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xii Abstract

Diploma Thesis

CAUSAL TECHNIQUES FOR BANKRUPTCY PREDICTION IN

GREEK SMES

Leonidas Zimianitis

Evangelia-Rafaela Frastali

Abstract

Understanding the factors leading to bankruptcy is essential in the dynamic landscape of

global economies. While many research efforts prioritize prediction, a comprehensive dive

into causality inference is critical. With this perspective, our study aimed to uncover causal

links among dataset variables, focusing on their impact on bankruptcy outcomes. For this

study, we considered the bankruptcy Greek SMEs dataset [1] in which we discovered biases

inconsistent with the economic backdrop of Greece. A standout feature of our methodology is

its emphasis on causality to clarify and correct dataset discrepancies. This technique, coined

by the term ”Construction Bias,” refers to the intentional or unintentional variable choices

made during dataset creation. We applied our methodology to the bankruptcy Greek SMEs

dataset in which the bankruptcy firms were underrepresented. After refinement, our strategy

outperformed the traditional random sampling approach’s predictive capability, boasting a

noteworthy 95.71% precision in bankruptcy predictions. This level of accuracy highlights

the value of pinpointing companies in potential financial distress using a causality-centric

analytical perspective.

Keywords:
Greek SMEs, Bankruptcy, Machine Learning, Causal inference, Bayesian Networks, Struc-

ture learning
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Περίληψη xiii

Διπλωματική Εργασία

ΤΕΧΝΙΚΕΣ ΑΙΤΙΩΔΟΥΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ ΓΙΑ ΤΗΝ

ΠΡΟΒΛΕΨΗ ΠΤΩΧΕΥΣΗΣ ΣΕ ΕΛΛΗΝΙΚΕΣ ΜΜΕ

Λεωνίδας Ζημιανίτης

Ευαγγελία-Ραφαέλα Φράσταλη

Περίληψη

Εντός του δυναμικού τοπίου των παγκοσμίων οικονομιών, η βέλτιστη κατανόηση των πα-

ραγόντων οι οποίοι οδηγούν σε πτώχευση είναι απαραίτητη. Ενώ η πλειονότητα των υπαρ-

κτών ερευνών επικεντρώνεται στην πρόβλεψη πτώχευσης, η εμβαθυμένη εξερεύνηση της

αιτιατότητας παραμένει υπό ανάπτυξη. Σκοπός της έρευνας μας είναι η ανακάλυψη των

σχέσεων αιτιατότητας μεταξύ μεταβλητών, σε ένα ελληνικό οικονομικό σύνολο δεδομέ-

νων, εστιάζοντας στην επιρροή την οποία οι ίδιες ασκούν στην πτώχευση. Μια πρώιμη ανά-

λυση, μας αποκάλυψε πως οι τάσεις του συνόλου δεδομένων δεν αντικατοπτρίζουν την ελ-

ληνική πραγματικότητα. Την κομβική πρωτοπορία της έρευνάς μας, αποτελεί η χρήση με-

θόδων αιτιατής συμπερασματολογίας για την ποσοτικοποίηση της υπαρκτής μεροληψίας εν-

τός του συνόλου δεδομένων. Κατά συνέπεια, γεννήθηκε ο όρος ”Κατασκευαστική Μερο-

ληψία”, συμβολικός για τη συστηματική συμμετοχή ή αποχή εκάστοτε περιπτώσεων κατά

τη δημιουργία του συνόλου δεδομένων. Βάσει αυτών, έπειτα μιας εξευγένισης του συνόλου

δεδομένων, η τεχνική μας ξεπέρασε σε απόδοση την πολλών-ετών εγκαθιδρυμένη τεχνική

απόσπασης μεροληψίας με χρήση τυχαίας δειγματοληψίας, επιτυγχάνοντας μια εντυπωσιακή

ακρίβεια της τάξεως του 95.71% για την πρόβλεψη πτωχευμένων εταιρειών. Η υψηλή αυτή

απόδοση αποτελεί μάρτυρα της ανάγκης για χρήση τεχνικών αναγνώρισης επικυνδινότητας

πτώχευσης με οδηγό τεχνικές αιτιατότητας.

Λέξεις-κλειδιά:
Ελληνικές ΜμΕ, Πτώχευση, Μηχανική Μάθηση, Αιτιώδη Συμπερασματολογία, Μπεϋζιανά

Δίκτυα, Δομική Μάθηση
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Chapter 1

Introduction

In the dynamicworld of global economies, the stability and growth of firms are paramount.

Their prosperity or decline can ripple across industries, stakeholders, and economies. Among

the myriad challenges businesses face, bankruptcy is a formidable adversary. As such, com-

prehending the factors that precipitate bankruptcy is of utmost importance.

Historically, the quest to predict and understand bankruptcy has been marked by the use

of diverse methodologies, ranging from traditional statistical methods to contemporary ma-

chine learning algorithms. However, while many endeavours focus on prediction, a deeper

understanding of causality, i.e., the factors that genuinely lead to bankruptcy, remains a fron-

tier yet to be fully explored.While predicting its occurrence is invaluable, illuminating the

underlying causes can offer transformative insights.

This introduction provides a glimpse into the landscape of financial stability, bankruptcy

prediction, and the unexpected turns that research can take. As we navigate the challenges

and revelations of our study, we invite the reader to engage with the evolving narrative, ap-

preciating the intricacies and insights of our findings.

1.1 Thesis Scope

Initially, our objective was to employ causal models to shed light on the intricacies of

bankruptcy, especially concerning Small and Medium-sized Enterprises (SMEs) in Greece,

a nation with a distinctive economic landscape. However, as often occurs in research, we

encountered unforeseen challenges. The quality and quantity of available data were not as

anticipated, leading to a pivotal shift in our approach. Instead of being a limitation, this chal-
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2 Chapter 1. Introduction

lenge enriched our journey, prompting us to innovate and adapt.

The core objective of our analysis was to establish causal relationships amidst the myriad

variables present in the dataset, focusing on their influence on the outcome variable referred

to as ’label’. Given the data’s inherent biases, our initial analyses divulged unexpected re-

lationships that were not congruent with our prior knowledge and the economic context of

Greece. Consequently, our research journey evolved into deciphering these biases’ presence,

impact and mitigation.

Note on Citations

Citations within this thesis, especially those in the experiments records, do not indicate

that we have directly duplicated the information from the cited materials. Instead, the refer-

enced literature has been used as a foundation upon which we have formulated and presented

our conclusions

1.1.1 Key Findings

In the following, we outline the results of our thesis,

1. Inherent Biases

Our initial analyses exposed a pronounced bias in the dataset, with specific fiscal years

exclusively representing bankrupt firms. Such data idiosyncrasies can severely hinder

the establishment of genuine causal relationships and compromise the reliability of

conclusions drawn from the data.

2. Construction Bias

Delving deeper into the biases, we conceptualized the term ”Construction Bias” to de-

scribe the systematic inclusion or exclusion of instances based on the outcome variable

during the dataset construction phase. This bias is insidious, as it can camouflage as a

genuine relationship between variables.

3. Mitigating Construction Bias

By carefully selecting instances from years that did not display overt biases and ensur-

ing balanced representation for both outcome labels, we crafted a dataset that signifi-

cantly reduced the construction bias.

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:28:27 EEST - 18.218.130.119
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4. Model Efficacy Post-Debiasing

The models trained on the de-biased dataset exhibited enhanced performance, espe-

cially in predicting bankruptcies. The precision for predicting ‘label 1’ (associated

with bankrupt firms) reached an impressive 95.71%, emphasizing the model’s capa-

bility. This precision is paramount since it is more crucial to accurately predict which

firms will go bankrupt than to determine which ones will not.

1.2 Contribution of Thesis

This thesis makes several significant contributions. More specifically,

• it applies an extensive Exploratory Data Analysis (EDA) to the bankruptcy dataset for

theGreek Small toMediumEnterprises [1], considered the largest andmost extensively

studied dataset for the Greek market.

• it uses causal inference, which does not rely on mere correlation metrics but delves

into the fundamental relationships between variables. In doing so, it complements the

Exploratory Data Analysis.

• it pioneers its application of causal techniques to Greek data and uses causal inference

to quantify bias.

• it leverages the proposed causal debiasing method, that surpasses the well-established

random sampling technique in eradicating bias

1.3 Thesis organisation

The thesis consists of eight chapters. The first chapter serves as the introduction. Chapter

2 delves into Causal Inference, while Chapter 3 introduces Bayesian Inference Techniques

in the context of Machine Learning (ML) and establishes the theoretical background. Chap-

ter 4 provides an extensive literature review on bankruptcy models and presents the models

discussed. Chapter 5 describes the literature research that informed the implementation of

Causal and Bayesian techniques in bankruptcy prediction. Chapter 6 offers detailed infor-

mation about the dataset used in our study and the Exploratory Data Analysis (EDA) we

conducted. In Chapter 7, causal machine learning models are developed and applied to our
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4 Chapter 1. Introduction

custom datasets, with the accuracy of each method being interpreted. Finally, Chapter 8 con-

cludes the study, discussing the challenges faced, and suggesting future directions.
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Chapter 2

Causal Inference: From Correlation to

Causation

This chapter explains causal inference, emphasizing its importance beyondmere observa-

tional data. We start by discussing why causal inference is crucial, followed by its mathemati-

cal basis. We’ll explore how graphs can represent associations and review various techniques

used in causal research. Later sections will address distinguishing actual causal effects, han-

dling confounding data, and the emerging area of causal representation learning. The chapter

concludes with foundational concepts in causal theory.

2.1 An Overview of Causal Inference

Causal inference is a discipline that considers assumptions, study designs, and estima-

tion strategies allowing researchers to draw causal conclusions based on data [9]. It is a field

founded in statistics that first gained popularity in the 1970s by researchers studying the

causal effects of treatments in the medical sciences [10]. Later it is combined with machine

learning creating Causal Machine Learning, a field of machine learning methods that strive

to find the causal relationships between the variables and the data. But how did we go from

machine learning to Causal Machine Learning? In the classical machine learning (ML) prob-

lems, we assume that the data are independent and identically distributed, thus in reality that

is not always true. The result of considering the data independent is that even when using

the most sophisticated and state-of-the-art methods the causality of the data is overlooked

[11]. As a result, the outcomes of classic ML can make various predictions with high accu-
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6 Chapter 2. Causal Inference: From Correlation to Causation

racy, but they are entirely unable to explain the outcome, letting the task explanation to the

analyst, which might be inaccurate or subjective. Thus, causal ML solves this as it offers

explainability and humans easily interpret its models [12].

Knowing the causal relations between the data is crucial when considering data analysis.

Identifying the mechanisms in which the variables take the values they have is a key aspect

of causal inference as it is not always possible to know the actual value of a variable so it is

crucial to have a way to estimate it. If experimental data is not accessible, filling in the vari-

able values usually requires taking samples from one probability distribution and inferring a

variable’s value in a population with a different probability distribution [13]. Moreover, even

if the process of experimental interventions is possible, there are things to consider. That is

very inefficient, as a large amount of data is needed to understand causal relationships be-

tween variables to perform those experiments, or sometimes is probably unethical to suggest

specific interventions. For example, we could measure the effect that smoking would have

on the blood pressure of a sample, but it is highly unethical to make people start smoking

even for scientific reasons.

2.2 Motivation: Reasons to Employ Causal Inference

Causal inference is a fundamental aspect of scientific research. While associational (or

correlational) claims show that variables are related, causal claims further suggest that one

variable directly influences or causes another. That causal reasoning has many scientific ap-

plications, like estimating the effects of medical treatments, training robots to perform ac-

tions that will have the best outcome, understanding the causes of a socioeconomic incident,

or even for decision-macking [3].

Moreover, correlation does not imply causation. While correlation indicates a linear sta-

tistical dependency between two variables, it does not establish a causal relationship where

one variable directly influences the outcome of another. In figure 2.1, we observe a surpris-

ing correlation between two seemingly unrelated topics: the divorce rate in Maine and the

consumption of margarine. These two variables are highly correlated at 99.26%. However,

asserting that margarine consumption directly influences the divorce rate would be irrational.

Although these two variables appear to be correlated, drawing a causal link between them

would be misleading. We must be cautious, as humans can sometimes be prone to believing
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2.3 Setting the Groundwork: Mathematical Foundation of Causal Inference 7

such spurious correlations.

Contrary to what one might think, traditional statistics and machine learning haven’t

solved the ’causality’ problem. Measuring causation isn’t as straightforward as looking at

correlation and predictive performance in data. In traditional statistics and machine learning,

we cannot determine causation solely by examining metrics like correlation and predictive

accuracy. This limitation underscores the importance of not conflating correlation with cau-

sation. Due to these concerns, researchers are delving deeper into novel causal inference

methods.

Figure 2.1: Spurious Corellations [2]

2.3 Setting the Groundwork: Mathematical Foundation of

Causal Inference

Humans inherently understand causal inference as a survival mechanism. For instance, if

members of a tribe ate a specific seed and died, while others who didn’t consume it survived,

the remaining tribe members would likely avoid eating that seed. But how can we explain

this concept to someone without intuition about causality?

A causal effect can be defined as follows: When comparing the outcome of taking action

A to the outcome of not taking action A, if the outcomes differ, we say that action A has a

causal effect on the outcome. In statistical terms, actionA can be referred to as an intervention,

exposure, or treatment. If outcome Y is a dichotomous variable, it can have two values (Y=0

or Y=1). Treatment A has a causal effect on the outcome Y of an individual if Y A=1 ̸= Y A=0.

The variables Y A=1 and Y A=0 are called counterfactual outcomes. If Y A=1 = Y A=0 and thus
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8 Chapter 2. Causal Inference: From Correlation to Causation

A has no causal effect the equality Y A = Y is called consistency. Individual causal effects are

described by contrasting the values of counterfactual outcomes. However, for each individual,

only one outcome is observed — the one corresponding to the treatment value experienced

by that individual. All other counterfactual outcomes remain unseen. Because of this missing

data, individual effects can’t be identified; in other words, they can’t be represented as a

function of observed data [14].

2.4 Craphs and the Flow of Association

We explain in detail in the following section that DAGs which are a kind of graph are

the structure in which we can depict causation and association between variables. So, this

paragraph gives the basics of how graphs are created and their theory. Graphical building

blocks are the basic components of graphs. These minimal building blocks are :

• Chain

• Fork

• Immorality

• Two unconnected nodes

• Two connected nodes

Figure 2.2: Chain Fork Immorality [3]

Figure 2.3: Two unconnected nodes [3] Figure 2.4: Two connected nodes [3]

The flow of association is whether two nodes are associated or not in a graph. Associated

we consider the statistically dependent nodes. Statistically independent nodes are not linked
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in graphs. Thus we say that two nodes are not associated simply because they have no edge.

In contrast, if there is an edge between two nodes, then the two nodes are associated. Regard-

ing nodes that are not directly linked but are statistically dependent, they are conditionally

dependent. In forks and chains like the ones in 2.2 typically X1 and X3 are dependent. In a

chain, X1 affects X2 and then X2 affects X3. In a fork X1 and X3 are associated because

changes in X2 can influence both X1 and X3. By analyzing the graph’s structure, we deter-

mine which variables are conditionally independent of each other and which are not, which

is crucial for causal inference. Though those associations are usually true, there are patho-

logical cases where X1 and X2 are not associated [3]. Finally, association flow represents

symmetrical correlation, meaning that if X1 affects X2 and X2 affects X1. The flow of cau-

sation is not symmetric because causation only flows in directed paths. Understanding the

difference between the two is crucial in research and data analysis to avoid drawing incorrect

conclusions.

2.5 Key Techniques: AReview of Popular Causal Inference

Methods

Causal inference is usually separated into two broad types of models used to estimate

interventions’ effects [13].

• causal Bayesian networks

• Structural Causal Models

Causal Bayesian networks specify a density for a variable as a function of the values of its

causes. On the other hand, Structural EquationModels (SEMs) specify the value of a variable

as a function of the values of its causes (typically including some unmeasured noise terms)

[13].

2.5.1 Causal Bayesian Networks

The causal relationships are graphically represented using a structure called a Causal

Directed Acyclic Graph (Causal DAG). Graphs are structures consisting of a collection of

nodes and edges that connect these nodes [15]. Some graphs are directed, meaning the edges
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10 Chapter 2. Causal Inference: From Correlation to Causation

point from one node to another. A Directed Acyclic Graph (DAG) is a directed graph with

no directed cycles. This means that there is no path of edges in the graph that starts and ends

at the same node, node A, for example.

Graphs are especially useful for modeling probability distributions over random vari-

ables. They visually demonstrate how a joint distribution over a set of random variables can

be factorized. This factorization relies on the chain rule of probability, which permits the

decomposition of a joint distribution into a product of conditional distributions. This decom-

position occurs due to a fundamental property of graphical models known as the Markov

Condition. The Markov Condition results in the factorization of the joint distribution of all

nodes in a graph into a product of conditional distributions, where each node’s distribution

is conditioned on its parent nodes. Mathematically, the Markov Condition is represented as

follows:

Theorem 2.1. Given a graph G of nodes X with joint distribution p(x), the Markov Condition

n states that the parents pai of every node Xi make Xi independent of its non-descendants.

This condition implies the factorization of the joint distribution

p(x) =
∏
i

p(xi|pai)

This equation states that the joint distribution p(x) can be represented as a product of the

conditional distributions of each node xi given its parents pai. In simpler terms, the Markov

Condition and the resulting factorization allow us to simplify the representation of a joint dis-

tribution using a graph. Instead of considering the relationships between all pairs of variables,

we only need to consider the relationships between a node and its parents. This greatly re-

duces the complexity of the model, especially when dealing with a large number of variables.

Finally, this is the main advantage of Bayesian Networks, they can decompose a large joint

distribution p(x) into a product of several small conditional ones according to the assumed

DAG relations. Consequently, Bayesian Networks leverage the structure of the DAG to pro-

vide a compact and interpretable representation of complex joint distributions. This allows

efficient reasoning and learning in probabilistic domains.

2.5.2 Structural Causal Models

Previously we discussed how causal BNs enable the transition from associational distri-

butions found in regular BNs to interventional ones. However, causal BNs fall short when
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it comes to constructing counterfactual distributions. This is where Structural causal models

(SCMs) come in handy. SCMs provide a formalism for causation that allows counterfactual

analysis. They are also called structural equation models or functional causal models [15].

In SCMs, causal relationships are represented using deterministic functional equations.

Stochasticity (or randomness) in SCMs is introduced based on the hypothesis that certain

variables in the equations remain unobserved. In essence, SCMs offer a more comprehensive

framework that includes counterfactual analysis. This is achieved by expressing causal rela-

tionships through deterministic equations and introducing randomness based on unobserved

variables. Structural causal models use structural equations to represent causality. The equa-

tionA = B is symmetric, meaning it can also be expressed asB = Awhich implies not only

that a change in A affects B, but also that a change in B affects A. This symmetry does not

indicate any causal direction. To discuss causation, an asymmetric relationship is essential.

This asymmetry allows one to claim that ”A is a cause of B”. In this context, it means that

changing A will result in changes in B. However, altering B will not lead to changes in A.

This Structural Equation for Causation will be:

B := f(A)

where f is some function that maps A to B. Although we have this rule to describe causal

relationships, it is not entirely correct; this formation is deterministic meaning that only A can

change B. To have a probabilistic rule that better explains the mapping when some unknown

factors may also affect B we have:

B := f(A,U)

here U is some unobserved random variable. U represent the randomness or noisy data (a

“noise” or “background conditions” variable) as input, it can depict any stochastic mapping,

so structural equations generalize the probabilistic factors [3].

2.6 Average causal effect

The definition of an individual causal effect requires three pieces of information:

• An outcome of interest

• The actions (A = 1 and A = 0) that are being compared.
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12 Chapter 2. Causal Inference: From Correlation to Causation

• The specific individual for whom the counterfactual outcomes (Y A=0 and Y A=1) are

compared

However, identifying the individual causal effects is typically not feasible. That is because

we do not know what will happen for both actions as the individual can only take action 0

or 1. While individual causal effects provide insights into a specific individual’s outcomes

under different actions, average causal effects offer a broader perspective by considering the

average outcomes across a population under the same actions [14]. This shift is necessary

due to the challenges of pinpointing individual causal effects.

The average treatment effect is widely used by scientists. The simplest example would

be if we have an individual who is sick. If, hypothetically, we have two treatments to give

them, the doctors are interested in the outcome of the individual but they cannot provide

both treatments to see the individual treatment effect. Therefore, they study the literature

to see what percentage of a population has a positive outcome given treatment A = 1, and

what percentage of a different population has a positive outcome given treatment A = 0. If

treatment A has a positive outcome on a larger number of people, the doctors would suggest

that the individual take treatment A = 0 based on the average causal effects.

Therefore, the average causal effect of treatment A on an outcomeY exists if the probabil-

ity that the outcome occurs under the treatment, Pr[Y A=1 = 1], is not equal to the probability

of the outcome occurring without the treatment, Pr[Y A=0 = 1], in the target population

Pr[Y A=1 = 1] ̸= Pr[Y A=0 = 1]

The benefit of that approach is that the average treatment effect (ATE) can be specified

from data, while causal effects cannot. Subsequently, sometimes we even see in the literature

that ‘average causal effects’ are referred to as ‘causal effects’.

2.6.1 Ignorability and Exchangeability

Whenwe previously presented the ATE, we assumed ignorability, meaning we essentially

disregarded the reasons or mechanisms behind individuals’ choices of treatment. Instead, the

authors simplified the assumption that individuals were randomly assigned treatments. In

simpler terms, ignorability means that the individual and his characteristics do not influence

the treatment selection. Previously, we also assumed exchangeability when discussing the

average causal treatment effect. Exchangeability means that we would see the same results
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if we were to exchange the treatment groups, meaning that the treatment would have the

same effect in every group, regardless of the group’s characteristics. However, we can state

exchangeability only when the treatment groups being compared are essentially identical in

all respects, except for the treatment they received. This means that any difference in out-

comes observed between the groups can be attributed to the treatment itself and not to some

other underlying difference between the groups. However, in real-world scenarios, assum-

ing ignorability can often be unrealistic. This is because most observational data is likely to

have confounding variables. These confounders can influence both the assignment of treat-

ment and the outcome, leading to potential biases in estimating causal effects. The only way

to ensure ignorability is to perform Randomized Experiments [3]. In a randomized experi-

ment, the assignment of treatment is determined by a randommechanism, such as a coin toss.

