number PN .

Output: Set of Clusters per Level, up to a computed Maximum Level, satisfying input parameters.

1: tree_nodes_number = (2 * PN) - 1;

2: tree_nodes = initialise_tree(tree_nodes_number);

3: for each node in tree_nodes backwards do

4: if node == TRUE then

5: /* compute circuit percentage which must be included in this partition */

6: /* this value will be used only to compute the parent note bisection area ratio */

7: area_percentage = 100 / PN ;

8: assign_area_percentage(node, area_percentage)

9: else

10: /* compute ratio based on children nodes area percentage */

11: ratio = node.LHS_child_area_percentage / node.RHS_child_area_percentage;

12: assign_ratio(node, ratio)

13: /* compute node area percentage as the combination of its children */

14: area_percentage = node.LHS_child_area_percentage + node.RHS_child_area_percentage;

15: assign_area_percentage(node, area_percentage)

16: end if

17: end for

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

62 Chapter 4. Our Contribution

presented, the FM utilises two sorted heaps, one for each partition, to obtain the gains of the

objects towards this partition. To extend its operation to multiple partitions, we modified it

to maintain as many sorted heaps as the number of partitions storing the gains of the object.

It is not that far-fetched, that this heuristic will explode thememory consumption, creating

a relatively low upper bound on the number of partitions and instances that this approach can

handle within reasonable time and resources. That prospect disproves our initial claims of

efficiency in large scale circuits, leaving us with no other option rather than to address this

issue. This way, we came up with four policies which trim the heap lengths into a manageable

size to ensure the quality and effectiveness of our method. These polices are completely

tunable by the user, but also can be combined into a framework to automatically trim the

heap lengths based on the initial size and the contents of each one of them specifically.

Apart from the cutsize optimisation step included in the second phase, it must gradually

unfold the inserted hierarchy of clusters, mapping the assigned objects of previous level parti-

tions into the next one. Even though this stage seems as a straight-forward technique, it holds

as a key aspect of the over all performance, as it depends vastly on the provided clustering

hierarchy, affecting the number of instances which will be taken under consideration by the

optimisation step. Thus, keeping in mind the necessity of efficiency in our work, we devised

five partition unfolding algorithms to better automatically adapt to the specified clustering

hierarchy.

The V-cycle approach predicts that the kway algorithm is performed at each level af-

ter the mapping and the unfolding of current level objects into the next one. However, to

further reduce the computational costs, we alter the novel Vcycle flow by skipping or re-

peating levels with certain characteristics. Thus, unnecessary initialisations are avoided on

levels with few dozens of objects and on the other hand levels overloading by objects are

treated accordingly to avoid endless runs compromising the efficiency of the algorithm. All

the briefly presented optimisation features of this section are assiduously discussed in the

following sections.

4.3.2 FM algorithm optimisations

Until now, we have mentioned several times that we altered the novel FM algorithm to

better match the requirements of our goal. Before we further dive deeper into case specific

optimisations, we believe that it is the best opportunity to present the overview of our mod-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.2 FM algorithm optimisations 63

100%

66.6% 33.3%

33.3% 33.3%

LE
VE

L
0

LE
VE

L
1

LE
VE

L
2

Figure 4.4: Complete V-Cycle flow followed in order to extract K-Way partitions

ified FM algorithm. In previous section was mentioned that the algorithm consists of one

loop iterating through all objects in sorted order, locking their positions to eventually find

the minimum cutsize value. Our proposal, as presented in Algorithm 8, utilises two nested

loops iterating through all objects in sorted order, temporarily locking them to detect a local

minimum of cutsize at each inner loop. This method yields a significantly better outcome,

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

64 Chapter 4. Our Contribution

since the testing order of the objects has a big impact on the final results.

Algorithm 8 Proposed FM algorithm
Input: Level Objects, Partitions Number PN .

Output: Objects list representing partitions.

1: initialise_heaps(PN);

2: extract_partition_cutsize_and_gains_mlobjects();

3: repeat

4: sort_heaps();

5: store_partitions_characteristics(&gain, &arearatio, &object);

6: repeat

7: pop_larger_gain_heap_node();

8: get_object_characteristics(&area, &destination_partition);

9: if (check_object_movement_for_area_violations(arearatio) == TRUE) then

10: store_violating_object(object);

11: continue;

12: else

13: pop_all_other_identical_instances(object);

14: end if

15: reinsert_all_violating_objects_into_heaps();

16: move_object(destination_partition);

17: update_partitions_characteristics();

18: store_movement_logistics();

19: until (FM_tentative_iterations_evaluation() == TRUE)

20: detect_minimum_cutsize();

21: until (FM_iterations_evaluation() == TRUE)

22: return(create_objects_lists());

Even though this algorithm covers only a few lines of code, each one of them hides un-

derneath a sophisticated method to perform its task at the best performance. If we start from

the beginning, the very first line of the algorithm holds the majority of the execution time

overhead. Like mentioned before, the data structures, storing all this information, are sorted

binary heaps to reduce the computational time required to preserve them sorted. A binary

heap considered sorted when the following rule holds.

((heap_node[i] > heap_node[2 ∗ i])AND(heap_node[i] > heap_node[(2 ∗ i) + 1]))

Thus, the removal of the larger heap node or the insertion of a new one requires maximum

log nodes base 2 operations to resort the heap. This way, a significant amount of execution

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.2 FM algorithm optimisations 65

time was saved, as this operation is performed every time a new FM iteration begins, without

affecting the final product quality.

The second line will be skipped for now and will be discussed in the next section. Right

after that, the enclosed loop begins to pop one by one the nodes of the heaps to test their

tentative movements. Each insertion of the heaps include an object, a destination partition and

a gain of the object towards this partition. The algorithm has to evaluate if the area balance

ratio that will occur in case that the object move into that partition violates the specified

bounds. If the object movement is marked as invalid, then the object has to be stored with the

rest of the area violating objects in order to be reinserted into the heaps later in the process.

In other case, regarding if the algorithm works in a bisection or kway mode has to pop out all

the other identical nodes, specifically the other possible movements of this object, and then

reinsert all the previously declared violating objects into the heaps. The intuition behind this

decision is the after this movement, the area ratio might change just enough in order for a

previous invalid verdict to change into an acceptable action.

The following three lines are the core procedure of this algorithm, transferring the objects

between partitions and logging and updating their movement statistics. The details of these

procedures will remain hidden for this report, to preserve a reasonable length. However, the

outline is that each movement modifies the cutsize and area ratio of the partitions and based

on this information the evaluation checkpoints in lines nineteen and twenty-one respectively

determine if the algorithm will continue or not. Also, based on the logging of the movements,

the algorithm in line twenty locates the minimum achieved cutsize so far and reverts the state

of the partitions into that log state. The next FM iteration will start from that state, considering

it as the initial distribution of the objects into the partitions.

To fully understand the proposed algorithm, it is mandatory to analyse the exit condi-

tions previously referred, as they notably can alter its operation. The first algoirthm, named

FM_tentative_iterations_evaluation() determines if the tentativemoves should

stop or not. The has three modes based on which decides the exit condition of the inner loop.

The first and more exhaustive mode signals the loop to exit whenever the heaps are empty,

while the second raises the exit flag whenever a negative value of gain is reached. This is a

greedy approach and because the negative gain value means that the current move will prob-

ably increase the partitions cutsize we terminate the inner loop to start over using positive

values. The last of the three methods is called Early Exit FM and for each movement

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

66 Chapter 4. Our Contribution

compute the slew between the minimum cutsize so far and the current value to decide if

the exit condition is met or not. The boundary value, above which the exit flag is raise, is

determined by the user. The next checkpoint controls the outer loop of the algoirithm and

is called FM_iterations_evaluation(). This one also integrates the previous three

modes but in a different way. The exhaustive mode allows the achieved cutsize value to be

lower or equal to the previous iteration result, while the greedy mode breaks the loop if the

current value is lower than the previous. On the other hand, the third one, Early Exit

mode, exits if the reduction of cutsize value is not greater than a specified boundary chosen

by the user. All of these heuristics were discovered through extensive experiments based on

modern industrial and academic designs.

The charts in Figure 4.5 present an industrial circuit behaviour using the exhaustive meth-

ods. The conclusions that can be extracted by the first chart are that the progression of the

cutsize through the tentative moves presents hills and sinks as the novel FM algorithm pre-

dicts, making necessary to maintain the hill climbing nature of the algorithm. However, on

the bigger picture, it is quite recognisable from the created V-Cycle that the hill climbing

tolerance effort must be tolerated for a narrow range of values before the algorithm give up.

From the second chart, we can observe that the after the fifth FM iteration, the minimum

cutsize has been very slowly reduced. On top of that, after the first iteration the reduction of

cutsize is performed on the first few tentative moves while the rest of them perform only neg-

ative moves. This information in addition to the previous conclusions extracted from the first

chart renders the third approach as the most efficient considering the performance-quality

trade off. The second one, addresses cases where a quick and dirty result is enough, while the

exhaustive approach, scenarios that even the slightest reduction in cutsize value is helpful.

4.3.3 Gain Value Calculation

During the previous section, the second line of the Algorithm 8 was skipped, as it is

an excellent opportunity to define the gain value and to analyse the ways we compute it in

our methodology. Thus, it would be a same if this analysis was underestimated by the other

equally important information provided in the previous section. So to start, the gain value

could be compared with the pulling force applied into an object by other partitions to move it

from its current one. The most well-known approach is to assign a value, as gain, proportional

to the connectivity of the object with the rest of the partitions. In the background chapter, we

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.3 Gain Value Calculation 67

Figure 4.5: The top side chart presents the progression of cutsize with respect to the tentative

moves, while the bottom side chart presents the progression of cutsize with respect to the

tentative mooves collectively with all FM iterations.

mentioned two types of circuit connectivity representations, the first one was the directed

graph and the second was the hypergraph. In our approach, both of these representations are

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

68 Chapter 4. Our Contribution

used where they best correspond to the current phase of the algorithm.

Using the directed graph representation, the gain of an object can be computed as the

number of inter-partition connections of the object minus the number of intra-partition con-

nections. In a more simplified manner, External− Internal connections number. The first

approach does not integrate any circuit oriented characteristic, while the other one, which

is a bit more complicated, considers the gain of an object based on its nets. In this way, an

object increases its gain by 1 towards a partition if it is the only object of the net laying in the

current partition and a portion or the entire net exists on the other partition in which the gain

is referred to. In continuation of this, the object reduces it gain by 1 in case that the entire

net is located into one partition and preserves the gain intact in case that the net is evenly

distributed into partitions. Due to the simplicity of the first approach, the computation of the

value and update of data structures are of very low-cost while the second one because of the

nets’ consideration require significantly more processing power and memory consumption

to evaluate the gain and update the respective structures.

Even if the second approach seems more well-suited for our goal, the first one yields the

best results. If we consider the complexity of nets into a densely connected design, it is most

probably that initially each partition will maintain a portion of many nets and only a few

will be completely grouped together or at only one object will be excluded. This can cause

degenerate cases where the heaps contain almost exclusively zero gains nodes, restraining

the algorithm to perform really movements without significantly improving the cutsize but

instead spending execution time and memory resources. On the other hand, the first repre-

sentation at the early levels of the algorithm creates a better assignment of gains, performing

many more high-gain movements and as a result notably improving the cutsize. However,

as the levels of the algorithm proceed this representation correlates, and we can observe a

significant reduction into the quality and amount of objects swaps. In this situation, the nets

based approach will be performed, because the majority of the nets are either totally grouped

or have missed one or two objects, and as more detailed and circuit oriented to approach will

refine all these spots and will provide and high quality result.

The Table 4.5 presents the results of eight benchmarks evaluating the gain value calcu-

lation methods introduced before. The results are obvious rendering the per_flyline method

as the best choice for the coarsening phase of the algorithm. Starting by the first case where

we can observe 100% increment in execution time overhead and almost 50% increment in

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.4 Heap Strategies 69

Design per_flylines per_nets

Exec Time Cutsize Area Ratio Exec Time Cutsize Area Ratio

Industrial 1 17.405 22023 3.498 36.835 33570 3.500

Industrial 2 25.282 58243 3.500 475.696 65878 3.500

b19 31.015 38188 3.500 327.222 65027 3.500

jpeg 43.348 73463 3.500 500.872 95612 3.500

leon3 1050.561 138738 3.500 5023.114 203939 3.500

netcard 2168.491 288981 3.500 - - -

adaptec1 60.979 65678 3.500 - - -

adaptec2 835.725 83585 12.475 - - -

Table 4.5: Presents the evaluation of gain value calculation strategies as regarding the stan-

dard partitioning metrics.

cutsize value towards the largest ones where the execution time increment reaches 500% in-

crement in execution time, it is self-explanatory that the second method is suitable for local

optimisation steps. The dashes in the lower right part of the table indicate the high execution

time of these cases, which led us to skip the completion of these experiments.

4.3.4 Heap Strategies

In previous paragraphs, it was mentioned many times the concern regarding the mem-

ory consumption and execution time overhead required to store and maintain the modified

FM binary heaps. Of course, this issue could not be overlooked, and thus we propose four

strategies able to address this issue without sacrificing much of the partitioning QOR. All the

methodologies are targeted to reduce the length of the heaps at each iteration of the algorithm

as they are recreated every time, by avoiding inserting objects with small or negative gain.

The methods are organised on an ascending scaled basis, from the most strict towards the

exhaustive approach, gradually limiting the insertion of objects into them.

The first strategy. which is the strictest method effects both the heaps’ length and the

allowed number FM iterations, disabling the heel climbing nature of the algorithm. In detail,

this strategy for each object detects the movement with the greater gain and allows only this

one to be inserted into the heaps, while at the same time permits only one FM iteration.

These characteristics render it the most time efficient method, having a small quality penalty.

The second approach, aiming to balance the time quality trade off, enables the heel climbing

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

70 Chapter 4. Our Contribution

Design low effort normal effort high effort

Exec

Time
Cutsize

Area

Ratio

Exec

Time
Cutsize

Area

Ratio

Exec

Time
Cutsize

Area

Ratio

Industrial 1 13.882 33,802 1.762 16.128 21,538 3.500 16.353 21,534 3.499

Industrial 2 91.144 112,482 3.500 23.452 56,902 3.500 22.213 56,426 3.500

b19 277.179 94,149 1.158 29.934 38,188 3.500 30.308 38,297 3.500

jpeg 1,432.354 202,030 3.500 39.444 75,956 3.500 36.008 75,700 3.500

leon3 489.591 287,143 3.500 1,102.813 138,738 3.500 610.281 136,292 3.500

netcard 271.872 432,575 3.500 2,526.849 288,981 3.500 1,865.148 287,285 3.500

adaptec1 132.423 115,708 1.232 52.637 65,678 3.500 49.190 61,396 3.500

adaptec2 123.594 150,659 14.840 698.191 83,585 938.914 12.573 83,199 12.475

Table 4.6: Presents the evaluation of heap size strategies as regarding the standard partitioning

metrics.

feature of the FM, while instead of allowing only one movement per object this approach

inserts the top ten gain movements. The number ten is determined experimentally, aiming to

replace it by an automated algorithm in the near future.

Moving on to the two last modes, which are the most detailed and exhaustive, the exe-

cution time increases dramatically while the cutsize outcome improves marginally. The third

mode retains the same notions as the FM iterations, but loosens the object movement inser-

tion limitations even further by allowing all movements towards partitions that comprise a

portion of the object connections to be entered. As a result, the FM algorithm has greater flex-

ibility to make a wrong decision regarding the gain value in order to improve the area ratio

of the partitions. The last mode is the exhaustive mode, encompassing every movement, and

is not advised for use except in circumstances when exceedingly thorough circuit separation

is required regardless of execution time.

