
UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Diploma Thesis

AUDITING AND EXTENDING SECURITY FEATURES
OF OAUTH 2.0 FRAMEWORK

Author: Christinakis loannis

i c h r i s t i n a k i s @ u t h . g r

Supervisor: Stamoulis Georgios

Examiners: Panagiota Tsompanopoulou

Tsalapata Hariklia

Volos, Greece 2023

1

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://www.linkedin.com/in/gianchris/
mailto:ichristinakis@uth.gr
https://www.e-ce.uth.gr/department/faculty/georges/
https://www.e-ce.uth.gr/department/faculty/yota
https://www.e-ce.uth.gr/department/faculty/htsalapa

2

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference

is included in the bibliographic references section. I also declare that the results of the

work have not been used to obtain another degree. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

The Declarant

Christinakis Ioannis

3

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΠΕΡΙ ΑΚΑΔΗΜΑΪΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΚΑΙ
ΠΝΕΥΜΑΤΙΚΩΝ ΔΙΚΑΙΩΜΑΤΩΝ

«Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών

δικαιωμάτων, δηλώνω ρητά ότι η παρούσα διπλωματική εργασία, καθώς και

τα ηλεκτρονικά αρχεία και πηγαίοι κώδικες που αναπτύχθηκαν ή

τροποποιήθηκαν στα πλαίσια αυτής της εργασίας, αποτελεί αποκλειστικά

προϊόν προσωπικής μου εργασίας, δεν προσβάλλει κάθε μορφής δικαιώματα

διανοητικής ιδιοκτησίας, προσωπικότητας και προσωπικών δεδομένων

τρίτων, δεν περιέχει έργα/εισφορές τρίτων για τα οποία απαιτείται άδεια των

δημιουργών/δικαιούχων και δεν είναι προϊόν μερικής ή ολικής αντιγραφής, οι

πηγές δε που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές αναφορές

και μόνον και πληρούν τους κανόνες της επιστημονικής παράθεσης. Τα

σημεία όπου έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή/και πηγές άλλων

συγγραφέων, αναφέρονται ευδιάκριτα στο κείμενο με την κατάλληλη

παραπομπή και η σχετική αναφορά περιλαμβάνεται στο τμήμα των

βιβλιογραφικών αναφορών με πλήρη περιγραφή. Αναλαμβάνω πλήρως,

ατομικά και προσωπικά, όλες τις νομικές και διοικητικές συνέπειες που

δύναται να προκύψουν στην περίπτωση κατά την οποία αποδειχθεί,

διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν μου ανήκει διότι είναι προϊόν

λογοκλοπής».

Ο/Η Δηλών/ούσα
Χριστινάκης Γιάννης

4

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

ABSTRACT

OAuth 2.0 is a widely adopted authorization framework used in modem web

and mobile applications for secure access to protected assets. However, as the

framework evolves and new security threats emerge, it becomes crucial to

continuously evaluate and enhance its security features.

This thesis aims to address this challenge by conducting a comprehensive

audit of the security features of the OAuth 2.0 framework and proposing

guidelines for developing a secure OAuth 2.0 implementation and extension

features for hardening the infrastructure supporting it.

The analysis utilizes a simple practical threat model as the foundation for

understanding vulnerabilities within the framework and their mitigation,

which are further explored through an examination of existing OAuth 2.0

implementations and real-world case studies.

Considering these identified threats, a proof-of-concept implementation is

developed, tested and reviewed according to a security auditing methodology

compiled based on the above.

Finally a set of infrastructure level hardening enhancements and features is

proposed in order to strengthen the proof-of-concept system of API services

secured using OAuth 2.0.

5

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

ΠΕΡΙΛΗΨΗ

Το OAuth 2.0 είναι ένα ευρέως διαδεδομένο πλαίσιο εξουσιοδότησης που

χρησιμοποιείται σε σύγχρονες εφαρμογές ιστού και κινητών για ασφαλή

πρόσβαση σε προστατευμένα δεδομένα.

Ωστόσο, καθώς το πλαίσιο εξελίσσεται και εμφανίζονται νέες απειλές για την

ασφάλεια, καθίσταται ζωτικής σημασίας η συνεχής αξιολόγηση και ενίσχυση

των χαρακτηριστικών ασφαλείας του.

Αυτή η εργασία στοχεύει να αντιμετωπίσει αυτήν την πρόκληση

διενεργώντας έναν ολοκληρωμένο έλεγχο των χαρακτηριστικών ασφαλείας

του πλαισίου OAuth 2.0 και προτείνοντας κατευθυντήριες γραμμές για την

ανάπτυξη ασφαλούς υλοποίησης OAuth 2.0 και επεκτάσεις για τη

“σκλήρυνση” της υποδομής που το υποστηρίζει.

H ανάλυση αξιοποιεί ένα απλό, πρακτικό threat model ως βάση για την

κατανόηση των τρωτών σημείων εντός του πλαισίου, τα οποία διερευνώνται

περαιτέρω μέσω μιας εξέτασης υπαρχουσών υλοποιήσεων OAuth 2.0 και

πραγματικών case-studies.

Λαμβάνοντας υπόψη τις απειλές εν λόγω απειλές, αναπτύσσεται, δοκιμάζεται

και αναθεωρείται μια proof of concept εφαρμογή, σύμφωνα με μια

μεθοδολογία ελέγχου ασφαλείας που συντάχθηκε με βάση τα παραπάνω.

Τέλος, προτείνεται ένα σύνολο βελτιώσεων και τεχνικών σκλήρυνσης σε

επίπεδο υποδομής προκειμένου να διασφαλιστεί η ασφάλεια API υπηρεσιών

που βασίζονται στο πλαίσιο OAuth 2.0.

6

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Acknowledgements

I would like to express my gratitude towards the colleagues who taught me

how to be professional, while maintaining humane values and the university's

professors that inspired our curiosity. Their input was invaluable throughout

the journey of this thesis.

Moreover, I would like to thank all the significant people, friends and family,

for their support and understanding.

7

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Table of Contents

ABSTRACT... 4
ΠΕΡΙΛΗΨΗ... 5
Acknowledgements.. 6
Table of Contents... 7
List of Figures.. 10
Chapter 1.. 11
Introduction..11

1.1 Motivation.. 11
1.2 Structure... 12

Chapter 2.. 13
Background.. 13

2.1 Identity and Access Management (IAM).. 13
2.2 Session Management..14

2.2.1 Cookies...15
2.2.2 Access Tokens.. 17

2.3 JSON Web Tokens..19
2.4 The problem with Third-Party Application Authorization.................. 21

Chapter 3..23
OAuth 2.0 Framework.. 23

3.1 Overview..23
3.2 OAuth 2.0 Roles, Client Types and Terms..24

3.2.1 The key roles of the OAuth 2.0 framework................................. 24
3.2.2 Token Types.. 25
3.2.3 OAuth 2.0 Client Types... 25
3.2.4 OAuth Scope..26
3.2.5 OAuth Flows and Authorization Grant..27

3.3 OAuth Grant Types.. 28
3.3.1 Authorization Code Flow...28

Flow Diagram.. 29
3.2.2 Implicit Grant Flow..31

Flow Diagram.. 32
Notes and Reasoning behind Deprecation...................................... 33

3.2.3 Proof Key for Code Exchange (PKCE)....................................... 34

8

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Flow Diagram.. 35
3.2.4 Other OAuth Grant Types.. 37

Client Credentials.. 37
Device Code...37
Resource Owner Password.. 38
Refresh Token.. 38

Chapter 4..39
OAuth 2.0 Threat Model and Vulnerabilities... 39

4.1 OAuth 2.0 Threat Actors..40
4.2 Critical assets... 41
4.3 OAuth 2.0 Attack Vectors and Mitigations..42

4.3.1 Improper Token Management and Validation..............................42
4.3.2 Insufficient Redirect URI Validation... 43

Vulnerability.. 43
Case Study: Slack redirect uri validation bypass.............................44
Mitigations.. 45

