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xii Abstract

Diploma Thesis

Object Detection via Transformers in Manufacturing Industry for

Human Safety

Matthaios Dimitrios Tzimas

Abstract

The safety of workers in the manufacturing industry is a critical issue. Computer vision

can increase the safety of workers through object detection. Object detection has the ability

to detect multiple objects in an image, such as humans, helmets. Detectors like YOLO-V7

and Faster R-CNN can handle a small dataset like ours, compared to detection transform-

ers (DETR), which require a large amount of data. In order to improve the low performance

of DETR, we use a pre-trained ResNET50 which is the backbone of DETR, the rest of the

network is initialized based on the authors implementation, and a pre-trained detection trans-

former. We then separately fine-tune them on our dataset. The first one is pre-trained with

self-supervised learning on the imageNet dataset. The results based on the AP50 metric are

similar to those of YOLO-V7 and Faster-RCNN. The second one is pre-trained with su-

pervised learning on the COCO dataset, and it outperformed the competing algorithms we

investigated.

Keywords:
Machine learning, Deep learning, Computer vision, Detection transformers.
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Περίληψη xiii

Διπλωματική Εργασία

Ανίχνευση Αντικειμένων μέσω Μετασχηματιστών στη Μεταποιητική

Βιομηχανία για την Ανθρώπινη Ασφάλεια

Ματθαίος Δημήτριος Τζήμας

Περίληψη

Η ασφάλεια των εργαζομένων στη μεταποιητική βιομηχανία είναι ένα κρίσιμο ζήτημα. Η

υπολογιστική όραση μπορεί να αυξήσει την ασφάλεια των εργαζομένων μέσω της ανίχνευ-

σης αντικειμένων. Η ανίχνευση αντικειμένων έχει την ικανότητα να ανιχνεύει πολλαπλά αν-

τικείμενα σε μια εικόνα, όπως ανθρώπους, κράνη. Ανιχνευτές όπως οι YOLO-V7 και Faster

R-CNN μπορούν να χειριστούν ένα μικρό σύνολο δεδομένων όπως το δικό μας, σε σύγ-

κριση με τους μετασχηματιστές ανίχνευσης (DETR), οι οποίοι απαιτούν μεγάλο όγκο δεδο-

μένων. Προκειμένου να βελτιώσουμε τη χαμηλή απόδοση του DETR, χρησιμοποιούμε ένα

προ-εκπαιδευμένο ResNET50 το οποίο αποτελεί τον κορμό του DETR, το υπόλοιπο δίκτυο

αρχικοποιείται με βάση την υλοποίηση των συγγραφέων, και έναν προ-εκπαιδευμένο μετα-

σχηματιστή ανίχνευσης. Στη συνέχεια, τους ρυθμίζουμε ξεχωριστά στο σύνολο δεδομένων

μας. Ο πρώτος είναι προεκπαιδευμένος με αυτοεπιβλεπόμενη μάθηση στο σύνολο δεδομέ-

νων imageNet. Τα αποτελέσματα με βάση τη μετρική AP50 είναι παρόμοια με εκείνα των

YOLO-V7 και Faster-RCNN. Ο δεύτερος είναι προεκπαιδευμένος με επιβλεπόμενη μάθηση

στο σύνολο δεδομένων COCO, και ξεπέρασε τις επιδόσεις των αντίπαλων αλγορίθμων που

μελετήσαμε.

Λέξεις-κλειδιά:
Μηχανική μάθηση, Βαθιά μάθηση, Όραση υπολογιστών, Μετασχηματιστές ανίχνευσης.
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Chapter 1

Introduction

Worker safety is a significant concern in the manufacturing industry, with numerous head

injuries and fatalities reported annually. According to [19], over 50,000 head injuries occur

each year, resulting in more than 1,000 deaths. Surprisingly, 84% of these incidents happen to

workers who are not wearing any head protection. To address this problem, computer vision

has emerged as a promising solution that can detect whether workers are wearing necessary

protective equipment using cameras. Among various subfields of computer vision, object

detection has been considered the most suitable for this problem. Detection transformers

(DETR) [16] are powerful detectors, and we use them in order to detect humans, helmets, and

vests in images from our dataset [20]. There are numerous approaches to object detection, and

many of them utilize the detectors from the YOLO family [21, 22], including YOLO-v5 and

YOLO-v3 [23]. To investigate the most up-to-date YOLO algorithm, we will explore YOLO-

v7 [15] and compare it with Faster R-CNN [24], a detector known for its high performance.

Interestingly, both of these methods can perform well on small datasets like ours, in contrast

to DETR, which typically requires large amounts of data [25]. To overcome this limitation,

we use a pre-trained DETR [16] and a pre-trained DETR backbone [17], and we fine-tune

them on our dataset. The first one is pre-trained with supervised learning on the COCO [26]

dataset. The COCO dataset consists of 330.000 images with over 1.5 million object instances.

However, creating a dataset like COCO can be an arduous and costly process. As a result,

we also use a pre-trained DETR backbone, which is trained on ImageNet [27] using the

self-supervised learning algorithm DINO. DINO can train a network without the need for

annotations, significantly lowering the cost of creating a large dataset.

This contribution is summarized as follows :

1
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2 Chapter 1. Introduction

1. We investigate the object detection algorithms YOLOv7, Faster-RCNN and DETR.

2. We train them on a dataset that is able to detect the necessary Person Protection Equip-

ment (PPE).

3. For each of the investigated detectors we utilize a version of them that was pre-trained

with supervised leaning and fine tune them on the PPE dataset.

4. For the DETR algorithm we also utilize a backbone that was pre-trained with self su-

pervised learning.

5. We evaluate the models, and we find out that the pre-trained with supervised learning

DETR has the best results on the PPE dataset.

The rest of the thesis is structured as follows: Chapter 2 provides a comprehensive re-

view of deep learning techniques, computer vision methods, Convolutional Neural Networks

(CNNs), and architectures for object detection. This chapter aims to establish a solid foun-

dation of knowledge and understanding in these areas. In Chapter 3, an in-depth analysis of

the examined models is presented. Chapter 4 focuses on presenting the results obtained from

the experiments, accompanied by a detailed description of the experiment settings. Finally,

Chapter 5 provides a summary and conclusion of the experiments, highlighting the main find-

ings and contributions of this thesis. Additionally, this chapter offers suggestions and ideas

for future work.
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Chapter 2

Related Work

2.1 Machine and Deep learning

Machine learning is a type of artificial intelligence that educates computers to learn from

their experiences. Rather than depending on a pre-established equation as a model, ma-

chine learning algorithms use computational methods to gather information directly from

data where are manually extracted by data scientists. As more examples become accessi-

ble for learning, the algorithms progressively enhance their performance. Deep learning, on

the other hand, as a subcategory of machine learning is also teaching computers to learn by

examples but with the difference that they take raw data as input [28]. Both of the above

fields share common learning methods with the most popular being supervised learning and

unsupervised learning.

1. Supervised learning

The objective of supervised learning given a set of input-target pairs, is to learn a func-

tion that maps input to target output. The function for a given unknown input makes

predictions based on the patterns that are been discovered in the mapping process also

called training. Supervised learning is typically used in scenarios where there is a clear

outcome or target variable that needs to be predicted or classified. For instance, in an

image recognition problem, the input data may be an image, and the output data could

be a label indicating what is present in the image, such as a cat or a dog.

The labeled dataset is divided into training and testing. The training dataset is been used

to find the best possible function which is usually represented by a mathematical model
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that can accurately predict the target data based on the input data. After training we

evaluate the model on test dataset by measuring the distance between the predicted and

the target output. If the distance is low , it means that themodel has learned to generalize

well from the training data and canmake accurate predictions for new, unseen data [29].

