UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Diploma Thesis

AUDITING AND EXTENDING SECURITY FEATURES
OF OAUTH 2.0 FRAMEWORK

Author: Christinakis loannis

ichristinakis@uth.gr

Supervisor: Stamoulis Georgios

Examiners: Panagiota Tsompanopoulou

Isalapata Hariklia

Volos, Greece 2023

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://www.linkedin.com/in/gianchris/
mailto:ichristinakis@uth.gr
https://www.e-ce.uth.gr/department/faculty/georges/
https://www.e-ce.uth.gr/department/faculty/yota
https://www.e-ce.uth.gr/department/faculty/htsalapa

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS
Being fully aware of the implications of copyright laws, | expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work /
contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where | have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference
is included in the bibliographic references section. | also declare that the results of the
work have not been used to obtain another degree. | fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

The Declarant

Christinakis loannis

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

YNEYOYNH AHAQZH NEPI AKAAHMAIKHZ AEONTOAOTIAZ KAl
NMNEYMATIKQN AIKAIQMATQN

«Me mpN EMlyvoon TOV GUVETEIDMV TOV VOUOL TEPL MVEVLLATIKOV
SKAOUATOV, ONAOVED pPNTa OTL 1| TAPOVCO SIMAMUATIKY Epyacio, Kabh¢ Kot
O MAEKTPOVIKG apyelor kol 7mnyoiolt KOOKES 7OV avamTOYONKOV 1)
TPOTOTOMON KAV OTO TAQICI QTG TNG EPYUCING, OMOTEAEL QUTOKAELGTIKG
TPOIOV TPOCOTIKNG LoV EPYOCINS, 0V TPOGPAALEL KAOE LOPPNG OTKALDLLOTO
OLVONTIKNG 1010KTNGI0G, TPOCHOMTIKOTNTUS KOl TPOCHOTIKDOV OEO0UEVHOV
TPITOV, deV MEPIEYEL EPYO/EICPOPEC TPITMV Y1 TOL OTOLN AMALTELTOL O TWV
MOV PYDOV/SIKAI0VY®V Kol OEV ivar TPoidv LEPIKNE 1] OAMKNE AVILYpOONC, Ol
myéc de mov ypnoworom ko mepropiloviatl otig PPAOYPAPKES AVAPOPES
Kol UOVOV Kol TANPOOV TOVS KOVOVEC TG EMGTNUOVIKNG mopdbeons. Ta
onueion Omov £xm YPNOIUOTOMOEL 10EEC, KEIPEVO, apyeior /Kot TyEC GAAWY
CUYYPUPEDY, OVOQPEPOVTOL EVOIAKPLTO. OTO KEIUEVO [E TNV KATAAANAN
TOPUTOUMY] KOl 1 OYETIKN oavapopd mepthauPdveToar G610 TUNUO TOV
BipAoypapkdV ovopopm®V UE TANPT TEPLYPAPY. Avoroupdve TANPOC,
OTOLIKO KOl TPOCMMTIKA, OAEC TIC VOUIKEC KOl OLOIKNTIKEC GUVEMELEC TOV
ohvaTal Voo TPOKDYOLV GTNV TWEPIMTMON KaTd TNV omoin amodeyei,
LY POVIKE, OTL 1| epyasion VT N TUNUO TS OV OV AVIKEL O10TL Elvar TPoidv

AOYOKAOTNCY.

O/H AnAov/ovoa.
Xprotwvakng ['iavvng

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

ABSTRACT

OAuth 2.0 1s a widely adopted authorization framework used in modern web
and mobile applications for secure access to protected assets. However, as the
framework evolves and new security threats emerge, it becomes crucial to

continuously evaluate and enhance its security features.

This thesis aims to address this challenge by conducting a comprehensive
audit of the security features of the OAuth 2.0 framework and proposing
guidelines for developing a secure OAuth 2.0 implementation and extension

features for hardening the infrastructure supporting it.

The analysis utilizes a simple practical threat model as the foundation for
understanding vulnerabilities within the framework and their mitigation,
which are further explored through an examination of existing OAuth 2.0

implementations and real-world case studies.

Considering these 1dentified threats, a proof-of-concept implementation is
developed, tested and reviewed according to a security auditing methodology

compiled based on the above.

Finally a set of infrastructure level hardening enhancements and features is
proposed in order to strengthen the proof-of-concept system of API services

secured using OAuth 2.0.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

HHEPIAHYH

To OAuth 2.0 givan éva gvpém¢ dradedouévo mhaicto ££0ve1006TNONE TOL
YPNOULOTOLELTOL OE GUYYPOVEC EPUPUOYEC 1OTOV KOL KWVITOV Y10 GGQUAT

TPOGPCT) GE TPOCTATEVUEVE OEOOUEVOQL.

Qo1600, Kabm¢ 10 mAaiclo e€eAlooetal Kot ep@avifovtol VEEC OmELES Y10 TV
acedieio, kKobiotator {oTkNg onuaciog 11 cvvexns aloAdynon Kot evioyvon

TOV YOPUAKTNPICTIKOV AGPAAEING TOV.

Avtl 1 epyocio oToxebel v OVTILETONICEL OUTV TNV TPOKANON
OLEVEPYDOVTUS VOV OAOKANPOUEVO EAEYYO TV YOPUKTIPLOTIKOV ACPUAEING
tov mAonciov OAuth 2.0 kot TpoTeivovTag KATEVBLVTIPLEG YPUUUES YLl TNV
avintuén aceaiovs viomoinong OAuth 2.0 kol emektdoelg vy ™)

“ocrApuvon” ¢ vTodourg Tov 10 Voot piet.

H avéivon a&lomoiel éva anmhd, mpaktikd threat model wg Baon yo ™mv
KATOVONON TOV TPOTOV GTUEIOV EVTOC TOV TANLGIOV, To OOl SIEPEVVAOVTOL
TEPAUTEP® HECH Mg e€Etaomng vmopyovsmv viomomoemv OAuth 2.0 kot

TpayUaTIKOV case-studies.

Aaufavovioag vmoyn Tic aneléc ev Ady® ameliés, avomTOeGEToL, dOKIUACETOL
Kol avoBewpeiton o proof of concept eeappoyn, cOueova pe o

uebodoroyia eréyyov acpareiog mov cuvtdyonke ne Pdon Ta Topandve.

Térog, mpoteivetar éva oOVOAO PEATIOCEMV KOl TEYVIKOV CKANPLVONG OE
EMIMEDOO VILOOOUNE TPOKEWEVOL VU OlaoPaAloTel 1] acedieior API vianpeciov

nov Pacilovion 6to maaicto OAuth 2.0.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Acknowledgements

I would like to express my gratitude towards the colleagues who taught me
how to be professional, while maintaining humane values and the university's
professors that inspired our curiosity. Their input was invaluable throughout

the journey of this thesis.

Moreover, | would like to thank all the significant people, friends and family,

for their support and understanding.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Table of Contents

ABSTRACT....iiiiniiieiennneicnniisssssssnsssssssssssssssssssssssesssssssssssssssssssassssssssssaasss 4
TIEPIAHW H......ouuiiiiniiinniinnnencnniinsniessssissssssssssssssansssssssssassssssssssassossassssssssssans 5
ACKNOWIEAZEMENTS......ccconevneiiiciiinnnniiecisscsnnssecsssssnnssescsssssassessssssssssssssssssnasss 6
Table of CONtENtS.....cicciiviieiirrenicnnsnnicsssaniissnniiossssssossssssssssssasssssssssssssssssossssses 7
LiSt Of FIGUTES....uuuueiiiiiiiccnnniieiiiicsnniiecissssnnnssecssssnsssessssssssassesssssssssssssssssssasanes 10
CRAPLET Laaaaeeeeeiiiieneeiiiincnnneeiiicscsnsnneisssssssssssssssssssssasssssssssssssssssssssssassssssssnans 11
INErOAUCHION...cveiiiiiniieiineiecsnseniessssnniesssanissssssiossssssssssssssssssasssssssssssssssssosssssnes 11
LT MOBIVATION. ... 11
L2 SHTUCHUTC. ..o 12
CRAPLET 2u.aeeeeeeiirneeiiiencnnnneeiiisssasssssssnnans 13
BaCKZroUNd.......eeeiiiiiiinnneiiiiiinnnnniicesssssnnssecsssns 13
2.1 Identity and Access Management (IAM).................oooooiiiiiiiiici 13
2.2 Session Management.................ooooiiiiiiii e 14
2.2 T COOKICS. ... 15

2.2.2 AccesS TOKENS.oooovviiiiiiiie e 17

2.3 JSON Web TOKENS.........ccooiiiiiiiiicee e, 19
2.4 The problem with Third-Party Application Authorization................... 21
CRAPLET 3u.ceeeeeeeiiirneeiiinncnnnnneiiisssasssssssnnans 23
OAuth 2.0 FrameworkK........cciceeiininniinnnniionmmiiosmeiissmeismsiisssssisssssses 23
BT OVEIVICW e 23
3.2 OAuth 2.0 Roles, Client Types and Terms...................ccc.ccooeiiiiil. 24
3.2.1 The key roles of the OAuth 2.0 framework................................. 24