The Table 4.6 presents the results of heap size strategies. The numbers indicate the low

effort method as the fastest for the majority of the cases, while on the other hand it produces

the worst cutsize results. In general the results endorse the hypothesises based on which these

methods were introduced. However, there are cases where these do not hold, such as in the

fourth design, where the low effort method is substantially more time-consuming rather than

the others. This could happen due to the inappropriate combination of the unfolding strategy,

which will be explained below, and heap size strategy, leading to substantially increase the

amount of objects required to be handled in the lower levels.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.5 Unfolding Strategies 71

4.3.5 Unfolding Strategies

Unfortunately, there are cases where even the strictest heap strategy can lead to be inserted

millions of objects into the heaps, compromising the algorithm and reducing its effectiveness.

An auxiliary measure to ensure the effective and gradually handling of the objects at each

level is to exploit the imported clustering hierarchy characteristics. During the unfolding of

the clusters from one level to another, their connections with other gates or smaller level

clusters are already examined in the current level. This way, to further reduce the size of the

heaps instead of inserting bidirectionally these connections, it is preferable to insert only the

one direction starting from the currently unfolded objects.

Also, in large circuits there are cases where objects and their connections are completely

included into the same partition, and they have no interaction with the outer world. As a

result, it is ensured that they will enter the heaps having a large negative gain value. These

simple ideas inspired us to create five distinct techniques for managing the number of current

level movable objects based on the outcome of the unfolding process and the contribution of

object connections into cutsize.

For the better understanding of these techniques, they can be described by a Venn Di-

agram of two intersecting circles. The first mode, depicted by the first circle, allows only

the current level unfolded objects to be deemed moveable and enter the heaps, preventing

this way the reevaluation of the previous level objects contributing to the cutsize. The sec-

ond approach, represented by the second circle, allows all the current level objects having

inter-partition connections to enter the heaps, rendering a more detailed mode as the number

of these objects will be considerably larger than the previous technique. The third scheme

stands as the intersection of these modes, allowing only the current level unfolded objects

which have cross partition connections to be considered as movable for this level. It is ob-

vious that this is the most rigorous of all methods, significantly reducing the heaps entries.

The next mode is the union of these sets approaching the fifth and final method, which is the

universe of the Venn diagram, including all level objects.The last two methods are used in

relatively smaller circuits to improve the quality of results, as the savings in objects with the

first three methods are limited to a few hundred objects.

The previous Table 4.7 and Table 4.8 includes a set of results regarding the presented

unfolding strategies. The blue coloured benchmarks include large objects, and they are the

larger in terms of instances number. From this table, it is observed that for small designs such

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

72 Chapter 4. Our Contribution

Design On Cut On Cut and Unfolded

Exec Time Cutsize Area Ratio Exec Time Cutsize Area Ratio

Industrial 1 20.765 20,010 3.498 22.857 18,703 3.500

Industrial 2 40.791 52,015 3.500 47.230 50,277 3.500

b19 42.080 29,794 3.500 63.471 28,228 3.500

jpeg 66.545 54,194 3.500 111.184 44,983 3.500

leon3 2272.985 111,116 3.500 2305.853 101,585 3.500

netcard 6376.440 249,056 3.500 5059.119 249,376 3.500

adaptec1 - - - 969.061 40,116 3.500

adaptec2 - - - 971.795 59,365 13.335

adaptec3 - - - 2,346.700 74,249 10.668

adaptec4 - - - 1,902.323 43,881 3.500

adaptec5 - - - 9,776.844 129,713 5.887

Table 4.7: This table presents the results of two of the unfolding strategies for a set of bench-

marks, which the one coloured blue include large objects while the other one not.

Design Unfolded on Cut Unfolded

Exec Time Cutsize Area Ratio Exec Time Cutsize Area Ratio

Industrial 1 18.694 22,392 3.499 18.694 21,651 3.498

Industrial 2 34.676 58,396 3.500 32.603 57,662 3.500

b19 58.187 38,188 3.500 47.243 35,222 3.500

jpeg 39.958 74,017 3.500 65.469 50,127 3.500

leon3 916.663 138,738 3.500 397.786 125,847 3.500

netcard 1808.874 288,981 3.500 255.838 279,523 3.500

adaptec1 286.331 65,678 3.500 308.040 42,902 3.500

adaptec2 681.017 83,585 12.475 319.581 70,001 12.564

adaptec3 6,483.530 122,083 10.653 2393.446 94,107 10.599

adaptec4 95.865 93,081 3.500 360.759 52,157 3.500

adaptec5 29,994.876 211,733 5.903 10,735.438 203,455 5.951

Table 4.8: This table presents the results of two of the unfolding strategies for a set of bench-

marks, which the one coloured blue include large objects while the other one not.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.6 Level Skipping and repeating flow 73

as the first the different strategies have minor impact on the QORs while as the number of

instances increase the effects are more profound. The next thing we have to mention is the

partitions area ratio, which is stabilised near three point five, which were the user request,

even for the larger objects with the macros in them. Continuing, we should justify the dashes

in the upper part of the table, which are standing as no result due to large execution time

overhead. In detail, the explanation is really simple and has to do with the fact that as the

circuit size is increased, the number of objects having inter partition connection will increase.

As a result, the number of objects that the core algorithm will have to handle will reach

prohibiting values. However, in fourth case, we can observe a contradictory behaviour as the

first strategy is more efficient than the others in terms of execution time. This is perfectly

normal as the effectiveness of the strategies is not related only on the circuit size but also on

the graph connectivity characteristics such as density.

4.3.6 Level Skipping and repeating flow

Until now, we discussed only point optimisations and methodologies regarding the FM

algorithm or the construction of the necessary data structures. Only in the previous section,

we briefly considered effects of the clusters’ hierarchy into the partitioning level, introducing

the unfolded objects. Still, even in that section, we took as granted that the clustering result

is of high quality and is suitable to be used for our purpose. Unfortunately, this is not always

the case, as during a clustering level the grouped number of objects varies from a few dozens

of objects to a few millions of objects. This variation must be predicted from the partitioning

methodology in order to appropriately adjust its internal algorithms.

Our approach, as mentioned in Algorithm 6 in line twenty-three, checks this corner case

before the top level algorithm proceed to the refinement phase of the current level. In case

that only a bunch of objects are marked as moveable, based on the unfolding techniques, for

this level, the algorithm will skip it and will assign its objects into the next one. This way,

a clustering hierarchy containing a lot of levels grouping only a small portion of objects in

each one of them combined with an inappropriate selection of unfolding strategy, will not be

a problem for the algorithm as it can quickly unfold enough levels as if they were one and

proceed with the level refinement handling a sufficient amount of objects to notably improve

the cutsize. Another advantage of using this heuristic is that the structures of the FM method

that would have been constructed for each skipped level without improving the quality of

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

74 Chapter 4. Our Contribution

results are not initialized and destroyed, saving a large amount of execution time.

The second checkpoint ensures that the current level mapping did not mark as movable

more objects than the algorithm can handle. However, if that is the case, our proposed algo-

rithm has two alternatives to effectively reduce the number of objects in this level. The first

one is to select a stricter unfolding strategy and reextract the movable objects of the level.

This alternation of strategies has effect only on the current level, consuming only a small

amount of execution time comparatively with the execution time that would have been spent

by FM to perform all these movements. The second technique arises because the first quick

hack might not solve the problem, and a more robust approach is required. the second method

flow is called theW shape because in cases like that stops the refinement phase and re-enters

the coarsening phase altering the sets of parameters to achieve better clustering results. Af-

terwards, it starts over from the initial phase to recreate the partitions. An intuitive model of

this flow is presented in Figure 4.6 below.

Figure 4.6: Presents theW shape flow alternative to the V shape flow which, in the situation

of a poorly formed clustering level, reverts to the coarsening phase.. Following that, it comes

back to the partitioning method from the beginning, reproducing the partitions. Depending

on the clustering quality outcome, this back and forth might be repeated numerous times.

4.3.7 3D ASIC Flow Extention

The final part of our contribution includes the modifications which had to be performed

in our methodologies [70], [71] to support multiple technologies oriented tier assignment

algorithm. During this thesis we took part into the ICCAD 2023 3D macro aware placement

contest in which we submitted a complete project. One of the contest main requirements was

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

4.3.7 3D ASIC Flow Extention 75

to support placement withmultiple technologies, one for each tier. Thus, the flowwe followed

was to place the cells into one tier, as if they were all assigned all into the bottom tier and

then used our partitioning tool to bisect the circuit assigning the objects into the respective

tier. There are two catches with this flow. The first one is that the contest requires specific

utilisation percentage in each tier, and the second is that each object has different area in each

technology. Thus, the arbitrary movement of objects into the upper tier is not an efficient

option.

To tackle these obstacles, we developed an algorithm which detects and sorts the objects

based on their ratio between the bottom and top technology in descending order. This way,

in order to ensure that our result will not violate the tiers’ utilization, we replaced the initial

random partitions assignment algorithm. The new one assigns the objects with the maximum

ratio into the top tier, which encompass the smaller nanonmeter technology, aiming to enclose

as many objects as possible, while the remaining objects are assigned into the lower tier.

Afterwards, we continue to the optimisation phase as described in previous section respecting

the tiers area balance by assigning different area into the objects according to their tiers.

The Figure 4.7 presents a comparison of four of the well-known tools against our own

in 3D design flow during the tier assignment phase. In this phase, the partitioning tools must

separate the circuit into 2 partitions respecting the utilisation ratio requested by the user. The

orange cells indicate that the tool failed to respect the required utilisation.

Figure 4.7: Comparative results of four partitioning tools against ours in 3D designs.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 5

Comparative Results

5.1 Introduction

In previous section, we thoroughly discussed our proposed algorithm regarding Multi-

Level Partitioning phase, claiming that the heuristics and methodologies presented yield sig-

nificantly better results than the other well-known approaches. To back up our statements, in

this section we present a comprehensive set of experiments addressing each one of these op-

timisation steps presented both in clustering and in partitioning sections respectively. Also,

to prove that our complete tool stands as an excellent complete alternative to the other es-

tablished tools, we exhibit a comprehensive set of experiments proving the superiority of

our methodology in the partitioning oriented metrics. Furthermore, as stated numerous times

throughout the thesis, the partitions generated by this tool must be of sufficient quality to be

utilized in the subsequent ASIC flow steps. This way we also present a set of experiments

including 3D placement utilising partitions generated from all the previous compared tools.

The outline of this chapter continues as follows. The next section presents thoroughly the

experimental methodology followed to compare our tool against the other well-established

tools mentioned before, describing the framework in which the tools were had to be integrated

and the tools parameters values investigated during the experimental phase. Following that,

the points of the comparison are analysed for both the partitioning oriented part and the 3D

part of the analysis. Also, includes both an overview and the analytical tables of the experi-

ments conducted during the comparison with the other tools using the designs with the large

objects in them. Last but not least, the final section includes the 3D application results re-

garding the scores achieved against the contest upper limits.

77
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

78 Chapter 5. Comparative Results

5.2 Experimental Methodology

5.2.1 Experimental framework

In order to test all these algorithms and features, we had to integrate them into a greater

framework supporting additional features necessary for the extraction and the analysis of the

results. This framework is a proprietary suite of tools addressing the entire novel ASIC flow

and some of its extensions, necessary for our work. One of the most useful feature of this tool

for our project is its ability to parse and store efficiently industrial format files such as LIB,

LEF, DEF and netlist files. For this reason, all the C/C++ language code development and

the other tools’ evaluation took place inside this framework, translating the imported circuit

information into the appropriate format each time for each tool.

Another important feature of this tool is the integrated static timing analysis engine, which

was used to evaluate the effectiveness of our algorithm for timing driven operation. Also, the

integrated placement algorithm extended to support Multi-Level and 3D flow was used to

measure the results related to half perimeter wire-length and design density. Beyond these

standalone tools, it contains a set of auxiliary features such as python and TCL command

line interface as long as a sophisticated Graphic User Interphase (GUI) combined with data

analysis features such as histograms and scatter plots which significantly assist the analysis

of the partitioning results.

Apart from the framework tool in which we developed the approach, a comprehensive set

of designs must be utilised to thoroughly test the proposed algorithm and heuristics. Because

of the method’s size and complexity, a design suit large enough to cover as many scenarios

as feasible must be formed in order to obtain a fair assessment of the algorithm against well-

established tools. This way, we gathered almost seventy designs mainly academic to evaluate

the various parts of the algorithm against other approaches and assess its effectiveness in

following ASIC flow steps. Namely, the suit includes the cases from the following EDA

contests DAC 2012[12], ISDP 2005/6[13], ISPD 2011[14] and ICCAD 2015[15], 2 industrial

designs and 5 open source large scale designs namely b19 [17], Leon3mp [17], Netcard [17]

and jpeg_ecoder [17]. All these designs accompanied by their characteristics, including their

components, nets, macros and IOs numbers as long as their use case in the current analysis,

are presented in Figure 5.1.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

5.2.2 Evaluation Metrics and Tools 79

5.2.2 Evaluation Metrics and Tools

The most significant step in evaluating an algorithm is determining the quality measures

that will be used to evaluate the approach, as well as the other tools that will be utilized as

reference points. In our case, the metrics which will be used are the following. As regard-

ing the clustering phase, the number of hierarchy levels, the area ratio at each level and the

area ratio through levels will be used as physical design quality metrics. Also, to check the

timing driven operations eligibility of the clusters hierarchy, we will measure the delay and

slack distribution of the top thousand critical nets. In order to be suitable for timing driven

operations, the clusters of each level should prevent the creation of snake-paths entering

and exiting multiple clusters. A clustering result separating the critical paths into multiple

groups is not suitable for timing driven operations, as in case that the clusters are distributed

into multiple servers the timing annotations of these paths will introduce significant error,

making the associated operation, such as routing, to perform incorrect optimisations. Con-

sidering the partitioning phase, we will measure the cutsize, the partitions area balance and

the skipped or repeated levels of each design. Of course, the timing driven metrics will also

be evaluated for the partitioning result.

However, these measurements, are useless unless the reference points are not established.

To do this, we employed fourwell-known external tools, namely the hMETIS [2] [3], KaHyPar[4]

[5] [6] and PaToH [7], using their results as reference points. The other three tools were not

tested as the MLpart is already thoroughly evaluated with all the other existing tools, the

SpecPart is a post-processing optimisation tool already tested with hMetis and KaHyPar [8],

[9] and lastly we could not set up and run the GAP framework due to lack of computational

resources. These tools were run as stand-alone programs within the general framework, im-

porting the circuit information in the format that they required. The retrieved output product

was parsed from the wrapper framework in order to initialize the corresponding partitioning

structures. All the tools used for this evaluation have a set of parameters that could be ex-

plored in order to detect the best case scenario for each one of them. however, this analysis

would take substantially more time to complete, risking considering our algorithm outdated,

as hundreds of millions of tests would be required for each tool. Instead of that, we used their

proposed parameters as they presented them in their respective introduction papers, and so

we did for our algorithm aiming into a fair comparison of the results.

The benchmarks are exhibited below, in Figure 5.1, accompanied by their important in-

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

80 Chapter 5. Comparative Results

formation. The information included in the tables is the number of the gate instances included

in the circuit, the number of the macros included in the design obtained by the respective con-

test benchmark suite representation paper, the number of the IO ports of the circuit and the

number of the nets. Last but not least, the tables include the PDK name used to for the re-

spective benchmark. Most of them use the ASAP7 7nm PDK [72] while the others use the

NANDGATE 90nm PDK. Both of them are open-source, and the reason we chose them was

to be easy for everyone to reproduce and cross-check our results. It is important to highlight

the range of experiments used to evaluate the algorithm. In our suite, we have cases from a

few thousand gates all the way to a fewmillion gates. Also, we used both cases with and with-

out macros, as long as benchmarks both densely and loosely connected. This way, we tried

to test all types of designs to safely conclude into the best choice as regarding the partitioning

tools.

