
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Machine Learning for improved communication between

Kubernetes - etcd

Diploma Thesis

Ilias Iliadis

Supervisor: Athanasios Korakis

Month 2022

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Machine Learning for improved communication between

Kubernetes - etcd

Diploma Thesis

Ilias Iliadis

Supervisor: Athanasios Korakis

Month 2022

iii
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Μηχανική Μάθηση για Καλύτερη Επικοινωνία Kubernetes

- etcd

Διπλωματική Εργασία

Ηλίας Ηλιάδης

Επιβλέπων/πουσα: Αθανάσιος Κοράκης

Μήνας 2022

v
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Approved by the Examination Committee:

Supervisor Athanasios Korakis

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

Member Antonios Argyriou

Associate professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member Parisis Flegkas

Assistant Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

vii
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Acknowledgements

Θα ήθελα να εκφράσω την ευγνωμοσύνη μου στους ανθρώπους που συνέβαλαν στο να

πραγματοποιηθεί αυτή η διπλωματική, σε όλους όσους στάθηκαν στο πλευρό μου σε αυτό

δύσκολο αλλά και συναρπαστικό ταξίδι των σπουδών μου. Εν πρώτοις θα ήθελα να ευχαρι-

στήσω τον επιβλέποντα καθηγητή μου κύριο Αθανάσιο Κοράκη, που μέσα από τα μαθήματά

του καλλιέργησε το ενδιαφέρον μου για τον τομέα των Δικτύων και μου έδωσε την ευκαιρία

της τριβής με την έρευνα και την τεχνολογία μέσω της συμμετοχής μου σε projects της συγ-

κεκριμένης ειδικότητας. Επιπλέον, θα ήθελα να ευχαριστήσω θερμά τον κύριο Κωσταντίνο

Χούμα, για τις συμβουλές και την καθοδήγηση του, όπως και για το ότι ήταν πάντα διαθέ-

σιμος και πρόθυμος να με βοηθήσει σε οποιαδήποτε δυσκολία κι αν αντιμετώπισα κατά την

εκπόνηση αυτής της διπλωματικής. Θέλω να ευχαριστήσω από καρδιάς την οικογένεια και

τους φίλους μου για την ανεκτίμητη στήριξη, την αγάπη και την βοήθεια που μου πρόσφε-

ραν, ώστε να σταθώ στα πόδια μου και να αντιμετωπίσω όλες τις δυσκολίες κατά τη διάρκεια

των σπουδών μου. Χωρίς αυτούς δεν θα έφτανα στο σημείο αυτό.

ix
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Ilias Iliadis

xi
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

xii Abstract

Diploma Thesis

Machine Learning for improved communication between Kubernetes -

etcd

Ilias Iliadis

Abstract

With the rise of microservices, organizations have widely adopted containers for applica-

tion deployment. Currently, applications can be made up of hundreds of containers that can

probably operate in different environments. Due to the increased size and complexity of the

production environment, developers require improved tooling to manage the load of contain-

ers, as well as to automate application scheduling onto them. These are some of the industry’s

requirements that resulted in the development of container orchestration technologies, with

Kubernetes being the most popular framework to manage containerized applications. In or-

der to function properly, kubernetes is using etcd as it’s primary back storage for the cluster’s

metadata, which is a reliable, consistent, and distributed database with no downtime. How-

ever, when the etcd cluster is deployed externally, variables such as TLS encryption, distance

between endpoints, and transmission latency caused by excessive load on etcd servers may

affect the latency overhead on the communication network between kubernetes and etcd. To

address these problems, this project extends the default load balancing policy used for routing

client requests to the etcd servers in order to improve the communication link’s performance

and efficiency by forwarding all client requests directly to the leader of the etcd cluster. We

also use machine learning methods to detect high network latencies and excessive workload

on the etcd servers to provide reliability on the extended policy. Our designed implementation

was deployed and assessed on the NITOS research facility, where we used physical nodes

to conduct experiments under real-world environment conditions. Our findings indicate that

our approach is faster and more reliable than the default storage method for kubernetes.

Keywords:
Transport Layer Security (TLS)

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Περίληψη xiii

Διπλωματική Εργασία

Μηχανική Μάθηση για Καλύτερη Επικοινωνία Kubernetes - etcd

Ηλίας Ηλιάδης

Περίληψη

Με την άνοδο των microservices, έχει υιοθετηθεί ευρέως η χρήση των containers για ανά-

πτυξη εφαρμογών. Τον τελευταίο καιρό εφαρμογές μπορεί να αποτελούνται απο εκατοντά-

δες containers οι οποίοι πιθανότατα να λειτουργούν σε διαφορετικά περιβάλλοντα εκτέλεσης.

Λόγω του αυξανόμενου μεγέθους και πολυπλοκότητας του χώρου παραγωγής, προγραμματι-

στές απαιτούν αναβαθμισμένα εργαλεία για την διαχείριση του πλήθους των containers όπως

και για την αυτοματοποιημένη ανάθεση εκτέλεσης εφαρμογών σε αυτά. Τα προηγούμενα

αποτελούν μέρος των συνολικών απαιτήσεων της βιομηχανίας που κατέστησαν αναγκαία

την δημιουργία τεχνολογιών για την οργάνωση των containers, εκ των οποίων το kubernetes

να αποτελεί την δημοφιλέστερη πλατφόρμα για την διαχείριση εφαρμογών σε containers. Για

την σωστή λειτουργία του, το kubernetes χρησιμοποιεί το etcd ώς τον βασικό χώρο αποθή-

κευσης για τα δεδομένα του cluster, το οποίο είναι μια αξιόπιστη, συνεπής και κατανεμημένη

βάση δεδομένων. Παρ’ όλα αυτά, στην περίπτωση όπου το etcd εγκαθιστάται εξωτερικά του

kubernetes, παράγοντες όπως TLS κρυπτογράφιση, απόσταση μεταξύ των κόμβων και κα-

θυστέρηση μετάδοσης δεδομένων λόγω υπερφόρτωσης των etcd διακομιστών μπορούν να

συμβάλλουν στην συνολική καθυστέρηση στο μέσο επικοινωνίας μεταξύ του kubernetes και

του etcd. Για την αντιμετώπιση αυτών των προβλημάτων, η παρούσα εργασία επεκτείνει

την προεπιλεγμένη πολιτική εξισσορόπησης φορτίου η οποία χρησιμοποιείται για την δρο-

μολόγηση αιτημάτων πρός τους etcd διακομιστές ούτως ώστε να βελτιωθεί η απόδοση και

η ταχύτητα επικοινωνίας ανακατευθύνοντας όλα τα αιτήματα στον αρχηγό του etcd clus-

ter. Επίσης γίνεται χρήση μεθόδων μηχανικής μάθησης για τον εντόπισμο υψηλόυ φόρτου

εργασίας των etcd διακομιστών παρέχοντας έτσι αξιοπιστία στην εκτεταμένη πολιτική. Η

υλοποίηση της εργασίας αναπτύχθηκε και αξιολογήθηκε χρησιμοποιώντας την ερευνητική

εγκατάσταση NITOS, απο την οποία δεσμέυτηκαν πραγματικά μηχανήματα για να διεξα-

χθούν πειράματα σε πραγματικό περιβάλλον. Τα αποτελέσματα που παράχθηκαν δείχνουν

ότι η δική μας προσέγγιση είναι γρηγορότερη και πιο αξιόπιστη απο την προεπιλεγμένη μέ-

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

xiv Περίληψη

θοδο αποθήκευσης του kubernetes.

Λέξεις-κλειδιά:

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis subject . 2

1.2.1 Contribution . 2

1.3 Thesis Content Organization . 2

2 Kubernetes Ecosystem 5

2.1 Chronicle of Application Deployment . 5

2.2 What are the benefits of Kubernetes . 8

2.3 Kubernetes Basic Architecture . 9

2.3.1 Control Plane Components . 10

2.3.2 Node Components . 12

xv
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

xvi Table of contents

3 etcd Key-Value Store 15

3.1 Introduction . 15

3.2 etcd Features . 16

3.3 etcd integration with Kubernetes . 17

3.4 Etcd deployment methods in Kubernetes Clusters 18

3.5 etcd client architecture . 19

4 Raft distributed consensus algorithm 23

4.1 Introduction . 23

4.2 Understanding consensus . 24

4.3 Replicated state machines . 24

4.4 The Raft Protocol . 26

4.5 Leader Election . 29

4.6 Log Replication . 30

4.7 Safety . 33

4.8 Client Interaction . 33

5 Experimental Tools 35

5.1 Introduction . 35

5.2 NITOS testbed . 35

5.2.1 Outdoor Testbed . 36

5.2.2 Indoor RF Isolated Testbed . 37

5.2.3 Office Testbed . 38

5.3 Docker Engine . 38

5.4 Prometheus . 39

5.5 Grafana . 40

5.5.1 Prometheus as data source . 41

6 Implementation and Analysis of Optimized etcd Load Balancing Policies 43

6.1 Objective . 43

6.2 Experimental System Setup . 44

6.2.1 etcd node . 45

6.2.2 Kubernetes master node . 45

6.2.3 Prometheus & Grafana node . 46

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Table of contents xvii

6.3 Implementation Analysis . 46

6.4 Evaluation and Experimental Results . 51

6.4.1 Round Robin and Pick Leader . 51

6.4.2 Pick Leader with Leader Status Forecasting 53

7 Conclusions 59

7.1 Summary and Conclusions . 59

7.2 Future Work . 59

Bibliography 61

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

List of figures

2.1 Layer architecture of every deployment technology 7

2.2 Control Plane and Node Components of Kubernetes cluster 12

3.1 etcd and Kubernetes operating in the same cluster 18

3.2 etcd external deployment . 19

3.3 gRPCv1.0 Balancer . 20

3.4 gRPCv1.7 Balancer integrated error handler 21

3.5 gRPCv1.14 roundrobin load balancing policy 22

4.1 Servers in a distributed system reaching consensus for database update . . . 24

4.2 Replicated state machine architecture [1] 25

4.3 Properties continuously preserved by Raft to ensure consensus 27

4.4 Raft server states and the transitions between them [1] 27

4.5 Time divided into terms [1] . 28

4.6 Replicated logs for a cluster of 5 servers [1] 31

4.7 Possible follower log scenarios [1] . 32

5.1 NITOS Architecture . 36

5.2 Nitos Outdoor testbed . 37

5.3 Nitos Indoor testbed . 37

5.4 Nitos Office testbed . 38

5.5 Docker Containers . 39

5.6 Prometheus echosystem components . 40

5.7 Grafana dashboard overview . 41

6.1 thesis topology deployed on NITOS . 44

xix
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

xx List of figures

6.2 etcd cluster incoming client traffic using Round Robin and Pick Leader load

balancing policies. 52

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

List of tables

6.1 Initialization time for Kubernetes services on different delay scenarios. . . . 53

6.2 Evaluation results after 10 different predictions of each ML model. 57

xxi
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Abbreviations

API Application Programming Interface

IP Internet Protocol

RPC Remote Procedure Call

TCP Transmission Control Protocol

URL Uniform Resource Locator

xxiii
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Chapter 1

Introduction

1.1 Motivation

Modern application deployment increasingly depends on container technology, which

provides an ideal host for small independent applications like microservices. In order to man-

age and schedule these containers in different production environments on a wide scale, in-

dustries rely on container orchestration tools, with Kubernetes being the most preferred one.

When Kubernetes is deployed, it generates a cluster of control plane nodes that manage the

entire cluster and worker nodes that host the execution of containerized applications. Kuber-

netes also uses etcd as its primary back store for cluster object configuration data and data

providing information about the cluster’s status. When it comes to production deployments, a

resilient control plane is required in order to operate a highly available (HA) kubernetes clus-

ter and it’s achieved by running control plane instances on multiple nodes. An HA cluster’s

default architecture consists of an odd number of control plane nodes, each of them hosting a

member of the etcd cluster that communicates solely with the node’s API server component.