This guarantees that treatment is not influenced by any other factors, including potential con-

founders.

2.6.2 Conditional Exchangeability or Unconfoundedness

In observational data, assuming that treatment groups are exchangeable is typically unre-

alistic. Thismeans that the groupsmay differ in aspects other than the treatment they received.

However, it might be possible to exchange subgroups by controlling for certain relevant vari-

ables (conditioning) [3]. In simpler terms, although the treatment and the outcomes are as-

sociated with confounders by controlling the treatment groups, we make them comparable,

and thus there is no confounding. Does that mean that the controlled data have Exchangeabil-

ity? No, but we have conditional exchangeability in the data, a crucial assumption for causal

inference. Conditional Exchangeability is also known as unconfoudness.

Conditional Exchangeability is when we condition the data to diminish any noncausal

association between the treatment and the outcome. Even when controlling the data uncon-

founded is not secured because there may exist some unobserved confounders that are not

related to the data. The only way unconfoundedness is secured is when the data come from

randomized experiments.

2.6.3 Positivity

The Positivity assumption (also known as the Overlap or Common Support) is a funda-

mental requirement in the average causal treatment effect. The positivity assumption ensures
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14 Chapter 2. Causal Inference: From Correlation to Causation

that every subgroup (defined by covariates) has a mix of treated and untreated individuals,

allowing for meaningful causal effect estimation across the entire dataset.

Given a set of covariates X and a binary treatment variable T (where T = 1 indicates

treatment and T = 0 indicates control), the positivity assumption can be mathematically

represented as:

0 < P (T = 1|X = x) < 1

for all values of x in the support of X.

This equation ensures that for every combination of covariates x, there is a non-zero

probability of receiving both the treatment and the control. In other words, for every subgroup

defined by x, some individuals receive the treatment and others don’t. Without positivity, we

can’t compare outcomes between treated and untreated individuals within subgroups, making

causal effect estimation impossible for those subgroups.

2.6.4 No Interference and Consistency

No interference, often referred to as the StableUnit TreatmentValueAssumption (SUTVA)

in causal inference literature, is the assumption that the treatment assignment of one individ-

ual does not affect the outcome of another individual and that the outcome of the individual

is a function of his treatment [3].

The final assumption is consistency. Consistency is the assumption that the outcome we

observe Y is the potential outcome under the observed treatment T.

If the treatment is T, then the observed outcomeY is the potential outcome under treatment

T. Formally

T = t −→ Y = Y (t) −→ Y = Y (T )

The intuition behind consistency is to ensure that what we observe is an outcome of the

given treatment and not some random effect.

2.7 Deconfounding Data

As we briefly mentioned, confoundedness is probably the main problem when dealing

with causal inference as it makes learning the true causal relationships through variables

complex. It immediately comes to mind that trying to deconfound the data would tackle this
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problem andmake causal analysis easier. In observational studies where data are not collected

from random experiments, data augmentation ensures that the relations between the variables

are genuine and not due to confounding factors. Data Augmentation (DA) is usually applied in

high dimensional datasets; it is a set of interventions that are happening in the dataset without

causing any information loss though they deconfound the dataset. The negative of DA is

that it adds much computational cost to the dataset and it is essential to apply augmentation

judiciously to ensure that the augmented data remain relevant and meaningful.

2.8 Causal Representation Learning

Representation Learning is extracting representation from the data X, but the represen-

tations have lower dimensionality. Causal Representation Learning (CRL) is an emerging

area in machine learning that focuses on learning representations that capture the underlying

causal structure of the data. The idea is to identify and represent the high-level causal vari-

ables that generate the observed data X. These representations Z, correspond to instances of

these typically latent causal variables [15]. The steps to perform CRL:

1. Causal Feature Learning: a mapping X = g(X)

2. Causal Graph Discovery: a causal graph GZ among the causal variables Z

3. Causal Mechanism Learning: Understand the underlying mechanisms that drive these

relationships

2.9 The Causal Theory basics

2.9.1 The Causal Null Hypothesis

The causal null hypothesis is the condition that there is no effect of one variable (treat-

ment or exposure) on another (the outcome). Saying that the causal null hypothesis holds is

equivalent to saying that variable A does not have a causal relationship with the outcome.

There are another 3 ways of expressing no causal relationship:

• the causal risk difference equal to zero

Pr[Y A=1 = 1]− Pr[Y A=0 = 1] = 0

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:28:27 EEST - 18.218.130.119
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• the causal risk ratio equal to one

Pr[Y A=1 = 1]

Pr[Y A=0 = 1]
= 1

• the odds ratio equal to one

Pr[Y A=1 = 1]/Pr[Y A=1 = 0

Pr[Y A=0 = 1]/Pr[Y A=0 = 0]
= 1

The causal risk difference is a measure of the average individual causal effect but the

causal risk ratio is a measure of causal effect on the population but is not the average of any

individual [14].

2.9.2 Causal effect measures

We refer to causal risk difference, risk ratio, odds ratio, and other ratios that gauge the

causal effect as Causal effect measures. They provide different perspectives on the effect

of exposure or treatment on the risk of an outcome. The two most commonly used are the

Causal Risk Ratio and the Causal Risk Difference. The first is used to show the strength of an

association and how often treatment decreases the outcome risk compared to no treatment.

The second is used to compute the absolute number of cases of the outcome attributed to

treatment. The Odds Ratio expresses the ratio of the odds of an event occurring in one group

to the odds of it occurring in another group. Another helpful ratio is the Number Needed to

Treat (NNT) which gives the treatment’s direct impact and we will explain it more in the next

paragraph.

2.9.3 Number Needed to Treat

The Number Needed to Treat (NNT) is a statistical measure used normally in clinical

research to convey the effectiveness of medical intervention. By definition, NNT is the num-

ber of individuals who need to receive treatment A=1 for the number of cases that have an

outcome Y=1 to be reduced by one. An NNT of 2 means that one out of every two patients

treated benefits. An NNT of 10 means one out of every ten patients treated benefits, and so

on. The motivation behind NNT is that it gives a solid metric of how successful a treatment

is, and thus is a commonly used metric for causality.
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Chapter 3

A Comprehensive Study of Bayesian

Inference within Machine Learning

This chapter delves into Bayesian Inference within the context of Machine Learning. We

begin by discussing the progression from basic probability concepts to the more nuanced

Bayes Rule. The chapter then highlights the compelling relationship between Bayesian In-

ference and Machine Learning, followed by a deep dive into its mathematical foundations,

including topics like posterior probability and the structure of Bayesian causal inference. We

also present an overview of prominent Bayesian techniques utilized in Machine Learning,

from regression to structural time-series models. Concluding the chapter, we provide a list of

libraries specifically tailored for Bayesian Causal Inference.

3.1 Transition from Simple Probabilities to the Bayes Rule

Bayes’ theorem is a very important statistical tool with many applications in machine

learning. Bayesian Machine Learning (ML) is an umbrella term that describes statistical ML

models based on Bayes’ theorem [16]. Classical machine learning offers deterministic pre-

dictive models that map the inputs with the outputs but do not provide explanations of their

underlying processes. Thus, with Bayesian inference and Bayesian ML, we can expand our

understanding of the variables and the model.

In this chapter, we will give the Bayesian approach regarding Causal inference. The chap-

ter includes a review of the structure of Bayesian inference of causal effects and provides the

necessary mathematical and statistical background needed to understand the aforementioned.

17
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18 Chapter 3. A Comprehensive Study of Bayesian Inference within Machine Learning

Although we try to cover the basics, we focus on the aspects of Bayesian inference that we

consider more applicable to bankruptcy prediction. Finally, when considering the advantages

and disadvantages of the Bayesian approach to causal inference, we approached the matter

from an objective standpoint.

3.2 Motivation: The Synergy of Bayesian Inference andMa-

chine Learning

As previously mentioned, the primary motivation for Bayesian Causal Inference stems

from the limitations of classical machine learning in providing interpretable results. Bayesian

Causal Inference allows us to determine cause-and-effect relationships between variables

within a system. It is crucial to distinguish between variables that influence or directly affect

the outcome and those that are simply associated with it. Understanding which variables are

causally related to the outcome provides valuable information on which variables to manip-

ulate (causal) and which to monitor (associative). Manipulating variables that have a causal

relationship with the outcome aids in decision-making. Therefore, Bayesian inference not

only seeks to predict the occurrence of events but also seeks to uncover the underlying mech-

anisms driving these events [17].

Bayesian inference allows for integrating prior knowledge or beliefs about a parameter or

hypothesis. This prior information is combined with new data to produce a posterior distri-

bution. This is particularly useful when data is scarce, when there is limited data available, or

even when domain expertise provides valuable information that should not be ignored. If we

consider a cause or a treatment as manageable, the identification and the ability to change it

and affect the outcome can easily be adopted inmany fields. In addition, the fact that Bayesian

models can easily be updated as new data become available makes them suitable for online

learning scenarios.

Another significant feature of the Bayesian approach is the flexibility that it offers. Bayesian

inference provides a framework for integrating various prior distributions. As a result, Bayesian

methods can be applied to general statistical analysis including automatic uncertainty quan-

tification, complex hierarchical models, nonlinear models, and other structures that might

be challenging for traditional frequentist approaches. They can adapt as more data becomes

available, refining the posterior distribution. They can coherently incorporate prior knowl-
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3.3 Mathematical Foundations of Bayesian Inference 19

edge, and offer a rich collection of advanced models for complex data [18]. These reasons

make the Bayesian approach suitable for real-world big data.

Finally, they are also very consistent. The Bayesian framework offers a consistent ap-

proach to uncertainty and decision-making. Every decision or inference is made based on a

probability distribution. It treats unknown parameters as random variables, which is a more

natural way to represent uncertainty.

3.3 Mathematical Foundations of Bayesian Inference

3.3.1 The posterior probability

Bayesian Inference is a technique based on Bayes’ theorem that calculates the posterior

probability. The posterior probability y is a conditional probability conditioned on randomly

observed data. The prior probability and the likelihood of new data’s occurrence define this

probability’s distribution [19]. Bayes’ Theorem calculates the posterior probability, which is

the probability that event A occurs, given that event B has occurred: [16]

P (A|B) = P (A)P (B|A)P (B)

where,

P (A) =the prior probability of A occurring

P (A|B) = the conditional probability of A given that B occurs

P (B|A) =the conditional probability of B given that A occurs

P (B) =the probability of B occurring

In Bayesian inference, the training data are treated as fixed, we aim to maximize the

posterior distribution. This process is known as Maximum a Posteriori (MAP) estimation,

and it is a method to obtain the most favourable values for the parameters based on prior

beliefs.

3.3.2 The general structure of Bayesian causal inference

The structure of Bayesian causal inference was first introduced in [20]. There exist four

quantities for every unit i. The quantities are Yi(0), Yi(1), Zi, Xi where Zi(= z) is the binary
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20 Chapter 3. A Comprehensive Study of Bayesian Inference within Machine Learning

variable that indicates the observed treatment status of unit i,Xi is a vector of covariates ob-

served before treatment, and Yi is the outcome observed after treatment. All the other quanti-

ties are observed, except Yi(1−Zi) which is missing. In the Bayesian inference structure, all

four variables are considered random, and a model is built for them. By utilising the Bayesian

model, we can make inferences on causal estimands. Causal estimands are functions of the

model parameters, covariates, and potential outcomes. These inferences are drawn from the

posterior predictive distributions of the parameters and the unobserved potential outcomes.

We assume that the joint distribution of these random variables of all units is managed by a

parameter θ = (θx, θy, θz), conditional on the variable θ all the other variables are Indepen-

dent and identically distributed random variables (iid) [18]. Then we can factorize the joint

density

Pr{Yi(0), Yi(1), Zi, Xi|θ}

for each unit i as

Pr{Zi|Yi(0), Yi(1), Xi; θz} · Pr{Yi(0), Yi(1)|Xi; θy} · Pr(Xi; θx)

The three probability terms represent the model for the assignment mechanism, potential

outcomes, and covariates, respectively. Under the assumption of ignorability, the assignment

mechanism further reduces to the propensity score model Pr(Zi|Xi; θz) [18] and then the

joint density becomes

Pr(Zi|Xi; θz) · Pr{Yi(0), Yi(1)|Xi; θy} · Pr(Xi; θx)

In reality, we rarely model the multi-dimensional covariates Xi, it is more common to

condition on the observed values of the covariates. This is the reason why most Bayesian

causal inferences focus on the Mixed Average Treatment Effect (MATE). The MATE is an

approximation of the Population Average Treatment Effect (PATE). The difference between

MATE and SATE is subtle. The first one equals the average of the Conditional Average Treat-

ment Effect (CATE), while the second one equals the average of the ITEs over a finite sample.

Simply, MATE is like saying ”Given the varying treatment effects across different groups

(like age groups), what is the average effect when we consider these differences?”, while

SATE, on the other hand, is like saying ”If we were to average the treatment effect across all

the individuals in our sample, what would it be?”
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3.4 Key Bayesian Techniques in Machine Learning

3.4.1 Bayesian Regression

Linear Regression is a highly popular technique in machine learning. It operates under

the assumption that the data follow a normal (Gaussian) distribution and that the variables

exhibit a linear relationship with the outcome. But if the data validate this assumption, a

better choice is to use Bayesian Regression. Bayesian Regression takes advantage of prior

knowledge and Bayes’ theorem to estimate the parameters of a linear regression model. Due

to it being a probabilistic method, it can provide better estimates for the model parameters

than OLS linear regression. Also, it is very useful if we have fewer data or if the data are

poorly distributed. The output in the Bayesian regression is estimated from a probability

distribution, whereas in linear regression, the outcome is estimated from a single value of

each attribute [21]. In Bayesian Regression, the MAP estimation can also be used for model

selection and outlier detection.

3.4.2 Bayesian Additive Regression Trees (BART)

BART, which stands for Bayesian Additive Regression Trees, is a Bayesian approach

to the estimation of nonparametric functions using regression trees [19]. Unlike parametric

methods, nonparametric methods such as BART do not make explicit assumptions about the

functional form of the data likelihood [22]. ]. Although Bayesian nonparametric methods can

be computationally demanding, recent advancements in computer power have sparked re-

newed interest in these approaches. In traditional parametric Bayesian statistics, we assume

a specific functional form for the likelihood and prior. Nonparametric Bayesian methods,

on the other hand, allow for infinite-dimensional parameter spaces, which can adapt to the

complexity of the data. A regression tree is a decision tree based on the recursive binary par-

titioning of the predictor space. It approximates some unknown function and thus is used for

regression. The sum of trees is a multivariate additive model [22]. The predictions generated

by BART are the result of successive iterations of the back-fitting algorithm.
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3.4.3 Bayesian Networks

Bayesian networks(BN) are a probabilistic graphical model that represents probabilistic

relationships between random variables [15] and does inference with those variables. There

are three different types of BN as seen in figure 3.1.

(α′) Discrete Causal BNs: Each node has two

possible states representing the responses’yes’

and’no’.The direction of causality is from top to

bottom. [23]

(β′) Gaussian BNs: the MARKS networks from

Mardia, Kent & Bibby [24], which describes

the relationships between the marks on 5 math-

related topics.

(γ′) Hybrid BNs: the RATS’ WEIGHT networks

[25], which describes the weight loss in a drug

trial performed on rats. Continuous nodes cannot

be parents of discrete nodes.

Figure 3.1: Types of Bayesian Network

The type of network depends on the type of data; for continuous data, we have Gaussian

Bayesian Networks, for discrete data, we have Multinomial Bayesian Networks and if the
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data contain discrete and continuous variables, we have Hybrid Bayesian Networks [26].

They are very useful when studying the causal relationship between variables because of

their graphical structure.

Figure 3.2: A Bayesian Network [4]

In figure 3.2 we see a Bayesian Network which represents the probabilistic relationships

between the variables (H, B, L, F, C); this kind of network is also called Causal Network.

The edges represent direct influence; for instance, H directly affects both Band L. Now, if we

knew that H is the variable history of smoking, B is bronchitis and L is lung cancer. Thus,

in everyday lingo, if we follow the path (H −→ L −→ C) we can see that smoking history

directly affects the presence of lung cancer and that lung cancer directly affects the result of a

chest radiograph (variable C) [4]. Each node represents a feature in the data set. In Bayesian

networks, the probabilities of each feature are the conditional probabilities of the values of

each feature given every combination of values of their parent features; this does not apply

to root nodes. In root nodes, the probabilities are prior probabilities. This network structure

allows for the execution of probabilistic inferences among features. As an illustration, using

this network, one can deduce the likelihood of an individual having bronchitis or lung cancer

if they are known to smoke, exhibit fatigue (variable F), and possess an abnormal chest X-ray.

We employ those networks because, as we have already mentioned, DAGs are indepen-

dent maps of probability [27], thus the networks explain the conditional independence rela-

tionships between variables, which helps us factorize the distribution.

The creation of the BN occurs through the creation of the causal DAG. We create a graph
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where, if there is a direct edge fromA toB, that means that A is a direct cause of B. Thatmeans

that if we manipulate A, and A causes B then B is also affected. So if there is a manipulation

in A, said relationship causes a change in the distribution of Y [4]. Therefore if we do not

know if A has a causal relationship with B, we can practically examine it.

WemanipulateA, by performing a randomised controlled experiment (RCE)whichmeans

that we check a population in some specific context and we manipulate A to see how B is

altered. That is how causal relationships are retrieved.

3.4.4 Bayesian Structural Time-Series Models

Bayesian Structural Time-Series Models are a type of model that integrates time-series

models with state-space models and Bayesian statistics [28]. They are used for time series

analysis such as forecasting, decomposition and feature selection and also for causal infer-

ence. These models use two equations, the observed equation and the state equation. The

observed one states that the data yt are equal to the product of the output vector Zt with a

latent factor vector at plus a noise term ϵt.

yt = ZT
t · αt + ϵt

The state equation shows the evolution of the latent factor vector at through time, at+1 which

is the latent factor vector the time stamp t+1 is equal to the product of the transition matrix Tt

multiplied with the latent vector in the previous time stamp at plus the product of the control

matrix Rt with the system error term ηt

at+1 = Tt · t +Rt · ηt

The model’s complexity is what makes it able to deeply understand the data. The model’s

modularity allows it to construct its components in a way that captures significant character-

istics from the data. This demonstrates the patterns and seasonality of the time-series data.

3.5 Libraries to perform Bayesian Causal Inference

Although we analyzed the basis of Causality and Bayesian inference, we only saw the tip

of the iceberg, thus writing code that implements the aforementioned is not only very diffi-

cult but also counterproductive. There exist already-made packages for various programming
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languages that performed causality analysis, some of which we used in the implementation

of this thesis. In this section, we will briefly describe the most popular packages for inference

while mentioning both their advantages and disadvantages.

3.5.1 Bnlearn

It is a package for Bayesian Networks suitable for discrete, continuous and hybrid data,

and it is also available to be used and incorporated in both R and Python [29]. It has many

pipelines that perform causal learning, such as structure learning, parameter learning, and

inference. Furthermore, it provides Bayesian network classifiers, conditional independence

tests, network scores, and advanced network plotting capabilities. Therefore, a typical exam-

ple to reveal causal inference from data with bnlearn involves several steps: first, constructing

the graphical structure from the data (learning the DAG); next, using independence tests to

prune spurious edges; then, estimating conditional probabilities based on the DAG; and fi-

nally, making inferences [17].

3.5.2 Causalpy

Causalpy is a Python package for Bayesian causal inference for quasi-experiments [30].

Quasi-experimental methods have been used to make causal claims when randomised ex-

periments between treatment units do not exist [31]. The Causalpy package provides four

Quasi-experimental methods, Synthetic control, Interrupted time series, Difference in differ-

ences, and Regression discontinuity. A typical example of using CausalPy is as follows: if

we have a dataset with multiple units, but only one of them has received treatment, we would

create a synthetic control as a weighted combination of the untreated units and then proceed

with making inferences.

3.5.3 CausalNex

CausalNex is a Python library that uses causal Bayesian networks to make inferences and

discover structural relationships for discrete data [32]. The library allows you to build causal

models from data and plot them, and also to prune spurious correlations, which are seen as

weaker edges. The visualisation provides an easier and beginner-friendly way to understand

causality. Also, it can analyse interventions by using do-calculus. The do-calculus, introduced
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by Judea Pearl, is a set of rules for reasoning about interventions in causal models. It is a

formal system that allows us to make causal inferences from observational data.

3.5.4 DoWhy

DoWhy is a Python library that focuses on testing causal assumptions to determine their

validity and the extent of their validity [33]. To perform those assumption tests, the library

requires distinguishing the treatment and the outcome variable from the data. Additionally,

it is helpful for the library to provide the DAG of the estimated causal relationships. We

can model the causal graph, identify causal effects, refine outcomes based on robustness

tests, check for confounders, and find the root causes of outliers or distributional changes

[34]. There are certain limitations. First, the treatment variable must be binary. Second all

categorical variables should be encoded to numerical values.

3.5.5 CausalImpact

CausalImapact is a library available for Python and R, it estimates the causal effects of

an intervention using Bayesian structural models for time-series data [35]. When randomised

experiments do not exist we can test the effect of an intervention in time series data by com-

paring the difference between the expected and observed values, this treatment analysis is

performed by the CausalImpact. The expected values that are tested to see how the counter-

factual are estimated through linear regression. Thus this model requires the outcome value

to be modelled by linear regression where there is a pre-intervention period that it is not af-

fected by the intervention. Finally, the other model assumption is for the post-intervention

period to be specified.