Figure 5.1: Benchmarks collections used for the evaluation of the algorithm features and the

over all tool against other well-established tools.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

5.3 Comparison Results 81

DAC12 ICCAD 2015

50 100 300 500 50 100 300 500 50 100 300 500

CutSize CutSize
Top 1000

Fanout Distribution

hMetis 3.95 3.23 3.07 3.21 4.79 3.28 2.35 2.25 1.03 0.77 0.63 0.70

Patoh 2.39 1.92 1.93 2.06 3.31 2.31 1.72 1.67 0.57 0.37 0.26 0.25

Kahypar 2.37 1.89 1.88 2.00 3.22 2.22 1.66 1.62 0.53 0.35 0.25 0.26

Kahypar_MT 3.70 2.79 2.55 2.63 4.73 3.23 2.30 2.20 1.06 0.72 0.57 0.59

AreaRatio AreaRatio
Top 1000 Delay

Paths Distribution

hMetis 9.40 14.45 10.53 1.78 5.72 8.07 9.75 4.63 7.58 4.78 4.59 4.26

Patoh 11065 6792 4467 1531 3396 22040 12409 10978 2.95 2.22 2.27 2.23

Kahypar 839 80 1300 533 19 370 8159 3942 3.02 2.07 2.09 2.05

Kahypar_MT 12.28 11.53 7.09 2.60 6.25 7.25 6.29 5.35 6.85 4.93 4.46 4.19

Execution Time Execution Time
Top 1000 Slack

Paths Distribution

hMetis 2.08 1.68 1.38 1.07 2.09 1.88 1.32 0.90 4.52 4.18 4.21 4.18

Patoh 0.90 1.31 0.88 0.80 1.02 1.15 0.81 0.54 2.97 3.11 3.62 3.77

Kahypar 2.48 3.53 4.52 5.34 4.52 8.25 21.15 28.76 3.02 3.05 3.31 3.34

Kahypar_MT 0.17 0.20 0.27 0.31 0.10 0.11 0.12 0.12 4.39 4.18 4.17 4.15

Table 5.1: ICCAD 2015 benchmarks results. The table includes the results of four different

partitioning results, requesting 50, 100, 300 and 500 partitions each time, and the values

represent the ratio of the other tools result over our proposed algoirthm.

5.3 Comparison Results

At this point, we have reached the core evaluation of our tool. In this section, we will

present you the results against the four other tools mentioned before. In Table 5.1 we can

observe the results of the ICCAD and DAC contests, while on the Table 5.2 we can observe

the results of the ISPD contests. Due to the large amount of results, these tables contain a

compressed form of the results, while the analytical tables can be found in the Appendices

section. The tables presented in Appendices contain the ratio of the result produced by the

tool specified in the header of the row over our tool result. The tables are populated by such

a value for all benchmark, and each metric specified at the top of the columns for each one

of the requested partitions number mentioned in the header of the columns.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

82 Chapter 5. Comparative Results

ISPD06 ISPD11

50 100 300 500 50 100 300 500

CutSize CutSize

hMetis 6.647 5.461 4.286 5.400 3.987 3.023 2.899 2.946

Patoh 5.773 4.427 3.505 4.428 2.378 1.794 1.867 1.956

Kahypar 5.790 4.401 3.486 4.404 2.381 1.749 1.795 1.881

Kahypar_MT 7.061 5.345 4.174 5.236 3.671 2.604 2.454 2.478

AreaRatio AreaRatio

hMetis 3.26 6.24 10.14 3.69 8.37 12.82 11.33 4.38

Patoh 9.16 1530.30 1277.05 3261.35 4455.35 2157.42 420.45 174.37

Kahypar 11.12 76.64 187.23 268.06 1152.26 10.64 1916.99 673.49

Kahypar_MT 5.05 7.19 7.77 8.00 11.90 9.09 6.01 4.40

Execution Time Execution Time

hMetis 3.987 3.363 2.463 1.506 2.397 2.157 1.504 1.158

Patoh 0.669 0.590 0.519 0.346 0.986 1.275 1.270 0.947

Kahypar 1.167 1.221 1.248 0.833 2.008 3.304 5.007 4.975

Kahypar_MT 0.237 0.266 0.297 0.241 0.213 0.255 0.348 0.351

Table 5.2: ISPD 2004/05/06/11 benchmarks results. The table includes the results of four

different partitioning results, requesting 50, 100, 300 and 500 partitions each time, and the

values represent the ratio of the other tools result over our proposed algoirthm.

The tables in this section contain the average value obtained by the analytical tables for

each benchmark group, based on the contests they belong, for each metric and partitions

number. For example, the first cell of the Table 5.1 reports the average cutsize ratio achieved

between all DAC 2012 benchmarks against hMetis requesting 50 partitions. This result can

be explained as that our algorithm achieves 3.95 times better cutsize on average for all DAC

2012 benchmarks against hMetis requesting 50 partitions.

Starting the comparison by the main metric which is cutsize we can observe that our ap-

proach produces substantially better results having a range of results starting by 1.62 all the

way up to 5.4 times better average cutsize against all other tested tools. Continuing to the sec-

ond metric, which is the area ratio, we can also detect that our approach outperforms all other

tools with significant improvement. The extremely large numbers which can be found in this

category inside the tables are cases where the other tools failed to create balanced partitions

and the average value got skewed upwards, so they should be not taken under consideration

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

5.3 Comparison Results 83

as absolute values, rather as indicators of incorrect result. However, regarding the third met-

ric which is the runtime we can observe that KaHyPar MT and PaToH are significantly faster

than our approach, approximating 0.8 and 0.2 times respectively.

Moving on, to the second set of metrics regarding timing characteristics, only the ICCAD

contest benchmarks could be evaluated by our internal STA engine as the other academic

designs had problems with dangling nets or undriven pins. Nevertheless, even from this small

set of designs, we can extract some important indications about the suitability of the algorithm

result for timing driven operations. For the first metric called fanout distribution, we evaluated

the top thousand fanouts of the circuits. The results shown that our algorithm tend to break the

large fanouts into many partitions, approximately five times over the other tools. On the other

side, regarding the top delay ad slack paths distribution, the results prove that our algorithm

separates three to seven times less the critical paths rather than the other frameworks. It is

important to mention, that the number of separations for the first metric is less than 7, for the

delay paths distribution metric is less than forty and for the slack path distribution metric less

than thirteen.

Considering the placement application, the first metric indicates that the result is suitable

as the partitions will be loosely connected, and the enclosed objects will be placed without be-

ing significantly affected by the other objects included in other partitions. That holds because

the separation of the top fanout will reduce the cutsize, and as a results the partitions’ connec-

tivity, by separating of the forward logic cone into the first level which have the fewer con-

nections compared with a deeper level. Furthermore, timing-wise, the second metric proves

that our tool will produce partitions which are applicable to timing driven operations as the

critical path will most likely be separated only a few times enabling the timing analysis on

each one of the partitions without introducing as much error as the other approaches.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Chapter 6

Conclusions

6.1 Conclusions

Reaching the final sections of this thesis, it is important to summarise the obtained knowl-

edge into a few paragraphs. First thing first, the Multi-Level flow will be necessary and thus

established as the standard flow very soon. Because of that, the development of new par-

titioning and Multi-Level oriented tools in general is vital to meet the expectations of the

rapidly-evolving semiconductor industry. However, these tools must be VLSI oriented in

order to take under consideration the ASIC flow characteristics and produce high quality

results.

Targeting more on the main topic of this thesis, there are many partitioning tools pub-

lished in the literature, but yet there are unaddressed issues regarding modern applications

such as 3D aware partitioning and Multi-Level placement aware partitioning. To address

these issues is required great attention to detail and deep understanding of the VLSI theory to

exploit every possible characteristic of the circuit, aiming to yield high quality results. These

characteristics are physical-design oriented such as fanouts, gates areas and distances, timing

analysis oriented such as paths distributions gates drives strengths and gate delays, as long as

power aware such as gates switching activity and dynamic power consumption. Our proposed

methodology, considering all these features, yield better results compared to the other tested

approaches as regarding the ASIC flow application driven metrics presented in the previous

sections. It is obvious that in order to exploit such characteristics, it is necessary to integrate

the tool inside a closed loop optimisation framework with many other analyses tools such

as power and timing analysers to extract these values and use them as quality metrics inside

85
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

86 Chapter 6. Conclusions

an optimisation loop. Unfortunately, the necessary frameworks to support this attempt are

limited, with the most known of them being the OpenRoad project [73]. Despite all that, I

believe that the industry requirements will motivate more researchers to be involved with this

never-ending research area.

6.2 Future Work

Having all these in our mind, we believe that our approach, even though it produces

impressive results as regrading the novel partitioning metrics and the timing aware metrics

it has the first weak point in the execution time and the second on the amount of parameters

needed to be tuned for each design specifically to extract the optimal results. This way, the

first and more important thing that we will address is the speed-up of the approach by further

analysing step-by-step its sub-algorithms to detect and resolve its time consumption hotspots.

The next major target will be to create an automated algorithm, deciding the values of the

algorithm’s tuning parameters at the beginning of the tool and during its operation if that is

needed. Of course, by the description of the problem the first idea is to introduce a machine

learning methodology which will analyse the design characteristics and the progress of the

partitioning algorithm and based on those should modify the respective tool variables by a

factor to produce the optimal result.

Also, three promising avenues for future research in the realm of ASIC design are the fur-

ther exploration of 3D design flow, the investigation of partition-based Static Timing Anal-

ysis (STA) techniques, and the development of a distributed ASIC design flow. Further in-

vestigating 3D design flow entails adapting and optimizing current design methodologies

for three-dimensional integration, considering emerging technologies like stacked memory,

through-silicon vias and heterogenous chips. Enhancing partition-based STA involves break-

ing down complex designs into more manageable segments and developing efficient algo-

rithms for the static timing analysis, removing the pessimism and error introduced by the

critical path separation. The creation of a distributed ASIC design flow aims to facilitate col-

laborative work across dispersed agents, involving considerations such as data exchange, se-

curity, and the integration of cloud-based tools. These areas present opportunities for further

advancing ASIC design in the face of evolving technologies and growing design complexi-

ties.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Bibliography

[1] C. J. Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel circuit partitioning,” in Pro-

ceedings of the 34th annual Design Automation Conference, pp. 530–533, 1997.

[2] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph partition-

ing: Application in vlsi domain,” in Proceedings of the 34th annual Design Automation

Conference, pp. 526–529, 1997.

[3] G. Karypis and V. Kumar, “A hypergraph partitioning package,” Army HPC Research

Center, Department of Computer Science & Engineering, University of Minnesota,

1998.

[4] L. Gottesbüren, M. Hamann, S. Schlag, and D. Wagner, “Advanced flow-based multi-

level hypergraph partitioning,” arXiv preprint arXiv:2003.12110, 2020.

[5] L. Gottesbüren, T. Heuer, and P. Sanders, “Parallel flow-based hypergraph partitioning,”

arXiv preprint arXiv:2201.01556, 2022.

[6] L. Gottesbüren, T. Heuer, P. Sanders, and S. Schlag, “Scalable shared-memory hyper-

graph partitioning�,” in 2021 Proceedings of the Workshop on Algorithm Engineering

and Experiments (ALENEX), pp. 16–30, SIAM, 2021.

[7] Ü. V. Çatalyürek and C. Aykanat, “Patoh (partitioning tool for hypergraphs),” in Ency-

clopedia of parallel computing, pp. 1479–1487, Springer, 2011.

[8] I. Bustany, A. B. Kahng, I. Koutis, B. Pramanik, and Z. Wang, “Specpart: A supervised

spectral framework for hypergraph partitioning solution improvement,” in Proceedings

of the 41st IEEE/ACM International Conference on Computer-Aided Design, pp. 1–9,

2022.

87
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

88 Bibliography

[9] I. Bustany, A. B. Kahng, I. Koutis, B. Pramanik, and Z. Wang, “K-specpart: A su-

pervised spectral framework for multi-way hypergraph partitioning solution improve-

ment,” arXiv preprint arXiv:2305.06167, 2023.

[10] A. Nazi, W. Hang, A. Goldie, S. Ravi, and A. Mirhoseini, “Gap: Generalizable approx-

imate graph partitioning framework,” arXiv preprint arXiv:1903.00614, 2019.

[11] A. Gatti, Z. Hu, T. Smidt, E. G. Ng, and P. Ghysels, “Deep learning and spectral embed-

ding for graph partitioning,” in Proceedings of the 2022 SIAM Conference on Parallel

Processing for Scientific Computing, pp. 25–36, SIAM, 2022.

[12] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei, “The dac 2012 routability-driven

placement contest and benchmark suite,” in Proceedings of the 49th Annual Design

Automation Conference, pp. 774–782, 2012.

[13] G.-J. Nam, C. J. Alpert, and P. G. Villarrubia, “Ispd 2005/2006 placement benchmarks,”

inModern Circuit Placement: Best Practices and Results, pp. 3–12, Springer, 2007.

[14] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J. Nam, and J. A. Roy, “The ispd-2011

routability-driven placement contest and benchmark suite,” in Proceedings of the 2011

international symposium on Physical design, pp. 141–146, 2011.

[15] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan, “Iccad-2015 cad contest in incremen-

tal timing-driven placement and benchmark suite,” in 2015 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), pp. 921–926, IEEE, 2015.

[16] K.-S. Hu, I.-J. Lin, Y.-H. Huang, H.-Y. Chi, Y.-H. Wu, and C.-F. C. Shen, “2022 iccad

cad contest problem b: 3d placement with d2d vertical connections,” in Proceedings

of the 41st IEEE/ACM International Conference on Computer-Aided Design, pp. 1–5,

2022.

[17] J. Jung, I. H.-R. Jiang, G.-J. Nam, V. N. Kravets, L. Behjat, and Y.-L. Li, “Opendesign

flow database: The infrastructure for vlsi design and design automation research,” in

2016 IEEE/ACM International Conference onComputer-AidedDesign (ICCAD), pp. 1–

6, IEEE, 2016.

[18] M. Anand, S. Ravi, K. Chouhan, and S. M. Ahmed, “Data self-healing technique using

asic level security mechanisms,”

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Bibliography 89

[19] D. S. ROY, “Placement and Routing for ASIC,” July 2020.

[20] “Ansys RedHawk-SC | SoC Power Integrity & Reliability Software.”

[21] “Intel will outpace Moore’s Law, CEO Pat Gelsinger says.”

[22] C. J, “A Semi-Persistent Clustering Technique for VLSI Circuit Placement - ppt down-

load.”

[23] “10/25/ VLSI Physical Design Automation Prof. David Pan Office: ACES Lecture 3.

Circuit Partitioning. - ppt download.”

[24] “Floorplan (microelectronics),” May 2023. Page Version ID: 1156157622.

[25] D. Medhat, “2.5/3D IC Reliability Verification Has Come A Long Way,” Aug. 2022.

[26] M. Xu, G. Gréwal, S. Areibi, C. Obimbo, and D. Banerji, “Near-linear wirelength esti-

mation for fpga placement,” Canadian Journal of Electrical and Computer Engineer-

ing, vol. 34, no. 3, pp. 125–132, 2009.

[27] G. Jie and B. Jeremic, “Draft report on parallel, finite element method for inelastic

problems,”

[28] D. Papa, N. Viswanathan, I. L. Markov, G. Nam, C. Sze, Z. Li, and C. Alpert, “Physical

synthesis with clock-network optimization for large systems on chips,” IEEE Micro,

vol. 31, pp. 51–62, jul 2011.

