UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

REAL-TIME ACCELERATED RAY TRACING IN 3D
GRAPHICS USING CUDA

Diploma Thesis

Paschalis Choropanitis

Panayiotis Yiannoukkos

Supervisor: Tsalapata Hariklia

Volos 2023

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

REAL-TIME ACCELERATED RAY TRACING IN 3D
GRAPHICS USING CUDA

Diploma Thesis

Paschalis Choropanitis

Panayiotis Yiannoukkos

Supervisor: Tsalapata Hariklia

Volos 2023

1ii
Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

I[TANEIIIZTHMIO OEXXAATAX
ITOAYTEXNIKH ~2XOAH
TMHMA HAEKTPOAOT'QN MHXANIKOQN KAI MHXANIKOQN YITOAOI'TETOQN

EINITAXYNOMENH IXNHAATHXH AKTINAX XE
ITPAI'MATIKO XPONO XE 3A I'PA®IKA
XPHEIMOIIOIQNTAYX CUDA

Awmiouotikn Epyacia

Hooyding Xmpomavitng

Hovayiotg INavvodkkog

EmpAiénov/mrovoa: Tooarandto Xapikielo

Bohog 2023

A\

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Approved by the Examination Committee:

Supervisor Tsalapata Hariklia
Laboratory Teaching Staff, Department of Electrical and Computer

Engineering, University of Thessaly

Member Christos Antonopoulos
Associate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member George Thanos
Laboratory Teaching Staff, Department of Electrical and Computer

Engineering, University of Thessaly

vii
Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

DISCLAIMER ON ACADEMIC ETHICS
AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work / con-
tributions of third parties for which the permission of the authors / beneficiaries is required
and are not a product of partial or complete plagiarism, while the sources used are limited
to the bibliographic references only and meet the rules of scientific citing. The points where
I have used ideas, text, files and / or sources of other authors are clearly mentioned in the
text with the appropriate citation and the relevant complete reference is included in the bib-
liographic references section. I also declare that the results of the work have not been used
to obtain another degree. I fully, individually and personally undertake all legal and admin-
istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism.

The declarants

Paschalis Choropanitis and Panayiotis Yiannoukkos

X

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

X Abstract

Diploma Thesis

REAL-TIME ACCELERATED RAY TRACING IN 3D GRAPHICS
USING CUDA

Paschalis Choropanitis

Panayiotis Yiannoukkos

Abstract

The presented thesis discusses an in-depth study and implementation of a real-time ray tracer
that utilizes the computational power of Graphics Processing Units (GPUs) through CUDA []1].
Traditional CPU-based ray tracers often face challenges in meeting the high computational
demands of ray tracing, resulting in suboptimal performance. To overcome these challenges,
a GPU-based approach is adopted, leveraging the massive parallelism of GPUs to accelerate
ray tracing tasks. The thesis begins with an exploration of the fundamentals of ray tracing,
taking inspiration from Peter Shirley’s ”Ray Tracing in One Weekend” as a guide. The
focus then shifts to the Compute Unified Device Architecture (CUDA) for GPU program-
ming. The approach encompasses various optimization techniques, including memory man-
agement, kernel organization, stack-based traversal, avoidance of virtual functions, and the
utilization of bounding volume hierarchies (BVH) [2]. Additionally, a user-friendly interface
is developed using ImGui [3], enabling real-time interaction with the system. Rigorous test-
ing demonstrates that the application outperforms the CUDA adaptation of ”Ray Tracing in
One Weekend” by approximately 800%, highlighting the effectiveness of the optimiza-
tions applied. Overall, the thesis showcases the profound impact of GPU programming and
CUDA on ray tracing, transforming it from a computationally heavy task to a real-time pos-

sibility.

Keywords:
ray tracing, path tracing, CUDA, GPU, real-time, 3d graphics, opengl

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Lepiinyn xi

Authopoatikny Epyacio

EINITAXYNOMENH IXNHAATHXH AKTINAX XE IIPATMATIKO
XPONO XE 3A I'PA®IKA XPHXIMOITIOIQNTAX CUDA

Hooydine Xopomavitng

Havayiotng INavvovkkog
IHepiinyn

H mapovoa dumdopatiky culntd po evosieyn LeAETN Ko epapuoyn evog real-time ray tracer
TOV XPNOUOTOLEL TNV VIOAOYICTIKY| 1YV TV Movddwv Encgepyasiog ['papikdv (GPUs)
péom g CUDA [[1]. Ormapadociakoi ray tracers Baciopévor e CPU cuyva avtipetonilovv
TPOKANGELS GTNV IKOVOTOIN G TV VYNADY VTOAOYIGTIKAOV OTOITGEMY TOV ray tracing, oom-
yovtog o un PéAtiotn amddoon. o va Eemepacstodv anTéC 01 TPOKANGELS, LVwoBETEITAL Lia
npocéyylon Paciopévn oe GPU, ekpetaiievndpevn tov polikd mapoiiniiopd tov GPU yu
TNV EMTAYLVOT TOV EPYACIOV ray tracing. H duthmpatikn Eekvd pe o eEepedhivnon tov Pa-
OKOV 6TOLYEI®V TOL ray tracing, maipvovtog Epmvevon and tov odnyd “Ray Tracing in One
Weekend” tov Peter Shirley B.1|. H éupacn ot ovvéyela petatifetar oty CUDA yio. Tov
npoypappaticpd oe GPU. H npocéyyion mepihappdverl 01dpopes texviké fertioTonoinong,
ocoumeptlopupavoprévng g otoeipiong Lvnung, g opyavmong tov kernel, g drodikaciog
dtédevong faciopévng o 6toifa, TNG ATOPLYNG TWV EIKOVIKMY GUVAPTHCEMV KOL TNG YPTONG
TOV 1Epapyldv oplakov dykov (BVH) [2]. EmmAéov, yiveton avamtuén pog, rikn Tpog Tov
YPNOTN, Otemapng pe tn xpnon tov ImGui [3], emrpénovtag v real-time emagr| pe 10 60-
oTNUa. AOKIHEG amOdEKVOOLY OTL 1 EPaAPLOYN VItEPTEPEL TNG epapuroyns “Accelerated Ray
Tracing in One Weekend in CUDA” B.2 katd nepinov 800%, vroypappilovtag tnv amotele-
OUOTIKOTNTO TOV EPUPUOCUEVOV PEATIGTOTONCEWDY. ZVVOAKA, 1) SITAMUATIKT] TOPOVGIALEL
TNV OVCOTIKN EMiOpacn Tov mpoypappoticpod GPU kot tng CUDA oto ray tracing, peto-

TPEMOVTAC TO OO L VTOAOYIGTIKA Papid epyacia o€ pio real-time dvvotdtnTa.

AéCearg Kherona:
ray tracing, path tracing, CUDA, GPU, real-time, 3d graphics, opengl

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Table of contents

X
[Mepilnwn Xi
[Table of contents xiii
xix
[Abbreviations xxiii
1 TIntroduction 1
[[.1 Problem Statemen{ o o i 1
[[.1.1 Contribution o i 2

(1.2 Thesis Structurd o v o e e e 3

2 Background 5
.1 Introduction 5
2.2 NVIDIA GPU Architecture 6

2.2.1 NVIDIA CUDA Architecturd 6
P22 Threads o 6
223 Blocksand Gridg 6
R.2.4 Streaming Multiprocessors (SMs) 6
2.2.5 Memory Hierarchyl i 7
R2.6 RegiSters o v o 7
227 Local MEMOTY vt v it 7
2.2.8 Shared Memoryl. v i 8
.29 GlobalMemoryo 8

xiil
Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Xiv Table of contents

2.2.10 Constant Memory|.o v vt 8
R2.11 Texture MEmMOryl o v v v e e e e 9

2.3 CUDA Computing APl 10
R.3.1 Kernel Functiong 10

2.3.2 Memory Management, 10

2.3.3 Performance Optimization 10

2.4 CUDA Programming Model 11
.5 CUDA-OpenGL Interoperability| v v i .. 14
R.5.1 OpenGL|. 14

R.5.2 CUDA-OpenGL Interoperability| 14

2.6 Ray Tracing: A BriefOverview|. 16
B Similar Projects 19
B.1 Ray Tracing InOne Weekend 19
B.1.1 OutputanImagd i 19

B.12 Thevec3Clasy v oot i 20

B.1.3 Rays, a Simple Camera, and Background 20

B.14 AddingaSpherd 21

B.1.5 Surface Normals and Multiple Objects 21

B.1.6 Antialiasing 21

B.1.7 Diffuse Material§ 23
................................. 23

B.1.9 Dielectricy 24
B.1.10 Positionable Camera 25
B.1.11 Defocus Blutff 26
B.1.12 Where Next? o o 26

B.2 Accelerated Ray Tracing In One Weekend in CUDA| 28
4 Real-Time Path Tracer Implementation 31
M1 Introduction 31
“.2 Tools, Technologies and Libraries v v .. 32
#.2.1 Hardware Configuration v v v v v i i 32

#.2.2 Development Environment and Languagd 33

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Table of contents XV

#.2.3 Debugger and Profiler Tools 33
#.2.4 Glad for Generating OpenGL Functiong 34
#.2.5 GLFW for Creating Windows, Contexts and Surfaces 35
#.2.6 ImGui for Graphical User Interfaces (GUIs) 35
27 GLMfor VectorMath 36
2.8 CUDAsThrustLibraryl. 36
#.2.9 stbforImageLoading 36
#.2.10 spdlog for Logging 37
#.2.11 CMake and Premake for Building the Project{ 37
#.2.12 Project Folder Structure 38
“.3 Window Creation and Management with GLFW and OpenGL| 40
#.3.1 Creatingthe Window 40
#3.2 ManagingInputy 41
#3.3 ClearingtheScreen 41
U.4 CUDA to OpenGL Interoperabilityl 42
#.4.1 NVIDIA’s simpleCUDA2GL Sample Approach 43
42 OurApproach. 44
4.5 Integrating ImGui for User Interface and Texture Display 49
U.6 Ray Tracing Implementation 51
U.7 Ray Generation and Virtual Camerd 51
H.8 Ray-Object Intersectiong 53
M9 Surface Normal§ 56
B.10 Material§ 57
#.10.1 Lambertian 57
................................. 59
#.10.3 Dielectric] oo 60
#.10.4 Diffuse Light 62
.................................... 63
B11.1 Constant Textures v oo v v v v e e e 64
B.11.2 Checker Textures v o v v vt ittt 65
B11.3 Image TeXtUres v oo v v e e et e e 65
B12 Antialiasing 68

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

XVi

Table of contents

“.13 Bounding Volume Hierarchie§

“4.14 CUDA Implementation Specificy

#.14.1 Kernel Configurationf

#.14.2 Coalesced Memory Accesy

“.14.3 Tteration over Recursion|

“.14.4 Avoiding Virtual Functions
“.14.5 Float Precisior]

“4.15 User Interaction and Experiencd

#.15.1 CUDA Generated Image Window

#.15.2 Options Window|
#.15.3 Scene Window
#.15.4 Metrics Window
“.15.5 Console Window
#.15.6 Dockable Interfacd

%.15.7 Keyboard Controls for User Input

5 Experiments, Conclusions and Future Work

5.1 Experiments and Testing
B.2 Conclusion
5.3 Future Workl

53.1 BugFixes

5.3.2 Extra Features and Optimizationg

........................

APPENDICES

A Software Documentation

A.1 Installation

IA.1.1 System Requirements.

IA.1.2 Installation Stepy

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Table of contents

A4 LICENSE e s

Q

B.1 Sample Test Scenes v v v v v e

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

List of figures

.1 Schematization of CUDA architecture [4] 9
R.2 Processing flow on CUDA[S] 12
R.3 Execution time comparison of C++ and CUDA SAXPY progranm| 14
2.4 RayTracing Basic§ v v v it 16
2.5 RayTracedImagd 17
B.1 Resulting render of normals-colored sphere with ground 22
B.2 Before and after antialiasingd 22
B.3 Correct rendering of Lambertian spheres 23
B.4 Shinymetal 24
B.5 Ahollow glassspherd 25
B.6 Spheres with depth-of-field 26
B.7 Finalscend 27
4.1 Window Creation and Clearing Cololl 42
4.2 CUDA Texture Renderedona2DQuad 48
4.3 CUDA Generated Image displayed in an ImGui Window 50
4.4 Example of Rendered Materials 64
“4.5 Example of Rendered Textures o v v v v v i 69
U.6 Before and after Antialiasing 70
U.7 NVIDIA Nsight Compute Occupancy Graphy 74
M8 Application’s Ul. 79
1.9 Generated Image Window 80
M.10 Options Window|ot 80
M1l Scene Window 81
412 File Dialog Windowl. o o vt i 82

XX

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

XX List of figures

B.13 Metrics Window o . e e 82
B.14 Console Window 83
“4.15 ImGui Docking 83
“4.16 ImGui Alternative Customization| o v v v v 84
5.1 Testing SCeNnE v v v 88
5.2 Graph between all three implementationd 89
5.3 Graph between RTOW CUDA and our Application 90
B.1 Scene featuring four spheres with all the supported materialy 103

B.2 Scene featuring a textured rectangle with the logo of the University of Thessaly{104

B.3 Scene featuring the Milky Way asaskybox 104
B.4 Scene featuring a Cornell Box [6] with three spheres and a light inside if . . 105
B.5 Scene featuring 10000 spheres with a sunset sky as a skybox 105

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Listings

2.1 Simple CUDA C SAXPY Program o oo v v oo .. 11
4.1 Initializing GLFW and setting window hint{ 40
#.2 Creating the window and the OpenGL contex{ 40
4.3 Handling keyboard and mouse inputy 41
“4.4 Clearing the colorbufferl 42
4.5 VBO Generationl 43
4.6 VBO registration with CUDA| 43
4.7 Mapping VBOto CUDA Kernel 44
B.8 Unmap RESOUICES« v v v o e e e e e e e 44
4.9 OpenGL rendersthe VBO 44
.10 OpenGL Texture Creation v v v v v et 45
B.11 Texture CUDA Registration o v v v v e 45
“.12 CUDA Texture Mapping v v v v e e e 46
“4.13 CUDA Texture Unmapping v v v v v et 46
U.14 Vertex and Fragment Shadel 46
M.15 Quad Verticed 47
U.16 Render The Fullscreen Quad 43
“.17 ImGuiImage Loading. 49
4.18 Ray Generationand Camerd 52
“.19 Lambertian Material 58
420 Metal Material 59
“.21 Dielectric Material 60
#.22 Diffuse Light Material 62
M.23 Constant Texturd oot v 64
M.24 Checker TEXTUIE v v v v v et et et e 65

XX1

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

XXii Listings

B.25 Image TeXturd o v v v e e e e e
B.26 Antialiasing
427 BVHNode Class o v v e e e

“.28 Color Computation Device Function|

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

66
69
71
75

Abbreviations

e.g.
ie.

etc.
2D

3D
GPU
CPU
SwW
HW
RT
BVH
AABB
API
SM
ALU
CUDA
SIMT
SIMD
Ul

UXx
GUI
VAO
VBO
IBO
PBO

exempli gratia - for example

id est - that is

et cetera - and other similar things
Two Dimensional

Three Dimensional

Graphics Processing Unit

Central Processing Unit

Software

Hardware

Ray Tracing

Bounding Volume Hierarchy
Axis-Aligned Bounding Box
Application Programming Interface
Streaming Multiprocessors
Arithmetic Logic Units

Compute Unified Device Architecture
Single Instruction Multiple Thread
Single Instruction Multiple Data
User Interface

User Experience

Graphical User Interface

Vertex Array Object

Vertex Buffer Object

Index Buffer Object

Pixel Buffer Object

XXiil

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

XX1V Listings

FBO Frame Buffer Object
TIR Total Internal Reflection
RTOW Ray Tracing in One Weekend

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Chapter 1

Introduction

The field of computer graphics has been rapidly advancing over the past few decades,
with the development of new techniques for rendering realistic images in real-time. One of
the most popular techniques used in rendering is ray tracing, which involves tracing the path
of light rays through a virtual scene to create an accurate representation of the scene [7].
However, ray tracing can be a computationally expensive process, especially for complex
scenes with many objects and lighting effects.