3.2.2 TOKEN TYPES. ..o 25

3.2.3 0Auth 2.0 Client TyPeS........coooiiiiiiiiiiei e 25

324 OAUth SCOPC......ooiiiiiieee e 26

3.2.5 OAuth Flows and Authorization Grant.. 27

3.3 OAuth Grant TYPES......c.ooooiiiiiee e 28
3.3.1 Authorization Code Flow...............cccooiiiiiiii e 28

Flow Diagram....................coii e 29

322 Implicit Grant FIow.................ccoiii e, 31

Flow Diagram....................coii e 32

Notes and Reasoning behind Deprecation....................................... 33

3.2.3 Proof Key for Code Exchange (PKCE).................cooooioi, 34

8

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Flow Diagram....................coii e 35

3.2.4 Other OAuth Grant Types..........ccoocooiiiiiiii e, 37
Client CredentialS. ..o 37

Device Code.......oooomiiiii e 37
Resource Owner Password................cooooooiiiiiiii i 38

Refresh Token.............cccocooi e 38
CRAPLET du..aeeeecreeeiiiincnnneeiiiesssssnssssssssssssssssssssssssasssssssssssssssssssssssassssssssnans 39
OAuth 2.0 Threat Model and Vulnerabilities........cccccccceeiiecccrneericcccscnnannes 39
4.1 OAuth 2.0 Threat ACtOTS.........ccovviiiieeeice e 40
4.2 Critical @SSELS.........oiiiiiii e 41
4.3 OAuth 2.0 Attack Vectors and Mitigations......................cc..coooeeenn. 42

4 3.1 Improper Token Management and Validation............................ 42

4 3.2 Insufficient Redirect URI Validation.. 43
Vulnerability...........oooi i 43

Case Study: Slack redirect uri validation bypass............................. 44
IMIEIZALIONS. ... 45

4 3.3 Authorization Code Injection...............cccoiiiiiiiiiiieicie e 46
Vulnerability...........oooi i 46
IMIEIZALIONS. ... 46

434 CSRE ..o 48
Vulnerability...........oooi i 48
Case-Study: Shopify login with Pinterest CSRF............................. 48
IMIEIZALIONS. ... 49

4 3.5 Phishing and misleading user consent......................c....ceceeenn. 49
Case-Study: Malicious “Google Docs” App Phishing Campaign... 49
COUNLETMEASUTES.eeieeeeiiiie e, 50

CRAPLET S.aeeeeeeeiiicneeeiiiinnnnnneeiiisscssassssssssnsas 53
Securing APIs with OAuth 2.0.......cccoiveeiiiiiiicnnniiccisccsnnieccsssnsasseccssssssasses 53
5.1 Development Environment.....................ccocoooiiiiiiii i 54
5.2 High Level Architecture.................cococooiiiiiii e 55
52 TJWT ReVOCAION.ooiiiiiiiiii e, 56
5.2.1 Short-lived access tOKeNS............cc..oooviiiiiiiiiieeieee 57

5.2.2 Signing Secret Rotation......................ccoooiiii 57

5.2.3 Token Blacklist..............ccooooiiiii e 58
Token Revocation...................ooooiiiii i, 58

9

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Blacklist Housekeeping..............ccooooiiiiiiii e 59

Implementation................c.c.oiiiiii e 59

Security Considerations.c.c..oooooiiiiiii e 60
Drawbacks....... ..o 60

5.2.4 Other JWT revocation methods......................oooii, 61

5.3 JWT Lifetime and Validation...............................o 62
5.3.1 Local Validation...................ooooiiiiii e 62

5.3.2 Remote Validation...................c..cccoooiiiii 63

5.4 Securing API backends..................oooi i 64
54.1 API Gateway Pattern........................cooooiiiii 64
Implementation................c.c.oiiiiii e 65

Security Considerations.c.c..oooooiiiiiii e 66

CRAPLET O..ceeeeeeeiinnneniiiiicnnnnneiiisssssssessassssssssnsns 67
Conclusions and Future WorkK........iiiccieeeeiicccinccsnnieccssssssnssecssssssssssecssens 67
6.1 SUMMATY ... e 67
6.2 Future Work...........oooi e 68
REfEIENCES. ...cueeeeeiiecicineeiiieciinneetieccnssnsatieccsssssssssessssssnssssesssssssssssssssssssassssssses 69
10

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

List of Figures

Figure 2.1: IAM operation flow

Figure 2.2: Session Management

Figure 2.3: HTTP Cookie-based Authentication
Figure 2.4: HTTP Token-based Authentication

Figure 2.5: JWT token format

Figure 3.1: Authorization Code Flow

Figure 3.2: Implicit Grant Flow

Figure 3.3: Authorization Code flow with PKCE

Figure 4.1: Google’s consent prompt

Figure 4.2: Github’s consent prompt

Figure 5.1: Development environment

Figure 5.2: High level Architecture

Figure 5.3: JWT revocation using REDIS as a blacklist
Figure 5.4: JWT Token Lifetime

Figure 5.5: Securing backend services using an API Gateway

11

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 1

Introduction

In today's interconnected digital landscape, the secure management of user
identities and access to resources is of paramount importance. Identity and
Access Management (IAM) frameworks provide the foundation for
controlling access to sensitive information and ensuring the integrity and
confidentiality of resources. One widely adopted authorization framework

within IAM 1s OAuth 2.0.
1.1 Motivation

While OAuth 2.0 has become a popular choice for granting secure access to
protected resources, it is not immune to security vulnerabilities and threats.
As the digital landscape evolves and new security risks emerge, it is essential
to continuously evaluate and enhance the security features of OAuth 2.0. This
investigation aims to compile a comprehensive audit methodology of the
framework and propose extensions to improve its overall security, prevent
unauthorized access, and mitigate emerging security threats by answering the
following question.

o What are the existing security features of the OAuth 2.0 framework ?

e What are the vulnerabilities and potential threats associated with OAuth

2.07?

e How can the security features of OAuth 2.0 be enhanced to address
known vulnerabilities and emerging threats ?

12

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

1.2 Structure

This study is organized into four main chapters, excluding introduction

(Chapter 1) and conclusion (Chapter 6).

e Chapter 2 provides a high level background regarding Identity and
Access Management (IAM), Session Management, self-encoded JSON
Web Tokens (JWTs) and defines the problem OAuth 2.0 framework
was developed to address.

e Chapter 3 provides a thorough overview of the framework, aiming to
identify its key components such as token and client types, roles and
protocol flows, as well as to clarify specification terminology.

e Chapter 4 investigates the potential threats and attack vectors that
OAuth 2.0 may be susceptible to, by exploring real-world case studies
with the assistance of a practical threat model identifying sensitive
assets within the framework’s operation in order to consider relevant
mitigations and security controls.

o Chapter 5 presents a robust OAuth 2.0 implementation and extends its
architecture, integrating infrastructure components aiming to
implement hardening features to assist securing APIs and

MICroservices.

13

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 2

Background

2.1 Identity and Access Management (IAM)

Identity and Access Management (IAM) i1s a framework of policies,
technologies, and processes that organizations use to manage and control
access to digital assets. It ensures that the right entities have the proper access
to information, systems, applications, and other resources within an

organization's digital ecosystem. [1]
The typical IAM components are the following:

1. Identity Provisioning: The process of creating, modifying, and deleting

user accounts and associated access privileges.

2. Authentication: Verifying the identity of users attempting to access

resources.

3. Authorization: Granting or denying access permissions to specific
resources based on the authenticated user's identity, role, or other

attributes.

4. Role-Based Access Control (RBAC): Assigning access permissions

based on predefined roles.

5. Single Sign-On (SSO): Allowing users to authenticate once and then
access multiple applications or systems without having to re-enter

credentials.

14

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

6. Identity Federation: Enabling users to access resources across multiple

domains or organizations using their existing credentials.

7. Auditing and Compliance: Monitoring and recording user activities,

generating audit logs.

Present User ldentity Authentication Authorization

Figure 2.1: IAM operation flow

2.2 Session Management

Session management involves the management and tracking of wuser
interactions and enables maintaining state. In authenticated sessions it also
serves the crucial role of linking authentication and authorization within an

application. Two common session management mechanisms are cookies and

tokens. [2], [3]

T
Pre-Auth Session Session
Session e Management (HRSE Finalization
“\._ _.«"
Figure 2.2: Session Management
15

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

2.2.1 Cookies

Cookie-based authentication involves using HTTP cookies to manage user
sessions. When a user logs in, the server generates a session identifier and
stores it as a cookie in the user's browser. The browser automatically includes
this cookie in subsequent requests, allowing the server to identify and
associate requests with the correct session. On user log out the cookie is
destroyed both on the client and the server side, thus the session is

considered terminated.