[29] F. A. Hussin, T. E. C. Yu, T. Yoneda, and H. Fujiwara, “Redsocs-3d: Thermal-safe test

scheduling for 3d-stacked soc,” in 2010 IEEE Asia Pacific Conference on Circuits and

Systems, pp. 264–267, IEEE, 2010.

[30] “Dissolving The Barriers In Multi-Substrate 3D-IC Assembly Design.”

[31] J. Fan and C. S. Tan, “Low temperature wafer-level metal thermo-compression bond-

ing technology for 3d integration,” Metallurgy-Advances in Materials and Processes,

vol. 52, no. 2, pp. 302–311, 2012.

[32] “File:Graph-representation-of-the-modular-scale-free-network-The-nodes-are-

colored-according.png - Wikipedia,” Oct. 2008.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

90 Bibliography

[33] V. Mehta, S. Bawa, and J. Singh, “Analytical review of clustering techniques and prox-

imity measures,” Artificial Intelligence Review, vol. 53, pp. 5995–6023, 2020.

[34] C. Alpert, A. Kahng, G.-J. Nam, S. Reda, and P. Villarrubia, “A semi-persistent clus-

tering technique for vlsi circuit placement,” in Proceedings of the 2005 international

symposium on Physical design, pp. 200–207, 2005.

[35] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal

community structure,” Proceedings of the national academy of sciences, vol. 105, no. 4,

pp. 1118–1123, 2008.

[36] N. K. Σκετóπoυλoς , “3d ic cad placement flows and algorithms yielding improved

ppa,” 2021.

[37] A. Bretto, “Hypergraph theory,” An introduction. Mathematical Engineering. Cham:

Springer, vol. 1, 2013.

[38] D. A. Papa and I. L. Markov, “Hypergraph partitioning and clustering.,” Handbook of

Approximation Algorithms and Metaheuristics, vol. 20073547, pp. 61–1, 2007.

[39] K. Shahookar and P. Mazumder, “Vlsi cell placement techniques,” ACM Computing

Surveys (CSUR), vol. 23, no. 2, pp. 143–220, 1991.

[40] A. Kennings and K. P. Vorwerk, “Force-directed methods for generic placement,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,

no. 10, pp. 2076–2087, 2006.

[41] B. B. Ray, S. Das, K. Hazra, N. Patra, and S. K. Mohanty, “An optimized hpwl model

for vlsi analytical placement,” in 2015 International Conference on Information Tech-

nology (ICIT), pp. 7–12, IEEE, 2015.

[42] A. S. LaPaugh, “Vlsi layout algorithms,” inAlgorithms and theory of computation hand-

book: Special topics and techniques, pp. 8–8, 2010.

[43] D. Zaporozhets, D. V. Zaruba, and V. V. Kureichik, “Representation of solutions in

genetic vlsi placement algorithms,” in Proceedings of IEEE East-West Design & Test

Symposium (EWDTS 2014), pp. 1–4, IEEE, 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Bibliography 91

[44] K. Sakuma, 3D integration in VLSI Circuits: implementation technologies and appli-

cations. CRC Press, 2018.

[45] E. Ozer, K. Flautner, S. Idgunji, A. Saidi, Y. Sazeides, B. Ahsan, N. Ladas, C. Nicopou-

los, I. Sideris, B. Falsafi, et al., “Eurocloud: energy-conscious 3d server-on-chip for

green cloud services,” inWorkshop on Architectural Concerns in Large Datacenters in

conjunction with ISCA, vol. 10, 2010.

[46] S. Oh,M. Cho, X.Wu, Y. Kim, L.-X. Chuo,W. Lim, P. Pannuto, S. Bang, K. Yang, H.-S.

Kim, et al., “Iot 2—the internet of tiny things: Realizing mm-scale sensors through 3d

die stacking,” in 2019 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pp. 686–691, IEEE, 2019.

[47] M. O. Agyeman, A. Ahmadinia, and A. Shahrabi, “Heterogeneous 3d network-on-chip

architectures: area and power aware design techniques,” Journal of Circuits, Systems

and Computers, vol. 22, no. 04, p. 1350016, 2013.

[48] S. Wong, A. El-Gamal, P. Griffin, Y. Nishi, F. Pease, and J. Plummer, “Monolithic 3d

integrated circuits,” in 2007 International Symposium on VLSI Technology, Systems and

Applications (VLSI-TSA), pp. 1–4, IEEE, 2007.

[49] H. Zhuang, J. Lu, K. Samadi, Y. Du, and C.-K. Cheng, “Performance-driven placement

for design of rotation and right arithmetic shifters in monolithic 3d ics,” in 2013 In-

ternational Conference on Communications, Circuits and Systems (ICCCAS), vol. 2,

pp. 509–513, IEEE, 2013.

[50] M. Koyanagi, T. Fukushima, and T. Tanaka, “High-density through silicon vias for 3-d

lsis,” Proceedings of the IEEE, vol. 97, no. 1, pp. 49–59, 2009.

[51] D. K. Nayak, S. Banna, S. K. Samal, and S. K. Lim, “Power, performance, and cost com-

parisons of monolithic 3d ics and tsv-based 3d ics,” in 2015 IEEE SOI-3D-Subthreshold

Microelectronics Technology Unified Conference (S3S), pp. 1–2, IEEE, 2015.

[52] R. Wang, K. Chakrabarty, and S. Bhawmik, “Interconnect testing and test-path schedul-

ing for interposer-based 2.5-d ics,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 34, no. 1, pp. 136–149, 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

92 Bibliography

[53] X. Zhang, J. K. Lin, S. Wickramanayaka, S. Zhang, R. Weerasekera, R. Dutta, K. F.

Chang, K.-J. Chui, H. Y. Li, D. S. Wee Ho, et al., “Heterogeneous 2.5 d integration on

through silicon interposer,” Applied physics reviews, vol. 2, no. 2, 2015.

[54] J.-Q. Lu, S. Devarajan, A. Zeng, K. Rose, and R. Gutmann, “Die-on-wafer and

wafer-level three-dimensional (3d) integration of heterogeneous ic technologies for

rf-microwave-millimeter applications,” MRS Online Proceedings Library, vol. 833,

pp. 211–216, 2004.

[55] M. Hella, S. Devarajan, J.-Q. Lu, K. Rose, and R. Gutmann, “Die-on-wafer and wafer-

level 3d integration for millimeter-wave smart antenna transceivers,” in The 2005 IEEE

Annual Conference Wireless and Micrwave Technology, 2005., pp. 125–128, IEEE,

2005.

[56] Y. Du, K. Samadi, and K. Arabi, “Emerging 3dvlsi: Opportunities and challenges,”

in 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference

(S3S), pp. 1–5, IEEE, 2015.

[57] S. K. Popat and M. Emmanuel, “Review and comparative study of clustering tech-

niques,” International journal of computer science and information technologies, vol. 5,

no. 1, pp. 805–812, 2014.

[58] D.Müllner, “Modern hierarchical, agglomerative clustering algorithms,” arXiv preprint

arXiv:1109.2378, 2011.

[59] R. Manikandan, P. Swaminathan, and R. Sujitha, “Unimodular hypergraph based clus-

tering approaches for vlsi circuit partitioning,” International Journal of Engineering

and Technology, vol. 5, no. 3, pp. 2755–2758, 2013.

[60] S. Na, L. Xumin, and G. Yong, “Research on k-means clustering algorithm: An im-

proved k-means clustering algorithm,” in 2010 Third International Symposium on in-

telligent information technology and security informatics, pp. 63–67, Ieee, 2010.

[61] K. Khan, S. U. Rehman, K. Aziz, S. Fong, and S. Sarasvady, “Dbscan: Past, present and

future,” in The fifth international conference on the applications of digital information

and web technologies (ICADIWT 2014), pp. 232–238, IEEE, 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Bibliography 93

[62] S. White and P. Smyth, “A spectral clustering approach to finding communities in

graphs,” in Proceedings of the 2005 SIAM international conference on data mining,

pp. 274–285, SIAM, 2005.

[63] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,” in Proceedings

of the 36th annual ACM/IEEE design automation conference, pp. 343–348, 1999.

[64] Hagen and Kahng, “A new approach to effective circuit clustering,” in 1992 IEEE/ACM

International Conference on Computer-Aided Design, pp. 422–427, IEEE, 1992.

[65] G. Guo, T.-W. Huang, and M. Wong, “Fast sta graph partitioning framework for multi-

gpu acceleration,” in 2023 Design, Automation & Test in Europe Conference & Exhi-

bition (DATE), pp. 1–6, IEEE, 2023.

[66] T. Verbelen, T. Stevens, F. De Turck, and B. Dhoedt, “Graph partitioning algorithms

for optimizing software deployment in mobile cloud computing,” Future Generation

Computer Systems, vol. 29, no. 2, pp. 451–459, 2013.

[67] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network

partitions,” in Papers on Twenty-five years of electronic design automation, pp. 241–

247, 1988.

[68] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,”

The Bell system technical journal, vol. 49, no. 2, pp. 291–307, 1970.

[69] S. K. Lim, D. Xu, et al., “Large scale circuit partitioning with loose/stable net removal

and signal flow based clustering,” in 1997 Proceedings of IEEE International Confer-

ence on Computer Aided Design (ICCAD), pp. 441–446, IEEE, 1997.

[70] N. Sketopoulos, C. Sotiriou, and S. Simoglou, “Abax: 2d/3d legaliser supporting look-

ahead legalisation and blockage strategies,” in 2018 Design, Automation & Test in Eu-

rope Conference & Exhibition (DATE), pp. 1469–1472, IEEE, 2018.

[71] N. Sketopoulos, C. Sotiriou, and V. Pavlidis, “Metal stack and partitioning exploration

for monolithic 3d ics,” in 2020 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), pp. 398–403, IEEE, 2020.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

94 Bibliography

[72] X. Xu, N. Shah, A. Evans, S. Sinha, B. Cline, and G. Yeric, “Standard cell library de-

sign and optimization methodology for asap7 pdk,” in 2017 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), pp. 999–1004, IEEE, 2017.

[73] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng, M. Kim,

J. Lee, U. Mallappa, M. Neseem, et al., “Toward an open-source digital flow: First

learnings from the openroad project,” in Proceedings of the 56th Annual Design Au-

tomation Conference 2019, pp. 1–4, 2019.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

APPENDICES

95
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Appendix A

Benchmarks Suite Tables

97
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

98 Appendix A. Benchmarks Suite Tables

Name Components # Macros # IO Pins # Nets # Library

IS
PD

06

adaptec1 5.72E+05 542 1 583328

A
SU

7

adaptec2 4.57E+05 543 1 469444

adaptec3 9.69E+05 723 1 992555

adaptec4 1.09E+06 1329 1 1125036

adaptec5 2.15E+06 646 1 2183992

bigblue1 5.98E+05 559 1 606381

bigblue2 8.30E+05 3313 1 882507

bigblue3 1.65E+06 675 1 1694238

newblue1 4.73E+05 390 1 486413

newblue2 6.61E+05 1171 1 711078

newblue3 8.32E+05 690 1 923452

newblue4 1.47E+06 569 1 1506429

newblue5 1.84E+06 1052 1 1927347

newblue6 2.71E+06 1376 1 2771776

newblue7 4.39E+06 6151 1 4624383

IS
PD

11

superblue1 7.98E+05 432 6521 823024

A
SU

7

superblue10 1.05E+06 1619 15141 1086013

superblue12 1.27E+06 89 1580 1293531

superblue15 1.07E+06 153 10556 1080519

superblue18 4.59E+05 207 3978 469076

superblue2 9.51E+05 654 8047 991109

superblue4 5.59E+05 306 6623 581127

superblue5 7.09E+05 784 4082 787292

Table A.1: ISPD 2005, 2006 and 2011 designs characteristics.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

99

Name Components # Macros # IO Pins # Nets # Library
D
A
C
12

superblue11 9.26E+05 1458 6872 959056

A
SU

7

superblue12 1.27E+06 89 1580 1293531

superblue14 6.05E+05 340 5473 629772

superblue16 6.71E+05 419 4448 697660

superblue19 4.95E+05 286 3735 512053

superblue2 9.51E+05 654 8047 991109

superblue3 9.08E+05 575 6482 933398

superblue5 7.09E+05 784 4082 787292

superblue6 9.52E+05 565 5380 1006801

superblue7 1.32E+06 419 6499 1340566

superblue9 8.11E+05 272 4014 834024

IC
C
C
A
D
15

superblue1 1.21E+06 3787 3787 1215302

IC
C
A
D
U
nd
es
cl
os
ed

LI
Bsuperblue10 1.88E+06 1696 1696 1897736

superblue16 9.82E+05 101 101 999559

superblue18 7.68E+05 653 653 771215

superblue3 1.21E+06 2074 2074 1224311

superblue4 7.96E+05 3471 3471 802245

superblue5 1.09E+06 1872 1872 1096924

superblue7 1.93E+06 4910 4910 1933334

O
pe
n
So
ur
ce

Industrial_1 0.5E+05 0 2176 60883

IN
D

Industrial_2 1.4E+05 0 1159 147960

b19 2.2E+05 0 47 225884

N
A
N
D
G
AT

E

jpeg 6.7E+05 0 67 674353

leon3mp 6.5E+05 0 333 758278

netcard 9.6E+05 0 1846 1058447

Table A.2: DAC 2012 and ICCAD 2015 designs characteristics.

