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X Abstract

Diploma Thesis

Crime Forecasting using Neural Networks

and Transfer Learning

Nikolaos Nikolaidis

Abstract

Safety is one of the most critical foundations of modern societies. The treatment so far is
limited to the afterward investigation of crimes, and the prevention solely focuses on socioe-
conomic factors like poverty, income inequality, and material or mental conditions. In data
science, we want to reinforce the part that focuses on preventing crimes by developing a tool
that will effectively predict the approximate location, timeframe, and type of crime that will
occur. Extensive research papers have examined the issue of Crime Forecasting, providing
each time with state-of-the-art methods. In order to enhance our current work, we begin by
experimenting with fundamental time series forecasting techniques that are conventionally
employed to analyze data with temporal relationships. For the proposed model, we train a
HAGEN model for each category, which is currently the most advanced method available.
Then, we use our crime similarity algorithm to analyze the distribution of crimes and identify
any similarities between them. In order to find the best model, we must do hyper-parameter
tuning and assess the performance of two major cities for a period of five months across all

categories.
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Crime Forecasting, Transfer Learning, Graph Neural Networks
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Lepiinyn xi

Authopoatikny Epyacio
HpoPreyn Eykinuatov pe tnv Xp1jon Nevpovik@v AIKTO®OV Kol
Metagpopa Madnong

Nikoraog Nikoraiong
Ieptinyn

H acoedlrewn eivor éva and ta mo kpioua Bepého tov ovyypovev kKowveovidov. H avtie-
TOTON PEYPL OTIYUNG Tepropiletar otn petémelta d1epedvor EYKANUATOV Kot 1) TPOANYM
EMKEVTPMVETOL ATOKAEIGTIKA GE KOWVWOVIKOOIKOVOUIKOVS TOPEYOVTES OTIMG 1) OIKOVIUIKT KO-
TAGTOGN KO 1] KOWVOVIKEG OVIGOTNTEC. TNV EMGT N OE00UEVOV EMOIOKOVUE TNV AVATTUEN
evog epyareiov mov Bo TPoPAETEL AMOTEAECUATIKG TNV KOTA TPOGEYYIoN TG ToTobesia, TNV
YPOVIKY| OTLYLT Kot TOV TOTO ToL ykANpatog. Exteveig epguvntikéc epyacieg £xovv e€etdoet
10 0¢pa g [poPreyng Eyxinuartog, mapéyovrag kébe popd cvyypoves peddoovg. Ipoket-
HEVOL VO, BEATUOCOVE TNV TPEYOLGA OOVAELN TAV®D GTNV TPOPAEYT EYKANUATOV, EEKIVALLE [LE
™ HEAETT BEUEMMODY TEXVIKMV TPOPAEYNS YPOVOGEPADV TOL YPNGLOTOLOVVTOL GUUPATIKA
Yo TV 0vAALGT SESOUEVAOV LLE YPOVIKEG OYECELS. XTNV GLUVEXELD Yo TNV OKN pag pébodo,
exmodevovpe éva poviého HAGEN yuo ke katnyopia, o omoio gival avtn ) otiyun 1o
TLO TTPONYUEVO HOVTELO. XT1) GUVEYELD, YPNOUYLOTOLOVUE EVOV OAYOPIOLO OLOLOTNTAG EYKAN-
LATOV Y10t VO 0VOADGOLLLE TNV KOTOVOLT TOVG KO VO, EVTOTIGCOVUE TUYOV OUOLOTNTES HETAED
tovg. [la va Bpovpe 10 KaADTEPO HOVTELD, TTPETEL VOL KAVOLLLE GUVTOVIGUO VIEP-TAPAUETPDV
Kot Yo TNV a&loAdynon TG amrdd00mnG XPNCUYLOTOIOVUE TOL OEOOUEVA OVO UEYAAWDY TOAE®V,

oT0 ool EAEYYOVLE TOVG TEVTE TEAELTAIOVG UNVEG Kot TNV KABE Katnyopia EexmploTd.

AéCarc-kAre10nd:
[Ipopreyn Eyxinuatov, Metapopd Madnong, Nevpwvikd Atktva I'pdowv
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Chapter 1

Introduction

Modern urban communities are currently suffering from waves of criminal behaviors. On
the one hand, understanding crime trends can assist individuals in making informed decisions
on safeguarding themselves and their possessions [#4, 5]. On the other hand, it can equip law
enforcement with the necessary tools to address these issues effectively and build a crime
prevention program since its approach focuses on dealing with the socioeconomic factors

that create these anti-social behaviors [4, 5].

According to statistics from the United Nations, urbanization is happening rapidly. By
2050, 64 % of the developing world and 86% of the developed world will be urbanized [6, 7].
As urbanization continues, social inequality will also increase. Analysts currently examine
demographic data to address this issue, including wealth disparity [8, 9], educational attain-
ment, and ethnic and religious factors [[10, 11, 12]. Although, collecting demographic data
can be difficult because it only sometimes accurately represents the geographical dynamics

of communities.

All of the above is the core of specific interpretations of criminal behavior. For instance,
social criminology and culture conflicts state that criminal behavior results from a clash of
different socialized groups based on values. These values come from what is considered ac-

ceptable behavior and are highly correlated with religious values and economic classes [13].