Supervised learning uses classification and regression techniques to develop a machine

learning model. Classification when the output variable is categorical or discrete and

regression when it is numerical [28]. Also is widely used in various fields such as image

and speech recognition, natural language processing, fraud detection, and many others.

Some popular algorithms used for supervised learning include decision trees, support

vector machines, k-nearest neighbors, random forests [29].

Figure 2.1: Supervised learning workflow[1]

2. Unsupervised learning

Unsupervised learning algorithms operate on an unlabeled dataset, allowing them to

freely extract features and identify patterns without any external supervision. Cluster-

ing and feature reduction are two commonly used techniques in unsupervised learning.

Clustering involves grouping similar data points together into clusters based on their

similarities and differences, whereas feature reduction involves reducing the number

of features or variables in the data while retaining as much information as possible

[29].

3. Semisupervised Learning

Semi-supervised learning can be described as a combination of the previously men-

tioned methods, as it requires both labeled and unlabeled data for the training process.
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In this method, predictions on the unlabeled data based on the labeled data are used as

targets for training. This process reduces the time and cost needed for annotation while

achieving better results than unsupervised models [30].

4. Reinforcement learning

Reinforcement learning is considered the closest attempt at modeling the human learn-

ing experience because it learns through interaction with its environment. This tech-

nique is based on rewarding desired actions and punishing undesired ones, with the

ultimate goal of maximizing the rewards. As the algorithm interacts with its environ-

ment, it learns to make decisions that lead to positive outcomes and avoid actions that

lead to negative outcomes, allowing it to continually improve its performance over

time [30].

2.1.1 Artificial Neural Networks

Artificial neural networks (ANNs), also referred to as neural networks, constitute a sub-

set of machine learning and are a crucial component of deep learning algorithms. ANNs are

primarily employed for universal function approximation in numerical paradigms because of

their exceptional features, such as self-learning, adaptivity, fault tolerance, nonlinearity, and

proficiency in mapping input to output. Due to these qualities, ANNs are better equipped to

tackle intricate and uncomplicated issues in various domains like agriculture, manufacturing,

and medical science than conventional mathematical algorithms. Thus, ANNs are gaining

popularity in solving real-world problems that are difficult to solve using conventional meth-

ods [31].

The concept of neural networks is inspired by the structure and function of the human

brain. Our brains are made up of neurons that form intricate connections and communicate

through electrical signals to process information [32]. Similarly, artificial neural networks

consist of artificial neurons or nodes that collaborate to solve complex problems. These nodes

are software modules, and the neural networks themselves are algorithms or software pro-

grams that utilize computing systems to perform mathematical calculations [32]. To facilitate

comprehension of this concept, a visual representation and an explanation of the simple ANN

called Perceptron is presented. In a perceptron, the input values xi ,i ∈ 1, 2, . . . , n are mul-

tiplied by their corresponding weights wi ,i ∈ 0, 1, . . . , n and added together to produce
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a weighted sum. This weighted sum is then passed through an activation function, which

ensures that the output is mapped to the desired range [2].

Figure 2.2: Visualization of Perceptron [2]

• Input, xi ,i ∈ 1, 2, . . . , n and x0 = 1

• Weights, wi ,i ∈ 0, 1, . . . , n

• Weighted sum,S =
∑n

i=1 wi · xi + w0 · 1

• Activation Function f , in our case Step Function 2.1.2

• Output Y = f(S)

In order to address complex problems, deep learning employ a layered architecture con-

sisting of interconnected nodes. Typically, a basic neural network is composed of three layers,

namely the input, hidden, and output layers. The input layer serves as the initial stage where

the input data is introduced to the network. Subsequently, the hidden layer(s) follows and ap-

plies a series of nonlinear transformations to the input data. Finally, the output layer produces

the ultimate output of the network based on the input data and the learned features from the

hidden layer(s). This layered structure provides the neural network with the ability to model

complex relationships between inputs and outputs, resulting in powerful and flexible machine

learning models [32].

2.1.2 Activation Functions

The inclusion of activation functions is crucial to ensure the efficacy of artificial neural

networks, as they enable the transformation of the dot product of inputs with their correspond-

ing weights [4]. The utilization of a linear function or the absence of an activation function

altogether will result in the neural network functioning like a linear regression model, and
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Figure 2.3: ANNs [3]

will face challenges in detecting complex patterns in the data. It is, therefore, imperative to

introduce non-linearity in neural networks through the adoption of differentiable activation

functions [33]. Activation functions can be classified into three groups:

1. Binary step function

The binary step function is typically utilized for binary classification tasks, where the

output of this activation function is constrained to two possible values based on a de-

fined threshold. The resulting output value governs the activation of the corresponding

neuron in the network and the gradient is always equal to zero [33].

f(x) =

1, if x ≥ 0

0, if x < 0

(2.1)

Figure 2.4: Binary Step Function [4]

2. Linear activation function
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If we solely rely on this function, it will result in the collapse of the neural network into

one layer irrespective of the number of original hidden layers [4]. Also one character-

istic of the linear activation function is that its gradient remains constant, regardless of

the input value it receives which makes difficult the optimization [33].

f(x) = x (2.2)

Figure 2.5: Linear activation function [4]

3. Non linear Activation Function

• Sigmoid function

The values of sigmoid function f have a range between 0 and 1. As the input

x → inf , f → 1 and when x → − inf ,f → 0. Because of the range of the

output values the sigmoid function is used in neural network where the output is

a probability p ∈ [0, 1]. Also the no symmetry around zero or in other words the

absence of the negative sign outputs makes the neural network more unstable and

difficult to train [4].
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Figure 2.6: Sigmoid activation function [4]

f(x) =
1

1 + e−x
(2.3)

The derivative of the sigmoid is :

Figure 2.7: Derivative of sigmoid [4]

f ′(x) = f(x)(1− f(x)) (2.4)

The facts f ′ ∈ (0, 0.25) and that is f’ is only significant for x ∈ (−3, 3) makes

the training difficult because the network suffers from the Vanishing gradient

problem [4, 34].
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• Tanh function

The implementation of the hyperbolic tangent (tanh) function is particularly com-

mon within hidden layers due to its symmetry around zero [4]. This feature al-

lows for both positive and negative values to be transmitted to the next layer. In

addition to its zero symmetry, the tanh function also has an advantage over the

sigmoid function in terms of derivative range [33]. Specifically, the range of the

derivative for the tanh function spans from zero to one which is four times greater

compared to sigmoid but it also suffers from the vanishing gradient problem [35].

f(x) =
ex − e−x

ex + e−x
(2.5)

The figure 2.8 [5] illustrates the graphical representation of the equation 2.5 [4].

Figure 2.8: Tanh activation function [5]

4. ReLU

Back-propagation is possible with this computationally efficient activation function,

which speeds up neural network training. The equation is 2.6 and the graphical repre-

sentation of the formula 2.9 [4]:

f(x) = max(0, x) (2.6)
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Figure 2.9: ReLU activation function [5]

ReLU thus only activates neurons with input greater than zero and the derivative is

2.7[36] :

f(x) =

1, if x ≥ 0

0, if x < 0

(2.7)

To deal with the the zero output values and zero gradient for x<0, a modifications of the

Relu function exists which is called parametric ReLu 2.8 with derivative 2.9 [4, 36].

f(x) =

x, if x ≥ 0

a · x, if x < 0

(2.8)

f(x) =

1, if x ≥ 0

a, if x < 0

(2.9)

5. Softmax

Softmax is very important activation function in a variety of deep learning applications.