This stacked topology enables direct and scalable interaction between the etcd cluster and the

Control Plane replicas. However, if a master node instance fails, both control plane compo-

nents and the underlying etcd member are also lost. In this case, it is advisable to consider

decoupling the etcd layer from the control plane replicas by setting up the etcd cluster on

separate machines. When compared to the stacked topology, the deployment of a standalone

etcd cluster achieves higher level of reliability and resiliency since master node failures have

less impact on the system’s redundancy. Even so, the intermediate network infrastructure

that establishes communication between the two cluster architectures may introduce latency

1
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

2 Chapter 1. Introduction

issues that must be addressed.

1.2 Thesis subject

When deploying an etcd cluster on separate architecture from kubernetes, several prob-

lems might arise, including security concerns, complex network configuration and commu-

nication latency. In this thesis project, we investigate the major factors that contribute to the

latency overhead of the communication between these two deployments and address them

by extending the default load balancing policy that is used by the kubernetes API server for

routing requests to etcd cluster members, which is based on Round Robin. The introduced

policy forwards all client requests to the leader node of the external etcd cluster in order to

reduce the average response time and improve the performance and efficiency of the com-

munication interface. We also use machine learning methods to detect high network laten-

cies and excessive workload on the etcd servers to provide reliability on the extended policy.

The designed implementation was deployed and evaluated in a real-environment topology of

physical nodes.

1.2.1 Contribution

To give solutions to the aforementioned issues, we first performed a a thorough analysis

of every entry contained in the examined topology, including kubernetes software compo-

nents and the properties of the etcd datastore. Subsequently, in the NITOS Indoor testbed,

we deployed the external etcd cluster and the kubernetes cluster to evaluate the performance

of our extended load balancing policy, along with a third-party programm that monitors the

status of the etcd leader and elects a new leader if the integrated machine learning model

predicts an unstable node status. Finally we assessed the performance of our implementation

compared to the default configuration of the examined system using software monitoring

tools and metrics extracted from the etcd members.

1.3 Thesis Content Organization

The thesis study is organized into seven Chapters to comprehend various concepts of the

examined deployment environment and the relevant problems that this projects aims to re-

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

1.3 Thesis Content Organization 3

solve. In Chapter 2 we describe the kubernetes framework along with all its components and

technologies when it is deployed on an containerized environment. In Chapter 3 we analyse

the etcd data storage, it’s properties and software tools, as well as it’s integration with kuber-

netes through the deployment options to serve as the kubernetes backing store. This Chapter

also dives into the etcd client API, which is used by the kubernetes API server to interact with

the available etcd servers. Chapter 4 presents the components, properties and functionality of

the Raft protocol, which is used by the etcd to guarantee consistency over the data stored in

the etcd servers. Chapter 5 details the experimental environment along with all software tools

that we utilized to deploy our designed implementation and conduct evaluation experiments.

Chapter 6 presents the deployed implementation on the experimental infrastructure, and the

experimental results from our extended load balancing policy. The last Chapter reviews our

thesis project and suggests future work ideas that could expand the project.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Chapter 2

Kubernetes Ecosystem

Kubernetes is an open-source container orchestration framework [2], which name de-

rives from Greek which translates to “helmsman” or “pilot”. On the foundation it is designed

to manage containerized applications. It provides automated and declarative infrastructure

management as well as flexible and efficient handling of these applications across different

environments including cloud-naive environments or even hybrid ones. It’s vast community

constantly contributes to the development and enhancement of the framework. It was devel-

oped by Google and released in 2014.

2.1 Chronicle of Application Deployment

Before jumping into the importance of Kubernetes, we must describe how application

deployment changed from physical servers to containerization [2]:

• Traditional deployment era: Applications were initially deployed by organisations

on physical servers. Unfortunately this can initiate resource contention caused by mul-

tiple applications deployment on a single physical computer. Some applications would

have high resource demands which resulted in degraded performance of the other ap-

plications. This scenario made necessary to distribute the applications across different

physical servers in terms of performance and scalability. Unfortunately, this lead to

scaling issues as servers ran at a small fraction of their capacity making resources un-

derutilized. Also the maintenance of multiple physical servers came at a high cost.

• Virtualized deployment era: In order to resolve these issues, server virtualization was

introduced. It allows concurrent execution of several virtual servers (VMs) on a single

5
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

6 Chapter 2. Kubernetes Ecosystem

physical server independently that share the hardware resources of the host system,

which is the most important advantage of the technology. A software layer named hy-

pervisor , which lies between the virtual machines and the original hardware, provides

each virtual machine a virtualized copy of the resources and manages the virtual ma-

chines and controls their resource usage. It also enforces resource usage policies on

the virtual machines, and the way they will communicate with each other and with the

physical servers system. By doing so the hypervisor guarantees isolation between the

virtual machines and the hardware as it allows each virtual machine to run it’s own

operating system instance and applications, without affecting the rest of the virtual

machines in the system. Furthermore, hypervisor ensures that each virtual machine

will utilize an amount of resources that will not lead to starvation of the resources.

In terms of security, all virtual machines are monitored for malicious activity, unau-

thorized changes and accesses between them or the host system. If any of the previous

actions occurs, the hypervisor will act accordingly by blocking , shutting down or alert-

ing the specific virtual machine. Virtualization improves significantly the performance

of the applications by optimizing the resource distribution and efficiency among the

virtual machines. On major drawback is the high requirement of each virtual machine

for operating system and hardware instances, resulting in fast resource utilization of

the system.

• Container deployment era:When it comes to resource isolation and allocation, con-

tainers and virtual machines have similar functionality. The marked difference between

them is that the virtual machines virtualize the entire hardware layer of the host system

and containers only virtualize the operating system. Multiple containers are able to run

on the same physical machine and work on the same operating system through this

technology, making them more portable and efficient across different computing en-

vironments. As they are separated from the hardware layer, containers are considered

lightweight because they utilize less space than the virtual machines and thus they can

handle more applications with lower resource demands.

Some of the significant benefits provided by containers that made them popular are the

following [2]:

• Fast Deployment and creation: Containers provide flexible and efficient way of image

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

2.1 Chronicle of Application Deployment 7

Figure 2.1: Layer architecture of every deployment technology

creation in comparison with virtual machine images.

• Versioning and Rollbacks: container image versioning, enables quick roll back to pre-

vious versions in order to track changes. This version control provides reliable and

reproductive image build and deployment across different platforms.

• DevOps Enablement: developers can create their applications by building the corre-

sponding container image and then these containers can be deployed with the usage of

container orchestration tools.

• Observability: Ability to gain insights of container and host system metrics, health of

containerized applications, application data visualisation in dashboard and graphs and

much more.

• Environmental consistency across all stages: containers ensure enviromental consis-

tency on different stages of the application lifecycle, such as development, testing and

production.

• Portability across different platforms: Container portability allows developers to build

an application and run it anywhere. Some of these platforms are Ubuntu, CoreOS,

RHEL, on major public clouds and on-premises.

• Easy Management: Rather than focusing on running an operating system instance on

virtualized hardware, containerized applications are running on the underlying host

operating system using logical resources

• Microservices Architecture: Applications can be decomposed into smaller services,

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

8 Chapter 2. Kubernetes Ecosystem

each of them able to run in its container, making it easier to manage and scale them

independently

• Isolation: Each container runs independently of others at application level. It prevents

conflicts and enhances security among applications.

• Resource Utilization: Containers efficiently utilize the host system resources with low

cost, allowing multiple container execution on a single physical machine without con-

flicts.

2.2 What are the benefits of Kubernetes

Containers have become quite popular and standard technology for application devel-

opment due to their exceptional advantages described in the previous section. In production

environments, it is important to rely on a container-based infrastructure with robust container

load management and high availability. For instance, if a container malfunctions or becomes

unavailable, the infrastructure must have an automated mechanism to restore data to the lat-

est state and start a new container from the latest state. The need for automated management,

scalability and disaster recovery over containerized applications made the integration of con-

tainer orchestration technologies essential. Kubernetes guarantees these actions by providing

a framework including developer tools (patterns) for ease container-based application build

and deployment, flexibility, resilient distributed system execution , and more.

Kubernetes includes several capabilities [2] such as:

• Service discovery and load balancing:Kubernetes offers build-in load balancing to

distribute the network traffic between containers of an application, ensuring efficient

resource usage and preventing container overload. It also enables containers to be ac-

cessed using a single DNS name or their IP address.

• Storage orchestration: Developers are allowed to automatically mount storage vol-

umes to containers of their choice, including local storages and public cloud providers.

• Automated rollouts and rollbacks: Kubernetes provides declarative configuration

for the deployed containers. Developers can specify the desired state and the frame-

work will achieve the desired state by creating containers, removing existing ones and

resource allocation to the new containers.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

2.3 Kubernetes Basic Architecture 9

• Automatic bin packing:When providing a cluster of nodes that can execute container-

ized task to Kubernetes, the amount of CPU and memory usage is specified for each

container. Kubernetes is efficiently placing containers into the inserted nodes in order

to reach optimal resource utilization.

• Self-healing:Kubernetes self-healing capabilities are reducing downtime and improves

reliability of containerized applications. It restarts failed containers automatically, re-

places containers that malfunction, and terminates unavailable containers. Client’s will

not be able to access unhealthy containers unless their state recovers.

• Secret and configuration management: Kubernetes provides a secure way to man-

age and store sensitive information, like API keys, certificates, and passwords. Users

can update and deploy configuration data and handle secrets using built-in Kubernetes

objects without exposing them to the code or in the container images.

2.3 Kubernetes Basic Architecture

Kubernetes distributes and schedules the application containers automatically across a

cluster. It comprised of two kinds of worker machines, called nodes: masters and workers. A

node can be either virtual machine or a physical computer . The master node is responsible

for the cluster management. This implies that it controls the cluster state, manages worker

nodes, schedules and scales applications. Worker nodes serve as hosts for the execution of

containerized applications. The group of one or more containers assigned to a worker node

is called a Pod. Worker nodes and the corresponding Pods are managed and scheduled by the

master node. To maintain fault tolerance and high availability in production environments,

multiple masters and nodes are initialized whereas the smallest amount of master nodes for

proper functinality of the Kubernetes cluster is one.

The two kinds of nodes host several essential Kubernetes Components that determine

the cluster functionality and robustness. Kubernetes Components can are categorized into

the following groups [3]: Control Plane components and Node components. The following

subsection outlines their functionality and their role in management.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

10 Chapter 2. Kubernetes Ecosystem

2.3.1 Control Plane Components

Components belonging to the Control Plane manage the overall state and orchestration

of the cluster. To be precise they serve as the brain of the cluster handling several tasks such

as making decisions about scheduling and scaling of containerized applications, enforcing

declarative container orchestration to satisfy given states, controlling network traffic between

pods, and respond to various cluster events including pod activation when the given number

in the replicas filed of a deployment is unsatisfied. These components are able to run across

multiple machines in the cluster but for simplicity sake, the default case suggests to setup the

entire control plane on the samemachine, and to prevent container execution on this machine.

The main control plane components are described below [3]:

• kube-apiserver: The API server component forms the primary interface for end users

and clients to interact with the cluster. The main implementation of this component is

the kube-apiserver which handles incoming requests sent to the exposed Kubernetes

REST API. Due to the fact that it relies on etcd storage for saving updated cluster

states, kube-apiserver scales horizontally by deploying component copies across mul-

tiple nodes. The traffic between these instances can be balanced, ensuring reliability

and efficient workload distribution across the instances.

• etcd: etcd is a highly-available and consistent key-value storage that is utilized to store

both configuration data and data describing the overall cluster state. It is recommended

to back up the data of Kubernetes objects that are stored on etcd periodically so as to

recover from disaster scenarios.

• kube-scheduler: The scheduler detects any newly created pod with no worker node

for host and finds an available node for them to run on. In order to implement assign-

ment and scheduling operations, the scheduler takes into consideration various factors

based on resource requirements, node affinity and anti affinity, interference among

workloads, data locality, and constrains.

• kube-controller-manager: This component is running various processes called con-

trollers. A controller is a core component which maintains the desired state of the clus-

ter and continuously monitors the resources state through the kube-apiserver. Despite

of being separate processes, controllers run as a single binary for complexity reduction.