On the other hand, environmental criminology, specifically rational choice theory [[14]
and routine activity theory [|15], suggest that the distribution of crime is influenced by time
and space, with human mobility being a significant factor. Recently, researchers have turned
their attention to environmental criminology, a facet of criminology, as data mining and ma-

chine learning continue to advance. This thesis aims to contribute to the development of

1
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2 Chapter 1. Introduction

environmental criminology by employing machine learning to forecast crime, including its
location, time, and type. This approach, Crime Forecasting, utilizes past criminal records to
anticipate potential occurrences across all categories and regions. For this thesis, it is essential

to define criminal records and Crime Forecasting as follows:

Definition 1 Criminal Record. Given a region r;, the criminal records of the region for
all timeslots Y; = (y}4,...,yl%) € R“*¥. C denotes the number of categories, and K the

sequence length for the timeslots 7' = (1, ..., %) [2].

Definition 2 Crime Forecasting. For the criminal records {Y!,... Y%}, the goal is to
find a function p(.) that predict the criminal record Y®*1. For the models that learns the

adaptive graph the problem is modified to {Y?!, ... , Y& G} LON {YEFL G'Y (2]

To approach the problem, we employ several preliminary techniques such as Multilayer-
Perceptron (MLP), Long-Short-Term-Memory (LSTM), and Gated-Recurrent-Unit (GRU).
After reviewing past work, we consider utilizing a region graph to enhance our understanding

of the areas where criminal activities occur.

Definition 3 Geographical Region. The geographical regions are the result of the parti-

tioning of a city in a grid-based map segmentation, with I rows and J columns []1]].

Definition 4 Region Graph. A region can be defined as the set G = (V, €, A,) where V'
is the region nodes, € is the directional edges between the nodes , A, is the weight matrix that

represents the weights between the nodes [2].

Definition 5 Weight Matrix. The weight matrix A, € RV*¥ is arepresentation of weighted
graph G with A, (4, j) = w > 0if (u;, u;) € &, else A,.(4,5) = 0. In this implementation the
matrix is uni-directional, meaning that if A,(i,j) > 0 then A,(j,7) = 0 to increase perfor-

mance [2].

The first approach by Huang et al. [[1]] introduces the MiST framework, which uses a
Recurrent-Neural-Network (RNN) based model that captures regional dependencies using
an attention mechanism. However, the nature of the problem (see Definition 2), with the ad-

dition of the region graph, compels researchers to introduce Graph Neural Networks to the
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problem. Using DCRNN [[16] is the most optimal approach as it expertly combines the diffu-
sion convolution function for spatial properties with the RNN for temporal properties. Sun et
al. [3] introduce the above method with the CrimeForecaster framework using the DCGRU
method, which uses GRU for the temporal properties. Then Wang et al. [2] introduce the
HAGEN model that expand the previous implementation by adding several features to the
encoder and using the homophily ratio as a constraint to regularize the optimization, using
the hypothesis that regions with similar socioeconomic situation have similar criminal be-

havior [[17, [[8].

Definition 6 Homophily Ratio. Given the graph G = (V, €, A,) and node label Y the

homophily ratio is defined as: H(G,V) = \71| Y uev %, which denotes the prob-

ability that neighboring nodes (V,) share the same label (y,,) [[19].

To expand the previous work, we want to explore how the distribution of different cat-
egories has similarities to the use of transfer learning, reinforcing the model’s performance.
Using the HAGEN [2] framework, we process each category separately and apply four dif-
ferent transfer learning techniques.

The contribution of the thesis diploma is concluded as follows:

1. Analyse traditional time series forecasting models and spatiotemporal models for crime

forecasting.
2. Train a separate HAGEN model for each category.
3. Examine the correlation between the categories distribution.
4. Create different variations to weight the similarity of distributions.
5. Examine different hyper-parameters.
6. Evaluate the models with the established evaluation protocol.

The thesis has three different chapters. Chapter [l] covers related work on crime fore-
casting, dividing the discussion into traditional models for time series forecasting and spa-

tiotemporal graph networks. Chapter [ analyzes the proposed transfer learning model and
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4 Chapter 1. Introduction

its variations. Lastly, Chapter 3 focuses on the dataset used, the evaluation protocol, and the

results of the experiments.
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Chapter 2

Related Work

In order to address Crime forecasting, which is defined as predicting future criminal ac-
tivity, we must review past approaches and consider other frameworks used for similar is-
sues, such as traffic forecasting. The early approaches only rely on temporal dependencies
to forecast sequential data. As a result, the models used were standard frameworks designed
to address the problem. Long-Short-Term-Memory [20, 21] and Gated-Recurrent-Unit [22]
are recurrent models commonly used for time series forecasting. Additionally, Multilayer
Perceptron [23] can approximate data, making it a valuable tool for solving forecasting prob-

lems.

Then, the following two approaches from Huang et al. [[l, 24] use the spatial depen-
dencies for the first time to improve the performance. There are two implementations: Deep-
Crime [24], which uses a CNN-based model, and MiST, which uses an RNN-based [[I]] model.
Neither implementation utilizes GNNs to handle regional dependencies, instead relying on

regional embeddings.