Also is mainly used in the last layer of the neural network in order to transform the K

output vector into a K probability distribution with sum equal to 1 [37].

f(x)i =
exi∑K
j=1 e

xj

(2.10)
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2.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are responsible for the surge of computer vision

in the era of deep learning, as they eliminate the need for manual feature extraction, which

was previously used in traditional computer vision methods. CNNs utilize linear algebra to

identify patterns in data, especially in images, despite the computational cost associated with

this process [38]. ”Neocognitron” [39], proposed by Kunihiko Fukushima in 1980, was an

early deep learning model designed for image recognition. It was based on the structure of

the visual cortex in the brain and used a series of convolutional layers to extract features from

images. However, at the time of its development, there were limited optimization techniques

available for supervised learning, which made it difficult to train deep neural networks ef-

fectively. As a result, Neocognitron was not able to achieve the same level of performance

as modern deep learning models [40]. Since then, significant advances in optimization tech-

niques, such as backpropagation and stochastic gradient descent [41], have enabled the devel-

opment of more powerful deep learning models that can achieve state-of-the-art performance

on a wide range of image classification tasks [42].

The difference between CNNs and other deep neural networks is that the hidden layers of

CNNs aremostly composed of convolutional, pooling and fully connected layers [43, 44].The

purpose of convolutional layers in deep learning is to extract relevant features from the input

data [45]. This is achieved by applying convolution between the input data and the kernel

which is a matrix with learnable weights. When we are stacking many kernels together the

three dimensional matrix that is produced is called filter. Each element of the output matrix

is the dot product of the kernel with the corresponding area of the input [38]. Non-linearity

is incorporated by feeding the convolutional output to an activation function, resulting in a

feature map output [46]. The size of a feature map in a convolutional layer is determined by

the kernel size, stride, and padding. The kernel size refers to the dimensions of the matrix

used for convolution, while stride specifies the amount of input area skipped before com-

puting the next dot product. Padding is the additional space added around the input matrix

before convolution. These hyper-parameters significantly impact the performance of the con-

volutional operation, and their careful consideration is essential for the effective design and

optimization of convolutional neural networks [47].

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:38:30 EEST - 3.147.58.53



2.1.3 Convolutional Neural Networks 13

Figure 2.10: Convolution process after one operation [6]

Convolutional neural networks use sampling reduction methods, such as the pooling

layer, to reduce the size of the input. Unlike the kernels of convolutional networks, the pool-

ing layer uses the max and average pooling methods, whose kernels have no learning weights.

Max pooling selects the highest value of the corresponding input region, while average pool-

ing calculates the average of the corresponding values within the input region [46]. Pooling

methods have hyper-parameters the kernel size, stride and the type (average or max) [6].

Typically, a 2x2 kernel size with a 2x2 stride is used to halve the input, although kernel sizes

larger than 3 can reduce the accuracy of the model. Such techniques are vital for improving

computational efficiency [47].

Figure 2.11: Left:max pooling , right : average pooling [6]

In the fully connected layer each neuron is connected to all inputs and is the last layer of

a CNN. We use one or more fully connected layers to analyze the high level features that are

in the last three dimensional feature map. For this reason we convert this three dimensional

matrix into a vector (1D matrix) which is the input of the first fully connected layer [46]. The

activation functions used in this layer vary many times depending on the problem we have to

solve [38].
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We will analyze in chronologically ascending order some of the neural networks that

opened the way to the level at which computer vision is today:

1. Lenet 5

LeNet-5 was proposed by LeCun et al. (1998) [41].This convolution neural network

designed for handwritten digit recognition outperform oldermethods because of the ap-

plication of backpropagation across the multilayer network. It has seven layers ,three

convolution, two pooling and two fully connected. The convolutions and fully con-

nected layers have around sixty thousand learnable parameters and their weights are

updated via stochastic gradient descent [41].

2. AlexNet

AlexNet was proposed by Krizhevsky et al. in 2012 [48]. This deep convolution neural

network was trained on ImageNet which is a dataset with over one million images and

one thousand classes. The five convolution layers, sometimes combined with a max

pooling layer and the three fully connected builds amodel with sixtymillion parameters

[48]. The authors in order to accelerate the training process is using the Relu non linear

activation function andmultiple graphics processing units. Compared to other networks

the pooling layer has squared kernels with size equal to three and stride two which

causing overlapping pooling regions [48]. This overlap reduce the error.To deal with

the problem of over-fitting they apply data augmentation and dropout to themodel [49].

The AlexNet is also using stochastic gradient descent as the optimization algorithm

[48].

3. VGG-16

VGG-16 was proposed by Simonyan and Zisserman in 2014 [50]. The authors choose

convolution kernel size equal to three as it is the smallest possible size to capture spa-

tial information. This small kernels with stride one are producing larger feature maps

allowing the network to get deeper [50]. Relu serves as the activation function in the

hidden layers, while the pooling layer uses max pooling with kernel size 2 and stride 2

to prevent overlapping regions [50]. The architect has 19 layers with weights, 16 con-

volution, 3 fully connected and it was trained with mini batch gradient descent with

momentum [50].
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4. ResNet

Residual Network was proposed by He et al. in 2015 [7]. The authors’ primary objec-

tive is to address both the degradation problem and vanishing or exploding gradients.

This occurrence occurs when the number of hidden layers increases [7]. Due to the

difficulty of determining the complex and nonlinear relationship between the input X

and the underlying mapping H(X), the authors proposed the block 2.12 to map the

function f(X) = H(X)−X , so thatH(X) = F (X) +X [7].As shown in 2.12, they

accomplish this by adding a connection, which skips layers. For F(x) to be added to

X, the matrices must have the same dimension. Therefore, they employ convolutions

with a kernel size of 3 and a stride of 1, which yields an output of the same size as

the input[7]. If they do not utilize these convolutions, they multiply X by a matrix with

learnable or constant parameters so that the output dimension matches the input dimen-

sion. Adding many blocks the neural network is able to get deeper without increasing

the error [7]. ResNet was trained with stochastic gradient descent, without dropout and

ReLU as the main activation function [7].

Figure 2.12: Residual block [7]

2.2 Computer Vision

The field of artificial intelligence known as computer vision aims to extract and elucidate

information acquired from images and video. While the human brain possesses an advantage

in this regard due to years of evolution, the ability of computers, aided by algorithms, to

analyze vast quantities of images per second has the potential to surpass human capabilities

[51].

Below we will list the most common computer vision techniques used in the construction
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and manufacturing industry [52].

1. 3D reconstruction

In order to address this particular issue, it is necessary to acquire a collection of images

that can be used to reconstruct a three-dimensional view. The reason for this is that

a single image alone does not contain sufficient information about depth, which is

lost in the process of projecting the three-dimensional view onto a two-dimensional

image. While there is a method for accomplishing this, it is not widely known due

to the significant number of requirements involved. These requirements include the

Calibration Problem, Matching Problem, Reconstruction Problem, and the Density of

the Reconstruction [53].

Figure 2.13: 3D Object Reconstruction from a Single Color Image [8]

2. Image and object classification

Image classification involves taking an image as input and determining the correspond-

ing object class. Neural networks are particularly important in this field, as they can

identify complex patterns in images and handle issues such as variations in background,

angles, and poses [52].