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

Appendix A

Analytical Comparison Results Tables

101
Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

102 Appendix A. Analytical Comparison Results Tables

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

48
58
53

50
74
32

53
22
11

54
80
22

4.
68
4

12
.2
83

57
.3
63

37
.8
38

14
3.
93
8

14
6.
66
2

16
3.
25
2

17
2.
43
9

ka
hy
pa
r

41
72
65

42
93
16

45
41
57

46
67
36

4.
77
5

5.
72
5

10
.0
76

19
.3
55

63
.6
80

84
.8
13

11
6.
55
8

12
7.
75
5

pa
to
h

41
57
64

43
16
69

45
43
98

46
54
35

4.
70
5

7.
32
8

11
39
.5
65

17
20
.9
30

26
.4
22

27
.4
01

52
.2
45

52
.9
81

ka
hy
pa
r_
M
T

48
40
84

49
54
94

51
45
09

52
52
14

7.
79
2

12
.2
07

39
.1
35

69
.3
29

12
.8
30

16
.2
83

30
.5
23

41
.3
50

adaptec1

O
ur
s

63
05
6

76
92
0

12
37
60

15
31
42

1.
43
0

1.
62
3

4.
25
0

9.
32
3

39
.6
05

46
.3
34

79
.7
27

13
4.
06
0

hm
et
is

37
88
34

40
36
06

42
95
83

44
54
86

19
.8
56

60
.6
97

31
7.
02
6

12
6.
26
9

15
7.
49
0

15
2.
55
5

16
2.
67
3

17
4.
03
9

ka
hy
pa
r

29
55
67

31
31
41

34
67
05

36
47
78

13
.5
74

19
14
.2
31

10
1.
91
4

18
6.
73
0

53
.6
47

77
.2
35

10
2.
81
7

13
0.
03
3

pa
to
h

29
90
61

31
54
55

34
43
55

35
68
73

20
.0
58

21
75
7.
21
7

46
87
69
.1
36

46
87
69
.1
36

24
.7
53

44
.9
35

44
.5
52

54
.2
17

ka
hy
pa
r_
M
T

37
95
16

39
69
48

41
83
35

42
95
09

36
.3
64

79
.4
03

24
5.
44
2

38
0.
44
1

13
.3
70

17
.7
50

26
.5
28

35
.1
41

adaptec2

O
ur
s

91
89
9

12
54
99

13
76
35

13
14
95

6.
84
4

16
.7
80

11
9.
65
6

34
9.
75
1

43
.1
65

45
.2
49

82
.6
70

78
.9
39

hm
et
is

80
00
48

83
29
23

87
58
32

90
05
18

21
.8
66

54
.6
35

15
0.
58
7

11
7.
98
0

58
1.
72
6

53
0.
59
4

55
4.
50
2

44
0.
31
4

ka
hy
pa
r

66
79
32

69
27
24

73
00
66

75
24
39

11
.9
02

27
.6
21

70
63
.9
85

17
1.
21
2

11
8.
72
7

14
5.
18
2

19
3.
93
9

23
1.
50
2

pa
to
h

67
17
19

70
01
91

73
45
64

75
44
87

11
.7
27

91
64
0.
88
8

10
80
37
.4
19

12
07
65
.1
15

42
.3
27

55
.8
09

73
.2
46

88
.0
60

ka
hy
pa
r_
M
T

79
91
33

82
12
33

85
51
58

87
07
52

41
.9
00

10
2.
34
1

18
2.
26
3

31
8.
80
2

23
.3
04

35
.3
08

48
.9
46

62
.0
03

adaptec3

O
ur
s

12
49
46

16
32
54

20
72
22

15
76
77

4.
94
0

11
.1
20

47
.4
75

16
4.
31
4

10
6.
88
9

10
5.
65
4

14
1.
61
3

25
7.
15
6

hm
et
is

89
87
57

92
54
37

96
17
09

98
25
56

7.
24
7

17
.6
54

62
.6
17

42
.9
37

33
1.
38
3

33
7.
06
0

34
3.
04
3

36
9.
26
5

ka
hy
pa
r

75
83
87

77
78
96

81
06
96

82
51
30

5.
65
6

6.
60
2

42
4.
56
0

28
.7
73

91
.4
09

11
5.
47
5

16
0.
64
7

18
5.
89
2

pa
to
h

75
56
35

78
00
74

81
64
28

83
04
30

4.
96
4

6.
31
7

15
.9
70

30
.8
53

37
.6
15

45
.0
97

63
.0
44

85
.8
61

ka
hy
pa
r_
M
T

88
60
10

90
74
55

93
51
14

94
98
15

14
.0
35

25
.0
80

57
.6
28

10
7.
49
1

21
.9
59

26
.2
12

42
.4
01

55
.2
50

adaptec4

O
ur
s

82
19
0

99
55
0

20
12
24

20
70
18

3.
50
0

3.
50
0

5.
67
7

10
.7
93

97
.6
38

91
.6
81

22
4.
59
4

34
0.
36
6

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

103

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

17
69
70
4

18
30
74
0

18
91
51
9

19
28
76
3

8.
40
3

24
.5
41

67
.4
91

47
.2
72

86
2.
15
8

84
4.
34
8

90
0.
34
4

97
0.
01
8

ka
hy
pa
r

15
43
29
9

15
85
06
1

16
44
19
6

16
72
33
7

6.
31
2

40
.3
84

46
.8
38

11
9.
14
3

30
3.
96
1

30
1.
59
9

40
0.
72
8

52
9.
43
3

pa
to
h

15
46
54
7

16
04
27
7

16
53
90
7

16
76
91
7

7.
23
9

16
.2
69

38
76
8.
04
5

10
01
80
1.
52
3

97
.3
81

96
.1
45

13
2.
83
9

16
9.
55
4

ka
hy
pa
r_
M
T

17
55
86
8

18
07
55
5

18
54
19
5

18
85
08
7

17
.2
75

29
.6
14

97
.3
64

17
5.
92
7

51
.1
05

63
.4
65

87
.0
09

11
8.
27
7

adaptec5

O
ur
s

17
84
68

29
06
69

39
13
65

47
03
24

3.
50
0

5.
99
2

21
.4
58

49
.1
57

22
5.
27
5

28
9.
05
9

36
6.
82
0

17
00
.8
49

hm
et
is

50
66
70

54
15
03

57
98
68

60
13
35

2.
49
2

5.
53
4

21
.2
24

16
.6
04

18
1.
04
6

17
8.
96
4

20
4.
22
6

19
4.
72
0

ka
hy
pa
r

43
00
66

44
53
54

48
29
70

50
38
33

3.
75
5

5.
23
2

6.
60
1

9.
07
4

91
.0
13

10
3.
37
8

19
1.
49
4

27
0.
72
0

pa
to
h

42
58
99

44
49
22

47
91
87

49
34
28

4.
21
3

5.
22
0

7.
45
0

12
.5
22

35
.0
83

49
.9
67

67
.8
78

78
.2
12

ka
hy
pa
r_
M
T

51
03
71

52
62
87

56
35
50

57
83
94

5.
11
2

8.
33
4

17
.2
57

28
.7
45

26
.8
55

31
.0
57

44
.3
29

56
.9
72

bigblue1

O
ur
s

92
25
5

10
40
61

14
78
50

16
59
26

3.
08
7

3.
50
0

3.
50
0

3.
50
0

61
.5
50

67
.7
60

76
.3
85

15
2.
09
9

hm
et
is

65
35
03

67
87
91

70
34
03

72
04
36

19
.0
97

41
.2
34

12
8.
86
1

54
.8
46

30
7.
80
0

32
5.
82
0

37
6.
46
0

37
5.
98
7

ka
hy
pa
r

49
91
66

51
37
08

54
88
05

56
79
53

8.
47
4

10
.6
97

13
.4
03

13
.8
09

55
.5
85

69
.9
52

10
1.
18
8

13
6.
41
8

pa
to
h

50
25
87

52
06
93

55
70
52

58
00
50

8.
66
2

10
.6
33

12
.7
71

14
.4
32

30
.5
80

40
.7
28

66
.7
02

74
.1
69

ka
hy
pa
r_
M
T

65
18
82

66
07
07

68
74
09

69
86
60

32
.7
88

39
.9
91

74
.8
70

11
3.
31
4

17
.5
42

21
.5
93

35
.9
11

59
.4
30

bigblue2

O
ur
s

58
46
3

75
45
6

13
88
73

20
93
12

3.
50
0

3.
50
0

3.
50
0

3.
57
0

68
.7
40

77
.7
92

88
.2
09

19
0.
85
3

hm
et
is

12
67
12
2

13
14
83
2

13
67
68
1

13
97
40
6

22
.3
36

59
.5
78

33
1.
99
7

25
0.
06
3

51
5.
04
1

45
5.
34
0

49
3.
54
2

54
2.
73
2

ka
hy
pa
r

10
11
04
7

10
47
75
7

11
09
53
3

11
40
71
8

9.
39
4

53
.1
22

21
12
.6
95

45
82
0.
44
4

16
8.
05
3

16
0.
79
3

21
6.
16
7

25
3.
81
1

pa
to
h

97
45
23

10
54
98
2

11
21
75
5

11
50
19
0

16
.5
80

60
34
.1
23

12
07
65
.1
15

10
01
80
1.
52
3

52
.2
32

60
.5
45

11
9.
61
7

10
0.
04
0

ka
hy
pa
r_
M
T

12
60
23
3

12
92
58
9

13
35
06
0

13
62
57
2

36
.6
27

70
.0
94

27
6.
76
0

47
7.
86
8

25
.8
76

32
.6
19

50
.8
50

64
.2
68

bigblue3

O
ur
s

29
96
00

25
44
58

36
43
26

37
94
67

4.
14
3

9.
22
8

38
.0
90

10
7.
89
2

15
0.
89
1

13
4.
54
1

23
7.
76
9

37
2.
60
0

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

104 Appendix A. Analytical Comparison Results Tables

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

37
34
28

39
21
75

41
52
27

42
80
78

13
.6
63

42
.8
92

24
6.
48
1

15
5.
40
3

16
5.
86
0

14
3.
76
9

15
7.
94
1

18
3.
81
7

ka
hy
pa
r

25
06
41

26
87
21

29
83
37

31
59
31

15
.4
95

12
3.
24
8

14
6.
79
6

17
35
.7
44

49
.3
81

53
.8
17

84
.0
78

99
.6
93

pa
to
h

24
56
40

27
05
34

30
06
72

31
69
61

48
6.
67
7

14
14
6.
66
8

56
50
9.
15
6

56
50
9.
15
6

24
.0
57

24
.3
56

41
.9
68

49
.7
74

ka
hy
pa
r_
M
T

37
19
80

38
47
02

40
61
86

41
70
77

17
.6
02

35
.5
75

14
3.
41
8

22
2.
88
1

8.
19
6

12
.2
97

22
.5
97

31
.7
21

newblue1

O
ur
s

91
86
8

95
40
9

11
06
46

13
72
13

14
.1
67

32
.9
44

42
5.
36
3

89
0.
27
3

34
.2
04

58
.4
60

69
.4
31

10
8.
99
5

hm
et
is

50
71
34

53
74
43

56
82
85

58
78
46

74
.9
78

25
4.
72
5

12
24
.8
14

96
5.
08
6

30
7.
98
0

28
7.
23
6

31
9.
54
7

34
1.
45
5

ka
hy
pa
r

37
90
91

39
49
57

41
76
90

43
15
11

25
.9
07

12
09
.6
47

25
61
1.
11
2

77
74
5.
51
2

65
.3
12

63
.7
10

11
0.
04
2

11
3.
17
3

pa
to
h

38
15
41

39
62
94

42
21
33

43
99
41

71
5.
72
2

24
02
8.
34
6

19
43
63
.7
81

38
87
27
.5
62

37
.9
33

42
.1
70

48
.9
13

71
.7
02

ka
hy
pa
r_
M
T

51
16
99

52
36
15

54
84
37

56
06
97

81
.9
87

21
8.
07
5

87
7.
38
4

14
37
.0
09

20
.0
42

24
.4
76

45
.8
56

67
.0
49

newblue2

O
ur
s

13
20
98

16
01
19

13
93
66

10
01
83

10
.0
69

11
.3
74

59
.2
32

14
5.
38
4

53
.6
40

56
.6
82

10
6.
22
1

16
2.
13
2

hm
et
is

70
72
01

73
06
48

75
08
68

76
18
66

44
.1
38

12
7.
67
1

39
3.
53
0

15
9.
49
8

25
3.
53
4

21
7.
74
8

24
9.
45
8

26
3.
49
3

ka
hy
pa
r

55
02
08

56
72
97

59
34
19

60
26
29

13
99
.9
62

13
31
4.
07
8

15
21
08
.7
86

63
81
57
.5
52

80
.7
27

80
.6
48

11
1.
75
2

13
1.
37
1

pa
to
h

54
01
80

56
49
05

59
37
72

60
96
15

56
.4
28

15
23
76
.7
32

15
86
33
.9
83

12
61
87
0.
50
0

18
9.
72
6

11
1.
79
3

12
1.
45
6

85
.2
96

ka
hy
pa
r_
M
T

69
89
79

71
14
38

72
73
94

73
85
62

68
.5
82

19
5.
56
7

38
6.
89
7

86
4.
08
2

8.
75
9

11
.8
50

21
.7
25

32
.7
82

newblue3

O
ur
s

12
25
14

16
46
00

15
73
03

12
14
64

10
.0
83

14
.9
42

73
.9
33

22
9.
25
8

52
.8
87

60
.2
73

12
6.
10
8

21
9.
29
5

hm
et
is

12
85
86
0

13
19
35
6

13
62
76
2

13
84
88
1

3.
66
5

7.
99
9

32
.7
44

21
.7
60

45
8.
77
8

40
8.
00
5

46
1.
20
7

50
9.
93
9

ka
hy
pa
r

10
57
38
0

10
86
01
6

11
31
09
2

11
51
57
8

5.
11
9

10
.0
43

9.
72
1

10
.6
81

20
2.
62
4

29
5.
16
3

42
6.
90
7

29
3.
62
4

pa
to
h

10
49
88
1

10
85
54
4

11
38
17
1

11
58
53
0

3.
90
2

8.
73
8

10
.3
61

13
.1
12

45
.8
23

52
.1
88

80
.2
01

93
.1
13

ka
hy
pa
r_
M
T

12
66
90
2

12
88
70
0

13
23
43
8

13
45
80
9

5.
40
8

13
.4
08

31
.5
18

43
.3
10

32
.1
82

33
.6
51

57
.7
92

69
.9
02

newblue4

O
ur
s

15
20
70

26
62
18

30
04
96

15
04
16

3.
50
0

3.
50
0

3.
50
0

3.
50
0

10
9.
80
5

14
7.
96
5

11
7.
98
6

19
7.
15
3

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

105

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

106 Appendix A. Analytical Comparison Results Tables

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

14
66
69
6

15
27
02
5

16
09
79
7

16
52
92
4

6.
14
6

17
.4
97

10
4.
33
7

64
.3
19

14
12
.6
00

11
22
.6
00

12
60
.1
01

11
79
.8
90

ka
hy
pa
r

10
75
30
4

11
29
69
2

12
37
36
7

12
87
89
9

8.
35
0

10
.3
79

16
7.
16
2

85
52
.3
40

18
0.
12
9

25
0.
92
3

35
9.
47
5

43
8.
06
7

pa
to
h

10
86
14
0

11
44
55
9

12
45
37
9

13
01
96
9

7.
85
0

10
.6
20

31
13
8.
78
1

62
18
6.
05
8

10
1.
53
9

10
3.
11
9

13
7.
37
9

16
9.
51
5

ka
hy
pa
r_
M
T

14
40
81
3

14
88
23
5

15
76
72
9

16
08
67
0

10
.5
86

24
.7
15

66
.6
05

10
8.
45
0

38
.0
57

47
.1
20

76
.3
36

10
3.
10
4

newblue5

O
ur
s

34
07
98

50
93
73

51
28
35

18
16
89

3.
50
0

4.
13
3

14
.5
84

34
.7
08

26
3.
32
6

27
3.
70
2

48
4.