To address this challenge, Graphics Processing Units (GPUs) have been used to acceler-
ate the rendering process through parallel computing. One such GPU technology is CUDA,
which is a parallel computing platform and application programming interface (API) devel-
oped by NVIDIA for general purpose cumputing on GPUs [8].

In this thesis, the utilization of CUDA for real-time acceleration of ray tracing in 3D
graphics is thoroughly examined. Specifically, the investigation focuses on the performance
advantages derived from leveraging CUDA for expediting the ray tracing process, drawing
comparisons with conventional CPU-based rendering methodologies.

Overall, the goal of this thesis is to demonstrate the feasibility and potential of using
CUDA for real-time accelerated ray tracing in 3D graphics, and to provide insights into how

CUDA-based rendering can improve the efficiency and quality of the rendering process.

1.1 Problem Statement

The core issue this thesis seeks to address lies at the heart of modern computer graphics:

achieving real-time ray tracing. Ray tracing, though highly renowned for generating high-

1

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

2 Chapter 1. Introduction

quality, photorealistic images, poses a significant computational challenge due to its inherent
complexity, which prevents its real-time execution on standard hardware.

The mission is to develop a feasible solution that enables real-time ray tracing by lever-
aging the immense parallel processing power of GPUs. By harnessing NVIDIA’s Compute
Unified Device Architecture (CUDA), the objective is to optimize ray tracing to a level where
attainment of real-time performance becomes feasible.

This endeavor presents a multitude of technical obstacles. Firstly, there is a need to devise
a way to efficiently handle bounding volume hierarchies (BVHs) in a GPU context. BVHs
play a vital role in ray tracing, as they drastically reduce the number of required ray-object in-
tersection tests. This issue is addressed by applying a stack-based traversal algorithm adapted
to GPU’s parallel environment.

The second challenge involves optimizing memory usage and enhancing performance
to ensure the ray tracer operates at the highest efficiency. To this end, several CUDA fea-
tures such as Coalesced Memory Access are used, which contribute to achieving real-time
performance.

Thirdly, the need for an intuitive user interface arises to allow real-time adjustments to the
scene and rendering parameters. For this purpose, ImGui, a user-friendly library, is employed
to provide an interactive experience for users.

Lastly, in order to validate the approach of this thesis, rigorous testing must be conducted,
comparing the application’s performance against both traditional CPU-based and existing
CUDA-based ray tracers. This empirical analysis provides a measure of the improvement
this solution offers in the field of real-time ray tracing.

By tackling these challenges, this thesis proposes a feasible, GPU-accelerated, real-time
solution to the complex problem of ray tracing, pushing the boundaries of what is currently

achievable in computer graphics.

1.1.1 Contribution

This thesis makes several significant contributions to the realm of real-time ray tracing,

offering practical solutions to the challenges that were outlined. These include:

1. GPU-accelerated Ray Tracer: An effective ray tracer utilizing CUDA to exploit the
GPU’s parallel processing power was developed. This implementation significantly

accelerates ray tracing, enabling real-time performance.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

1.2 Thesis structure 3

2. Adapted BVH Traversal: To efficiently process bounding volume hierarchies (BVHs)
on the GPU, a stack-based traversal algorithm suitable for the GPU’s parallel architec-

ture was adapted, enhancing the ray tracing efficiency.

3. CUDA Optimizations: Various CUDA features were harnessed to optimize memory
usage and performance. These include techniques such as Coalesced Memory Access,

contributing to the real-time capability of the ray tracer.

4. User Interface Implementation: ImGui, a user-friendly library, was integrated into the
application. This allows users to interact in real-time with the scene and rendering

parameters, enhancing user experience and allowing for instant visual feedback.

5. Performance Testing: Extensive testing was conducted to benchmark the application’s
performance against traditional CPU-based ray tracers and existing CUDA-based ray
tracers. This analysis helps to quantify the contributions and validate the approach of

this thesis.

These contributions collectively pave the way for achieving real-time ray tracing, thereby

marking a significant stride in the field of computer graphics.

1.2 Thesis structure

This thesis is organized into five comprehensive chapters, each serving a distinct purpose

in the journey of real-time ray tracing exploration:

1. Chapter l: Introduction Introductory chapter setting the stage for the project, outlining
the problems this thesis is trying to address, the novel contributions, and the structure

of the thesis itself.

2. Chapter [3: Background delves into the theoretical underpinnings crucial to the study.
This includes an overview of ray tracing, computer graphics, GPU architecture, and
CUDA programming, setting the knowledge base required to understand the remaining

sections.

3. Chapter 8: Similar Projects examines a selection of existing projects related to the
field of study, providing context and highlighting the unique aspects and limitations of

these works.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4 Chapter 1. Introduction

4. Chapter H: Real-Time Path Tracer Implementation is the segment where the GPU-
accelerated ray tracer is meticulously discussed. The discourse encompasses its design,
the explicit CUDA techniques brought into play, as well as the manifestation of the

application interfaces tailored to ensure real-time interaction and optimal performance.

5. Chapter[3: Experiments, Conclusion, and Future Work finalizes the thesis by consoli-
dating all the elements of the research. The chapter discusses testing methodologies that
were employed, complemented by a comparison of performance metrics between the
new implementation and comparable pre-existing projects. The discourse then shifts to
potential enhancements and further developments that could amplify the functionality

and performance of the ray tracer.

Through this structure, the objective is to furnish a comprehensive, intelligible, and de-
tailed exposition of the conducted work and its implications within the realm of real-time ray

tracing.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Chapter 2

Background

This chapter aims to provide a background on the technologies and concepts that form the
foundation for this research on real-time accelerated ray tracing using CUDA. The discussion
begins by exploring the architecture and capabilities of Graphics Processing Units (GPUs)
and the CUDA platform. Subsequently, the focus shifts to rendering real-time graphics on
GPUs using the OpenGL (Open Graphics Library) API [9], as well as the CUDA-OpenGL
interoperability [[10] that facilitates the seamless integration of CUDA-based computations
with OpenGL rendering. Finally, the chapter concludes with an overview of the fundamentals

of ray tracing and its evolution over the years.

2.1 Introduction

A GPU is a specialized processor designed for rendering and manipulating images, while
a CPU is a general-purpose processor used for a variety of computing tasks. CPUs are de-
signed to handle a wide range of computational tasks sequentially, while GPUs are optimized
for parallel processing of large amounts of data simultaneously. This makes GPUs highly ef-
fective for tasks that require the processing of massive amounts of data in parallel. GPUs have
many more cores than CPUs and can execute thousands of operations simultaneously. This
makes them much faster for tasks that can be broken down into many small parallel tasks,
such as rendering complex 3D graphics or training deep learning models. Ray tracing, in par-
ticular, is a computationally intensive process that requires tracing the path of individual rays
of light through a scene to create a realistic image. Because GPUs are optimized for parallel

processing, they can perform ray tracing calculations much faster than CPUs, making them

5

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

6 Chapter 2. Background

the preferred choice for high-performance graphics applications.

2.2 NVIDIA GPU Architecture

The NVIDIA GPU Architecture is a critical component of modern graphics technology.
NVIDIA GPUs are designed to provide high-performance parallel computing capabilities that
are essential for real-time ray tracing in 3D graphics. This section explores the architecture

of NVIDIA GPUs [[11].

2.2.1 NVIDIA CUDA Architecture

NVIDIA GPUs are based on a massively parallel architecture that is optimized for data-
parallel operations. This architecture is known as the CUDA (Compute Unified Device Ar-
chitecture) architecture. The CUDA architecture is composed of a hierarchy of processing el-

ements that include threads, blocks, and grids. Such elements can be graphically represented

in Figure 2.1

2.2.2 Threads

A thread is the smallest unit of execution in the CUDA architecture. Threads are executed
in parallel on the GPU and are organized into groups called blocks. Each thread is assigned

a unique thread ID that is used to identify it during execution.

2.2.3 Blocks and Grids

A block is a group of threads that are executed together on a single Streaming Multipro-
cessor (SM). Blocks are organized into grids, which are collections of blocks. The number
of threads per block and the number of blocks per grid can be customized to optimize perfor-

mance for specific applications.

2.2.4 Streaming Multiprocessors (SMs)

An SMis a collection of processing elements that include ALUs (Arithmetic Logic Units),

registers, and shared memory. Each SM is capable of executing multiple threads in parallel.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

2.2.5 Memory Hierarchy 7

The number of SMs in a GPU determines the maximum number of threads that can be exe-

cuted simultaneously.

2.2.5 Memory Hierarchy

The memory hierarchy of the NVIDIA GPU is designed to provide fast access to data and
minimize memory access latency. The memory hierarchy includes several types of memory,

including registers, local, shared, global, constant and texture memory.

2.2.6 Registers

Registers in CUDA represent the fastest memory type and are private to each thread. They
hold variables that the thread is currently computing. Each CUDA core has a small, dedicated
register file, where the number of available registers depends on the GPU architecture and
the compute capability. Although their access latency is the lowest, the total number of reg-
isters available per block is limited, and excessive usage can limit the number of resident
threads per multiprocessor, leading to lower occupancy and potentially decreased perfor-
mance. However, with careful optimization of register usage, it’s possible to greatly increase
a CUDA program’s efficiency and speed. It’s worth noting that the allocation of variables to
registers is handled by the compiler, and the developer generally has no direct control over it.
The compiler attempts to optimize register usage to maximize parallelism, but in some cases,

it might spill over to local memory, which is much slower, when register usage is high.

2.2.7 Local Memory

Local memory in CUDA is a region of device memory private to each thread. It is used
for automatic variables that do not fit into the registers. Despite the name, local memory does
not have the same low latency and high bandwidth as shared or constant memory. In fact,
local memory accesses have similar latency and bandwidth to global memory accesses. The
use of local memory can often be a performance bottleneck due to its high latency and low
bandwidth, and thus its use is generally avoided when possible. However, it’s worth noting
that the CUDA compiler and runtime will automatically place large structures or arrays that

exceed available register or shared memory space into local memory.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

8 Chapter 2. Background

2.2.8 Shared Memory

Shared Memory in CUDA is a user-managed cache that is local to each streaming mul-
tiprocessor and shared among all threads within a block. It is one of the fastest memory
spaces and can be used for inter-thread communication, data sharing, and result aggregation
within a block. However, its size is limited (up to 48 KB or 64 KB per block, depending on
the CUDA version and GPU model), and developers have to manage it carefully to prevent
race conditions and maximize performance. Shared memory is crucial for achieving high
performance in CUDA applications, as it enables coalesced memory access and minimizes

expensive global memory transactions.

2.2.9 Global Memory

Global Memory is the largest memory space available in CUDA and can be accessed by
all threads as well as the host (CPU). However, it has the highest access latency among all
memory spaces. The effective bandwidth of global memory can be significantly improved
by ensuring that memory accesses are coalesced, i.e., consecutive threads access consecutive
memory locations. Global memory allocations persist for the lifetime of the application and

are an excellent place for the input data to the kernels and for storing the results.

2.2.10 Constant Memory

Constant Memory in CUDA is a read-only memory space that resides on the device and
is accessible from all threads within a grid. Its primary use is for data that remains unchanged
throughout the kernel’s execution. Because constant memory is cached on each multipro-
cessor, the efficiency of memory accesses can be significantly improved, provided the ac-
cess pattern among threads is the same. This enables simultaneous read access to the same
memory address, termed as “’broadcast”, leading to a substantial increase in memory band-
width. However, if threads access divergent addresses, the cache utilization decreases, and
the memory access performance degrades. The total constant memory available on the device

is limited (64 KB as of CUDA 10.x), which should be kept in mind while using it.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

2.2.11 Texture Memory 9

2.2.11 Texture Memory

Texture memory in CUDA provides a specialized read-only memory space designed for
texturing operations in graphics rendering. However, its caching and interpolation capabilities
also make it useful for general purpose computing. The texture memory is cached on each
streaming multiprocessor, and provides spatial locality caching. That is, if nearby threads read
nearby memory locations, the caching efficiency is high, and it can greatly speed up memory
access. Texture memory is beneficial when dealing with structured grid data or when memory
access patterns exhibit spatial locality. Additionally, texture memory allows for hardware

interpolation for floating point values, a feature not available with other memory types.

Figure 2.1: Schematization of CUDA architecture [4]

The NVIDIA GPU Architecture is a critical component of modern graphics technology.
Its massively parallel architecture, optimized for data-parallel operations, provides high-
performance parallel computing capabilities that are essential for real-time ray tracing in
3D graphics. Understanding the architecture of NVIDIA GPUs is essential for developing
high-performance applications that utilize the full capabilities of these powerful computing

devices.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

10 Chapter 2. Background

2.3 CUDA Computing API

This sections explores the CUDA Computing API, which is a programming model and
platform for parallel computing on NVIDIA GPUs.

The CUDA Computing API is a high-level programming interface that provides devel-
opers with a simple and flexible way to leverage the parallel processing power of NVIDIA
GPUs. The API is based on the C programming language and provides extensions that enable

developers to write code that can be executed in parallel on the GPU.

2.3.1 Kernel Functions

The core of the CUDA programming model is the kernel function, which is a C func-
tion that is executed in parallel on the GPU. Kernel functions are defined using the global
keyword, which tells the CUDA compiler that the function should be executed on the GPU.

The execution of a kernel function is organized into a grid of blocks and threads. The
number of blocks and threads in a grid can be customized to optimize performance for specific

applications.