4.3.3 Authorization Code injection...46
Vulnerability.. 46
Mitigations.. 46

4.3.4 CSRF..48
Vulnerability.. 48
Case-Study: Shopify login with Pinterest CSRF............................. 48
Mitigations.. 49

4.3.5 Phishing and misleading user consent... 49
Case-Study: Malicious “Google Docs” App Phishing Campaign... 49
Countermeasures..50

Chapter 5..53
Securing APIs with OAuth 2.0... 53

5.1 Development Environment.. 54
5.2 High Level Architecture...55
5.2 JWT Revocation...56

5.2.1 Short-lived access tokens... 57
5.2.2 Signing Secret Rotation... 57
5.2.3 Token Blacklist.. 58

Token Revocation... 58

9

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Blacklist Housekeeping... 59
Implementation.. 59
Security Considerations... 60
Drawbacks... 60

5.2.4 Other JWT revocation methods..61
5.3 JWT Lifetime and Validation... 62

5.3.1 Local Validation... 62
5.3.2 Remote Validation..63

5.4 Securing API backends.. 64
5.4.1 API Gateway Pattern.. 64

Implementation... 65
Security Considerations... 66

Chapter 6..67
Conclusions and Future Work... 67

6.1 Summary.. 67
6.2 Future Work... 68

References.. 69

10

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

List of Figures

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 4.1:

Figure 4.2:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4:

Figure 5.5:

IAM operation flow

Session Management

HTTP Cookie-based Authentication

HTTP Token-based Authentication

JWT token format

Authorization Code Flow

Implicit Grant Flow

Authorization Code flow with PKCE

Google’s consent prompt

Github’s consent prompt

Development environment

High level Architecture

JWT revocation using REDIS as a blacklist

JWT Token Lifetime

Securing backend services using an API Gateway

11

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 1

Introduction

In today's interconnected digital landscape, the secure management of user

identities and access to resources is of paramount importance. Identity and

Access Management (IAM) frameworks provide the foundation for

controlling access to sensitive information and ensuring the integrity and

confidentiality of resources. One widely adopted authorization framework

within IAM is OAuth 2.0.

1.1 Motivation

While OAuth 2.0 has become a popular choice for granting secure access to

protected resources, it is not immune to security vulnerabilities and threats.

As the digital landscape evolves and new security risks emerge, it is essential

to continuously evaluate and enhance the security features of OAuth 2.0. This

investigation aims to compile a comprehensive audit methodology of the

framework and propose extensions to improve its overall security, prevent

unauthorized access, and mitigate emerging security threats by answering the

following question.

• What are the existing security features of the OAuth 2.0 framework ?
• What are the vulnerabilities and potential threats associated with OAuth

2.0 ?
• How can the security features of OAuth 2.0 be enhanced to address

known vulnerabilities and emerging threats ?

12

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

1.2 Structure

This study is organized into four main chapters, excluding introduction

(Chapter 1) and conclusion (Chapter 6).

• Chapter 2 provides a high level background regarding Identity and

Access Management (IAM), Session Management, self-encoded JSON

Web Tokens (JWTs) and defines the problem OAuth 2.0 framework

was developed to address.

• Chapter 3 provides a thorough overview of the framework, aiming to

identify its key components such as token and client types, roles and

protocol flows, as well as to clarify specification terminology.

• Chapter 4 investigates the potential threats and attack vectors that

OAuth 2.0 may be susceptible to, by exploring real-world case studies

with the assistance of a practical threat model identifying sensitive

assets within the framework’s operation in order to consider relevant

mitigations and security controls.

• Chapter 5 presents a robust OAuth 2.0 implementation and extends its

architecture, integrating infrastructure components aiming to

implement hardening features to assist securing APIs and

microservices.

13

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 2

Background

2.1 Identity and Access Management (IAM)

Identity and Access Management (IAM) is a framework of policies,

technologies, and processes that organizations use to manage and control

access to digital assets. It ensures that the right entities have the proper access

to information, systems, applications, and other resources within an

organization's digital ecosystem. [1]

The typical IAM components are the following:

1. Identity Provisioning: The process of creating, modifying, and deleting

user accounts and associated access privileges.

2. Authentication: Verifying the identity of users attempting to access

resources.

3. Authorization: Granting or denying access permissions to specific

resources based on the authenticated user's identity, role, or other

attributes.

4. Role-Based Access Control (RBAC): Assigning access permissions

based on predefined roles.

5. Single Sign-On (SSO): Allowing users to authenticate once and then

access multiple applications or systems without having to re-enter

credentials.

14

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

6. Identity Federation: Enabling users to access resources across multiple

domains or organizations using their existing credentials.

7. Auditing and Compliance: Monitoring and recording user activities,

generating audit logs.

Figure 2.1: IAM operation flow

2.2 Session Management

Session management involves the management and tracking of user

interactions and enables maintaining state. In authenticated sessions it also

serves the crucial role of linking authentication and authorization within an

application. Two common session management mechanisms are cookies and

tokens. [2], [3]

Figure 2.2: Session Management

15

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

2.2.1 Cookies

Cookie-based authentication involves using HTTP cookies to manage user

sessions. When a user logs in, the server generates a session identifier and

stores it as a cookie in the user's browser. The browser automatically includes

this cookie in subsequent requests, allowing the server to identify and

associate requests with the correct session. On user log out the cookie is

destroyed both on the client and the server side, thus the session is

considered terminated.

16

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Figure 2.3: HTTP Cookie-based Authentication

While cookie-based authentication remains widely used in web applications
that rely on session state and leverage the browser's built-in cookie
management capabilities, due to the fact that sessions are stored and
managed completely on the server-side, scaling becomes an issue as the user
base grows. In addition, cookies are strongly coupled to a single domain and
fall short in supporting modern architectures that require cross origin access.

17

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

2.2.2 Access Tokens

Decoupling authentication from a single domain is a strong requirement in

modem development practices and is the primary factor for token-based

authentication’s prevalence. Token-based authentication involves issuing a

unique token to the client upon successful authentication. The token contains

or acts as a reference to information about the user's session or

authentication status and is included in subsequent requests as an HTTP

header (e.g., Authorization header). [4][5]

18

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Figure 2.4: HTTP Token-based Authentication

It is tailored for single page and mobile applications, API-based stateless

architectures that require cross-platform access and can facilitate

implementing SSO capabilities. One of the significant advantages is that it

operates in a stateless manner, eliminating the need for the server to store

session state, which simplifies server-side implementation and enhances

scalability.

However, it does introduce additional complexity in terms of token

management. Secure mechanisms for token generation, validation, expiration,

19

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

revocation, and token refresh must be established to ensure a secure and

seamless user experience.

2.3 JSON Web Tokens

JSON Web Tokens (JWTs) is an open standard [6] that defines a compact and

self-contained way for securely transmitting information between parties as a

JSON object. This information can be verified and trusted because it is

digitally signed, using symmetric or asymmetric cryptography.

A JWT consists of three parts: a header, a payload, and a signature, encoded

using Base64 and separated by dots.

1. Header: The header contains information about the type of token and

the cryptographic algorithms used for signing and/or encrypting the

token and optionally the signing key id.

2. Payload: The payload contains the claims, which are statements about

an entity and additional metadata, such as the user’s id, roles,

permissions, expiration time, or any other custom data. Registered

claims are either mandatory or optional. For example “exp” claim

identifies the token expiration time and is mandatory, while “j t i”

contains the JWT identifier and is optional.

3. Signature: The signature is created by combining the encoded header,

payload, and a secret key. It verifies the authenticity of the token and

ensures that it has not been tampered with.