43
2

59
3.
19
2

hm
et
is

-
22
75
79
8

23
58
56
9

24
03
25
8

-
6.
28
7

21
.9
98

14
.1
37

-
10
35
.2
44

14
20
.1
61

16
24
.5
19

ka
hy
pa
r

19
08
58
9

19
47
27
6

20
21
17
0

20
57
10
2

5.
89
5

6.
13
3

8.
54
0

9.
93
5

31
7.
23
0

34
7.
19
9

47
9.
57
8

58
3.
24
4

pa
to
h

18
98
58
8

19
50
32
5

20
33
26
6

20
70
74
7

4.
16
1

6.
94
3

8.
40
6

8.
68
9

10
2.
34
5

11
5.
41
9

18
8.
23
1

20
0.
46
6

ka
hy
pa
r_
M
T

21
85
88
3

22
21
01
1

22
96
36
0

23
42
97
5

4.
48
2

8.
43
7

26
.4
73

35
.2
14

44
.2
93

53
.5
39

13
1.
04
8

16
3.
97
7

newblue6

O
ur
s

24
12
30

39
37
60

46
22
81

23
64
56

3.
50
0

3.
50
0

3.
50
0

3.
50
0

48
8.
22
6

42
2.
50
1

80
6.
88
2

17
67
.3
14

hm
et
is

-
35
74
85
2

36
80
75
0

37
44
43
0

-
27
.7
91

90
.0
88

28
.5
92

-
22
64
.8
89

22
18
.6
54

22
86
.1
85

ka
hy
pa
r

28
67
50
1

29
28
23
4

30
47
29
7

31
18
56
8

6.
07
6

7.
79
8

58
.5
62

76
.0
41

44
8.
63
0

51
2.
38
8

86
6.
80
4

82
1.
74
3

pa
to
h

28
71
63
2

29
50
23
4

30
73
38
6

31
33
39
5

6.
73
4

7.
85
8

41
.0
57

62
21
2.
80
3

19
3.
44
3

25
4.
62
8

27
2.
23
1

36
9.
31
6

ka
hy
pa
r_
M
T

34
51
20
1

35
07
74
3

36
01
47
4

36
62
87
4

19
.7
31

25
.8
72

59
.8
17

10
8.
26
0

76
.0
93

97
.0
40

15
7.
54
5

22
7.
54
8

newblue7

O
ur
s

31
49
07

55
81
58

74
95
49

74
95
49

3.
50
0

3.
50
0

5.
10
5

8.
95
7

91
3.
57
4

13
86
.5
12

45
24
.7
30

42
65
.2
35

hm
et
is

76
52
96

86
70
50

93
73
26

96
81
09

43
.0
93

10
2.
89
7

41
7.
10
6

29
8.
01
3

34
5.
42
1

31
2.
18
1

35
7.
72
7

34
8.
09
1

ka
hy
pa
r

42
66
82

47
94
91

55
38
28

59
02
18

8.
16
1

23
94
.4
04

49
27
.4
63

16
82
8.
90
0

13
6.
00
6

27
7.
55
8

51
1.
85
6

43
1.
31
2

pa
to
h

42
37
71

47
06
30

57
78
14

61
47
97

19
.6
76

12
1.
77
2

53
39
0.
51
0

18
65
01
.0
96

83
.7
78

16
6.
97
1

23
2.
84
0

21
7.
75
7

ka
hy
pa
r_
M
T

72
36
89

76
11
71

80
45
44

82
29
86

58
.3
48

16
4.
43
5

37
0.
75
4

43
2.
31
3

27
.8
84

33
.7
55

84
.5
42

10
1.
03
8

superblue11

O
ur
s

14
72
37

32
86
59

32
83
07

29
46
70

4.
40
4

9.
55
9

51
.7
83

18
2.
54
0

21
9.
25
8

28
7.
46
2

38
8.
63
9

59
0.
09
6

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

107

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

76
87
41

86
87
18

93
03
25

96
42
10

31
.6
21

10
6.
09
5

44
5.
23
3

26
3.
57
1

37
9.
30
2

35
1.
63
9

45
0.
49
4

45
2.
75
3

ka
hy
pa
r

42
66
82

47
94
91

55
38
28

59
02
18

8.
16
1

23
94
.4
04

49
27
.4
63

16
82
8.
90
0

14
8.
85
3

31
3.
97
0

55
3.
06
3

46
9.
22
4

pa
to
h

42
37
71

47
06
30

57
78
14

61
47
97

19
.6
76

12
1.
77
2

53
39
0.
51
0

18
65
01
.0
96

85
.4
58

16
1.
61
0

22
2.
18
5

21
4.
21
8

ka
hy
pa
r_
M
T

72
36
89

76
11
71

80
45
44

82
29
86

58
.3
48

16
4.
43
5

37
0.
75
4

43
2.
31
3

18
.3
58

25
.0
97

54
.3
10

76
.7
76

superblue12

O
ur
s

14
72
37

32
86
59

32
83
07

29
46
70

4.
40
4

9.
55
9

51
.7
83

18
2.
54
0

18
6.
68
7

24
0.
93
5

32
1.
28
5

40
5.
20
8

hm
et
is

53
30
51

56
65
49

60
87
19

63
08
75

16
.5
80

41
.1
07

16
0.
27
7

90
.0
39

16
9.
76
0

17
6.
07
6

20
5.
22
7

20
3.
80
7

ka
hy
pa
r

34
54
55

36
80
29

43
31
21

46
25
90

9.
88
3

11
.8
83

32
5.
87
9

21
7.
17
2

17
4.
84
5

32
0.
70
4

55
4.
71
8

81
0.
14
6

pa
to
h

35
15
74

38
21
85

44
00
29

47
24
77

10
.9
24

14
.6
27

74
.6
04

10
03
18
.8
86

76
.8
13

27
7.
90
5

14
0.
81
9

18
0.
78
1

ka
hy
pa
r_
M
T

51
29
21

52
44
39

56
06
78

57
95
25

21
.4
35

30
.6
52

11
1.
33
5

10
7.
55
1

20
.4
40

30
.3
57

64
.3
23

90
.6
18

superblue14

O
ur
s

10
27
06

13
44
01

23
83
86

27
56
71

3.
50
0

3.
50
0

8.
56
5

25
.1
32

48
.6
14

79
.3
11

10
5.
16
4

15
0.
33
4

hm
et
is

46
83
92

49
75
68

52
33
35

53
91
70

28
.8
20

97
.1
67

34
0.
22
8

27
3.
72
0

18
1.
31
4

22
3.
03
8

24
9.
80
5

28
0.
24
5

ka
hy
pa
r

29
68
30

31
35
88

36
28
65

37
59
65

11
.9
26

12
.7
10

19
3.
71
4

12
60
.4
04

12
0.
49
9

23
4.
66
6

30
7.
28
3

45
6.
14
3

pa
to
h

30
68
45

33
01
44

36
71
22

38
92
69

9.
18
5

11
.7
14

41
49
.7
61

25
93
5.
52
0

12
0.
33
3

89
.1
36

13
8.
88
4

17
7.
89
6

ka
hy
pa
r_
M
T

45
64
19

46
76
65

48
99
05

50
44
35

43
.1
90

69
.8
20

19
6.
52
6

36
3.
57
3

12
.7
51

16
.1
53

34
.6
85

43
.0
42

superblue16

O
ur
s

11
28
57

14
30
89

20
85
05

22
23
90

3.
50
0

3.
50
0

14
.0
48

55
.5
89

12
6.
46
8

14
5.
87
3

20
5.
67
7

26
0.
39
8

hm
et
is

41
83
13

46
08
45

50
64
07

53
48
67

61
.6
41

18
3.
58
8

76
8.
27
8

48
1.
41
9

17
9.
75
3

16
8.
01
2

20
7.
06
2

17
3.
00
8

ka
hy
pa
r

24
49
61

27
35
22

33
26
26

35
71
74

41
.1
81

99
.9
81

49
8.
05
0

30
30
97
.2
60

64
3.
16
1

11
77
.1
28

27
98
.6
19

39
62
.5
55

pa
to
h

26
85
69

30
05
84

35
12
76

37
62
43

25
28
69
.7
14

76
29
68
.9
66

37
82
23
.9
32

37
82
23
.9
32

13
0.
62
0

14
1.
98
0

18
7.
84
8

15
5.
87
9

ka
hy
pa
r_
M
T

38
94
76

41
03
47

44
06
24

46
23
60

98
.6
65

19
1.
27
1

57
6.
09
4

85
3.
21
7

17
.0
10

18
.7
46

39
.6
86

80
.5
54

superblue19

O
ur
s

14
09
22

13
28
98

16
58
67

16
74
77

22
.4
67

48
.7
47

53
9.
38
5

12
65
.6
87

93
.0
26

81
.6
54

15
3.
56
4

15
5.
65
7

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

108 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

109

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

74
67
75

78
37
74

83
07
76

85
30
26

31
0.
05
2

10
53
.7
95

33
31
.6
14

22
55
.7
94

36
4.
15
8

34
3.
21
2

42
4.
86
8

44
0.
68
7

ka
hy
pa
r

38
94
35

43
31
88

51
05
49

54
95
56

81
46
1.
13
5

98
3.
01
6

15
92
19
4.
90
9

15
92
19
4.
90
9

19
5.
16
4

21
4.
33
6

37
1.
58
5

44
9.
77
0

pa
to
h

40
37
69

44
62
57

53
70
27

57
64
73

95
96
83
.7
12

95
96
79
.1
23

15
92
19
4.
90
9

15
92
19
4.
90
9

23
7.
23
9

39
2.
45
9

26
5.
94
4

28
1.
01
2

ka
hy
pa
r_
M
T

70
66
47

73
43
14

77
23
39

79
50
76

39
5.
93
1

45
0.
88
0

22
70
.5
79

37
68
.1
81

23
.7
34

26
.5
82

51
.7
30

76
.8
05

superblue2

O
ur
s

30
11
96

23
42
71

28
22
85

26
60
47

8.
85
3

18
.8
32

11
3.
47
0

68
3.
97
9

21
6.
55
4

19
3.
32
6

29
8.
97
3

45
1.
76
7

hm
et
is

82
90
16

10
32
36
5

11
58
05
6

12
22
83
9

28
.9
35

76
.4
89

32
7.
66
9

21
2.
38
7

30
6.
99
1

27
2.
15
5

32
0.
05
6

34
5.
69
5

ka
hy
pa
r

54
10
88

59
36
44

66
20
53

69
31
98

15
.1
82

35
.7
94

10
32
.6
14

77
50
24
.0
23

62
7.
69
1

70
6.
85
0

13
63
.6
09

23
88
.2
51

pa
to
h

51
86
50

56
20
43

63
88
94

68
64
66

15
.4
83

22
25
.3
37

10
62
33
.8
22

39
19
66
.1
72

12
4.
43
5

19
3.
29
6

27
5.
29
6

30
7.
79
9

ka
hy
pa
r_
M
T

73
74
23

77
17
39

80
75
93

82
55
20

39
.6
18

78
.1
60

18
7.
39
9

29
8.
45
0

26
.3
70

43
.5
83

74
.3
75

11
7.
89
8

superblue3

O
ur
s

21
98
97

34
40
25

30
97
82

31
49
51

5.
03
8

12
.3
85

66
.6
89

28
7.
75
8

16
5.
87
7

23
1.
23
2

28
6.
85
9

40
7.
88
4

hm
et
is

61
20
66

68
20
61

73
55
74

76
77
18

75
.9
64

17
1.
43
5

84
7.
14
8

55
3.
88
3

24
1.
65
4

19
9.
44
6

25
6.
89
4

25
7.
66
9

ka
hy
pa
r

39
09
57

41
84
99

46
76
33

48
91
05

18
.7
83

47
.8
88

31
9.
03
7

88
50
8.
06
9

17
6.
80
3

22
0.
90
2

39
8.
26
0

39
0.
82
6

pa
to
h

39
31
79

43
07
34

47
25
34

49
90
81

14
16
2.
37
0

11
38
89
.0
59

26
55
24
.2
06

10
56
06
2.
18
2

66
.7
30

74
.3
35

12
5.
39
0

14
6.
83
4

ka
hy
pa
r_
M
T

58
88
46

60
35
62

62
73
75

63
90
85

90
.2
17

16
4.
83
0

47
7.
74
0

88
8.
46
6

16
.6
31

22
.7
76

32
.4
33

44
.5
18

superblue5

O
ur
s

16
05
38

24
48
57

22
68
13

22
30
53

6.
96
9

15
.7
49

10
6.
91
3

41
7.
72
0

12
9.
47
1

14
8.
36
8

18
7.
37
1

33
9.
33
4

hm
et
is

81
51
57

91
83
73

10
01
99
9

10
45
30
4

49
.9
08

11
0.
44
0

29
4.
85
5

18
9.
88
8

38
5.
12
9

35
1.
44
3

44
1.
25
4

38
9.
92
3

ka
hy
pa
r

49
86
83

55
53
74

62
50
51

66
10
46

14
.9
17

36
.5
06

17
1.
34
7

32
14
2.
35
6

41
8.
75
6

59
2.
78
3

10
23
.7
10

14
55
.8
93

pa
to
h

49
32
92

55
11
50

63
80
77

67
52
23

18
.0
59

32
29
.1
79

51
70
48
.5
86

51
70
48
.5
86

20
4.
85
0

23
9.
79
2

21
1.
82
7

31
7.
59
5

ka
hy
pa
r_
M
T

75
50
35

78
38
88

83
51
23

84
99
76

51
.8
86

10
7.
13
2

17
3.
68
1

38
7.
97
1

30
.6
01

40
.1
15

99
.5
01

99
.5
01

superblue6

O
ur
s

22
27
62

24
88
94

30
17
53

31
06
95

4.
44
6

10
.4
49

53
.7
84

21
9.
72
6

18
2.
16
5

14
7.
36
7

21
2.
17
9

24
8.
58
8

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

110 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

111

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

10
71
16
7

12
73
86
3

14
36
34
3

14
99
00
0

18
.5
72

67
.9
50

21
6.
36
0

16
3.
78
1

51
9.
53
0

42
2.
03
4

47
2.
73
3

48
7.
88
2

ka
hy
pa
r

63
05
13

74
33
39

86
89
89

93
45
66

13
.8
78

30
.0
38

19
9.
21
9

52
77
.1
02

42
4.
49
0

63
1.
68
0

11
27
.1
26

13
89
.6
10

pa
to
h

63
71
76

72
23
27

87
72
84

96
24
10

14
.4
96

33
86
.3
43

83
92
99
.0
23

25
29
39
.4
32

16
8.
81
1

27
2.
73
7

38
1.
93
4

50
5.
01
4

ka
hy
pa
r_
M
T

96
69
25

10
30
54
1

11
20
18
7

11
54
36
9

18
.7
21

51
.7
57

15
7.
40
5

21
1.
81
2

34
.9
29

52
.4
63

10
7.
04
5

14
0.
18
9

superblue7

O
ur
s

28
19
30

40
95
52

46
90
87

44
84
71

4.
43
8

9.
72
5

45
.7
40

17
2.
52
1

23
4.
38
8

28
5.
25
1

68
5.
14
9

45
7.
79
5

hm
et
is

72
88
76

92
71
02

10
56
46
3

11
25
76
0

19
.5
77

39
.2
49

16
5.
17
3

12
7.
83
7

33
2.
91
7

28
0.
45
6

32
7.
27
5

35
1.
98
5

ka
hy
pa
r

41
73
29

46
75
90

52
31
03

55
72
43

13
.2
65

36
04
.5
08

91
.4
51

39
7.
25
9

52
9.
96
4

64
7.
33
2

13
80
.0
48

20
78
.3
53

pa
to
h

41
96
26

46
33
71

55
70
84

58
91
24

12
.2
99

32
.9
06

12
4.
08
1

22
0.
93
4

11
4.
84
2

19
3.
39
2

20
1.
35
5

24
5.
51
3

ka
hy
pa
r_
M
T

65
45
89

68
07
09

72
62
61

75
43
40

22
.8
76

41
.7
05

11
3.
20
9

20
0.
82
7

25
.8
61

39
.2
55

62
.0
89

11
9.
08
5

superblue9

O
ur
s

22
50
93

29
70
17

28
86
34

31
04
82

5.
31
9

11
.9
40

68
.1
74

28
2.
05
4

12
5.
41
3

13
9.
48
0

19
5.
72
2

28
1.
84
7

hm
et
is