Figure 2.14 provides an illustration of a straightforward example of image classifi-

cation, featuring a dataset of images containing dogs and cats. The process involves

presenting an input image of a cat to the neural network, which then utilizes its predic-

tive capabilities to classify the image into the appropriate category [9].
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Figure 2.14: Visualization of image classification problem [9]

3. Object detection

This particular technique is capable of identifying objects within an input image, with

detection encompassing both the ability to predict the object’s class as well as its lo-

cation. Localization of the object itself is achieved via regression, as the technique

predicts the coordinates of the bounding box that encloses the object [40].

The figure 2.15 illustrate the bounding boxes and labels of the animals in the image

[10].

Figure 2.15: Object detection of cats and dogs [10]

4. Semantic segmentation
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The objective of this task is to assign each pixel within an image to a specific class,

providing valuable insights into the overall content of the image [40, 52].

The figure 2.16 visualize how each pixel belongs to a certain class [11].

Figure 2.16: Semantic Segmentation [11]

2.3 Object Detection

This thesis seeks to determine whether or not employees are adhering to necessary safety

measures. Therefore, we must know both the worker’s location and whether he or she is

donning a helmet and a safety vest. The problem with image classification methods is that

they cannot provide sufficient information when there are multiple workers in an image.

Semantic segmentation provides information about the entire image, thereby increasing the

training and annotation costs. Additionally, each pixel must only belong to one class. Object

detection thus appears to be the optimal solution to our dilemma. Object detection algorithms

are capable of classifying and localizing multiple objects within an image [54].

Object detection as a computer vision task has exist many years. Viola and Jones proposed

in 2001 a detector [55] that was capable of recognizing faces, and after that, the Deformable

Part-based Model proposed by Felzenszwalb et al. in 2010 [56] has the ability to extend to

more complex structures. Despite the fact that these algorithms were highly successful for

their period, they cannot compete the current algorithms that are based on deep Convolution

neural networks [57]. These algorithms can be divided into 2 categories. Multistage object

detection methods generate a set of candidate regions of interest in an image, typically in the

form of bounding boxes that potentially contain objects of interest. These candidate regions

are then processed by a convolutional neural network (CNN) for classification. In contrast,
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single-stage detectors predict both the object category and its corresponding bounding box

coordinates simultaneously, resulting in faster processing times but potentially lower accu-

racy compared to multistage methods [54]. The following is an examination of well-known

algorithms in the age of deep convolution neural networks.

2.3.1 Two-stage Detectors

Two-stage detectors are another type of object detection algorithm that use a two-stage

process to detect objects in an image. These detectors typically use a region proposal net-

work (RPN) in the first stage to produce a list of potential locations for objects in the im-

age [54]. The detector then refines these potential locations and gives each object a class

probability.Two-stage detectors are known for their accuracy [58]. They work especially well

in situations when precise localisation is crucial [59]. Due to the utilization of the region

proposal network and the potential need for more training data and longer training times,

two-stage detectors may be slower and more complex than one-stage detectors [60].

• R-CNN [61]

The process of RCNN begins with the region proposal generator which utilizes the

selective search [62] algorithm to produce a segmentation map of the input image [54].

This map is used to generate 2000 bounding boxes that could potentially contain an

object. These regions of the image, surrounded by the bounding boxes, are then fed as

input to a feature extractor which is based on the CNN architecture of AlexNet [48].

The feature maps produced by the CNN are transformed into a vector using a fully

connected layer, which is then classified by the support vector machine algorithm [61].

A trained Support VectorMachine is used for each class, resulting in a probability score

for each class. Finally, the bounding boxes with the highest score is selected from those

with high matching regions and belonging to the same class [61].

• SPPNet [63]

With the same accuracy as RCNN, SPPNet was able to handle images of different

sizes [57]. Because in CNNs the size of the feature maps depends on the size of the

input image, different image sizes require fully connected layers with the correspond-

ing number of input neurons in order to produce the representation vector [63]. The

authors of sppnet are replacing the last pooling layer with a spatial pyramid pooling
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layer [64], which regardless of the feature map dimensions produces a constant size

vector that will be fed into the fully connected layer [63].

• Fast-RCNN [65]

Fast RCNN shares the shame object proposal method with RCNN, which is the selec-

tive search algorithm [62, 65]. In order to increase the speed of the model, the authors

fed only the input image through the convolutional neural network, in contrast to the

RCNN, which fed every object proposal [54]. The convolution and pooling layers of

the CNN produce a feature map. For each region of interest (RoI), the model extracts

the corresponding part of the feature map. The authors then swap out the final layer for

a region of interest pooling layer to handle different image sizes [65, 63]. This layer

performs max pooling with kernel width equal to the width of the RoI feature map di-

vided by a hyperparameter W. Respectively, for the kernel height is hyperparameter H

[65]. This max pooling produces a constant-size feature map with width equal toW and

height equal to H. Next the fixed-size vector with lengthH ·W ·DepthRoIFeatureMap is

fed into two fully connected layers (FC) [65]. The first layer produces a softmax prob-

ability vector with length equal to the number of classes plus one for the background.

The second outputs the corresponding bounding box coordinates for each class [65].

• FPN [66]

Prior to the introduction of the feature pyramid network for object detection, deep learn-

ing object detectors relied solely on the output of the convolutional neural network for

making predictions [57]. Although this feature map contains valuable information for

object classification, it poses challenges in terms of localization [57]. In response to

this issue, the authors of the feature pyramid network proposed a solution that involves

making predictions on different feature map scales [66]. By utilizing this approach, the

model is capable of detecting objects of varying sizes and achieving better localization

accuracy. As a result, the feature pyramid network has become a widely adopted back-

bone architecture in various object detectors [66].

2.3.2 One-Stage Detectors

Single-stage detectors are object detection models that predict both the object class and

the related bounding box coordinates using a single convolutional neural network (CNN)
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without generating any region recommendations [54]. These detectors are more computa-

tionally efficient than multistage detectors and use less memory, making them appropriate

for real-time applications [60]. However, because to the inherent difficulties in precisely pre-

dicting object borders and differentiating objects from their background in a single pass,

single-stage detectors often have poorer accuracy than multistage counterparts [54, 57].

• YOLO [67]

Yolo addresses the object detection as a regression problem [67]. The model predicts

the probability of each class and the corresponding bounding boxes together, enabling

it to process 45 frames per second with the graphics processing units of the time [57].

The method divides the input image into a S ·S grid, and each grid must make B vector

predictions. These vectors have length equal to B · 5 + C, where 5 is the bounding

box coordinates plus the confidence score and C is the number of classes [67]. The

confidence score is a value with a range from zero to one and describes how confident

the model is that there is an object inside the bounding box. So the final output of

YOLO is a S · S · (B · 5 + C) tensor [67]. In the case of predictions of the same class

with high matching between the bounding boxes, the model keeps the one with the

highest confidence score [67]. The authors describe this method as extremely fast but

with difficulties detecting small objects effecting the accuracy score [67]. New versions

of YOLO [23, 68, 15] have increased the accuracy of the models while keeping the

detection process in high frames per second.

• SSD [69]

Single shot multi box detector was able to identify objects with the same accuracy as

two-stage detectors while processing more frames per second [70]. The pipeline be-

gins with a VGG16 feature extractor that produces the feature map [69]. Then a series

of convolutional layers are applied. Each layer is making predictions on the output

feature map, which is divided into cells like YOLO did in the input image [70]. The

high-resolution feature maps predict small objects, while the low-resolution maps pre-

dict large objects [70]. In order to increase the speed and accuracy of the model, the

authors are using default bounding box sizes that are manually selected. The size of

the bounding box also depends on the feature map resolution [69].