2.3.2 Memory Management

Memory management is a critical aspect of parallel programming on the GPU. CUDA
provides several types of memory that can be used to store data, including global memory,
shared memory, and registers. CUDA provides several memory management functions that

can be used to allocate, copy, and free memory on the GPU.

2.3.3 Performance Optimization

Performance optimization is critical for achieving maximum performance when program-
ming on the GPU. CUDA provides several tools and techniques that can be used to optimize

performance, including:

 Customizing the size of the grid and the number of threads in each block to optimize

the use of GPU resources.

* Using shared memory to reduce memory access latency.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

2.4 CUDA Programming Model 11

* Minimizing data transfer between the CPU and GPU by using pinned memory.
 Using asynchronous data transfer to overlap data transfer with computation.

* Optimizing memory access patterns to reduce memory conflicts and improve data lo-

cality.

Using CUDA profiler tools to identify performance bottlenecks and optimize code.

2.4 CUDA Programming Model

Both the CPU and GPU are used in the CUDA programming model. The GPU and its
memory are referred to as the device in CUDA, while the host refers to the CPU and its
memory. In addition to launching kernels, which are operations carried out on the device,
code running on the host can manage memory on both the host and the device. These kernels
are run in parallel by several GPU threads. With that being said, a typical order of operations

when programming in CUDA, is:
1. Allocate any memory resources on both the host and the device.
2. Initialize host data.
3. Copy host data to the device.
4. Execute CUDA kernels.
5. Retrieve the results from the device and copy them back to the host.

Figure 2.2 visualizes the above order of operations.
Listing shows a simple CUDA C SAXPY (Single-precision A*X Plus Y) program

that abides to the aforementioned order of operations[[12].

1 // CUDA Kernel Device code

2 global void saxpy(const int n, float a, float *x, float *y)
39

4 int i = blockIdx.x * blockDim.x + threadIdx.x;

5 if (i < n)

6 y[i] = a*x[i] + y[i];

7}

8

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

12

Chapter 2. Background

-]- Copy processing data

[Instruct the processing)

Memory
for GPU

Copy the result

p
Execute parallel
GPU in each core]

(GeForce 8800) | |™N .

Figure 2.2: Processing flow on CUDA [5]

9 // Host main routine

10 int main ()

1T {

12 const int N = 10000000;

13 float *x, *y, *d x, *d y;

14

15 // Allocate the host input vectors

16 x = (float *)malloc (N * sizeof (float));
17 y = (float *)malloc (N * sizeof (float)):;
18

19 // Allocate the device input vectors

20 cudaMalloc (&d _x, N * sizeof (float));

21 cudaMalloc (&d y, N * sizeof (float));

22

23 // Initialize the host input vectors

24 for (int i = 0; i < N; i++) {

25 x[1] = 1.0f;

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49

2.4 CUDA Programming Model 13

}

y[i] = 2.0f;

// Copy the host input vectors in host memory to the device input
// vectors in device memory
cudaMemcpy (d_x, x, N * sizeof (float), cudaMemcpyHostToDevice):;

cudaMemcpy (d y, y, N * sizeof (float), cudaMemcpyHostToDevice):;

// Perform SAXPY on 10M elements

saxpy<<< (N+255) /256, 256>>>(N, 2.0f, d x, d y);

// Copy the device result vector in device memory to the host result
vector
// in host memory

cudaMemcpy (y, d y, N * sizeof(float), cudaMemcpyDeviceToHost) :;

// Free device global memory
cudaFree (d_x);

cudaFree (d_y);

// Free host memory

free(x);

free(y);

return 0;

Listing 2.1: Simple CUDA C SAXPY program

Figure 2.3 presents a comparison of the execution time between the CUDA program de-

scribed above and the equivalent program written in C++ without any GPU acceleration.
The tests were conducted on an AMD Ryzen 5 3600 6-Core Processor @3.6GHz CPU and
a NVIDIA GeForce RTX 2060 SUPER GPU with 2176 CUDA cores. Upon analysis, it is

evident that for a small number of elements, there is no noticeable performance improve-

ment with the CUDA implementation. In fact, there is a performance decrease due to the

overhead associated with kernel execution and PCle data transfer. However, as the number

of elements increases, the execution time of the CPU-based version exhibits an exponential

increase, whereas the CUDA version either remains constant or even decreases significantly

when handling a large number of elements.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

14 Chapter 2. Background

Figure 2.3: Execution time comparison of C++ and CUDA SAXPY program

2.5 CUDA-OpenGL Interoperability

2.5.1 OpenGL

OpenGL (Open Graphics Library) is a cross-platform, open-source API that is widely
used for rendering 2D and 3D graphics. Originally developed by Silicon Graphics in the
early 1990s, OpenGL has since become an industry standard for graphics rendering in video
games, CAD/CAM software, and scientific visualization.

OpenGL provides a set of functions for creating and manipulating 3D objects, lighting,
textures, and other visual effects. It also allows for the integration of user input and output,
such as mouse clicks and keyboard events. OpenGL is highly configurable and can be opti-

mized for specific hardware and software configurations.

2.5.2 CUDA-OpenGL Interoperability

CUDA-OpenGL interoperability allows developers to combine the power of CUDA with
the rendering capabilities of OpenGL. This means that developers can use CUDA to perform
calculations on the GPU and then seamlessly transfer the results to OpenGL for rendering.

One of the main benefits of CUDA-OpenGL interoperability is that it enables developers

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

2.5.2 CUDA-OpenGL Interoperability 15

to take advantage of the parallel processing power of the GPU for both computation and ren-
dering. This can result in significant performance improvements, particularly for applications

that require real-time rendering of complex 3D scenes.

To enable CUDA-OpenGL interoperability, NVIDIA provides a set of libraries and APIs,
including the CUDA Runtime API, the CUDA Driver API, and the OpenGL Interoperability
Extension. These libraries and APIs allow developers to share data and resources between

CUDA and OpenGL contexts, enabling efficient data transfer and synchronization.

NVIDIA provides a set of samples for CUDA developers which demonstrates features
in CUDA Toolkit [[13]]. One of these samples demonstrates how to achieve interoperability

between CUDA and OpenGL using the OpenGL-CUDA graphics interop API [[14].

The sample creates a simple texture quad that is rendered using OpenGL. The pattern is
stored in a CUDA texture, which is shared with OpenGL using the graphics interop API. The
sample first initializes an OpenGL context and creates a window for rendering the scene. It
then creates a CUDA context and allocates a CUDA array to hold the texture data. Next, it reg-
isters the CUDA array with OpenGL using the graphics interop API and creates an OpenGL
texture object to represent the shared texture. The sample then defines a CUDA kernel that
computes the texture data and copies it to the CUDA array. The kernel is launched from the
CPU and executes on the GPU. Once the computation is complete, the sample renders the
texture using OpenGL, which fetches the texture data from the shared CUDA texture. The
sample demonstrates how to synchronize the CPU and GPU to ensure that the texture data is

fully computed before it is used for rendering.

Overall, the sample provides a practical example of how to achieve CUDA-OpenGL inter-
operability using the graphics interop API. It shows how to share data and resources between

the two platforms and provides insights into how to optimize performance.

In conclusion, CUDA-OpenGL interoperability provides developers with a powerful tool
set for creating high-performance 3D graphics applications. By combining the parallel pro-
cessing power of CUDA with the rendering capabilities of OpenGL, developers can create

applications that deliver real-time performance and high-quality visual experiences.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

16 Chapter 2. Background

2.6 Ray Tracing: A Brief Overview

Ray Tracing is a rendering technique used in computer graphics to generate images by
simulating the physical behavior of light. In contrast to other rendering techniques, such as
rasterization, which focus on projecting geometries onto a 2D screen, Ray Tracing is based
on tracing the path of individual rays of light as they interact with objects in a 3D scene.

As seen in Figure .4, the core idea behind Ray Tracing is to simulate how light travels
from a virtual camera, which acts as the eye of the viewer, into the scene. Each ray is cast
from the camera and traverses the scene until it hits an object, at which point it bounces
off the surface and continues its path, possibly interacting with other objects along the way.
Eventually, the ray will either reach a light source, in which case the corresponding pixel in

the image is illuminated, or it will escape the scene, in which case the pixel is left in shadow.

Figure 2.4: Ray Tracing Basics

The Ray Tracing algorithm works by computing the intersection points between the rays
and the objects in the scene. For each intersection, the algorithm computes the lighting and
shading of the corresponding pixel, taking into account the material properties of the object
and the position and intensity of the light sources. The result is a high-quality, photorealistic
image that accurately captures the reflections, refractions, shadows, and other optical effects
that occur in real-world scenes. A good example can be seen in Figure 2.5.

While Ray Tracing has been used in computer graphics for decades, its popularity has in-
creased significantly in recent years thanks to advances in hardware and software technology.

Graphics processing units (GPUs) have become faster and more capable, enabling real-time

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

2.6 Ray Tracing: A Brief Overview 17

Figure 2.5: Ray Traced Image

Ray Tracing for video games and other interactive applications. In addition, software frame-
works such as NVIDIA’s CUDA allow developers to leverage the parallel processing power
of GPUs to accelerate the Ray Tracing algorithm and achieve even higher levels of perfor-
mance and realism.

This thesis focuses on exploring the potential of CUDA-accelerated Ray Tracing for
real-time 3D graphics applications. By leveraging the power of modern GPUs, the aim is

to achieve high levels of performance and interactivity while maintaining photorealistic im-

age quality.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Chapter 3

Similar Projects

3.1 Ray Tracing In One Weekend

The “Ray Tracing in One Weekend” [15] book by Peter Shirley is a concise, hands-on
guide that introduces readers to the fundamentals of ray tracing, a computer graphics tech-
nique used to create realistic images through simulating light interactions with objects ina 3D
scene. The book is designed for readers with a basic understanding of programming, ideally
in C++, and takes them through the process of building a simple ray tracer from scratch over
the course of a weekend.

As described in chapter 2, when one mentions the term “ray tracing,” it can encompass
various meanings. In this context, the focus is on developing a brute-force path tracer, which
is a relatively general approach. Although the code remains fairly straightforward (allowing
the computer to handle the complexity), the resulting images produced by this method are
expected to be quite impressive and visually appealing. The approach described in this book

is done exclusively on the CPU without any hardware acceleration techniques.

3.1.1 Output an Image

In the second chapter, titled ”Output an Image”, the author teaches the reader how to
create a simple image file by outputting color values for each pixel. The author introduces
the concept of the Portable PixMap (PPM) image format, a straightforward format that can
be easily generated and read by many image editing programs.

The chapter guides the reader through the process of creating a basic PPM file with a set

width and height, iterating through each pixel, and assigning color values for the red, green,

19

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

20 Chapter 3. Similar Projects

and blue channels. The resulting output is a gradient image that serves as the foundation for

the ray tracing techniques that will be explored in the subsequent chapters of the book.

3.1.2 The vec3 Class

In the third chapter, titled ”The vec3 Class”, the author introduces a 3D vector class,
which is an essential data structure for representing points, directions, and colors in the ray
tracer. This custom vec3 class will be used throughout the book for various purposes in the

ray tracing process.

The author explains the importance of having a vec3 class, as it allows for easier manipu-
lation of 3D coordinates and their respective operations, such as addition, subtraction, scaling,
and dot product. Additionally, the vec3 class plays a crucial role in representing colors, where

each component (red, green, and blue) corresponds to a specific channel’s intensity.

Shirley provides code samples and explanations for implementing the vec3 class and its
associated operations. By the end of this chapter, the reader will have gained a solid under-
standing of the vec3 class and its applications in a ray tracer, setting the groundwork for the

upcoming chapters that delve deeper into ray tracing techniques.

3.1.3 Rays, a Simple Camera, and Background

In the fourth chapter, titled “Rays, a Simple Camera, and Background”, the reader is
introduced to the foundational concepts of rays, camera setup, and background rendering in

the context of ray tracing.

The author begins by defining what a ray is: a mathematical construct consisting of an
origin point and a direction vector. Rays play a central role in ray tracing, as they simulate
light traveling through a scene and interacting with objects. Shirley then demonstrates how
to create a simple camera by defining its position, orientation, and field of view. The camera
generates rays that pass through each pixel of the image, forming the basis for the ray tracing
process.

Furthermore, this chapter explains how to generate a background, which is the image that
appears when a ray does not intersect any objects in the scene. Shirley presents a method for

creating a simple gradient background that simulates the appearance of the sky.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

3.1.4 Adding a Sphere 21

3.1.4 Adding a Sphere

In the fifth chapter, titled ”Adding a Sphere”, Peter Shirley teaches readers how to render
a sphere in their ray tracer. This chapter introduces the concept of ray-object intersection, a
crucial aspect of ray tracing that determines whether a ray intersects an object in the scene.

The author begins by explaining the mathematics behind sphere-ray intersection, using
the geometric equation of a sphere and the parametric equation of a ray. Shirley then presents
an algorithm to calculate if and where a ray intersects a sphere, and how to find the intersection
point.

Next, the chapter demonstrates how to incorporate sphere rendering into the existing ray
tracer, by iterating through the rays generated by the camera and testing them for intersection
with a sphere in the scene. If an intersection is detected, the corresponding pixel in the image

is colored based on the sphere’s surface normal, creating a shaded appearance.

3.1.5 Surface Normals and Multiple Objects

In the sixth chapter, titled ”Surface Normals and Multiple Objects”, Peter Shirley delves
into the concepts of surface normals and handling multiple objects in a scene. These concepts
are essential for creating more complex and visually appealing images in the ray tracer.

First, the author explains the importance of surface normals, which are perpendicular
vectors to a surface at a given point. Surface normals are crucial for shading calculations,
as they help determine how light interacts with the surface. Shirley demonstrates how to
calculate the surface normal of a sphere at the intersection point and how to use this normal
to shade the sphere, giving it a more realistic appearance as shown in Figure .1

Next, the chapter introduces the concept of handling multiple objects in a scene. Shirley
describes an abstract class called "hittable” that can represent any object that rays can inter-
sect. The sphere class is then modified to inherit from this "hittable” class, making it easier to
manage multiple spheres in the scene. The author also introduces a "hittable list” class that

can store and manage multiple hittable objects.

3.1.6 Antialiasing

In the seventh chapter, titled ”Antialiasing”, Peter Shirley introduces the concept of an-

tialiasing, a technique used to reduce the visual artifacts that occur when rendering images at

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

22 Chapter 3. Similar Projects

Figure 3.1: Resulting render of normals-colored sphere with ground

a finite resolution. Aliasing can cause jagged edges and pixelation, which degrade the image
quality.

The author explains that antialiasing works by sampling multiple points within each pixel
and averaging their color values, which smooths out the edges and reduces the appearance
of jaggedness. This is achieved by introducing sub-pixel sampling, where multiple rays are
cast from different positions within a single pixel, and their resulting colors are averaged to

determine the final pixel color. We can see the before and after results in Figure B.2.