3.5.6 Pgmpy

Pgmpy a Python library is a more advanced version of the bnlearn library demanding a

deeper understanding of Bayesian inference. It distinguishes itself from the aforementioned

libraries by allowing users to construct custom pipelines from causal blocks, making it con-

siderably more extensible [36]. The main application of the library is to create probabilistic

graphical models [17]. In Pgmpy, the user is responsible for building the model pipeline

which involves data transformation to discrete format, collecting the results and plotting the
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model.
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Chapter 4

Related Work I: Statistical and

Intelligent Bankruptcy Techniques

This chapter explores in-depth traditional bankruptcy prediction. Our primary reference

was the comprehensive review paper, Bankruptcy prediction in banks and firms via statistical

and intelligent techniques–A review, by PR Kumar and V Ravi, published in the European

Journal of Operational Research in 2007 by Elsevier [6].

This piece of literature systematically breaks down traditional methodologies into eight

key categories: (i) statistical techniques, (ii) neural networks, (iii) case-based reasoning, (iv)

decision trees, (v) operational research, (vi) evolutionary approaches, (vii) rough set-based

techniques—which includes subsets like fuzzy logic, support vector machine, and isotonic

separation, and (viii) soft computing, a holistic amalgamation of the previously discussed

techniques. Our approach to analysis employed this pivotal paper for insights into techniques

and methodologies that were solidified up until 2005. This period represents the era where

the foundational principles of statistical bankruptcy were carved out.

A distinctive decision in our research approach was the bifurcation of studies into pre-

2005 and post-2005 segments. This strategic division was primarily influenced by the marked

increase in the volume of studies post-2005, with a significant surge, particularly after the

2008 global financial crisis (see Figure 4.1. Consequently, for post-2005 insights, we are

channelling our focus through the lens of ”An overview of bankruptcy prediction models for

corporate firms: a systematic literature review” by Shi, Yin Li, and Xiaoni. The post-2008

surge in research, as outlined in the aforementioned paper, underscores that the aftermath of

the 2008 financial crisis marked a considerable uptick in papers on this topic, emphasizing
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30 Chapter 4. Related Work I: Statistical and Intelligent Bankruptcy Techniques

its criticality for businesses. Furthermore, the field appears to be characterised by limited

co-authorship, with influential researchers often working in isolation over the past decades.

Figure 4.1: The volume of international academic publications from 1968 to 2017 [5]

Recognizing that our audience comprises individuals familiar with the more widely ac-

knowledged techniques, we have chosen not to dwell at length on these established method-

ologies. Our aim here is to provide a literature overview, not an exhaustive deep-dive into the

specialised intelligent techniques that have emerged. However, to achieve a balance between

comprehensiveness and clarity, we have incorporated a figure (Figure ?? that succinctly cap-

tures the merits and demerits of each technique. This graphical representation simplifies the

comprehension of intricate bankruptcy prediction models, enabling readers to absorb the fun-

damental attributes of each approach without getting entangled in intricate specifics.

4.1 Foundational Studies on Bankruptcy Prediction Up to

2005

In curating the studies for this section, we anchored our selection on two fundamental

principles: a strong emphasis on the pioneers who first developed the predictive models and

a preference for researchers who utilized these models to their utmost potential. This method-

ological severity ensures our thesis is rooted in both the origin and the optimal application of

bankruptcy prediction techniques, offering a refined and impactful overview of the subject.
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Figure 4.2: Advantages and Disadvantages of Intelligent Tech [6]

4.1.1 Statistical Techniques

Statistical techniques have been at the forefront of financial distress prediction for decades.

These techniques provide a systematic and quantitative approach to data analysis, allowing

researchers and practitioners to make informed decisions based on empirical evidence. In the

context of predicting financial distress, bankruptcy, or firm failure, several statistical methods

have been employed, as highlighted in the related works

In the realm of financial distress and bankruptcy prediction, numerous studies have been

conducted to develop and evaluate various models. Altman et al. [37] introduced the Zeta

analysis for bankruptcy classification, utilizing data from 111 firms, each characterized by

seven variables. Their findings revealed a classification accuracy ranging from 96% when

predicting one period before bankruptcy to 70% for five periods prior. Notably, the ZETA

model surpassed the performance of other alternative methods.

Ohlson [38] used a logit model to predict firm failure. The data for this study were sourced

from Moody’s Manual, Compustat data tapes, and 10-K financial statements. The classifica-

tion accuracy of Ohlson’s model was impressive, standing at 96.12% for one year, 95.55%

for two years, and 92.84% when considering either one or two years.
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Dietrich and Kaplan [39] proposed a three-variable linear model for loan risk classifica-

tion. The researchers compared their model to the Altman model and the Wilcox bankruptcy

prediction model[40], and they found that their model performed better than both.

Zmijewski [41] undertook a study to examine potential biases in financial distress models.

Using data from the American and New York Stock Exchanges, Zmijewski addressed the

issues of ”oversampling” and ”complete data” sample selection biases.

Kolari et al. [42] developed an Early Warning System (EWS) grounded in logit analysis

and Trait recognition. Their findings indicated that Trait recognition surpassed the logit model

in terms of error rates.

Finally, Canbas et al. [43] presented an Integrated Early Warning System (IEWS) that

combined various methods. Using data from Turkish banks, they found that the IEWS exhib-

ited a better predictive capability than other models in the study.

4.1.2 Neural Networks

The application of statistical techniques, particularly neural networks, in predicting fi-

nancial distress and bankruptcy has been extensively researched.

Back-Propagation Neural Network

The Back Propagation Neural Network (BPNN) has emerged as a dominant model in this

domain, often outperforming traditional statistical methods. Here’s a synthesis of the related

works:

Tam [44] utilized the BPNN for bankruptcy prediction on Texas banks and found it supe-

rior to othermethods such as Discriminant Analysis, factor-logistic, andK-Nearest Neighbors

(K-NN). In a follow-up, Tam andKiang [45] confirmed that BPNN consistently outperformed

other techniques.

Salchenberger et al. [46] applied BPNN to predict the failure of savings and loan as-

sociations (S&Ls) and noted its superior performance over logistic regression. Similarly,

Sharda and Wilson [47] demonstrated BPNN’s superiority over Multiple Discriminant Anal-

ysis (MDA) using Altman’s five variables.

Altman et al. [48] compared Linear Discriminant Analysis (LDA) and BPNN, noting a

marginal advantage for LDA in classifying distress with financial ratios. However, Wilson
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and Sharda [49] and Tsukuda and Baba [50] both documented the superior performance of

BPNN over DA.

Piramuthu et al. [51] introduced Feature Construction (FC) to BPNN for bankruptcy pre-

diction and found the enhanced BPNN to outperform the plain BPNN. In another notable

study, Zhang et al. [52] introduced a new three-layered NN model trained with Generalized

Reducing Gradient (GRG2), which surpassed logistic regression.

Atiya [53] underlined the importance of including novel indicators with financial ratios to

boost the performance of NN in bankruptcy prediction. Swicegood and Clark [54] established

BPNN as the leading model in identifying underperforming banks when compared with DA

and human judgment.

Finally, Lee et al. [55] reinforced BPNN’s dominance in bankruptcy prediction by show-

ing its superiority over other techniques like Self-OrganiSing Maps (SOM), DA, and logistic

regressions in a comprehensive study using data from Korean firms.

Self-Organizing Maps (SOM)

Incorporating Self-Organizing Maps (SOM) into financial distress prediction models has

become a growing trend, frequently taking the form of hybrid approaches in conjunction

with other statistical techniques. The following section offers a comprehensive overview of

the relevant studies in this area.

Lee et al. [56] investigated three hybrid BPNNmodels: (i) MDA-assisted BPNN, (ii) ID3-

assisted BPNN, and (iii) SOM-assisted BPNN. Using data from the Korea Stock Exchange,

they concluded that these hybrid neural network models surpassed traditional methods like

MDA and ID3.

Serrano-Cinca [57] compared the performance of SOMwith LDA and BPNN in financial

diagnosis, introducing two hybrid neural systems: (i) LDA integrated with SOM and (ii)

BPNN combined with SOM. They established that their hybrid system surpassed the Z-score

analysis and additionally provided insightful visual graphics elucidating bankruptcy risk.

Kiviluoto [58] used SOMvariants for firm bankruptcy prediction, comparing these classi-

fiers with methods like LDA and LVQ. He found the RBF-SOM to be slightly more effective

than other classifiers in his study.

Finally, Kaski et al. [59] integrated the Fisher information matrix-based metric into SOM.

Their results showed that the SOM-F, which utilizes the Fisher metric, offered a superior
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representation of bankruptcy probability compared to the SOM-E.

Other types of Neural Nets

Beyond the commonly usedBack PropagationNeural Network (BPNN) and Self-Organizing

Maps (SOM), several other neural network topologies have been employed in the realm of

bankruptcy prediction. These topologies, eachwith its unique architecture and learningmech-

anism, have shown varying degrees of success in classifying financial health and predicting

bankruptcy. H. Next, we present a review of the relevant studies.

Lacher et al. [60] introduced the Cascade-correlation neural network (Cascor) to assess a

firm’s financial health. Using data based on Altman’s five financial ratios from the Standard

and Poor’s COMPUSTAT database, they found that the Cascor model consistently surpassed

the Altman Z-score model in classification rates.

Yang et al. [61] adopted the Propagation neural network (PNN) and the Fisher discrim-

inant analysis (FDA) for bankruptcy prediction. When comparing PNN*, PNN, and FDA

against Discriminant Analysis (DA) and BPNN, they discovered that the PNN* and BPNN

yielded better classification rates with non-deflated data, while the FDA excelled with de-

flated data.

Last but not least, Baek and Cho [62] explored the Auto-associative neural network

(AANN) for bankruptcy prediction in Korean firms. The AANN outperformed the 2-class

BPNN, achieving classification rates of 80.45% for solvent firms and 50.6% for defaulted

firms.

4.1.3 Case-Based Reasoning

Case-Based Reasoning (CBR) and its hybrid models have been explored as alternative

methodologies for bankruptcy prediction. Thesemodels leverage past cases tomake decisions

about new, similar cases. Here’s a synthesis of the related works:

Bryant [63] introduced the Case-based reasoning (CBR) system for bankruptcy prediction

and pitted it against Ohlson’s [38] logit model. Using a variety of financial variables, he found

that the logit model surpassed the CBR system in accuracy.

Jo et al. [64] employed three models, including Multiple Discriminant Analysis (MDA),

CBR, and Back Propagation Neural Network (BPNN) for bankruptcy prediction in Korean
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firms. The results were telling: BPNN was superior, achieving an 83.79% hit ratio, outper-

forming both DA and CBR.

Park and Han [65] presented an innovative combination of K-Nearest Neighbors (K-NN)

with the Analytic Hierarchy Process (AHP) for bankruptcy prediction. This hybrid approach,

AHP-K-NN-CBR, attained the best accuracy rate of 83.0%, clearly surpassing the other mod-

els they tested.

Lastly, Yip [66] employed a unique combination of CBRwith K-NN for Australian firms’

business failure prediction. The model’s standout performance was evident with CBR com-

bined with weighted K-NN, which achieved a 90.9% accuracy rate, making it superior to the

other models.

4.1.4 Decision Trees

Decision trees, particularly the Recursive Partitioning Algorithm (RPA), have been em-

ployed as a tool for bankruptcy prediction. These models segment the data into subsets based

on certain criteria, allowing for a hierarchical decision-making process. Here’s a synthesis of

the related works:

Marais et al. [67] delved into the use of the Recursive Partitioning Algorithm (RPA)

for bankruptcy prediction, comparing its performance with polytomous probit. Their study

indicated the superiority of the polytomous probit model over recursive partitioning when all

variables were evaluated.

Frydman et al. [68] expanded the exploration of RPA in the context of bankruptcy predic-

tion. In their comparison with Discriminant Analysis (DA), one of their RPA variants (RPA1)

consistently outperformed the DA models across different misclassification cost considera-

tions. This showed RPA1’s noteworthy prominence in their study.

4.1.5 Operational Research

Operational research, with its emphasis on mathematical modelling and analytical meth-

ods, has been applied to the field of bankruptcy prediction. These methods aim to optimize

decision-making processes by leveraging mathematical techniques. Below, there is a compi-

lation of the relevant research:

Banks and Prakash [69] implemented a linear programming heuristic applied to a quadratic

transformation of data for predicting firm bankruptcy. Their method outshined the quadratic
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discriminant function (QDF) and the approach by Johnson and Wichern, demonstrating its

effectiveness.

Lam and Moy [70] presented a hybrid technique fusing various discriminant analysis

(DA) methods. Their findings showed that the combined approach was more accurate than

individual DA methods, pointing to the hybrid technique’s importance in the field.

Cielen et al. [71] executed a comparative analysis involving three models for bankruptcy

prediction. Among these, the data envelopment analysis (DEA) model emerged as the top

performer, surpassing both the C5.0 and MSD models in classification accuracy.

4.1.6 Rough-Set Theory

Rough set theory offers a unique mathematical approach to handle vagueness and un-

certainty in data. Its application in bankruptcy prediction has provided valuable insights into

discerning patterns and relationships within data without the need for preliminary or addi-

tional information. Here’s a synthesis of the related works:

Greco et al. [72] put forth a rough set technique for bankruptcy prediction, specifically

focusing on attributes with ordered domains. Furthermore, their dominance-based rough set

method [37] was found to capture the knowledge in the data better than the classical rough

set analysis, marking it as a superior approach.

Dimitras et al. [73] utilized rough set theory with a valued closeness relation (VCR) for

predicting business insolvencies. In a comparison with established methods like discrimi-

nant analysis (DA) and logistic regression, their rough set method emerged as more adept at

pinpointing crucial attributes for assessing bankruptcy risk.

McKee [74] fashioned a bankruptcy prediction model based on rough set theory, which

boasted an outstanding accuracy rate of 88%. This model surpassed the performance of its

recursive partitioning counterpart, emphasizing the robustness of the rough set approach.

4.1.7 Fuzzy Logic and Advanced Techniques

The application of fuzzy logic and advanced machine learning techniques in bankruptcy

prediction offers a nuanced approach to handling uncertainties and complexities in financial

data. These methods provide a more flexible and adaptive framework compared to traditional

statistical methods. Here’s a synthesis of the related works:
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Michael et al. [75] pioneered the use of a fuzzy rule generator method in bankruptcy pre-

diction. Their fuzzy rule-based classifier demonstrated top-tier results, surpassing traditional

methods such as LDA, QDA, logit, and probit analysis, signifying its excellence in the field.

Min and Lee [76] employed the Support VectorMachines (SVM) technique for bankruptcy

prediction, marking a shift from conventional methods. Their SVM model exhibited superi-

ority over established methods like MDA, logit, and BPNN, highlighting the effectiveness of

SVM in this application.

Ryu and Yue [77] introduced the innovative isotonic separation technique for bankruptcy

prediction. When matched against numerous methods, isotonic separation emerged as the

most effective for short-term bankruptcy prediction. Additionally, the rough set method was

identified as a top performer, shedding light on its continued relevance in the domain.

4.1.8 Soft-Computing Techniques

Soft computing techniques, which emphasize the use of approximate solutions to com-

putationally hard tasks, have been applied to bankruptcy prediction. These techniques often

combine traditional statistical methods with advanced machine learning algorithms to en-

hance predictive accuracy. Next, there is an overview of the relevant studies in this area.

Back et al. [78] pioneered a hybrid architecture for bankruptcy prediction that amalga-

mated a wide array of models including BPNN, DA, logistic regression, and several others.

Through a blend of simple voting and compensation aggregation methods, the BPNN model

stood out, outshining both classical and contemporary models, underscoring its potency.

Gorzalczany and Piasta [79] championed the integration of a neuro-fuzzy classifier (N-

FC)with a rough classifier (RC) in a unique decision support system. In the realm of bankruptcy

prediction, the N-FC demonstrated unmatched prowess, eclipsing methods such as C4.5 and

CN2 in classification accuracy.

Ahn et al. [80] unveiled hybrid models, combining rough sets with BPNN, for forecasting

Korean firms’ failures. Demonstrably superior, these hybrid constructs, termed Hybrid I and

II, surpassed the results of stand-alone BPNN and DA.

McKee and Lensberg [81] presented an innovative two-tiered hybrid method that married

the rough set model with genetic programming (GP) in the context of bankruptcy prediction.

This amalgamated approach exhibited enhanced performance over the standalone rough set

model.
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4.2 Approaches to Bankruptcy Prediction Post-2005

Since 2005, there has been a noticeable rise in studies concerning business failure. While

the topic has been studied extensively, the literature reveals an inherent ambiguity and frag-

mentation in its definition, suggesting that scholars and practitioners haven’t yet arrived at a

universally accepted definition of business failure [5].

4.2.1 Post-2005 Perspectives on Business Failure and Criteria

Balcaen and Ooghe’s 2006 [82] research adds depth to this discussion, emphasizing the

fragmented nature of historical studies on business failure. Depending on the selected criteria,

research either veers towards a legal definition, encompassing aspects like bankruptcy, or

pivots to a more financial angle, concentrating on financial distress.

Altman and Hotchikiss, in 2006 [83], dive into specific terms frequently associated with

unsuccessful business endeavours. Four primary descriptors emerge:

• Failure: Defined by an economic criterion, it’s marked by a continual underperfor-

mance in returns on invested capital.

• Insolvency: This state occurs when a firm’s liabilities overtake its assets, signalling a

potential liquidity challenge.

• Default: It pertains to a firm’s inability to meet certain obligations, especially in terms

of repaying loans or complying with court decrees.

• Bankruptcy: The term is multi-level and includes two perspectives The first consid-

ers the net worth position of an enterprise, while the second denotes a firm’s formal

declaration in a federal court. This declaration could be aimed at liquidating assets or

embarking on a recovery strategy.

Furthermore, the idea of ”early warning” in bankruptcy prediction has gained significant

attention post-2005. Initially rooted in military contexts, its scope has expanded to areas such

as macroeconomics and business administration. This shift underlines the increasing empha-

sis on proactive measures to detect bankruptcy risks.

In essence, the period following 2005 has enriched the discourse on business failure with

multifaceted perspectives. While there’s a clarion call for a unified framework, the diverse

viewpoints enrich the academic and practical understanding of the subject [5].
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4.2.2 Bankruptcy Prediction with AI and Advanced Statistical Tech-

niques

The literature on bankruptcy prediction has witnessed a significant evolution since Alt-

man’s seminal 1968 model. As the technological landscape has transformed, especially post-

2005, the methods employed for bankruptcy prediction have becomemore varied and sophis-

ticated.

Notably, advancements in machine learning and artificial intelligence have paved the way

for a plethora of innovative predictive models. Techniques like the aforementioned rough set

theory, which was designed to handle apparent indiscernibilities within data sets, have re-

ported accuracies ranging between 76% and 88%. Studies by authors such as Xiao et al. in

2012 [84] and Wang & Wu in 2017 [85] testify to the increasing influence of this methodol-

ogy.

When it comes to case-based reasoning works by Li & Sun in both 2009 [86] and 2011

[87] reinforced the growing relevance of this method.

Furthermore, SVM has consistently demonstrated superior performance compared to ar-

tificial neural networks, as it was later corroborated by Kim, in 2011 [88].

Insights from Previous Greek SMEs Dataset Iterations

In the context of Greek Small-Medium Enterprises (SMEs), Papadouli [89] made signif-

icant strides by utilizing a logit model to forecast firm failure, as evidenced in her research.

The data for this exploration were meticulously sourced from Moody’s Manual, Compus-

tat data tapes, and 10-K financial statements, ensuring a comprehensive and robust dataset

for analysis. Papadouli’s model accomplishments underscores the model’s effectiveness in

predicting firm failure with high precision. This contribution by Papadouli builds on the ex-

tensive history of bankruptcy prediction, which has evolved from the early use of univariate

statistical models of financial ratios to themodern application of sophisticated supervisedma-

chine learning models. Even in the face of challenges such as obtaining substantial labeled

datasets, especially in the Greek market, the incorporation of semi-supervised and transfer

learning techniques has proven invaluable. Particularly, transfer learning techniques have

demonstrated superior performance, yielding high accuracy scores in various bankruptcy pre-

diction periods, thereby enhancing the reliability and comprehensiveness of bankruptcy risk

assessment in diverse market contexts.
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In a subsequent paper, Papadouli [90] assembled a dataset of 170 bankrupt and 1424 non-

bankrupt Greek SMEs to explore and compare various bankruptcy forecasting algorithms.

Traditional models like Altman’s Z-score, Springate, and Taffler’s often misclassified healthy

firms as bankrupt, with Taffler’s model showing marginally better performance. The research

revealed that semi-supervised classifiers slightly outperformed supervised ones on the imbal-

anced Greek SMEs dataset. Some effective alternatives for bankruptcy forecasting included

supervised classifiers DT, RF, XGB, and AML with synthetic oversampling, and the sklearn

implementation of the AutoML classifier. The study also successfully employed commer-

cially available unlabeled datasets and two transfer learning algorithms for bankruptcy pre-

diction, showing satisfactory performance and underscoring the potential of transfer learning

for this application. Despite lower accuracy in other studies, this research achieved superior

results, offering its dataset and software freely upon request.

In conclusion, the post-2005 period has been characterized by a transformative shift in

the methods employed for bankruptcy prediction. As the impact of Artificial Intelligence and

machine learning continues to grow, the field is positioned to harness these technologies to

develop more precise and enlightening models in the forthcoming years [5].

4.2.3 Evolution in Bankruptcy Prediction Approaches

The burgeoning literature in the realm of bankruptcy prediction has demonstrated a height-

ened interest and exploration in the area. Yet, an underlying challenge remains the ambiguity

and fragmentation in defining business failure. While the myriad definitions shed light on the

multifaceted nature of business failure, they also underscore the need for a more consolidated

and comprehensive understanding.

The increased research post-2005 indicates an acknowledgement of this challenge and

showcases efforts towards employing novel and technologically advanced methodologies.

These are not merely attempts to replace traditional techniques but to augment them, integrat-

ing modern computational capabilities with foundational financial and economic principles.