• CenterNet [71]
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CenterNet differs from previous methods as it tries to predict the center of the object

along with its width, height and category rather than relying on predefined bounding

boxes [71, 57]. It utilizes CNN as the feature extractor, and the goal is to produce a

heatmap for each class [71]. Each element of the maps can take two values. 1 if this

point is the center of an object, or 0 if it belongs to the background. Every element of

the heatmap corresponds to many pixels in the input image because the heatmaps have

smaller dimensions [71]. In order to find the real center of the object in the image, the

network predicts the offset variable. So by combining the center coordinates with the

offset, height and width, the model predicts the bounding box of the object [71].

2.4 Self Supervised Learning in Computer Vision

Supervised learning for computer vision requires extensive annotated data, resulting in

high costs and time investments [72]. Additionally, it may struggle with generalizing to new,

untrained data [72]. A promising alternative is self-supervised learning, which uses unlabeled

data and generates its own labels that will be used as the ground truth [73]. This effectively

transforms unsupervised problems into supervised ones [73]. Self-supervised learning allows

AI systems to learn from vast amounts of data and recognize subtle, infrequent representations

but requires proper learning objectives to derive useful supervision from the data [74]. Self

supervised learning can also be used as a pre-training method [73].

• SimCLR [75]

SimCLR is one of the best self-supervised learning methods, with higher accuracy than

many supervised algorithms [76]. It uses the technique of contrastive learning [77, 76]

in which the model identifies similarities between the data. The network begins with

an image x pass through an encoder following by a fully connected layer that outputs a

representation vector z. The encoder in the case of SimCLR is the CNNResNet [7, 75].

For every image x, SimCLR generates a pair xi ,xj of augmented versions. A batch

with N images now becomes a new batch with 2N elements [76]. The network output of

xi, xj is zi, zj respectively. So the network is trained to minimize the distance between

zi, zj and maximize the distance between them and the rest 2(N-1) samples [75].

• BYOL [78]
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2.4 Self Supervised Learning in Computer Vision 23

BYOL aims to predict the features of one view of an image based on the features of

another view of the same image [78]. This approach overcomes the limitation of neg-

ative examples used in other self-supervised learning methods, such as SimCLR [79].

The BYOL framework consists of an online network and a target network. The online

network is trained to predict the features of one view of the image [78]. The target net-

work provides stable targets for the prediction task based on another view of the same

image [78]. The views of the image is obtained through data augmentations, such as

random cropping and color jittering. Instead of copying the exact parameters of the on-

line network to the target network, a moving average is taken of the online network’s

parameters over time, and these averaged parameters are used as the parameters for the

target network [78].
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Chapter 3

Examined Models

3.1 Faster-RCNN

Faster R-CNN [24] is a popular object detection algorithm that was proposed by Ren et

al. in 2015. Is a better version of Fast-RCNN [65] due to the implementation of the region

proposal network. This network generates object proposals based on the feature extractor

output. This approach is much faster than the selective search [62, 65] algorithm used in pre-

vious versions. Also, the authors introduce anchor boxes, increasing the accuracy and speed

of the model. These boxes with multiple scales and aspect ratios suggest possible objects of

different sizes without scaling the input image [24].

The architect of Faster-RCNN begins with a CNN as the feature extractor [24]. In the

experiments, two backbones were tested: the Zeiler and Fergus model [80] and the VGG-16

[50] CNN. Then the region proposal network takes as input every possible nxn window of

the feature map [81]. A convolution kernel with nxn size is applied, and after that, two 1x1.

One for the box coordinates and one for the box objectness [24]. For each spatial window, the

network predicts k boxes of different scales and aspect ratios along with the objectness of the

boxes. So the length of the output is 2 · k for objectness (2 classes object or not) and 4 · k for

box coordinates (center(x,y) and width ,height) [81]. Every feature map pixel corresponds

to a coordinate on the input image. So if the feature map height and width are H and W

respectively, the network predicts in total H * W * k boxes [24].

25
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Figure 3.1: Left : Faster-RCNN network[12] , Right : Region Proposal Network [13]

The anchor boxes fall into one of two categories: object or not. If the intersection over

union between an anchor and the ground truth box is higher than 0.7, the anchor is categorized

as object [81]. Also, the anchors with the highest IoUwith ground truth boxes are classified as

positive. Negatives are the ones with IoU lower than 0.3. The rest of them are ignored by the

network. In the training process, from each image, 128 positive and 128 negative samples are

selected [81]. The authors suggested a ratio of 1:1 to avoid bias toward the negative samples.

The 3.1 is the loss function for the Region Proposal network [24].

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (3.1)

In 3.1 pi is the probability of the anchor i being an object. p∗i is the ground truth label , 1 for

positive and 0 for negative. Lcls is the log loss [82] and Lreg = R(ti − t∗i ) is the regression

loss, where R the smooth L1 defined in [65, 24]. The authors multiply the regression loss

with p∗i in order to activate only the positive anchors [24]. The box prediction ti consists

of the vector [tx, ty, tw, th] where tx = (x − xa)/wa ,ty = (y − ya)/ha ,tw = log(w/wa)

,th = log(h/ha) [24].

During the training of the network the ti tries to approximate the target t∗i with elements:

t∗x = (x∗ − xa)/wa , t∗y = (y∗ − ya)/ha , t∗w = log(w∗/wa) ,t∗h = log(h∗/ha) [24]. x,y are

the coordinates of the box center and w,h its width and height respectively. Variable x is the

predicted value , xa is for the anchor box and x∗ for the target(same goes for y, w, and h) [24].

The Faster-RCNN shares the same detection network as Fast-RCNN [65] described in 2.1.3.
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3.2 YOLO-V7

YOLO-V7 [15] proposed by Chien-Yao Wang et al. in 2022 is a state of art real time

object detector. Model scaling means make the network smaller or larger by changing some

of these factors: input image size ,number of layers (depth) , number of channels (width) and

the number of stages in the feature pyramid [15]. In order to make a deeper neural networks

the authors suggest that is possible by controlling that shortest longest gradient path. So they

proposed E-ELAN (Extended efficient layer aggregation networks) based on ELAN [83].

ELAN is illustrated in 3.2. The computational block of ELAN performs convolution between

the input and a 1x1 , two 3x3 and four 3x3 kernels separately. The outputs are stacked together

and a convolution with a 1x1 kernel is applied [14].

Figure 3.2: ELAN computational block [14]

E-ELAN [14] modify the computational block of the ELAN. The authors increased the

number of the channels ,shuffle the outputs of different convolutions and stack them together.

Then a 1x1 convolution is applied to the concatenated feature map, performing merge car-

dinality [15]. The merge cardinality technique allows the network to learn a diverse set of

features by using multiple paths or branches as shown in 3.3, while also keeping the computa-

tional complexity of the network manageable. By combining the feature maps from different

branches, the network can capture a wider range of features and achieve better performance

than a network with a single branch [15].
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Figure 3.3: E-ELAN computational block [14]

Depending on the requirements of the object detection problem, the architecture needs

to be scaled up or down [15]. Yolo-V7 is a concatenation-based model which means that

feature maps from different layers are concatenated [84]. When we scale the depth in this

type of models without changing the width, the efficiency of the network decreases. In order

to handle this problem the authors compute how much the computing block’s output channel

has changed [15]. Based on this computation they scale the width of transition layers 3.4,

matching the initial structure efficiency.