Kube-controller-manager includes controllers such as:

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

2.3.1 Control Plane Components 11

1. Node Controller: Watches the node status across the cluster and takes specific

actions when nodes terminate unexpectedly.

2. Job Controller: manages batch job objects, tracks their status , and creates or

removes Pods through the kube-apiserver until the task is carried out.

3. Endpoints Controller: this controller is creating a network link between Pods and

Services by populating the Endpoint objects.

4. ServiceAccount controller: Creates ServiceAccounts which authenticate applica-

tions running on pods and enables them to access Kubernetes API

• cloud-controller-manager: This component forms an interface between the cluster

and the selected cloud provider’s API, integrating cloud-specific logic into the clus-

ter. It acts as an intermediary between the Kubernetes control plane and the cloud

provider’s API, and it seperates cloud-specific components from the Control Plane

components that operate with the cluster. It starts up exclusively controllers suitable to

the connected cloud provider. If Kubernetes is executed on a local infrastructure or in

a personal computer, the Control Plane will not include a cloud-controller-manager.

Similar to the previous component, the cloud-controller-manager compiles and unifies

multiple control loops, which are compiled together and run as a single binary. Like

kube-apiserver, this component can be scaled horizontally by creating more instances

to enhance fault-tolerance and to improve performance.

Controllers that may include cloud provider dependencies are the following:

1. Node controller: Monitors the node status in the underlying cloud provider’s in-

frastructure and handles node creation and deletion in the cloud based on their

current status. For instance, if a node won’t respond the controller makes sure if

the specific node has been removed.

2. Route controller: It manages the configuration and the maintenance of routes in

the cloud environment so as to expose Kubernetes Services.

3. Service controller: Manages and configures cloud provider load balancers.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

12 Chapter 2. Kubernetes Ecosystem

Figure 2.2: Control Plane and Node Components of Kubernetes cluster

2.3.2 Node Components

While the Control Plane manages the overall cluster, node components on the other hand,

manage and execute tasks on every worker node in the cluster. They maintain the pod execu-

tion on the worker node they are running on and provide the Kubernetes runtime environment.

The specified components are following [3]:

• kubelet:The kubelet is a process serving as the primary “node agent” whichwill run on

all worker nodes across the Kubernetes cluster. It works according to PodSpecs, which

is a file object that includes description of a pod. Using the description of the PodSpec

objects, kubelet monitors the health of the containers running on the node. PodSpecs are

provided to kubelet primarily through the Kubernetes API server. Moreover, it interacts

with the Control Plane receiving updates about the desired state of containers and pods,

and instructions. It communicates directly with the container runtime to create, destroy,

or update pods and their underlying containers when it is instructed to do so from the

Control Plane. Kubelet manages only containers created by Kubernetes.

• kube-proxy: This component is running on each cluster node serving as a network

proxy. It is responsible for managing network tasks of the worker node it runs on and

the main functionality is to provide reliable network communication among pods and

services within the cluster. By doing so, it abstracts the Kubernetes Services. Kube-

proxy also configures the network policies on the host node to make pods accessible

by clients regardless of whether they are located inside of the cluster or outside of it.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

2.3.2 Node Components 13

This proxy module also interacts with the packet filtering layer of the underlying oper-

ating system to route network traffic. If the layer is not provided by the host operating

system, the proxy handles traffic without filtering. In addition, it efficiently distributes

incoming requests evenly among the services that have multiple replicas or pods.

• Container runtime:A container runtime, also reffered as container engine, is the soft-

ware component that implements container execution on the host node. The container

engine takes the responsibility to manage container lifecycle and make actions such

as start, stop and restart the container , enforcing resource limits and constrains ac-

cording to the container resource utilization using cgroup drivers, and ensuring that

containers are isolated both from the host system and from each other. The common

container runtimes which Kubernetes supports are CRI-O , containered, and container

engines implemented by the Kubernetes Container Runtime Interface (CRI).Interfaces

provided by CRI are used by kubelet for interaction with the container runtime. It also

enables kubelet to use different types of container runtimes concurrently or switching

from one to another without having to compile the components of the cluster. This

functionality provides the opportunity to find the most appropriate container runtime

based on kubelet current version and configuration.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Chapter 3

etcd Key-Value Store

3.1 Introduction

As stated in [4], etcd is an open source, distributed and strongly consistent key-value

store that facilitates reliable data storage and management for critical data of ”a distributed

system or cluster of machines”. In production enviroments etcd serves as the foundation and

main datastore of many projects including Kubernetes, the industry-standard container or-

chestration technology. Their integration ensures reliable configuration and consistent coor-

dination across the Kubernetes cluster. It is a Raft-based system using the Raft Consensus

Algorithm [5] to guarantee data store consistency across all cluster nodes and to provide a

fault tolerant distributed environment. Raft provides this consistency by the electing a leader

node, which is in charge of distributing data replication to the other nodes, also called fol-

lowers. Incoming client requests that contain a key-value modification including creation or

update are accepted by the leader, which then transmits them to the follower nodes for repli-

cation. Once the majority of the followers confirm and acknowledge the incoming request as

a log entry, the leader applies the entry, marks it as committed, and send a success message

to the corresponding client.

Etcd underlying software mechanism is implemented using the Google programming lan-

guage, Go [6] and it’s name is derived from the UNIX subdirectory called ”/etc” , where all

the system configuration files of a signle UNIX system are located and the ”d” stands for

distributed. It was also maintained and developed by the CoreOS community.

15
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

16 Chapter 3. etcd Key-Value Store

3.2 etcd Features

Etcd was created by the developers from scratch with qualities [7] including:

1. Simple: Client applications can interact with the key-value store using common HTTP

or JSON tools such as curl to read or write data to etcd, thanks to it’s well-defined and

user friendly API. It also offers command-line interface (CLI), which makes it simple

to communicate with etcd from shell command.

2. Atomic Transactions: Multiple key-value updates can be executed as a single atomic

operation through transactions supporded by etcd, which propagate as many changes

to the database as ordered. Transactions also make sure that ether every modification

is made succesfully inside the unit or the transaction rolls back to its proir state and all

preceding activities are stopped at the point where the operation failed.

3. Secure: Automatic Transport Layer Security (Auto TLS) is supporded by etcd whereas

secure socket layer (SSL) client certification authentication is optional . Administra-

tors should create role-based access controls [8] within the deployment because etcd

maintains crucial and highly sensitive configuration data.

4. Fast: etcd benchmark tools verify that it is capable to make thousands of write opera-

tions per instance.

5. Reliably consistent: According to [9], the API ensures strict serializability which is

the most robust guarantee in terms of consistency of distributed systems. Etcd clients

always read the data with the latest update without taking note of any intermediate date,

regardless of which etcd server it sends requests to.

6. Highly available: Due to the Raft-based nature of the etcd system, key-value data is effi-

ciently distributed and replicated from the current leader across the cluster establishing

consensus with the Raft algorithm. Replication reflects data to all cluster members and

creates redundancy which prevents data loss over single member malfunction. When

it comes to failure scenarios [10], an etcd cluster functions as long as the majority of

the server nodes are up and running, also called quorum. Additionally, the cluster is

divided into majority member and minority member segments if a network partition

occurs. If that happens, the majority segment will continue to run in the cluster.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

3.3 etcd integration with Kubernetes 17

3.3 etcd integration with Kubernetes

The fundamental key-value store for initializing a working, fault-tolernant Kubernetes

cluster is etcd, which is one of the main components of Kubernetes Control Plane. Kuber-

netes requires a distributed data store like etcd, since it is a distributed system. Containerized

applications have management requirements [7] that become more complex according to the

scaling and the amount of workload, much like any distributed workloads. Kubernetes re-

duces the complexity of workload management by coordinating operations like service dis-

covery, load balancing, scheduling, health monitoring, deployment and configuration on the

entire cluster using the Control Plane, which is portable across multiple machines.

In order to achieve such an efficient management and flexible coordination across the

cluster, Kubernetes must rely on a data store that provides a trustworthy source of information

about the configuration and the current status of all kubernetes objects and resources used by

nodes, pods and their underlying applications at any given time.

Although theAPI server could simply store its data in a conventional database likeMySQL

or PostgreSQL, these databases lack of important features which the API server needs for a

backbone data storage system. Compared to other databases, etcd covers the need for high-

availability and fault tolerance that Kubernetes strives for [11]. To be precise, when a node

fails or a network partition occurs , a significant downtime penalty is triggered which makes

Kubernetes Control Plane come to a halt. Etcd’s architecture , as described in the previous

section, supports highly available data through efficient distribution and replication using the

Raft algorithm in order to ensure that the cluster will continue to function if a certain mem-

ber fails. Furthermore, with the API server being the central orchestrator point of the whole

Kubernetes cluster forwarding instructions from controllers to pods or nodes, it needs the con-

sistency of data provided by etcd in order to return the latest modified data of the storage and

thus the latest cluster state at any given time. Also featuring etcd would prevent unpredictable

API server slowdowns generated from concurrent read and write overhead since it has an ex-

tremely fast write operation mechanism and read operations can be handled from any of the

etcd members due to log replication. Another important feature which plays a crutial role in

streaming notifiaction changes to clients is the mechanism called Watch API [12] included in

etcd API. It allows Kubernetes components to receive real-time notifications about changes

made to configuration data or monitor for changes in etcd storage system. Clients can also

subscribe to changes made on a certain key or group of keys (using key prefix).

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

18 Chapter 3. etcd Key-Value Store

One more thing worth mentioning, is what the API database does not require from a

database. Much of the Kubernetes configuration and state data are stored in format of meta-

data and configuration information about several Kubernetes instances and resources. Be-

cause of this lightweight data format, a large Kubernetes cluster will produce a maximum

amount of a few gigabytes of data and thus large and complex datasets like the traditional

ones are not needed. The majority of kubernetes objects are accessible by type, namespace

and on occasion by name via the Kubernetes API, which has very predictable access patterns.

If more filtering is necessary to access a particular key, it will usually be done with the us-

age of labels and annotations. Because of this behaviour SQL databases, which use complex

queries and joins to find data , are excessive for the way the API operates making it hard form

them to reach high availability and consistent performance.

3.4 Etcd deployment methods in Kubernetes Clusters

In Kubernetes enviroments, each etcd member can be deployed as a pod in their host

master node to enhance communication efficiency with the Control Plane. Figure 3.1 depicts

the architecture of the components.

Figure 3.1: etcd and Kubernetes operating in the same cluster

While internal etcd deployment can introduce overhead on the Control Plane and com-

plexity when it comes to manage updates and maintenance operations on etcd, external etcd

deployment is introduced as an alternative approach, providing independent management of

the standalone etcd cluster and enhanced security and isolation of the used resources. Of

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

3.5 etcd client architecture 19

course this deployment has it’s own drawbacks too, including security considerations and la-

tency peaks due to the external network infrastructure that lies between Kubernetes API and

etcd. Figure 3.2 depicts the topology of this deployment.

Figure 3.2: etcd external deployment

The decision to whether use internal or external etcd deployment is specified by factors

based on the developer priorities on how the cluster will operate and it’s infrastructure. For

instance major tradeoffs between these deployments include resource isolation over security

considerations and network latency overhead or co-located etcd pods with Kubernetes Com-

ponents for optimized communication performance between them over additional overhead

and complexity to Control Plane. In our use case study, we select to deploy etcd externally in

order to conduct experiments on the network communication between Kubernetes API and

the standalone etcd cluster.

3.5 etcd client architecture

Etcd already handles the application logic on the server side through the guaranteed fea-

tures discussed in the previous sections, and due to it’s Raft-based nature. However, when

etcd servers interact with client components, it is necessary to implement a series of proto-

cols that will provide an efficient, reliable and highly available client application logic when

the server side malfunctions. This section introduces etcd client implementations and their

functionalities. The components contained in the official etcd client implementation are the

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

20 Chapter 3. etcd Key-Value Store

following [13]:

• A gRPC Load balancer [14], which creates gRPC connections for RPC traffic distri-

bution to an etcd cluster

• An client application interface that forwards RPC messages to the corresponding etcd

server

• An error handler to determine if a failed request should be retried or endpoints should

be switched.