Shirley demonstrates how to implement antialiasing in the ray tracer by modifying the
camera and rendering loop. Instead of casting a single ray per pixel, the camera casts mul-
tiple rays with slightly varying directions within each pixel. The final color of the pixel is

calculated by averaging the colors obtained from these multiple rays.

Figure 3.2: Before and after antialiasing

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

3.1.7 Diffuse Materials 23

3.1.7 Diffuse Materials

In the eighth chapter, titled ”Diffuse Materials”, Peter Shirley introduces the concept of
materials and demonstrates how to implement diffuse shading in the ray tracer. Materials are
essential in creating realistic images, as they define how objects in a scene interact with light.

The author begins by explaining the physics of diffuse reflection, which occurs when
light scatters uniformly in all directions upon striking a surface. Diffuse materials, such as
matte finishes, exhibit this property. To simulate diffuse reflection in the ray tracer, Shirley
introduces the concept of scattering, where a ray that hits a diffuse object generates a new,
randomly directed ray that continues to trace through the scene. We can see the Lambertian
rendering in Figure B.3.

Shirley demonstrates how to implement a simple diffuse material by modifying the hit-
table” objects and the rendering loop. When a ray intersects an object with a diffuse material,
the ray tracer generates a new scattered ray, which is then traced recursively to calculate the

final color contribution from the object.

Figure 3.3: Correct rendering of Lambertian spheres

3.1.8 Metal

In the ninth chapter, titled ’Metal”, Peter Shirley introduces metallic materials and demon-
strates how to implement them in the ray tracer. Metallic materials are important for creating
realistic images, as they define how objects with reflective properties interact with light.

The author explains the physics of reflection and how to calculate the reflected direction

of a ray. Unlike diffuse materials, which scatter light uniformly in all directions, metallic

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

24 Chapter 3. Similar Projects

materials reflect light in a specific direction based on the incident ray’s angle and the surface
normal, as shown in Figure 4.

Shirley demonstrates how to implement a metallic material by modifying the "hittable”
objects and the rendering loop. When a ray intersects an object with a metallic material, the
ray tracer generates a new reflected ray, which is then traced recursively to calculate the final
color contribution from the object. The author also introduces a fuzziness parameter to control

the roughness of the metallic surface, which affects the sharpness of the reflection.

Figure 3.4: Shiny metal

3.1.9 Dielectrics

In the tenth chapter, titled Dielectrics”, Peter Shirley introduces dielectric materials,
which are materials that transmit and refract light, such as glass or water. The author demon-
strates how to implement dielectric materials in the ray tracer, which is essential for creating
realistic images with transparent or refractive objects.

The chapter explains the physics of refraction and the Fresnel equations, which describe
how light behaves when it passes through a dielectric material. The author also introduces
Snell’s Law, a formula used to calculate the refracted direction of a ray when it passes from
one medium to another with different indices of refraction.

Shirley demonstrates how to implement a dielectric material by modifying the “hittable”
objects and the rendering loop. When a ray intersects an object with a dielectric material, the
ray tracer generates both refracted and reflected rays, depending on the angle of incidence

and the Fresnel equations. The ray tracer then traces these rays recursively to calculate the

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

3.1.10 Positionable Camera 25

final color contribution from the object.

A noteworthy observation regarding dielectric spheres is that employing a negative radius
does not influence the geometry; however, it causes the surface normal to point inwards. This
phenomenon can be utilized to create a hollow glass sphere, simulating the appearance of a

bubble, as shown in Figure B.3.

Figure 3.5: A hollow glass sphere

3.1.10 Positionable Camera

In the eleventh chapter, titled Positionable Camera”, Peter Shirley explains how to create
amore flexible and positionable camera in the ray tracer. This enhancement allows for greater
control over the viewpoint, orientation, and framing of the rendered scene, making it easier

to achieve desired compositions and perspectives.

The author introduces several camera parameters, including position, target (look-at point),
up vector, vertical field of view, and aspect ratio. By adjusting these parameters, the reader
can control the camera’s location, direction, and field of view, which determine the final

appearance of the rendered image.

Shirley demonstrates how to modify the existing camera implementation to account for
these new parameters, enabling the camera to be easily positioned and oriented. The author
also introduces the concept of the viewport and explains how to calculate its dimensions

based on the field of view and aspect ratio.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

26 Chapter 3. Similar Projects

3.1.11 Defocus Blur

In the twelfth chapter, titled "Defocus Blur”, Peter Shirley introduces the concept of depth
of field and demonstrates how to implement defocus blur in the ray tracer. Depth of field is an
important aspect of photographic and cinematic imagery, where objects at different distances
from the camera appear sharp or blurry depending on their relation to the camera’s focal
plane.

The author explains that defocus blur is achieved by simulating a camera with a finite
aperture, which causes rays to pass through different points on the aperture’s circumference.
The degree of blur depends on the size of the aperture and the distance between the camera
and the focal plane.

Shirley demonstrates how to modify the existing camera implementation to incorporate
defocus blur. He introduces new camera parameters, such as aperture size and focus distance,
and shows how to generate rays that pass through random points on the aperture. The modified
camera model produces images with a more realistic depth of field effect, where objects in
the scene exhibit varying degrees of sharpness and blur depending on their distance from the

focal plane, as illustrated in Figure B.4.

Figure 3.6: Spheres with depth-of-field

3.1.12 Where Next?

In the thirteenth chapter, titled ”Where Next?”, Peter Shirley concludes the book by dis-
cussing possible extensions, improvements, and further learning opportunities for readers

who wish to continue their exploration of ray tracing.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

3.1.12 Where Next? 27

Shirley highlights several areas in which the ray tracer can be enhanced, including:

+ Performance optimization: The current implementation can be slow for complex scenes,
so techniques such as bounding volume hierarchies (BVH), multithreading, and GPU

acceleration can be explored to improve rendering performance.

» Advanced materials: Readers can experiment with more complex material models,
such as subsurface scattering, anisotropic reflection, or physically based rendering

(PBR) techniques.

 Texturing: Adding support for textures will allow objects in the scene to have more
detailed and varied appearances, increasing the visual complexity of the rendered im-

ages.

* Lighting: Implementing more advanced lighting models, such as area lights or global
illumination, can improve the realism of the ray tracer and the appearance of shadows

and reflections in the scene.

* Volumes and Media: Adding support for volumetric effects, such as fog, smoke, or

participating media, will enable more atmospheric and visually interesting scenes.

The final render of the book is illustrated in Figure B.7.

Figure 3.7: Final scene

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

28 Chapter 3. Similar Projects

3.2 Accelerated Ray Tracing In One Weekend in CUDA

In recent years, several projects have explored the potential of parallel computing and
GPU acceleration for enhancing ray tracing performance. One of the most notable projects in
this area is the ”Accelerated Ray Tracing in One Weekend in CUDA” blog post by NVIDIA [116],
which demonstrates how to adapt the concepts from Peter Shirley’s "Ray Tracing in One
Weekend” book and implement them using the CUDA programming model.

The NVIDIA blog post offers a detailed explanation of the process of porting the original
CPU-based ray tracer to a GPU-accelerated implementation using CUDA. The author starts
by introducing the fundamentals of the CUDA programming model, including the concepts
of threads, blocks, and grids, which are essential for understanding and exploiting GPU par-
allelism. These elements form the basis of the CUDA programming model, which allows
developers to manage the execution of tasks on GPUs efficiently.

Next, the blog post delves into the implementation details of the GPU-accelerated ray
tracer. The author outlines the necessary modifications and optimizations required to adapt
the original ray tracer code for efficient execution on NVIDIA GPUs. These adaptations

include:

* Data structures: Transitioning from standard C++ data structures to CUDA-compatible
structures, such as using float3 instead of the custom vec3 class, for seamless GPU

integration.

* Memory management: Implementing efficient memory management techniques for
the GPU, including the use of global, constant, and shared memory spaces to optimize

memory access patterns and reduce latency.

* Algorithm modifications: Refactoring the ray tracing algorithm to accommodate the
constraints and advantages of the GPU architecture. This involves converting recursive
functions into iterative loops, leveraging the GPU’s ability to handle large numbers of

parallel threads.

* Load balancing: Ensuring that the computational workload is evenly distributed across
the GPU’s streaming multiprocessors to maximize performance and avoid potential

bottlenecks.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

3.2 Accelerated Ray Tracing In One Weekend in CUDA 29

The blog post also addresses some of the challenges that arise when implementing a ray
tracer on a GPU, such as the handling of recursion and the limited amount of available GPU
memory. The author presents strategies for overcoming these challenges, including the use
of an iterative approach for tracing rays and managing memory consumption by limiting the
maximum depth of ray-object interactions.

In addition to the core implementation, the NVIDIA blog post highlights the significant
performance gains achieved by using CUDA for ray tracing acceleration. The results show-
case considerable reductions in rendering times compared to CPU-based implementations,

making real-time rendering of complex 3D scenes a possibility.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Chapter 4

Real-Time Path Tracer Implementation

4.1 Introduction

In this chapter, we will delve into the implementation of our real-time path tracing ap-
plication, which employs CUDA to accelerate ray tracing computations in 3D graphics. The
foundation of our path tracer is based on the ”Ray Tracing in One Weekend” book series by
Peter Shirley [[15], which was discussed in greater detail in the previous chapter. The series
provides a comprehensive and practical guide to implementing a basic ray tracer, which we
have extended and optimized to harness the power of CUDA for real-time rendering.

The primary focus of this chapter is to present the process of constructing our real-time
brute-force path tracer, detailing the various components and techniques employed. We will
begin by discussing the various tools, technologies and libraries we used for setting up our
project. Next, we will provide an overview of the path tracing algorithm we used in our im-
plementation. Subsequently, we will outline the integration of CUDA with the path tracing
algorithm, detailing the necessary modifications and optimizations required to achieve real-
time performance. Furthermore, we will be discussing the capabilities of our real-time appli-
cation, and how the user can interact with our engine during run-time, providing a detailed
explanation of the user interface (UI) we built for that purpose. Last but not least, we will
present an array of performance benchmarks pertaining to our application, demonstrating its
efficacy and efficiency within the specified context.

Subsequently, we will outline the integration of CUDA with the path tracing algorithm,
detailing the necessary modifications and optimizations required to achieve real-time per-

formance. We will also discuss the implementation of various acceleration structures and

31

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

32 Chapter 4. Real-Time Path Tracer Implementation

techniques, such as bounding volume hierarchies (BVH) which are essential for improving
the efficiency of our path tracer.

Throughout the chapter, we will demonstrate the practical aspects of our implementation,
including code snippets and performance metrics, to provide a clear understanding of the
techniques employed and their impact on rendering performance. By the end of this chapter,
the reader will have gained valuable insight into the challenges and solutions involved in
building a real-time path tracing application, with a particular focus on leveraging the power

of CUDA for accelerated 3D graphics rendering.

4.2 Tools, Technologies and Libraries

In this section, we will provide an overview of the various tools, technologies, and li-
braries employed to set up and implement our real-time CUDA-accelerated path tracing
project. These components have been carefully chosen to ensure seamless integration, ef-

ficient development, and optimal performance in our application.

4.2.1 Hardware Configuration

The development and performance testing of our ray tracing application were carried out
on two different high-performance workstations to ensure broad hardware compatibility and
robust performance.

System 1, which served as our primary development and benchmarking platform, was
powered by an AMD Ryzen 5 3600 6-Core Processor operating at 3600 MHz. Accompa-
nying the processor was 16 GB of DDR4 RAM, operating at 2133 MHz. For the GPU, we
utilized an NVIDIA GeForce RTX 2060 Super, equipped with 8 GB of GDDR6 VRAM and
2176 CUDA cores, ideal for executing the massively parallel computations needed in our
ray tracing application. This system was the primary platform on which we collected and
analyzed our performance metrics for the thesis.

In parallel, we also used System 2 for development, to ensure our application’s compat-
ibility and performance on diverse hardware. This system featured an 11th Gen Intel Core
15-11600K processor, with 6 cores and a clock speed of 3912 MHz, paired with 16 GB of
DDR4 RAM running at 3200 MHz. The GPU was an NVIDIA GeForce RTX 3070, boasting
8 GB of GDDR6 VRAM and a whopping 5888 CUDA cores, providing us with a highly

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.2.2 Development Environment and Language 33

capable platform to test the potential of our ray tracing application.
While the metrics reported in this thesis are primarily from System 1, the use of both
systems during the development process ensured a broad perspective on performance and

optimization strategies.

4.2.2 Development Environment and Language

Our project has been developed using the C++ programming language, which offers ex-
cellent performance, a rich ecosystem of libraries, and extensive support for parallel and
concurrent programming. To ensure cross-platform compatibility, we have tailored our de-
velopment environment for both Windows and Linux operating systems.

On Windows, we have relied on the Visual Studio Build Tools []1 7] for managing the build
process, while using Visual Studio Code [|18] as our primary code editor. Visual Studio Build
Tools provide a streamlined build system for C++ projects, whereas Visual Studio Code offers
a lightweight and versatile editing experience, complete with extensive support for plugins
and language features.

For the Linux platform, we have utilized Neovim [[19], a highly extensible and customiz-
able text editor, enabling efficient development while maintaining platform-specific adapt-

ability.

4.2.3 Debugger and Profiler Tools

In addition to the development environments and editors discussed previously, we have
utilized a suite of debugger tools to facilitate efficient debugging, performance analysis, and
optimization of our real-time CUDA-accelerated path tracing project. These tools have been
instrumental in identifying bottlenecks, ensuring code correctness, and enhancing the overall
performance of our application.

For debugging and profiling our GPU code, we have relied on NVIDIA’s Nsight suite,
which includes Nsight Compute [20] and Nsight Graphics [21]. Nsight Compute is a powerful
GPU kernel profiler, allowing us to analyze and optimize the performance of our CUDA ker-
nels, while Nsight Graphics provides invaluable insights into the graphics pipeline, enabling
us to identify and resolve graphics-related issues.

To debug our application on the CPU side, we have used gdb, a widely adopted and versa-

tile debugger for C++ applications. For debugging CUDA code on Linux, we have employed

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

34 Chapter 4. Real-Time Path Tracer Implementation

cuda-gdb, a GPU debugger specifically designed for CUDA applications, which extends the
functionality of gdb for GPU debugging.

To further enhance our understanding of the application’s performance, we have utilized
Compute Sanitizer, a functional correctness checking suite for CUDA applications, which
helps identify issues such as data races, memory leaks, and out-of-bounds memory access.

For profiling and optimizing our CPU code, we have leveraged AMD uProf [22] and Intel
VTune [23]. AMD uProf is a performance analysis tool designed for AMD processors, pro-
viding valuable insights into CPU and memory usage, while Intel VTune is a performance
profiler that offers a comprehensive analysis of CPU and system performance for Intel pro-
CESSOrs.