Figure 3.4: scaling width and depth on a concatenation-based model [15]

Yolo v7 utilizes two heads for prediction: the lead head, which predicts the final output,

and the auxiliary head, which helps with the training of the network. Additionally, the au-

thors implemented some tricks called ”bag of freebies” to improve the training process and

detection. One of these tricks is EMA [85], which is used to create the inference model by

taking the average of the weights during training [15].
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3.3 DETR

The Detection transformer was proposed by Carion et al. in 2020 [16]. DETR has a simple

pipeline without the need of pre or post processing algorithms like non max suspension[86]

and anchor boxes. It is based on the transformers [87], a known architect for sequence pre-

diction. The network predicts a list of bounding boxes with the corresponding object classes

simultaneously.Then bipartite matching is applied in order to assign the predictions with the

annotated labels. The predicted bounding boxes with no match are labeled as no object [16].

Figure 3.5: DETR pipeline [16]

Detr outputs a list of N predictions, significantly higher than the average number of an-

notations per image. Before the loss computation ,a matching algorithm between the N pre-

dictions and ground truths is applied. The algorithm searches the order of the N elements

σ ∈ GN that minimize the cost [88, 16]:

σ̂ = argminσ∈GN

N∑
i

Lmatch(yi, ŷσ(i)) (3.2)

Where [16]:

• yi = (ci,bi) is the ground truth box. ci for the target class and bi for the coordinates.

The authors fill the y with no object until its length becomes equal to N.

• y = {ŷi}Ni=1 the N predictions.

• Lmatch(yi, ŷσ(i)) = −1{ci ̸=∅}p̂σ(i)(ci) + 1{ci ̸=∅}Lbox(bi, b̂σ(i)).

p̂σ(i)(ci) is the probability of the prediction with index σ(i) belongs to class ci and ∅ is

the no object class.

Then the Hungarian loss [88, 16] is computed, based on the optimal order produced by

the matching algorithm.
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The architecture begins with the backbone ResNET50 which produces a feature map 32

times smaller than the input image and with 2048 channels (depth). The transformer encoder

convolve the backbone output with a 1x1 convolution kernel, reducing the depth from 2048 to

d. Then a flatten operation is performed on each channel transforming the feature map dimen-

sion from d x FeatureMWidth x FeatureMHeight into d x FeatureMwidth ·FeatureMHeight

[16]. On the input of every attention layer, a fixed position encoding is added [89]. Also it is

possible to stack many encoder layers.

The decoder in the Detection Transformer (DETR) uses the same architecture of the trans-

former [87], but decodes N objects simultaneously at each layer rather than predicting one

element at a time [16]. The N input embeddings are object queries, which are learned po-

sitional encodings appended to each attention layer’s input [16]. A feed forward network

transforms the object queries into an output embedding, which is then decoded into box co-

ordinates and class labels, generating N final predictions [16]. The model employs self- and

encoder-decoder attention to reason globally about all objects collectively and utilize the en-

tire image as context [16].

The final layers of detr are a feed forward network. It consisting of 3-layer percetron

with Relu as the activation function. The hidden layer with length equal to d is followed

by a linear projection layer [16]. So the feed forward network outputs the class probabilites

using the softmax activation function along with the 4 values that identify the bounding box

(coordinates x,y of the center , width ,height) [16].

Figure 3.6: Architecture of DETR [16]
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3.4 DINO

DINO [17] was proposed by Dosovitskiy et al.in 2021. The DINO algorithm train with-

out labels a vision transformer [90] or the CNN ResNET50 [7] using self-supervised learn-

ing. The training process utilize two networks with the same architecture called student and

teacher. Most self-supervised learning methods that involve knowledge distillation employ a

pre-trained teacher network [91, 92, 17]. This network transfers the knowledge gained from

the previous training to the student which is a smaller network. In contrast to them DINO

teacher is not pre-trained and its weights are updated from the average weights of the student

network [17].

Figure 3.7: DINO student and teacher networks [17]

During the training the student tries to math the output of the teacher network. Both of

them have a K dimensional probability distribution output. The formula of the student output

for class i is :

Ps(x)
(i) =

exp(gθs(x)
(i)/τs)∑K

k=1 exp(gθs(x)
(k)/τs)

(3.3)

The output is not equal to gθs(x) as we expected because the authors normalize the output

with softmax function. In 3.3 [17]:

• x is the input image. In each network, a different augmented version of x is fed.

• gθs the student network with θs parameters.

• τs is a temperature parameter that regulates the output distribution’s sharpness.
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• The teacher formula Pt is similar to Ps.

The aim of the training is to find the parameters θs that minimize the cross-entropy loss

3.4 :

minθsH(Pt(x), Ps(x)) = minθs(−Pt(x)log(Ps(x))) (3.4)
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Chapter 4

Experiments

4.1 Experiment Setup

Also all the experiments were done on google colab with the Tesla T4 and A100 graphics

cards. For each experiment only one GPU was used, depending on the memory required.

4.2 Dataset

In recent years, ensuring human safety in the manufacturing industry has become in-

creasingly important. With the rise of automation and advanced technologies, workers are

often exposed to hazardous environments that require personal protective equipment (PPE)

to minimize the risk of injury or death. Therefore, it is crucial to monitor workers and detect

whether they are wearing the required PPE. To address this challenge, we find a dataset [20]

that consists of images of workers in a manufacturing environment. The dataset includes five

classes: helmet, no helmet, vest, no vest, and person. The purpose of this dataset is to enable

the development of computer vision models that can accurately detect whether workers are

wearing the required PPE. By training models on this dataset, we can help ensure the safety

of workers in the manufacturing industry and reduce the risk of workplace accidents.

33
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Figure 4.1: Left : train-valid-test split ,Right : Instances per class

Figure 4.2: Some examples of dataset instances

4.3 Settings

4.3.1 Metrics

Object detection algorithms are typically evaluated using the mean average precision

(mAP)metric, which requires the computation of thematching area between predicted bound-

ing boxes and their corresponding ground truth boxes. This matching area is determined

through the application of the intersection over union (IoU) method, which computes the
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overlap between the predicted and ground truth bounding boxes as a ratio of their union. The

IoU value ranges between zero and one, with higher values indicating a greater degree of

overlap and thus a stronger match between the predicted and ground truth boxes [18].

Figure 4.3: Intersection Over Union [18]

Once we have the matching area metric , the next step in evaluating an object detection

algorithm is to calculate the precision and recall [18].

Precision =
True Positive

ALL PREDICTIONS
(4.1)

Recall =
True Positive

ALL GROUND-TRUTH
(4.2)

Where True positives is the number of correct predictions. Every detector prediction that

belongs to the same class with a ground truth box and the IoU between them is higher than a

threshold, is characterized as a True Positive.

Now for each class i, we calculate the precision and recall from every image with respect

to IoU threshold a. Based on the 2 columns (precision and recall), we compute the area under

the precision-recall curve 4.4 referred as average precision APi@a [18].
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Figure 4.4: Precision-Recall curve of each class with threshold a = 0.5(from our experiments)

In order to have an overall view of the model accuracy, we compute the mean average

precision over the n classes 4.3

mAP@a =
1

n

n∑
i=0

APi@a (4.3)

Based on the 4.3 we define the 2 metrics that we evaluate our models.

1. AP50

AP50 = mAP@0.5

2. AP

For a vector t = [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95] of IoU threshold

values, we define as AP the following equation :

AP = 1
10

∑9
j=0 mAP@tj

Also in the results we provide the average precision of each class for threshold = 0.5 .
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4.3.2 Hyper-parameters

1. Epochs :

How many times the network will use the entire dataset for training. At each epoch,

every image in the dataset is fed through the network [93].

2. Batch Size :

The number of input images that are fed to the network before the network update its

weights [93].