20

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

eyJhbGciOiJSUzIlNiIsInR5cCI6IkpXVCJ9.ey
JzdWIiOilxMj M0NTY3ODkwIiwibmFtZSI6Ikpva
G4gRG91IiwiYWRtaW4i0nRydWUsImlhdCI6MTUx
N]IzOTAyMn0.NHVaYe26MbtOYhSKkoKYdFVomg4
i8ZJd8_-
RU8VNbftc4TSMb4bXP313YlNWACwyXPGffz5aXH
e6lty1Y2t4SWRqGteragsVdZufDn5BlnJl9pdR_
kdVFUsra2rWKEofkZeIC4yWytE58sMIihvo9H1S
cmmVwBcQP6XETqYd0aSHp1gOa9RdLIPDvoXQ5oqy
gTqVtxaDr6wUFKrKItgBMzWIdNZ6y7O9E0DhEPT
bE9r"f Bo6KTFsHAZnMg4k68CDp2woYIaXbmYTWcv
bzIuH07_37GT79XdIwkm95QJ7hYC9RiwrV7mesb
Y4PAahERJawntho0my942XheVLmGwLMBkQ

HLADLH: ALGORITHMS IO K E N lv l :E

<
"alg": "RS256",
"typ": "JWT"

PAT LOAD: ■

"sub": "1234567B90",
"name": John Doe",
"admin": true,
"iat": 1516239022}

VERIFY SIGNATURE

RSASHA256(
base64UrlEncode(header) + +
base64UrlEncode(payload),

---- BEGIN PUBLIC KEY.....
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ
8AMIIBCgKCAQ£Au1SU1LfVLPHCozMx
H2Ho

---- BEGIN PRIVATE KEY.....
MIIEvwIBADANBgkqhkiG9w0BAQEFAA
SCBKkwggSlAgEAAoIBAQC7VJTUt9Us
BcKj
MzEfYyjiWA4R4/M2bS1GB4t7NXp9BC

Figure 2.5: JWT token format taken from https://rwt.io/ [7]

JWTs are commonly used for stateless authentication with the key advantage

of being easily shared across different systems and platforms. As they are

self-encoded, the need for server-side storage or database lookups is limited

enabling greater performance and scalability as mentioned in 2.2.2.

JWTs are not managed server side and remain valid until their expiration. This

makes auditing and revoking JWTs non-trivial to implement [8].

21

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://jwt.io/

2.4 The problem with Third-Party Application

Authorization

In the pre-OAuth 2.0 era, third-party client application access to user data

(documents, social media posts, emails, or contacts) involved users sharing

their login credentials (username and password) with the third-party

application.

This approach presented several security and privacy concerns and risks,

hence is considered obsolete and to be taken as an anti-pattern:

1. Privacy: Sharing login credentials meant providing access to all aspects

of the user's account, including potentially sensitive information, rather

than providing selective access.

2. Credential Exposure: user credentials were stored by third-party

applications increasing the risk of potential data leaks or unauthorized

access and misuse.

3. Lack of Control: no means of control over the permissions granted to

the third-party application, At the same time revoking access to an

already authorized application was challenging and required at the very

least a password change.

OAuth 2.0 was developed to address these issues and provide a more secure

and controlled way for third-party applications to access user-owned data. It

introduces an authorization layer that allows users to grant access to their data

selectively, manage authorization preferences and revoke access at any time,

while maintaining control and without directly exposing their credentials.

22

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 3

OAuth 2.0 Framework

3.1 Overview

OAuth 2.0 is an open authorization framework that allows secure access

delegation between different systems or applications. It provides a

standardized method for granting third-party applications limited access to a

resource owner's (typically a user) resources without the need for sharing their

credentials with it.

With OAuth 2.0, the user can grant permission to a client application by

issuing an access token that represents the level of authorization. This access

token is then used by the client application to access the user's resources from

the resource server. The client application never sees or handles the user's

credentials.

The primary benefits of OAuth 2.0 include improved security by decoupling

credentials and enabling controlled resource access, enhanced user experience

through seamless authorization, and interoperability across different platforms

and services. It offers a flexible and secure way to authorize access to

protected resources, such as user data or functionalities, while maintaining

user privacy and control.

To demonstrate this with an intuitive example, imagine a visitor comes to a

house when the homeowner is not there, and instead of sending the visitor an

actual house key, the owner sends them a temporary code to get into a

23

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

lockbox that contains the key. OAuth 2.0 operates in a similar manner. In

OAuth 2.0, one application sends another application an authorization token

to provide user equivalent access, instead of giving out the user's credentials.

3.2 OAuth 2.0 Roles, Client Types and Terms

In this section the key roles, token and client types of OAuth 2.0 are defined

and framework terminology is clarified to provide a more practical overview

and assist discussing in-depth technical concepts in the following chapters.

3.2.1 The key roles of the OAuth 2.0 framework

• Authorization Server: The server responsible for authenticating the

user and issuing access tokens.

For example a trusted Identity Provider such as Google's IdP server

which enables federating your Google identity (Login with Google) and

delegating access to Google APIs.

• Resource Server: The server hosting the protected resources that the

client wants to access on behalf of a user.

For example is a Mailing service API.

• Resource Owner: The entity who owns the protected resources and

can grant permission to access them. When the resource owner is a

person, it is referred to as an end-user.

24

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Such is, a mailbox owner, the end-user of the Mailing Service.

• OAuth / Client Application: a third-party application requesting

access to resources on behalf of the resource owner. The term "client"

does not imply any particular implementation characteristics.

For example a third-party AI-enabled typing assistant detecting and

correcting spelling, grammar, syntactical mistakes in emails and/or

documents.

3.2.2 Token Types

• Access Token: A short-lived token, issued by the authorization server

and used by the client application to access protected resources,

representing the authorization granted by the user to the client.

A JWT with read-only access to the Mail API, issued by the IdP and

used by the typing assistant to access the user’s mailbox.

• Refresh Token: a token with longer validity, issued by the

authorization server and used by the client application to obtain a new

access token when the current access token becomes invalid or expires.

Refresh tokens are meant to provide a frictionless user experience by

omitting the need for prompting the user to re-login or re-authorize a

client application.

Unlike access tokens, refresh tokens are intended for use only with

authorization servers and are never sent to resource servers.

25

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

3.2.3 OAuth 2.0 Client Types

• Confidential or Private Client: A client application able to register a

client credentials, maintain their confidentiality and securely

authenticate to the authorization server with it, leveraging a server side

channel.

• Public Client: A client application incapable of maintaining the

confidentiality of client credentials, due to the fact it runs in untrusted

environments.

They are typically applications running on user devices or browsers

(JavaScript, Android), such as single-page applications, mobile or

native apps that pose no server-side channels or storage components.

Confidential clients are considered to be more secure and trusted and

typically are applications with server-side components (Java, Python,

C#), which allow them to securely obtain access tokens and store them

server-side. Public clients, on the other hand, are considered less secure

and untrusted compared to confidential clients.

3.2.4 OAuth Scope

In OAuth 2.0 scope is the term used to specify the level of access or

permissions requested by a client application when requesting authorization to

access protected resources. The scope also indicates the level of access

granted on an issued access token.

26

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Scopes provide a means of fine-grained access control, allowing the resource

owner (user) to grant limited and specific permissions to client applications.

The client application specifies the requested scope in the authorization

request as an HTTP parameter. However, the scope actually granted on the

access token may differ based on the user's consent, which is conveyed in the

authorization response body.

For instance, a client application seeks access to a user's email inbox and

profile data includes the scopes "read-email" and "read-profile" in the

authorization request. However, the user may choose to grant access solely to

their profile information, not planning to use the application for email

management. Consequently, the issued access token will be scoped

exclusively with "read-profile" permissions, allowing the client to access only

the resources associated with that specific scope.

3.2.5 OAuth Flows and Authorization Grant

An OAuth flow refers to a series of steps and interactions between the client

application, the resource owner , and the authorization server to issue an

access token.

These flows define how the resource owner grants authorization to the client

application and how it exchanges that authorization, typically through a chain

of HTTP redirects, for an access token.

OAuth 2.0 supports multiple flows to cater to different client types and

security requirements.

27

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

OAuth 2.0 framework specifies several grant types, commonly referred to as

authorization flows, for different use cases.