Sun et al. [3] introduce the CrimeForecaster, which is the first approach to use GNN. They
use DCRNN [[16], specifically DCGRU, to capture spatial and temporal dependencies. This
implementation uses DCGRU for data encoding and a Multilayer Perceptron for result decod-
ing. Then, the state-of-the-art HAGEN [2] model, similar to the CrimeForecaster, follows the
same Encoder-Decoder [25] architecture and still uses the DCGRU method. In addition, they
use the homophily ratio to measure the similarity between regions based on crime rates. They
also include Point-Of-Interests using embeddings and compressed criminal records to create
crime embeddings. The compression method is Principal-Component-Analysis, defined as

an orthogonal linear transformation that transforms the data to a new coordinate system such

5
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6 Chapter 2. Related Work

that the greatest variance by some scalar projection of the data comes to lie on the first co-
ordinate (called the first principal component), the second greatest variance on the second
coordinate, and so on [26].

In the field of traffic forecasting, the most advanced models that utilize spatial-temporal
methods are STGCN [27], Graph-WaveNet [28], and GMAN [29]. AGCRN [30], and MT-
GNN [31]] also employ adaptive graph learning to address traffic forecasting. The above meth-
ods have fundamental problems of GNNSs, such as node similarity, sparsity, and symmetry.
STGCN stands for Spatio-Temporal Graph Convolution Network. It comprises two gated se-
quential convolution layers and a spatial convolution layer. Graph-WaveNet is a model that
combines spatial and temporal aspects. It uses a node embeddings matrix to capture hidden
spatial dependencies and a 1D convolution component capable of handling long sequences.
GMAN follows an Encoder-Decoder architecture that consists of multiple spatiotemporal at-
tention blocks. Between Encoder and Decoder, an attention transform layer transforms the
data as sequence representations for the Decoder to predict the output sequence.

The term AGCRN refers to an Adaptive Graph Convolutional Recurrent Network. This
network includes the NAPL-GCN, which replaces MLP layers in the GRU to handle node-
specific patterns, as well as the DAGG and GRU units. The MTGNN (Multivariate Graph
Neural Networks) is a cutting-edge model that identifies the one-way connections between
nodes and trains end-to-end graph learning models using graph convolution for spatial data
and temporal convolution for convolution data. To summarize, traffic prediction and crime
forecasting problems share a similar format. Therefore, the methods above can also apply to
crime forecasting. However, these methods may need to perform better in crime forecasting

due to their inability to handle sparsity and node similarity.
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Chapter 3

Examined Models

3.1 Input/Output

Given the public records, we need to convert them to mathematical matrices that the
model can process. The problem is that each crime is happening at a specific address, at a
particular timestamp, and with an accurate crime description, creating many different pos-
sibilities. We aim to narrow these possibilities by dividing the city into R regions, daytime
into K timeslots, and grouping various crimes into C' big categories. Since we don’t care
about the number of crimes happening in a region at a specific timeslot, just the existence of
crimes, in the end, the result of the matrix is a binary one, with 70 indicating that no crime
occurred and ”’1” indicating that a crime did occur. This matrix can be descried mathematical
as: X € RV*EXEXC where the variable IV represents the total number of days available for

analysis. From the previous definition, the output matrix can be defined as: iy € RY*1xExC

3.2 Preliminary Models

As preliminary methods we describe the simplest methods which are used for time series
forecasting. Traditionally RNNs are suitable due to their ability to store information from pre-
vious inputs. Another alternative is the Multi-layer Perceptron with the ability to approximate

data.

3.2.1 Multi-layer Perceptron

The mathematical form for the Multi-layer Perceptron goes as follows:

7
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8 Chapter 3. Examined Models

¢1 = ReLU(W1 * L1 + bl)

Uy, = ReLU(W,, % {1 + by—1)

y=o(Wi, +V)

Note: The first layer uses 1024 hidden units and 512 for the second. The goal is to min-
imize the loss function: Lepime = — Zie{l R},ze{L...C}(yiJ logy;, + (1 —yi) log(1 —¥i,))

-----

3.2.2 Recurrent Neural Networks

For RNN, we present LSTM and GRU, both fundamental and similar models. Exactly

like the Multilayer Perceptron the objective function is Binary Cross Entropy.

3.2.3 Gated Recurrent Unit

The equations for the Gated Recurrent Unit(GRU) are:
zp =o(W, x [hy_1; 7))

re =o(W, x [hy_1;0 =1])

Ry = tanh(W x [ry = hy_1; 24])

he = (1 —2¢) % hy_1 + 2 * by

3.2.4 Long Short-Term Memory

fi=0Wssxzy+ Usp*hi_q + by)

i =0(Wixxy+ U, * hy_1 + b;)
op=0Wyxxy+U —o0%hi_1+b,)
¢ =o(Wesxy+U.xxy 1+ be)
c=fiOaq 1+ Oc

he =01 ® o(ct)
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3.3 MiST 9

3.3 MiST

The MiST model uses an LSTM encoder and a Multilayer Perceptron as the decoder. The
MiST framework also adds attention mechanism defined by Huang et al. [[1]:

nﬁj,l = ta’nh(Wk(hijJ eri’j,ecj) + bk)

i,
E ol

YL = T

6.l Zi,jeG p ewp(m’fj,l)

Then the actual output is calculated:

k__ L ko k
q = Zi,jEG Zl:l Qi g4

The input h to the attention layer is the output of the LSTM. Also the e, and e, are region

and crime embeddings respectively. Lastly W and b are the weights and biases.