3. Image Resolution :

The resolution at which the input image will be resized before feeding into the network.

When the image resolution is empty, it means that the model automatically resizes the

inputs.

4. Transfer Learning :

It indicates the dataset on which the network was pre-trained. When it is empty, it

means that the weights are initialized based on the author’s implementation.

5. ADAM :

Utilization of ADAM [94] optimizer.

4.4 Results

In this particular section, we shall present the outcomes of our experiments. For each

experiment, we provide a comprehensive illustration of the corresponding losses, evaluation

metrics, and the hyper-parameters employed.

4.4.1 Faster-RCNN Models

There are more advanced versions of Faster-RCNN than the one we analyze in 3. Our

experiments use them in order to reach the highest mAP. Basically these versions have the

same architecture with the original model [24] but with different backbones (ResNets CNNs

with Feature pyramid network). In the below graphs the followings stats are represented:

• Loss RPN cls : Classification loss of the region proposal network.
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• Loss RPN loc : Localization loss of the region proposal network.

• Loss cls : Classification loss of the Faster-RCNN head.

• Loss Box Reg : Localization loss of the Faster-RCNN head.

• Total Loss : The sum of losses.

1. Faster-RCNN R50-FPN
Version and Hyper-parameters :

• Version : R50-FPN

• Batch size : 4

• Transfer Learning : COCO

• Image Resolution : -

• ADAM : -

Figure 4.5: Faster-RCNN R50-FPN training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

Faster R-CNN R-50 41.5 81.4 60.2 48.6 23.8 44.6 30.3 4 COCO -

Table 4.1: Faster-RCNN R50 FPN results and hyper-parameters
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2. Faster-RCNN R101-FPN
Version and Hyper-parameters :

• Version : R101-FPN

• Batch size : 4

• Transfer Learning : COCO

• Image Resolution : -

• ADAM : -

Figure 4.6: Faster-RCNN R101-FPN training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

Faster R-CNN R-101 35.5 70.0 58.0 47.8 6.8 42.6 22.5 4 COCO -

Table 4.2: Faster-RCNN R101 FPN results and hyper-parameters
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3. Faster-RCNN X101-FPN
Version and Hyper-parameters :

• Version : X101-FPN

• Batch size : 4

• Tranfer Learning : COCO

• Image Resolution : -

• ADAM : -

Figure 4.7: Faster-RCNN X101-FPN training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

Faster R-CNN X-101 39.9 77.7 59.2 50.0 16.1 45.4 28.5 4 COCO -

Table 4.3: Faster-RCNN X101 FPN results and hyper-parameters
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4.4.2 YOLO-V7 Models

In the following results, the 10 plots are : The localization loss for the train and valid

dataset. The objectness loss ( how confident the model is that there is object inside the bound-

ing box) for the train and valid dataset. The classification loss for train and valid dataset. Also

the evaluation metrics (precision, recall, AP50, AP) are computed on the validation dataset.

1. YOLO-V7
Version and Hyper-parameters :

• Version : Tiny

• Batch size : 16

• Transfer Learning : -

• Image Resolution : 640x640

• ADAM : -

Figure 4.8: YOLO-V7 1 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 Tiny 28.2 65.4 40.8 39.3 7.4 34.6 19.1 16 - 640x640

Table 4.4: YOLO-v7 tiny 1
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2. YOLO-V7
Version and Hyper-parameters :

• Version : Tiny

• Batch size : 32

• Transfer Learning : -

• Image Resolution : 640x640

• ADAM : -

Figure 4.9: YOLO-V7 2 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 Tiny 18.0 45.3 27.6 29.5 0 27.4 5.48 32 - 640x640

Table 4.5: YOLO-v7 tiny 2
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3. YOLO-V7
Version and Hyper-parameters :

• Version : V7

• Batch size : 16

• Transfer Learning : COCO

• Image Resolution : 416x416

• ADAM : -

Figure 4.10: YOLO-V 73 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 v7 41.4 78.6 60.0 49.3 23.7 46.5 27.7 16 COCO 416x416

Table 4.6: YOLO-v7 3
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4. YOLO-V7
Version and Hyper-parameters :

• Version : V7

• Batch size : 16

• Transfer Learning : COCO

• Image Resolution : 640x640

• ADAM : -

Figure 4.11: YOLO-V7 4 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 v7 40.7 77.4 60.1 46.4 22.7 46.4 27.7 16 COCO 640x640

Table 4.7: YOLO-v7 4
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5. YOLO-V7
Version and Hyper-parameters :

• Version : V7

• Batch size : 16

• Transfer Learning : -

• Image Resolution : 640x640

• ADAM : -

Figure 4.12: YOLO-V7 5 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 v7 35.4 70.6 48.9 44.3 18.5 41.1 24.0 16 - 640x640

Table 4.8: YOLO-v7 5
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6. YOLO-V7
Version and Hyper-parameters :

• Version : V7

• Batch size : 16

• Transfer Learning : -

• Image Resolution : 640x640

• ADAM : YES

• FREEZING : YES(backbone weights are not updated)

Figure 4.13: YOLO-V7 6 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 v7-ADAM 35.3 73.4 51.3 47.1 20.2 39.5 18.3 16 COCO 640x640

Table 4.9: YOLO-v7 6
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7. YOLO-V7
Version and Hyper-parameters :

• Version : V7-X

• Batch size : 16

• Tranfer Learning : -

• Image Resolution : 640x640

• ADAM : -

Figure 4.14: YOLO-V7X 7 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 v7-X 33.3 67.3 47.3 42.6 11.2 40.2 25.0 16 - 640x640

Table 4.10: YOLO-V7X 7
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8. YOLO-V7
Version and Hyper-parameters :

• Version : V7-X

• Batch size : 16

• Tranfer Learning : COCO

• Image Resolution : 640x640

• ADAM : -

Figure 4.15: YOLO-V7X 8 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 V7-X 40.3 75.9 59.7 48.6 16.0 43.8 33.2 16 COCO 640x640

Table 4.11: YOLO-v7X 8
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9. YOLO-V7
Version and Hyper-parameters :

• Version : V7-X

• Batch size : 32

• Tranfer Learning : -

• Image Resolution : 640x640

• ADAM : -

Figure 4.16: YOLO-V7X 9 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 V7-X 33.9 69.1 47.1 41.2 17.4 38.9 24.7 32 - 640x640

Table 4.12: YOLO-v7X 9
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10. YOLO-V7
Version and Hyper-parameters :

• Version : V7-X

• Batch size : 32

• Tranfer Learning : COCO

• Image Resolution : 640x640

• ADAM : -

Figure 4.17: YOLO-V7X 10 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 V7-X 40.8 78.4 57.6 50.2 21.0 41.5 33.6 32 COCO 640x640

Table 4.13: YOLO-v7X 10
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11. YOLO-V7
Version and Hyper-parameters :

• Version : V7-X

• Batch size : 32

• Tranfer Learning : COCO

• Image Resolution : 640x640

• ADAM : YES

Figure 4.18: YOLO-V7X 11 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 V7-X ADAM 31.6 69.9 46.0 40.0 13.3 37.6 20.8 32 COCO 640x640

Table 4.14: YOLO-v7X 11
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12. YOLO-V7
Version and Hyper-parameters :

• Version : V7-W

• Batch size : 8

• Transfer Learning : COCO

• Image Resolution : 1280x1280

• ADAM : -

Figure 4.19: YOLO-V7W 12 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 V7-W 39.8 74.0 62.1 47.3 14.8 45.0 29.7 8 COCO 1280x1280