By incorporating these debugger and profiler tools into our development workflow, we
have been able to effectively identify and resolve performance bottlenecks, ensure code cor-
rectness, and optimize our real-time CUDA-accelerated path tracing application to achieve

maximum performance across various hardware configurations.

4.2.4 Glad for Generating OpenGL Functions

Glad is a powerful and flexible OpenGL function loader that generates function point-
ers for OpenGL functions at runtime [24]]. We have chosen Glad for our real-time CUDA-
accelerated path tracing project to ensure compatibility and maintainability across different
OpenGL versions and platforms, allowing us to leverage the full potential of OpenGL in a
streamlined manner.

One of the key advantages of using Glad is its ability to provide access to the latest
OpenGL extensions and features, enabling our application to take advantage of cutting-edge
graphics functionality. Glad generates a custom loader tailored to the specific OpenGL ver-
sion and extensions requested during the configuration process, ensuring that our application
remains up-to-date with the evolving OpenGL landscape.

Another important benefit of Glad is its platform-agnostic design, which simplifies the
process of managing OpenGL function pointers across various operating systems and hard-
ware configurations. This allows us to maintain a consistent development experience and run-
time behavior on both Windows and Linux platforms without the need for platform-specific
code.

Furthermore, Glad’s lightweight and efficient implementation minimizes the overhead

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.2.5 GLFW for Creating Windows, Contexts and Surfaces 35

associated with OpenGL function loading, ensuring that our real-time path tracing application

remains performant and responsive even when using advanced OpenGL features.

4.2.5 GLFW for Creating Windows, Contexts and Surfaces

GLFW is a widely-used library for creating windows, contexts, and surfaces in graphics
applications [25]. In our real-time CUDA-accelerated path tracing project, we have utilized
GLFW to handle the creation and management of our application’s window and OpenGL con-
text, ensuring a consistent and platform-independent foundation for our rendering pipeline.

A foremost advantage of using GLFW is its simple and portable API, which abstracts
away the complexities of managing platform-specific windowing systems, allowing devel-
opers to focus on the core functionality of their applications. This has enabled us to maintain
a clean and efficient development process, minimizing the need for platform-specific code
and ensuring compatibility across various operating systems, including Windows and Linux.

In addition to window and context creation, GLFW provides an abstraction layer for han-
dling input events, such as keyboard and mouse input. This has been invaluable in our project,
as it allows us to implement user interactions and camera controls with ease, while maintain-
ing a consistent input handling mechanism across different platforms.

GLFW also offers functionality for managing surfaces, which are essential for rendering
our path-traced images to the screen. By leveraging GLFW’s surface management capabil-
ities, we have been able to efficiently display our rendered output, ensuring a smooth and

visually-appealing user experience.

4.2.6 ImGui for Graphical User Interfaces (GUIs)

ImGui is a lightweight C++ library for creating immediate-mode GUIs [3], known for its
simplicity, flexibility, and ease of integration into various projects. In our real-time CUDA-
accelerated path tracing project, we have utilized ImGui to develop intuitive and user-friendly
interfaces, enhancing the overall user experience and streamlining interaction with the appli-
cation.

A prominent attribute of ImGui is its immediate-mode approach, which allows for effi-
cient and dynamic Ul updates without the need for complex state management. This approach
enables our application to easily accommodate changes in rendering settings or scene con-

figurations, providing real-time feedback and allowing users to fine-tune various aspects of

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

36 Chapter 4. Real-Time Path Tracer Implementation

the rendering process.

In addition to its core functionality, ImGui offers a wide range of built-in UI elements,
such as sliders, checkboxes, and color pickers, which we have employed to create a compre-
hensive and versatile interface for our path tracing application. This has facilitated the cus-
tomization of rendering parameters, camera controls, and scene objects, empowering users
to explore different configurations and visualize their impact on the rendered output.

By incorporating ImGui into our project, we have been able to provide a rich and in-
teractive Ul for configuring rendering settings, managing scene objects, and navigating the
application, all while maintaining optimal performance and minimizing the impact on our

real-time path tracing implementation.

4.2.7 GLM for Vector Math

GLM is a C++ mathematics library designed for graphics software [26], providing a wide
range of mathematical constructs and functions that are commonly used in graphics applica-
tions. We have used GLM to handle various mathematical operations, such as vector and

matrix manipulation, throughout our path tracing project.

4.2.8 CUDA’s Thrust Library

Thrust [27], a high-level CUDA library, has been incorporated for certain functions in
our code. It offers a flexible interface for GPU programming, helping us manage memory
and perform operations like sorting and searching, thereby making our code more concise

and maintainable.

4.2.9 stb for Image Loading

The stb library [28] is a versatile collection of single-file, public domain libraries for
C/C++ that offer a straightforward API for various tasks, including image file handling. In
our real-time CUDA -accelerated path tracing project, stb has been chosen for handling image
loading and saving operations due to its simplicity and ease of use.

An essential advantage of using stb is its minimalistic design, which allows for seam-

less integration into our project without introducing complex dependencies or bloating the

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.2.10 spdlog for Logging 37

codebase. This lightweight approach has enabled us to efficiently manage image-related op-
erations while maintaining the performance and responsiveness of our application.

Stb supports a wide range of image formats, such as JPEG, PNG, and BMP, ensuring
compatibility with a variety of input files and facilitating the import and export of rendered
images. By leveraging stb’s extensive format support, we have been able to accommodate
diverse use cases and provide a robust image handling solution for our path tracing applica-

tion.

4.2.10 spdlog for Logging

spdlog [29] is a high-performance, header-only C++ logging library that enables easy
integration of logging functionality into applications, without introducing complex depen-
dencies or incurring significant overhead. In our real-time CUDA-accelerated path tracing
project, we have employed spdlog to facilitate efficient logging, debugging, and performance
analysis across various stages of our development process.

One of the main advantages of using spdlog is its exceptional performance, which stems
from its asynchronous and lock-free design. This allows for high-frequency logging with
minimal impact on the overall performance of our path tracing application, ensuring that our
logging activities do not interfere with real-time rendering and user interactions.

Another key benefit of spdlog is its extensive feature set, which includes support for var-
ious logging levels, customizable output formats, and integration with external log sinks,
such as files or remote servers. By leveraging these features, we have been able to imple-
ment a flexible and comprehensive logging system that can be easily tailored to our specific

requirements and adapted to different development and testing scenarios.

4.2.11 CMake and Premake for Building the Project

CMake [30] and Premake [31]] are cross-platform build systems that generate platform-
specific build files from simple configuration files. We have used both CMake and Premake
to manage our project’s build process, allowing for a streamlined and platform-agnostic build
system.

By combining these tools, technologies, and libraries, we have established a robust de-

velopment environment for our real-time CUDA-accelerated path tracing project, enabling

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

38 Chapter 4. Real-Time Path Tracer Implementation

efficient implementation and optimization of our path tracing algorithm while ensuring com-

patibility with a wide range of hardware and software configurations.

4.2.12 Project Folder Structure

A well-organized folder structure is crucial for maintaining the readability, modularity,
and maintainability of any software project. In our real-time path tracing project, we have
adopted a clear and logical folder structure that separates the various components of our

application, facilitating efficient development, debugging, and collaboration.

Below is an overview of our project’s folder structure:

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.2.12 Project Folder Structure

39

CudaRayTracer/

assets/
fonts/
shaders/
textures/
CudaRayTracer/
src/
Core/
——Cuda/
Hittables/
—— ImGui/
Renderer/
——Utils/
Main.cpp
CMakeLists.txt

premakeb. lua
premake5-cuda/

scripts/

linux/

windows/

vendor/

Glad/
GLFW/

glm/

ImGui/

premake/

spdlog/
stb/
CMakeLists.txt

CudaRayTracerExternal. lua

premakeb5.lua

This folder structure has been designed to promote modularity and separation of concerns,

ensuring that each component of our application can be developed and tested independently,

while also facilitating easy navigation and understanding of the project for both new and

existing team members.

By adhering to a well-defined folder structure, we have been able to streamline our devel-

opment process, improve the overall maintainability of our real-time CUDA -accelerated path

tracing application, and create a solid foundation for future enhancements and optimizations.

Institutional Repository - Library & Information Centre - University of Thessaly

18/06/2024 09:17:22 EEST - 18.219.169.153

40 Chapter 4. Real-Time Path Tracer Implementation

4.3 Window Creation and Management with GLFW and
OpenGL

One of the fundamental aspects of our project is the creation and management of the
application window, for which we have leveraged the functionalities provided by the GLFW

library and OpenGL.

4.3.1 Creating the Window

GLFW provides a robust and platform-independent API for creating windows, contexts,
and surfaces, and for handling input and events. We utilized GLFW to create an OpenGL
context and a window where our rendered images are displayed.

To achieve this, we first initialize GLFW and set the required window hints. These hints
dictate certain properties about the window and the context, such as the OpenGL version and
core profile.

Listing @.1 is a snippet of code that initializes GLFW and sets the window hints.

1 if (!glfwInit())
{

std::cerr << ”Failed to initialize GLFW” << std::endl;

return;

glfwWindowHint (GLFW CONTEXT VERSION MAJOR, 4);
glfwWindowHint (GLEFW_CONTEXT VERSION MINOR, 5);

glfwWindowHint (GLFW OPENGL PROFILE, GLFW OPENGL CORE PROFILE) ;

Listing 4.1: Initializing GLFW and setting window hints

Afterward, we create the window and the OpenGL context as seen in Listing #.2.

| GLFWwindow* window = glfwCreateWindow (800, 600, ”“CudaRayTracer”, NULL,

NULL) ;
2 if (!'window)
34
4 std::cerr << ”Failed to create GLFW window” << std::endl;
5 glfwTerminate () ;
6 return;
7

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.3.2 Managing Inputs 41

8 glfwMakeContextCurrent (window) ;

Listing 4.2: Creating the window and the OpenGL context

4.3.2 Managing Inputs

Another critical aspect of any interactive application is input management. GLFW pro-
vides a simple way to handle user input, including mouse movements and keyboard inputs. In
our path tracer, we have created callback functions to handle keyboard inputs, mouse move-
ments, and window resize events. These inputs control various parameters, such as the cam-
era’s position and orientation, object transformation, and rendering options.

A small example of input management can be seen in Listing §.3.

1 // callback function for keyboard input
2 void key callback (GLFWwindow* window, int key, int scancode, int action,

int mods)

if (key == GLFW KEY ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose (window, GLEFW_ TRUE) ;

// Add more keyboard controls here

O 0 9 N U b~ W

// Callback function for mouse movement

10 void cursor position callback (GLFWwindow* window, double xpos, double

ypos)
11 {

12 // Handle mouse movement here

13 }

14

15 // Set the callbacks

16 glfwSetKeyCallback (window, key callback) ;

17 glfwSetCursorPosCallback (window, cursor position callback);

Listing 4.3: Handling keyboard and mouse inputs

4.3.3 Clearing the Screen

Before each frame’s rendering process, we clear the color buffer to prepare for the new

frame. This is achieved with OpenGL’s glClear function and GL_COLOR_BUFFER BIT

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

42 Chapter 4. Real-Time Path Tracer Implementation

flag. It is essential to ensure that the buffer is clean before starting the rendering of a new
frame to avoid visual artifacts.

In Figure 4.1 we can see the output of g/Clear in Listing .4,

| glClearColor(0.4£, 0.4f, 0.4f, 1.0f);

2 glClear (GL_COLOR BUFFER BIT);

Listing 4.4: Clearing the color buffer

Figure 4.1: Window Creation and Clearing Color

After this, we are ready to start the rendering for the next frame, beginning with generating
rays for each pixel.

These steps form the core loop of our application, initializing the window, processing
inputs, clearing the color buffer, and then proceeding to the rendering operations. This loop
continues until the application is closed by the user.

In the following sections, we’ll discuss more advanced aspects of our application, includ-

ing how we utilized CUDA and OpenGL to achieve real-time path tracing.

4.4 CUDA to OpenGL Interoperability

One of the key technical challenges we have addressed in our path tracing application is
the efficient intercommunication between CUDA and OpenGL. This is vital to ensure that

we can harness the computational power of CUDA for the computationally demanding task

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.4.1 NVIDIAS simpleCUDA2GL Sample Approach 43

of path tracing, while simultaneously utilizing OpenGL for rendering the resulting image in
real-time.

Traditional graphics processing would require data to be transferred from the GPU to
the CPU and back to the GPU for rendering, which results in significant overhead due to
the latency of these operations. To overcome this bottleneck, we exploit the interoperability
features offered by CUDA [[14], allowing CUDA kernels to directly write to OpenGL textures.

In our implementation, we have incorporated a technique inspired by NVIDIA’s simple-
CUDA2GL sample [[13]. However, in contrast to the sample’s use of Vertex Buffer Objects
(VBOs), we have opted to register an OpenGL texture with CUDA. This alternative method
provides the benefit of granting direct access to the texture memory, enabling CUDA to gen-

erate the image and OpenGL to directly render it, all while keeping the data on the GPU.

4.4.1 NVIDIA’s simpleCUDA2GL Sample Approach

The traditional approach for CUDA-OpenGL interoperability, exemplified by NVIDIA’s
simpleCUDA2GL sample, is centered around OpenGL’s Vertex Buffer Objects (VBOs). The
sample showcases an approach where CUDA kernels write into OpenGL’s Vertex Buffer

Objects (VBOs). The steps involved in this procedure are as follows:

1. InListing .3 an OpenGL buffer (VBO) is created with a specific size, usually propor-
tional to the total number of pixels in the rendering context.
GLuint vbo;

glGenBuffers(l, &vbo);
glBindBuffer (GL ARRAY BUFFER, vbo);

AOW N =

glBufferData (GL ARRAY BUFFER, width * height * sizeof (float), NULL,

GL_DYNAMIC DRAW) ;

Listing 4.5: VBO Generation

2. The VBO is then registered with CUDA, marking it as a resource that can be accessed
by CUDA kernels, as shown in Listing §.6.

1 cudaGraphicsResource t resource;
2 cudaGraphicsGLRegisterBuffer (&resource, vbo,

cudaGraphicsRegisterFlagsNone) ;

Listing 4.6: VBO registration with CUDA

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

44

Chapter 4. Real-Time Path Tracer Implementation

. In Listing §.7, before the CUDA kernel can use this resource, it has to be mapped,

which returns a device pointer.

void *d vbo data;
cudaGraphicsMapResources (1, &resource);

cudaGraphicsResourceGetMappedPointer (&d vbo data, NULL, resource);

Listing 4.7: Mapping VBO to CUDA Kernel

This pointer can then be passed to the CUDA kernel, which fills the VBO with data.