16

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

HTTP Client HTTP Server

app.example.com

POST /login
username=<username>&password=<password>

Verify Credentials
200 OK

Set-Cookie: session-id=XYZ;
domain=app.example.com; Secure; HttpOnly;

GET /profile

Cookie: session-id=XYZ;
Verify Cookie
200 OK

<profile-data>

Figure 2.3: HTTP Cookie-based Authentication

While cookie-based authentication remains widely used in web applications
that rely on session state and leverage the browser's built-in cookie
management capabilities, due to the fact that sessions are stored and
managed completely on the server-side, scaling becomes an issue as the user
base grows. In addition, cookies are strongly coupled to a single domain and
fall short in supporting modern architectures that require cross origin access.

17

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

2.2.2 Access Tokens

Decoupling authentication from a single domain is a strong requirement in
modern development practices and is the primary factor for token-based
authentication’s prevalence. Token-based authentication involves issuing a
unique token to the client upon successful authentication. The token contains
or acts as a reference to information about the user's session or
authentication status and is included in subsequent requests as an HTTP

header (e.g., Authorization header). [4][5]

18

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

HTTP Client Auth Server API Server
auth.example.com api.example.com

POST /login
username=<username>&password=<password>

200 OK

{“access_token” : “XYZ"}
GET /user/me

Authorization: Bearer XYZ

200 OK

<user-data>

GET /profile

Authorization: Bearer XYZ

200 OK

<profile-data>

Figure 2.4: HI'TP Token-based Authentication

It is tailored for single page and mobile applications, API-based stateless
architectures that require cross-platform access and can facilitate
mmplementing SSO capabilities. One of the significant advantages is that it
operates in a stateless manner, eliminating the need for the server to store
session state, which simplifies server-side implementation and enhances

scalability.

However, it does introduce additional complexity in terms of token

management. Secure mechanisms for token generation, validation, expiration,

19

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

revocation, and token refresh must be established to ensure a secure and

seamless user experience.

2.3 JSON Web Tokens

JSON Web Tokens (JWTs) is an open standard [6] that defines a compact and
self-contained way for securely transmitting information between parties as a
JSON object. This information can be verified and trusted because it is

digitally signed, using symmetric or asymmetric cryptography.

A JWT consists of three parts: a header, a payload, and a signature, encoded

using Base64 and separated by dots.

1. Header: The header contains information about the type of token and
the cryptographic algorithms used for signing and/or encrypting the
token and optionally the signing key id.

2. Payload: The payload contains the claims, which are statements about
an entity and additional metadata, such as the user’s id, roles,
permissions, expiration time, or any other custom data. Registered
claims are either mandatory or optional. For example “exp” claim
identifies the token expiration time and i1s mandatory, while “jti”
contains the JWT identifier and is optional.

3. Signature: The signature is created by combining the encoded header,
payload, and a secret key. It verifies the authenticity of the token and

ensures that it has not been tampered with.

20

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Encoded : Decoded

HEADER:

eyJhbGci0iJSUzITNiIsInRScCI6IKpXVCJI9.ey

JzdWIi0iIxMjMBNTY30DkwIiwibmFtZSI6Ikpva {
G4gRGI1IiwiYWR 1i0nRydWUsImlhdCI6MTUx
NjIzOTAyMn@.NHVaYe26h

"alg": "RS256",
“typ": "JWT"
}

FAYLOAD:

VERIFY SIGNATURE

Figure 2.5: JWT token format taken from https://jwt.io/ [7]

JWTs are commonly used for stateless authentication with the key advantage
of being easily shared across different systems and platforms. As they are
self-encoded, the need for server-side storage or database lookups is limited

enabling greater performance and scalability as mentioned in 2.2.2.

JWTs are not managed server side and remain valid until their expiration. This

makes auditing and revoking JWTs non-trivial to implement [8].

21

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://jwt.io/

24 The problem with Third-Party Application
Authorization

In the pre-OAuth 2.0 era, third-party client application access to user data
(documents, social media posts, emails, or contacts) involved users sharing
their login credentials (username and password) with the third-party

application.

This approach presented several security and privacy concerns and risks,

hence is considered obsolete and to be taken as an anti-pattern:

1. Privacy: Sharing login credentials meant providing access to all aspects
of the user's account, including potentially sensitive information, rather
than providing selective access.

2. Credential Exposure: user credentials were stored by third-party
applications increasing the risk of potential data leaks or unauthorized
access and misuse.

3. Lack of Control: no means of control over the permissions granted to
the third-party application, At the same time revoking access to an
already authorized application was challenging and required at the very

least a password change.

OAuth 2.0 was developed to address these issues and provide a more secure
and controlled way for third-party applications to access user-owned data. It
introduces an authorization layer that allows users to grant access to their data
selectively, manage authorization preferences and revoke access at any time,

while maintaining control and without directly exposing their credentials.

22

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 3

OAuth 2.0 Framework

3.1 Overview

OAuth 2.0 is an open authorization framework that allows secure access
delegation between different systems or applications. It provides a
standardized method for granting third-party applications limited access to a
resource owner's (typically a user) resources without the need for sharing their

credentials with it.

With OAuth 2.0, the user can grant permission to a client application by
i1ssuing an access token that represents the level of authorization. This access
token 1s then used by the client application to access the user's resources from
the resource server. The client application never sees or handles the user's

credentials.

The primary benefits of OAuth 2.0 include improved security by decoupling
credentials and enabling controlled resource access, enhanced user experience
through seamless authorization, and interoperability across different platforms
and services. It offers a flexible and secure way to authorize access to
protected resources, such as user data or functionalities, while maintaining

user privacy and control.

To demonstrate this with an intuitive example, imagine a visitor comes to a
house when the homeowner is not there, and instead of sending the visitor an
actual house key, the owner sends them a temporary code to get into a

23

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

lockbox that contains the key. OAuth 2.0 operates in a similar manner. In
OAuth 2.0, one application sends another application an authorization token

to provide user equivalent access, instead of giving out the user's credentials.

3.2 OAuth 2.0 Roles, Client Types and Terms

In this section the key roles, token and client types of OAuth 2.0 are defined
and framework terminology is clarified to provide a more practical overview

and assist discussing in-depth technical concepts in the following chapters.

3.2.1 The key roles of the OAuth 2.0 framework

e Authorization Server: The server responsible for authenticating the

user and issuing access tokens.

For example a trusted Identity Provider such as Google’s 1dP server
which enables federating your Google identity (Login with Google) and
delegating access to Google APIs.

e Resource Server: The server hosting the protected resources that the

client wants to access on behalf of a user.
For example is a Mailing service API.

e Resource Owner: The entity who owns the protected resources and
can grant permission to access them. When the resource owner is a

person, it 1s referred to as an end-user.

24

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Such is, a mailbox owner, the end-user of the Mailing Service.

o OAuth / Client Application: a third-party application requesting
access to resources on behalf of the resource owner. The term "client”

does not imply any particular implementation characteristics.

For example a third-party Al-enabled typing assistant detecting and
correcting spelling, grammar, syntactical mistakes in emails and/or

documents.
3.2.2 Token Types

e Access Token: A short-lived token, issued by the authorization server
and used by the client application to access protected resources,

representing the authorization granted by the user to the client.

A JWT with read-only access to the Mail API, issued by the IdP and

used by the typing assistant to access the user’s mailbox.

e Refresh Token: a token with longer wvalidity, issued by the
authorization server and used by the client application to obtain a new

access token when the current access token becomes invalid or expires.

Refresh tokens are meant to provide a frictionless user experience by
omitting the need for prompting the user to re-login or re-authorize a

client application.

Unlike access tokens, refresh tokens are intended for use only with

authorization servers and are never sent to resource servers.

25

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

3.2.3 OAuth 2.0 Client Types

e C(Confidential or Private Client: A client application able to register a
client credentials, maintain their confidentiality and securely
authenticate to the authorization server with it, leveraging a server side
channel.

e Public Client: A client application incapable of maintaining the
confidentiality of client credentials, due to the fact it runs in untrusted

environments.

They are typically applications running on user devices or browsers
(JavaScript, Android), such as single-page applications, mobile or

native apps that pose no server-side channels or storage components.

Confidential clients are considered to be more secure and trusted and
typically are applications with server-side components (Java, Python,
C#), which allow them to securely obtain access tokens and store them
server-side. Public clients, on the other hand, are considered less secure

and untrusted compared to confidential clients.
3.2.4 OAuth Scope

In OAuth 2.0 scope is the term used to specify the level of access or
permissions requested by a client application when requesting authorization to
access protected resources. The scope also indicates the level of access

granted on an 1ssued access token.

26

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Scopes provide a means of fine-grained access control, allowing the resource

owner (user) to grant limited and specific permissions to client applications.

The client application specifies the requested scope in the authorization
request as an HTTP parameter. However, the scope actually granted on the
access token may differ based on the user's consent, which is conveyed in the

authorization response body.