As we transition further into this evolving landscape, there’s a promising emergence of

causal approaches. These methodologies aim to enhance our grasp on bankruptcy prediction

by delving deeper into root causes andmechanisms leading to business failure. The upcoming

chapter will explore these causal approaches, providing insights into their potential to reshape

and enrich the field of bankruptcy prediction.
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Chapter 5

Related Work II: Causal and Bayesian

Methods in Bankruptcy Prediction

In this chapter, we focus on two primary objectives. First, we detail the causal techniques

used for bankruptcy prediction, showcasing their relevance and application. Second, we un-

dertake a systematic literature review, providing a thorough examination of existing research

in this domain. Through this dual approach, we aim to offer a well-rounded perspective on

bankruptcy prediction methodologies, grounded in both current practices and historical con-

text.

5.1 Historical Overview

As we have seen, Bankruptcy prediction (BP) has been a field of interest for many years,

as it has been studied since the 1930s [91]. At first, the problem was tackled with many sta-

tistical methods. Still, the rise of machine learning and improved new automated inference

techniques have caused a spike in the research for sophisticated Machine Learning (ML)

bankruptcy prediction after the 2000s. Nowadays, the vast amount of bankruptcy prediction

technologies has created an eco-chamber of research where not only the prediction is impor-

tant, but also the assessment of danger and making changes with strategic management to

shift the outcome. The most recent shift in BP research was introduced due to the develop-

ment of causal ML because it is important to know what causes a firm’s financial distress. We

can see this trend in 5.1 where we see the rise of papers with the term causal AND bankruptcy

prediction in the title, keywords or abstract that are submitted to Scopus. It is easily seen that
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Figure 5.1: Documents with ”causal” and ”bankruptcy’ prediction in the title, keywords or

abstract that are submitted to Scopus[7]

upward trend in the causal research.

5.2 FromTraditionalML toCausal BayesianML forBankruptcy

The evolution of bankruptcy prediction models has been a journey from simplicity to

complexity, adapting to the ever-changing dynamics of the business world. The classic Ma-

chine learning methods for bankruptcy see the problem as an imbalanced, higher-dimension

classification problem trying to optimise the accuracy of the model based on the data. There

are two main categories of studies[92]:

• parametricmethods:multiple discriminant analysis (MDA), linear discriminant anal-

ysis (LDA), canonical discriminant analysis (CDA), logistic regression (LR) and Naïve

Bayes (NB)

• non-parametric methods: artificial neural networks (ANN), support vector machine

(SVM), decision trees (DT), k-nearest neighbor (KNN), hazard models, fuzzy models,

genetic algorithms (GA) and hybrid models, where multiple models are combined

All those models are very successful in tackling the classification problem but they lack

interpretability which limits their contribution to the general economic consequences[93].

Thus the lack of explainability makes it difficult to trust the ML black box methods in a sen-

sitive area like finance which can have tremendous socioeconomical results. As a result, there

is a need for more interpretable ML with transparency on how the outcomes are estimated, to
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be more easily trusted by people who are not familiar with machine learning. Instead of cre-

ating explainable models, some scientists tried to make post-hoc methods that can explain the

results of black box models. A widely used post-hoc model is the Shapley values, it is used

to show which variables have influenced the predictive results of the ML models. Another

problem of the simple models is that while effective in estimating the posterior probability

of a firm’s failure based on its financial characteristics, did not consider the expected time to

failure. This limitation could lead to decisions that might be too late to prevent close failures.

As a response to this gap, survival analysis emerged as a potential solution. Although survival

analysis has been popular in fields such as medical and technical sciences, its application in

predicting financial failures remains limited[94]. However, the paper[94] by Yuri Zelenkov

aims to bridge this gap by evaluating the applicability of survival analysis to bankruptcy

prediction. Survival analysis offers a dynamic perspective, considering the time factor in ex-

tracting valuable information about risk dynamics and estimating the impacts of features.

This transition from traditional ML models to survival analysis represents a paradigm shift,

with the aim of a more holistic and time-sensitive approach to bankruptcy prediction.

Other studies tried to make a more holistic approach by incorporating external factors

into the data. This study[95] bridges the gap between macroeconomic indicators, particularly

the EPU, and bankruptcy prediction. Highlights the value of incorporating the EPU indicator,

especially its Twitter-extracted version, into bankruptcy prediction models, thereby enhanc-

ing their accuracy. This also aligns with the emerging literature that emphasises the role of

social media in predicting firm-level bankruptcy or financial distress. By integrating novel

data sources like Twitter and leveraging advanced machine learning techniques, it offers a

more holistic and accurate approach to predicting bankruptcy, which is paramount in the

ever-evolving economic landscape.

5.3 Advantages of Causality in Bankruptcy Prediction and

Financial Data Analysis

The emerging field of ”causal machine learning” in Bankruptcy Prediction aims to lever-

age the strengths of ML to provide more precise, less biased, and reliable estimators of causal

effects. In traditional econometrics, the focus has been on explanation and causality, often at

the expense of predictive power. The integration of causal inference with machine learning
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in bankruptcy prediction and financial data analysis offers a more comprehensive, accurate,

and adaptable approach to understanding and predicting financial crises and their impacts. In

this section, we will explore the benefits of the causal approach.

The first benefit is increased accuracy. Integration of machine learning with causal in-

ference can lead to more precise, less biased, and more reliable estimators of causal effects.

This means that predictions are based not only on correlations but also on understanding the

underlying causal relationships of the financial data.

Furthermore, the adoption of causal bankruptcy prediction provides a more comprehen-

sive and intricate understanding of the subject matter. Techniques, such as Causal forests,

allow for a better understanding of the factors that contribute to different outcomes in dif-

ferent contexts[96]. This provides information on how the impact of a phenomenon varies

between individuals, including potential thresholds and interactions.

Another benefit of causal Bankruptcy Prediction is that it addresses Complex Challenges.

Traditional methods often struggle with issues such as overfitting or failing to control for

key confounders. Causal techniques, provide a more robust framework for such complex

challenges, balancing the objectives of identifying significant differences in treatment effects

while also estimating causal effects accurately.

Causal models can distinguish Risk from Vulnerability, which is a very important feature

[96]. This fine understanding can lead firms to make better policy recommendations and

interventions.

Another benefit of causal models is that they address heterogeneity. Traditional models

often treated companies as homogeneous entities. However, surveys showed that there’s un-

observed heterogeneity when analyzing company bankruptcy processes, which challenges

the assumptions of traditional models[97]. New approaches recognize and address the het-

erogeneity among companies, ensuring that sector-related characteristics, capital structure,

and size are considered.

They also offer flexibility in Non-Parametric Approaches. Techniques like the causal for-

est (CF) offer a flexiblemodel that can handle high levels of interactions and dimensions. This

allows for a more nuanced understanding of the factors influencing bankruptcy[97].

Furthermore, we can get insights into Sectoral Effects with causality. Certain sectors

might be more prone to financial crises, which can exacerbate the bankruptcy process. Under-

standing these sectoral vulnerabilities with causal inference can guide targeted interventions
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and policies.

Finally, with causal methods, we can incorporate External Factors by acknowledging the

importance of both internal (company-level) and external (macroeconomic) factors in pre-

dicting bankruptcy. This comprehensive view can lead to a more holistic understanding of

the factors driving bankruptcy.

5.4 Bayesian Networks Learning for Bankruptcy Predic-

tion

Amachine learning technique that has been used for causality is Bayesian Network, they

are used in learning the causal relationships from the data. The use of naive BayesianBayesian

network (BN) models in bankruptcy prediction was first proposed in this study [98]. Histor-

ically, bankruptcy prediction methodologies have transitioned from fundamental analyses

in the 1960s to sophisticated techniques such as BN models, which stand out for their in-

terpretability, adaptability, and lack of complete information dependency. Another study[99]

indicates that Bayesian models can effectively predict financial distress, with information de-

riving from companies’ financial statements being valuable. Thus, Bayesian Networks, with

their probabilistic graphical models, have gained popularity for their ability to represent com-

plex probabilistic relationships. They offer several advantages, including explicit probability

outputs and a graphical model framework. However, they also have limitations, such as re-

liance on prior beliefs. The naïve Bayesian network, a simple structure with a common parent

node, has been widely used for classification due to its simplicity and strong independence

assumption. The Bayesian network model is also employed to address model uncertainty

problems in analyzing firm bankruptcy and predictability. Especially when the cost ratio of

Type I errors to Type II errors is high, the predictive power of the Bayesian model is stressed,

suggesting its potential attractiveness in the current economic environment where significant

firms face financial distress [100].

Some studies have integrated the Bayesian network model with other ML models to pre-

dict firm bankruptcy. This study’s [101] model integrates the Least Absolute Shrinkage Se-

lection Operator (LASSO) to select relevant financial ratios and subsequently establish the

Bayesian Network (BN) topology and estimate its parameters. A significant advantage of the

LASSO-BN model is its transparency, which provides a clear interpretation of its internal
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workings by elucidating how conditional default probabilities are derived from the selected

variables. This clarity in interpretation addresses the growing demand for interpretable ma-

chine learning models, especially in contexts where understanding the decision-making pro-

cess is crucial. The Bayesian network model, which is powerful in its predictive capabilities,

also provides a clear depiction of its internal functionality, allowing for a deeper understand-

ing of the relationships and dependencies between variables. This dual focus on performance

and transparencymakes the ensemble BNmodels particularly relevant for investors, portfolio

managers, and regulators, offering a comprehensive tool for assessing firm financial health.

In recent research on bankruptcy forecasting, approaches using a Bayesian framework for

financial riskmanagement were proposed [102]. Traditional models, such as Linear Discrimi-

nant Analysis and Artificial Neural Networks, could not incorporate prior expert knowledge,

a gap addressed by the Bayesian model. Despite criticisms of subjectivity in the Bayesian

method, it uniquely allows for the explicit inclusion and evolution of prior judgment. Con-

clusively, the studies paved the way for further exploration of Bayesian techniques in credit

risk management.

5.5 LiteratureReview:Causal Inference inBankruptcyRe-

search

In the pursuit of understanding the evolution of causal inferencemethodswithin the Bank-

ing, Finance, and Insurance sectors, a comprehensive study titled ”Causal Inference for Bank-

ing, Finance, and Insurance – A Survey” by Satyam Kumar, Yelleti Vivek, Vadlamani Ravi,

and Indranil Bose kumar2023causal, reviewed the distribution of papers from 1992 to 2023.

This seminal work will serve as our primary source of literature records in this section. The

survey, underpinned by two primary themes, navigates through domain-specific applications

in BFSI—ranging from corporate finance and financial governance to specific utilities like

churnmodelling and credit scoring—and also demystifies the causal inferencemethodologies

employed, including Bayesian Network, Granger Causality, and counterfactuals.

Lastly, to provide a coherent structure, papers with overlapping themes were classified

based on their predominant focus, determined by word count. Interestingly, an uptrend in

BFSI publications over the past five years has been observed, as illustrated in Figure 5.2.
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Figure 5.2: The volume of international academic publications from 1992 to 2023 [8]

5.5.1 Survey segmented by domains

Field of Banking

The banking sector, a linchpin of global financial systems, has always been a subject of

keen academic scrutiny. It’s intriguing to observe the multifaceted studies aimed at decoding

its intricacies.

Michail [103] examined the impact of negative interest rates on inflation and bank lending

in Denmark, Sweden, and Switzerland. The findings indicated that negative interest rates did

not deter banks from lending. Notably, it was observed that bank funding costs and return-

on-Equity served as influential limiting factors in this context.

Kolodiziev et al. [104] introduced an innovative method using causal analysis to assess

the stability of the banking system in Ukraine. This methodology employed four distinct

groups of indicators. The study’s findings illuminated that causal analysis effectively revealed

the most critical components and relationships between the indicators. This insight further

emphasized the deep interconnectedness inherent in the stability of the financial system.

Stolbov & Shchepeleva [105] embarked on a detailed investigation into the causal re-

lationships interlinking systemic risk, economic policy uncertainty, firm bankruptcies, and

global volatility as represented by the VIX index. Their research unearthed that the connec-

tion between bankruptcies and factors like systemic risk, policy uncertainty, or the VIX index

is intricately contingent on the scale of banks’ deleveraging actions concerning the private

non-financial sector.
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Field of Finance

The ever-evolving realm of finance continually challenges researchers to disentangle its

complex dynamics and forecast the unpredictable pathways of market trends.

Gong et al. [106] delved into a meticulous analysis of network topology, leveraging cen-

tralitymeasures to decipher causal relationships prevailing among financial institutions. Their

study spotlighted the dynamic shifts in systemic risk within China’s bustling financial mar-

kets. A pivotal revelation from their research was that their formulated framework possessed

the capability to serve as a robust early warning tool during surges in systemic risk.

Davis [107] set out to investigate a selection of twelve models from literature that show-

cased inelastic demand. These models stood in stark contrast to their classical counterparts.

Davis’s exploration further delved into two specific predictor types pertinent to price alter-

ations. The research’s conclusions pointed towards the inherent difficulty in trading against

price fluctuations in tangible market environments. Furthermore, a staggering count of 62

anomalies were earmarked exclusively for longstanding investments when utilizing rank cor-

relation.

Ravivanpong et al. [108], navigating the intricate terrain of financial governance em-

ployed a multifaceted approach encompassing causal graphs, intricate visualization tech-

niques, and anomaly detection. The primary objective was to unearth the root causes behind

risk profile shifts in various investment portfolios. Their methodological arsenal included ad-

vanced techniques like Agglomerative Hierarchical Clustering (AHC) and Effective Transfer

Entropy (ETE). The study’s outcomes unveiled that conventional methodologies can occa-

sionally bypass notable correlations existing between different portfolios, especially during

the onset of minor crises. Moreover, when juxtaposing the efficacy of AHC analysis com-

bined with VaR against causal graphs, the latter emerged superior both in terms of pragmatic

application and technical requisites.

Rigana et al., [109] introduced an innovative measure for contagion between various cur-

rencies within the Forex market, rooted in causal inference and drawing heavily from causal

graph model theory. Their findings provided a deeper understanding of the functioning of

contagion paths within this complex market.

Tsapeli et al., [110] delved into the intriguing realm of social media’s influence on finan-

cial markets. Their research specifically focused on gauging the causal impact of sentiment,

as expressed on platforms like Twitter, on stock returns for industry giants including Apple,
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Microsoft, Amazon, and Yahoo. The findings confirmed the significant sway of Twitter senti-

ment on stock prices, although the methodology presented inherent biases, particularly given

its reliance on observational data.

Castro [111] embarked on amission to intertwine estimationmethods traditionally used in

finance with contemporary causal event approaches. The spotlight was on stock holding pe-

riod returns, specifically around particular, momentous events. Castro’s insights underlined

the standard definition of the event window that circumscribes significant financial happen-

ings.

Kleinberg [112] brought forth theAssessment of Rare Causes (ARC)methodology, specif-

ically crafted to decipher the causation behind infrequent events. Kleinberg’s conclusions

emphasized the utility of ARC in bolstering decision-making processes by elucidating the

ripple effects of these rare events.

Kleinberg et al. [113] advanced an algorithmic framework meticulously designed to infer

causal relationships embedded within time series data. The researchers harnessed a diverse

array of price data for their study, concluding that their method presented a formidable tool

for testing intricate hypotheses in time series data landscapes.

Moraffah et al., [114] tackled two pivotal causal inference tasks for time series data: treat-

ment effect estimation and causal discovery. Their findings astutely differentiated between

time-invariant and time-varying treatment effects, offering a nuanced perspective for causal

analyses in the context of time series.

Peters et al., [115] presented an in-depth examination of Time Series Models with Inde-

pendent Noise (TiMINo), setting it in juxtaposition with more conventional methodologies.

Their research showcased that TiMINo boasts compatibility with an array of data types, with

a special emphasis on the identifiability derived from constrained models.

Chikahara & Fujino, [116] harnessed the power of supervised learning classifiers to drive

time series causal inference. Their methodology leaned heavily on feature representation cou-

pledwith a keen understanding of historical values. The researchers showcased their approach

through its application on both synthetic and real datasets, accentuating its proficiency with

both bivariate and multivariate time series.

Geiger et al., [117] proposed a pair of estimation techniques tailored for non-Gaussian,

independent noise and went on to outline conditions essential for identifying causal features.

Validating their methodologies, the team illustrated their effectiveness using carefully simu-

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:28:27 EEST - 18.218.130.119



50 Chapter 5. Related Work II: Causal and Bayesian Methods in Bankruptcy Prediction

lated data sets.

Rudd et al., [118] unveiled a churn prediction system specifically tailored for businesses

that do not operate on a subscription model. The core of the system’s churn prediction score

is powered by a multi-layer perceptron (MLP). Delving deeper into the churn’s roots, causal

analysis techniques were employed, drawing from structural equation models (SEMs) and

Counterfactual based models. One of the standout elements of this research was the introduc-

tion of a novel feature engineering procedure, meticulously crafted around the recency, fre-

quency, andmonetary dimensions of customer engagement. This innovative approach proved

pivotal, substantially elevating the overall performance of the predictive model.

Fahner [119] pioneered amethod poised to tackle the longstanding challenges of selection

bias and the constraints of limited historical testing that are intrinsic to credit score decision-

making paradigms. This method exhibits versatility, adeptly managing multiple ordinal or

categorical treatment impacts. Delving into the mechanics of this approach, it initially ex-

tracts granular information from support regions. Subsequently, it assembles a comprehen-

sive global model. A testament to its robustness, when the model was put to the test in the

realms of risk-based pricing and credit line augmentation challenges, it showcased its profi-

ciency in discerning intricate causative relationships.

Field of Accounting

In the intricate realm of accounting, there exists an ever-growing landscape that constantly

interacts with the broader economic and business environment.

Guelman & Guillén, [120] explored the effects of rate adjustments on a policyholder’s

choice to end a policy (lapse). To account for the intertwined dynamics, they studied the co-

variates of a policyholder’s lapse, highlighting correlations between price elasticity and other

factors. For each rate change level, a set of lapse probability models was established using

gradient-boosted machines (GBM) for both training and variable selection. The team em-

ployed propensity scores and matching algorithms to correlate policyholders under varying

rate change conditions, drawing counterfactual outcomes from these pairs. The study’s con-

clusion emphasised its utility for company managers: by selecting the most favourable rate

change for each policyholder, the aim is to augment company profits.
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5.5.2 Survey Segmented by Methods

Bayesian Causal Network

Jacquer&Polson, [121] surveyedBayesian econometricmethods in finance, focussing on

Markov ChainMonte Carlo (MCMC) and particle filtering (PF) algorithms. They highlighted

MCMC’s aptitude for handling complex models in the context of stochastic volatility (SV)

and used PF for discrete time comparisons. Applications include optimal portfolio creation,

returns predictability, and asset and option pricing.

Sanford and Moosa, [122] developed a Bayesian network for operational risk modelling,

considering data heterogeneity and scarcity. Based on structured finance operating (SFO)

units of an Australian bank, its three-stage methodology encompasses structural develop-

ment, probability estimation from domain experiments, and model validation. They incorpo-

rated expertise from uninvolved domain experts for clear causal relations.

Gao et al., [123] introduced a stress-testing framework, merging Suppes-Bayes Causal

Networks (SBCNs) with classification algorithms. Unlike traditional Bayesian networks,

SBCNs employ probability causation and utilise maximum likelihood estimation (MLE) to

eradicate spurious causes. Stress tests validated SBCNs’ efficiency in computation and data

usage.

Granger Causality

Stavroglou et al., [124] delved into financial assets, utilizing methods such as linear and

nonlinear intertemporal cross-correlation (LICC and NICC). The research underscored the

value of causal inferences in averting financial crises akin to 2007-2009. Data like stock

indices (USA, Japan, China, India), government bonds, and oil prices revealed that both LICC

and NICC shared 50% common causal links. Notably, rising oil prices influenced the China

stock market downturn.

Tiffin, [96] empirically analyzed the aftermath of the financial crisis on growth using the

causal random forest algorithms. Thismethod dissected risks, pinpointed potential thresholds,

inspected non-linearities, and spotlighted the crucial role of exchange rates in dictating a

nation’s progress.

Eichler, [125] tackled challenges in spurious causality, focusing on the application of

Granger and Sims causality in empirical domains. The study introduced a distinctive iden-
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tification method using latent variables for causal time-series structures.. It underscored the

importance of assessing the causal effects of rare events due to their significant impact, which

is relevant across finance, bioinformatics, and computational sciences.

Counterfactuals

Lundberg & Frost, [126] delved into counterfactuals in the volatile marketing arena.

Through empirical testing within trading contexts based on Norm Theory, findings suggest

the utility of counterfactuals in dynamic decisions. The importance of post-decision evalua-

tions of past marketing strategies was underscored.

Svetlova, [127] posited counterfactual analysis as crucial not only in human psychology

but also in societal dimensions. Contextually, the study assessed counterfactuals in portfolio

management, revealing their potential pitfalls in financial markets. Key influencers in port-

folio management, spanning fundamental to macro-economic factors, were highlighted.

Brodersen et al. [28] presented a novel causal impact estimation using diffusion-regression

state-space models. These models outshine traditional methods by offering insights into tem-

poral impact progression, integrating empirical priors via a Bayesian approach, and flexibly

accommodating varied variations.

Gan et al. [128] crafted a model-agnostic framework for generating relevant counterfac-

tuals in model risk management. This was automated using cloud-native algorithms, and its

efficacy was gauged using the Freddie Mac dataset.

Wang et al. [129] proposed an innovative sparsity algorithm treating counterfactual expla-

nation as an optimization problem. Tailored for high-dimensional inputs in corporate credit

ratings, the algorithm resolves the challenges of non-injective functions in high-dimensional

inputs by minimizing feature modifications, thus facilitating counterfactual explanations for

them.

Explainability Approach

Yang et al., [130] explored the intricacies of M&As in the backdrop of the burgeoning

field of XAI. By refining a transformer variant enhanced with adversarial training for M&A

predictions, and identifying key words post-prediction, the study furnished counterfactual ex-

planations. The breakthrough was its superior prediction accuracy, overtaking other methods

and human expertise, along with providing more believable counterfactual rationales.
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Grath et al., [131] addressed the enigma of black-box classifiers in predicting credit ap-

plications. Introducing a weight vector to underscore crucial features for counterfactual ex-

planations, the study proposed two methods for its creation: ANOVA F-values and a Nearest

Neighbors technique.