. After the CUDA kernel finishes its execution, the mapped resource must be unmapped,

allowing OpenGL to regain exclusive access to the VBO, as shown in Listing 4.8
cudaGraphicsUnmapResources (1, &resource) ;

Listing 4.8: Unmap Resources

. The final step is for OpenGL to use the data that the CUDA kernel has written into the

VBO for rendering. For instance, you may bind the VBO, set up the necessary attribute

pointers, and issue a draw command like the Listing §.9.

glBindBuffer (GL ARRAY BUFFER, vbo);
// Set up attribute pointers...

glDrawArrays (GL_TRIANGLES, 0, numberOfVertices);

Listing 4.9: OpenGL renders the VBO

4.4.2 Our Approach

While this procedure is efficient, it may not always be the optimal solution. In our appli-

cation, we have implemented a different approach based on using an OpenGL texture rather

than a VBO. This decision was driven by several reasons, the most significant of which is

the inherent benefit of using texture memory: the ability to read data with hardware interpo-

lation [32].

In the context of graphics programming, texture memory refers to a specific type of mem-

ory layout used by GPUs to store textures. Textures are essentially 2D (sometimes 3D or

more) arrays of data that can be sampled (read from) in shaders. These shaders are small

programs that run on the GPU and dictate how our scene gets rendered. Texture memory is

optimized for this kind of sampling operation.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.4.2 Our Approach 45

One critical aspect of texture memory is that it can use hardware interpolation. This fea-
ture means that when we read from a texture using non-integer coordinates, the GPU can
automatically interpolate between the values of the surrounding cells. For example, if we try
to sample a texture at the texture coordinate (0.5, 0.5), the GPU can automatically give us a
value that is an average of the values at texture coordinates (0, 0), (1, 0), (0, 1), and (1, 1).
This capability is often used to smoothly transition between different texture values when our
object’s surface aligns with the texture in a non-pixel-perfect way.

Now, coming to the context of our application, instead of using VBOs for storing data
computed by CUDA, we are opting to use OpenGL textures. The implication is that instead
of filling a VBO with data and using it directly for rendering, our CUDA kernel writes data
into a texture. When it’s time to render, instead of using a VBO to supply vertex data to a
vertex shader, we use this texture as input to a fragment shader. This shader reads from the
texture (sampling it), and uses the sampled values to determine the color of each pixel on the
screen.

Here is a breakdown of our approach:

1. In Listing §.10, instead of a VBO, we create an OpenGL texture with the same dimen-
sions as our rendering context.
| GLuint texturelID;

glGenTextures (1, &texturelD);

glBindTexture (GL TEXTURE 2D, texturelD);

F-NEVS I]

glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP TO EDGE) ;
// clamp s coordinate
5 glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE WRAP T, GL CLAMP TO EDGE) ;
// clamp t coordinate
6 glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST) ;
7 glTexParameteri (GL,_TEXTURE 2D, GI,_ TEXTURE MAG FILTER, GL NEAREST) ;
8 glTexImage2D (GL_TEXTURE 2D, 0, GL RGBA8, width, height, 0, GL_RGBA,

GL UNSIGNED BYTE, NULL);

Listing 4.10: OpenGL Texture Creation

2. Similar to the previous procedure, Listing shows how the texture is then registered
with CUDA.

| cudaGraphicsResource t resource;

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

46 Chapter 4. Real-Time Path Tracer Implementation

2 cudaGraphicsGLRegisterImage (&resource, textureID, GL TEXTURE 2D,

cudaGraphicsRegisterFlagsWriteDiscard) ;

Listing 4.11: Texture CUDA Registration

3. The mapping step is slightly different in this case. Instead of obtaining a device pointer,
we obtain a cudaArray pointer, which then is bound to a texture reference in the CUDA

kernel. An example of this procedure can be seen in Listing §.12.

1 cudaArray t textureArray;
2 cudaGraphicsMapResources (1, &resource) ;

3 cudaGraphicsSubResourceGetMappedArray (&textureArray, resource, 0, 0)

’

Listing 4.12: CUDA Texture Mapping

4. Following the execution of the CUDA kernel and the data write into the texture mem-
ory, the resource is unmapped in Listing §.13.

| cudaGraphicsUnmapResources (1, &resource);

Listing 4.13: CUDA Texture Unmapping

5. The final step is to bind the texture and draw a fullscreen quad, effectively displaying
the image that was written into the texture by our CUDA kernel. Below is an overview
of the steps you would typically take to render a full-screen quad with a texture applied
to it:

(o) Set up your vertex and fragment shaders. The vertex shader would usually be
very simple, only responsible for transforming your quad vertices to cover the
full screen. The fragment shader, on the other hand, would sample from the bound
texture and return the sampled color for each pixel. An example of a GLSL [33]

vertex and fragment shader is shown in Listing

1 // Vertex Shader
#version 330 core
in vec?2 aPos;

in vec2 aTexCoords;

out vec2 TexCoords;

~N N BN

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.4.2 Our Approach 47

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

B

O 0 3 O N B~ W N =

—
o

o

void main ()

{
gl Position = vecd(aPos.x, aPos.y, 0.0, 1.0);

TexCoords = aTexCoords;

// Fragment Shader
#version 330 core
in vec2 TexCoords;

out vec4 FragColor;
uniform sampler2D screenTexture;

void main ()

{

FragColor = texture (screenTexture, TexCoords) ;

Listing 4.14: Vertex and Fragment Shader

Create and bind a Vertex Array Object (VAO) for your full-screen quad. This
VAO would typically contain two VBOs, one for the quad’s vertices and one for
their associated texture coordinates, like in Listing k.15.

float quadVertices[] = {

// positions // texCoords
-1.0£, 1.0f, 0.0f, 1.0f,
-1.0f, -1.0£, 0.0f, 0.0f,

1.0f, -1.0£f, 1.0f, 0.0f,

=1.0E€, 1.0f, 0.0, 1.0:%E,
1,0, =1,0&, L.0&, 0.0%,
1.0£, 1.0f, 1.0f, 1.0f

Listing 4.15: Quad Vertices

Bind your texture and render the full-screen quad. At this point, you would bind
the texture object that contains the data written by your CUDA kernel, activate
your shaders, and finally draw your full-screen quad. The end result would be

that your texture gets displayed on the full screen, as shown in Listing §.16.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

48 Chapter 4. Real-Time Path Tracer Implementation

] glBindTexture (GL TEXTURE 2D, texturelD);

2 // assuming you have the shader program id and the VAO id
3 glUseProgram(shaderProgram) ;

4 glBindVertexArray (VAO) ;

5 glDrawArrays (GL TRIANGLES, 0, 6);

Listing 4.16: Render The Fullscreen Quad

In Figure #.2 we can observe the above implementation.

Figure 4.2: CUDA Texture Rendered on a 2D Quad

This alternative technique allows us to not only minimize data transfer, but also enables
hardware interpolation of texture memory when read from the CUDA kernels, thus providing
performance optimization. This method also enabled us to render the output directly into an
ImGui Image window, instead of the fullscreen quad we mentioned before. More on that

later...

By implementing this modified CUDA-OpenGL interoperability technique, we’ve suc-
cessfully optimized our path tracer to generate and display images in real-time. In subsequent
sections, we will delve into further intricacies of our project, including the implementation
of ray-tracing algorithms, mathematical operations required, and further use of CUDA for

acceleration.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.5 Integrating ImGui for User Interface and Texture Display 49

4.5 Integrating ImGui for User Interface and Texture Dis-

play

To ensure usability and provide a user-friendly interface for our application, we integrated
the Dear ImGui library [3], often referred to as ImGui. ImGui is an immediate-mode graphical
user interface library that is lightweight, code-based, and predominantly employed in content
creation tools and debug tools in the game development industry due to its simplicity and ease
of integration.

ImGui shines when it comes to rendering hardware-accelerated textures, which is critical
for our application. After registering the OpenGL texture with CUDA and performing the
necessary computations (as detailed in the previous sections), we needed to display the result
inside an ImGui window for users to see the results of the ray tracing in real time.

The procedure to render the CUDA -processed OpenGL texture inside an ImGui window
is straightforward [34]. After creating a new ImGui window, we used the ImGui::Image
function, which accepts an ImTexturelD and the size of the image to be rendered, as shown
in Listing #.17.

1 // Suppose ‘textureID' is the ID of the texture you want to display

2 // and ‘tex width' and ‘tex height‘' are its dimensions

3 ImGui::Begin (”Generated Image”);

4 ImGui: :Image ((void*) (intptr t)textureID, ImVec2 (tex width, tex height),

ImVec2 (0, 1), ImVec2(l, 0));

5 ImGui::End();

Listing 4.17: ImGui Image Loading

Here, ImTexturelD is a typedet for void*, so we just need to cast our OpenGL texture ID into
this type. The two ImVec2 parameters define the UV coordinates for the texture mapping.
Please note that we have flipped the y-coordinates because OpenGL textures are usually y-
flipped. An example of the CUDA generated image displayed in an ImGui window is shown
in Figure #.3.

This approach allows us to seamlessly integrate our CUDA-accelerated ray tracing with
a UI layer. Users can observe the real-time rendering results, and we can extend this Ul
to include various user controls for adjusting rendering parameters, pausing and resuming
rendering, and other features, making our application interactive and user-friendly.

In our application, the ImGui rendering functions were invoked within each rendering

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

50 Chapter 4. Real-Time Path Tracer Implementation

Figure 4.3: CUDA Generated Image displayed in an ImGui Window

loop iteration. This procedure ensured that the most up-to-date graphics context and frame-
buffer status were used when rendering the ImGui interface. This way, the ImGui overlay

consistently reflects the latest state of our CUDA-accelerated ray tracing algorithm.

As ImGui is a backend-agnostic library, its setup requires specific bindings that match the
underlying graphics API used. For our project, given our reliance on OpenGL and GLFW, we
initialized ImGui with the appropriate OpenGL3 and GLFW backend bindings. This config-

uration enabled ImGui to operate effectively within our application’s graphical environment.

It is worth emphasizing that this design choice ensures the consistency of our applica-
tion’s interface and enhances its robustness. By incorporating ImGui into our application, we
effectively melded high-performance real-time ray tracing with an intuitive and responsive
user interface. This combination elevated the user experience significantly by allowing for

interactive engagement and on-demand visual feedback.

To summarize, ImGui not only provides a platform for displaying our real-time ray trac-
ing results in a more accessible and intuitive format, but it also paves the way for potential
enhancements and extensions to our application. This ImGui integration ensures our applica-
tion is not just about performance and quality of results, but also about user experience and

ease of use.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.6 Ray Tracing Implementation 51

4.6 Ray Tracing Implementation

Our path tracing implementation is fundamentally inspired by and structured around the
models and methodologies put forth in Peter Shirley’s influential "Ray Tracing in One Week-
end” book series [[15], as we meticulously described in section B.1.

In our application, these principles serve as the foundational blueprint upon which we
built and enhanced our ray tracer. Our focus was to develop a GPU-accelerated, real-time
application capable of rendering complex 3D scenes with high fidelity. We adopted the basic
structure provided in the series, and then we optimized it using CUDA and other modern
programming techniques.

In the following sections, we delve into the core mathematical and computational aspects
of our ray tracing implementation. This includes an exploration of vector operations, the
concept of rays and how they’re utilized, the handling of intersections between rays and
3D objects, the process of implementing a virtual camera, and the algorithms for simulating
the behavior of light as it interacts with different surfaces, our implementation of the BVH
algorithm and image texture mapping.

While our primary reference remains “Ray Tracing in One Weekend”, our real-time ray
tracer surpasses the original minimalist design proposed by Shirley. It demonstrates how one
can start from a simple, bare-bones ray tracer and augment it to create an application capable

of producing stunning, photorealistic renderings in real time.

4.7 Ray Generation and Virtual Camera

One of the most essential components in ray tracing is the ray itself. In terms of mathe-

matical representation, a ray R(t) in 3D space is described parametrically as:
R(t)=A+t*xB (4.1)

where A signifies the ray’s origin, BB represents the direction vector, and ¢ is a scalar parameter
that stretches or shrinks B.

The Ray class defines a ray in the context of our algorithm. The class comprises two
primary elements: a 3D point for the ray’s origin and a 3D vector for the ray’s direction. This
class also contains a method that computes a point along the ray for a given parameter ¢,

reflecting our mathematical definition of a ray.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

O 0 9 N B W N o=

—_ =
o = O

14
15
16
17

52 Chapter 4. Real-Time Path Tracer Implementation

When our ray tracer creates an image, it generates rays from the camera’s location, with
each ray corresponding to a pixel in the final image. The process of ray generation is integral
to the operation of the ray tracer.

To start, we set up an origin vector and three basis vectors representing the camera’s orien-
tation: forward, up, and right. The origin is the position of the camera in the 3D world, while
forwardV , upV , and rightV form a coordinate system relative to the camera’s perspective.

In Listing .18, is an example of setting up the camera system and generating rays based

on the camera’s position.

Vec3 col = Vec3(0.0f, 0.0f, 0.0f);

Vec3 origin = Vec3(origin x, origin y, origin z);

Vec3 forwardV = Vec3(orientation x, orientation y, orientation z);
Vec3 upV = Vec3(up_x, up_y, up_z);

Vec3 rightV = Normalize (Cross (upV, forwardV));

Vec3 center = Vec3(width / 2.0f, height / 2.0f, 0.0f);

float u = (float) (x - center.x()) / (float) (width);

float v = (float) (center.y() - y) / (float) (width);

Vec3 distFromCenter = (u * rightV) + (v * upV);

Vec3 startPos = (near plane * distFromCenter) + origin + (fov * forwardV)

Vec3 secondPlanePos = (far plane * distFromCenter) + ((1.0f / fov * 10.0f
) * forwardV) + origin;

Vec3 dirVector = Normalize (secondPlanePos - startPos);

Ray r = Ray(startPos, dirVector);

col = col + color(r, world, max depth);

Listing 4.18: Ray Generation and Camera

In the above Listing, center is a point representing the center of the image plane. For each
pixel in the image, we calculate its relative position on the image plane using uv coordinates.
Here, u and v represent the horizontal and vertical offsets from the center of the image plane,
respectively. The distFromCenter vector represents the displacement from the center of the
image plane to the uv coordinate.

We then calculate the starting position startPos of the ray by moving from the camera’s

origin along the forward vector by the focal length (fov). This position is further offset by the

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.8 Ray-Object Intersections 53

distFromCenter vector, scaled by the near plane distance (near_plane).

The ray’s direction (dirVector) is computed as a normalized vector pointing from startPos
to secondPlanePos. secondPlanePos is a point located on a secondary image plane farther
from the origin along the forward vector, offset by distFromCenter scaled by the far plane
distance (far_plane).

Once the starting position and direction are determined, we can create a new Ray object.
The ray tracer then colors each pixel by calling the color function, which sends the ray into
the world and computes the color that the ray encounters.

The color function, determines the color that a ray would see when cast into the scene.
The color returned by this function is dependent on the objects the ray interacts with in the
scene. We will talk about the ray-object intersection in the next section.