For instance, a client application seeks access to a user's email inbox and
profile data includes the scopes "read-email" and "read-profile" in the
authorization request. However, the user may choose to grant access solely to
their profile information, not planning to use the application for email
management. Consequently, the issued access token will be scoped
exclusively with "read-profile” permissions, allowing the client to access only

the resources associated with that specific scope.
3.2.5 OAuth Flows and Authorization Grant

An OAuth flow refers to a series of steps and interactions between the client
application, the resource owner , and the authorization server to issue an

access token.

These flows define how the resource owner grants authorization to the client
application and how it exchanges that authorization, typically through a chain

of HTTP redirects, for an access token.

OAuth 2.0 supports multiple flows to cater to different client types and

security requirements.

27

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

3.3 OAuth Grant Types

OAuth 2.0 framework specifies several grant types, commonly referred to as

authorization flows, for different use cases.

For the scope of this thesis, Authorization Code with and without PKCE
(Proof Key for Code Exchange) and Implicit flow will be covered in depth,
since these are the most widespread and help differentiate between public and
confidential clients, while demonstrating the framework’s operation and

implementation concerns.

Other flows Resource Owner Password flow and Client Credentials flow will
be referenced for completion in order to demonstrate the framework’s

different use cases.

3.3.1 Authorization Code Flow

Authorization Code flow is typically used by confidential clients, such as

server-side applications.

It involves the client application redirecting the user to the authorization

server's authorization endpoint, providing its client id as an HTTP parameter.

The user 1s prompted to authenticate and grant consent. If the user provides
consent, the authorization server responds with an authorization code and
redirects the user to the client’s callback endpoint, providing the authorization

code as an HTTP parameter.

The client then exchanges this code for an access token and, optionally, a

refresh token. [14]

28

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Flow Diagram

A step-by-step graphical representation of Authorization Code flow follows in

the diagram below:

Resource Server OAuth Client
api.example.com client.app.com

GET /login

302 Found
Location:
https:/auth.example.com/authorize

GET
/callback?code=abc123& =XYZ

client_id=<id>&

0

GET /userinfo

Authorization: bearer
eyl .TOKEN

200 OK

<user data>

Resource Owner
User-Agent

GET /authorize?response_type=code
&client_id=<id>

=https://client.app.com/callback
&scope=<scope>

302 Found
Location: https:/client.app.com/callback ?
=abc123& =XYZ

POST /token?

=<secret>&

=abc123& =XYZ

200 OK

“ “ey).. TOKEN",

s,

“loken_Lype*:"bearer'expires_in": 3600

": “<token>"}

Authorization Server
auth.example.com

User Consent and
Authentication
prompt

Exchange Code for
Access Token via
server-side channel

Figure 3.1: Authorization Code Flow. Sensitive parameters with security implications are

written in a red font and the dark arrows represent HI'TP requests made via confidential,

server-side channels. A few parameters are omitted for readability.

Institutional Repository - Library & Information Centre - University of Thessaly

18/06/2024 15:10:04 EEST - 3.145.95.134

29

1. Client Initiation: The client application redirects the user to the
authorization server's authorization endpoint, providing its client id in
an HTTP parameter. Typically through a user interface element like a
"Login with OAuth" button.

2. User Authentication: The user is prompted to authenticate with the
authorization server. This ensures that the user is aware of the client
application and consents to granting it access to their protected
resources.

3. User Consent: After authentication, the user is presented with a
consent screen that explains what permissions the client application is
requesting. The user can review the requested permissions and decide
whether to grant or deny access.

4. Authorization Code Request: If the user grants consent, the
authorization server generates an authorization code and sends it back
to the client in an HTTP parameter, via a redirect URI specified during

the client application registration process.

The authorization code issued 1s a temporary credential, strictly tied to

the client application and not intended for direct use as an access token.

5. Authorization Code Exchange: The client application, using a secure
and confidential server-side channel, exchanges the received

authorization code with the authorization server for an access token.

The exchange involves sending a POST request to the authorization
server's token endpoint, along with the authorization code, client
credentials (client id and client secret), and any additional required

parameters.

30

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

6. Access Token Response: The authorization server verifies the
authorization code and client credentials and upon validation, it
responds with an access token, which represents the client's

authorization to access protected resources on behalf of the user.

The response may also include other details, such as the token's
expiration time, any optional scopes associated with the access token

and/or a refresh token.

7. Accessing Protected Resources: With the obtained access token, the

client application can make requests to protected resources.

3.2.2 Implicit Grant Flow

The Implicit Grant flow 1s designed for public clients, such as single-page
applications (SPAs) or native and mobile apps, where securely storing client

credentials is challenging.

This flow does not include client authentication, and relies solely on the
presence of the resource owner and the registration of the redirection URI.
Since the access token is encoded into the redirection URI as an HTTP or
fragment parameter, it may be exposed to the resource owner and other
applications residing on the same device or environment (e.g. browser history,

browser extensions, JS dependencies, network interception devices, etc). [15]

https://client.app.com/callback#<access-token>

Flow Diagram
A step-by-step graphical representation of Implicit Grant flow follows in the

diagram below:

31

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://client.app.com/callback%23%3caccess-token

Resource Server OAuth Client Resource Owner Authorization Server
api.example.com client.app.com User-Agent auth.example.com

GET /login 0

GET /authorize?response_type=token
&client_id=<id>

=https:/client.app.com/callback
&scope=<scope>

302 Found
Location: https:/auth.example.com/authorize

User Consent and

Authentication
prompt

302 Found
Location: https:/client.app.com/callback ?
{1=eyl)... TOKEN&token_type=bearer&expires.

GET /callback?
=ey)...TOKEN&token_type=bearer§]

GET /userinfo

Authorization: bearer
ey).. TOKEN

200 OK
<user data>

Figure 3.2: Implicit Grant Flow. Sensitive parameters with security implications are

written in a red font. The client is public and does not possess a server-side channel. A few

parameters are omitted for readability.

1. Client Initiation: The client application redirects the user to the
authorization server's authorization endpoint, providing its client id in
an HTTP parameter. Typically through a user interface element like a

"Login with OAuth" button.

2. User Authentication: The user is prompted to authenticate with the
authorization server. This ensures that the user 1s aware of the client
application and consents to granting it access to their protected

resources.

3. User Consent: After authentication, the user is presented with a
consent screen that explains what permissions the client application is
requesting. The user can review the requested permissions and decide

whether to grant or deny access.

32

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://auth.example.com/authorize
https://client.app.com/callback

4. Access Token Request: If the user grants consent, the authorization
server generates an access token and sends it directly back to the client

application.

Unlike the Authorization Code flow, in which the client makes separate
requests for authorization and for an access token, in this flow, the
client receives the access directly as a result of the user's authorization

and consent, typically via a redirect URL.

5. Accessing Protected Resources: With the obtained access token, the

client application can make requests to protected resources.
Notes and Reasoning behind Deprecation

Implicit Grant flow has been removed from the latest version of the OAuth
2.1 draft specification [11] and 1s considered obsolete and insecure, due to
lack of support for client authentication, refresh tokens and access token

exposure in the redirect URI [16].

Prior to the introduction of PKCE extension (3.2.3) to Authorization Code
flow, implementing the Authorization Code flow without a client secret was
commonly regarded as a preferable choice over the Implicit grant flow for

public clients.

Despite its deprecation it 1s still widely used, thus relevant and allows
demonstrating some key points when assessing OAuth implementations,

hence used as reference.

33

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

3.2.3 Proof Key for Code Exchange (PKCE)

Proof Key for Code Exchange (PKCE) is an extension to the Authorization
Code flow and was introduced to mitigate certain security vulnerabilities
associated with public clients by adding an additional step to the
Authorization Code flow, ensuring that the authorization code is securely

exchanged for an access token by verifying the integrity of the request.

While PKCE enables using Authorization Code flow with public clients, it
should not be taken as a replacement for client authentication and does not

allow treating public clients as confidential. [17]

34

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Flow Diagram

A step-by-step graphical representation of Authorization Code flow with
PKCE follows in the diagram below:

OAuth Client

client.app.com

Code Challenge
Creation anrd
Transformation

sealllvack o

Generate and
ass0ciate
Authnrization rode
with Code
Challerige and
Wethad

Localion:

Werily Code Challengs
shaZ56(cade veritier] == code challenge

Figure 3.3: Authorization Code flow with PKCE. Sensitive parameters with security
implications are written in red font, PKCE specific parameters are written in orange. The

client is public and does not possess a server-side channel. A few parameters are omitted

for readability.

35

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

PKCE specific steps

1. Code Challenge Creation: Before initiating the authorization request,
the client generates a “code verifier”, a cryptographically random
string, “nonce”.

2. Code Challenge Transformation: The client then derives a “code
challenge” by transforming the “code verifier” using a specified

method, such as SHA-256 hashing.
The “code challenge™ is a derived value from the “code verifier”.

code_challenge =

BASE64URL-ENCODE (SHA256 (ASCII(code_verifier)))

3. Authorization Request: The client initiates the authorization request
by redirecting the user's browser to the authorization server's

authorization endpoint.

The request includes the “code challenge™ along other necessary

parameters.