Dastile et al. [132] introduced a bespoke genetic algorithm to generate succinct coun-

terfactual explanations for predictions made by opaque models. Primarily leveraging public

credit scoring datasets, the outcome was a tool that could demystify the logic behind ap-

proved loan applications. The innovation’s potential is further highlighted by the possibility

of refining its fitness function via genetic programming.

Bueff et al., [133] undertook the challenge of elucidating machine learning models used

in credit scoring. Through the application of counterfactual explanations, the study shed light

on the intricate relationship between input variables like income or debts and credit risk. The

findings emphasized the capability of counterfactual scenarios to decode the nuances in credit

scores, advancing model transparency.

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:28:27 EEST - 18.218.130.119



Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:28:27 EEST - 18.218.130.119



Chapter 6

Dataset for Bankruptcy Analysis of

Greek SMEs: Data Analysis

In this chapter, we meticulously examine the nuances of a custom Greek SMEs dataset,

providing a detailed overview and unravelling its multifaceted patterns. As we traverse this

analytical journey, we emphasize the importance of variable selection. This critical step de-

termines the effectiveness of our subsequent models, by diving into the very makeup of our

dataset, shedding light on its source and composition and detailing the financial ratios en-

compassed within it. Our exploration is significantly enhanced by a suite of analytical tools,

as this chapter delineates.

As we proceed, we discuss methods and techniques employed for data manipulation, such

as the criteria for initial variable elimination and strategies for addressing missing values.

However, The heart of our exploration lies in the comprehensive approach to Exploratory

Data Analysis (EDA). We embark on an overview of EDA, followed by a dedicated section

on utilizing box plots as a potent statistical tool. Moreover, we conduct an in-depth analysis

to comprehend the correlations among the variables, highlighting both overarching associ-

ations and those directly related to the target variable. Hypothesis testing is integral to our

analysis to confirm the validity of the correlations observed. We also touch upon some of the

EDAmethods that were considered but remained unused, providing insights into our analyti-

cal decision-making process. This intricate process of data exploration and variable selection

provides insight into the dataset’s depth and boundaries and highlights the complexities as-

sociated with bankruptcy prediction.

55
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6.1 Data Description

This section provides a detailed description of the dataset concerning the financial data

for bankrupt and active Greek small-medium enterprises (SMEs).

6.1.1 Dataset Source and Composition

The dataset has been derived from the study by V. Papadouli, E. Houstis, and E. Vavalis

from the Electrical and Computer Engineering Department, University of Thessaly, Volos,

Greece [1]. In this study, enterprises are recognized as small-medium sized based on two

criteria:

1. They have less than 250 employees.

2. Their revenues are less than C50M or assets are less than C43M.

The dataset contains financial reports from Greek firms spanning from 2002 to 2015. The

firms’ financial data were collected from various sources: the commercial company iMEN-

TOR (which is based on the ICAP database), archives from the Greek financial journal

Naftemporiki, and the Datastream platform that provides financial data for numerous coun-

tries and markets.

The dataset categorizes enterprises into two distinct groups:

• Bankrupt (B)

• Non-bankrupt (NB)

A firm is classified as financially distressed if it has been declared bankrupt through a court

decision; otherwise, it is labelled as non-bankrupt. This classification is carried out using the

variable ’label’. The accuracy of each firm’s bankruptcy status has been validated through

cross-checking with the Greek ELSTAT organization. The dataset comprises records from

170 companies that have filed for bankruptcy and 1,424 firms that have remained non-bankrupt.

This distribution underscores a significant class imbalance within the dataset

It is noteworthy that the dataset includes three consecutive years of data for each firm.

The year a company declares bankruptcy is labelled as the benchmark year ’t’. Consequently,

years (t-1), (t-2), and (t-3) represent the 1st, 2nd, and 3rd years before bankruptcy, respec-

tively. The dataset operates under the assumption that the last published balance sheet of a

firm in financial distress corresponds to one year before its bankruptcy (t-1).
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Later on, the dataset expanded unofficially to encompass 4,782 rows. Of these, 4,272were

labeled as ’0’ and 510 as ’1’. This revised dataset was then provided to us for our research.

6.1.2 Financial Ratios in the Dataset

The dataset integrates financial ratios that gauge firms’ soundness, stability, and perfor-

mance. These ratios encompass those used in Altman’s Z-score and Taffler’s model, accom-

panied by additional financial indicators suggested by Carton and Hofer. The listed financial

ratios are structured as shown in 6.1.

Henceforth, we will categorize the variables into two distinct groups: the non-ratio vari-

ables and the ratio variables. It’s imperative to note that the ratio variables are operationally

derived from the non-ratio variables, as previously delineated.

Finally, in the subsequent Data Manipulation section (6.2, we opted to retain all financial

ratio variables. These ratios, derived from established financial tenets, provide a comprehen-

sive overview of a company’s fiscal health. They facilitate benchmarking, underpin informed

decision-making processes, illuminate emerging financial trends, and enhance transparency

[134]. Notably, these inherently scaled ratios neutralize the disparities arising from variations

in firm sizes, ensuring a consistent and nuanced analysis across diverse entities.

6.2 Data Manipulation

In the realm of scientific research and data analytics, data manipulation stands as a pivotal

process, defined as the systematic adjustment, organization, and transformation of raw data

to render it suitable for in-depth analysis. This preparatory step is indispensable for several

reasons. First, raw datasets, inherently replete with inconsistencies, errors, and absentees,

demand rigorous manipulation to achieve a level of quality and precision vital for subsequent

analysis [135], [136]. Second, the effectiveness of data-driven inquiries relies on the well-

organized structure of the dataset in question, ensuring that analytical procedures are not only

time-efficient but also computationally efficient. Furthermore, adept manipulation enhances

the potential of the dataset, unveiling nuanced insights and trends otherwise obscured in its

raw state. In essence, data manipulation not only fortifies the integrity of the dataset but also

amplifies its analytical potential, thereby serving as the linchpin in the data analysis lifecycle.
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6.2.1 Initial Variable Elimination

We proceed by elucidating the rationale behind the selection of specific variables for

our analysis, emphasizing the importance of excluding certain variables from our dataset.

The choice of variables is paramount in data analysis, as it directly influences the reliability

and clarity of the results. While datasets often come replete with a plethora of variables, it’s

essential to discern which ones truly contribute to the analysis and which might hinder it. Our

decisions pivot around three primary criteria: Redundancy, Irrelevance, Potential Leakage.

Judging byRedundancy, certain variables such as ’opening_assets’, ’current_assets’, ’fixed_assets’,

’current_liabilities’, ’opening_current_liabilities’, ’long-term_liabilities’, ’opening_equity’,

’opening_net-income’, and ’opening_capital_employed’ might reflect information that their

broader category counterparts already capture [137]. For instance, a firm’s total assets consti-

tute the sum of its current and fixed assets. Moreover, the term ’liabilities’ encompasses all of

a company’s obligations and debts, including both its short-term (or current) and long-term

liabilities.

As for the ”opening” variables, they denote the totals of their respective measures at the

start of a financial period [137]. For example, the ’opening_current_liabilities’ for one period

would equal the ’current_liabilities’ at the end of the preceding period. As a case in point,

the opening liabilities for the 2023 fiscal year would match the liabilities at the close of the

2022 fiscal year. The same principle applies to net income and capital employed.

Such redundancies can induce multicollinearity, a scenario in which two or more predic-

tors in a model are closely correlated. This interrelation makes it arduous to isolate the unique

impact of each predictor, potentially compromising the model’s stability and clarity.

Furthermore, regarding Irrelevance, some variables do not contribute meaningfully to the

analysis at hand. For instance, variables like ’vatnumber’, ’company’, and ’year’ function as

identifiers or metadata. They don’t offer substantive insights into the bankruptcy prediction

and can clutter the analysis, diluting the impact of more pertinent variables [135], [136].

Moreover, for Potential Leakage, including variables that directly or indirectly reveal the

outcome can lead to overly optimisticmodel performance. For example, ’declared bankruptcy’

is a direct indicator of bankruptcy. When such a variable is used as a predictor, it can arti-

ficially inflate the model’s accuracy, leading to what is termed ”data leakage”. This occurs

because the model gets access to information during training that it shouldn’t ideally have,

making the predictions trivially accurate but entirely ungeneralizable [135], [136].
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To conclude, after our initial variable elimination, what we are left with are, ’fyear’, ’scal-

ing’, ’inventory’, ’receivables’, ’assets’, ’retained_earnings’, ’equity’, ’liabilities’, ’sales’,

’gross_profit’, ’EBIT’, ’BT’, ’net-income’, ’EBITDA’, ’capital_employed’, ’GDP’.

6.2.2 Addressing Missing Values

In data analysis, missing values refer to the absence of data in a dataset. Instead of a

recognizable value or piece of data, there might be a blank space, a placeholder like ”NaN”

(Not a Number), or some other indicator signifying that no data is present. Such omissions

can arise for various reasons: data might not be collected, it could be lost, or perhaps it was

never applicable in the first place. Whatever the cause, missing values pose challenges in

data analysis. They can distort statistical analyses, reduce the power of a study, and lead to

potential biases. Addressing these gaps requires understanding why data might be missing

and assessing the implications of different strategies to deal with these absences [135], [136].

Greek SMEs Dataset Missing Values

In the meticulous analysis of the company financial dataset, which spans 4,782 rows, two

columns stood out for theirmissing data: ’retained_earnings’ and ’inventory’. The ’inventory’

column had only 12 missing values out of 4,782, representing about 0.25%. In contrast, the

’retained_earnings’ column displayed a significant 525 missing entries, which is roughly

10.98% of the data, prompting an in-depth assessment of potential imputation strategies.

To discern the nature of this missingness, a thorough exploration was undertaken. It was

observed that whenever a ’retained_earnings’ value was missing, there was a 95.43% chance

that the corresponding ’declared bankruptcy’ value was also missing. This was especially

prevalent among companies that had not declared bankruptcy, as indicated by their label.

However, after closely examining the data, we found a complete correlation between

the ’label’ column and the missing values in ’declared bankruptcy’. This is because every

firm that did not go bankrupt does not have a year of bankruptcy declaration, leading to the

NaN value. Looking back at the variable definitions provided earlier, this connection makes

logical sense. Thus, the ’retained_earnings’ missing values could either be MAR or MNAR,

irrespective of the ’declared bankruptcy’ column’s missingness pattern.

That said, imputingmissing values, especially in a column as significant as ’retained_earnings’,

comes with challenges. Artificial values might not truly reflect a company’s financial situ-
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ation. This becomes even more critical when trying to determine cause-and-effect relation-

ships. Introducing such synthetic data could skew results, leading to inaccurate conclusions.

For causal inference, having genuine and accurate data is crucial; introducing made-up data

could introduce biases or hide real trends, affecting the study’s credibility.

Considering these challenges, and to ensure the dataset’s reliability for in-depth causal

inference, the ’retained_earnings’ column was removed. Without it, the dataset still boasts

52 columns, all of which provide valuable insights and are rich in information.

Lastly, upon initial inspection, the ’inventory’ column, with its minimal percentage of

missing values, was deemed a potential candidate for row elimination. However, a more

detailed analysis revealed that all instances (100%) of NaN values within ’inventory’ were

associated with the minority class (label=1). Given this class’s scarcity of datapoints, row

removal was deemed inadvisable. Additionally, given the column’s characteristics, it was as-

sessed that its imputation would not significantly disrupt our causal inference. Consequently,

an iterative imputation approach was employed, leveraging a Bayesian Ridge model.

6.3 Data Elucidation: Exploratory Data Analysis

The concept of data elucidation can be understood as the process of clarifying, explaining,

and making data comprehensible. It’s more than just analyzing data; it’s about transforming

raw, often confusing datasets into coherent, actionable insights. Through techniques rang-

ing from data visualization to advanced analytics, data elucidation seeks to bridge the gap

between mere data collection and meaningful understanding.

6.3.1 EDA: An Overview

Exploratory Data Analysis (EDA) plays a pivotal role in data elucidation, as a prelimi-

nary step in data analysis by summarizing the main characteristics of the dataset, often with

visual methods. For our dataset, EDA will provide insights into the distribution, variance,

and potential outliers among the financial variables of Greek SMEs. This will aid in under-

standing the general trends and patterns, which can be crucial for subsequent analyses [135],

[136], [138].

Some fundamental steps in EDA include:

• Box Plots: These can be used to identify the spread and potential outliers in each fi-
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nancial ratio. By comparing box plots for bankrupt and non-bankrupt firms, we can

identify which ratios might be significant in determining bankruptcy

• Correlation Analysis:A correlation matrix or heatmap can be generated to understand

the relationships between different financial ratios. High correlation between variables

might indicate redundancy.

6.3.2 EDA: Box Plots as a Statistical Tool

Visualization tools like box plots provide a broader perspective on data distribution. Com-

monly known aswhisker plots, boxplots succinctly highlight the dataset’smedian, spread, and

potential skewness, providing a concise and comprehensive view. Their compact represen-

tation ensures that the visualization results are always more collected, manageable, and less

prone to misinterpretation. Leveraging these insights from box plots will be a foundational

step when we delve deeper into the subsequent correlation analysis.

In our analytical approach, we’ve focused on the overall distribution of variables rather

than plotting against the ’label’. This decision is rooted in our aim to obtain a holistic and

unobstructed view of each variable’s distribution, thereby ensuring clarity and simplicity in

our initial exploratory phase. By examining the entire dataset’s distribution, we can more

efficiently detect outliers and understand our data’s the central tendencies and spread. Fur-

thermore, given that our subsequent analyses involve detailed correlation studies, where intri-

cate patterns and relationships between variables will be explored in-depth, beginning with an

overall distribution ensures we don’t preemptively compartmentalize our data. This approach

provides a broad benchmark, setting the stage for the nuanced, label-specific investigations

that follow.

Generating Boxplots for Greek SMEs Dataset Variables

We start by generating a multiplot of boxplots for our selection of non-ratio variables

against the target variable ’label. The drawn plots are showcased in Figure 6.1.

Upon inspecting the composite boxplot visualization, it becomes evident that the substan-

tial concentration of outliers obscures any clear patterns within the data. Consequently, we’ve

implemented a systematic outlier removal process. This step essentially helps in clearing up

the boxplots and results in the visualization in Figure 6.2. It’s crucial to note that the outlier
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(α′) Non-ratio Boxplots (β′) Ratio Boxplots

Figure 6.1: Boxplots of Greek SMEs Variables

removal is primarily for demonstration purposes. Given that instances of class 1 are predom-

inantly labelled as outliers, removing them would compromise the integrity and purpose of

our analysis.

The extended presence of such outliers in the dataset also suggests a likely departure from

normal distribution. In practical terms, this indicates that traditional statisticalmethods, which

often assume normality, might not be entirely appropriate for this dataset, and alternative

approaches or transformations might be required to derive meaningful insights.

Additionally, the empty boxplot for the ”scaling” variable hints at a lack of variability,

suggesting all its values might be identical or near-identical across each ’label’ value.Without

variability, a boxplot lacks its typical ”box” and ”whisker” structure. Due to this uniformity,

the ”scaling” variable will be subsequently removed from our analyses.

Upon close inspection, it becomes evident that these outlier-free plots, while more aes-

thetically pleasing, do not necessarily offer substantially new insights. The core distributions,

central tendencies, and data spreads remain fundamentally unchanged. Essentially, the re-

moval of outliers served to confirm our initial observations rather than reveal novel patterns.

To further validate our findings and check our assumptions about the data’s distribution,
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(α′) Non-ratio Boxplots (Post Outlier Removal) (β′) Ratio Boxplots (Post Removal)

Figure 6.2: Boxplots of Greek SMEs Variables (Post Outlier Removal)

we will be performing a normality test in the section that follows.

Normality Testing of Greek SMEs Dataset

In statistical analysis, the normality assumption is foundational for many parametric tests

and methods. It’s essential to determine if our data conforms to a normal distribution, as

deviations can impact the validity of inferential statistics derived from the data.

To assess the normality of our dataset, we employed the Shapiro-Wilk test [139], a widely

used method for testing the normality of a data sample. The test evaluates the hypothesis that

a sample is drawn from a normal distribution. A low p-value (typically p < 0.05) indicates

that the data does not follow a normal distribution. This test was applied to each variable in

our dataset, both before and after a systematic outlier removal process. The detailed results

of this test can be found in Table 6.2.

The results of the Shapiro-Wilk test on the pre-outlier removal data showed that none of

the variables follow a normal distribution. Specifically, the p-values for all the variables were

essentially zero, confirming non-normality. This observation is consistent with our earlier

visual assessments from the box plots, where the presence of numerous outliers and the shapes
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of the distributions hinted at non-normality.

The non-normal nature of our dataset suggests that care must be taken when applying

traditional statistical methods, many of which assume normally distributed data. It under-

scores the importance of thorough exploratory data analysis before more advanced analyses

and highlights the need for alternative methods or transformations that can accommodate

non-normal data.

6.3.3 EDA: Correlation Among Variables

Following our in-depth exploration of distributions in the Exploratory Data Analysis

(EDA): Box Plots as a Statistical Tools section, we focus on understanding the interrela-

tionships between the variables. Correlation analysis is a fundamental step in exploratory

data analysis (EDA) that helps in identifying potential associations, dependencies, or pat-

terns among multiple variables.

Given the non-normality observed in our data, we have chosen to use Kendall’s Tau for

our correlation analysis. This method offers superior statistical attributes, especially when

dealing with outliers [140]. A detailed explanation of Kendall’s Tau will be provided in a

subsequent section (see 6.3.4).

In this chapter, we will employ the correlation matrix through the heatmap technique to

gauge the strength and direction of said relationships. By doing so, we can discern which

variables move together, aiding in feature selection, model building, and hypothesis genera-

tion for further analysis. Additionally, this analysis will serve as a foundation for subsequent

investigations into whether correlation implies causation.

Additionally, as previously established, we classify our variables into two main cate-

gories:Non-ratio variables and Ratio variables. The distinction is crucial for several reasons,

First, ratio variables are operationally derived from non-ratio variables. Studying the

correlation among them separately eliminates redundancy and provides clearer insights.

Second, the division between non-ratio and ratio variables is crucial to causal inference.

The ratio variable, being a composite of two ormore variables, complicates the tracing back of

the causal effect since we cannot readily pinpoint which component of the set of variables that

constitutes the ratio is responsible. Due to this inherent complexity with ratio variables, we

have an inclination to believe that ratio variables might perform better in terms of classifica-

tion accuracy, a suspicion we aim to validate, offering a condensed, scaled, and interpretable
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set of metrics that encapsulate the financial health and operations of firms. This is irrespec-

tive of certain characteristics, such as differences in size, which might otherwise complicate

the modeling process. Consequently,

Correlation Matrix Implementation: An Overview

Correlation matrices provide a comprehensive snapshot of the linear relationships be-

tween multiple variables in a dataset. When applied to financial variables, these matrices

offer insights into the interdependencies among various financial metrics, revealing patterns

and associations that might not be immediately obvious. By visualizing these correlations,

often through heatmaps, we can quickly discern the strength and direction of relationships

between metrics, guiding deeper analysis and strategic decision-making. In the context of our

dataset, understanding these correlations among financial variables is pivotal for grasping the

financial dynamics and intricacies of the firms under consideration.

Correlation Matrix Implementation: Correlation Among Non-Ratio Variables

By implementing a correlation matrix through heatmap on the non-ratio variables, we

achieve the following visualization (Figure 6.3,

Figure 6.3: Correlation Matrix through Heatmap: Non-Ratio Variables

The insights from this procedure revealed strong correlations (greater than 0.7) which are
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noted below,

• ’assets’ and ’liabilities’ (≈ 0.806):

Interpretation: This strong positive correlation suggests that as a company’s assets in-

crease, its liabilities typically increase as well. This might be because companies fi-

nance the acquisition of new assets through debts, leading to increased liabilities.

• ’assets’ and ’capital_employed’ (≈ 0.745):

Interpretation: Companies with higher assets generally have more capital employed.

This indicates that larger companies, in terms of assets, tend to invest more in their

business operations.

• ’BT’ and ’net-income’ (≈ 0.950):

Interpretation: Before-tax income (BT) and net income are closely linked since net

income is derived after subtracting taxes from BT. A strong correlation is expected

because they both are measures of a company’s profitability.

• ’capital_employed’ and ’equity’ (≈ 0.760):

Interpretation: Companies with more capital employed likely have higher equity. This

suggests that as companies invest more in their operations (using both debt and equity),

their shareholders’ equity also tends to increase.

• ’GDP’ and ’fyear’ (≈ −0.877):

Interpretation: The negative correlation might suggest that the GDP has been decreas-

ing over the years (fyear). This could be indicative of economic trendswhere the overall

economic growth rate is slowing down over the period covered by the dataset.

Except for the strong correlations, there exist moderate correlations (Figure 6.3 that re-

veal key insights into a company’s financial strategy and operations. Linkages between ’re-

ceivables’, ’assets’, and ’sales’ hint at a credit-driven sales approach, indicating the balance

between growth and credit risk. The tight interplay between ’assets’, ’equity’, and ’liabili-

ties’ confirms the foundational accounting structure (Assets = Liabilities + Equity). Lastly,

the aligned movement among profitability measures like ’EBIT’ and ’BT’ with ’capital em-

ployed’ underscores operational efficiency.

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:28:27 EEST - 18.218.130.119



6.3.3 EDA: Correlation Among Variables 67

Moreover, adding to all the aforementioned, what is most intriguing about the correlation

analysis, is that a negative correlation occurs between ’fyear’ and ’GDP’. Although the years

covered in the dataset saw Greece experiencing both positive and negative GDP growth,

there exists an intriguing negative correlation between the fiscal year (fyear) and GDP. This

counterintuitive relationship goes through a deeper exploration in the section that follows.

The Negative Correlation Between fyear and GDP

The observed negative correlation between the fiscal year (fyear) and GDP in the dataset

can be attributed to the dynamics of the economic trends and the distribution of data points

across the years. A closer examination of the data (Figure 6.4 reveals a rise in GDP from

2002 to around 2008, followed by a more prolonged decline from 2008 to 2016.