For the scope of this thesis, Authorization Code with and without PKCE

(Proof Key for Code Exchange) and Implicit flow will be covered in depth,

since these are the most widespread and help differentiate between public and

confidential clients, while demonstrating the framework’s operation and

implementation concerns.

Other flows Resource Owner Password flow and Client Credentials flow will

be referenced for completion in order to demonstrate the framework’s

different use cases.

3.3 OAuth Grant Types

3.3.1 Authorization Code Flow

Authorization Code flow is typically used by confidential clients, such as

server-side applications.

It involves the client application redirecting the user to the authorization

server's authorization endpoint, providing its client id as an HTTP parameter.

The user is prompted to authenticate and grant consent. If the user provides

consent, the authorization server responds with an authorization code and

redirects the user to the client’s callback endpoint, providing the authorization

code as an HTTP parameter.

The client then exchanges this code for an access token and, optionally, a

refresh token. [14]

28

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Flow Diagram

A step-by-step graphical representation of Authorization Code flow follows in

the diagram below:

Resource Server
api.example.com

OAuth Client Resource Owner
i h i i l l n i |111i i 11 U s e r - A g e n t

Authorization Server
auth.example.com

Figure 3.1: Authorization Code Flow. Sensitive parameters with security implications are

written in a red font and the dark arrows represent HTTP requests made via confidential,

server-side channels. A few parameters are omitted for readability.

29

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

1. Client Initiation: The client application redirects the user to the

authorization server's authorization endpoint, providing its client id in

an HTTP parameter. Typically through a user interface element like a

"Login with OAuth" button.

2. User Authentication: The user is prompted to authenticate with the

authorization server. This ensures that the user is aware of the client

application and consents to granting it access to their protected

resources.

3. User Consent: After authentication, the user is presented with a

consent screen that explains what permissions the client application is

requesting. The user can review the requested permissions and decide

whether to grant or deny access.

4. Authorization Code Request: If the user grants consent, the

authorization server generates an authorization code and sends it back

to the client in an HTTP parameter, via a redirect URI specified during

the client application registration process.

The authorization code issued is a temporary credential, strictly tied to

the client application and not intended for direct use as an access token.

5. Authorization Code Exchange: The client application, using a secure

and confidential server-side channel, exchanges the received

authorization code with the authorization server for an access token.

The exchange involves sending a POST request to the authorization

server's token endpoint, along with the authorization code, client

credentials (client id and client secret), and any additional required

parameters.

30

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

6. Access Token Response: The authorization server verifies the

authorization code and client credentials and upon validation, it

responds with an access token, which represents the client's

authorization to access protected resources on behalf of the user.

The response may also include other details, such as the token's

expiration time, any optional scopes associated with the access token

and/or a refresh token.

7. Accessing Protected Resources: With the obtained access token, the

client application can make requests to protected resources.

3.2.2 Implicit Grant Flow

The Implicit Grant flow is designed for public clients, such as single-page

applications (SPAs) or native and mobile apps, where securely storing client

credentials is challenging.

This flow does not include client authentication, and relies solely on the

presence of the resource owner and the registration of the redirection URI.

Since the access token is encoded into the redirection URI as an HTTP or

fragment parameter, it may be exposed to the resource owner and other

applications residing on the same device or environment (e.g. browser history,

browser extensions, JS dependencies, network interception devices, etc). [15]

https://client.app.com/callback#<access-token>

Flow Diagram

A step-by-step graphical representation of Implicit Grant flow follows in the

diagram below:

31

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://client.app.com/callback%23%3caccess-token

Resource Owner
User-Agent

Authorization Server
auth.example.com

i
GET /login

302 Found
Location: https://auth.example.com/authorize

GET /authorize?respon se_ty pe=to ken
&client_id=<id>

=https://client.app.com/callback
&scope=<scope>____________

User Consent and
Authentication

prompt

Figure 3.2: Implicit Grant Flow. Sensitive parameters with security implications are

written in a red font. The client is public and does not possess a server-side channel. A few

parameters are omittedfor readability.

1. Client Initiation: The client application redirects the user to the

authorization server's authorization endpoint, providing its client id in

an HTTP parameter. Typically through a user interface element like a

"Login with OAuth" button.

2. User Authentication: The user is prompted to authenticate with the

authorization server. This ensures that the user is aware of the client

application and consents to granting it access to their protected

resources.

3. User Consent: After authentication, the user is presented with a

consent screen that explains what permissions the client application is

requesting. The user can review the requested permissions and decide

whether to grant or deny access.

32

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://auth.example.com/authorize
https://client.app.com/callback

4. Access Token Request: If the user grants consent, the authorization

server generates an access token and sends it directly back to the client

application.

Unlike the Authorization Code flow, in which the client makes separate

requests for authorization and for an access token, in this flow, the

client receives the access directly as a result of the user's authorization

and consent, typically via a redirect URL.

5. Accessing Protected Resources: With the obtained access token, the

client application can make requests to protected resources.

Notes and Reasoning behind Deprecation

Implicit Grant flow has been removed from the latest version of the OAuth

2.1 draft specification [11] and is considered obsolete and insecure, due to

lack of support for client authentication, refresh tokens and access token

exposure in the redirect URI [16].

Prior to the introduction of PKCE extension (3.2.3) to Authorization Code

flow, implementing the Authorization Code flow without a client secret was

commonly regarded as a preferable choice over the Implicit grant flow for

public clients.

Despite its deprecation it is still widely used, thus relevant and allows

demonstrating some key points when assessing OAuth implementations,

hence used as reference.

33

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

3.2.3 Proof Key for Code Exchange (PKCE)

Proof Key for Code Exchange (PKCE) is an extension to the Authorization

Code flow and was introduced to mitigate certain security vulnerabilities

associated with public clients by adding an additional step to the

Authorization Code flow, ensuring that the authorization code is securely

exchanged for an access token by verifying the integrity of the request.

While PKCE enables using Authorization Code flow with public clients, it

should not be taken as a replacement for client authentication and does not

allow treating public clients as confidential. [17]

34

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Flow Diagram

A step-by-step graphical representation of Authorization Code flow with

PKCE follows in the diagram below:

Resource Server
api.example.com

G enerate a rid
associate

Authorization rods
with Code

Challenge and
Method

Autharizat'Dri: bearer
eyJ. ..TOKEN

2ΰΰ o k

«user data>

Figure 3.3: Authorization Code flow with PKCE. Sensitive parameters with security

implications are written in red font, PKCE specific parameters are written in orange. The

client is public and does not possess a server-side channel. A few parameters are omitted

for readability.

35

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

PKCE specific steps

1. Code Challenge Creation: Before initiating the authorization request,

the client generates a “code verifier”, a cryptographically random

string, “nonce”.

2. Code Challenge Transformation: The client then derives a “code

challenge” by transforming the “code verifier” using a specified

method, such as SHA-256 hashing.

The “code challenge” is a derived value from the “code verifier”.

code_challenge =
BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

3. Authorization Request: The client initiates the authorization request

by redirecting the user's browser to the authorization server's

authorization endpoint.

The request includes the “code challenge” along other necessary

parameters.

4. Authorization Code Exchange: Upon user authentication and consent,

the authorization server generates an authorization code and sends it to

the client's specified redirection URI.

The Authorization server must be able to associate the “code challenge”

and method with the generated code. This is done either by storing

them in encrypted form within the authorization code or on the server

side.

36

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5. Token Request: The client application, exchanges the received

authorization code with the authorization server for an access token,

including the original “code verifier” nonce along the necessary POST

request parameters

6. Access Token Response: The authorization server validates the

authorization code, client credentials, calculates the “code challenge”

using the “code verifier” and compares it with the previously

associated “code challenge”.

If everything is valid, it responds with an access token.