4. Authorization Code Exchange: Upon user authentication and consent,
the authorization server generates an authorization code and sends it to

the client's specified redirection URI.

The Authorization server must be able to associate the “code challenge™
and method with the generated code. This is done either by storing
them in encrypted form within the authorization code or on the server

side.

36

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5. Token Request: The client application, exchanges the received
authorization code with the authorization server for an access token,
including the original “code verifier” nonce along the necessary POST
request parameters

6. Access Token Response: The authorization server validates the
authorization code, client credentials, calculates the “code challenge”
using the “code verifier” and compares it with the previously

associated “code challenge”.
If everything is valid, it responds with an access token.

3.2.4 Other OAuth Grant Types

Client Credentials

Client Credentials flow 1s designed for machine to machine authentication
outside the context of a user and in cases where the client is also the resource
owner. Clients applications to directly exchange client credentials for an

access token. [9]

Device Code

Device Code flow i1s designed for use by browserless or input-constrained
internet-connected devices (like smart TVs, media consoles, digital picture
frames, and printers), where requiring the user to input text in order to
authenticate during the authorization flow is impractical. It enables obtaining
user authorization to access protected resources by using a user agent on a

separate device. [10]

37

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Resource Owner Password
Resource Owner Password flow involves the client directly obtaining the
user's username and password. The client then sends these credentials to the

authorization server to obtain an access token.

The resource owner credentials are used for a single request and are
exchanged for an access token, eliminating the need for the client to store the

resource owner credentials for future use.

This flow is omitted in the latest specification draft [11] and is considered
obsolete and insecure, yet it is still supported by some implementations for

backwards compatibility. [12]

Refresh Token

Refresh Token flow allows a client application to obtain a new access token
without requiring the user to re-authenticate. It provides a way to refresh an
expired or expiring access token, ensuring that the client application can

continue accessing protected resources seamlessly. [12]

38

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 4

OAuth 2.0 Threat Model and

Vulnerabilities

This chapter delves into the critical examination of the simplified threat
model associated with OAuth 2.0, focusing specifically on practical threats
that are inherent to the framework. The objective is to identify vulnerabilities
and abuse paths that have the potential to compromise the security of OAuth

2.0 implementations.

To achieve this, potential threat actors and their capabilities within the
operational context are identified. Critical assets and the potential impact of
their compromise are also analyzed in order to understand the attack vectors
targeting these assets and determine the necessary security controls required

to mitigate the risks they pose.

Building upon this theoretical overview of OAuth 2.0 security architecture,
case studies from publicly disclosed bug bounty program reports and cases of
real-world abuse are examined aiming to demonstrate these attack vectors.
These case studies provide tangible examples of how these vulnerabilities
manifest in practical implementations, highlighting the urgency and

importance of addressing them.

Building a complete threat model for the current state of OAuth 2.0
ecosystem falls beyond the scope of this thesis. The model used in this

chapter aims to document theoretically a few realistic, framework specific

39

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

attack vectors demonstrated in the last section of the chapter and their
mitigation countermeasures in order to underline the necessity and importance
of 1implementing sufficient security controls supporting deployments

dependent on OAuth 2.0. [18]

4.1 OAuth 2.0 Threat Actors

A threat actor refers to an entity that possesses the intention, capability, and
resources to exploit vulnerabilities or cause harm to a system, organization, or
individual. Understanding the motives, methods, and capabilities of threat
actors within the context of OAuth is crucial in identifying potential risks and

implementing an effective security strategy.

Within the scope of this thesis, the following threat actors have been taken

into consideration.

e An external user that may possess an account, attempting to exploit
implementation vulnerabilities.

e An agent residing within the network, able to spoof and inspect
plaintext network communications (e.g. public WIFI).

e Malicious Client application attempting to trick users into giving
authorization consent in order to abuse their level of access.

e Compromised Client application, a legitimate Oauth client, whose
credentials have been compromised and abused in order to request
credentials on behalf of users who already have authorized it.

e A legitimate user access privileges being abused either intentionally or

due to leaked access tokens or compromised account credentials.

40

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

4.2 Critical assets

OAuth 2.0 is a standardized and secure mechanism for granting and managing
access to protected resources, hence in that sense threat modeling should

prioritize securing access to user data and identities.

Within the framework’s scope the critical assets granting access to user data

and enabling identity theft and abuse are the following:

e Access tokens representing the authorization granted by the user and
leaking them 1s considered equivalent to user data compromise. In the
context of this thesis access tokens are considered to be JWTs.

e Refresh Tokens can be exchanged for access tokens, thus considered of
equitable importance. Refresh tokens are reference tokens issued by the
authorization server and stored server-side by confidential clients.

e Authorization Code can be exchanged for an access token thus
considered of equitable importance.

e (lient Credentials allow impersonating legitimate applications and can
be abused for phishing attacks. Furthermore they can be abused for

privilege escalation.

Consider an IdP that allows customers to develop client applications to
use its services and at the same time uses the same approach for
internally developed client applications used within the organization by
its employees. The internal clients may have an extended scope to
access internal resources, not meant to be accessed by end users.
Compromising the credentials of an internal client enables accessing

sensitive internal scopes.

41

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

4.3 OAuth 2.0 Attack Vectors and Mitigations

This section aims to provide an analysis of the common attack vectors
associated with the OAuth 2.0 framework and a comprehensive overview of
practical and effective mitigations to protect against them. By understanding
the attack vectors specific to OAuth 2.0, we can develop robust mitigation
strategies to ensure the integrity and confidentiality of user data within

OAuth-based systems.

4.3.1 Improper Token Management and Validation

Improper token management and validation in OAuth 2.0 refers to
vulnerabilities and weaknesses related to the handling and verification of

access tokens and refresh tokens issued for OAuth users.
Most notably such issues have to do with:

e Lack of Transport Layer Security (TLS): TLS should be enforced for
all OAuth interactions and all requests containing access tokens,
initiated by the client after authorization should be done over HTTPS.

e Token expiration: Access and refresh tokens should have a limited
lifespan and should expire after a specified time frame.

e Token integrity validation: prior to accepting a token, its integrity,
expiration and signature should be verified to ensure forged, expired or
tampered tokens are not accepted.

e Token scope validation: the access scope the token was authorized with
should also be enforced, preventing scope extension attempts aiming to

access resources beyond the user’s consent.

42

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

e Token Storage: tokens should be securely stored, both on the server and
on the client side. Enforce strong encryption and appropriate access
controls to protect tokens from unauthorized access. This is a
non-trivial problem for public clients.

e Refresh token must be one-time use and bind to a specific client.

4.3.2 Insufficient Redirect URI Validation

Vulnerability

Insufficient redirect URI validation is a security vulnerability that can affect
implementations of OAuth 2.0 framework. It takes advantage of inadequate
validation or lack of validation of the redirect uri parameter during the

authorization process.

The redirect uri is a critical parameter used to redirect the user back to the
client application after successful authorization. It is specified by the client

application and must be pre-registered with the authorization server.

Abusing vulnerabilities in the validation of the redirect URI to manipulate the

flow can lead to various security risks, such as: [19]

e Open Redirect: craft a malicious redirect URI that appears legitimate
but redirects the user to a malicious website. This can trick the user into
providing sensitive information or performing unintended actions.

e Token Leakage: If the redirect URI is not properly validated, it 1s
possible to intercept the authorization code or access token by
registering a malicious redirect URI. This enables gaining unauthorized

access to the user's account or sensitive data.

43

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Case Study: Slack redirect uri validation bypass
Slack’s authorization server was vulnerable to redirect URI validation bypass.
It was possible to redirect a client to an attacker controlled domain by adding

a suffix to the legitimate registered redirect url. [20]
redirect_uri = client.app.com
bypass = client.app.com.attacker.com

The payload that would redirect the client to the malicious domain exploiting

the vulnerability:

https://slack.com/oauth/authorize?client_1id=<id>&re

direct_uri=http://client.app.com.attacker.com
Other notable redirect uri bypass techniques:

open redirect:
https://client.app.com/callback?redirectUrl=att

acker.com

path traversal with open redirect:
https://client.app.com/callback/../redirect/?re

directUrl=attacker.com
uri parser logic abuse:

https://client.app.com/&@foo.attacker.com#@bar.

attacker.com

44

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://slack.c
http://client.app.com.attacker.com
https://client.app.c
https://client.app.c

Mitigations
To mitigate risks posed by Insufficient Redirect URI Validation, the following

countermeasures must be implemented [21]:

o Strict Redirect URI Validation: The authorization server must ensure
that the requested and the registered for the client redirect URIs are

equal.

The complexity of implementing and managing pattern matching correctly is
a high probable root cause for security issues, therefore to simplify the
required logic the authorization server should perform exact string matching
ensuring the requested redirect URI (scheme, host and path) matches the

registered one before redirecting to the callback endpoint.

e Whitelisting Trusted Redirect URIs: The authorization server can
maintain a whitelist of trusted redirect URIs that have been explicitly

registered by client applications.