Figure 6.4: Time Series Plot of GDP Over Fiscal Years

Crucially, the dataset contains a significantly larger number of entries post-2008 (4,640

entries) compared to before 2008 (142 entries), which is presented in depth in Figure 6.5.

Given this imbalance, the more extended period of GDP decline, represented by a larger

volume of data, exerts a stronger influence on the correlation calculation, thus leading to

a pronounced negative correlation. This underscores the importance of understanding the

context and distribution of data when interpreting statistical measures, as the correlation is

not just a reflection of the economic trend but also of the data’s composition over time.

Correlation Matrix Implementation: Correlation Among Ratio Variables

Following our non-ratio variables correlation analysis, we now focus on the ratio vari-

ables. By employing a correlation matrix and visualizing it through a heatmap, we obtain the

subsequent representation (Figure 6.6), and make some critical observations below.
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Figure 6.5: Distribution of data rows by year, highlighting the dominance of 2009-2011

Figure 6.6: Correlation Matrix through Heatmap: Ratio Variables
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• ’x1’ and ’x6’ (≈ 0.808):

Interpretation: A higher working capital to total assets ratio (’x1’) is associated with

a higher current liabilities to current assets ratio (’x6’). This could mean that compa-

nies with more working capital relative to their total assets might also have a larger

proportion of their assets financed through short-term liabilities.

• ’x2’ and ’x7’ (≈ 0.822):

Interpretation: Companies with a higher ratio of (current assets - inventory) to short-

term liabilities (’x2’) tend to have longer no-credit intervals in days (’x7’). This might

indicate that such companies have stronger liquidity positions and can afford to take

longer to pay off their short-term debts.

• ’x11’ and ’x14’ (≈ 0.703):

Interpretation: There’s a strong correlation between net profit to sales (’x11’) and BT

(before-tax income) to capital employed (’x14’). Companies with a higher proportion

of their sales translating into net profit likely have efficient operations, leading to higher

returns on the capital they’ve employed.

• ’x11’ and ’x15’ (≈ 0.843):

Interpretation: Net profit to sales (’x11’) and net profit to total assets (’x15’) being

correlated suggests that companies converting a higher proportion of their sales into

net profit also tend to utilize their assets efficiently to generate that profit.

• ’x11’ and ’x31’ (≈ 0.825):

Interpretation: Companies that have a higher net profit to sales ratio (’x11’) also tend

to have a higher profit before tax relative to their current liabilities (’x31’). This can

mean that these companies are more capable of covering their short-term obligations

using their before-tax profit.

• ’x11’ and ’x34’ (≈ 0.772):

Interpretation: A high correlation between net profit to sales (’x11’) and net profit to

inventory (’x34’) suggests that companies with efficient sales operations (leading to

higher net profits from sales) also manage their inventory well, converting it into profit

effectively.
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• ’x14’ and ’x15’ (≈ 0.815):

Interpretation: Companies that have higher before-tax income relative to their capital

employed (’x14’) also tend to have a higher net profit in relation to their total assets

(’x15’). This indicates the effective utilization of both capital and assets to generate

profits.

• ’x15’ and ’x31’ (≈ 0.833):

Interpretation: A strong correlation between net profit to total assets (’x15’) and profit

before tax relative to current liabilities (’x31’) suggests that companies which use their

assets effectively to generate net profit alsomaintain a comfortable profit buffer relative

to their short-term obligations.

• ’x15’ and ’x34’ (≈ 0.761):

Interpretation: Companies that have a higher net profit to total assets ratio (’x15’) also

tend to have a higher net profit relative to their inventory (’x34’). This indicates effi-

cient asset management coupled with effective inventory turnover.

• ’x16’ and ’x17’ (≈ −0.979):

Interpretation: The negative correlation between the book value of equity to total lia-

bilities (’x16’) and total liabilities to total assets (’x17’) means that companies with a

higher proportion of equity relative to their liabilities tend to have a lower proportion

of liabilities relative to their total assets. This suggests a more equity-financed capital

structure.

• ’x16’ and ’x18’ (≈ 0.991):

Interpretation: A very strong positive correlation between the book value of equity

to total liabilities (’x16’) and equity to total assets (’x18’) indicates that companies

with a higher proportion of their capital structure financed through equity also have a

significant portion of their assets backed by equity.

• ’x17’ and ’x18’ (≈ −0.969):

Interpretation: The strong negative correlation suggests that companies with a higher

proportion of liabilities relative to their total assets (’x17’) tend to have a lower equity
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proportion relative to their total assets (’x18’). This is expected since a company’s

capital structure is primarily composed of debt and equity.

• ’x20’ and ’x3’ (≈ −0.901):

Interpretation: Companieswith higher long-term liabilities relative to their equity (’x20’)

tend to have a lower equity proportion relative to their capital employed (’x3’). This

suggests that these companies might be leveraging long-term debt as a significant part

of their financing strategy.

• ’x21’ and ’x23’ (≈ 0.930):

Interpretation: A strong positive correlation between sales to total assets (’x21’) and

sales to average total assets (’x23’) indicates consistent sales performance relative to

the company’s asset base over the years.

• ’x21’ and ’x24’ (≈ 0.711):

Interpretation: Companies with higher sales relative to their total assets (’x21’) also

tend to have a higher capital employed turnover (’x24’). This suggests effective uti-

lization of the capital employed to generate sales.

• ’x21’ and ’x27’ (≈ 0.705):

Interpretation: Companies that have a higher sales to total assets ratio (’x21’) also tend

to have a higher sales to capital employed ratio (’x27’). This suggests that these com-

panies not only utilize their assets effectively to generate sales but also employ their

capital (both equity and debt) efficiently in generating those sales.

• ’x23’ and ’x24’ (≈ 0.721):

Interpretation: A positive correlation between sales to average total assets (’x23’) and

capital employed turnover (’x24’) indicates that companies that maintain consistent

sales performance relative to their average assets over time also efficiently turn over

their capital employed.

• ’x23’ and ’x27’ (≈ 0.701):

Interpretation: Companies with higher sales relative to their average total assets (’x23’)

also tend to have higher sales in relation to their capital employed (’x27’). This points

to consistent and efficient sales performance relative to both assets and capital.
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• ’x24’ and ’x25’ (≈ 0.709):

Interpretation: A positive correlation between capital employed turnover (’x24’) and

stockholders’ equity turnover (’x25’) suggests that companies which turn over their

capital employed efficiently also tend to turn over their equity effectively. This means

they effectively generate sales relative to both their total capital and their equity.

• ’x24’ and ’x27’ (≈ 0.920):

Interpretation: Companies with a higher capital employed turnover (’x24’) also tend to

have a higher sales to capital employed ratio (’x27’). This underscores the effectiveness

of these companies in utilizing their capital to generate sales.

• ’x25’ and ’x27’ (≈ 0.700):

Interpretation: A strong positive correlation between stockholders’ equity turnover

(’x25’) and sales to capital employed (’x27’) suggests that companies which efficiently

generate sales relative to their equity also tend to do so relative to their total capital.

• ’x31’ and ’x34’ (≈ 0.761):

Interpretation: Companies that have a higher profit before tax relative to their current

liabilities (’x31’) also tend to have a higher net profit relative to their inventory (’x34’).

This indicates not only a strong liquidity position (being able to cover short-term obli-

gations with before-tax profits) but also effective inventory management that leads to

high profitability.

In conclusion, numerous financial ratios, derived from a consistent set of non-ratio vari-

ables, inherently display robust correlations among each other. This is a direct consequence

of sharing common numerators or denominators in their formulations. Such interdependen-

cies are commonplace in financial analysis, leading analysts to often select a subset of ratios

to eliminate redundancy and prevent multicollinearity in financial modelling. This careful se-

lection ensures a more robust and clearer interpretation of a company’s financial health and

performance.

6.3.4 EDA: Correlation Among Variables and Target Variable

This subsection aims to explore the relationships between the dataset’s variables and

the target variable, ’label’, which indicates the financial status of the firms (bankrupt or
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non-bankrupt). Knowing that our predictors our continuous variables, and our target is a bi-

nary one, we analyze Point-Biserial, Spearman, and Kendall correlations [140], [141], [142],

[143], [144].

To delve deeper into our analysis, we not only employed traditional correlation methods

but also integrated advanced techniques such as Mutual Information [145], [146] and Feature

Importance from Tree-Based Models [147], [148], [149]. Our motivation for incorporating

these sophisticated methods stems from a subtle concern: conventional correlation metrics

might not fully capture each variable’s predictive capacity, especially given the dataset’s po-

tential nuances in quality. By broadening our approach, we aimed to more accurately discern

the strength and significance of the relationships within our data.

Brief Explanation of the Correlation Metrics

Our metrics were specifically chosen to provide a comprehensive understanding of both

linear and monotonic relationships, catering to the various characteristics of our dataset.

• Point-Biserial Correlation, is a metric that evaluates the linear relationship between

a continuous variable and a binary variable. Like Pearson, its values span from -1 to 1,

where 1 indicates a perfect positive linear relationship, -1 signifies a perfect negative

linear relationship, and 0 indicates no linear association. It’s especially beneficial for

datasets with one continuous and one binary variable 1, allowing for insights into po-

tential linear associations between them. However, this metric rests on the assumption

of a linear relationship and can be sensitive to outliers.

• Spearman’s Rank Correlation, gauges the strength and direction of monotonic re-

lationships between two variables. Its values, like Pearson, range between -1 and 1.

A score of 1 implies a perfect positive monotonic relationship, -1 indicates a perfect

1Even if we recognize our data as deviating from the expected normality, applying the biserial correlation

allows us to estimate the magnitude of this deviation. In essence, we’re comparing how a metric, which would

traditionally be valid for a normally distributed dataset, contrasts when applied to our actual non-conforming

data. This provides valuable insights into potential distortions and informs the degree of caution needed in

drawing conclusions. Nevertheless, one should always remember that the underlying assumptions of biserial

correlation, such as its susceptibility to outliers and the expectation of a linear relationship, remain in play.

Thus, while it can be an illuminating tool, its interpretations in such contexts demand a heightened sense of

discernment.
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negative monotonic relationship, and 0 signifies no monotonic correlation. Spearman’s

Rank is particularly useful when the relationship between variables is not strictly linear

but is consistent in its direction. Unlike Pearson, it doesn’t assume linearity or that the

data follows a specific distribution.

• Kendall’s Tau, is another rank-based correlation coefficient that assesses the strength

of monotonicity between two variables. Its values typically range between -1 and 1.

While computationally more intensive than Spearman, Kendall’s Tau is less sensitive

to ties in the data. It provides insights into the consistency and direction of relationships,

especially valuable when the dataset has a significant amount of tied ranks.

• Mutual Information, quantifies the amount of information shared between two vari-

ables. Higher values suggest a stronger association, whereas a value of 0 implies no

shared information. Mutual Information is versatile, applicable to variables of any type

(continuous or categorical), and is especially powerful for uncovering complex, non-

linear relationships. It doesn’t make assumptions about the functional form of the re-

lationship between variables.

• Feature Importance from Tree-Based Models, is not a direct correlation measure

but offers insights into the predictive power of variables in the context of a tree-based

model. Higher importance scores indicate that a variable is more influential in predict-

ing the target outcome. This approach is particularly valuable for capturing non-linear

relationships and interactions between predictors. The importance scores are derived

from the structure of the model and how often a predictor is used to split the data.

Correlation Among Non-Ratio Variables and Target Variable

Carrying out themethodsmentioned above resulted in the correlation numbers showcased

in Table 6.3.

Correlation Among Ratio Variables and Target Variable

Similarly, running the correlation models among ratio variables and target variable re-

sulted in Table 6.4.
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Results Interpretation

Based on our analysis, it is clear that most variables display weak correlations with

bankruptcy risk. A handful exhibit moderate correlations, yet this underscores the importance

of exercising caution when considering them as standalone predictors of bankruptcy. For in-

stance, the ’fyear’ variable in the set of financial metrics exhibits a Kendall’s Tau correlation

of approximately -0.29. Similarly, in the second group, ’x35’ has a Kendall’s Tau correlation

of just above 0.29. These values, while statistically significant, do not offer strong predic-

tive power. Our findings suggest that while some financial metrics can provide insights into

bankruptcy risk, their predictive capacities are limited, confirming our suspicions that using

them in more sophisticated models might enhance their predictive capabilities.

Moreover, the discrepancies observed between the Point-Biserial and Spearman correla-

tions further underline the importance of understanding the nature and assumptions of dif-

ferent correlation methods. In general, the Point-Biserial combination with the Spearman

Rank gives additional information about their variables and their underlying characteristics

as, when the Pearson and Spearman values are not much different, our data tends not to have

extreme values (outliers) [140]. Many variables exhibit significant discrepancies between

their Point-Biserial values and corresponding Spearman Rank values. This confirms our pre-

vious observations regarding the variables’ distributions being less than optimal.

Equally vital is the clarity brought about by advanced methods such as Mutual Infor-

mation and Feature Importance derived from Random Forests, which further illuminate the

relationships between variables and the target variable. This becomes particularly evident

when juxtaposed with the Kendall Rank. While the Kendall Rank is often lauded as a top-tier

metric for non-linear data and is regarded as superior among traditional correlation metrics,

our findings suggest otherwise. Although the Kendall Rank seems to underestimate many re-

lationships that the Spearman Rank considered more significant, it also tends to overestimate

correlations for certain variables when compared to the more advanced methods. The dis-

crepancies observed are far from trivial; in some instances, we noted differences that were an

order of magnitude greater, potentially leading to undue confidence in numerous variables.

Furthermore, knowing that the direction of the correlation provides insights into the re-

lationship between the variables and bankruptcy risk (a negative correlation indicates that as

the value of the variable increases, the risk of bankruptcy diminishes, conversely, a positive

correlation means that a rise in the variable’s value is associated with an increased risk of
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bankruptcy) a case is to be made for GDP, where it is generally counterintuitive to observe

that GDP has a positive correlation with the ’label’.

Typically, one might expect that as GDP (a key economic indicator that measures the

overall economic performance and size of a country’s economy) increases, the overall health

of firms within that country would improve, leading to fewer bankruptcies. However, in our

case, it seems that the larger the GDP, the higher the chance of a firm going bankrupt. In the

subsequent section, we explore this bizarre relationship between GDP and ’label’.

The peculiarity of the correlation between ’GDP’ and ’label’

Upon plotting the distribution of GDP values categorized by labels (Figure 6.7), a notable

pattern emerged: firms that went bankrupt had a slightly higher mean and median (306.32×10

9 308.82×109 and 318.94×109) GDP compared to those that remained solvent (306.32×109

and 299.90×109), which aligns with the positive correlation observed between GDP and the

’label’ suggests that, on average, the GDP was marginally higher during periods with more

bankruptcies in our dataset.

Figure 6.7: Distribution of GDP Values for Each Label

This strange finding prompted a more detailed year-by-year analysis. Intriguingly, the

years that recorded the highest GDP values,

• 2007 with a GDP of approximately 318.94× 109

• 2008 with a GDP of approximately 355.87× 109

• 2009 with a GDP of approximately 330.95× 109
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• 2010 with a GDP of approximately 299.90× 109

• 2011 with a GDP of approximately 288.12× 109

, also aligned with the highest instances of bankruptcies,

• 2007 with 57 bankruptcies

• 2008 with 101 bankruptcies

• 2009 with 117 bankruptcies

• 2010 with 95 bankruptcies

• 2011 with 40 bankruptcies

There is a case to be made for the Greek economic landscape post-2008, given the con-

stant decline in GDP that has forced many firms to close. However, when we examine the

distribution of data through the lens of Figure 6.5, we find that the coexistence of GDP’s

highest values with the most bankruptcies is likely a matter of coincidence rather than cau-

sation. This is because it is natural for higher volumes of data (fiscal year values for 2008,

2009, 2010, 2011) to lead to higher instances of bankruptcies. As a result, one should exercise

caution when attempting to draw real-world conclusions, as the data one possesses may not

necessarily reflect the complexities of the real world.

6.3.5 EDA: Hypothesis Testing Among Variables and Target Variable

Examining the correlation for the variables one by one showed weak correlation between

the non-ratio variables and the target variable, as well as the ratio variables and the target

variable. Thus, it would be logical to consider testing what the correlation would be when the

variables of each group are combined, and then see the correlation for each group with the

target variable.

Hypothesis testing is a fundamental approach in statistics used to determine if a result

is statistically significant and not just a mere coincidence. In the context of our correlation

analysis, hypothesis testing aids us in discerning if the observed correlations between our

variables and the target variable are statistically significant or might have occurred by chance.

For each correlation metric and variable under examination, we formulated two hypothe-

ses:
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• Null Hypothesis (H0): There’s no correlation between the independent variable and

the dependent variable (’label’).

• Alternative Hypothesis (Ha): There’s a statistically significant correlation between

the independent variable and the dependent variable (’label’).

When we look at the p-values from the regression summaries and correlation coefficients,

we are essentially testing these hypotheses. A low p-value (typically p < 0.05) would lead us

to reject the null hypothesis in favour of the alternative, indicating a significant relationship.

Conversely, a high p-value would mean that we fail to reject the null hypothesis, suggesting

no significant relationship.

As a result, we run two models, one for each variable group, that explicitly states the

explained variance for said groups.

The method that is used to test the model significance is the Logistic Regression [150],

[151], [152], a method that is considered among the best for binary classification problems.

Correlation Among Non-Ratio Variables and Target Variable

The results from the logit model for non-ratio variables against the ’label’ variable are

written in Table 6.5.

The pseudo R22 value is 0.3350, indicating that the model performs approximately 34%

better than the null model in predicting the label. Moreover, the Log Likelihood Ratio p-value

(LLR p-value) is 2.332e − 223, which indicates that the model is, statistically significant at

a 95% confidence level.

Furthermore, from the p-values of the coefficients, we can determine the significance of

each variable. A common threshold for significance is p < 0.05. Based on this,

Significant Variables (p < 0.05):

• fyear: p-value < 0.001

• receivables: p-value < 0.001

• sales: p-value = 0.041

2McFadden’s pseudo R2 is a measure of the improved fit of the model compared to a model with no pre-

dictors. A value closer to 0 indicates that your model is closer in performance to the null model, while values

closer to 1 (though it rarely gets anywhere near 1) indicate increasing improvement.
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• gross_profit: p-value = 0.010

• capital_employed: p-value < 0.001

• GDP: p-value < 0.001

While the aforementioned factors showed noticeable impacts in our analysis, all other

variables were determined to be statistically insignificant and did not demonstrate a substan-

tial effect on the outcome.

Additionally, in the quest to unravel the intricate nexus between correlation and causation

among the financial variables in focus, the emergence of statistically insignificant predictors

introduces a compelling dimension where it is crucial to recognize that statistical insignifi-

cance does not inherently signify the lack of a substantive real-world relationship. Rather, it

indicates that within the parameters of the available data and the selected model, there isn’t

sufficient evidence to assert the presence of a discernible relationship. Such a scenario might

arise from constrained data sets or extraneous noise masking the genuine effect.

To illustrate, the statistical insignificance of certain variables could spotlight scenarios

where a mere correlation does not denote causation. For example, two variables might exhibit

concurrent movements (correlation), yet it is plausible that neither directly impacts the other.

Alternatively, external variables could exert influence on both, leading to an omitted variable

bias. This seeming insignificance should be heeded as a cautionary indication, spurring a

more exhaustive exploration into the character of the relationships observed.

This is why, given our scientific endeavour to unravel the relationship between correlation

and causality in our dataset, we opt to keep the insignificant variables, as the focus should be

on a holistic understanding of the data and its relationships rather than a narrow emphasis on

statistical significance.

Correlation Among Ratio Variables and Target Variable

Similarly, we test the ratio variables within the context of a logit model and produce the

results printed in Table 6.6.

First, the pseudo R2 value is 0.4329, which means that the model does approximately

43.3% better than the null model when it comes to predicting the label, which is an upturn

from the non-ratio model. Also, the Log Likelihood Ratio p-value is closer to zero3 than
3It’s essential to distinguish between statistical significance and the actual strength or magnitude of an effect
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before (4.85× 10−272), indicating that the model is even more statistically significant.

We once again write the statistical significance state, now using the second variables,

keeping in mind all that we previously discussed

Significant Variables (p < 0.05):

• x1: 0.0360

• x3: 0.0003

• x5: 1.99× 10−8

• x7: 0.0450

• x9: 1.69× 10−5

• x11: 0.0493

• x12: 0.0057

• x15: 0.0005

• x16: 0.0048

• x17: 0.0099

• x19: 9.77× 10−6

• x21: 0.0009

• x22: 0.0129

• x23: 0.0051

• x24: 0.0245

• x27: 1.04× 10−4

(like correlation). A correlation can be statistically significant but very weak. If you have a large sample size,

even tiny, insignificant correlations can be found to be statistically significant. For example, imagine a corre-

lation coefficient r of 0.02 that’s statistically significant. This value is close to 0, indicating a very weak linear

relationship. However, because of the large sample size, the association is found to be statistically significant.

However, in practical terms, this correlation might not be meaningful.
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• x28: 5.37× 10−5

• x30: 0.0044

• x32: 0.0041

• x35: 6.01× 10−82

• x36: 0.0007

Results Interpretation

The primary distinction between the two models lies in their variable composition. While

the first model is built on raw financial metrics, the second utilizes ratios derived from those

metrics. As we mentioned, these ratio variables not only offer a more condensed and inter-

pretable representation of a company’s financial health, but they also provide a level of stan-

dardization, crucial when analyzing firms of varying sizes. Such standardization ensures that

the model’s predictions aren’t unduly influenced by the sheer scale of a company’s financials

but rather by its relative financial health. This operational transformation into standardized

ratioed variables appears beneficial, as the second model’s pseudo R2 value surpasses that

of the first, suggesting superior predictive capability. These ratios, condense nuanced finan-

cial narratives into singular metrics. This enables the model to capture intricate relationships

more effectively than using rawmetrics alone, explaining why the second model outperforms

the first in its predictive prowess.