Event Context Tensor Event Context Tensor Temporal Tiew {
i

5

1 row

Flatten
Terget Region. Target Region
-
J cohmmns E

~----b Time slots

attemn Fusion] ™ Coptexual Aneation | | Contextual Attention | ___ | Coatextual Atieation |

b Taget Region  Spatial Tiew Module

=
f .. | I .
S -

., R
Categorical Tiew . Y
Ll ‘A »

I ™

e
onclusive Recurrenf— .
Fitrmaasbidanneet || i i

Netwerks |

Figure 3.1: MiST Framework []1]

3.4 HAGEN model

Generally HAGEN follows the Encoder-Decoder proposed by Cho et al. [25] The fol-

lowing implementation is an extension of that model.

3.4.1 Region Graph

The processed graph is an adaptive weight matrix uni-directional graph (i.e if A,.(i,7) > 0
and A, (j,7) = 0):

Zs = tanh(aEs0)

Z; = tanh(aE,0O5)

A, = ReLU (tanh(a(Z,ZF — Z,ZT)))
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10 Chapter 3. Examined Models

3.4.2 Encoding input

The encoding of data to use as input uses the criminal records 3* and the geographical
dependencies with the form of embedding matrices. The first embedding matrix is, E. €
RP*C which is a result of the Principal Component Analysis(PCA) [26] of the criminal
records used for training. The geographical dependencies are calculated by the Node2 Vec [32]
based on the distances and Point-Of-Interest creating and embedding matrix E,,. € R

To encode the input we first calculate the element-wise product of both embeddings creating

the matrix Wi, € R®*C. The final input is calculated as X = Wi, @ y* € REXC,

3.4.3 Temporal Module

The definition of DCGRU is:

rt =o(ful2', M7 G, O, Dy) + br)

ut = o(ful[z', W) G, Ou, Dy) + by)

¢ = tanh(f.([zt, 7" © h'7; G, O, Dy) + by)
R=uoh+(1—-u)od

The explanations of the symbols are:

1

* o(.) is the sigmoid function calculated as 0/(z) = 1=

z

« tanh(.) is the hyperbolic tangent function calculated as tanh(z) = S

e*+e—* °

* f.(.) is the diffusion convolution function where:

[(X;G,0,D,) =M (SOXO.. 1+ 4 DyS. X0, . o)

77777777

SO = (Dy'A,)™, SE = (DA™

m

2!, h! are input and output respectively. r!, u!, ¢! are reset gates. b, b,, b,, are biases.

O,,0,, 0. are filter parameters.

The goal of the HAGEN model is to minimize the following loss function using Adam
optimization [33]:

Luacen = Lerime + ALpomo Where:

Lhomo = Yon, 210:1 [H(A,,yr,1) — 1]2, the H(.) function denotes the extension of the

basic homophily-ratio. The extension by Zhu et al. [19] is calculated as:
ko k Ar(u,v)
!

> _
k 1 ueN(u)’yqx,l7y1z,
H(Ara Yr, l) - m Z’UEV ZuEN(u) Ar(uv

Lerime = — Zie{l R},le{l,...C}(yi,l log i, + (1 — i) log(1 = y;,))

-----
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Figure 3.2: HAGEN Framework [2]

3.5 Transfer Learning Model

Given the previous definition of the HAGEN, our modification is to change the number
of crime categories processed to one. Hence creating eight new models that are pre-trained,

and their output will use for transferring the learning.

3.5.1 Category Similarities

The following algorithm [l| shows how to extract the similarities of crime distributions.
The algorithm’s input is the criminal records, presented with the variable Y, the number of
regions is the variable R, and the number of categories is the variable C'. Then it proceeds to
initialize the final matrix ”TotalSimilarities” to a C' x C' matrix with zeros. For the calculation,
we create three nested for-loops, with the first showing the iteration of all regions and the other
two iterations leading through all pairs of categories. During each iteration, we determine the
frequency of criminal activity during a specific timeslot and then calculate the proportion by
dividing it by the highest number of criminal incidents for each category. To obtain the mean
for each similarity, we must divide each by the number of regions.

The following Figure B.3, captures the resulted matrix for the previous algorithm, for the
month of December in Los Angeles. The categories have similarities ranging from 0.12 to

0.41 and the average being to 0.3, indicating significant resemblances.
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12 Chapter 3. Examined Models

Algorithm 1 Categories Similarities

1: procedure Crime-Similarity(Y, R, C)
2: TotalSimilarities <— Zeros(C,C)

3: for r <— 0to R do

4: for Categoryl < 0 to C' do

5: for Category2 <— 0 to C do

6: NonZerosl = Length(Y{ 1 g1 7 0)

7: NonZeros2 = Length(Y{ e gory2 7 0)

8: MaxNonZeros = max(NonZeros1,NonZeros2)

9: C = Length(Yeuegory1 O Yeategory2 A0 Yeategory1 = Yeategory2 = 1)
10: TotalSimilarities(Category1,Categpry2) += m
11: end for
12: end for
13: end for
14:  TotalSimilarities «— LoalSimilaritics
15: return TotalSimilarities

16: end procedure
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3.5.2 Final Output 13

Figure 3.3: Example of the output for categories similarities algorithm.