58
03
95

63
24
81

67
57
23

70
26
52

27
.2
84

53
.0
14

12
6.
58
8

10
6.
56
3

33
7.
42
9

36
0.
64
9

39
4.
24
7

46
3.
31
7

ka
hy
pa
r

30
89
53

35
07
17

41
45
93

45
07
93

11
.2
36

11
.8
80

96
.5
43

29
40
9.
25
2

20
6.
82
5

53
6.
18
0

11
19
.3
81

13
36
.5
00

pa
to
h

32
51
33

37
19
86

45
58
21

49
95
37

19
61
5.
63
7

97
98
.1
51

10
63
8.
22
2

10
73
4.
33
3

92
.7
99

15
3.
90
5

21
7.
78
0

31
4.
03
1

ka
hy
pa
r_
M
T

55
92
63

57
72
46

63
32
62

65
03
38

21
.0
36

39
.0
31

10
0.
30
7

15
0.
66
8

30
.1
51

36
.8
80

81
.5
82

12
5.
65
7

superblue1

O
ur
s

10
32
81

23
52
10

27
90
83

26
09
43

3.
50
0

5.
22
9

27
.3
56

80
.2
79

89
.5
65

88
.3
84

21
9.
24
2

20
6.
44
4

hm
et
is

90
20
73

10
14
59
2

10
87
89
3

11
54
13
9

29
.1
81

34
.5
00

19
2.
03
0

10
6.
73
1

39
6.
56
0

36
7.
89
9

38
8.
41
4

39
0.
18
3

ka
hy
pa
r

50
81
61

53
39
97

64
15
73

70
70
24

11
.7
11

18
3.
47
7

21
76
2.
90
7

33
47
91
.0
27

11
5.
96
9

23
8.
36
1

36
2.
74
7

47
7.
81
4

pa
to
h

49
23
45

54
99
08

66
55
81

71
66
91

22
90
8.
74
3

24
46
7.
97
2

24
43
9.
38
0

24
43
9.
70
1

14
8.
88
7

22
9.
07
3

33
7.
80
4

36
0.
28
0

ka
hy
pa
r_
M
T

79
50
99

86
02
64

93
11
77

95
51
25

62
.6
48

10
1.
77
8

10
3.
50
1

15
1.
96
8

31
.4
44

38
.8
65

79
.0
36

15
1.
25
8

superblue10

O
ur
s

21
11
27

34
16
86

40
03
91

38
03
53

6.
68
0

9.
88
2

54
.8
45

15
3.
70
0

19
6.
39
6

21
1.
39
5

29
4.
41
1

39
9.
01
4

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

112 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

113

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

83
36
50

92
21
37

97
90
30

10
19
59
5

17
.2
69

49
.4
27

18
1.
93
5

17
6.
60
3

70
7.
45
3

71
7.
00
4

81
2.
57
3

93
1.
46
2

ka
hy
pa
r

40
44
10

46
99
83

60
31
21

68
11
27

15
.0
65

31
.8
07

13
44
.5
43

99
5.
76
4

82
1.
20
6

11
60
.3
01

12
07
.7
61

15
40
.6
16

pa
to
h

41
54
80

48
28
89

62
94
06

72
24
63

27
26
7.
22
6

29
38
2.
78
4

29
38
4.
62
1

29
38
4.
41
7

22
2.
24
7

22
5.
87
3

50
1.
29
3

46
9.
96
6

ka
hy
pa
r_
M
T

70
97
78

76
57
78

87
03
72

92
70
74

19
.8
30

42
.3
39

10
9.
49
8

18
5.
45
2

63
.1
66

73
.0
64

11
6.
00
9

18
1.
25
3

superblue12

O
ur
s

24
90
63

35
39
46

34
63
97

30
66
92

7.
39
5

17
.1
01

14
1.
69
8

40
1.
40
1

13
2.
55
3

14
8.
25
3

22
0.
76
6

34
8.
13
1

hm
et
is

93
08
02

10
51
72
5

11
71
53
1

12
29
80
2

11
.3
01

25
.8
71

10
0.
34
7

88
.4
14

31
0.
35
2

27
1.
56
8

31
1.
00
3

31
7.
27
7

ka
hy
pa
r

65
04
24

70
55
94

81
79
01

87
41
69

7.
30
5

10
.2
44

12
.3
84

23
.9
75

90
.4
59

31
3.
38
6

77
3.
12
5

10
72
.3
97

pa
to
h

63
02
51

69
19
81

82
43
83

87
36
88

11
38
9.
87
7

75
74
.9
69

28
42
.8
52

24
58
.8
56

97
.3
35

21
9.
80
6

28
4.
24
8

33
3.
60
1

ka
hy
pa
r_
M
T

81
62
29

88
11
15

94
69
17

97
45
51

13
.0
65

23
.2
61

35
.8
83

74
.9
57

31
.4
67

53
.4
98

11
0.
93
6

14
8.
70
4

superblue15

O
ur
s

14
84
61

24
44
69

35
58
53

49
64
97

3.
50
0

3.
50
0

3.
50
0

3.
50
0

14
4.
07
2

22
2.
72
0

26
2.
37
1

37
6.
36
5

hm
et
is

40
07
19

55
60
54

69
18
96

75
33
77

13
.1
11

46
.2
05

22
8.
83
7

12
9.
67
0

15
2.
72
5

12
4.
67
9

12
1.
53
5

13
5.
95
0

ka
hy
pa
r

25
68
12

28
13
62

33
81
43

35
89
90

11
.7
22

29
.3
85

44
6.
60
5

16
92
22
.1
26

60
1.
17
4

10
06
.4
38

26
76
.2
77

39
21
.7
03

pa
to
h

26
56
27

30
54
80

36
37
90

38
84
11

13
70
5.
25
3

14
35
5.
95
9

14
69
5.
30
8

14
71
9.
04
4

25
5.
10
2

25
9.
95
8

35
8.
71
7

29
9.
89
2

ka
hy
pa
r_
M
T

38
53
14

39
72
06

42
61
49

44
53
38

33
.6
67

42
.0
12

18
4.
79
9

25
0.
56
4

20
.7
52

34
.0
42

89
.1
15

84
.8
48

superblue18

O
ur
s

17
32
66

21
63
37

22
42
97

25
03
67

5.
75
2

15
.7
14

12
0.
48
2

48
2.
90
5

18
1.
69
3

16
4.
95
5

12
3.
72
8

17
8.
51
7

hm
et
is

74
83
74

78
25
92

82
77
91

85
25
37

24
7.
27
9

10
58
.1
50

38
54
.9
15

28
25
.8
66

35
8.
15
6

39
7.
37
2

44
4.
37
5

43
8.
11
5

ka
hy
pa
r

38
94
35

43
31
88

51
05
49

54
95
56

81
46
1.
13
5

98
3.
01
6

15
92
19
4.
90
9

15
92
19
4.
90
9

20
6.
81
1

25
5.
82
3

42
9.
44
8

52
7.
40
5

pa
to
h

40
00
16

44
62
57

52
44
73

57
51
08

70
05
6.
83
8

70
05
6.
50
3

70
05
6.
53
2

70
05
6.
53
2

22
4.
89
3

38
6.
27
4

27
3.
55
6

32
9.
31
1

ka
hy
pa
r_
M
T

70
66
47

73
43
14

77
23
39

79
50
76

39
5.
93
1

45
0.
88
0

22
70
.5
79

37
68
.1
81

24
.5
72

30
.7
79

55
.9
52

84
.3
82

superblue2

O
ur
s

30
11
96

23
42
71

27
94
22

26
60
47

8.
85
3

18
.8
32

11
2.
06
4

68
3.
97
9

21
0.
21
3

20
4.
24
6

31
6.
64
2

58
6.
71
3

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

114 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

115

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

50
23
33

54
06
85

57
37
89

59
10
05

42
.0
13

10
6.
16
8

51
3.
79
9

34
7.
62
1

15
6.
08
0

14
9.
70
2

17
9.
68
2

16
1.
04
6

ka
hy
pa
r

31
99
78

34
35
21

39
65
91

42
94
37

14
.4
75

31
.3
51

26
39
5.
76
8

32
72
.0
05

98
.9
05

15
0.
77
3

24
8.
17
1

40
3.
78
1

pa
to
h

31
33
05

35
50
61

40
80
90

43
53
28

16
86
6.
07
6

18
08
1.
27
6

18
08
1.
05
7

18
08
1.
01
4

79
.1
82

10
8.
78
6

11
4.
82
9

14
0.
20
3

ka
hy
pa
r_
M
T

47
94
54

49
31
63

52
27
36

53
69
62

58
.4
75

10
3.
47
3

28
4.
26
2

52
4.
29
7

14
.6
46

20
.4
66

38
.4
55

62
.4
15

superblue4

O
ur
s

15
77
62

20
78
16

20
95
77

22
02
20

4.
86
8

11
.6
22

55
.2
57

23
1.
80
0

10
0.
91
1

12
4.
14
0

24
6.
80
6

39
3.
09
4

hm
et
is

61
21
06

68
09
20

73
22
20

76
32
94

81
.6
86

17
0.
57
4

73
9.
41
5

55
7.
91
2

26
3.
39
8

23
9.
10
6

24
9.
72
4

26
0.
87
6

ka
hy
pa
r

39
44
32

42
22
48

46
57
57

49
35
51

20
.0
66

44
.4
08

24
90
1.
78
8

56
94
4.
52
9

15
6.
43
5

23
3.
53
0

34
9.
47
2

41
2.
15
4

pa
to
h

38
69
84

42
65
00

47
87
90

49
70
85

46
46
2.
23
1

46
46
6.
37
1

46
46
6.
37
1

46
46
6.
69
2

69
.9
19

84
.7
60

11
6.
65
8

13
7.
77
8

ka
hy
pa
r_
M
T

58
76
97

60
28
99

62
72
90

63
92
67

84
.7
56

16
9.
03
4

48
3.
43
3

87
2.
08
0

19
.3
00

30
.3
01

38
.1
15

54
.7
35

superblue5

O
ur
s

13
89
40

21
93
65

23
21
89

24
29
11

7.
86
6

16
.3
75

10
6.
77
5

40
1.
99
6

14
5.
88
2

16
2.
73
6

26
6.
74
0

42
8.
66
3

hm
et
is

91
09
29

96
97
48

10
24
14
9

10
50
74
7

17
.3
92

42
.1
45

12
6.
66
5

11
2.
30
8

36
7.
71
5

39
4.
33
0

41
2.
56
1

38
7.
44
0

ka
hy
pa
r

59
13
13

62
88
58

69
50
52

71
65
92

11
.6
48

17
76
.7
30

46
00
30
.9
08

23
01
03
.9
55

68
2.
96
5

17
01
.3
69

66
67
.2
50

80
49
.0
43

pa
to
h

62
16
75

66
58
92

71
51
47

74
65
27

8.
80
0

46
00
30
.9
08

54
13
5.
98
0

18
40
69

13
7.
26
4

19
5.
34
8

19
5.
40
1

23
8.
62
7

ka
hy
pa
r_
M
T

90
79
75

94
69
56

99
46
58

10
23
70
5

14
.1
82

31
.4
92

66
.9
89

11
8.
13
9

15
.2
61
0

20
.3
57

34
.3
46

54
.7
77

superblue1

O
ur
s

13
48
44

29
94
44

41
00
16

46
73
27

3.
49
9

5.
07
0

17
.3
26

34
.1
47

11
7.
83
8

16
1.
28
8

24
9.
23
7

41
0.
92
9

hm
et
is

15
90
70
4

16
39
05
0

16
93
61
5

17
20
01
8

25
.2
83

42
.0
08

10
9.
42
0

10
6.
23
6

42
9.
93
8

42
9.
46
0

50
6.
80
1

50
8.
77
1

ka
hy
pa
r

10
86
90
9

11
25
84
7

11
96
13
7

12
34
20
9

82
8.
58
0

68
1.
45
6

11
22
.3
77

11
64
19
.4
81

69
1.
21
2

17
33
.7
19

10
50
0.
27
1

21
74
9.
37
3

pa
to
h

11
21
14
3

11
80
38
3

12
47
16
0

12
77
15
0

70
57
7.
06
6

34
92
74
.9
16
4

41
90
98
.4
00

10
47
42
7.
61
5

36
1.
29
4

36
7.
89
4

40
8.
29
6

34
1.
30
1

ka
hy
pa
r_
M
T

15
16
40
0

16
12
86
3

16
69
42
1

16
94
00
2

20
.4
87

36
.7
91

11
7.
33
6

11
5.
66
2

19
.3
99
8

27
.3
00

48
.0
71

67
.8
07

superblue10

O
ur
s

23
93
06

47
84
13

62
68
24

69
41
75

6.
05
87

7.
92
8

29
.3
17

52
.8
64

29
9.
64
7

34
0.
67
2

57
2.
35
9

11
19
.2
95

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

116 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

117

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

69
64
41

73
93
90

77
64
77

79
35
32

24
.8
61

62
.8
24

29
0.
38
1

27
1.
49
8

23
1.
50
9

25
0.
85
5

33
5.
95
4

32
4.
68
4

ka
hy
pa
r

49
14
73

50
49
50

55
02
37

56
59
42

1.
17
9

59
5.
97
6

21
62
1.
40
6

44
73
.2
10

88
8.
33
6

90
8.
01
2

44
26
.7
28

11
62
8.
42
4

pa
to
h

49
70
80

53
53
31

58
18
35

60
03
57

3.
09
4

40
99
.1
47

64
85
8.
67
3

19
45
26
.1
28

14
5.
83
8

15
5.
43
9

26
1.
57
7

19
8.
07
0

ka
hy
pa
r_
M
T

69
77
37

73
13
48

75
99
63

77
14
70

25
.7
04

55
.4
45

18
3.
78
1

28
9.
90
0

12
.2
41

13
.5
85

23
.1
00

31
.1
17

superblue12

O
ur
s

14
84
42

21
42
94

29
45
82

30
97
76

3.
50
0

3.
50
0

10
.5
76

19
.8
28

13
3.
08
2

13
1.
30
9

25
5.
40
6

43
0.
18
2

hm
et
is

64
78
96

67
68
28

71
67
80

73
99
57

19
.1
02

58
.6
35

21
0.
44
5

20
6.
90
9

23
7.
84
5

25
1.
18
6

28
4.
62
2

28
1.
30
3

ka
hy
pa
r

44
36
70

47
21
28

52
15
93

54
70
68

14
.1
77

35
86
.3
12

59
54
.6
24

74
69
.7
41

42
0.
24
6

10
26
.4
12

29
92
.1
79

41
17
.6
47

pa
to
h

43
51
29

47
58
49

52
57
60

55
64
79

16
.8
26

14
26
.4
23

18
03
24
.7
14

97
11
1.
06
0

80
.7
00

15
3.
19
1

18
3.
26
8

18
3.
42
4

ka
hy
pa
r_
M
T

65
08
26

67
08
82

70
97
24

72
34
81

19
.6
52

39
.9
18

12
5.
57
1

24
6.
24
2

13
.3
90

19
.3
01

34
.2
10

44
.0
15

superblue16

O
ur
s

17
74
18

24
84
59

42
53
47

37
80
16

5.
47
2

14
.0
05

48
.2
06

95
.9
26

13
4.
36
4

13
3.
67
5

22
1.
55
2

25
8.
30
9

hm
et
is

10
05
45
6

10
55
19
4

11
17
86
1

11
39
84
6

42
.0
17

86
.3
28

45
9.
26
9

35
6.
58
7

38
6.
29
2

44
2.
46
3

46
1.
51
3

45
6.
79
4

ka
hy
pa
r

64
71
08

70
45
07

78
93
06

82
52
50

6.
10
6

20
16
8.
69
0

14
61
78
0.
08
3

58
48
92
.0
00

76
3.
57
4

18
20
.0
90

56
83
.0
37

11
67
6.
70
7

pa
to
h

65
45
44

70
67
36

79
16
25

83
46
55

22
32
4.
18
4

11
24
77
.8
99

73
11
71
.2
61

73
11
71
.2
61

18
3.
75
4

20
4.
39
8

22
6.
48
9

24
9.
74
3

ka
hy
pa
r_
M
T

10
03
18
8

10
41
52
5

10
88
35
9

11
14
43
4

48
.5
27

10
4.
87
8

25
6.
66
3

50
6.