The main difference across the released etcd API versions derives from the selected ver-

sion of the gRPC balancer. Each version provides a different balancing policy:

• gRPCv1.0 Balancer:When multiple etcd endpoints are configured by the client, this

balancer maintains a TCP connection to each endpoint. It selects one connection to

forward all etcd client requests as shown in Figure3.3. Until the client object is closed,

the pinned address does not change. When an error is received, the balancer selects

another at random and retries the request.

Figure 3.3: gRPCv1.0 Balancer

Although this approach provides fast failover, the maintenance of multiple TCP con-

nections demands more resources. Furthermore, the balancer is unaware of the cluster

membership and pinned server’s health status.

• gRPCv1.7 Balancer: Instead of managing multiple connections, the only connection

maintained is the one to the selected etcd server. When the etcd client passes multiple

endpoints, the balancer will attempt to interact with every endpoint. When one con-

nection is established, the balancer forwards requests to this endpoint. Until the client

object is closed, the pinned address does not change. When an error is returned, it is

processed by the client error handler and based on the error code it determines whether

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

3.5 etcd client architecture 21

to redirect the request by switching to another address or to retry the request on the

same server.

Figure 3.4: gRPCv1.7 Balancer integrated error handler

Furthermore, this balancer keeps track of unhealthy cluster members through a main-

tained list. When a pinned address is disconnected, it is marked as ”unhealthy” and is

appended to the list. The entries are regarded inaccessible for a fixed time interval of

5 seconds called dial timeout [13] and are removed after timeout. On some occasions,

however, the list may provide incorrect information about the current health status of

the endpoints. For example, server node A in Figure 3.4 may recover immediately after

its failure but it won’t be utilized because it is marked as ”unhealthy” for the following

5 seconds.

• gRPCv1.14 Balancer: Due to the previous balancer’s complicated implementation

with incorrect server connectivity assumptions, this balancer provides simpler approach

for balancer failover. Instead of preserving a list of potentially stale unhealthy server

addresses, when the current pinned server address gets disconnected, the balancer just

makes a round-robin to the next endpoint [13].Also in normal operation, the balancer

forwards client requests through round-robin between available endpoints [14]. Fur-

thermore, in this implementation the round-robin load balancing does not take endpoint

status into consideration. Hence, the status tracking list introduced in the previous bal-

ancer is not required.

When several endpoints are given to the balancer, it internally creates a sub-connection

for each endpoint, which is an interface of the gRPC mechanism. It may require more

resources by retaining this group of TCP connections, but load balancing is more flex-

ible with improved failover performance. This version of the gRPC balancer is used in

the latest etcd versions for the etcd client API. In this thesis project, the gRPCbalancer’s

implementation is extended in order to provide a more efficient and optimized type of

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

22 Chapter 3. etcd Key-Value Store

balancing. The use case, implementation, and functionality of the altered balancer is

described thoroughly in following Chapters.

Figure 3.5: gRPCv1.14 roundrobin load balancing policy

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Chapter 4

Raft distributed consensus algorithm

4.1 Introduction

A Complex system of interconnected nodes that can each function independently and

possibly store distinct copies of the same data forms a distributed system. In a distributed

system, nodes very often have to come to joint decisions including agreement on the event

order in the system, and maintaining consistent data throughout the system. In order to guar-

antee that nodes will operate towards the same objective some form of consensus protocol

must be established among them.

A widely used mechanism for reaching consensus in distributed systems is the Raft al-

gorithm [1], which was developed by Diego Ongano and John Ousterhout at the Standford

University in 2014, and was designed to provide a more understandable and straightforward

way of reaching consensus in contrast to it’s predecessor, the Paxos algorithm, which was

considered the holy grail in achieving consensus. Being an alternative to the Paxos algo-

rithm, it has inherited result correctness, fault-tolerance, and high performance, whereas it

introduces a more understandable implementation through it’s structure and seperation logic

of key elements of consensus including log replication, leader election, and safety.

On the highest level, the Raft protocol is based on leadership, meaning that all read and

write client requests forwarded to a system’s node for execution must be replicated to the rest

of the cluster members, also called followers, through the cluster leader. Follower’s client

commands are forwarded to the leader in order to handle their execution and to replicate

changes to the other nodes of the system. This guarantees a consistent view of the data across

all system nodes.

23
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

24 Chapter 4. Raft distributed consensus algorithm

4.2 Understanding consensus

In order to understand raft consensus approach in detail, we have comprehend the con-

sensus problem itself which raft tries to solve. In a distributed system, consensus [15] refers

to the coordination requirement of multiple nodes or servers to agree on a specific data value,

and once they reach an agreement the decision is immutable. For instance, in the scenario

depicted in Figure 4.1, nodes have to agree on a specific transaction request to the systems

database. The agreement on a majority value by all servers in the system is one method to

reach consensus, meaning that this scenario demands over half of the server votes. However,

consensus may not be reached or may be reached inaccurately as a result of some processes

malfunctioning or being unreliable in various ways.

Figure 4.1: Servers in a distributed system reaching consensus for database update

Consensus protocols are designed tomaintain consensus and to ensure high fault-tolerance

and resilience in a distributed system allowing server nodes to cooperate correctly even when

one or moremembers fail or there are communication problems between them. Common con-

sensus algorithms continue operating as long as at least half of the system servers are up. On

the contrary, if the majority of the servers malfunction, the algorithm will stop operating but

never produce an incorrect result [16].

4.3 Replicated state machines

In order for a distributed system to keep operating even in the presence of member fail-

ures, it is possible to maintain multiple servers in an identical state [1] by using replicated

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

4.3 Replicated state machines 25

state machines. In distributed systems, they are used to handle a range of fault-tolerance is-

sues. For instance, in the case that a server crashes, another server can take over inheriting

the data and most recent state of the failed server replicated from the state machine.

Figure 4.2: Replicated state machine architecture [1]

Replicated state machine provides fault tolerance through its own replication to every

server on the system. It’s commonly using a replicated log as an input, as shown in Figure 4.2.

Every server has a replicated log and a state machine [16]. It is a log used by every server

in order to save commands which are successively read as input and executed by the state

machine. Replicated state machines operate in the same way due to their deterministic nature.

This means that if all replicated state machines across the system use a given sequence with

the same ordering as an input, they will all generate the same results and change the system’s

state in the same way. Furthermore, in order to keep state machines in sync, the commands

contained in the log must be identical and in the same order across all replicas.

The component responsible for preserving log consistency on each replica across the

servers is called consensus module, and it is deployed on each server. It receives client re-

quests, appends them to the underlying log, and communicates with other consensus mod-

ules to guarantee that identical forwarded commands have been inserted into every log in the

same order. Subsequently, state machines on each server begin to process the log data once

the module certifies that the logs are successfully replicated and then an operation result is

sent back to the client. Thus, even if a few nodes in the clusters malfunction or fail, state

machines obtain high reliability.

In practical systems, consensus protocols must satisfy the following qualities in order to

face consensus problem requirements [15]:

1. Agreement: All running nodes must end up selecting an identical value.

2. Validity: The resulting value must be proposed by a legitimate running process. This

property ensures that at least one of the decision made from the running processes will

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

26 Chapter 4. Raft distributed consensus algorithm

be received.

3. Termination: Each running process must finally select a value, resulting in algorithm

termination.

4. Integrity: Once the decision is made, running processes can not change the selected

value. It prevents any possible modifications to the agreed value.

Additionally, as in every consensus algorithm [17], Raft operates according to some as-

sumptions, including:

1. Consistency can’t be ensured from node timing. There is no threshold on message

latency between the nodes, they can function at any pace, and their local clocks can

sometimes malfunction.

2. The underlying communication network of the distributed system is unreliable, as it

includes packet loss, receiving messages out of order, network latencies, and network

partitions. Also there can be no Byzantine faults.

3. As long as most of the nodes are running and have a healthy network interaction be-

tween them and with the clients, the consensus mechanism is fully operational and

available.

4.4 The Raft Protocol

Replicated logs of the kind described in the previous section can be managed through

the Raft protocol. In order to reach consensus, Raft first elects a leader among the active

servers, after which the leader is given total obligation to manage the replicated log across

the distributed system. The elected leader is listening for incoming client requests, forwards

them on the rest of the servers in the form of log entries, and notifies them once it is considered

safe from the protocol to store the entries to the underlying log. The overall management of

the replicated log is made simpler by the leader approach of the mechanism as well as the

streamlined data flow from leader to followers.

Raft breaks down three distinct subproblems while examining the consensus problem.

The subsequent sections will thoroughly focus on each one of these subproblems as well as

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

4.4 The Raft Protocol 27

on the algorithm’s key properties shown in Figure 4.3, which according to the designers of

Raft they ensure distributed consensus:

• Leader election:When the current leader fails or malfunctions , a new one should be

selected

• Log replication: The obligation of a cluster leader is to receive client log entries and

to enforce the logs of the other servers to concur with its own after the replication step.

• Safety: As stated in the last property on Figure 4.3 , log entries are applied to the state

machines with the same ordering and indexing across all servers on the system. This

rule ensures data consistency.

Figure 4.3: Properties continuously preserved by Raft to ensure consensus

Before analyzing the each subproblem individually, it is important to introduce some

components provided by the algorithm which play a significant role in the system in terms

of timing and availability:

• Server States: The servers on the system are always operating under one of the fol-

lowing modes or states [1]:

Figure 4.4: Raft server states and the transitions between them [1]

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

28 Chapter 4. Raft distributed consensus algorithm

1. Leader: The leader’s main responsibility is to handle all incoming requests made

by clients. When the cluster operates normally, it is comprised of one leader and

the remaining nodes are followers.

2. Follower: Because follower nodes neither initiate nor handle requests by them-

selves and only reply to those made by candidates and leaders of the cluster, they

are considered passive. If any client request is received by these nodes, it is al-

ways redirected to the leader node.

3. Candidate: When an elections begins, a server could change to the canditate state.

Candidates are voted from the servers in order one of them to become leader.

Those who are not voted will fall back to the follower state.

The transitions between these states are depicted in Figure 4.4

• Terms: The Raft protocol breaks up operation time into into small terms of arbitrary

duration to maintain each server’s status, as depicted in Figure 4.5. Terms are recog-

nized through their term number, which increases monotonically. An election is held to

pick the next leader among the candidates at the beginning of each term. If a candidate

is elected from most of the servers, it obtains the cluster’s leadership for the current

term. Otherwise, if the majority is not reached, split votes occur and the term stops

with no leadership. Thus, leadership is handled by one node on each term.

Figure 4.5: Time divided into terms [1]

A current term number is stored on each server and is exchanged whenever commu-

nication is initiated between them [1]. The term number on a server is updated to be

equal to the received message’s term number in case the current term number stored

in the server is less than the received one. If a message with higher term number is

received by a candidate or the leader, it means that their current term is out of date and

they automatically demote themselves back to the follower state.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

4.5 Leader Election 29

• Remote Procedure Calls: Communication between the Raft servers is carried out by

sending Remote Procedure Calls (RPCs) to each other. To be precise, Raft utilizes the

following RPC types:

1. RequestVote RPCs: They are sent by candidates to all the active servers during

the election phase.

2. AppendEntries RPCs: Leader nodes utilize this type to replicate log entries and

to periodically sent heartbeats to all the servers across the cluster. Heartbeats are

messages with no payload and are sent to notify that the leader is active.

In case servers don’t get a response promptly, they resend RPCs and in terms of per-

formance, they send out multiple RPCs at once.

4.5 Leader Election

Servers always start out as followers when they’re activated and stay in that state as

long as the leader keeps sending them heartbeats periodically or a candidate sends them Re-

questVote RPCs. A follower will proceed to the candidate state and trigger a leader election

if it doesn’t receive any message from the leader of a candidate within a set time interval,

called as election timeout.

The node will increase its term, cast a vote for itself, and send concurrent RequestVote

RPCs to every node in the cluster upon becoming a candidate. The initiated election could

result in one of the following results, according to [18]:

1. When the candidate node receives the majority of votes granted by each server on the

cluster, it is declared the leader for the particular term and proceeds to the leader State.