3.2.4 Other OAuth Grant Types

Client Credentials

Client Credentials flow is designed for machine to machine authentication

outside the context of a user and in cases where the client is also the resource

owner. Clients applications to directly exchange client credentials for an

access token. [9]

Device Code

Device Code flow is designed for use by browserless or input-constrained

internet-connected devices (like smart TVs, media consoles, digital picture

frames, and printers), where requiring the user to input text in order to

authenticate during the authorization flow is impractical. It enables obtaining

user authorization to access protected resources by using a user agent on a

separate device. [10]

37

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Resource Owner Password

Resource Owner Password flow involves the client directly obtaining the

user's username and password. The client then sends these credentials to the

authorization server to obtain an access token.

The resource owner credentials are used for a single request and are

exchanged for an access token, eliminating the need for the client to store the

resource owner credentials for future use.

This flow is omitted in the latest specification draft [11] and is considered

obsolete and insecure, yet it is still supported by some implementations for

backwards compatibility. [12]

Refresh Token

Refresh Token flow allows a client application to obtain a new access token

without requiring the user to re-authenticate. It provides a way to refresh an

expired or expiring access token, ensuring that the client application can

continue accessing protected resources seamlessly. [12]

38

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 4

OAuth 2.0 Threat Model and

Vulnerabilities

This chapter delves into the critical examination of the simplified threat

model associated with OAuth 2.0, focusing specifically on practical threats

that are inherent to the framework. The objective is to identify vulnerabilities

and abuse paths that have the potential to compromise the security of OAuth

2.0 implementations.

To achieve this, potential threat actors and their capabilities within the

operational context are identified. Critical assets and the potential impact of

their compromise are also analyzed in order to understand the attack vectors

targeting these assets and determine the necessary security controls required

to mitigate the risks they pose.

Building upon this theoretical overview of OAuth 2.0 security architecture,

case studies from publicly disclosed bug bounty program reports and cases of

real-world abuse are examined aiming to demonstrate these attack vectors.

These case studies provide tangible examples of how these vulnerabilities

manifest in practical implementations, highlighting the urgency and

importance of addressing them.

Building a complete threat model for the current state of OAuth 2.0

ecosystem falls beyond the scope of this thesis. The model used in this

chapter aims to document theoretically a few realistic, framework specific

39

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

attack vectors demonstrated in the last section of the chapter and their

mitigation countermeasures in order to underline the necessity and importance

of implementing sufficient security controls supporting deployments

dependent on OAuth 2.0. [18]

4.1 OAuth 2.0 Threat Actors

A threat actor refers to an entity that possesses the intention, capability, and

resources to exploit vulnerabilities or cause harm to a system, organization, or

individual. Understanding the motives, methods, and capabilities of threat

actors within the context of OAuth is crucial in identifying potential risks and

implementing an effective security strategy.

Within the scope of this thesis, the following threat actors have been taken

into consideration.

• An external user that may possess an account, attempting to exploit

implementation vulnerabilities.

• An agent residing within the network, able to spoof and inspect

plaintext network communications (e.g. public WIFI).

• Malicious Client application attempting to trick users into giving

authorization consent in order to abuse their level of access.

• Compromised Client application, a legitimate Oauth client, whose

credentials have been compromised and abused in order to request

credentials on behalf of users who already have authorized it.

• A legitimate user access privileges being abused either intentionally or

due to leaked access tokens or compromised account credentials.

40

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

4.2 Critical assets

OAuth 2.0 is a standardized and secure mechanism for granting and managing

access to protected resources, hence in that sense threat modeling should

prioritize securing access to user data and identities.

Within the framework’s scope the critical assets granting access to user data

and enabling identity theft and abuse are the following:

• Access tokens representing the authorization granted by the user and

leaking them is considered equivalent to user data compromise. In the

context of this thesis access tokens are considered to be JWTs.

• Refresh Tokens can be exchanged for access tokens, thus considered of

equitable importance. Refresh tokens are reference tokens issued by the

authorization server and stored server-side by confidential clients.

• Authorization Code can be exchanged for an access token thus

considered of equitable importance.

• Client Credentials allow impersonating legitimate applications and can

be abused for phishing attacks. Furthermore they can be abused for

privilege escalation.

Consider an IdP that allows customers to develop client applications to

use its services and at the same time uses the same approach for

internally developed client applications used within the organization by

its employees. The internal clients may have an extended scope to

access internal resources, not meant to be accessed by end users.

Compromising the credentials of an internal client enables accessing

sensitive internal scopes.

41

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

4.3 OAuth 2.0 Attack Vectors and Mitigations

This section aims to provide an analysis of the common attack vectors

associated with the OAuth 2.0 framework and a comprehensive overview of

practical and effective mitigations to protect against them. By understanding

the attack vectors specific to OAuth 2.0, we can develop robust mitigation

strategies to ensure the integrity and confidentiality of user data within

OAuth-based systems.

4.3.1 Improper Token Management and Validation

Improper token management and validation in OAuth 2.0 refers to

vulnerabilities and weaknesses related to the handling and verification of

access tokens and refresh tokens issued for OAuth users.

Most notably such issues have to do with:

• Lack of Transport Layer Security (TLS): TLS should be enforced for

all OAuth interactions and all requests containing access tokens,

initiated by the client after authorization should be done over HTTPS.

• Token expiration: Access and refresh tokens should have a limited

lifespan and should expire after a specified time frame.

• Token integrity validation: prior to accepting a token, its integrity,

expiration and signature should be verified to ensure forged, expired or

tampered tokens are not accepted.

• Token scope validation: the access scope the token was authorized with

should also be enforced, preventing scope extension attempts aiming to

access resources beyond the user’s consent.

42

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

• Token Storage: tokens should be securely stored, both on the server and

on the client side. Enforce strong encryption and appropriate access

controls to protect tokens from unauthorized access. This is a

non-trivial problem for public clients.

• Refresh token must be one-time use and bind to a specific client.

4.3.2 Insufficient Redirect URI Validation

Vulnerability

Insufficient redirect URI validation is a security vulnerability that can affect

implementations of OAuth 2.0 framework. It takes advantage of inadequate

validation or lack of validation of the redirect_uri parameter during the

authorization process.

The redirect_uri is a critical parameter used to redirect the user back to the

client application after successful authorization. It is specified by the client

application and must be pre-registered with the authorization server.

Abusing vulnerabilities in the validation of the redirect URI to manipulate the

flow can lead to various security risks, such as: [19]

• Open Redirect: craft a malicious redirect URI that appears legitimate

but redirects the user to a malicious website. This can trick the user into

providing sensitive information or performing unintended actions.

• Token Leakage: If the redirect URI is not properly validated, it is

possible to intercept the authorization code or access token by

registering a malicious redirect URI. This enables gaining unauthorized

access to the user's account or sensitive data.

43

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Case Study: Slack redirect uri validation bypass

Slack’s authorization server was vulnerable to redirect URI validation bypass.

It was possible to redirect a client to an attacker controlled domain by adding

a suffix to the legitimate registered redirect url. [20]

redirect_uri = client.app.com

bypass = client.app.com.attacker.com

The payload that would redirect the client to the malicious domain exploiting

the vulnerability:

https://slack.c om/o auth/authorize?client_id = <id>&re
direct_uri=http://client.app.com.attacker.com

Other notable redirect uri bypass techniques:

open redirect:
https : //client.app.com/callback?redirectUrl=att

acker.com

path traversal with open redirect:
https://client.app.c om/callback/. ./redirect/?re

directUrl=attacker.com

uri parser logic abuse:

https://client.app.c om/&@foo.attacker.com#@bar.
attacker.com

44

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://slack.c
http://client.app.com.attacker.com
https://client.app.c
https://client.app.c

Mitigations

To mitigate risks posed by Insufficient Redirect URI Validation, the following

countermeasures must be implemented [21]:

• Strict Redirect URI Validation: The authorization server must ensure

that the requested and the registered for the client redirect URIs are

equal.

The complexity of implementing and managing pattern matching correctly is

a high probable root cause for security issues, therefore to simplify the

required logic the authorization server should perform exact string matching

ensuring the requested redirect URI (scheme, host and path) matches the

registered one before redirecting to the callback endpoint.