6.3.6 EDA: Unused Method

Principal Component Analysis (PCA)

PCA, or Principal Component Analysis, is a statistical technique used to simplify the

complexity in high-dimensional data while retaining its essential patterns [153]. By trans-

forming the original data into a set of orthogonal components that capture the most variance,

PCA aids in visualization, reduces dimensionality, and can help in noise filtering. While it’s

a valuable tool for data analysis, it operates under linear assumptions and might prioritize

features with large variances. The resulting components, though valuable for analysis, may

not always have intuitive interpretations.
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To understand the causal relationship of various predictors against the ’label’ variable,

the dataset was primarily subjected to an initial Boxplot analysis and a subsequent in-depth

correlation analysis. PCA (Principal Component Analysis) was not employed and for a good

reason, that reason being its lack of interpretability. While PCA is a powerful tool for di-

mensionality reduction, it achieves this by creating a new set of orthogonal variables (princi-

pal components) that are linear combinations of the original predictors. This transformation,

although effective in capturing variance, radically alters the interpretability of the original

variables. Since our primary objective was to understand the direct influence of these spe-

cific predictors on the ’label’, using PCA would have obscured and complicated these direct

relationships, making our insights less intuitive and more challenging to relate to the original

business context.
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Table 6.1: Financial Ratios

Variable Ratio

Liquidity Ratios

x1 WORKING CAPITAL/TOTAL ASSETS

x2 (CURRENT ASSETS - INVENTORY)/SHORT-TERM LIABILITIES

x3 EQUITY/CAPITAL-EMPLOYED

x4 (CURRENT ASSETS - INVENTORIES - RECEIVABLES)/SHORT-TERM LIABILITIES

x5 CURRENT ASSETS/TOTAL LIABILITIES

x6 CURRENT LIABILITIES/ CURRENT ASSETS

x7 NO-CREDIT INTERVAL IN DAYS

x8 RECEIVABLES/SALES

Profitability Ratios

x9 RETAINED EARNINGS/TOTAL ASSETS

x10 GROSS-PROFIT/TOTAL ASSETS

x11 NET-PROFIT/SALES

x12 EBIT/TOTAL ASSETS

x13 GROSS-PROFIT/SALES

x14 BT/ CAPITAL EMPLOYED

x15 NET-PROFIT/TOTAL ASSETS

Leverage Ratios

x16 BOOK VALUE OF EQUITY/TOTAL LIABILITIES

x17 TOTAL LIABILITIES/TOTAL ASSETS

x18 EQUITY/TOTAL ASSETS

x19 EQUITY/FIXED ASSETS

x20 LONG-TERM LIABILITIES/EQUITY

Activity Ratios

x21 SALES/TOTAL ASSETS

x22 SALES/FIXED ASSETS

x23 SALES/ AVERAGE TOTAL ASSETS

Efficiency Ratios

x24 CAPITAL-EMPLOYED-TURNOVER

x25 STOCKHOLDERS-EQUITY-TURNOVER

x26 SALES/INVENTORY

x27 SALES/CAPITAL EMPLOYED

Growth Ratios

x28 GROWTH RATE OF TOTAL ASSETS

x29 GROWTH RATE OF NET-INCOME

Size Ratios

x30 LOGARITHM OF TOTAL ASSETS

Other Financial Ratios

x31 PROFIT BT/ CURRENT LIABILITIES

x32 GROSS-PROFIT/CURRENT LIABILITIES

x33 (CURRENT ASSETS - INVENTORIES)/LONG-TERM LIABILITIES

x34 NET-PROFIT/INVENTORY

x35 CURRENT LIABILITIES/TOTAL ASSETS

x36 SALES/SHORT-TERM LIABILITIES
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Table 6.2: P-values from Shapiro-Wilk Test

Variable P-Value Variable P-Value

fyear 0.000 x9 0.000

inventory 0.000 x10 0.000

receivables 0.000 x11 0.000

assets 0.000 x12 0.000

equity 0.000 x13 0.000

liabilities 0.000 x14 0.000

sales 0.000 x15 0.000

gross_profit 0.000 x16 0.000

EBIT 0.000 x17 0.000

BT 0.000 x18 0.000

net-income 0.000 x19 0.000

EBITDA 0.000 x20 0.000

capital_employed 0.000 x21 0.000

GDP 0.000 x22 0.000

x1 0.000 x23 0.000

x2 0.000 x24 0.000

x3 0.000 x25 0.000

x4 0.000 x26 0.000

x5 0.000 x27 0.000

x6 0.000 x28 0.000

x7 0.000 x29 0.000

x8 0.000 x30 7.913× 10−19
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Table 6.3: Correlation Analysis among Non-Ratio Variables and Target Variable

Variable Point-Biserial Spearman Kendall’s Tau Mutual Information Feature Importance

fyear -0.451043 -0.307676 -0.285593 0.138962 0.297629

inventory -0.068637 -0.106719 -0.087149 0.024649 0.072758

receivables -0.034923 -0.080731 -0.065924 0.027058 0.043560

assets -0.046393 -0.172319 -0.140713 0.031140 0.045162

equity -0.045974 -0.291770 -0.238254 0.057522 0.076513

liabilities -0.041592 -0.093965 -0.076730 0.023723 0.032276

sales -0.043489 -0.138686 -0.113249 0.025320 0.041947

gross_profit -0.061030 -0.128610 -0.105021 0.017789 0.032653

EBIT -0.028578 -0.109845 -0.089698 0.009302 0.031780

BT -0.022015 -0.121239 -0.099002 0.021888 0.027733

net-income -0.020544 -0.109497 -0.089414 0.010756 0.026394

EBITDA -0.046050 -0.211478 -0.172689 0.026711 0.046469

capital_employed -0.048158 -0.290893 -0.237538 0.074518 0.121035

GDP 0.036084 0.078571 0.072932 0.143479 0.104091
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Table 6.4: Correlation Analysis among Ratio Variables and Target Variable

Metric Point-Biserial Spearman Kendall Mutual Information Feature Importance

x1 -0.194939 -0.154050 -0.125794 0.026723 0.018050

x2 -0.038635 -0.136256 -0.111264 0.017259 0.010911

x3 0.010065 0.074306 0.060679 0.062034 0.050054

x4 -0.026360 -0.148601 -0.121345 0.017102 0.015529

x5 -0.039620 -0.044105 -0.036015 0.000000 0.020194

x6 -0.050647 -0.187182 -0.152849 0.021009 0.017796

x7 -0.057290 -0.129719 -0.105926 0.012162 0.011245

x8 0.053245 0.064071 0.052319 0.021805 0.013566

x9 -0.202394 -0.141485 -0.116177 0.028060 0.020038

x10 0.040904 0.025370 0.020717 0.017887 0.008317

x11 -0.111648 -0.122931 -0.100383 0.013405 0.007981

x12 -0.157971 -0.076174 -0.062202 0.026571 0.011903

x13 -0.045590 0.006650 0.005430 0.016507 0.008939

x14 -0.002797 -0.031891 -0.026042 0.029336 0.015228

x15 -0.203002 -0.139780 -0.114142 0.022707 0.013369

x16 -0.109088 -0.277472 -0.226579 0.050838 0.033444

x17 0.242674 0.278868 0.227719 0.046214 0.029050

x18 -0.238440 -0.276446 -0.225741 0.049428 0.021160

x19 0.048557 -0.044057 -0.035976 0.031017 0.022866

x20 -0.009666 -0.127831 -0.104436 0.085333 0.077650

x21 0.056376 0.047918 0.039129 0.006996 0.008777

x22 0.092799 0.144899 0.118322 0.031672 0.012072

x23 0.051078 0.043795 0.035762 0.005462 0.008967

x24 0.014407 0.129928 0.106097 0.046645 0.014570

x25 -0.002896 0.120050 0.098031 0.037008 0.011158

x26 -0.015600 -0.102530 -0.083731 0.032131 0.038391

x27 0.123811 0.121824 0.099479 0.046121 0.020214

x28 -0.004549 0.010595 0.008652 0.025141 0.016239

x29 -0.004744 -0.013104 -0.010700 0.008431 0.006571

x30 -0.136551 -0.129018 -0.105354 0.024154 0.015911

x31 -0.015735 -0.141755 -0.115755 0.006678 0.008241

x32 -0.015281 -0.149534 -0.122107 0.019349 0.009284

x33 -0.008735 -0.111269 -0.090905 0.081480 0.096498

x34 0.003806 -0.095087 -0.077652 0.042193 0.008140

x35 0.454503 0.349188 0.285141 0.120446 0.282151

x36 -0.038072 -0.213824 -0.174605 0.026416 0.015528
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Description Value

Dep. Variable label

No. Observations 4782

Model Logit

Df Residuals 4767

Method MLE

Df Model 14

Pseudo R-squ. 0.3350

Time 19:43:28

Log-Likelihood -1079.4

Converged True

LL-Null -1623.3

Covariance Type nonrobust

LLR p-value 2.332e-223

Table 6.5: Logit Regression Results for Non-Ratio Variables

Dep. Variable label

No. Observations 4782

Model Logit

Df Residuals 4745

Method MLE

Df Model 36

Pseudo R-squ. 0.4329

Time 19:43:52

Log-Likelihood -920.59

Converged True

LL-Null -1623.3

Covariance Type nonrobust

LLR p-value 4.850e-272

Table 6.6: Logit Regression Results for Ratio Variables
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Chapter 7

Implementation: Causal and Bayesian

Approaches in Bankruptcy Analysis

In this chapter, we delve into applying causal inference, enhanced by Bayesian tech-

niques, to examine the intricate landscape of bankruptcy within Greek SMEs. We strive

to decipher the complex causal relationships pivotal to bankruptcy events using our Greek

SMEs dataset. We begin by contrasting a custom model with the ’bnlearn’ package, aiming

to elucidate the interplay between correlation and causation in our dataset. Proceeding fur-

ther, through parameter learning, we draw inferences on the nuances of the most pronounced

causal relationships and their interrelations. Subsequently, we devise an innovative strategy

to address the confounding factors present in our dataset. After mitigating these confounders,

we revisit the causal analysis from the ground up, culminating in a detailed presentation of

our results.

7.1 Bayesian Networks: Bridging Correlation and Causa-

tion

To examine the interplay between correlation and causation within our dataset, we turned

to Bayesian Networks for insights. Initially, we constructed a Bayesian network based on

a correlation-centric methodology. In parallel, we utilised ’bnlearn’ to craft a network to

identify potential causal relationships. It’s important to note, however, that while ’bnlearn’

provides a stronger indication of causal relationships than mere correlation, it does not guar-

antee true causal relationships. If ’bnlearn’ does not identify a relationship as causal despite

89
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a correlation being present, it could possibly suggest that for that specific relationship, corre-

lation does not imply causation. By comparing these two networks, one rooted in correlation

and the other offering insights into potential causation, we aimed to elucidate the intricate

correlation-causation dynamic present in our dataset.

Moreover, for the subsequent causal analysis, we deliberately chose to analyse the dataset

in its entirety, rather than segmenting the variables based on non-ratio and ratio distinctions,

even when the latter are operationally derived, as detailed in our preceding chapters. This

decision was based on the findings from Schisterman et al.’s research on Schisterman et al.’s

research on ”Collinearity and causal diagrams”, [154]. Their investigation underscored that

while high correlation between variables can lead to inflated standard errors, the causal re-

lationship between these variables is paramount in ensuring valid conclusions. Hence, the

primary focus should be on the interplay of causal relationships when deciding on includ-

ing covariates in regression formulations. It is worth noting that the robustness of any study

ultimately depends on the validity of the assumptions underpinning its conclusions. For in-

stance, an inaccurately constructed Directed Acyclic Graph (DAG) could result in misleading

conclusions, irrespective of the challenges posed by collinearity.

7.1.1 Building a Custom Bayesian Network

Inspired by themethodology presented in ”Using Bayesian Networks for Bankruptcy Pre-

diction: Empirical Evidence from Iranian Companies” byArezoo Aghaie and Ali Saeedi [99],

our analysis aims to identify the predictors influencing a firm’s bankruptcy status. Recogniz-

ing the non-normal nature of the data, we once again useKendall’s rank, for our computations.

Our steps involve,

1. Using the Kendall’s Tau correlations among all potential predictors and the firm’s

bankruptcy status.

2. Identifying first-order variables, whichwere those directly correlatedwith the bankruptcy

status.

3. For each first-order variable, using Kendall’s rank again, determine the second-order

variables. These are predictors significantly correlated with first-order variables, but

not directly with the bankruptcy status.
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Initially, usingKendall’s Tau correlations, we calculate the first-order variables that have a

significant correlation with the firm’s bankruptcy status (using an absolute correlation thresh-

old of 0.21) are, fyear, equity, capital_employed, x16, x17, x18, x35.

Furthermore, to identify second-order variables for each first-order variable, we useKendall’s

Tau correlations between the first-order variable and all other predictors. Once again, any pre-

dictor with an absolute correlation exceeding a threshold of 0.2, and not directly correlated

with bankruptcy status, was considered a second-order variable. These variables indirectly

influence bankruptcy through their significant association with first-order variables.

Nevertheless, we decided to raise the lower threshold to 0.4, focusing on retaining the

stronger and more significant relationships. This not only simplifies our model or represen-

tation, but also helps filter out noise, ensuring that the relationships we consider are more

likely to be impactful and meaningful.

Moreover, we set an upper correlation threshold of 0.9, which should not be surpassed,

we’re eliminating relationships that are so closely tied that they generally are mathematical

artifacts rather than meaningful insights. This is especially relevant for ratio variables. If two

ratio variables share common elements in their numerators or denominators, they can exhibit

a high correlation not due to a true underlying causal relationship but merely due to their

shared mathematical structure. Removing such variables prevents misleading interpretations

and focuses the analysis on more unique and informative relationships.

Our pre and post removal results are,

• fyear:

– Pre-Threshold (0.2): GDP

– Post-Threshold (0.4-0.9): GDP

• x35:

– Pre-Threshold (0.2): equity, capital_employed, x2, x4, x6, x7, x10, x16, x17, x18,

x21, x22, x23, x24, x25, x27, x32, x33, x36

– Post-Threshold (0.4-0.9): x16, x17, x18, x22, x24, x25, x27

• equity:
1A correlation threshold of 0.2 is generally not considered substantial. However, given the magnitude of the

correlations in this dataset, we consider it adequate.
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– Pre-Threshold (0.2): inventory, receivables, assets, liabilities, sales, gross_profit,

EBIT, EBITDA, capital_employed, x16, x17, x18, x24, x25, x27, x30, x35

– Post-Threshold (0.4-0.9): assets, liabilities, sales, EBITDA, capital_employed,

x30

• capital_employed:

– Pre-Threshold (0.2): inventory, receivables, assets, equity, liabilities, sales, gross_profit,

EBIT, EBITDA, x22, x24, x27, x30, x35

– Post-Threshold (0.4-0.9): receivables, assets, equity, liabilities, sales, gross_profit,

EBITDA, x30

• x17:

– Pre-Threshold (0.2): equity, liabilities, x1, x2, x3, x4, x5, x6, x7, x16, x18, x19,

x20, x21, x22, x23, x24, x25, x27, x35, x36

– Post-Threshold (0.4-0.9): x3, x25, x35

• x16:

– Pre-Threshold (0.2): equity, liabilities, x1, x2, x3, x4, x5, x6, x7, x17, x18, x19,

x20, x21, x22, x23, x24, x25, x27, x35, x36

– Post-Threshold (0.4-0.9): x3, x25, x35

• x18:

– Pre-Threshold (0.2): equity, liabilities, x1, x2, x3, x4, x5, x6, x7, x16, x17, x19,

x20, x21, x22, x23, x24, x25, x27, x35, x36

– Post-Threshold (0.4-0.9): x3, x25, x35

Finally, using ’networkx’, a popular library for plotting Directed Acyclic Graphs (DAGs),

we plot the relationships. The resulting DAG is showcased in Figure 7.1 below.

7.2 Structure learning

We undertook structure learning, a process of constructing a DAG, employing all algo-

rithms available in bnlearn to assess the outcomes.
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Figure 7.1: Custom Correlation-Based DAG

7.2.1 bnlearn Deployment

The Bayesian Neural Network model is implemented using the bnlearn Python package,

which we thoroughly explained in Chapter 3. The package implements five key functions,

• bn.structure_learning.fit() Structure learning

• bn.independence_test(model, df, test=’chi_square’, prune=True)Compute edge strength

with the test statistic

• bn.parameter_learning.fit() Parameter learning

• bn.inference.fit() Inference

• bn.plot() Plot graph

Our initial exploration was with the ExhaustiveSearch approach. This algorithm evalu-

ates every conceivable DAG and identifies the highest-scoring one [155]. We refrained from

applying this method to our data set, since it was designed for compact networks with a max-

imum of 15 nodes.

Our subsequent test was with the HillClimbSearch algorithm. This employs a greedy

local search, commencing from a default disconnected DAG, termed ’start’. The process
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iteratively modifies individual edges to optimise the score until a local maximum is identified

[155]. Intriguingly, we saw the identical DAG meaning that even in the unpruned DAG all

the edges were significant. Our pruning process involves computing edge strengths via the

chi-square independence test and eliminating non-significant edges. The refined tree features

three nodes: ’GDP’, ’label’, and ’fyear’.

A prominent observation was the apparent lack of a robust causal link between any en-

dogenous variables and the ’label’, which represents bankruptcy, in the dataset. The causal

relationships are as follows: the ’label’ variable is caused by ’fyear’, which in turn is caused

by ’GDP’ as seen in Figure 7.2, which is exactly like our custom dataset.

Figure 7.2: DAG with pruned edges created with Hillclimbsearch algorithm

We also employed the Chow-Liu method as our third approach. The Chow-Liu Algo-

rithm is a tree search-based approach that finds the maximum-likelihood tree structure where

each node has at most one parent. The complexity can be limited by restricting to tree struc-

tures which makes this approach very fast to determine the DAG using large datasets (aka

with many variables) but requires setting a root node[155]. As with our previous models, we

executed a pruning process. The discerned causal chain suggests that the ’label’ variable is

influenced by ’fyear’, which, in turn, is affected by ’GDP’, as depicted in Figure 7.3.

The results presented conflict since ’fyear’ and ’GDP’ have switched places. The impli-

cations and meaning behind this switch will be delved into further in 7.2.3.

The final algorithm we employed was the Naive Bayes. Naive Bayes represents a specific
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Figure 7.3: DAG with pruned edges created with Chow-liu algorithm

instance of a Bayesian model, characterised by edges only from feature variables to the de-

pendent variable[155]. Post-pruning, the resulting DAG is more intricate than those derived

from the previous two models. Notably, the ’label’ variable, which is of prime interest, has

connections to five nodes: ’fyear’, ’GDP’, ’x9’, ’x20’ and ’x33’, as depicted in figure7.4.

However, the associations with variables ’x9’, ’x20’ and ’x33’ are less significant, implying

a weaker causal relationship with the ’label’.

In the exploration of endogenous causally significant variables, three prominent ratios

emerge, x9 (RETAINED EARNINGS / TOTAL ASSETS), x20 (LONG-TERM LIABILI-

TIES / EQUITY), x33 ((CURRENT ASSETS - INVENTORIES) / LONG-TERM LIABIL-

ITIES). Intriguingly, each of these variables embodies components of both liabilities and

equity, drawing a parallel to the foundational accounting equation wherein total assets are

the cumulative sum of liabilities and equity (Total Assets = Equity + Liabilities). This obser-

vation accentuates the pivotal role that ’liabilities’ and ’equity’ have a causally significant

relationship with the outcome, ’label’.

Nevertheless, the influence exerted by these endogenous ratios is not homogenously dis-

tributed across all models, especially when contrasted against potent exogenous determinants

such as ’GDP’ and ’fyear’. A critical examination of discrepancies in DAGs derived from al-

ternative methodologies instead of the extant method suggests a potential shortcoming of the

NaiveBayes technique. This method tends to overemphasise node interrelationships due to
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Figure 7.4: DAG with pruned edges created with Naive Bayes algorithm

its inherent inability to account for dependencies within the dataset, predicated on the pre-

sumption of predictor independence.

In our comprehensive exploration of Bayesian methodologies, as facilitated by the bn-

learn Python package, we sought to unravel the intricate web of causal relationships un-

derlying our dataset. We attempted to clarify the essence of causation from mere correla-

tion through the systematic implementation of algorithms, including hillclimbersearch to the

Chow-Liu method and finally the Naive Bayes. Of particular note were the causal relation-

ships among ’GDP’, ’fyear’, and the ’label’ variable, which epitomises bankruptcy. Although,

each algorithm brought forth a unique perspective, inherent ambiguities make it more diffi-

cult to carry out a cohesive interpretation.

Our findings establish a compelling foundation; they underscore the causal relationships

that external factors maintain with the bankruptcy status of a company. The results suggest

that during years of economic downturn, the broader economic climate—reflected by the

GDP factor—can directly lead certain companies to experience bankruptcy.

7.2.2 Inference on the Correlation-Causation Relationship

The observation that only two exogenous variables emerge as candidates for causal rela-

tionships prompts us to contemplate the broader implications for our dataset. Specifically, it
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raises the possibility that, for the majority of variables, correlation might not necessarily im-

ply causation. Yet, it is crucial to tread with caution. While bnlearn offers valuable insights,

its determinations are not absolute. There exist inherent conditions and assumptions under-

pinning its outputs. As such, what we truly garner from this exercise is not definitive proof,

but rather an enriched layer of probabilistic information concerning the relationships within

our dataset.

7.2.3 ’fyear’ as a Confounding Factor

In our implementation, the variable ’fyear’ is evidenced from the examples to influence a

firm’s bankruptcy. We can not understand if it directly affects ’label’ or through the variable

’GDP but the causal relation is clear. However, if viewed purely theoretically, the year in

which a firm files for bankruptcy shouldn’t affect its insolvency in any conceivable manner;

such a notion seems irrational. Consequently, one might suspect that ’fyear’ may be a con-

founding variable, creating a backdoor path indicative of a false causal relationship, as it is

plotted in the figure 7.5.