Only requests with redirect URIs matching an entry in the whitelist associated

with the requesting client should be considered valid.

e Servers on which callbacks are hosted must not expose open

redirectors.

45

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

4.3.3 Authorization Code injection

Vulnerability

Authorization Code Injection is a security vulnerability that can affect
implementations of OAuth 2.0 protocol. This attack takes advantage of
vulnerabilities in the handling of the authorization code, temporary code
issued when the user grants authorization, which can be exchanged for an

access token.
There are multiple causes of authorization code leakage such as:

e cxploitation of vulnerabilities like Insufficient Redirect URI Validation
or XSS
e leakage through caches or browser history

e authorization response interception

In an Authorization Code Injection scenario, an authorization code that has
been compromised is injected in an authorization flow initiated by a malicious
user aiming to gain access to the user's account via the client application in
the case of confidential clients or directly obtain an access token in the case of

public clients. [22]

Mitigations
To mitigate the risks posed by Authorization Code injection, the following

countermeasures must be implemented [9]:

e PKCE [3.2.3] was initially developed for mitigating Authorization
Code injection. When the attacker attempts to inject an authorization

code, the check of the code verifier fails: the client uses its correct

46

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

verifier, but the code 1s associated with a code challenge that does not

match this verifier.

PKCE ensures that an attacker cannot redeem a stolen authorization
code at the token endpoint of the authorization server without

knowledge of the code verifier.

PKCE i1s an OAuth extension, originally intended for securing public
clients, but broader application to Authorization Code flow used by

confidential clients is now recommended.

e Authorization codes must be one-time use and treated as invalid if
already redeemed by the legitimate user. This leaves a limited period
during which this flaw can be exploited. [23]

e Strictly bind authorization codes to a specific client. This may sound
obvious, yet it deems exploitation impossible by injecting codes

generated by another client, e.g. a malicious one. [23]

47

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

4.3.4 CSRF

Vulnerability

CSRF (Cross-Site Request Forgery) is a web security vulnerability that allows
an attacker to induce users to perform actions that they do not intend to
perform. It allows to partly circumvent the same origin policy, which is

designed to prevent different websites from interfering with each other. [24]

In the context of OAuth 2.0 CSRF tricks a legitimate user into unknowingly
accessing resources under the malicious user’s control, which in specific

implementations client implementations may lead to account takeover.

Consider a website that allows users to log in using either a classic,
password-based mechanism or by linking their account to a social media
profile using OAuth. Exploiting CSRF it 1s possible to hijack a victim user's
account on the client application by binding it to their own social media

account. [25][26]

Case-Study: Shopify login with Pinterest CSRF

Shopify’s login with Pinterest feature was vulnerable to CSRF. [26] It was
possible to bind a malicious Pinterest account to an existing Shopify account
of a legitimate user by issuing an authorization code on Pinterest and tricking
the authenticated Shopify user to visit a crafted site executing the following

request on his/her behalf:
GET /auth/pinterest/callback?code=<code> HTTP/1.1

Host: pinterest-commerce.shopifyapps.com

Cookie: <shopify-session-cookie>

48

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Note the lack of state parameter and/or PKCE code verifier on the above

request.

Mitigations
e The "state" parameter should be utilized to link the authorization
request with the callback request used to redeem an authorization code
for an access token. This will ensure that the client is not tricked into
completing any redirect callback unless it is linked to an authorization

request initiated by the client.

The state value should be non-guessable, such as the hash of something tied to

the user's session when the OAuth flow 1s initiated.

e Implementations PKCE extension also mitigates CSRFs against OAuth
2.0 as a side-effect.

4.3.5 Phishing and misleading user consent

Another important threat factor to be considered is the importance of user
consent prompts and the risk of them misleading users and being abused in
phishing campaigns attempting to trick the users into authorizing malicious

OAuth applications. [27]

This phishing technique 1s hard to identify from an end user's perspective due
to the fact that the user is never prompted to enter his credentials, nor is ever
directed to a malicious site. For an attack of this type to succeed the victim
user only has to authorize the malicious application, accepting the consent

prompt hosted under the trusted domain of the authorization server.

Case-Study: Malicious “Google Docs” App Phishing Campaign
A phishing campaign leveraging a malicious Google application
impersonating “Google Docs” and requesting access to user emails and

49

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

contacts was discovered in 2017. The phishing link was distributed by an
email inviting the receiver to view a document and directed the victim to the
consent page for the malicious application under the legitimate

accounts.google.com domain. [28], [29], [30]

(o WS

- Google Docs would like to:
M Read, send, delete, and manage your email
B Manage your contacts

By clicking Allow, you allow this app and Google to use your information in
accordance with their respective ervice and privacy policies. You can
change this and other Account Permissions at any time

Figure 4.1: Google s consent prompt (at that time) for the malicious application. [15]

Countermeasures
e First and foremost a properly designed consent prompt providing the
end user the required bits of information to review the legitimacy of the

client.

50

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Authorize Codecademy

Codecademy by Codecademy

- n
L}
Bl wants to access your account
Repositories w
] Public repositories
/Q‘ Personal user data "
Email addresses (read-only)

Organization access

Cancel Authorize Codecademy

Authorizing will redirect to
https :/'www.codecademy.com

Mot owned or @ Created 7 years ago More than 1K
operated by GitHub GitHub users

Learm more about Ovwth

Figure 4.2: Github's consent prompt informing the user about the client’s name,

userbase, time of creation and association with Github as well as the requested

scope and the redirect to follow authorization [31].

51

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

e Authorization servers have to provide end-users the capability to
manage, audit and revoke access scope and authorization of client
applications.

e [Last but not least, considering leaked access and/or refresh token as a
result of phishing attack or another attack vector is a realistic threat,
token revocation features should be implemented to harden and support
the operations of an Authorization server deployment. A mechanism for
implementing JWT revocation will be discussed in the following

chapter.

52

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 5

Securing APIs with OAuth 2.0

In the previous chapters we have achieved a robust understanding of OAuth
2.0 framework as well as the relevant security implications. Considering
emerging threats, their mitigation strategies and the risk they pose we are able
to compile an auditing methodology for testing and verifying secure OAuth

implementations.

Based on this methodology we are able to develop a proof of concept OAuth
2.0 system using containers, supporting different types of client applications

and protecting a simple microservice application acting as a resource server.

We will further extend the system’s baseline architecture to implement certain
hardening features to ensure secure token management, transfer, verification
and revocation while attempting to balance out security to performance

trade-offs when securing APIs and microservices.

53

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.1 Development Environment

For development the above were deployed as Docker containers [32] within a
Kubernetes [33] cluster exposed via the cluster’s ingress controller [34].
OAuth Debugger [35] and OAuth Tools [36] served as client applications for

testing and verification of the various OAuth flows.

Client
https://oauthdebugger.com/

Figure 5.1: Development environment

54

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2 High Level Architecture

The baseline system consists of an authorization server supporting
confidential and public clients, implemented securely considering the topics
discussed in chapters 3 and 4 which will be extended to support token
revocation and introspection as well as an API microservice service to act as a

protected resource server.

All access tokens 1ssued are JWTs protected in transport by TLS.

4(public). -~
Client uses JWT Token
to access the User Management API
Account AP|
1(public). 3(public).

Auth Server redirects the user to the client callback

Client redirects User to Auth Server with JWT Access Token

\—
2(common).
User authorizes the client application

Endluser

3(confidential).

= Auth Server redirects the user to the client ca
with an Auth Code 5(confidential)

5 Client uses JWT Token

1(confidential). to access the Account API

Client redirects User to Auth Server | .]

~ Confidential
Clignt 4(confidential).

Client exchanges code for a JWT access token

via secure server side channel

Figure 5.2: High level Architecture

55

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2 JWT Revocation

Besides a robust authorization server implementation to properly secure
OAuth protected resources it is crucial to implement access token revocation
capabilities. The following scenarios can be referenced, in addition to the
risks of improper token management and handling mentioned in 4.3.1, to
demonstrate the necessity of invalidating an access token before its initially

expected expiration time:

e a user revokes access to an authorized client application
e an application is deactivated by an authorization server admin
e 3 user is deactivated

e a user password is reset

Token revocation in implementations that utilize reference tokens stored in a
database 1s straightforward. A token can be revoked by deleting its entry from
the backend storage as such is the case of handling refresh tokens in parallel

to JWT revocation discussed below.

Furthermore, a list of active access tokens can be retrieved at any time in

order to audit the access granted on the user’s behalf.

This is not the case for revoking self-encoded tokens such as JWTs which are
designed to be portable, decoupled identity information that can be verified
without interacting with the identity provider, who in the above

implementation is the authorization server.

In this section the different ways for revoking JWTs [37], their pros and cons
focusing on the “blacklist” approach to be implemented on top of the above

infrastructure.

56

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2.1 Short-lived access tokens

The most naive and simple approach would be issuing short-lived JWTs with
a reduced validity period rather than implementing a revocation feature and

accepting the potential risk of a significantly narrow abuse time frame.