3.5.2 Final Output

The output for the i model is symbolized as H!. Combining the previous models we
can calculate the final output of the i model as H} « H! + A} w; ;H!, where w; is the
similarity of the crime categories 7 and ;.

The first variation of the previous model is by using the output defined prior and we use
it as an input to a attention layer. The attention layer used is the Additive Attention Layer
or Bahdanau Attention, calculated as: fu;([hi; s;]) = ultanh(W,[hi; s;]) [34, B5], where
uq, W, are attention parameter and H, s are both use the output of HAGEN models. For the
training of this variation is happening by freezing the HAGEN layers, and only optimizing
the attention layer.

The other variations discard the attention layer as it shows no improvement to the model.
So the next step is to use just the information from the pre-trained model. The next varia-
tion sets A value to zero, to examine the performance without models transferring learning
between them. Then we examine just the outputs of the pre-trained models and transfer learn-
ing between them. Finally the last model is identical to the previous but uses the threshold of

the original pre-trained model.
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Chapter 4

Experiments

4.1 Dataset

In the experiments we use datasets from two major cities, Chicago [36, 37] and Los An-
geles [38, 39]. To create the data-sets from the original crime records, it is important to group
the categories of the crimes to smaller subset. The chosen categorization by Sun et al. [3] is

shown at the Table }.1], also the counts of each category are shown at Figures 1] and }.2:

Table 4.1: Categories for both cities

Los Angeles Chicago
Theft Theft
Vehicle Theft Battery
Burglary Burglary
Fraud Deceptive Practices
Assault Assault
Vandalism Criminal Damage
Robbery Robbery
Sexual Offenses Narcotics
15
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16 Chapter 4. Experiments

Category Theft |Vehicle theft | Burglary | Fraud | Assault Sexual offenses Robbery | Vandalism
Counts 66,697 | 17,123 14,517 15,578 | 32,372 | 6,161 8,864 17,123

Figure 4.1: Total instances in Los Angeles Dataset [3]

.Categor}' “Theft | Criminal damage | Narcotics | Robbery Assault | Deceptive practices .Burg]ar}f. Battery
Counts | 56,695 | 28,589 21,607 9,632 16,692 | 14,085 . 13,103 | 48,824

Figure 4.2: Total instances in Chicago Dataset [3]

4.2 Evaluation Protocol

To properly present the evaluation metrics, we must first explain the process of con-
verting output matrices from continuous values to binary values. The first step is to cal-
culate the threshold from training and validation datasets. The threshold is calculated as:

thr = 1 — A,where A = [y,; o). Secondly, the output of the model is scaled as: hgcqreq =
h_hmin

hmaz *hmin

. Lastly at each batch it is calculated the threshold by calculating the quantile of
the first threshold to the scaled output. Then for the values greater than threshold we assign

1 and for less 0.

4.2.1 Evaluation Metrics

Crime forecasting can be described as multi-class classification problem. The metrics

used to evaluate the model are used to multi-class classification problems.

. _ C 2T P
¢ Macro-F1 : Macro-F1 = o Zl:l Wm [40]
C
« Micro-F1 : 221110 [40]

23 TP+ FNi+Y5, FP,

* AUC : Sensitivity = Recall = 72" Specificity = 72—

The value is calculated from Sensitivity(TPR)-(1 — Speci ficity)(FPR) [41]

Since we have 8 different processes we need to calculate a summarized form of the in-
dividual tasks. Since that the dataset is unbalanced,we need to calculate the contribution of

each category to the complete dataset. The contribution is described in the following vector:
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4.2.2  Train-Test-Validation Split
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where, S is the total number of crime instances in the labels of dataset. /V; is the total

number crime instances for category 4.

Then by calculating the above metrics for each task we create the following vectors:

MicroF'ls =

MicroF 1!
MicroF1?

MicroF1¢

MacroF'1ls =

MacroF 1!
MacroF1?

MacroF1¢

AUCs =

AvC! |
AUC?

AUCC

4.1)

The final metric for the whole dataset is calculated as the dot product of the metrics vectors

described above and the contributions:
MicroF'1 = c¢- MicroF'1s
MacroF'1 = c- MacroF'1s
AUC =c¢- AUC's

4.2.2 Train-Test-Validation Split

The train-test-validation follows the model by Sun et al. [3]. Test utilizes the last month,

validation utilize the 0.5 month before that and the rest as the train (i.e 6.5 months for August

etc.)

4.3 Models

- MLP: Multi-layer Perceptron, where records of a timeslot is processed.

- LSTM: Long-Short-term Memory, a supervised neural network model that examines

the records of a timeslot.

- GRU: Gated Recurrent Unit, a recurrent supervised neural network that learns from

the records of a timeslot.
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18 Chapter 4. Experiments

- MIST: To encode and decode information, we use LSTM and MLP, along with region
embeddings. []1]]

- HAGEN: A Graph Neural Network is used to analyze geographical dependencies.
The encoder and decoder utilize DCGRU cells, while an MLP is used for the decoding

process. [2]

- Attn : Transfer learning between the HAGEN models using category similarities and

an Additive Attention Layer.
- X =0 : Single-task with non transferable learning.
- NoAttn: Transfer learning between the HAGEN models without attention layer.