2. The term ends without a leader as the Candidate node failed to gather the majority

of votes while the election was held, leading to a split vote. In this case elections are

restarted after the candidate transitions back to the follower state.

3. The RPC gets rejected and the rest of the Candidates continue to preserve their state if

the candidate node sending vote requests has the lowest current term number among

the Candidate nodes. On the contrary, the candidate node will be elected as the new

leader if its current term number has the greatest value.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

30 Chapter 4. Raft distributed consensus algorithm

Split votes could emerge endlessly in the event of the second outcome described above. In

order to cease this behaviour, Raft applies election timeouts that are selected in random from a

predetermined range between 150 and 300milliseconds [1]. This increases the likelihood that

a candidate will win the election and start sending heartbeats before another server timeout

occurs, and it ensures that in most cases only one server will reach its timeout. Hence, split

votes are easily addressed and their occurrance is significantly reduced, because after the split

vote every candidate resets the election timeout randomly when a new election takes place.

4.6 Log Replication

Once a candidate node has obtained leadership through an election, it can respond to

incoming client requests and extract the included command that the replicated state machines

need to process. The received command is stored by the leader to the underlying log as a new

entry, and the rest of the servers subsequently receives the replicated entry through concurrent

AppendEntries RPC requests from the leader. Three pieces of information usually comprise

a log entry [18]:

• The client-specified command assigned for execution by the state machines.

• An Index which is used to locate an entry’s position in a server’s log sequentially.

• A Term Number, which is used to trace the term in which the leader received the com-

mand. It is also used to recover from inconsistencies between the logs as well as to

ensure part of the property table shown in Figure 4.3.

• The term number and index of the commited entry stored inside the leader’s log which

comes right before the new entries.

The entry is applied to the state machine of the leader and responds to the corresponding

client with the returned status of the process once most of the server’s logs have successfully

replicated the entry. Once the procedure is completed, the entry is considered committed and

the followers are informed from upcoming AppendEntries. In the event of node failure, slow

operation, or packet loss due to network malfunctions, entry replicas may not be reached by

followers and thus the leader resents these RPC messages until all entries are finally stored

in each follower. A possible organized set of logs is depicted in Figure 4.6.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

4.6 Log Replication 31

In the depicted state of the logs, the leader has committed the 7th log entry and all the

preceding ones as they have been replicated on most of the server logs. The logs of second

and forth row belong to servers which might have faced failure or packet loss, resulting to

inconsistency with the leader log. The leader is responsible to modify these logs according

to its own log.

Figure 4.6: Replicated logs for a cluster of 5 servers [1]

In order to maintain the same state across all replicated state machines, server logs must

contain identical entries with the same order. Raft provides the demanded consistency among

these logs through the LogMatching Property [1] which is included in Figure 4.3. It specifies

that if an entry in two logs is pointed by the same index and contains the same term num-

ber, then among these logs the contained entries and all the preceding ones are identical. In

practice, this features is guaranteed by a series of consistency checks implemented inside the

AppendEntries and take action when these RPC messages are received [1]. The consistency

check includes the following actions:

1. The follower rejects new entries included in AppendEntries if it cannot locate an entry

in its log with the same term number and indexing of the message.

2. The follower rejects the received AppendEntry if the included term number is less than

the server’s current term. This indicates that the sender is likely a stale leader.

3. If an entry in the follower’s log and a newly received entry have equal indexes but

contain different terms, the conflicting entry within the follower’s log is removed along

with all entries that follow it.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

32 Chapter 4. Raft distributed consensus algorithm

Consistency checks are held whenever server logs intent to append new entries and if

the check fails, the insertion will be aborted. Hence, the leader is always aware that the log

of the follower node matches up to his own except of the new entries whenever it receives

successful responds from the forwarded AppendEntries.

If the system operates normally, leader and followers logs are kept in sync with identical

entries in every term. However, these logs can sometimes appear inconsistent since following

a leader crash, it may not have completed the replication of its log entries to every follower

in the cluster or because of follower node failures and restarts. Figure 4.7 depicts various

inconsistency scenarios between follower and leader logs.

Figure 4.7: Possible follower log scenarios [1]

A follower may not contain all the entries that exist on the leader’s log, or it may have

stored additional uncommitted entries from an older leader and thus they are not included in

the new leader’s log, or both scenarios can occur.

The leader is assigned to solve these incosistencies by overwriting entries from it’s own

log over conflicting entries in the follower logs. To achieve this, it must locate the latest entry

which is included in both logs [1]. The variable nextIndex, which is maintained by the leader,

is an index that indicates the next log entry that the leader will forward across every follower

in the cluster. This index always points to the position that follows the last entry in the leader’s

log during normal operation or on initial leader state. If the logs of the follower and the leader

contradict, the consistency check fails and the AppendEntries RPC is rejected by the follower.

The leader then decreases the nextIndex and tries again to forward the RPC for the preceding

entry. This index will eventually point to a position were the follower and leader logs match

until that entry. In that case, the check mechanism will have removed all conflicting entries

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

4.7 Safety 33

from the followers log, and the leader will be able to append it’s own entries to synchronise

and ensure consistency among the logs. Hence, a node entering the leader state does not need

to implement any particular functions to make logs consistent using this approach. It begins

to operate, and the logs converge automatically.

4.7 Safety

The approaches discussed until now are insufficient to guarantee that each state machine

across the cluster performs identical commands in the same order. The Raft algorithm ad-

dresses this issue by limiting which servers can be elected as leaders. To be precise, it pre-

vents candidates from obtaining leadership unless all committed entries are included in it’s

log.

In order to be elected, a candidate node has to communicate with most of the cluster

members, which implies that at least one of them must contain all entries that have been

committed [1]. As a result, the algorithm assures that for any given term, the leader serving

at that interval will contain all entries committed in preceding terms. To implement this re-

striction, the RequestVotes RPC delivers additional information about the number of entries

stored in the candidate’s log as well as the term of the most recent log entry. Raft compares

the term number and the index of the latest entries between the candidate and the vote receiver

log to determine which of the two logs is the most updated one. If the candidate’s message

includes an earlier term than the one of the receiver server, the vote will be rejected. If the

terms have identical numbers but the candidate’s log contains fewer entries compared to the

receiver’s log, the vote will be rejected.

4.8 Client Interaction

This section briefly describes the client interaction with Raft, such as the way clients lo-

cate the current node serving as leader and how the system handles incoming serializable

and linearizable commands. When the clients wants to issue the first request, it connects to a

server that is picked up at random. If the picked server is not the leader, the client request will

be rejected and the server will reply with an AppendEntries RPC message which will include

the current leader’s network address [1]. Furthermore, client requests won’t be completed if

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

34 Chapter 4. Raft distributed consensus algorithm

the leader crashes. In that case, clients randomly select a cluster member and attempt to send

the request again. Client requests received by any follower that must be approved through

Raft consensus are immediately forwarded to the leader [19]. Such requests include lineariz-

able read and write operations. On the contrary, requests that don’t need consensus, such

as serializable read operations, can be handled by any server in the cluster with the risk of

accessing stale data.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Chapter 5

Experimental Tools

5.1 Introduction

in this section we give a brief description of the software equipment which was utilized

for the assessment and experimental implementation of this thesis project. The following

tools are introduced:

1. NITOS, which is a remotely accessible testbed at the University of Thessaly that sup-

ports both wireless and wired experimental research.

2. Docker, a software tool that allows application deployment inside lightweight contain-

ers.

3. Prometheus, an open-source toolkit that monitors health status and performance met-

rics of components in a distributed system.

4. Grafana, a web application that provides dashboards that include several charts and

graphs for displaying metrics from various data sources.

Each of these components is thoroughly discussed in the following sections.

5.2 NITOS testbed

The Network Implementation Testbed utilizing Open Source platforms [20], which is

abbreviated as NITOS, is managed and created by the University of Thessaly’s Network Im-

plementation Testbed Laboratory (NITlab) [21]. The NITOS facility was created in order to

35
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

36 Chapter 5. Experimental Tools

provide feasible solutions for deploying and evaluating wired and wireless network-based

research topics. The testbed is widely utilized from members of the network research com-

munity across the world to conduct experiments as well as it is available around-the-clock and

can be accessed remotely.The open-source software infrastructure of the testbed provides the

opportunity to create and deploy novel algorithms, allowing for additional functionalities to

be implemented on current hardware. Furthermore, the facility is comprised of several func-

tional wireless nodes and it’s primary objective is to guarantee reproductive experimental

results as well as to provide a flexible way to assess protocols and applications under real en-

vironment conditions. The NITOS testbed is controlled and managed through the cOntrol and

Management Framework (OMF) open-source software [21]. Figure 5.1 depicts the NITOS

architecture. It consists of three individual deployments that are geographically seperated,

the Indoor RF Isolated Testbed, the Office Testbed, and the Outdoor Testbed [20].

Figure 5.1: NITOS Architecture

5.2.1 Outdoor Testbed

NITOSOutdoor deployment includes 50 robust ICARUS nodes that have several wireless

interfaces suitable for conducting experiments with diverse wireless communication stan-

dards, includingWi-Fi, WiMAX and LTE [22].The testbed has been set up outdoors in a Uni-

versity of Thessaly’s campus building, depicted in Figure 5.2.To be precise, 25 of these nodes

are scattered over the floors of the building and 25 are spaced in a grid topology throughout

the building’s roof.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

5.2.2 Indoor RF Isolated Testbed 37

Figure 5.2: Nitos Outdoor testbed

5.2.2 Indoor RF Isolated Testbed

50 ICARUS nodes comprise the NITOS RF Isolated Indoor testbed which is deployed

on the inside of a University of Thessaly’s campus building. These machines provide wire-

less interfaces for Wi-Fi, LTE, and WiMAX and are arranged in a symmetrical way around

the isolated environment, establishing a grind topology. Such an extensive testbed provides

several opportunities to the experimenters, including execution and evaluation of power-

demanding processing algorithms and protocols [23].Moreover, the testbed is outfitted with

several cutting-edge technologies such as directional antennas. The nodes additionaly include

two ethernet interfaces, eth0 and eth1, which are utilized for distinct purposes.

Figure 5.3: Nitos Indoor testbed

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

38 Chapter 5. Experimental Tools

The eth0 interface is used to interact with the nodes and to control them, whereas eth1

is used for experimentation and is configured according to the experimenter’s preferences.

This wired topology of the Indoor Testbed is depicted in Figure 5.3. A set of these nodes were

utilized to conduct experiments for this thesis project, and their corresponding eth1 interface

was configured to meet the project’s needs.

5.2.3 Office Testbed

10 robust second generation ICARUS nodes form the Office Indoor Testbed. These nodes

integrate various heterogeneous technologies which include Wi-Fi, 5G, WiMAX and LTE.

These technologies enable the experimenter to design, execute, and evaluate real-world sce-

narios in a deterministic office environment. The Office Testbed is distributed across an entire

floor of the NITlab laboratory, as shown in Figure 5.4.

Figure 5.4: Nitos Office testbed

5.3 Docker Engine

As stated in Chapter 2, a container is a software component that provides a way to wrap

the containerized application along with all its dependencies so that the application can be

executed across different computer environments reliably and quickly. The containerized ap-

plication’s runtime, settings, system libraries and tools, and code are all included in a Docker

container image which constitutes an independent, executable software package [24]. When

it comes to Docker containers, container images are converted into containers, and Docker

provides universal packaging approach and simple tooling that is wrapping up all embedded

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

5.4 Prometheus 39

application dependencies of a container, which eventually runs on Docker Engine, the indus-

try’s most popular container runtime. Figure 5.5 depicts the containerized application layer

and it’s interaction with the Docker platform.

Figure 5.5: Docker Containers

5.4 Prometheus

Prometheus is a software toolkit that provides monitoring and alerting features and is

designed to observe health status and performance metrics of components in a distributed

system and cloud-native environments. To be percise, it keeps track of metrics and saves them

as time series data, implying that the information included in the metric is stored alongside

the timestamp that indicates when the metric was recorded. It can also record and collect

optional key-value pairs called labels [25].