• Whitelisting Trusted Redirect URIs: The authorization server can

maintain a whitelist of trusted redirect URIs that have been explicitly

registered by client applications.

Only requests with redirect URIs matching an entry in the whitelist associated

with the requesting client should be considered valid.

• Servers on which callbacks are hosted must not expose open

redirectors.

45

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

4.3.3 Authorization Code injection

Vulnerability

Authorization Code Injection is a security vulnerability that can affect

implementations of OAuth 2.0 protocol. This attack takes advantage of

vulnerabilities in the handling of the authorization code, temporary code

issued when the user grants authorization, which can be exchanged for an

access token.

There are multiple causes of authorization code leakage such as:

• exploitation of vulnerabilities like Insufficient Redirect URI Validation

or XSS

• leakage through caches or browser history

• authorization response interception

In an Authorization Code Injection scenario, an authorization code that has

been compromised is injected in an authorization flow initiated by a malicious

user aiming to gain access to the user's account via the client application in

the case of confidential clients or directly obtain an access token in the case of

public clients. [22]

Mitigations

To mitigate the risks posed by Authorization Code injection, the following

countermeasures must be implemented [9]:

• PKCE [3.2.3] was initially developed for mitigating Authorization

Code injection. When the attacker attempts to inject an authorization

code, the check of the code verifier fails: the client uses its correct

46

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

verifier, but the code is associated with a code challenge that does not

match this verifier.

PKCE ensures that an attacker cannot redeem a stolen authorization

code at the token endpoint of the authorization server without

knowledge of the code verifier.

PKCE is an OAuth extension, originally intended for securing public

clients, but broader application to Authorization Code flow used by

confidential clients is now recommended.

• Authorization codes must be one-time use and treated as invalid if

already redeemed by the legitimate user. This leaves a limited period

during which this flaw can be exploited. [23]

• Strictly bind authorization codes to a specific client. This may sound

obvious, yet it deems exploitation impossible by injecting codes

generated by another client, e.g. a malicious one. [23]

47

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

4.3.4 CSRF

Vulnerability

CSRF (Cross-Site Request Forgery) is a web security vulnerability that allows

an attacker to induce users to perform actions that they do not intend to

perform. It allows to partly circumvent the same origin policy, which is

designed to prevent different websites from interfering with each other. [24]

In the context of OAuth 2.0 CSRF tricks a legitimate user into unknowingly

accessing resources under the malicious user’s control, which in specific

implementations client implementations may lead to account takeover.

Consider a website that allows users to log in using either a classic,

password-based mechanism or by linking their account to a social media

profile using OAuth. Exploiting CSRF it is possible to hijack a victim user's

account on the client application by binding it to their own social media

account. [25][26]

Case-Study: Shopify login with Pinterest CSRF

Shopify’s login with Pinterest feature was vulnerable to CSRF. [26] It was

possible to bind a malicious Pinterest account to an existing Shopify account

of a legitimate user by issuing an authorization code on Pinterest and tricking

the authenticated Shopify user to visit a crafted site executing the following

request on his/her behalf:

GET /auth/pinterest/canback?code=<code> HTTP/1.1
Host: pinterest-c ommerce.shopifyapps.c om

Cookie: <shopify-session-cookie>

48

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Note the lack of state parameter and/or PKCE code verifier on the above

request.

Mitigations

• The "state" parameter should be utilized to link the authorization

request with the callback request used to redeem an authorization code

for an access token. This will ensure that the client is not tricked into

completing any redirect callback unless it is linked to an authorization

request initiated by the client.

The state value should be non-guessable, such as the hash of something tied to

the user's session when the OAuth flow is initiated.

• Implementations PKCE extension also mitigates CSRFs against OAuth

2.0 as a side-effect.

4.3.5 Phishing and misleading user consent

Another important threat factor to be considered is the importance of user

consent prompts and the risk of them misleading users and being abused in

phishing campaigns attempting to trick the users into authorizing malicious

OAuth applications. [27]

This phishing technique is hard to identify from an end user's perspective due

to the fact that the user is never prompted to enter his credentials, nor is ever

directed to a malicious site. For an attack of this type to succeed the victim

user only has to authorize the malicious application, accepting the consent

prompt hosted under the trusted domain of the authorization server.

Case-Study: Malicious “Google Docs” App Phishing Campaign

A phishing campaign leveraging a malicious Google application

impersonating “Google Docs” and requesting access to user emails and

49

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

contacts was discovered in 2017. The phishing link was distributed by an

email inviting the receiver to view a document and directed the victim to the

consent page for the malicious application under the legitimate

accounts.google.com domain. [28], [29], [30]

Figure 4.1: Google’s consent prompt (at that time) for the malicious application. [15]

Countermeasures

• First and foremost a properly designed consent prompt providing the

end user the required bits of information to review the legitimacy of the

client.

50

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Figure 4.2: Github’s consent prompt informing the user about the client’s name,

userbase, time o f creation and association with Github as well as the requested

scope and the redirect to follow authorization [31].

51

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

• Authorization servers have to provide end-users the capability to

manage, audit and revoke access scope and authorization of client

applications.

• Last but not least, considering leaked access and/or refresh token as a

result of phishing attack or another attack vector is a realistic threat,

token revocation features should be implemented to harden and support

the operations of an Authorization server deployment. A mechanism for

implementing JWT revocation will be discussed in the following

chapter.

52

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 5

Securing APIs with OAuth 2.0

In the previous chapters we have achieved a robust understanding of OAuth

2.0 framework as well as the relevant security implications. Considering

emerging threats, their mitigation strategies and the risk they pose we are able

to compile an auditing methodology for testing and verifying secure OAuth

implementations.

Based on this methodology we are able to develop a proof of concept OAuth

2.0 system using containers, supporting different types of client applications

and protecting a simple microservice application acting as a resource server.

We will further extend the system’s baseline architecture to implement certain

hardening features to ensure secure token management, transfer, verification

and revocation while attempting to balance out security to performance

trade-offs when securing APIs and microservices.

53

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.1 Development Environment

For development the above were deployed as Docker containers [32] within a

Kubernetes [33] cluster exposed via the cluster’s ingress controller [34].

OAuth Debugger [35] and OAuth Tools [36] served as client applications for

testing and verification of the various OAuth flows.

54

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2 High Level Architecture

The baseline system consists of an authorization server supporting

confidential and public clients, implemented securely considering the topics

discussed in chapters 3 and 4 which will be extended to support token

revocation and introspection as well as an API microservice service to act as a

protected resource server.

All access tokens issued are JWTs protected in transport by TLS.

Figure 5.2: High level Architecture

55

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2 JWT Revocation

Besides a robust authorization server implementation to properly secure

OAuth protected resources it is crucial to implement access token revocation

capabilities. The following scenarios can be referenced, in addition to the

risks of improper token management and handling mentioned in 4.3.1, to

demonstrate the necessity of invalidating an access token before its initially

expected expiration time:

• a user revokes access to an authorized client application

• an application is deactivated by an authorization server admin

• a user is deactivated

• a user password is reset

Token revocation in implementations that utilize reference tokens stored in a

database is straightforward. A token can be revoked by deleting its entry from

the backend storage as such is the case of handling refresh tokens in parallel

to JWT revocation discussed below.

Furthermore, a list of active access tokens can be retrieved at any time in

order to audit the access granted on the user’s behalf.

This is not the case for revoking self-encoded tokens such as JWTs which are

designed to be portable, decoupled identity information that can be verified

without interacting with the identity provider, who in the above

implementation is the authorization server.

In this section the different ways for revoking JWTs [37], their pros and cons

focusing on the “blacklist” approach to be implemented on top of the above

infrastructure.

56

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2.1 Short-lived access tokens

The most naive and simple approach would be issuing short-lived JWTs with

a reduced validity period rather than implementing a revocation feature and

accepting the potential risk of a significantly narrow abuse time frame.