- NewThr: Similar to NoAttn but changes the evaluation threshold by using single task
HAGEN’s old threshold.
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4.4 Performance Evaluation 19

4.4 Performance Evaluation

Table 4.2: Los Angeles Micro-F1 Score per Category

Category/Model | MLP | LSTM | GRU | MIST | HAGEN | Attn | A =0 | NoAttn | NewThr
Theft 0.398 | 0.701 | 0.747 | 0.653 | 0.743 | 0.728 | 0.730 | 0.727 0.731
Vehicle theft | 0.472 | 0.602 | 0.601 | 0.420 | 0.727 | 0.730 | 0.731 | 0.730 0.730

Burglary 0.513 | 0.445 | 0.499 | 0.341 0.701 | 0.713 | 0.702 | 0.708 0.704
Fraud 0.427 | 0.501 | 0.466 | 0.370 | 0.734 | 0.726 | 0.726 | 0.723 0.727

Assault 0.547 | 0.568 | 0.632 | 0.479 | 0.736 | 0.727 | 0.727 | 0.724 0.724

Vandalism 0.506 | 0.533 | 0.634 | 0.420 | 0.716 | 0.716 | 0.715 | 0.716 0.718

Robbery 0.520 | 0.465 | 0.446 | 0.575 | 0.832 | 0.809 | 0.811 | 0.808 0.809

Sexual offenses | 0.513 | 0.519 | 0.439 | 0.598 | 0.865 | 0.831 | 0.830 | 0.832 0.830

Table 4.3: Chicago Micro-F1 Score per Category

Category/Model | MLP | LSTM | GRU | MIST | HAGEN | Attn | A =0 | NoAttn | NewThr
Robbery 0.558 | 0.424 | 0.532 | 0.551 0.757 | 0.741 | 0.728 | 0.7467 | 0.741
Battery 0.490 | 0.506 | 0.503 | 0.509 | 0.703 | 0.675 | 0.676 | 0.677 0.664

Deceptive 0.560 | 0.514 | 0.493 | 0.613 0.725 | 0.698 | 0.690 | 0.705 0.695
Burglary 0.492 | 0.555 | 0478 | 0.514 | 0.716 | 0.693 | 0.684 | 0.695 0.690
Assault 0.504 | 0.673 | 0.596 | 0.582 | 0.775 | 0.750 | 0.747 | 0.746 0.733
Theft 0.527 | 0.524 | 0.565 | 0.588 | 0.700 | 0.678 | 0.670 | 0.681 0.679

Damage 0.442 | 0.516 | 0.398 | 0.588 0.782 | 0.757 | 0.744 | 0.744 0.741
Narcotics 0.521 | 0.518 | 0.462 | 0.706 0.752 | 0.735 | 0.739 | 0.736 0.739

Firstly, we must evaluate the performance, from Figures and 4.3, of each category
since our model is designed to split the categories and has a separate model for each. The top-
performing model for each class in the Los Angeles dataset tends to vary. In the initial models,
MLP has the poorest performance compared to LSTM and GRU, which perform slightly
better or, in some cases, worse than the spatiotemporal model, MiST. However, the HAGEN
model and the four proposed models outperform the rest and alternate the best performance,
with the differences varying from 0.01 to 0.001. In contrast, the Chicago dataset consistently
produces more steady results, with the HAGEN model performing better than the others by
at least 0.2 to 0.3.

Institutional Repository - Library & Information Centre - University of Thessaly
08/11/2024 06:34:50 EET - 3.145.40.200



20 Chapter 4. Experiments

Table 4.4: Los Angeles AUC Score per Category

Category/Model | MLP | LSTM | GRU | MIST | HAGEN | Attn | A =0 | NoAttn | NewThr
Theft 0.49 | 0.508 | 0.504 | 0.519 | 0.723 0.707 | 0.709 | 0.705 0.709
Vehicle Theft | 0.460 | 0.564 | 0.522 | 0.581 0.674 0.674 | 0.675 | 0.674 0.673
Burglary 0.490 | 0.407 | 0.451 | 0.538 | 0.635 0.633 | 0.620 | 0.628 0.622
Fraud 0.483 | 0.492 | 0.425 | 0.564 | 0.656 0.648 | 0.648 | 0.641 0.649
Assault 0.516 | 0.537 | 0.480 | 0.557 | 0.727 | 0.7202 | 0.719 | 0.717 0.716
Vandalism 0.527 | 0.477 | 0.477 | 0.558 | 0.683 | 0.6846 | 0.684 | 0.684 0.686
Robbery 0.501 | 0.444 | 0.472 | 0.666 | 0.685 | 0.6608 | 0.664 | 0.658 0.661
Sexual Offenses | 0.528 | 0.533 | 0.503 | 0.639 | 0.656 0.614 | 0.613 | 0.609 0.612

Table 4.5: Chicago AUC Score per Category

Category/Model | MLP | LSTM | GRU | MIST | HAGEN | Attn | A =0 | NoAttn | NewThr
Robbery 0.533 | 0.489 | 0.519 | 0.636 | 0.737 | 0.715 | 0.701 | 0.720 0.716
Battery 0.503 | 0.495 | 0.585 | 0.596 | 0.657 | 0.638 | 0.639 | 0.641 0.623