Prometheus expects an accessible HTTP endpoint as it’s target in order to collect var-

ious metrics and can start to scrape numerical data from the exposed endpoint once it is

available. If these metrics can’t be accessed with their current format directly, Prometheus

is using third-party exporters which expose the endpoint metrics in the desired format in or-

der to scrape them. After these metrics are recorded in time series format, they are archived

in a local time series database, which allows for efficient retrieval for monitoring data be-

haviour throughout time. In terms of gaining insights into the system’s behaviour, Prometheus

provides users with the Prometheus Query Language (PromQL) which enables time series

data selection and aggregation in real-time. Queries can also be utilized to define alerting

events that could arise from a specific condition or a threshold. When the event is triggered,

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

40 Chapter 5. Experimental Tools

Prometheus notifies the user through external systems including email, Slack, or PagerDuty.

Additionally, Prometheus’ web-based user interface on port 9090 can present collected data

in tabular or graph form. Grafana and other third-party visualization tools can also be inte-

grated with Prometheus by using the related API [26]. Figure 5.6 demonstrates some of these

workflow components and the Prometheus architecture.

Figure 5.6: Prometheus echosystem components

5.5 Grafana

Grafana is an open-source software (OSS) [26] data visualisation software platformwhile

it also provides analytics for a variety of metrics through interactive and configurable dash-

boards that can be easily deployed. Users can utilise the platform’s tools to transform time

series data to informative graphs and charts. Dashboards are components that include these

graphs to keep track of the experimental system by pulling data from Grafana’s plugin frame-

work which enables data sources like PostgreSQL, Prometheus and Graphite to connect and

forward their stored data.

Aside from graphs and charts, a dashboard can include multiple seperate panels on the

layout of the grid. Each one of these includes it own set of functions and a variety of visual-

ization alternatives, such as heat maps, geo maps and histograms. For our thesis project, we

deployed a handful of dashboards on our Grafana instance from the official website that were

suitable for our experimental metrics. One of these dashboard’s sample is seen in Figure 5.7.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

5.5.1 Prometheus as data source 41

Figure 5.7: Grafana dashboard overview

5.5.1 Prometheus as data source

Grafana features native Prometheus integration as it’s data source, allowing it to visualize

systemmetrics scraped by Prometheus in the form of queries through a variety of dashboards.

Grafana offers a user-friendly and flexible web interface for building customized dashboards

based on the experimenter’s monitoring preferences, whereas the Prometheus model exports

optimal time-series data for health check and performance analysis via various modifica-

tions supported by queries. Thus, their combination generates a powerful stack for effective

observation and complete metric analysis of the examined system. In this thesis project, a

Prometheus instance is deployed locally on one of the NITOS nodes and the scraped met-

rics are pushed to the Grafana server instance installed at the same node by altering specific

configuration files.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Chapter 6

Implementation and Analysis of

Optimized etcd Load Balancing Policies

6.1 Objective

As discussed in Chapter 3, etcd has become the primary data storage method for Kuber-

netes cluster deployments because it provides a reliable approach to guarantee high consis-

tency over stored metadata that hold information about the state of the cluster. The servers

of the etcd cluster can either be configured as Pods in the Kubernetes master node or as parts

of a standalone cluster in a separate architecture. The last deployment approach has several

benefits, including independent management of the external etcd cluster with less complexity

overhead, enhanced security, and more efficient utilization of the isolated system resources.

However, these properties come with tradeoffs that increase the latency overhead on the com-

munication network between the etcd members and the Control Plane components. TLS en-

cryption, distance between endpoints, and transmission latency caused by high load on etcd

servers are some of the factors that can impact the performance of this communication link.

This thesis project attempts to suppress these factors by extending the default load balancing

policy used by the etcd client API, Round Robin, to support two types of policies which the

kubernetes API server will use to forward requests to the etcd servers:

1. Pick Leader: Forwards all client requests to the leader node of the etcd cluster

2. Pick Leader with Leader Status Forecasting: It maintains the Pick Leader policy along

with machine learning support through a classification model that predicts the current

43
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

44 Chapter 6. Implementation and Analysis of Optimized etcd Load Balancing Policies

status of the etcd leader and depending on the prediction it decides whether to trigger

an election or not.

The implementation of these policies is presented in following sections.

6.2 Experimental System Setup

A set of nodes located in the Indoor RF Isolated testbed had been utilized to deploy a pro-

posed architecture that includes an external etcd cluster and a kubernetes cluster. Figure 6.1

depicts the experimental topology, which includes the following objects:

• etcd node

• Kubernetes master node

• Prometheus & Grafana node

Figure 6.1: thesis topology deployed on NITOS

As outlined in the previous Chapter, each node of the Indoor Testbed contains two eth-

ernet interfaces: one for controlling the node remotely and executing commands via ssh, and

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

6.2.1 etcd node 45

another used for experimentation. In order to build the network between all the nodes within

the architecture, the second ethernet interface (eth1) was configured to create links among

the etcd cluster nodes to forward peer traffic, between the kubernetes master node and each

etcd server to transmit client requests, and between the Prometheus a Grafana node and each

etcd server to scrape metrics. The underlying operating system which the loaded disk image

runs on each node is Ubuntu 20.04.3 LTS (Focal Fossa).

6.2.1 etcd node

To set up the etcd cluster, version v3.5.1 of the available etcd binaries was installed on

each node. Afterwards a systemd unit file was created on all the three machines to start the

etcd service and it’s configuration was based on each node’s IP address and the IP addresses

of the fellow cluster members. The configuration file exploits the eth1 interface to advertise

port 2080 on which peer traffic among the etcd members is exchanged to keep them in sync,

and port 2379 which listens for etcd client requests. Once the etcd service starts running on

each node, the etcd cluster will start operating. For simplicity sake, TLS authentication and

encryption was not enabled.

6.2.2 Kubernetes master node

To build and configure the kubernetes cluster according to our preferences, the kubernetes

Github repository was installed and build from source in order to modify the source code to

extend the already existing etcd load balancing policy. At first, Docker Engine 24.0.5, golang

1.19.5 and etcd v3.5.1 where installed which are vital for the normal operation of the cluster.

Afterwards, the kubernetes source code was installed by cloning the kubernetes v1.19.16 git

repository. At this point we must modify the default configurations of the cluster in order

to use the external etcd as it’s primary data storage. To accomplish this we modified two

configuration scripts, etcd.sh and local-up-cluster.sh located at the hack/lib and hack/ file path

of the repository respectively. The first script is responsible for executing and terminating the

etcd binary whereas the second script includes the configuration of every kubernetes Control

Plane and Node component to build and run the local kubernetes cluster. In the first script, we

applied the binary path of the installed etcd version in order to be compatible with the verison

of the external etcd, while on the local-up-cluster.sh we specified the list of the external

etcd endpoints by modifying the –etcd-servers field of the kube-apiserver configuration file.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

46 Chapter 6. Implementation and Analysis of Optimized etcd Load Balancing Policies

Additionally the eth1 interface was exploited to advertise the address of the API server for the

kubernetes traffic. After modifying the configurations, the following command is executed

to run the local kubernetes cluster along with the external etcd:

1 $ ${GOPATH_K8S} / hack / l o c a l −up− c l u s t e r . sh

6.2.3 Prometheus & Grafana node

This node hosts the Prometheus and Grafana software components, which where de-

scribed in the previous Chapter, and is responsible for scraping periodically the etcd metrics

which are available on each etcd server at port 2379. Prometheus version 2.32.1was installed

and it’s configuration file prometheus.yml was modified in order to target the endpoints of

the external etcd cluster. To start scraping metrics, a systemd unit file was configured to en-

able and start the prometheus service. To deploy Grafana we followed the same procedure,

which has built-in support to detect prometheus and assign it as it’s data source. To use the

Grafana’s web interface to display the scraped metrics, a VPN link between the node and

the experimenter’s laptop was created in order to access the Grafana and Prometheus URL

remotely using the user’s browser.

6.3 Implementation Analysis

By following the aforementioned configurations for the etcd nodes and the kubernetes

master node, the kubernetes cluster is successfully launched by storing all of the neces-

sary key value pairs to the external etcd cluster. Their interaction is verified using the tcp-

dump packet analysing tool over the eth1 interface to capture TCP packets that encapsu-

late the RPC messages that are exchanged between the etcd client and the external servers.

We were also able to display on each etcd server the key value pairs which the kubernetes

cluster had created via the etcdctl tool which is used to interact with the servers through

shell commands. The next step was to examine the kube-apiserver log file to identify the

file path of the source code in the kubernetes repository that implements the Round Robin

load balancing policy. After some searching across the repository folders we discovered

that both etcd client API and the grpc balancer implementation, which are introduced in

Chapter 3, are located at the vendor/ directory, which contains third-party libraries used

by the kubernetes API to interact with external applications. To be precise, clientv3, which

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

6.3 Implementation Analysis 47

is the official client implementation for etcd written in Go, is passing all the etcd requests

made by the kubernetes API server through roundrobin_balanced.go, located at the ven-

dor/go.etcd.io/etcd/clientv3/balancer/picker folder. This is where the Round Robin balancer

implementation takes place with the following source code:

1 package p i c k e r

2

3 impo r t (

4 ” fmt ”

5 ” sync ”

6 ” go . ube r . o rg / zap / z ap co r e ”

7 ” go . ube r . o rg / zap ”

8 ” goog l e . go l ang . o rg / g rpc / r e s o l v e r ”

9 ” goog l e . go l ang . o rg / g rpc / b a l a n c e r ”

10 ” c o n t e x t ”

11)

12

13 / / Th i s f u n c t i o n r e t u r n s t h e a d d r e s s o f a new round r ob i n b a l a n c ed p i c k e r .

14 func newRoundrobinBalanced (cn fg Conf ig) P i c k e r {

15 subconns := make ([] b a l a n c e r . SubConn , 0 , l e n (cn fg .

SubConnToResolverAddress))

16 f o r sbconn := r ange cn fg . SubConnToResolverAddress {

17 subconns = append (subconns , sbconn)

18 }

19 r e t u r n &r r b {

20 p l c : Roundrob inBalanced ,

21 l o g g e r : cn fg . Logger ,

22 subconns : subconns ,

23 sbconnToAddr : cn fg . SubConnToResolverAddress ,

24 }

25 }

26

27 t y p e r r b s t r u c t {

28 p l c P o l i c y

29

30 l o g g e r *zap . Logger
31

32 mtx sync . RWMutex

33 nx t i n t

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

48 Chapter 6. Implementation and Analysis of Optimized etcd Load Balancing Policies

34 subconns [] b a l a n c e r . SubConn

35 sbconnToAddr map [b a l a n c e r . SubConn] r e s o l v e r . Address

36 }

37

38 func (rb * r r b) S t r i n g () s t r i n g { r e t u r n rb . p l c . S t r i n g () }

39

40 / / P i ck i s c a l l e d f o r eve ry c l i e n t r e q u e s t .

41 func (rb * r r b) P i ck (c t x c o n t e x t . Contex t , o p t s b a l a n c e r . P i c k I n f o) (

b a l a n c e r . SubConn , func (b a l a n c e r . DoneInfo) , e r r o r) {

42 rb . mtx . RLock ()

43 s i z e := l e n (rb . subconns)

44 rb . mtx . RUnlock ()

45 i f s i z e == 0 {

46 r e t u r n n i l , n i l , b a l a n c e r . Er rNoSubConnAvai lab le

47 }

48

49 rb . mtx . Lock ()

50 c u r _ i d x := rb . nx t

51 sbconn := rb . subconns [c u r _ i d x]

52 p i c k ed_add r := rb . sbconnToAddr [sbconn] . Addr

53 rb . nx t = (rb . nx t + 1) % l e n (rb . subconns)

54 rb . mtx . Unlock ()

55

56 rb . l o g g e r . Debug (

57 ” p i cked ” ,

58 zap . S t r i n g (” p i c k e r ” , rb . p l c . S t r i n g ()) ,

59 zap . S t r i n g (” a d d r e s s ” , p i c k ed_add r) ,

60 zap . I n t (” subconn − index ” , c u r _ i d x) ,

61 zap . I n t (” subconn − s i z e ” , s i z e) ,

62)

63

64 / / i s c a l l e d when t h e RPC i s comple t ed

65 doneFunc := func (i n f o b a l a n c e r . DoneInfo) {

66 f s s := [] z ap co r e . F i e l d {

67 zap . E r r o r (i n f o . E r r) ,

68 zap . S t r i n g (” p i c k e r ” , rb . p l c . S t r i n g ()) ,

69 zap . S t r i n g (” a d d r e s s ” , p i c k ed_add r) ,

70 zap . Bool (” s u c c e s s ” , i n f o . E r r == n i l) ,

71 zap . Bool (” by t e s − s e n t ” , i n f o . By t e sSen t) ,

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

6.3 Implementation Analysis 49

72 zap . Bool (” by t e s − r e c e i v e d ” , i n f o . By t e sRece ived) ,

73 }

74 i f i n f o . E r r == n i l {

75 rb . l o g g e r . Debug (” b a l a n c e r done ” , f s s . . .)