If the ray does not hit an object, it calculates the color based on a linear blend of two
other colors. This process is often referred to as linear interpolation or lerp for short. In this
context, the lerp operation serves to simulate a simple gradient sky.

The above methodology encapsulates the core logic of ray generation in the context of
a virtual camera within our ray tracer. Through this process, the ray tracer can simulate the

intricate interplay of light and materials within a 3D scene to create highly realistic images.

4.8 Ray-Object Intersections

At the heart of any ray tracing algorithm is the concept of ray-object intersection. This
process forms the basis of the recursive ray tracing algorithm, determining whether a ray
intersects with an object in the scene, and if so, where that intersection point is.

Our application primarily focuses on intersecting rays with two types of geometric shapes:
spheres and rectangles. Spheres, due to their mathematical elegance, provide an excellent
introductory example, effectively encapsulating the fundamental principles of ray tracing.
Rectangles, on the other hand, introduce a layer of complexity and provide the groundwork
for extending the algorithm to arbitrary polygons.

A sphere in 3D space is described by an equation of the form:

(P-C)-(P-C)=r?

where P represents any point on the sphere, C' is the center of the sphere, r is the radius,

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

54 Chapter 4. Real-Time Path Tracer Implementation

and - denotes the dot product.
To find the intersection of the ray and the sphere, we substitute the equation of the ray

into the sphere equation, resulting in a quadratic equation of the form:

(A+t*B—-C) - (A+t*B—-C)—r*=0

The roots of this equation give us the possible values of t where the ray intersects the
sphere. If the roots are imaginary, the ray does not intersect the sphere. If there is one root,
the ray is tangent to the sphere at one point. If there are two roots, the ray passes through the
sphere, intersecting it at two points.

A key aspect of our implementation is dealing with these intersection points. For each
intersection, we calculate the corresponding point on the sphere and the normal at that point.
This information is used in the shading process, which relies on the incident angle of the ray
and the normal at the intersection point.

For the rectangles, we used axis-aligned rectangles, which restrict the rectangle’s orienta-
tion to align with the Cartesian coordinate axes. This simplification substantially reduces the
computational complexity of checking whether the intersection point lies within the rectangle
boundaries.

To implement an axis-aligned rectangle, we first define its position and extent along two
axes, while the third axis position is kept constant. For instance, an x-y rectangle is defined
by its = and y extents [0, x1] and [y0, y1], and a constant z-coordinate (z0). The rectangle

equation for this case is:

20 < e <zl,y0 <y <yl,z=20

To find the intersection of a ray with this rectangle, we substitute the ray equation ¢. 1| into

the rectangle’s:

A+txB=P
And solve for ¢:
(20 — A.z)

B.z
The intersection point P is then obtained by substituting t back into the ray equation.

To check if the intersection point lies within the rectangle’s boundaries, we simply ensure

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.8 Ray-Object Intersections 55

the = and y coordinates of P are within the limits [0, x1] and [y0, y1], respectively. If these

conditions are met, the ray intersects the rectangle; otherwise, it does not.

Similarly, y-z and z-x rectangles can be defined and tested for intersection in the same

manner, with the checks and constant coordinate adjusted accordingly.

This streamlined intersection approach is a significant advantage when dealing with axis-
aligned rectangles, improving the efficiency of the ray tracing algorithm while maintaining
accurate renderings. Despite the constraint on orientation, this method provides an excellent

way to create a wide range of complex scenes.

The ray-object intersection is a critical part of our application. We employed an object-

oriented approach without virtual functions to address the limitations of CUDA.

Our ray-object intersection algorithm is encapsulated within two main constructs: the Ray

class {.7 and the Hittable class.

The Hittable class acts as a general base class for all scene objects that a ray could po-
tentially intersect. This class does not employ virtual functions, given CUDA’s limitations
with respect to polymorphism. Instead, a HittableType enum and a union, ObjectUnion, are

utilized to differentiate and handle various object types.

The HittableType enum lists the potential object types we deal with in our application -
spheres, rectangles in XY, XZ, and YZ planes. The ObjectUnion union, on the other hand,

holds a pointer to the specific object instance, allowing for efficient memory usage.

When an intersection check is required, the Hittable Type determines which type of object
is being handled, and the corresponding member of the ObjectUnion is accessed for detailed

intersection logic specific to that object type.

In essence, the Hittable class is instrumental in managing the ray-object intersection
checks in a flexible and efficient manner, maintaining our code’s clarity and extensibility
while complying with the constraints of CUDA. This design has helped encapsulate the com-
plexities of the ray-object intersection process and keep the rest of our program separated

from these intricacies.

In conclusion, while our ray tracing application predominantly implements intersections
with spheres and rectangles, the essential principle remains the same: to find if and where a
ray intersects an object. As a result, it can be extended to include a wide variety of geometric

shapes, each with its specific intersection algorithm.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

56 Chapter 4. Real-Time Path Tracer Implementation

4.9 Surface Normals

Surface normals play a pivotal role in computer graphics and, in particular, in ray tracing
algorithms. They are essentially vectors that are perpendicular to an object’s surface at the
point of intersection. Understanding the direction in which these vectors point is crucial for
determining how light should scatter or reflect when it hits an object, which in turn is critical
for generating realistic images.

In the case of a sphere, calculating the surface normal at a given intersection point is quite
straightforward due to the geometrical properties of the shape. If P represents a point on the
sphere’s surface and C' is the sphere’s center, the vector from C' to P will always point directly
outwards, forming a right angle with the tangent plane to the sphere at P. This makes it ideal
as a normal vector. However, we typically want our normal vectors to be "unit vectors”, i.e.,
vectors of length 1, for ease of computation later on. To achieve this, we can normalize the
vector (P — (') by dividing it by the radius of the sphere, 7, resulting in the formula:

(P-0)

r

In the case of rectangles, the surface normal is constant and depends on the plane where
the rectangle lies. For example, in an XY rectangle, the surface normal would be either
(0,0,1) or (0,0,—1), i.e., along the positive or negative Z-axis. The choice between the
two depends on the orientation of the rectangle, which side should be considered as “’front”,

a concept that becomes important when dealing with issues such as backface culling.

In our implementation, each object type is responsible for calculating the surface normal
at its intersection point with a ray. The calculated normal is then returned along with other
intersection details, ready to be used in subsequent computations, especially those concerning

lighting and shading, which heavily rely on the surface normal.

Taking into account the direction of the incoming ray is crucial when returning the normal
direction, as we always want the normal to point against the ray. This is to ensure the correct
determination of the shaded and lit sides of the object when dealing with enclosed objects or
those with an inside and an outside, like a sphere.

In conclusion, the accurate calculation and utilization of surface normals form the founda-
tion of our shading computations, providing a means to accurately model how light interacts

with the surfaces in our scene.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.10 Materials 57

4.10 Materials

Materials in computer graphics define how surfaces interact with light, producing diverse
visual effects that contribute significantly to the realism and aesthetic quality of rendered im-
ages. In our ray tracer, we’ve chosen to focus on implementing four key types of materials,
each with distinct properties and behaviors when interacting with light. These are: Lamber-
tian, Metal, Dielectric, and Diffuse Light materials. This selection enables us to model a wide
range of common physical materials, ranging from diffuse surfaces like chalk or unglazed
pottery (Lambertian), to reflective surfaces like polished metal (Metal), transparent materials
like glass or water (Dielectric), and objects that emit light (Diffuse Light). By implement-
ing these materials, we provide our ray tracer with the versatility to accurately represent and

simulate an expansive array of real-world scenes.

4.10.1 Lambertian

Lambertian materials, so named after the physicist Johann Heinrich Lambert, are de-
signed to emulate perfectly diffuse surfaces — surfaces that scatter light uniformly in all di-
rections. Examples of such surfaces in the real world include materials like chalk or unglazed
pottery. The characteristic property of these surfaces is that their brightness appears consis-
tent regardless of the viewing angle. This uniform distribution of light, irrespective of the
observer’s viewpoint, is central to the Lambertian reflectance model [35].

The mathematical representation of Lambertian reflection is a cosine distribution over
the hemisphere. Given that the cosine of an angle decreases as the angle increases, rays scat-
tered near the normal direction are given higher weight. However, generating random points
in cosine-weighted hemisphere might be computationally intensive. Therefore, we adopt an
alternative approach where we scatter rays in random directions within a unit sphere, and if
the scattered ray is in the opposite direction to the normal, we negate it. This ensures that the
scattered rays always lie in the same hemisphere as the surface normal.

In the context of our ray tracer, when a ray intersects with an object possessing a Lamber-
tian material, we generate a scattered ray in this random direction. The color of the scattered
ray is obtained by scaling the incoming ray’s color by the material’s albedo (color). This
scattered ray is then sent back into the ray tracer to compute the color contribution from

reflections.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

O 0 9 N L B W N =

—_— e e
A W N = O

15
16

17
18
19

20
21

58 Chapter 4. Real-Time Path Tracer Implementation

In Listing .19, we provide some pseudocode to illustrate the above concept. Keep in
mind, this pseudocode is meant to give a high-level understanding of the process and does

not correspond exactly to our actual implementation.

// Structure for Lambertian Material
struct Lambertian {
Vec3 albedo; // albedo color of the material

}i

// Function to generate a random direction within a unit sphere

Vec3 random in unit sphere() {
Vec3 p;
do {
p = 2.0*Vec3(drand48(), drand48(), drand48()) - Vec3(1,1,1);

} while (p.squared length() >= 1.0);

return p;

// Scattering function for Lambertian material

bool scatter(const Ray& r in, const HitRecord& rec, Lambertian& mat, Vec3
& attenuation, Rayé& scattered) {
Vec3 target = rec.p + rec.normal + random in unit sphere();
scattered = Ray(rec.p, target-rec.p); // New scattered ray
attenuation = mat.albedo; // The color is scaled by the material’s
albedo
return true;

}

Listing 4.19: Lambertian Material

In the Listing above, drand48() generates a random double between 0.0 and 1.0. The scat-
ter function takes as input the incoming ray (r_in), the hit record (rec), and the Lambertian
material (mat), and computes the scattered ray and its attenuation. The HitRecord structure
contains information about the intersection point, such as the point itself (rec.p) and the nor-
mal at that point (rec.normal). If the scattering is successful (which is always the case for
Lambertian materials), it returns true.

For a Lambertian surface, the new scattered direction is computed as the sum of the hit
point, the normal at the hit point, and a random point inside a unit sphere. The scattered ray

is then created with the hit point as the origin and the new direction as its direction. The color

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.10.2 Metal 59

of the scattered ray (the attenuation) is the color of the incoming ray scaled by the material’s
albedo.

The use of Lambertian materials is an effective way to model the interaction between light
and matte surfaces. Its mathematical and conceptual simplicity make it an excellent tool for
approximating the diffuse reflection phenomenon that is pervasive in the real world, thereby

contributing to the realism of the rendered scenes in our application.

4.10.2 Metal

Metal materials provide a different type of reflection, where light tends to be reflected
in a single primary direction, rather than being scattered in all directions as with Lambertian
materials. The reflectance characteristic of metal materials is typically based on the concept
of specular reflection [36].

Specular reflection follows the law of reflection, which states that the angle of incidence is
equal to the angle of reflection. Here, the angle of incidence is the angle between the incoming
ray and the surface normal, while the angle of reflection is the angle between the reflected
ray and the surface normal.

Moreover, real-world metals aren’t perfectly smooth and might reflect rays in slightly dif-
ferent directions. This “roughness” is simulated by adding a fuzziness factor to the reflected
direction, scattering the ray in a small cone around the perfect reflection direction.

In Listing #.20, is some pseudocode illustrating the above.

—_

// Structure for Metal Material

2 struct Metal {

3 Vec3 albedo; // albedo color of the material
4 float fuzz; // fuzziness factor of the material
5}

6

7 // Function to reflect a vector v about a normal n
8 Vec3 reflect (const Vec3& v, const Vec3& n) {

9 return v - 2*dot (v,n) *n;

10 }

11

12 // Scattering function for Metal material

—_
(8]

bool scatter(const Ray& r in, const HitRecordé& rec, Metal& mat, Vec3&

attenuation, Rayé& scattered) {

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

60 Chapter 4. Real-Time Path Tracer Implementation

14 Vec3 reflected = reflect (normalize(r in.direction()), rec.normal);

15 scattered = Ray(rec.p, reflected + mat.fuzz*random in unit sphere());
16 attenuation = mat.albedo;

17 return (dot (scattered.direction(), rec.normal) > 0);

18 1}

Listing 4.20: Metal Material

In the above Listing, scatter function first computes the perfect reflection direction using
the reflect function and then adds a random direction within a sphere of radius equal to the
material’s fuzziness. The scattered ray is then created with the hit point as the origin and this
new direction. The color of the scattered ray (the attenuation) is the color of the incoming
ray scaled by the material’s albedo.

The function returns frue only if the scattered direction is in the same hemisphere as the

surface normal. This check ensures that rays aren’t scattered below the surface.

4.10.3 Dielectrics

Dielectric materials, representing transparent objects like glass or water, present a more
complex interaction with light rays, involving both reflection and refraction. Refraction is
the bending of the light path when it passes from one medium into another. The amount of
bending is determined by the indices of refraction of the two media and the angle of incidence.

The Fresnel equations [37)], named after Augustin-Jean Fresnel, describe how much light
1s reflected and how much is refracted at the interface between two media. However, these
equations can be quite complex, especially for an iterative process like ray tracing. There-
fore, we use Schlick’s approximation [38], a simplified model that approximates the Fresnel
equations with minimal performance cost.

Additionally, it’s important to account for total internal reflection (TIR). TIR happens
when light traveling in a medium with a high index of refraction strikes the boundary with a
medium of lower index of refraction at a sufficiently high angle; in such cases, all the light
is reflected, and none is refracted.

In Listing #.21], is an overview of the above process in pseudocode form.