Deceptive 0.573 | 0.509 | 0.499 | 0.632 | 0.699 | 0.654 | 0.646 | 0.663 0.652
Burglary 0.519 | 0.515 | 0.473 | 0.585 0.700 | 0.679 | 0.669 | 0.681 0.675
Assault 0.508 | 0.491 | 0.484 | 0.660 | 0.735 | 0.705 | 0.703 | 0.701 0.701
Theft 0.558 | 0.561 | 0.505 | 0.540 | 0.697 | 0.676 | 0.669 | 0.680 0.678
Damage 0.442 | 0.516 | 0.356 | 0.662 | 0.753 | 0.738 | 0.723 | 0.723 0.720
Narcotics 0.498 | 0.526 | 0.528 | 0.673 0.692 | 0.648 | 0.653 | 0.6498 | 0.652

To further examine the performance of individual categories, we also look at Tables §.4
and }4.5, which show the performance of tasks for the AUC metric. Generally, the AUC table
shows the same ambiguous results as the AUC. But it is worth noticing that the models out-
perform at specific categories at the Micro-F1 tables and didn’t outperform the same at the
AUC table. The only steady performances from the four proposed models are the single-task
model for ”Vehicle Theft” and the transfer learning with the new threshold for ”Vandalism.”
The differences between the models increase, with the maximum being 0.2, and the prelimi-
nary models are significantly worse than the rest. On the other hand, results from the Chicago

dataset follow the same distribution as Table §.3.
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Table 4.6: Los Angeles per Month
Month/Model | Metric MLP | LSTM | GRU | MIST | HAGEN | Attn | A =0 | NoAttn | NewThr
August Micro-F1 | 0.410 | 0.460 | 0.455 | 0.539 0.612 0.738 | 0.739 | 0.731 0.735
August Macro-F1 | 0.353 | 0.440 | 0.435 | 0.504 0.546 | 0.684 | 0.686 | 0.673 0.680
August AUC 0.602 | 0.513 | 0.516 | 0.616 0.673 0.684 | 0.686 | 0.674 0.681
September Micro-F1 | 0.415 | 0.457 | 0.439 | 0.540 0.619 0.738 | 0.739 | 0.737 0.738
September | Macro-F1 | 0.351 | 0.435 | 0.419 | 0.500 0.537 0.683 | 0.683 | 0.680 0.681
September AUC 0.607 | 0.588 | 0.495 | 0.619 0.667 0.684 | 0.685 | 0.681 0.683
October Micro-F1 | 0.448 | 0.448 | 0.468 | 0.539 0.612 0.731 | 0.732 | 0.733 0.734
October Macro-F1 | 0.372 | 0.433 | 0.444 | 0.501 0.536 | 0.675 | 0.676 | 0.678 0.678
October AUC 0.625 | 0.511 | 0.536 | 0.622 0.667 0.675 | 0.677 | 0.679 0.679
November Micro-F1 | 0.436 | 0.460 | 0.451 | 0.541 0.611 0.738 | 0.737 | 0.738 0.739
November | Macro-F1 | 0.343 | 0.437 | 0.431 | 0.501 0.539 0.682 | 0.681 | 0.681 0.683
November AUC 0.615 | 0.518 | 0.512 | 0.625 0.670 | 0.683 | 0.682 | 0.682 0.684
December Micro-F1 | 0.373 | 0.457 | 0.471 | 0.539 0.612 0.734 | 0.729 | 0.731 0.730
December Macro-F1 | 0.332 | 0.431 | 0.442 | 0.497 0.529 0.676 | 0.670 | 0.673 0.672
December AUC 0.498 | 0.520 | 0.541 | 0.625 0.625 0.677 | 0.672 | 0.674 0.673
Table 4.7: Chicago per Month
Month/Model Metric MLP | LSTM | GRU | MIST | HAGEN | Attn | A =0 | NoAttn | NewThr
August Micro-F1 | 0.492 | 0.512 | 0.535 | 0.592 0.712 0.722 | 0.710 | 0.728 0.716
August Macro-F1 | 0.430 | 0.435 | 0.442 | 0.581 0.669 0.691 | 0.677 | 0.697 0.684
August AUC 0.505 | 0.500 | 0.498 | 0.581 0.702 0.692 | 0.679 | 0.698 0.686
September Micro-F1 | 0.476 | 0.524 | 0.521 | 0.599 0.709 0.722 | 0.719 | 0.718 0.718
September | Macro-F1 | 0.420 | 0.440 | 0.432 | 0.585 0.660 | 0.691 | 0.688 | 0.687 0.686
September AUC 0.501 | 0.502 | 0.501 | 0.589 0.693 0.692 | 0.689 | 0.688 0.687
October Micro-F1 | 0.474 | 0.518 | 0.521 | 0.592 0.711 0.718 | 0.714 | 0.716 0.721
October Macro-F1 | 0.422 | 0.432 | 0.425 | 0.579 0.665 0.686 | 0.683 | 0.683 0.689
October AUC 0.503 | 0.504 | 0.497 | 0.579 0.695 | 0.686 | 0.683 | 0.684 0.689
November Micro-F1 | 0.509 | 0.477 | 0.549 | 0.593 0.700 | 0.713 | 0.709 | 0.718 0.714
November | Macro-F1 | 0.426 | 0.403 | 0.444 | 0.581 0.657 0.682 | 0.677 | 0.688 0.684
November AUC 0.501 | 0.501 | 0.506 | 0.595 0.690 | 0.682 | 0.677 | 0.687 0.684
December Micro-F1 | 0.464 | 0.461 | 0.498 | 0.594 0.696 | 0.721 | 0.710 | 0.718 0.707
December Macro-F1 | 0.405 | 0.391 | 0.401 | 0.582 0.650 | 0.690 | 0.678 | 0.688 0.675
December AUC 0.499 | 0.496 | 0.500 | 0.602 0.687 0.691 | 0.679 | 0.688 0.676
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22 Chapter 4. Experiments