Token revocation will not be instantaneous, but it could take up to the

expiration of the last generated token. The main disadvantage of this approach

is that all access tokens will expire periodically, which introduces a significant

performance overhead even when a transparent token acquisition mechanism,

like refresh tokens, is used by the backend to smoothen user experience.

This security to performance [38] tradeoff is considered acceptable and fair,

even in the broader concept of session management, given the context of

sensitive systems such as PCI-DSS compliant applications that demand

session invalidation after 15 minutes of inactivity. [39]

5.2.2 Signing Secret Rotation

Another method for JWT revocation is to rotate the secret key used by the

digital signing algorithm, invalidating every token signed with it. The obvious

disadvantage of this approach is that it can not distinguish between individual

clients, but revokes all access tokens at the same time.

Changing the signing key to implement common features like logout and

session termination is extreme and does not fit most cases, yet in scenarios

where there is a small and bounded number of active clients in the system,

this overhead can be negligible considering the advantage of not being

dependent on a centralized data storage and invalidation is instantaneous.

57

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2.3 Token Blacklist

To implement JWT revocation blacklist to be able to tell one token apart from

another one. To do so, an authorization server can utilize the uniquely valued

jti (JWT’s id) registered claim [40] used to identify a token. On an

infrastructure level it is recommended using modern in-memory key-value

storage like Redis [41] to implement the blacklist.

The main advantages of the blacklist revocation method is the fact that it can

handle tokens individually and efficiently supports multi-client environments,

allowing users to revoke access from different clients or devices on demand.

Token Revocation

To revoke a token an POST request is sent to the authorization server’s

revocation endpoint [42] as follows:

POST /revoke HTTP/1.1
Host: auth.example.com
Authorization: Bearer <token>

token = <jwt _token>&token_type = jwt
The authorization server validates the token and decodes its payload, extracts

the jti claim to be used as a key for the blacklist entry and the exp claim

to calculate how long the entry should be kept in the blacklist. By performing

a lookup to the blacklist the authorization server can answer whether or not a

non-expired JWT is revoked [43].

58

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Blacklist Housekeeping

Scaling is the main limitation of the token blacklist as it can grow quite

rapidly along the user-base. To mitigate this a maintenance mechanism (e.g. a

cron job [44]) should execute ad-hoc on certain intervals, bounded by the

JWTs lifetime, removing blacklist entries for expired tokens [45].

Implementation

Figure 5.3: JWT revocation using REDIS as a blacklist

Since REDIS is used as the key-store solution to implement the blacklist,

REDIS’ the SET command with EX argument can be leveraged to implement

the cleanup mechanism for deleting expired tokens. SET command sets a

<key> to hold a certain <value> and the EX argument specifies the key’s

expiration time [46]. The key-value is removed upon expiration.

59

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

SET <jti> <payload> EX (<exp> time.now())

The payload value can contain metadata like user identification information to

support other features on top of the blacklist like logout from all devices or

simply be empty JSON.

Security Considerations

Note that the blacklist stores very limited data, only non-sensitive information

token metadata that can not be abused in case of compromise.

On the other hand the revocation endpoint is prone to exploitation and needs

to be secured by defining a revoke scope that will be used to limit who can

blacklist tokens only to clients holding this scope. This can prevent abuse

scenarios of arbitrary revoking access tokens, aiming to disrupt users or

exhaust blacklist resources.

Drawbacks

The key disadvantage of blacklist revocation is being contradictory with the

distributed nature of JWTs, since it relies on lookups which introduce latency

for validating tokens acting against performance benefits they offer.

In the following subchapter, the proof of concept implementation, now

supporting JWT revocation will be extended further in an attempt to minimize

this performance overhead and get the best of both worlds.

60

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2.4 Other JWT revocation methods

There are a couple less prevalent approaches based on distributing revocation

events [47] broadcasted from the authorization server to all resource servers.

These revocation methods come with significant drawbacks, the dominant

ones being not supporting multiple client applications [45] and demanding

complex logic to be implemented on the resource server side and as they are

not standardized will not be analyzed here.

61

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.3 JWT Lifetime and Validation

Given revocation capabilities introduces certain issues when validating a

JWT. In order to distinguish between the 3 different states a JWT may be, an

API server can perform the following actions before accepting it.

Figure 5.4: JWT Token Lifetime

5.3.1 Local Validation

Fast or local validation is the customary, well established validation method

for JWTs which holds all the performance benefits discussed in earlier

chapters. It can be performed locally by the API server accepting JWT access

tokens as follows:

1. Inspect JWT
2. Check the expiration timestamp

3. Validate the cryptographic signature
The public key can be fetched from the issuing authorization server’s

metadata endpoint [48] and cached locally.

62

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.3.2 Remote Validation

Local validation is not sufficient for identifying a revoked JWT. To do so the

API server has to validate against the revocation blacklist maintained by the

authorization server to strongly validate a token. This can be done using the

authorization server’s token introspection endpoint [49], meant to determine

the active state meta-information of an issued token. However this requires

performing a network request, hence introduces latency.

Request:
POST /introspect HTTP/1.1
Host: auth.example.com
Authorization: Bearer <token>

token = <jwt _token>

Response:
HTTP/1.1 200 OK

{"active": true,
"jti": "<jti>",

scope": "read-profile write-profile",
exp": 1419356238}

63

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.4 Securing API backends

In the context of an API or a microservice application the various operations

hold different levels of criticality. Assessing the risk of each operation can be

used to define whether or not remotely validating an access token is a strong

requirement and justifies the performance impact.

For example fetching an avatar from the Profile API using a revoked token

does not pose the same impact as changing a user password or accessing the

Payments API and executing a transaction. The latter should strongly validate

the access token, while the first operation can be processed with only

performing local validation.

5.4.1 API Gateway Pattern

To demonstrate this principle we are going to extend the proof of concept

implementation with an API Gateway. An API Gateway is a microservice

architecture pattern where an infrastructure component or software

middleware acts as an entry point for client applications to access a

collection of backend services or APIs [50].

The main purpose of the API Gateway component serves is managing and

implementing centrally using a unified interface key features such as:

• Request routing and load balancing

• Authentication and authorization

• Security features like API schema enforcement

• Rate limiting and throttling

64

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

• Logging, monitoring and tracing

Implementation

Figure 5.5: Securing backend services using an API Gateway

We are going to leverage the API gateway to balance out the cost in

performance introduced by strong token validation by reducing the number

of requests processed within the internal network.

The API Gateway is going to act as a boundary between the microservice

network and the clients, performing local validation on all access tokens

contained in authenticated API requests before they reach the respective

backend service. Requests with invalid, tampered or expired access tokens

will be dropped on the network's edge, omitting unnecessary processing and

resource commitment by the internal microservice infrastructure.

65

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

This leaves it to the different backend service APIs to choose whether or not

to perform strong access token validation based on the risk posed by the

requested action.

Security Considerations

It is important to note that this is not a security feature, rather a performance

optimization, nor does it act as an alternative to authorization checks that have

to be performed on the backend services.

Furthermore, it is recommended to perform local validation on the API

service before blindly accepting a JWT, unless it is possible to validate that

the received request source is the API gateway.

This can be done by enforcing network policies or extending the API gateway

to act as an authwall boundary, utilizing HTTP headers to pass token metadata

to backend services and service mess patterns for TLS and service identities

[51].

66

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 6

Conclusions and Future Work

6.1 Summary

We presented an overview of the OAuth 2.0 framework along with the

necessary background information for understanding the problem it aims to

solve and its limitations. Diving deeper into the framework’s internals we

used a simple threat model and specific implementation case studies to

identify the emerging threats within OAuth 2.0 and their impact, along with

the risk they pose and their potential mitigation strategies.

Based on the above we compiled an audit methodology which assisted us into

implementing a proof-of-concept OAuth based system to protect a simple

microservice application API utilizing JWT tokens. Finally the proof of

concept architecture was extended with infrastructure components to further

harden the systems token management capabilities. Token revocation is

supported and leveraged by backend services when required, dealing with the

security and performance implications that emerge from the use of JWTs.