76 } e l s e {

77 rb . l o g g e r . Warn (” b a l a n c e r f a i l e d ” , f s s . . .)

78 }

79 }

80 r e t u r n sbconn , doneFunc , n i l

81 }

Listing 6.1: roundrobin_balanced.go : Implemented RoundRobin policy

In order to create the Pick Leader policy, all incoming client requests should be redi-

rected to the subconnection which is pinned to the endpoint of the current etcd leader. This

was managed by initializing a goroutine (thread in Go language) in the function at line 14

of the preceding code, which creates a new Round Robin balancer object. The goroutine ex-

ecutes every 5 seconds the etcdctl shell command that is presented below, which extracts

information about the status of each state machine at the etcd cluster, including member ID,

term number, current database size and node state (leader or follower). By performing string

manipulation on the output we can detect which endpoint serves as the current etcd leader,

and the corresponding URL is assigned to the isLeader value of the Balancer object. When

the Pick function is called for an etcd client request, it examines if the current leader has an

available subconnection. If the subconnection doesn’t exist in the specified list, the balancer

keeps the subconnection that was already chosen by the Round Robin policy (lines 49 - 54

of the preceding code). The goroutine code is presented in the first underlying code instance

whereas the selection of the etcd leader’s subconnection is shown in the second one.

1

2 func newRoundrobinBalanced (cn fg Conf ig) P i c k e r {

3

4 subconns := make ([] b a l a n c e r . SubConn , 0 , l e n (cn fg .

SubConnToResolverAddress))

5

6 f o r sbconn := r ange cn fg . SubConnToResolverAddress {

7 subconns = append (subconns , sbconn)

8 }

9

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

50 Chapter 6. Implementation and Analysis of Optimized etcd Load Balancing Policies

10 r := &r r b {

11 p l c : Roundrob inBalanced ,

12 l o g g e r : cn fg . Logger ,

13 subconns : subconns ,

14 sbconnToAddr : cn fg . SubConnToResolverAddress ,

15 i s L e a d e r : ” ” ,

16 }

17

18 / / −−−−−−−−−−−−−−−−NEW_CODE−−−−−−−−−−−−−−−−−−−−−−−−−−

19

20 / / Spawn a new go r o u t i n e t o ob s e r v e t h e e t c d l e a d e r

21 go func () {

22 f o r {

23

24 ou tpu t , e r r := exec . Command (” sh ” , ”−c ” , ”ETCDCTL_API=3 e t c d c t l −−

e n d p o i n t s = h t t p : / / 1 0 . 6 4 . 9 3 . 2 4 1 : 2 3 7 9 ,

25 h t t p : / / 1 0 . 6 4 . 9 3 . 2 4 2 : 2 3 7 9 , h t t p : / / 1 0 . 6 4 . 9 3 . 2 4 3 : 2 3 7 9

endpo i n t s t a t u s ”) . Outpu t ()

26

27 / / I f an e r r o r occu r s , l og t h e e r r o r

28 i f e r r != n i l {

29 pan i c (e r r)

30 }

31

32 / / Conve r t t h e by t e s l i c e t o a s t r i n g and s p l i t i t based on

wh i t e s p a c e c h a r a c t e r s

33 l i n e s := s t r i n g s . F i e l d s (s t r i n g (o u t p u t))

34

35 i p := l i n e s [0]

36

37 f o r _ , v := r ange subconns {

38

39 / / F ind t h e IP a d d r e s s o f t h e l e a d e r

40 f o r _ , l i n e := r ange l i n e s {

41

42 i f s t r i n g s . Con t a i n s (l i n e , ” h t t p ”) {

43 i p = s t r i n g s . T r imSu f f i x (l i n e , ” , ”)

44 }

45

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

6.4 Evaluation and Experimental Results 51

46 i f s t r i n g s . Con t a i n s (l i n e , ” t r u e , ”)

47 && ip == c fg . SubConnToResolverAddress [v] . Addr{

48 r . i s L e a d e r = c fg . SubConnToResolverAddress [v] . Addr

49 }

50 }

51 }

52 / / S l e ep f o r a f i x e d i n t e r v a l b e f o r e check i ng ag a i n

53 t ime . S l e ep (5 * t ime . Second)

54 }

55 } ()

56 / / −−

57 r e t u r n r

58 }

Listing 6.2: roundrobin_balanced.go : Pick Leader policy

1 f o r _ , v := r ange rb . subconns {

2 i f rb . sbconnToAddr [v] . Addr == rb . i s L e a d e r {

3 sbconn = v

4 }

5 }

Listing 6.3: roundrobin_balanced.go : picking etcd leader policy

6.4 Evaluation and Experimental Results

6.4.1 Round Robin and Pick Leader

After modifying the source code of the default load balancing policy, we recompiled the

kubernetes repository so that the launched kubernetes cluster will make use of the extended

load balancer. To visualize the difference between the two policies, we ran two separate ex-

periments, one with the default balance policy and the other with the extended policy. To

conduct the experiments under similar environment conditions, we reloaded the dis image of

the kubernetes master node and erased all key value pairs from the etcd database before run-

ning the second experiment. During that interval, we had set up the Prometheus and Grafana

services to collect metrics for both experiments. Figure 6.2 is a graph from Grafana’s etcd

dashboard which displays the volume of RPC requests issued from the kube-apiserver to each

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

52 Chapter 6. Implementation and Analysis of Optimized etcd Load Balancing Policies

etcd server through the gRPC interface. When using Round Robin, we can clearly see that

the workload is evenly spread the three etcd servers, however in the Pick Leader experiment,

all the previous workload is managed by the etcd leader.

Figure 6.2: etcd cluster incoming client traffic using Round Robin and Pick Leader load

balancing policies.

To compare the performance of the Pick Leader policy to Round Robin, we modified the

kubernetes repository script that initializes and runs both Control Plane and node components

by inserting time variables that compute the total initialization time of the kubernetes cluster.

Furthermore, because the etcd servers of an external etcd cluster may not be placed at a

research facility in real-world deployment scenarios, we conducted the experiments using

various delays on the eth1 interface of each etcd server via the network traffic configuration

tool tc [27]. Table 6.1 depicts the elapsed initialization time of the kubernetes cluster using

both Round Robin and Pick Leader policy with 0, 15, 30, and 45 millisecond added delay on

each etcd node’s eth1 interface respectively. We can observe from the findings and from

the following graphs that when the traffic delay increases, the difference between the

initialization time of the two experiments grows as well. This occurs because, when using

Pick Leader balance policy client requests that would have been pushed to the followers if

we used Round Robin are now forwarded directly to the etcd leader, allowing us to save one

RTT for each client request that whould have been issued to a follower (redirect client request

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

6.4.2 Pick Leader with Leader Status Forecasting 53

constant delay on eth1 Round Robin Pick Leader Speedup

no delay 26.548 sec 26.157 sec 1.015

15 msec 47.430 sec 41.223 sec 1.15

30 msec 80.785 sec 66.459 sec 1.216

45 msec 104.395 sec 82.486 sec 1.267

Table 6.1: Initialization time for Kubernetes services on different delay scenarios.

to the leader and wait for the response from the leader when the command is committed to

send a reply to the client).

0 15 30 45

20

40

60

80

100

120

Constant delay on eth1 interface [msec]

In
iti
al
iz
at
io
n
tim

e
[s
ec
]

Kubernetes services initialization time

Pick Leader
Round Robin

6.4.2 Pick Leader with Leader Status Forecasting

The aim of this implementation is to predict the state of the etcd leader using relative etcd

metrics while the Pick Leader balancer is running. If the leader status is considered unstable,

the algorithm demotes the node to the follower state and elects a new leader. In order to create

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

54 Chapter 6. Implementation and Analysis of Optimized etcd Load Balancing Policies

a dataset to train the Machine Learning model, the following unstable states were created:

1. Overload: Using the benchmark tool provided by etcd, we generate 1000 etcd clients

that send 100 linearizable read requests to the etcd leader for a 700 kB key value stored

in the database.

2. Network delay:We utilize the aforementioned tc network tool to add large delay values

on the eth1 interface and thus to generate a high latency response for incoming client

requests.

3. Overload with Network delay: The previous conditions are met at the same time.

When none of these states is triggered, the leader state is considered Idle which means

that the etcd cluster operates normally. The creation of the dataset was fully automated using

two scripts.The first script selects one of the states at random every 5 minutes and applies it

to the experimental environment, while the second extracts the following etcd metrics from

the leader node every 5 seconds:

1. etcd_disk_wal_write_bytes_total: Total number of bytes written in the node’s disk us-

ing fsync.

2. etcd_network_client_grpc_sent_bytes_total: Volume of RPCmessages received by clients

in bytes.

3. etcd_network_peer_sent_bytes_total: Number of transmitted bytes to other etcd mem-

bers.

4. etcd_server_heartbeat_send_failures_total: Detected node failures to forward heart-

beat messages, which are utilized to inform the followers that the node still owns the

leadership. This metric indicates that the node is likely overloaded.

5. etcd_server_slow_apply_total: This metric tracks the number of consensus proposals

made by the etcd node with large commit time.

Since all these metrics are counter variables, we converted them to rates before appending

them to the dataset using the following formula:

current_metric− previous_metric

scrape_interval

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

6.4.2 Pick Leader with Leader Status Forecasting 55

where previous and current metric are the values of the same metric that had been scraped

before and after the scrape interval respectively.Moreover , since the implementation is based

on states, we focused on using the generated dataset to trainmulti-class classificationmachine

learning models.

Evaluation Metrics

This section presents the metrics utilized to evaluate the performance of the examined

machine learning models for our multi-class classification problem as well as to compare

them. The evaluation metrics are the following:

1. Precision: For a given class, Precision detects the amount of all the instances predicted

as this class that actually belong to that class.

Precision =
TruePositives

F lasePositives + TruePositives

• False Positives (FP) are the instances that actually belong to another class but are

predicted as this one.

• True Positives (TP) are the instances that are accurately predicted as that class.

2. Recall: For a given class, Recall is the percentage of all instances that actually belong

to that class that are accurately predicted by the classification model.

Recall =
TruePositives

TruePositives+ FlaseNegatives

• False Negatives (FN) are the instances of a class that are incorrectly predicted as

another class.

3. F1-score: For a certain class, the F1-score is the weighted harmonic average which of

the previously mentioned measures. It shows us what percent of predictions for that

class were actually correct.

F1− score =
2 ∗ (Precision ∗Recall)

Precision+Recall

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

56 Chapter 6. Implementation and Analysis of Optimized etcd Load Balancing Policies

F1-score metric is also highly useful when dealing with imbalanced datasets where

some classes exceed others in terms of samples per class. In such cases, the accuracy

metric may be unreliable.

Classification models evaluation

With the generated dataset we trained offline and evaluated the following classification

models:

• XGBoost: In XGBoost (eXtreme Gradient Boosting) the implemented decision trees

can have an arbitary amount of terminal nodes, which basically form the final decision

points of the tree. The algorithm also assigns weights on the leaves according to the

calculated evidence and information of that node. Also, weight shrinkage is minimizing

the influence of individual trees with high weights to the final prediction. XGBoost

additionally utilizes the Newton-Raphson method assigning optimal weights during

the tree-building process and compared to the traditional gradient descent technique, it

provides a more direct route to the minimum.