21
6

19
.4
43

26
.0
59

43
.6
35

63
.3
73

superblue18

O
ur
s

19
35
44

29
58
77

45
55
67

54
03
18

5.
87
5

12
.7
98

50
.2
05

98
.3
77

14
9.
08
7

20
2.
71
1

33
7.
72
6

39
5.
08
3

hm
et
is

65
76
53

68
99
74

72
76
08

74
33
39

23
.5
88

66
.5
33

24
3.
35
2

24
2.
50
5

20
6.
59
4

20
3.
65
5

27
6.
73
2

27
7.
25
2

ka
hy
pa
r

43
24
86

46
49
47

51
34
44

53
91
16

24
.9
56

15
8.
38
8

12
40
2.
40
0

22
79
8.
73
6

66
8.
41
5

14
82
.7
39

60
45
.6
56

13
36
7.
33
8

pa
to
h

46
86
78

49
78
15

54
20
13

55
63
97

34
45
1.
11
1

15
50
30
.0
00

31
00
60
.0
00

77
49
11
.4
92

10
5.
68
3

18
9.
68
3

19
4.
83
4

19
8.
81
7

ka
hy
pa
r_
M
T

64
82
26

67
17
09

70
86
94

72
79
09

22
.7
58

71
.1
33

17
2.
10
6

23
9.
93
4

10
.9
05

13
.6
28

24
.9
69

38
.9
91

superblue2

O
ur
s

21
65
05

27
72
31

34
73
68

37
21
06

3.
97
0

8.
77
9

32
.4
27

66
.9
23

11
9.
74
7

13
7.
86
7

19
4.
70
8

26
0.
92
1

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

118 Appendix A. Analytical Comparison Results Tables

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

119

C
ut
Si
ze

A
re
aR
at
io

Ex
ec
ut
io
nT
im
e

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

92
34
28

96
14
68

10
00
03
8

10
18
10
5

61
.8
20

18
9.
70
1

67
2.
44
2

66
3.
74
5

28
5.
39
7

25
1.
05
3

32
6.
55
5

32
1.
61
2

ka
hy
pa
r

63
59
18

65
97
34

69
77
45

72
54
43

12
.3
34

10
8.
39
9

22
13
39
.7
92

19
91
37
7.
08
0

23
4.
98
6

54
5.
11
9

18
99
.1
32

33
12
.5
56

pa
to
h

65
07
32

68
00
73

72
87
88

75
72
24

13
02
0.
03
3

22
13
39
.7
92

19
91
37
7.
08
0

19
91
37
7.
08
0

10
4.
41
7

19
5.
29
4

19
6.
31
7

16
2.
95
7

ka
hy
pa
r_
M
T

91
27
26

94
46
45

97
81
78

99
64
43

89
.0
35

17
4.
62
3

42
3.
04
3

87
2.
32
2

11
.9
39

14
.7
94

31
.1
53

39
.8
12

superblue4

O
ur
s

19
86
96

21
31
00

42
89
61

42
93
54

6.
77
0

21
.0
77

58
.6
30

12
8.
81
1

13
2.
54
9

13
3.
69
2

20
8.
17
8

32
8.
53
0

hm
et
is

15
00
89
0

15
76
69
0

16
88
51
2

17
40
26
3

17
.0
38

52
.5
23

22
8.
87
7

21
0.
40
9

66
6.
32
2

70
1.
51
1

76
1.
81
5

84
9.
09
4

ka
hy
pa
r

10
06
95
1

10
78
92
1

12
34
65
3

12
91
08
9

6.
63
1

47
18
.4
48

10
55
36
.0
00

33
32
7.
15
8

17
52
.6
52

41
48
.4
95

25
27
9.
41
2

63
61
0.
95
2

pa
to
h

10
29
12
4

11
18
42
5

12
67
40
2

13
08
44
3

49
78
.2
02

31
66
0.
97
0

45
22
57
.3
72

10
55
57
6.
59
5

35
6.
35
6

25
5.
82
4

38
5.
56
9

41
4.
22
8

ka
hy
pa
r_
M
T

14
68
11
5

15
51
58
9

16
63
46
4

17
11
84
0

20
.1
68

36
.6
49

15
7.
59
4

27
1.
45
5

28
.3
64

37
.3
10

72
.6
79

11
0.
91
9

superblue5

O
ur
s

40
48
42

55
76
08

70
62
66

75
63
47

4.
47
2

9.
51
3

32
.5
64

60
.9
30

30
1.
74
8

34
6.
14
2

69
7.
39
9

11
11
.8
44

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

120 Appendix A. Analytical Comparison Results Tables

To
p
10
00

Fa
no
ut
D
is
tri
bu
tio
n

to
p
10
00

D
el
ay

Pa
th
sD

is
tri
bu
tio
n

To
p
10
00

Sl
ac
k
Pa
th
sD

is
tri
bu
tio
n

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

1.
94
3

2.
27
2

2.
80
8

3.
41
1

26
.2
74

27
.9
22

35
.2
72

37
.7
62

9.
73
4

10
.2
86

11
.6
89

12
.0
21

ka
hy
pa
r

1.
00
9

1.
03
8

1.
13

1.
19

9.
87

11
.4
17

15
.8
5

18
.5
96

5.
18
4

6.
16
7

7.
14
7

7.
37
9

pa
to
h

1.
07
2

1.
11
3

1.
16
6

1.
20
6

10
.1
05

11
.2
34

17
.2
62

18
.9
8

5.
76
1

6.
23
2

7.
89
2

8.
22
2

ka
hy
pa
r_
M
T

2.
02
1

2.
09
5

2.
48
6

2.
79
9

21
.5
87

28
.5
76

34
.2
31

36
.2
41

9.
12
4

9.
91
6

11
.1
16

11
.6
13

superblue1

O
ur
s

1.
44
6

3.
01
1

3.
95
6

5.
06
9

2.
98
8

5.
92
1

8.
05
7

8.
02
3

1.
51
7

2.
06
5

2.
47
3

2.
69
1

hm
et
is

1.
94
2

2.
11

2.
42
8

2.
74
9

26
.4
41

28
.2
46

37
.5
94

38
.7
83

10
.4
84

10
.8
1

11
.4
03

11
.5
13

ka
hy
pa
r

1.
00
1

1.
00
3

1.
04
6

1.
11
7

9.
15
8

11
.9
77

17
.1
1

17
.7
31

6.
72
5

8.
11
9

9.
75
7

10
.0
39

pa
to
h

1.
04
2

1.
06
9

1.
12
6

1.
16
7

9.
67
2

12
.7
57

18
.9
8

19
.7
82

6.
40
9

8.
18
9

10
.4
29

10
.7
24

ka
hy
pa
r_
M
T

1.
93
1

1.
95
6

2.
21
9

2.
48
5

24
.1
68

31
.3
12

35
.9
97

38
.1
78

10
.2
58

10
.9
33

11
.4
03

11
.4
84

superblue10

O
ur
s

1.
61
2

3.
56
4

4.
99

5.
56
7

3.
14

6.
13
8

6.
73
6

8.
17
8

1.
67
4

1.
76
1

1.
86
7

1.
84

hm
et
is

1.
67

2.
14
9

2.
84
9

3.
32
1

17
.0
62

18
.4
8

20
.9
59

22
.5
6

6.
73

6.
87
9

7.
14
8

7.
20
1

ka
hy
pa
r

1.
02
6

1.
01
4

1.
07
1

1.
13

8.
35
6

8.
02
8

9.
97
2

10
.3
5

5.
12
9

5.
02
4

5.
76
1

5.
96
8

pa
to
h

1.
08
7

1.
16
6

1.
25
2

1.
26
1

7.
45
3

8.
52
3

11
.1
88

12
.1
65

3.
77
5

4.
97
2

6.
35

6.
70
3

ka
hy
pa
r_
M
T

1.
91
9

1.
94
5

2.
30
7

2.
41
9

15
.9
57

18
.9
69

20
.7
59

21
.3
72

6.
64
9

6.
93
9

7.
07
8

7.
15
8

superblue12

O
ur
s

1.
77
7

2.
60
5

4.
14
2

4.
41
2

2.
47
3

3.
61
1

5.
37
5

6.
24
8

1.
49
1

1.
59
2

1.
67
1

1.
70
6

hm
et
is

2.
1

2.
62
5

3.
56
1

4.
50
8

22
.6
81

24
.6
97

32
.3
46

34
.1
62

4.
90
7

4.
95
5

5.
07
7

5.
09
4

ka
hy
pa
r

1.
02
5

1.
07
4

1.
34
2

1.
67
2

12
.2
97

13
.1
29

17
.2
43

19
.0
64

3.
74
5

3.
86
8

3.
98
6

4.
06
6

pa
to
h

1.
05
2

1.
11
4

1.
20
7

1.
28
9

9.
50
1

11
.8
38

17
.6
43

20
.2
77

3.
41
2

3.
90
7

4.
60
4

4.
93
5

ka
hy
pa
r_
M
T

2.
19
2

2.
50
3

3.
51

3.
98
4

22
.9
16

26
.0
68

31
.7
93

34
.6
76

4.
82
3

4.
95
2

5.
04
1

5.
08
7

superblue16

O
ur
s

1.
97
9

2.
93
3

6.
18
7

5.
13
2

4.
28
9

8.
22
3

8.
28
1

9.
69
9

1.
27
7

1.
38
2

1.
34
5

1.
34
9

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

121

To
p
10
00

Fa
no
ut
D
is
tri
bu
tio
n

to
p
10
00

D
el
ay

Pa
th
sD

is
tri
bu
tio
n

To
p
10
00

Sl
ac
k
Pa
th
sD

is
tri
bu
tio
n

50
10
0

30
0

50
0

50
10
0

30
0

50
0

50
10
0

30
0

50
0

hm
et
is

2.
05
1

2.
56
1

3.
69

4.
50
8

26
.3
09

29
.3
65

37
.0
35

38
.5
73

6.
00
5

6.
09
3

6.
27
4

6.
33
9

ka
hy
pa
r

1.
02
6

1.
06
6

1.
32
2

1.
48
4

8.
20
3

10
.6
75

16
.0
78

17
.9
28

3.
86
4

4.
53
2

5.
06
1

5.
18
6

pa
to
h

1.
06
9

1.
09
9

1.
19
9

1.
26
1

8.
46
7

12
.9
28

15
18
.3
18

3.
83
6

4.
55
6

5.
40
2

5.
79
2

ka
hy
pa
r_
M
T

2.
08
5

2.
33
5

3.
16
3

3.
65
1

23
.1
39

28
.7
2

35
.0
11

37
.6
44

5.
87
5

6.
04

6.
27
4

6.
32
1

superblue18

O
ur
s

1.
70
1

2.
48
4

3.
95
5

5.
11
8

1.
88
4

3.
85
3

7.
31
1

7.
65
2

1.
56
3

1.
63
8

1.
60
1

1.
60
7

hm
et
is

1.
96
1

2.
18
1

2.
71
2

3.
27
1

17
.1
4

17
.8
53

21
.2

22
.4
95

6.
45
6

6.
49
4

6.
71
9

6.
76
8

ka
hy
pa
r

1.
01
8

1.
02
1

1.
18
8

1.
25
1

7.
03
5

8.
83
1

10
.4
8

11
.3
25

4.
18
4

4.
87
6

5.
49
5

5.
62
4

pa
to
h

1.
09
6

1.
14

1.
21
7

1.
27
4

8.
22
8

9.
22
7

12
.6
92

13
.2
05

4.
82
9

5.
39

6.
08

6.
31
2

ka
hy
pa
r_
M
T

1.
97
5

2.
08
1

2.
46
7

2.
76
5

16
.6
58

19
.0
86

21
.1
81

21
.9
63

6.
33
6

6.
56
7

6.
7

6.
75
7

superblue2

O
ur
s

3.
12
8

4.
18
5

5.
98
5

6.
60
8

4.
85
6

5.
87
3

6.
50
5

6.
10
9

1.
43
9

1.
51
4

1.
65
4

1.
61
9

hm
et
is

1.
99
3

2.
32
6

3.
01

3.
61
9

25
.2
89

27
.9
08

35
.5
09

36
.3
92

4.
98
5

5.
04

5.
16
2

5.
19
3

ka
hy
pa
r

1.
00
4

1.
02
4

1.
03
9

1.
06
6

11
.7
43

12
.7
19

13
.5
79

16
.3
16

3.
71
9

3.
74
8

3.
95
7

4.
06
3

pa
to
h

1.
11
2

1.
13
3

1.
16
1

1.
21
2

11
.1
84

14
.5
26

16
.2
13

18
.9
12

3.
79
3

4.
00
5

4.
23
8

4.
79
6

ka
hy
pa
r_
M
T

1.
96
4

2.
15
5

2.
65
9

3.
17
2

23
.3
28

28
.2
03

35
.1
4

37
.4

4.
90
9

5.
06
1

5.
15
6

5.
17
6

superblue4

O
ur
s

2.
28
4

2.
73
3

5.
77
7

5.
87
6

2.
86
6

4.
40
6

5.
42
6

7.
35
2

1.
58
2

1.
67
6

1.
60
3

1.
63
4

hm
et
is

1.
98
5

2.
17
4

2.
70
2

3.
16

23
.7
28

25
.5
58

35
.7
99

38
.0
66

5.
87
5

5.
86
3

6.
12
7

6.
17
6

ka
hy
pa
r

1.
01
2

1.
05
6

1.
29
9

1.
50
9

8.
54
4

11
.5
51

17
.0
68

18
.6
52

4.
19
1

4.
45
9

5.
06
9

5.
12
7

pa
to
h

1.
12
1

1.
15
6

1.
24
8

1.
34
7

8.
90
8

11
.6
53

17
.4
35

18
.8
37

4.
34
1

4.
42
1

5.
49

5.
89
5

ka
hy
pa
r_
M
T

2.
01
4

2.
09
3

2.
55
7

2.
88
8

20
.2
5

26
.6
52

34
.1
99

37
.4
43

5.
66
2

5.
91
9

6.
11
6

6.
16
6

superblue5

O
ur
s

2.
09
4

3.
17
4

3.
81
8

4.
06
3

4.
81
9

6.
74
9

8.
77
4

9.
93
4

1.
61
2

1.
72
3

1.
68
9

1.
82
2

Institutional Repository - Library & Information Centre - University of Thessaly
13/07/2024 00:33:54 EEST - 3.142.172.148

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Electronic Design Automation (EDA)
	Novel ASIC Design flow
	Multi-Level ASIC flow
	Introduction of Multi-Level flow in EDA
	Multi-Level ASIC flow steps

	Multi-Level ASIC design Flow applications
	Thesis Outline

	Background
	Introduction
	Terminologies and Definitions
	Graph Representation
	Physical Design Oriented definitions
	Timing Analysis Oriented definitions
	Vcycle flow

	Multi-Level Placement Application
	Algorithm overview and objectives
	Placement Algorithm types
	Existing Industrial Tools

	3D Chip Design flow Application
	3D Flow Overview and Objectives
	Different flow types
	Modern Challenges

	Related Work
	Introduction
	Multi-Level Clustering
	Algorithm Overview and Objectives
	Algorithm types
	Existing algorithms and tools

	Multi-Level Partitioning
	Algorithm overview and objectives
	Algorithm types
	Existing algorithms and tools

	Our Contribution
	Introduction
	Multi-Level Clustering Phase
	Top Level Algorithm Presentation
	Algorithm Parameters Presentation
	Core Algorithm Presentation
	Post-processing algorithm
	"2nd" Version of the Algorithm
	Macro aware Clustering technique

	Multi-Level Partitioning
	Top-Level Partitioning Algorithm
	FM algorithm optimisations
	Gain Value Calculation
	Heap Strategies
	Unfolding Strategies
	Level Skipping and repeating flow
	3D ASIC Flow Extention

	Comparative Results
	Introduction
	Experimental Methodology
	Experimental framework
	Evaluation Metrics and Tools

	Comparison Results

	Conclusions
	Conclusions
	Future Work

	Bibliography
	APPENDICES
	Benchmarks Suite Tables
	Analytical Comparison Results Tables