Figure 7.5: Our DAG versus the true association between ’fyear’ and ’label’
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GDP fyear

153830000000 2002

201920000000 2003

240850000000 2004

248010000000 2005

273560000000 2006

318940000000 2007

355870000000 2008

330950000000 2009

299900000000 2010

288120000000 2011

245810000000 2012

239930000000 2013

237410000000 2014

196690000000 2015

Table 7.1: GDP and Fiscal Year

7.2.4 Effectiveness of Causation over Correlation

Delving deeper into the relationship between fiscal year and Gross Domestic Product,

every value of ’fyear’ corresponds precisely to a specific value of GDP, indicating a strong

relationship between these variables as seen in Table 7.1.

In practical terms, they can be used interchangeably. However, without recognising these

causal relationships, relying solely on correlation might not fully capture the depth of the link

between ’fyear’ and ’GDP’. This becomes particularly clear when juxtaposing this under-

standing with the visual representation of ’GDP’ plotted against ’fyear’ (Figure 6.4). If such

a tight relationship were less intuitive in a scenario involving different variables, merely rely-

ing on correlation could lead us to overlook it. In summary, in this specific case, correlation

alone cannot convey the true interchangeability of the two variables.
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fyear label(0) label(1)

2002 0.007484 0.040311

2015 0.007484 0.036351

2003 0.007484 0.042291

2014 0.007484 0.036351

2013 0.007484 0.036351

2004 0.007484 0.051202

2012 0.007484 0.047242

2005 0.007484 0.059123

2006 0.007484 0.068034

2011 0.305892 0.074965

2010 0.305892 0.129420

2007 0.007484 0.091796

2009 0.305892 0.151202

2008 0.007484 0.135361

Table 7.2: CPDs of ’GDP’ and ’label’ with ’fyear’ as Index

7.3 Parameter Learning

Parameter learning involves estimating the values of Conditional Probability Distribu-

tions (CPDs). Conditional Probability Distributions (CPD) quantitatively describe the statis-

tical relationship between each node and its parents and can be computed using Parameter

Learning [29].

In our study, we opted for the Hillclimbsearch algorithm for parameter learning, primarily

because of its unmatched precision in identifying inter-variable relationships.What’s remark-

able is its ability to discern the desired outcome even when we have not explicitly defined it.

This not only underscores the algorithm’s efficacy in pinpointing both the outcome and the

inherent relationships, but also reinforces the authenticity of the data. The results corroborate

our initial intuitions, further testifying to the algorithm’s robustness and reliability.

By executing the parameter learning function of bnlearn, we calculate all the Conditional

Probabilities of the relationships presented in Figure 7.2 and print the results of ’GDP’ in

Table 7.2.
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In this table, we have interchanged the ’GDP’ values with their corresponding ’fyear’

values. However, this does not represent the CPD of the ’fyear’ and ’label’. The interchange

was done solely to enhance the table’s readability and comprehension. From the table, we

observe that the only years in which a company had a higher probability of not filing for

bankruptcy are 2009, 2010, and 2011. This observation does not match up with the general

economic state of Greece, suggesting that in all other years, a companywas significantlymore

likely to go bankrupt. Also, it is puzzling to note that during the years 2009 to 2011, Greece

was in the midst of a financial crisis. Those discrepancies prompt us to further investigate

why our data do not align with the broader economic climate in Greece. After plotting the

histogram for the ’fyear’ variable, we recognized a bias in the labels concerning the ’fyear’

as seen in figure 7.6.

Figure 7.6: Histogram of the ’fyear’ values

From 2002 to 2006 and 2012 to 2015, we only have variables labelled 1. Interestingly, our

data shows a paradox during the ’fyear’ 2009. While there is a pronounced surge in instances

labelled as 1, indicating a specific trend or outcome, there is also a sudden burst of instances

labelled as 0 which in previous years was zero. This coexistence of both labels in such a

critical year creates inconsistencies in the data categorisation process.

Those as mentioned above are indicative of existing bias when the dataset was created,

making our dataset challenging for establishing causal relationships. Consequently, our data

do not accurately reflect the real economy of Greece. It does not serve as a representative

sample or have significance for analyzing the entire time period. Yet, there is an inherent

uniqueness to our data. We can derive insights specific to our dataset and draw localized

conclusions, which hold value as a distinct case study.
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7.4 Establishing the Treatment Effect

From a practical perspective, our dataset presents significant challenges for conducting

a causal analysis of Greek SMEs. The data collection process was inherently biased, com-

promising the dataset’s validity. As a result, drawing any logical conclusions from this data

becomes an untenable task.

Given these constraints, a crucial question emerges: How can we effectively conduct an

Average Treatment Effect analysis (ATE) in this context? If the data had been more compre-

hensive and robust, it would have served as a solid foundation for examining the financial

consequences of the Greek crisis in 2012. Such an investigation would have shed light on the

extent and nature of its effects on Greek SMEs during that turbulent time. Perhaps we could

have analysed the impact of a significant event during the stable years of 2009-2011, but no

such pivotal event occurred in that period. While examining various firms and establishing

multiple treatment studies might seem like a solution, the available data for each firm are

limited, especially when compared to the dataset as a whole.

Embracing our dataset’s inherent flaws and characteristics is the key to devising a suc-

cessful analytical approach. The first step in this direction is acknowledging and accepting

the notable label imbalance spanning. This acknowledgement propels us to craft a hypotheti-

cal case study, imagining an event responsible for such a significant imbalance. Intriguingly,

this event could be the inherent bias under which the dataset was constructed. We call this

bias, ”Construction Bias”.

In our scenario, such an event is evident due to its pronounced impact on bankruptcy out-

comes, as demonstrated by the conditional probabilities in our parameter learning procedure.

However, consider a different scenario where the effects on the outcomes are more subtle,

almost imperceptible. In such cases, the application of ATE (Average Treatment Effect) be-

comes invaluable. It holds the potential to unearth the existence of such impactful events,

providing insights that would otherwise remain concealed.
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7.5 Uncovering theEffect ofConstructionBiasUsing causal-

inference

In our analytical journey to identify potential biases inherent in the dataset’s construc-

tion, we turned our attention to the ’fyear’ variable. As previously highlighted, this variable

showcases a pronounced relationship with the label.

7.5.1 ’GDP’ as a Confounding Factor

We’ve previously identified a pronounced confounding relationship between the exoge-

nous variables ’GDP’, ’fyear’, and ’label’. Earlier sections discussed the contextual logic

behind ’fyear’ potentially acting as a confounder. However, delving into the issue of dataset

Construction Bias reveals another dimension. The decision to exclusively include bankrupt

firms for specific years has inadvertently bestowed significant predictive power upon ’fyear’.

This skewed distribution of label values across fiscal years is not a random occurrence, but a

direct consequence of choices made during dataset creation. This prominence of ’fyear’ as a

predictive variable is further corroborated by specific Bayesian models we’ve examined.

Implementation

To further understand the nature of this bias, we introduced a new variable named ’bias’.

In this variable, we labelled the years 2002-2008 and 2012-2015—where the ’label’ consis-

tently displays a value of 1—as biased, assigning them a value of 1. In contrast, the years

2009-2011, which are not indicative of such , which did not follow this trend, were marked

with a value of 0, indicating their potential lack of bias.

Our analysis, we employed the ’CausalModel()’ function from the ’causalinference’ li-

brary. We designated ’label’ as the outcome variable for this model, while ’bias’ was used

to represent the treatment. All other variables, except for ’fyear’, were incorporated as co-

variates. The outcomes derived from this modelling exercise will be detailed in the following

bulleted structure.

• ATE (Average Treatment Effect)

Estimate (Est.): The estimated ATE is 0.921. This suggests that, on average, the treat-

ment increases the outcome by 0.921 units compared to not receiving the treatment
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(while controlling for the covariates).

Standard Error (S.e.): The standard error of the ATE is 0.083, quantifying the uncer-

tainty associated with the estimate.

z-value: The z-value for the ATE is 11.091. This high value indicates a statistically

significant difference.

P-value (P>|z|): The p-value for the ATE is 0.000, below the conventional significance

level of 0.05, signifying that the treatment effect is statistically significant.

Confidence Interval ([95% Conf. int.]): The 95% confidence interval for the ATE is

[0.758, 1.084]. As this interval is entirely above 0, it further affirms the statistical sig-

nificance of the treatment effect.

• ATC (Average Treatment Effect on the Controls)

Estimate (Est.): The estimated ATC is 0.944. This indicates that, on average, control

units would experience an increase in the outcome of 0.944 units if they received the

treatment.

Standard Error (S.e.): The standard error of the ATC is 0.087.

z-value: The z-value for the ATC is 10.838.

P-value (P>|z|): The p-value for the ATC is 0.000, further confirming its statistical

significance.

Confidence Interval ([95% Conf. int.]): The 95% confidence interval for the ATC is

[0.774, 1.115]

• ATT (Average Treatment Effect on the Treated)

Estimate (Est.): The estimated ATT is 0.516. This denotes that those who received the

treatment experienced an average increase in the outcome of 0.516 units compared to

their outcome would have been had they not received the treatment.

Standard Error (S.e.): The standard error of the ATT is 0.037.

z-value: The z-value for the ATT is 14.011.

P-value (P>|z|): The p-value of the ATT is 0.000, which solidifies its statistical signif-

icance.
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Confidence Interval ([95% Conf. int.]): The 95% confidence interval for the ATT is

[0.443, 0.588].

7.5.2 Filtering Out the Construction Bias

From the previous section, we determined the presence of Construction Bias by quantify-

ing it using the Average Treatment Effect. This naturally leads to the question: What would

the causal dynamics look like without Construction Bias?

To simulate the absence of Construction Bias, we removed all dataset instances that have

’fyear’ values with a 100% dominance of ’label’=1 values. We then conducted the DAG

analysis again using the Hillclimbsearch algorithm. This revealed ’GDP’ as the sole strong

causal relationship, as depicted in Figure 7.7 below.

Figure 7.7: ’GDP’ as the sole significant relationship

With our data removal, we eliminate the subtlety surrounding which variable, ’GDP’ or

’fyear’, acts as the confounder. More critically, we lose insight into why this happens, which

is, of course, attributable to Construction Bias.

We validate further by running a parameter learning on the model, which resulted in the

CPDs in Table (7.3).

Based on the CPDs produced, we observe a paradox: once again, larger GDP values are

associated with a higher probability of bankruptcy.
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label label(0) label(1)

2011 0.33333333333333337 0.27482269503546103

2010 0.33333333333333337 0.3479609929078014

2009 0.33333333333333337 0.3772163120567376

Table 7.3: CPDs of ’GDP’ and ’label’ with ’fyear’ as Index, post Construction Bias removal

To address this concern, we refer to Figure 7.6. Here, we note an imbalance between

’label’ values of 0 and 1. Specifically, the count of ’label’=1 has decreased over the years,

which correlates with the declining probabilities mentioned earlier.

We balanced the dataset for each ’fyear’ value as a corrective measure, ensuring equal

representation for both ’label’=0 and ’label’=1. Subsequently, we reran the DAG creation

algorithms using ’bnlearn’.

Surprisingly, the DAG generation algorithm yielded empty plots (Figure 7.8). This indi-

cates that no relationships were deemed sufficiently robust to be included in the diagram.

Figure 7.8: DAG Results for Balanced Dataset

While this outcome initially appeared counterintuitive, a subsequent Kendall Rank Cor-

relation on the balanced dataset still suggested potential statistically significant relationships.

The powerful variable relationships in the dataset, where all relationships are relatively in-

significant, are indicators of bias.

7.5.3 Assessing the Efficacy of Addressing Construction Bias

In this section, we present the efficacy of our proposed debiasing technique. We utilize

three distinct datasets and employ the XGBoost [156] algorithm to evaluate their performance

in predicting bankruptcy. Detailed descriptions of each dataset are provided in the ensuing

subsections. Notably, all datasets were downsampled to contain 504 entries, the maximum

row count permissible by our debiasing approach.
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Downsampled Dataset

This dataset was derived by downsampling the primary dataset to 504 entries. During this

process, it was essential to preserve the original distribution of the labels, i.e., label=1 and

label=0. We first determined the proportions of these labels in the primary dataset. Subse-

quently, we sampled instances for each label based on these proportions to form the down-

sampled dataset.

Random Dataset

The creation of this dataset aimed to achieve an equal distribution of both labels, eliminat-

ing bias. Instances were randomly selected from the primary dataset. The number of samples

chosen for each label was dictated by the lesser count of the two labels in the primary dataset.

Consequently, this strategy assured equal representation for both labels. The final dataset size

was precisely double the count of the less prevalent label from the primary dataset.

Debiased Dataset

This dataset was meticulously curated by selecting rows from the primary dataset that

had fyear values of 2009, 2010, and 2011. For each of these years, an equivalent number

of instances for both label=1 and label=0 were included. This strategy ensured a balanced

representation of both labels for each year in the dataset. Consequently, any inherent bias in

the primary dataset favouring a particular label for a specific year was mitigated.

7.5.4 Analysis of Results

Our primary objective is to evaluate the capability of predicting label 1 (bankrupt firms)

relative to label 0. The performance metrics are presented in the table below.

From the table, it is evident that the ”Construction Bias-Free Dataset” offers the high-

est precision for label 1 at 95.71% and a commendable recall of 90.54%. This signifies its

superior accuracy in predicting bankrupt firms.

To ascertain the bias favouring label 0 over label 1, we compare the recall metrics for

both labels. The ”Original Dataset” has a recall disparity of 21.31% between the two labels,

suggesting a pronounced bias towards label 0. Contrastingly, the ”Construction Bias-Free

Dataset” narrows this difference to a mere 5.61%, indicating a substantial reduction in bias.
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Metric
Dataset

Original Without Bias Without Construc-

tion Bias

Precision for label=0 97.06% 93.59% 91.46%

Recall for label=0 97.78% 93.59% 96.15%

F1-score for label=0 97.42% 93.59% 93.75%

Precision for label=1 81.25% 93.24% 95.71%

Recall for label=1 76.47% 93.24% 90.54%

F1-score for label=1 78.79% 93.24% 93.06%

Upon assessing the metrics across the datasets, we find that the model trained on the

”Bias-Free Dataset” emerges as the most effective in predicting label 1, while simultane-

ously minimizing bias. For precision of label 1, the ”Original Dataset” stands at 81.25%,

the ”Random Sampling Dataset” at 93.24%, and the ”Bias-Free Dataset” leads at 95.71%.

When predicting a firm as bankrupt (label 1), the model utilizing the ”Construction Bias-

Free Dataset” is often correct.

For recall of label 1, the values are 76.47% for the ”Original Dataset”, 93.24% for the

”Random Sampling Dataset”, and 90.54% for the ”Bias-Free Dataset”. Though the ”Random

Sampling Dataset” model slightly outperforms in recall for label 1, the difference is negligi-

ble. Given the paramount importance of precision (especially for accurately predicting label

1), the ”Construction Bias-Free Dataset” model remains exemplary due to its unparalleled

precision.

Regarding bias assessment, the ”Original Dataset” exhibits a recall divergence of 21.31%

between the two labels, highlighting a marked bias towards label 0. Conversely, the ”Bias-

Free Dataset” trims this difference to just 5.61%, indicating a noteworthy bias reduction.

In summation, the ”Random Sampling Dataset” model showcases commendable perfor-

mance; however, the model based on the ”Construction Bias-Free Dataset” strikes an opti-

mal balance between precision for label 1 and bias mitigation, making it the most favourable

model for predicting label 1 while accounting for bias.
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Chapter 8

Conclusion

In financial stability, bankruptcy prediction models serve as invaluable tools that offer

firms early warnings before encountering financial distress. This thesis delves into imple-

menting causal machine learning algorithms and models rooted in Bayesian inference. We

aimed to discern the factors prompting firms in Greece to file for bankruptcy.

This concluding chapter aims to encapsulate the salient findings, challenges, and innova-

tive methodologies introduced throughout our research. We delve into the unique nature of

our dataset, the pioneering approach we crafted in the face of scant literature, and the techni-

cal hurdles encountered in our computational endeavours. Furthermore, we touch upon this

study’s future directions, emphasizing the potential enhancements and broader implications

for financial causality.

8.1 Fundamental Discoveries

Although our research initially focused on employing causalmodels to understand bankruptcy

intricacies in Greek SMEs, it underwent significant evolution due to unforeseen data-related

challenges. Despite these hurdles, our innovative and adaptive approach led to crucial in-

sights. Our initial analyses unveiled pronounced and unexpected biases in the dataset.

Specifically, we introduced a novel term, ”Construction Bias,” for quantifying the bias

present in the dataset through causal inference. This bias, identified during the dataset con-

struction phase, obscured genuine relationships between variables and undermined the relia-

bility of conclusions.

Diligently selecting instances from years free of overt biases and ensuring balanced rep-
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resentation for both outcome labels mitigated this construction bias. This careful approach to

data selection and analysis resulted in the training of models on a de-biased dataset, leading

to a substantial enhancement in performance.

The models demonstrated a remarkable precision of 95.71% in predicting bankruptcies,

highlighting the essential role of addressing and mitigating biases for achieving reliable and

robust analytical outcomes. This research provides a deeper understanding of bankruptcy in

Greek SMEs and emphasizes the importance of data handling and bias mitigation in empirical

research.

8.2 Limitations

In our endeavour to uncover the causality behind Greek SMEs bankruptcy, we faced some

critical issues, which can be categorized into two main categories.

8.2.1 Dataset Challenges

As showcased by both the Exploratory Data Analysis (EDA) and the Causal Analysis

conducted, our model does not seem to be the optimal tool for decoding the bankruptcy fac-

tors specific to the Greekmarket. The dataset at our disposal has a limited number of instances

from a consistent time frame, with a substantial amount of data being chronologically dis-

persed. A larger labelled dataset, and a more balanced one, would have enabled us to draw

more expansive and consistent conclusions.

A direct result of those issues mentioned above was that the causal analysis in our re-

search did not have a financial character, as there was significant bias in the dataset. This

bias manifested in variable relationships that were much stronger than those among other

variables. These relationships overshadowed the true significance of other variables, pre-

venting probabilistic models from capturing the truly important ones and thus clouding our

analysis. However, this established that one should be wary of very strong relationships in a

dataset that might otherwise contain variables of lesser significance.

8.2.2 Causal Bankruptcy Prediction Challenges & Literature Gaps

Our data presented a one-of-a-kind challenge, primarily due to its nature and the extensive

bias it contained. What made our quest even more daunting was the scarce literature and
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implementations on Causal-Bayesian inference tailored for compromised financial data.

We extensively perused literature on Feature Importance and Selection Bias. Still, the

nuanced discussions on Causal-Bayesian Structures truly illuminated our path. Drawing in-

spiration from these sources, we crafted a bespoke approach to navigate the unique challenges

of our dataset, ensuring a robust causal analysis that was rare in its application and innovative

in its methodology.

Issues with Utilised Libraries

During this thesis, we encountered significant technical challenges in implementing our

experiments. While numerous libraries are available for causal and Bayesian inference, many

are not widely adopted, resulting in limited online resources. For most of these libraries, we

found scant information beyond the documentation provided by the authors. This lack of

resources hindered our progress, as we had to experiment with multiple packages, only to

discover that some did not function as anticipated.

Specifically, we dismissed the use of ’DoWhy’ because it necessitates the provision of

the DAG, which was incompatible with our approach, given our initial lack of knowledge

regarding the causal mechanics of the data. ’CausalNex’ was ruled out as it does not support

continuous features, or in our scenario, features that take many values. ’CausalImpact’ was

not suitable since it is tailored exclusively for time-series data, and the ’BartPy’ was excluded

due to the absence of a Python version that supports classification.

The package we eventually settled on, ’Bnlearn’, presented its own set of challenges.

While it offers multiple algorithms for each step, the documentation lacks comparative in-

sights or guidance on the appropriate contexts for each method. This necessitated extensive

hands-on experimentationwith our data to determine optimal performance and usage. Causal-

Inference, though more user-friendly, also had limited online implementations. This meant

we had to undergo a period of trial and error to fully grasp its functionalities.

8.3 Future Directions

In the realm of causal inference for bankruptcy prediction, particularly within the finan-

cial sector, there exists potential for further enhancements to improve both functionality and

interpretability. While our study marks a significant stride towards robust forecasting perfor-
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mance with model clarity, we acknowledge avenues for future refinement.

A primary enhancement to consider is the incorporation of regularization in the leaves of

the BART trees implemented in Python. This would facilitate the application of the method

to classification, not just regression. Currently, this feature is exclusive to the package for the

R programming language.

For subsequent research, deploying our model on a more extensive dataset would be ad-

vantageous. This would provide insights into causal relationships within a different economic

context and offer a comparative study of the economic dynamics between distinct eras or na-

tions.

There is also an intriguing prospect of curating a dataset comprising multiple instances of

the same companies across varied timestamps. Such a data set would pave the way for causal

time series analysis, allowing tests for interventions and their associated Average Treatment

Effects (ATE).

Lastly, an area we couldn’t delve into during our research was the integration of Google

Trends data, both for individual companies and the broader economy. Investigating the po-

tential causal relationships between these trends and bankruptcy could yield enlightening

insights.

Furthermore, it’s worth noting that the realm of causality has been predominantly ex-

plored within the context of epidemiology. Its application in the financial and economic sec-

tors remains in its infancy. This presents a vast landscape for research, as complete integration

and understanding of causality in these sectors have not yet been achieved.

8.4 Concluding Remarks

This thesis aimed to investigate the causal inference of a bankruptcy prediction dataset

of Greek SMEs using probabilistic techniques. While still in development, it is indeed one

of the most promising domains for future research and is expected to flourish in the com-

ing years. Even though our study found it impossible to clarify which variables affect the

label the most financially, as we have seen in the literature, our innovative approach helped

us better understand the dataset. In this context, a term called ”Construction Bias” was de-

vised to assist in the causal analysis by quantifying the inherent bias that arises during dataset

construction. We were able to debias the dataset and introduce fairness, leading to improved
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classification accuracy. This significantly enhanced the performance in the bankruptcy pre-

diction problem. A significant achievement was the approximately 3% increase in precision

for label 1, surpassing even the long-established random sampling debiasing method. While

this is the main standpoint of our thesis, we also focused on elucidating the entire process of

building a causal model. As it’s not a common machine learning technique and is primarily

used in epidemiology, we discussed our challenges.
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