• Artificial Neural Network (ANN): An ANN is made up of units called artificial neu-

rons. Neurons receive signals from other neurons as an input, and through a non-linear

function that utilizes the specified input, it forwards the computed output signal via

edges with set weights which are utilized to optimize the learning process. Typically,

these units are aggregated into layers to form an Artificial Neural Network. We use the

Tensorflow python library [28] to develop an ANN classifier with three hidden lay-

ers having 128, 64, and 32 neurons, respectively. Considering that we have multiple

classes, the output layer is made up of neurons proportional to the number of these

classes. Each neuron of the output layer will generate a probability for the relative

class, and if that class has the highest probability it will be the final prediction.

Table 6.2 shows the F1-score calculated for each class prediction made by the afore-

mentioned models. In order to make a reliable estimation of each model’s performance, the

presented metrics are the average of the f1-scores derived from 10 different predictions using

the same dataset. Based on the evaluation results, we settled on the XGBoost classifier to be

trained offline and integrated into our experimental topology to perform status forecasting

for the etcd leader.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

6.4.2 Pick Leader with Leader Status Forecasting 57

Class ANN (F1-score) XGBoost (F1-score)

0 (Idle state) 81.94% 93.63%

1 (Network delay) 94.10% 97.35%

2 (Overload) 83.84% 85.89%

3 (Network delay & Overload) 89.12% 89.87%

Table 6.2: Evaluation results after 10 different predictions of each ML model.

In this scenario, the pre-trained model is used by a python script implemented within the

kubernetes master node which scrapes the etcd leader’s metrics every 5 seconds and extracts

those that will be used as input for the model to predict the leader’s state. In addition, a

UDP socket is established between the Python script and the etcd balancer to inform the

balancer about the script’s actions depending on the prediction output. To be more specific,

if the predicted instance belongs to class 0 or 2, the leader is considered stable and the script

forwards the current leader’s endpoint. Otherwise, if the instance belongs to class 1 or 3, an

election is triggered and the new leader’s endpoint is forwarded to the balancer through the

UDP socket. While the kubernetes cluster operates along with the Pick Leader balancer to

distribute traffic to the leader of the external etcd cluster, the balancer listens to the UDP

socket for the endpoint to which it must connect. No changes are made until the receiving

endpoint differs from the one currently linked to the balancer.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Chapter 7

Conclusions

7.1 Summary and Conclusions

In this thesis, we deployed a system architecture consisting of a kubernetes cluster and a

separate external etcd cluster, and we designed an extended load balancing policy to resolve

latency issues on their communication in real world environments. To be precise, we altered

the default load balancing policy used by the kubernetes API server, which is Round Robin,

to route all etcd requests to the etcd leader exclusively. To build our implementation we first

conducted a comprehensive investigation about the software components and attributes of the

Kubernetes ecosystem, the etcd data storage and the Raft protocol. Following that, we created

a network that connects the two distinct clusters hosted on nodes of the NITOS Indoor Testbed

in order to conduct experiments to compare the performance of our extended policy to the

default one. We also integrated a classification model into our policy to provide improved

system reliability by predicting the status of the etcd leader node, such as high load. We

evaluated the performance of two classifiers, XGBoost and ANN, using a dataset that was

created by storing metrics from the etcd leader during several experiments.

7.2 Future Work

For production Kubernetes cluster deployments with external etcd topology, our extended

load balancing policy combined with the integrated machine learning algorithm has the po-

tential to deliver an optimized and more resilient solution compared to the default communi-

cation mechanism. Certainly, our implementation can benefit from additional modifications

59
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

60 Chapter 7. Conclusions

and improvements. To enable our implementation to adapt to network conditions in various

environments, the effects of other network technologies and configurations suitable for com-

munication between the Kubernetes cluster and etcd can be studied. Furthermore, except high

load prediction, the machine learning algorithm can be expanded to select the etcd node with

the lowest predicted network IO latency and disk IO latency to serve as the etcd leader when

the demand for pod creation and cluster state updates on the kube-apiserver scales up quickly

or changes dramatically.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

Bibliography

[1] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In

Proc. USENIX ATC, 2014.

[2] Overview | kubernetes. https://kubernetes.io/docs/concepts/

overview/. Ημερομηνία πρόσβασης: 7-8-2023.

[3] Kubernetes components | kubernetes. https://kubernetes.io/docs/

concepts/overview/components/. Ημερομηνία πρόσβασης: 7-8-2023.

[4] etcd. https://etcd.io/. Ημερομηνία πρόσβασης: 8-8-2023.

[5] Raft consensus algorithm. https://raft.github.io/. Ημερομηνία πρόσβα-

σης: 8-8-2023.

[6] The go programming language. https://go.dev/. Ημερομηνία πρόσβασης: 8-8-

2023.

[7] What is etcd? | ibm. https://www.ibm.com/topics/etcd. Ημερομηνία πρό-

σβασης: 8-8-2023.

[8] Role-based access control. https://en.wikipedia.org/wiki/Role-

based_access_control. Ημερομηνία πρόσβασης: 8-8-2023.

[9] Kv api guarantees. https://etcd.io/docs/v3.5/learning/api_

guarantees/. Ημερομηνία πρόσβασης: 8-8-2023.

[10] Faq | etcd. https://etcd.io/docs/v3.5/faq/#what-is-failure-

tolerance. Ημερομηνία πρόσβασης: 8-8-2023.

[11] How etcd works with and without kubernetes. https://learnk8s.io/etcd-

kubernetes. Ημερομηνία πρόσβασης: 8-8-2023.

61
Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://etcd.io/
https://raft.github.io/
https://go.dev/
https://www.ibm.com/topics/etcd
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://etcd.io/docs/v3.5/learning/api_guarantees/
https://etcd.io/docs/v3.5/learning/api_guarantees/
https://etcd.io/docs/v3.5/faq/#what-is-failure-tolerance
https://etcd.io/docs/v3.5/faq/#what-is-failure-tolerance
https://learnk8s.io/etcd-kubernetes
https://learnk8s.io/etcd-kubernetes

62 Bibliography

[12] etcd3 api. https://etcd.io/docs/v3.2/learning/api/#watch-api.

Ημερομηνία πρόσβασης: 8-8-2023.

[13] etcd client architecture. https://etcd.io/docs/v3.3/learning/

client-architecture/. Ημερομηνία πρόσβασης: 23-8-2023.

[14] grpc load balancing. https://grpc.io/blog/grpc-load-balancing/.

Ημερομηνία πρόσβασης: 24-8-2023.

[15] Consensus (computer science). https://en.wikipedia.org/wiki/

Consensus_(computer_science). Ημερομηνία πρόσβασης: 11-8-2023.

[16] Raft consensus algorithm. https://raft.github.io/. Ημερομηνία πρόσβα-

σης: 10-8-2023.

[17] Heidi Howard. Arc: Analysis of raft consensus. Technical Report UCAM-CL-TR-

857, University of CambridgeComputer Laboratory, 15 JJ ThomsonAvenueCambridge

CB3 0FD United Kingdom, 2014.

[18] Raft consensus algorithm - geeksforgeeks. https://www.geeksforgeeks.

org/raft-consensus-algorithm/. Ημερομηνία πρόσβασης: 20-8-2023.

[19] Frequently asked questions | etcd. https://etcd.io/docs/v3.3/faq/#do-

clients-have-to-send-requests-to-the-etcd-leader. Ημερομηνία

πρόσβασης: 22-8-2023.

[20] Nitos. https://nitlab.inf.uth.gr/NITlab/nitos. Ημερομηνία πρόσβα-

σης: 26-8-2023.

[21] Nitlab. https://nitlab.inf.uth.gr/NITlab/. Ημερομηνία πρόσβασης:

26-8-2023.

[22] Outdoor hidden - nitlab. https://nitlab.inf.uth.gr/NITlab/outdoor-

hidden. Ημερομηνία πρόσβασης: 28-8-2023.

[23] Indoor hidden - nitlab. https://nitlab.inf.uth.gr/NITlab/indoor-

hidden. Ημερομηνία πρόσβασης: 28-8-2023.

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

https://etcd.io/docs/v3.2/learning/api/#watch-api
https://etcd.io/docs/v3.3/learning/client-architecture/
https://etcd.io/docs/v3.3/learning/client-architecture/
https://grpc.io/blog/grpc-load-balancing/
https://en.wikipedia.org/wiki/Consensus_(computer_science)
https://en.wikipedia.org/wiki/Consensus_(computer_science)
https://raft.github.io/
https://www.geeksforgeeks.org/raft-consensus-algorithm/
https://www.geeksforgeeks.org/raft-consensus-algorithm/
https://etcd.io/docs/v3.3/faq/#do-clients-have-to-send-requests-to-the-etcd-leader
https://etcd.io/docs/v3.3/faq/#do-clients-have-to-send-requests-to-the-etcd-leader
https://nitlab.inf.uth.gr/NITlab/nitos
https://nitlab.inf.uth.gr/NITlab/
https://nitlab.inf.uth.gr/NITlab/outdoor-hidden
https://nitlab.inf.uth.gr/NITlab/outdoor-hidden
https://nitlab.inf.uth.gr/NITlab/indoor-hidden
https://nitlab.inf.uth.gr/NITlab/indoor-hidden

Bibliography 63

[24] Docker container. https://www.docker.com/resources/what-

container/. Ημερομηνία πρόσβασης: 29-8-2023.

[25] Prometheus. https://prometheus.io/docs/introduction/

overview/. Ημερομηνία πρόσβασης: 29-8-2023.

[26] About grafana. https://grafana.com/docs/grafana/latest/

introduction/. Ημερομηνία πρόσβασης: 29-8-2023.

[27] How to use the linux traffic control. https://netbeez.net/blog/how-to-

use-the-linux-traffic-control/. Ημερομηνία πρόσβασης: 6-9-2023.

[28] Tensorflow. https://www.tensorflow.org/. Ημερομηνία πρόσβασης: 9-9-

2023.

[29] What is prometheus | grafana documentation. https://grafana.com/docs/

grafana/latest/fundamentals/intro-to-prometheus/. Ημερομηνία

πρόσβασης: 30-8-2023.

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 16, 17, 15, 18, 19, 13, 14, 21, 20, 22, 23, 24, 25, 26, 29,

27, 28]

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:31:33 EEST - 18.188.250.203

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://grafana.com/docs/grafana/latest/introduction/
https://grafana.com/docs/grafana/latest/introduction/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://www.tensorflow.org/
https://grafana.com/docs/grafana/latest/fundamentals/intro-to-prometheus/
https://grafana.com/docs/grafana/latest/fundamentals/intro-to-prometheus/

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Motivation
	Thesis subject
	Contribution

	Thesis Content Organization

	Kubernetes Ecosystem
	Chronicle of Application Deployment
	What are the benefits of Kubernetes
	Kubernetes Basic Architecture
	Control Plane Components
	Node Components

	etcd Key-Value Store
	Introduction
	etcd Features
	etcd integration with Kubernetes
	Etcd deployment methods in Kubernetes Clusters
	etcd client architecture

	Raft distributed consensus algorithm
	Introduction
	Understanding consensus
	Replicated state machines
	The Raft Protocol
	Leader Election
	Log Replication
	Safety
	Client Interaction

	Experimental Tools
	Introduction
	NITOS testbed
	Outdoor Testbed
	Indoor RF Isolated Testbed
	Office Testbed

	Docker Engine
	Prometheus
	Grafana
	Prometheus as data source

	Implementation and Analysis of Optimized etcd Load Balancing Policies
	Objective
	Experimental System Setup
	etcd node
	Kubernetes master node
	Prometheus & Grafana node

	Implementation Analysis
	Evaluation and Experimental Results
	Round Robin and Pick Leader
	Pick Leader with Leader Status Forecasting

	Conclusions
	Summary and Conclusions
	Future Work

	Bibliography