Finally, we need to assess the monthly performance, shown in Tables §.6 and §.7, since
previous frameworks primarily focus on it. The preliminary models, alongside MiST, follow
the same distribution of results as before. However, HAGEN and the four proposed models
differ from the individual categories’ results. In the Los Angeles dataset, we see the model
that uses transfer learning and the individual task’s threshold to have more instances of better
performance. The model with the attention layer comes second, then the single-task model.
In this instance, not only the HAGEN model fail to outperform the other models, but there
was also a significant difference between them, with a range of 0.1. In contrast to the Chicago
dataset, it has an entirely different distribution of results, particularly regarding the perfor-
mance of HAGEN, which appears to have specific instances of better performance, all in the
AUC metric. Yet, the model with the attention layer performs better overall, but only in some

months, and then follow both transfer learning models.

4.5 Hyper-Parameter Tuning

Ne Attention Mechanism (Chicago) No Attention Mechanism (Los Angeles)

0.688 0.674
0.686 0.672
0.684 S 0.67
0.682 I I I 0.668 I
068 l 0.666 -
1 01 1 01

001 0.001 0.0001 0.00001 001 0.001 0.0001 000001

AUC
A
@

A A

(o) Chicago (B’) Los Angeles

Figure 4.3: The figures show the tuning for the model of transfer learning without the atten-
tion mechanism. Figure shows the tuning for the A value for Chicago for the month of
December. Figure shows the tuning for Los Angeles for the month of December.

In the Figure .3 we present the results for the tuning of the value \ € {1,0.1,0.01,0.001, 0.0001}.

We use AUC as the comparison metric. Although the differences are marginal and range from
0.001 to 0.004, the chosen value is 0.1 for Chicago and Los Angeles. It is also worth noting
that the AUC scores of 0.1 and 0.0001 are the same in Los Angeles.
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Figure 4.4: The figures show the tuning for the model of transfer learning without the attention
mechanism and the use of single task model’s threshold. Figure shows the tuning for
the A value for Chicago for the month of December. Figure shows the tuning for Los

Angeles for the month of December.

For the tuning of the model with no attention mechanism and single task’s threshold,
shown in the Figure §.4, we discard the cases of A = 1 and A\ = 0.0001. Again the differences

are slim and the chosen values are 0.01 and 0.001 for Chicago and Los Angeles respectively.

Attention Mechanism (Chicago) Attention Mechanism (Los Angeles)
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0.001
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Figure 4.5: The figures show the tuning for the model of transfer learning with the attention
mechanism. Figure shows the tuning for the A value for Chicago for the month of De-
cember. Figure shows the tuning for Los Angeles for the month of December.

Lastly, the model with the attention mechanism, shown in Figure §.3, is tested with three
different A € {0.1,0.01,0.001} values, and tested for the AUC metric. The chosen value in
both cases is 0.01.

Institutional Repository - Library & Information Centre - University of Thessaly
08/11/2024 06:34:50 EET - 3.145.40.200



Institutional Repository - Library & Information Centre - University of Thessaly
08/11/2024 06:34:50 EET - 3.145.40.200



Chapter 5

Conclusion

From the examination of Crime Forecasting arise the following conclusions. Firstly, it is
clear from the results in the section that the spatiotemporal models with the GNNs offer the
best performance of all models. The most outstanding model is HAGEN, as expected, since it
is a state-of-the-art solution. We explore the correlation of the crime categories’ distributions
to expand this solution, yet it is still being determined whether or not the transfer learning
models improve the performance. From the results in Section §|, we can deduce that the per-
formance is improving in some cases without showing any transparent outstanding model.
That leads us to question our hypothesis and the actual distribution of the original dataset
since it did not bring down the model’s performance to the point that we view it as noise. The
grouping of the categories led to groups where certain occurrences did not match the group,
implying that the original dataset has inconsistencies. The behavior of the metrics could be
better when it comes to the transition from the per-category table to the monthly. Since the
figures show an imbalanced dataset, our evaluation protocol can handle imbalanced datasets,
but previous works may not consider that factor. Lastly, since Crime forecasting is a very
studied subject in machine learning, it may be tricky to expand it. Future work may further
examine the homophily ratio since it was the turning point for HAGEN. Specifically, a frame-
work that can transfer learning not from crime categories but from the regions of the city with
the homophily ratio showing the similarities between the regions. The tricky part is to host

such a solution as it may need to learn and optimize hundreds of models simultaneously.

25
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