Token revocation will not be instantaneous, but it could take up to the
expiration of the last generated token. The main disadvantage of this approach
1s that all access tokens will expire periodically, which introduces a significant
performance overhead even when a transparent token acquisition mechanism,

like refresh tokens, is used by the backend to smoothen user experience.

This security to performance [38] tradeoff is considered acceptable and fair,
even in the broader concept of session management, given the context of
sensitive systems such as PCI-DSS compliant applications that demand

session invalidation after 15 minutes of inactivity. [39]

5.2.2 Signing Secret Rotation

Another method for JWT revocation is to rotate the secret key used by the
digital signing algorithm, invalidating every token signed with it. The obvious
disadvantage of this approach is that it can not distinguish between individual

clients, but revokes all access tokens at the same time.

Changing the signing key to implement common features like logout and
session termination is extreme and does not fit most cases, yet in scenarios
where there is a small and bounded number of active clients in the system,
this overhead can be negligible considering the advantage of not being

dependent on a centralized data storage and invalidation is instantaneous.

57

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2.3 Token Blacklist

To implement JWT revocation blacklist to be able to tell one token apart from
another one. To do so, an authorization server can utilize the uniquely valued
jti (JWT’s 1d) registered claim [40] used to identify a token. On an
infrastructure level it is recommended using modern in-memory key-value

storage like Redis [41] to implement the blacklist.

The main advantages of the blacklist revocation method is the fact that it can
handle tokens individually and efficiently supports multi-client environments,

allowing users to revoke access from different clients or devices on demand.

Token Revocation
To revoke a token an POST request i1s sent to the authorization server’s

revocation endpoint [42] as follows:
POST /revoke HTTP/1.1
Host: auth.example.com

Authorization: Bearer <token>

token=<jwt_token>&token_type=jwt

The authorization server validates the token and decodes its payload, extracts
the 5ti claim to be used as a key for the blacklist entry and the exp claim
to calculate how long the entry should be kept in the blacklist. By performing
a lookup to the blacklist the authorization server can answer whether or not a

non-expired JWT is revoked [43].

58

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Blacklist Housekeeping

Scaling 1s the main limitation of the token blacklist as it can grow quite
rapidly along the user-base. To mitigate this a maintenance mechanism (e.g. a
cron job [44]) should execute ad-hoc on certain intervals, bounded by the

JWTs lifetime, removing blacklist entries for expired tokens [45].

Implementation

3. Revocation
a. Server validates <jwt> signature
b. Server verifies the <jwt> is not expired
c. Server calculates the time until <jwt>'s expiration
<exp> - time.now()
d. Server stores the <jwt>'s <jit> in the blacklist key-store until its expiration

ZnAlitrionzatcn SET <jit> <payload> EX (<exp> - ime.now())

a. Server validates <token: signature
b. Server verifies the <token> has "revoke" scope

c. Server verifies the <token is authorized to revoke the requested <jwt>
1. POST /revoke

Authorization: Bearer <token> JWT CS...
Blacklist [x]

"token" : <jwt: ,"tok;nt e": "jwt_token" .
{ L ol) blacklisted tokens

.K.ey Value Expired removed transparently
<jti-1> i on expiration:
<jtix> { X
SET <jit> <payload> EX (<exp> - time.now())

Authorization Server
7. Blacklist lookup:
The token with this <jti> is revoked !

\ 8.401 Unauthorized

\

4. Attempt to acces:
with blacklisted <jwt>

6. Is this non-expired JWT valid ?

API
5. The API Server validates the JWT signature

Figure 5.3: JWT revocation using REDIS as a blacklist

Since REDIS is used as the key-store solution to implement the blacklist,
REDIS’ the SET command with EX argument can be leveraged to implement
the cleanup mechanism for deleting expired tokens. SET command sets a
<key> to hold a certain <value> and the EX argument specifies the key’s

expiration time [46]. The key-value is removed upon expiration.

59

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

SET <jti> <payload> EX (<exp> - time.now())

The payload value can contain metadata like user identification information to
support other features on top of the blacklist like logout from all devices or

simply be empty JSON.

Security Considerations
Note that the blacklist stores very limited data, only non-sensitive information

token metadata that can not be abused in case of compromise.

On the other hand the revocation endpoint is prone to exploitation and needs
to be secured by defining a revoke scope that will be used to limit who can
blacklist tokens only to clients holding this scope. This can prevent abuse
scenarios of arbitrary revoking access tokens, aiming to disrupt users or

exhaust blacklist resources.

Drawbacks
The key disadvantage of blacklist revocation i1s being contradictory with the
distributed nature of JWTs, since it relies on lookups which introduce latency

for validating tokens acting against performance benefits they offer.

In the following subchapter, the proof of concept implementation, now
supporting JWT revocation will be extended further in an attempt to minimize

this performance overhead and get the best of both worlds.

60

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.2.4 Other JWT revocation methods

There are a couple less prevalent approaches based on distributing revocation
events [47] broadcasted from the authorization server to all resource servers.
These revocation methods come with significant drawbacks, the dominant
ones being not supporting multiple client applications [45] and demanding
complex logic to be implemented on the resource server side and as they are

not standardized will not be analyzed here.

61

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.3 JWT Lifetime and Validation

Given revocation capabilities introduces certain issues when validating a
JWT. In order to distinguish between the 3 different states a JWT may be, an

API server can perform the following actions before accepting it.

3

v v v v v &3
POROQQQQ

Figure 5.4: JWT Token Lifetime

& vvigxx

Rerﬁbte Vaﬁdation

Token Revocation
Token Expiration

Local Validation

5.3.1 Local Validation

Fast or local validation is the customary, well established validation method
for JWTs which holds all the performance benefits discussed in earlier
chapters. It can be performed locally by the API server accepting JWT access

tokens as follows:

l. ITnspect JWT
2. Check the expiration timestamp

3. Validate the cryptographic signature

The public key can be fetched from the issuing authorization server’s

metadata endpoint [48] and cached locally.

62

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.3.2 Remote Validation

Local validation is not sufficient for identifying a revoked JWT. To do so the
API server has to validate against the revocation blacklist maintained by the
authorization server to strongly validate a token. This can be done using the
authorization server’s token introspection endpoint [49], meant to determine
the active state meta-information of an issued token. However this requires

performing a network request, hence introduces latency.

Request:

POST /introspect HTTP/1.1
Host: auth.example.com
Authorization: Bearer <token>

token=<jwt_token>

Response:

HTTP/1.1 200 OK

{"actdive": true,
lljtill: ||<jti>||’
"scope": "read-profile write-profile",

"exp": 1419356238}

63

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

5.4 Securing API backends

In the context of an API or a microservice application the various operations
hold different levels of criticality. Assessing the risk of each operation can be
used to define whether or not remotely validating an access token is a strong

requirement and justifies the performance impact.

For example fetching an avatar from the Profile API using a revoked token
does not pose the same 1impact as changing a user password or accessing the
Payments API and executing a transaction. The latter should strongly validate
the access token, while the first operation can be processed with only

performing local validation.

5.4.1 API Gateway Pattern

To demonstrate this principle we are going to extend the proof of concept
implementation with an APl Gateway. An APl Gateway is a microservice
architecture pattern where an infrastructure component or software
middleware acts as an entry point for client applications to access a

collection of backend services or APIs [50].

The main purpose of the APl Gateway component serves is managing and

implementing centrally using a unified interface key features such as:

e Request routing and load balancing
e Authentication and authorization
e Security features like APl schema enforcement

e Rate limiting and throttling

64

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

® Logging, monitoring and tracing

Implementation
Profile API
/profile/me Q
g D)
© The Profile API backend
. g‘ validates the token locally and
Local Validation] performs authorization checks
On succesful validation Q and serves the call.
the API Gateway forwardsthe request =
to the relevant backend service
otherwise it returns 401Unauthorized
e API request @
. NGINX
G Ingress API Gateway
=
8 The Payment AP backend
%_ strongly validates all requests remotely
£ making an authorization server lookup.
%
Q
g G
/transaction/<id>

Paymént API %
Kubernetes Cluster

Remote Validation

On succesful validation

the authorization server responds with "active” : true

and the API request is processed by the Payments backend
- otherwise the authorization server returns "active" : false

Authorization Server and the backends responds with 401 Unauthorized

&

Figure 5.5: Securing backend services using an APl Gateway

We are going to leverage the APl gateway to balance out the cost in
performance introduced by strong token validation by reducing the number

of requests processed within the internal network.

The API Gateway is going to act as a boundary between the microservice
network and the clients, performing local validation on all access tokens
contained in authenticated API requests before they reach the respective
backend service. Requests with invalid, tampered or expired access tokens
will be dropped on the network’s edge, omitting unnecessary processing and

resource commitment by the internal microservice infrastructure.

65

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

This leaves it to the different backend service APIs to choose whether or not
to perform strong access token validation based on the risk posed by the

requested action.

Security Considerations
It 1s important to note that this is not a security feature, rather a performance
optimization, nor does it act as an alternative to authorization checks that have

to be performed on the backend services.