67

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

6.2 Future Work

In the future the review methodology of OAuth implementations should be

improved to consider OAuth 2.1 specification and security considerations

[52]. The latest draft versions available at the time [53],[54] of writing were

considered but should be revisited once they are standardized. A more

comprehensive audit of OAuth should also consider implementations that

leverage authorization server chains, attack vectors against JWTs [55] and

mobile clients as well as underestimated clickjacking [56] and flow

downgrade attacks.

As of infrastructure we can further utilize the API Gateway to explore

microservice architectural patterns or implement other security and

performance features. For example implementing a service mesh [57] within

the microservice network allows verifying the legitimacy of a request’s source

with mTLS, negating the need of re-validating the JWT locally on the API’s

backend [51].

68

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

References

[1] https://en.wikipedia.org/wiki/Identity_management

[2] https://en.wikipedia.org/wiki/Session_(computer_science)#Session_managem

ent

[3] https://developer.mozina.org/en-US/docs/Web/HTTP/Cookies

[4] https://en.wikipedia.org/wiki/Access_token

[5] https://www.okta.com/identity-101/what-is-token-based-authentication/

[6] https://datatracker.ietf.org/doc/html/rfc7 519

[7] https://jwt.io/

[8] https://fusionauth.io/artides/tokens/pros-and-cons-of-jwts

[9] https://www.rfc-editor.Org/rfc/rfc6749#section-1.3.4

[10] https://www.rfc-editor.org/rfc/rfc8628

[11] https://www.ietf.org/archive/id/draft-ietf-oauth-v2-1-08.html#name-differen

ces-from-oauth-20

[12] https://www.rfc-editor.org/rfc/rfc6749#section-1.3.3

[13] https://www.rfc-editor.org/rfc/rfc6749#section-1.5

[14] https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.1

[15] https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.2

[16] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-22#na

me-implicit-grant

[17] https://oauth.net/2/pkce/

[18] https://datatracker.ietf.org/doc/html/rfc6819

69

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://en.wikipedia.org/wiki/Identity_management
https://en.wikipedia.org/wiki/Session_(computer_science)%23Session_managem
https://developer.mozina.org/en-US/docs/Web/HTTP/Cookies
https://en.wikipedia.org/wiki/Access_token
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://datatracker.ietf.org/doc/html/rfc7
https://jwt.io/
https://fusionauth.io/artides/tokens/pros-and-cons-of-jwts
https://www.rfc-editor.Org/rfc/rfc6749%23section-1.3.4
https://www.rfc-editor.org/rfc/rfc8628
https://www.ietf.org/archive/id/draft-ietf-oauth-v2-1-08.html%23name-differen
https://www.rfc-editor.org/rfc/rfc6749%23section-1.3.3
https://www.rfc-editor.org/rfc/rfc6749%23section-1.5
https://datatracker.ietf.org/doc/html/rfc6749%23section-1.3.1
https://datatracker.ietf.org/doc/html/rfc6749%23section-1.3.2
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-22%23na
https://oauth.net/2/pkce/
https://datatracker.ietf.org/doc/html/rfc6819

[19] https://datatracker.ietf.Org/doc/html/draft-ietf-oauth-security-topics#name-i

nsufficient-redirect-uri-v

[20] https://hackerone.com/reports/2575

[21] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-c

ountermeasures

[22] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23#na

me-authorization-code-injectio

[23] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23#na

me-discussion

[24] https://portswigger.net/web-security/csrf

[25] https://portswigger.net/web-security/oauth#flawed-csrf-protection

[26] https://hackerone.com/reports/111218

[27] https://www.youtube.com/watch?v=espX8qKjywI

[28] https://twitter.com/googledocs/status/859878989250215937

[29] https://auth0.com/blog/aH-you-need-to-know-about-the-google-docs-phishi

ng-attack/

[30] https://thehackernews.com/2017/05/google-docs-phishing-email.html

[31] https://docs.github.com/en/apps/oauth-apps/using-oauth-apps/authorizing-

oauth-apps

[32] https://www.docker.com/

[33] https://kubernetes.io/

[34] https://kubemetes.io/docs/concepts/services-networking/ingress/

[35] https://oauthdebugger.com/

70

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://datatracker.ietf.Org/doc/html/draft-ietf-oauth-security-topics%23name-i
https://hackerone.com/reports/2575
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics%23name-c
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23%23na
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23%23na
https://portswigger.net/web-security/csrf
https://portswigger.net/web-security/oauth%23flawed-csrf-protection
https://hackerone.com/reports/111218
https://www.youtube.com/watch?v=espX8qKjywI
https://twitter.com/googledocs/status/859878989250215937
https://auth0.com/blog/aH-you-need-to-know-about-the-google-docs-phishi
https://thehackernews.com/2017/05/google-docs-phishing-email.html
https://docs.github.com/en/apps/oauth-apps/using-oauth-apps/authorizing-oauth-apps
https://docs.github.com/en/apps/oauth-apps/using-oauth-apps/authorizing-oauth-apps
https://www.docker.com/
https://kubernetes.io/
https://kubemetes.io/docs/concepts/services-networking/ingress/
https://oauthdebugger.com/

[36] https://oauth.tools/

[37] https://joumals.sagepub.com/doi/fuN/10.1177/1550147718801535

[38] https://auth0.com/blog/balance-user-experience-and-security-to-retain-cust

omers/

[39] https://otm.finance.harvard.edu/files/otm/files/pci_security_standards.pdf -

Section 8.5.15

[40] https://www.rfc-editor.org/rfc/rfc7519#section-4.1.7

[41] https://redis.io/

[42] https://auth0.com/blog/denylist-json-web-token-api-keys/

[43] https://datatracker.ietf.org/doc/html/rfc7009#section-2

[44] https://en.wikipedia.org/wiki/Cron

[45] http://waiting-for-dev.github.io/blog/2017/01/24/jwt_revocation_strategies

[46] https://redis.io/commands/set/

[47] https://fusionauth.io/articles/tokens/revoking-jwts

[48] https://www.rfc-editor.org/rfc/rfc8414

[49] https://datatracker.ietf.org/doc/html/rfc7662

[50] https://www.nginx.com/learn/api-gateway/

[51] ttps://fusionauth.io/articles/tokens/tokens-microservices-boundaries

[52] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-08

[53] https://fusionauth.io/articles/oauth/differences-between-oauth-2-oauth-2-1

[54] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23

[55] https://portswigger.net/web-security/jwt

71

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://oauth.tools/
https://joumals.sagepub.com/doi/fuN/10.1177/1550147718801535
https://auth0.com/blog/balance-user-experience-and-security-to-retain-cust
https://otm.finance.harvard.edu/files/otm/files/pci_security_standards.pdf
https://www.rfc-editor.org/rfc/rfc7519%23section-4.1.7
https://redis.io/
https://auth0.com/blog/denylist-json-web-token-api-keys/
https://datatracker.ietf.org/doc/html/rfc7009%23section-2
https://en.wikipedia.org/wiki/Cron
http://waiting-for-dev.github.io/blog/2017/01/24/jwt_revocation_strategies
https://redis.io/commands/set/
https://fusionauth.io/articles/tokens/revoking-jwts
https://www.rfc-editor.org/rfc/rfc8414
https://datatracker.ietf.org/doc/html/rfc7662
https://www.nginx.com/learn/api-gateway/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-08
https://fusionauth.io/articles/oauth/differences-between-oauth-2-oauth-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23
https://portswigger.net/web-security/jwt

[56] https://owasp.org/www-community/attacks/Gickjacking

[57] https://en.wikipedia.org/wiki/Service_mesh

[58] https://istio.io/latest/about/service-mesh/

[59] draw.io

72

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://owasp.org/www-community/attacks/Gickjacking
https://en.wikipedia.org/wiki/Service_mesh
https://istio.io/latest/about/service-mesh/