Table 4.15: YOLO-V7W 12
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13. YOLO-V7
Version and Hyper-parameters :

• Version : V7-W

• Batch size : 16

• Transfer Learning : COCO

• Image Resolution : 640x640

• ADAM : -

Figure 4.20: YOLO-V7W 13 training stats

MODEL VERSION AP AP50 AP PERSON AP HELMET AP NO-HELMET AP VEST AP NO-VEST BATCH SIZE TRANSFER LEARNING IMAGE RES

YOLO-v7 V7-W 32.8 62 52.8 45.4 0.3 41.6 24.0 16 COCO 640x640

Table 4.16: YOLO-V7W 13
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4.4.3 DETR

1. DETR without pre-train

Figure 4.21: Training stats of DETR without pre-train

MODEL BACKBONE AP AP50 BATCH SIZE TRANSFER LEARNING IMAGE RES

DETR ResNET50 3.66 10.8 4 - -

Table 4.17: DETR without pre-train

2. Pre-trained DETR on COCO

Figure 4.22: Training stats of DETR (COCO)

MODEL BACKBONE AP AP50 BATCH SIZE TRANSFER LEARNING IMAGE RES

DETR ResNET50 47.3 81.5 4 COCO -

Table 4.18: Pre-train DETR on COCO
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3. Pre-trained DETR with DINO

Figure 4.23: Training stats of DETR(DINO)

In this case, we use a backbone ResNET50which is pre-trained with the self supervised

algorithm DINO.

MODEL BACKBONE AP AP50 BATCH SIZE TRANSFER LEARNING IMAGE RES

DETR ResNET50 44.2 78.6 4 DINO -

Table 4.19: Pre-trained DETR with DINO
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4.5 Summary

MODEL VERSION AP AP50 BATCH SIZE TRANSFER LEARNING IMAGE RES

    Faster R-CNN R-50 41.5 (-5.8%) 81.4(-0.1%) 4 COCO -

      Faster R-CNN R-101 35.5(-11.8%) 70.0(-11.5%) 4 COCO -

    Faster R-CNN X-101 39.9(-7.4%) 77.7(-3.8%) 4 COCO -

    YOLO-v7 Tiny 28.2(-19.1%) 65.4(-16.1%) 16 - 640x640

    YOLO-v7 Tiny 18.0(-29.3%) 45.3(-36.2%) 32 - 640x640

YOLO-v7 v7 41.4(-5.9%) 78.6(-2.9%) 16 COCO 416x416

YOLO-v7 v7 40.7(-6.6%) 77.4(-4.1%) 16 COCO 640x640

YOLO-v7 v7 35.4(-11.9%) 70.6(-10.9%) 16 - 640x640

YOLO-v7 v7-ADAM 35.3(-12.0%) 73.4(-8.1%) 16 COCO 640x640

YOLO-v7 v7-X 33.3(-14.0%) 67.3(-14.2%) 16 - 640x640

YOLO-v7 V7-X 40.3(-7.0%) 75.9(-5.6%) 16 COCO 640x640

YOLO-v7 V7-X 33.9(-13.4%) 69.1(-12.4%) 32 - 640x640

YOLO-v7 V7-X 40.8(-6.5%) 78.4(-3.1%) 32 COCO 640x640

YOLO-v7 V7-X ADAM 31.6(-15.7%) 69.9(-11.6%) 32 COCO 640x640

YOLO-v7 V7-W 39.8(-7.5%) 74.0(-7.5%) 8 COCO 1280x1280

YOLO-v7 V7-W 32.8(-14.5%) 62(-19.5%) 16 COCO 640x640

DETR ResNET50 3.66 (-43.6%) 10.8(-70.7%) 4 - -

DETR ResNET50 47.3 81.5 4 COCO -

DETR ResNET50 44.2(-3.1%) 78.6(-2.9%) 4 DINO -

Table 4.20: Summary of all experiments

The best model on both AP and AP50 metrics is the DETR (Pre-trained on COCO). We

will try to maximize the the AP AND AP50 by searching the optimal hyper-parameters of

DETR (COCO).

AP AP50 BATCH SIZE Learning Rate(lr) Backbone lr Encoder Layers Decoder Layers

47.3 81.5 4 1e-4 1e-5 6 6

0.01(-47.3%) 0.19 (-81.3%) 4 1e-3 1e-5 6 6

44.9(-2.4%) 80.6(-0.9%) 8 1e-4 1e-5 6 6

47.(0.0%) 84.3(+2.8%) 8 5e-5 5e-5 6 6

41.4(-5.9%) 78(-3.5%) 4 1e-4 1e-4 3 3

2.19(-45.1%) 6.67 (-74.8%) 4 1e-4 1e-5 9 9

0.01(-47.3%) 0.06 (-81.4%) 8 1e-3 1e-4 9 9

45.4(-1.9%) 79(-2.5%) 4 5e-4 5e-6 6 6

Table 4.21: DETR (COCO) hyper-parameter tuning

The best model for our problem, based on the AP50, is the DETR (COCO) with 8 batch

size , 5e-5 lr, 5e-5 backbone lr, 6 encoder and decoder layers. We choose the metric AP50
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in relation to AP because we are mainly interested in the correct detection, regardless of the

IoU (as long as it is greater than 0.5). First, from the results, we observe the importance of

transfer learning both in increasing the mAP and in faster training of the neural network.

Furthermore, it is obvious that transformers without pre-training need a large amount of data

to operate. This is why, in many of our experiments, the AP and AP50 of DETR (without

pre-train) are almost zero. But the pre-training does not necessarily have to be supervised.

The DETR model in which we change its backbone to the DINO ResNet50 has a difference

of only 2.9% (AP50) compared to the supervised on coco ResNet50. Finally, the AP of each

class is highly correlated with the annotations per class.
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Chapter 5

Conclusions

In conclusion, the manufacturing industry is facing a serious safety problem, with many

deaths and injuries occurring each year. To address this issue, we have explored the poten-

tial of computer vision methods, specifically object detection, to increase employee safety.

Through our experiments, we have trained various models, including YOLO V7 and Faster

RCNN, and compared them to detection transformers. Our findings suggest that pre-trained

DETR on COCO achieves the highest mean average precision with an IoU threshold of 0.5.

Transfer learning is crucial in transformers when the training dataset is small. However, we

also observed that the imbalance of annotations per class can cause low mean average preci-

sion for some classes. Overall, our study demonstrates the potential of detection transformers,

in improving safety in the manufacturing industry. Our findings highlight the importance of

appropriate model selection and transfer learning in achieving high precision and recall in

object detection. We hope that our work will contribute to the ongoing efforts to create safer

working environments in the manufacturing industry.

5.1 Future work

Our study has opened up several avenues for future research to build on our findings.

Firstly, we suggest the creation of a new dataset with a larger number of examples and a

balance between the annotations per class. This will help improve the overall performance

of detection transformers and increase their accuracy in detecting objects. Secondly, we rec-

ommend exploring changes in the DETR architecture to improve the inference speed of the

model. This will allow the model to process more frames per second, making it more suitable
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for real-time applications in the manufacturing industry. Finally, we propose pre-training the

model on amore specific dataset using themethodDINO, which does not require annotations.

This will enable the model to learn more abstract and general features that can be useful for

detecting objects in new environments. By pre-training the model on a broader range of data,

we can improve its performance and enhance its ability to detect objects in various settings.

In conclusion, our study has shed light on several potential avenues for future research in the

area of object detection for safety in the manufacturing industry. By continuing to explore

these areas, we can further improve the performance of detection transformers and create

safer working environments for employees.
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