Furthermore, 1t 1s recommended to perform local validation on the API
service before blindly accepting a JWT, unless it is possible to validate that

the received request source is the API gateway.

This can be done by enforcing network policies or extending the API gateway
to act as an authwall boundary, utilizing HTTP headers to pass token metadata

to backend services and service mess patterns for TLS and service identities

[51].

66

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

Chapter 6

Conclusions and Future Work

6.1 Summary

We presented an overview of the OAuth 2.0 framework along with the
necessary background information for understanding the problem it aims to
solve and its limitations. Diving deeper into the framework’s internals we
used a simple threat model and specific implementation case studies to
identify the emerging threats within OAuth 2.0 and their impact, along with

the risk they pose and their potential mitigation strategies.

Based on the above we compiled an audit methodology which assisted us into
implementing a proof-of-concept OAuth based system to protect a simple
microservice application API utilizing JWT tokens. Finally the proof of
concept architecture was extended with infrastructure components to further
harden the systems token management capabilities. Token revocation is
supported and leveraged by backend services when required, dealing with the

security and performance implications that emerge from the use of JWTs.

67

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

6.2 Future Work

In the future the review methodology of OAuth implementations should be
improved to consider OAuth 2.1 specification and security considerations
[52]. The latest draft versions available at the time [53],[54] of writing were
considered but should be revisited once they are standardized. A more
comprehensive audit of OAuth should also consider implementations that
leverage authorization server chains, attack vectors against JWTs [55] and
mobile clients as well as underestimated clickjacking [56] and flow

downgrade attacks.

As of infrastructure we can further utilize the API Gateway to explore
microservice architectural patterns or implement other security and
performance features. For example implementing a service mesh [57] within
the microservice network allows verifying the legitimacy of a request’s source
with mTLS, negating the need of re-validating the JWT locally on the API’s
backend [51].

68

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

References

[1] https://en.wikipedia.org/wiki/Identity management

[2] https://en.wikipedia.org/wiki/Session (computer science)#Session_managem

ent
[3] https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
[4] https://en.wikipedia.org/wiki/Access token
[5] https://www.okta.com/identity-101/what-is-token-based-authentication/
[6] https://datatracker.ietf.org/doc/html/rfc7519
[7] https://jwt.i0/
[8] https://fusionauth.io/articles/tokens/pros-and-cons-of-jwts
[9] https://www.rfc-editor.org/rfc/rfc67494#section-1.3.4
[10] https://www.rfc-editor.org/rfc/rfc8628

[11] https://www.ietf.org/archive/id/draft-ietf-oauth-v2-1-08.html#name-differen

ces-from-oauth-20
[12] https://www.rfc-editor.org/rfc/rfc67494section-1.3.3
[13] https://www.rfc-editor.org/rfc/rfc6749#section-1.5
[14] https://datatracker.ietf.org/doc/html/rfc67494#section-1.3.1
[15] https://datatracker.ietf.org/doc/html/rfc67494#section-1.3.2

[16] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-22#na

me-implicit-grant
[17] https://oauth.net/2/pkce/
[18] https://datatracker.ietf.org/doc/html/rfc6819

69

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://en.wikipedia.org/wiki/Identity_management
https://en.wikipedia.org/wiki/Session_(computer_science)%23Session_managem
https://developer.mozina.org/en-US/docs/Web/HTTP/Cookies
https://en.wikipedia.org/wiki/Access_token
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://datatracker.ietf.org/doc/html/rfc7
https://jwt.io/
https://fusionauth.io/artides/tokens/pros-and-cons-of-jwts
https://www.rfc-editor.Org/rfc/rfc6749%23section-1.3.4
https://www.rfc-editor.org/rfc/rfc8628
https://www.ietf.org/archive/id/draft-ietf-oauth-v2-1-08.html%23name-differen
https://www.rfc-editor.org/rfc/rfc6749%23section-1.3.3
https://www.rfc-editor.org/rfc/rfc6749%23section-1.5
https://datatracker.ietf.org/doc/html/rfc6749%23section-1.3.1
https://datatracker.ietf.org/doc/html/rfc6749%23section-1.3.2
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-22%23na
https://oauth.net/2/pkce/
https://datatracker.ietf.org/doc/html/rfc6819

[19] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#tname-i

nsufficient-redirect-uri-v
[20] https://hackerone.com/reports/2575

[21] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#tname-c

ountermeasures

[22] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23#na

me-authorization-code-injectio

[23] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23#na

me-discussion
[24] https://portswigger.net/web-security/csrf
[25] https://portswigger.net/web-security/oauth#flawed-csrf-protection
[26] https://hackerone.com/reports/111218
[27] https://www.youtube.com/watch?v=espX8qgKjywl
[28] https://twitter.com/googledocs/status/859878989250215937

[29] https://auth0.com/blog/all-you-need-to-know-about-the-google-docs-phishi
ng-attack/

[30] https://thehackernews.com/2017/05/google-docs-phishing-email.html

[31] https://docs.github.com/en/apps/oauth-apps/using-oauth-apps/authorizing-

oauth-apps
[32] https://www.docker.com/
[33] https://kubernetes.io/
[34] https://kubernetes.io/docs/concepts/services-networking/ingress/

[35] https://oauthdebugger.com/

70

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://datatracker.ietf.Org/doc/html/draft-ietf-oauth-security-topics%23name-i
https://hackerone.com/reports/2575
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics%23name-c
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23%23na
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23%23na
https://portswigger.net/web-security/csrf
https://portswigger.net/web-security/oauth%23flawed-csrf-protection
https://hackerone.com/reports/111218
https://www.youtube.com/watch?v=espX8qKjywI
https://twitter.com/googledocs/status/859878989250215937
https://auth0.com/blog/aH-you-need-to-know-about-the-google-docs-phishi
https://thehackernews.com/2017/05/google-docs-phishing-email.html
https://docs.github.com/en/apps/oauth-apps/using-oauth-apps/authorizing-oauth-apps
https://docs.github.com/en/apps/oauth-apps/using-oauth-apps/authorizing-oauth-apps
https://www.docker.com/
https://kubernetes.io/
https://kubemetes.io/docs/concepts/services-networking/ingress/
https://oauthdebugger.com/

[36] https://oauth.tools/
[37] https://journals.sagepub.com/doi/full/10.1177/1550147718801535

[38] https://authO.com/blog/balance-user-experience-and-security-to-retain-cust

omers/

[39] https://otm.finance.harvard.edu/files/otm/files/pci_security_standards.pdf -
Section 8.5.15

[40] https://www.rfc-editor.org/rfc/rfc75194#section-4.1.7

[41] https://redis.io/

[42] https://authO.com/blog/denylist-json-web-token-api-keys/

[43] https://datatracker.ietf.org/doc/html/rfc70094#section-2

[44] https://en.wikipedia.org/wiki/Cron

[45] http://waiting-for-dev.github.io/blog/2017/01/24/jwt_revocation_strategies
[46] https://redis.io/commands/set/

[47] https://fusionauth.io/articles/tokens/revoking-jwts

[48] https://www.rfc-editor.org/rfc/rfc8414

[49] https://datatracker.ietf.org/doc/html/rfc7662

[50] https://www.nginx.com/learn/api-gateway/

[51] ttps://fusionauth.io/articles/tokens/tokens-microservices-boundaries

[52] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-08

[53] https://fusionauth.io/articles/oauth/differences-between-oauth-2-oauth-2-1
[54] https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23

[55] https://portswigger.net/web-security/jwt

71

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

https://oauth.tools/
https://joumals.sagepub.com/doi/fuN/10.1177/1550147718801535
https://auth0.com/blog/balance-user-experience-and-security-to-retain-cust
https://otm.finance.harvard.edu/files/otm/files/pci_security_standards.pdf
https://www.rfc-editor.org/rfc/rfc7519%23section-4.1.7
https://redis.io/
https://auth0.com/blog/denylist-json-web-token-api-keys/
https://datatracker.ietf.org/doc/html/rfc7009%23section-2
https://en.wikipedia.org/wiki/Cron
http://waiting-for-dev.github.io/blog/2017/01/24/jwt_revocation_strategies
https://redis.io/commands/set/
https://fusionauth.io/articles/tokens/revoking-jwts
https://www.rfc-editor.org/rfc/rfc8414
https://datatracker.ietf.org/doc/html/rfc7662
https://www.nginx.com/learn/api-gateway/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-08
https://fusionauth.io/articles/oauth/differences-between-oauth-2-oauth-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-23
https://portswigger.net/web-security/jwt

[56] https://owasp.org/www-community/attacks/Clickjacking
[57] https://en.wikipedia.org/wiki/Service_mesh
[58] https://istio.io/latest/about/service-mesh/

[59] draw.io

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 15:10:04 EEST - 3.145.95.134

72

https://owasp.org/www-community/attacks/Gickjacking
https://en.wikipedia.org/wiki/Service_mesh
https://istio.io/latest/about/service-mesh/