1 // Structure for Dielectric Material
2 struct Dielectric {

3 float ref idx; // refractive index of the material

4 3;

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.10.3 Dielectrics

61

(@)}

relative refractive index etai over etat

// Function to refract a vector v into a medium with normal n and

7 Vec3 refract (const Vec3& v, const Vec3& n, float etai over etat) {

8 float cos theta = dot(-v, n);

9 Vec3 r out perp = etai over etat * (v + cos theta*n);

10 Vec3 r out parallel = -sqgrt(fabs (1.0 - r out perp.length squared()))
* n;

11 return r out perp + r out parallel;

12}

13

14 // Scattering function for Dielectric material

15 bool scatter (const Rayé& r in, const HitRecordé& rec, Dielectricé& mat, Vec3

& attenuation, Ray& scattered) {

16 attenuation = Vec3 (1.0, 1.0, 1.0);

17 float etai over etat = (rec.front face) ? (1.0 / mat.ref idx) : mat.
ref idx;

18

19 Vec3 unit direction = normalize(r in.direction());

20 float cos theta = fmin(dot (-unit direction, rec.normal), 1.0);

21 float sin theta = sqgrt (1.0 - cos_ theta*cos theta);

22

23 if (etal over etat * sin theta > 1.0) { // Handle total internal
reflection

24 Vec3 reflected = reflect (unit direction, rec.normal);

25 scattered = Ray(rec.p, reflected);

26 return true;

27 }

28

29 Vec3 refracted = refract (unit direction, rec.normal, etai over etat);

30 scattered = Ray(rec.p, refracted);

31 return true;

32}

Listing 4.21: Dielectric Material

In the above Listing, we first calculate whether total internal reflection occurs. If it does,

we treat the interaction as a reflection. If not, we compute the refracted direction using the

refract function and treat the interaction as refraction. As before, the scatter function returns

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

S O X 9 N L B W N =

—_—
o =

13
14

62 Chapter 4. Real-Time Path Tracer Implementation

true to indicate a scattering event, with the scattered ray and attenuation color updated for

the subsequent path segment.

4.10.4 Diffuse Light

Diffuse Light materials simulate objects that act as light sources. Unlike the materials
discussed above, these materials do not react to incoming rays. Instead, they constantly emit
light, meaning they radiate a fixed color in all directions.

This kind of material is an important feature in rendering realistic scenes, as it enables the
modeling of light sources such as lamps, monitors, and the sun, enhancing the authenticity
of the scene illumination.

In our implementation, a Diffuse Light material is represented by a texture that provides
the emitted color. When a ray hits an object with this material, instead of generating a scattered
ray, we check whether the ray was hit from the front side (to avoid illuminating the back sides
of the objects) and return the color of the texture at the hit point.

In Listing .22, is shown some pseudocode for the Diffuse Light material.

// Structure for Diffuse Light Material
struct DiffuselLight {
Texture emit; // emission texture

}i

// Emission function for Diffuse Light material
Vec3 emitted(const DiffuselLight& mat, float u, float v, const Vec3& p) {

return mat.emit.value(u, v, p);

// Scattering function for Diffuse Light material
bool scatter(const Rayé& r in, const HitRecord& rec, DiffuseLighté& mat,
Vec3& attenuation, Rayé& scattered) {

return false; // Diffuse Light does not scatter rays

Listing 4.22: Diffuse Light Material

In the above Listing, we first check if the ray is hitting the surface from the front side (i.e.,
in the direction opposite to the surface normal). If it is, we return the value of the emission

texture at the hit point. Otherwise, we return a zero vector, meaning no light is emitted. The

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.11 Textures 63

scatter function simply returns false to indicate that no scattering occurs.

As can be seen, this is a considerable departure from the previous material types, which all
involved some form of scattering. With Diffuse Light, we are turning the objects themselves
into light sources, contributing directly to the scene’s illumination.

The Material class in our implementation is designed to manage various material types, in-
cluding Lambertian, Metal, Dielectric, and DiffuseLight materials. It uses a similar approach
to the Hittable class, where we again avoided virtual functions to maintain compatibility with
CUDA. The Material class employs an enumeration, Material Type, to keep track of the ma-
terial’s type. The class also includes a union, ObjectUnion, which can store a pointer to an
object of any of the material types. In practice, this union is used to hold the specific material
associated with an instance of the Material class.

When a Material object is constructed, its ype field is set to the appropriate value from
the MaterialType enumeration, and the corresponding pointer in the ObjectUnion is set to
point to the specific material object. This structure allows us to use a uniform interface for
different materials, simplifying the design of the ray tracer while also facilitating the addition
of new material types in the future.

Each material type requires different calculations and considerations, and these variations
are key to producing a broad range of visually interesting results. This way, we can create
scenes with diverse appearances, contributing to the realism and visual complexity of our
ray-traced images.

In Figure §.4, we provide you with an example of a rendered image from our application
showing each of the aforementioned materials. From left to right, we have a dielectric sphere
with an index of refraction of 1.5, a metal sphere with 0 fuzziness, and a lambertian sphere
with a greenish color. On top of that, we also have a diffuse light sphere to lighten up our

scene.

4.11 Textures

Textures play an instrumental role in adding realism and depth to our rendered scenes.
They provide a means to add intricate surface detail to our objects, going beyond the use of
simple uniform colors. In the context of our ray tracer, we have implemented three kinds of

textures: Constant, Checker, and Image textures, each of which is described in more detail in

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

64 Chapter 4. Real-Time Path Tracer Implementation

Figure 4.4: Example of Rendered Materials

the following sections.

4.11.1 Constant Textures

Constant textures, as the name suggests, represent a uniform, unchanging color across the
entire surface of an object. This kind of texture is one of the simplest to implement and can
be used to depict solid colored objects in the scene. According to Shirley’s book, a constant
texture returns the same color for any given texture coordinates.

In Listing §.23, we can see an example implementation of the Constant Texture Class.

1 // Structure for Constant Texture

struct ConstantTexture {

Vec3 color; // the constant color of the texture

y // Value function for Constant Texture

2
3
4 };
5
6
7

Vec3 value(const float u, const float v, const Vec3& p, const
ConstantTexture& tex) {

8 return tex.color;

Listing 4.23: Constant Texture

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.11.2 Checker Textures 65

In the Listing above, color represents the constant color of the texture. The value function

always returns this constant color, regardless of the coordinates passed in.

4.11.2 Checker Textures

Checker textures offer a way to create more visually interesting and complex surfaces.
This type of texture alternates between two different colors in a checkerboard pattern. To
determine the color of a point on the surface, we calculate whether the sum of the integer
parts of the texture coordinates is even or odd. If the sum is even, we use the first color; if it’s
odd, we use the second. Checker textures are especially useful for creating repeating patterns
on larger surfaces, such as floors or walls.

In Listing #.24], the Checker Texture Class is presented.

1 // Structure for Checker Texture

2 struct CheckerTexture {

3 std::shared ptr<Texture> odd; // the ”odd” color of the checker
pattern

4 std: :shared ptr<Texture> even; // the ”“even” color of the checker
pattern

5);

6

7 // Value function for Checker Texture

8 Vec3 value (const float u, const float v, const Vec3& p, const

CheckerTexture& tex)

9 float sines = sin(10*p.x())*sin(10*p.y()) *sin (10*p.z());
10 if (sines < 0) return tex.odd->value(u, v, p);

11 else return tex.even->value(u, v, p);

12 }

Listing 4.24: Checker Texture

For the checker texture, the value function returns either the odd or even color, depending on

the result of the sine function evaluated at the point in 3D space.

4.11.3 Image Textures

To further augment the realism of our ray tracing application, we introduced Image Tex-

tures, extending the possibilities of surface representation. As opposed to solid textures,

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

1
2
3

O 0 39 N n B

10
11
12
13
14
15
16
17
18
19
20
21
22

66 Chapter 4. Real-Time Path Tracer Implementation

which only offer uniform or simple patterned coloration, image textures enable the usage
of complex color data from image files, essentially mapping an image onto the surface of
objects in our scene.

For image loading and decoding, we relied on the widely-used stb library [28§], partic-
ularly the stb_image.h header file. This library supports a broad range of image formats,
including JPEG, PNG, TGA, BMP, PSD, GIF, HDR, PIC, and PNM. Notably, its simplistic
API and single-file distribution make it an appealing choice for the rapid development and
prototyping phase of our ray tracing application.

Once an image is loaded with the STB library, it is treated as an array of pixel values.
Each pixel is associated with a color, usually represented as an RGB triplet. To access the
color of a specific pixel, we map the texture coordinates (u, v) to the corresponding pixel in
the image.

In essence, the value function for an Image Texture in our implementation is expressed

in the Listing §.23.

// Structure for Image Texture
struct ImageTexture {
unsigned char* data; // Pointer to the image data
int width; // Width of the image
int height; // Height of the image
int bytes per pixel; // Number of bytes per pixel
int bytes per scanline; // Number of bytes per scanline

b

// Value function for Image Texture

Vec3 value(float u, float v, const Vec3& p, ImageTextureé& tex) const {
// If no data is present, return a default color.
if (tex.data == nullptr)

return Vec3(0, 1, 1);

// Clamp input texture coordinates to [0,1] x [1,0]

u Clamp (u, 0.0f, 1.0f);

v 1.0f - Clamp(v, 0.0f, 1.0f); // Flip V to image coordinates
// Compute the pixel position in the image
int 1 = static cast<int>(u * tex.width);

int j = static cast<int>(v * tex.height);

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.11.3 Image Textures 67

23

24 // Clamp integer mapping, since actual coordinates should be less
than 1.0

25 if (i >= tex.width)

26 i = tex.width - 1;

27 if (j >= tex.height)

28 j = tex.height - 1;

29

30 // Scale factor to convert color values from [0,255] to [0,1]

31 const float color scale = 1.0f / 255.0f;

32

33 // Calculate the position of the pixel in the image data

34 unsigned char* pixel = tex.data + j * tex.bytes per scanline + i *
tex.bytes per pixel;

35

36 // Return the color of the pixel, scaled to [0,1]

37 return Vec3(color scale * pixel[0], color scale * pixel[l],
color scale * pixel([2]);

38 }

Listing 4.25: Image Texture

The value function returns the color of an Image Texture at a given point (u, v).

[u—

. If there’s no data available, it returns a default color.

2. It adjusts the texture coordinates (u, v) to fit within the image dimensions.

3. The texture coordinates are mapped to pixel coordinates in the image.

4. It ensures that the pixel coordinates (i, j) fall within the image bounds.

5. It calculates a color scale factor to convert color values from [0,255] to [0,1].

6. Finally, it finds the corresponding pixel in the image data and returns its color, scaled

to be within the range [0,1].

Our implementation of textures is encapsulated within the Texture class. This class serves
as a base class for all texture types. The Texture class is organized similarly to our Hittable

and Material classes and adopts a unified interface for all texture types.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

68 Chapter 4. Real-Time Path Tracer Implementation

The class is constructed with an enumeration, TextureType, defining the types of textures
we’ve implemented: Constant, Checker, and Image. This information is used in the ObjectU-
nion, which is a union data structure containing pointers to instances of each possible texture
type.

In our design, a Texture instance has a type attribute that defines its texture type, and an
Object attribute, which is a pointer to an ObjectUnion. This ObjectUnion instance contains
a pointer to the specific texture object based on the type attribute. This structure helps us
manage different textures in a unified manner, allowing for flexibility and extensibility when
implementing various texture types in our ray tracing application.

This encapsulation of texture types within the Texture class streamlines the process of
handling different textures, each with their unique value functions. By leveraging polymor-
phic behavior within a shared interface, we can conveniently use a single texture instance to
represent any of the supported texture types.

By employing these three texture types within our ray tracer, we can effectively simulate
a wide range of material appearances, greatly enhancing the realism and visual appeal of our
rendered scenes. We must note that this level of detail and complexity comes at the cost of in-
creased computational demands, as more intricate texture computations need to be performed
for each ray-object intersection. However, the resulting improvement in image quality is well
worth the additional computational load.

In Figure #.5, we provide you with an example of a rendered image from our application,

showcasing our University logo in a lambertian, metal and diffuse light rectangle.

4.12 Antialiasing

Antialiasing is a technique used in digital image synthesis to reduce the visual artifacts
that occur when high-frequency detail is represented with a low-resolution grid. These arti-
facts are most noticeable in images as “’jaggies” or stair-stepped edges, which are the result
of the grid-like structure of pixel-based displays.

In Ray Tracing, we often use a technique called super-sampling for antialiasing. In this
technique, instead of sending a single ray through each pixel, we send multiple rays through
different locations within the same pixel, and then average the results. This process smooths

out the jaggies because the final color of each pixel is no longer determined by a single point

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.12 Antialiasing

69

Figure 4.5: Example of Rendered Textures

sample but rather by the average of several samples within that pixel.

Our implementation follows Peter Shirley’s approach as described in ”Ray Tracing in

One Weekend” [[15]. For each pixel, we generate multiple rays, each slightly offset from the

pixel’s center. The number of rays is determined by the variable samples _per_pixel.

In Listing §.26, we extend the code from §.7 section to support generating pixels with

multiple Samples.

1 for (int s = 0; s < samples per pixel; s++) {

2 float u = (float) ((x - center.x()) + curand uniform(&local rand state

)y) / (float) (width) ;

3 float v = (float) ((center.y() - y) + curand uniform(&local rand state

y) / (float) (width) ;

4 Vec3 distFromCenter = (u * rightV) + (v * upV);

5 Vec3 startPos = (inputs.near plane * distFromCenter) + origin +

inputs.fov * forwardV);
6 Vec3 secondPlanePos = (inputs.far plane * distFromCenter)

inputs.fov * 10.0f) * forwardV) + origin;

7 Vec3 dirVector = Normalize (secondPlanePos - startPos);

8

9 Ray r = Ray(startPos, dirVector):;

10 col = col + color(r, world, max depth, &local rand state,

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

((L.0f /

70 Chapter 4. Real-Time Path Tracer Implementation

Listing 4.26: Antialiasing

Each sample is sent through a slightly different part of the pixel, with the offsets # and v
determined by random factors. The function curand_uniform generates a random number
between 0 and 1, which is used to offset the sample within the pixel.

This process effectively averages the color over the area of the pixel, instead of deter-
mining the color based on the center of the pixel alone. This technique reduces the jagged or
stair-stepped effect that can occur when the scene is sampled at the pixel resolution. The more
samples per pixel, the more accurate the color representation and the smoother the resulting
image will appear.

In Figure }.6, is an example of before and after antialiasing in our application. We can

clearly observe the difference of the pixels at the edge of the sphere.

Figure 4.6: Before and after Antialiasing

4.13 Bounding Volume Hierarchies

Bounding Volume Hierarchies (BVHs) [2] are a crucial optimization technique used in
ray tracing to reduce the number of intersection tests. By intelligently grouping objects into
hierarchies of bounding volumes, we can often eliminate many unnecessary intersection tests,

which can significantly speed up the rendering process.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

1
2
3

4
5
6
7
8

9
10

11
12
13
14

15
16
17
18

4.13 Bounding Volume Hierarchies 71

The idea behind a BVH is simple: instead of testing each ray against every object in the
scene, we first test the ray against a simple bounding volume containing a group of objects.
If the ray doesn’t intersect the bounding volume, we can immediately discard all the objects
inside it without testing them individually. If the ray does intersect the bounding volume, we
then need to test the ray against each object contained within that volume.

BVHs are typically implemented as binary trees. Each node in the tree contains a bound-
ing volume and two children. The children can be either inner nodes (with their bounding
volumes) or leaf nodes, representing actual geometric objects in the scene. The tree is con-
structed so that each bounding volume completely encloses the bounding volumes and objects
of its children.

In our implementation, we followed the approach described by Peter Shirley in ”Ray
Tracing: The Next Week” [39] and modified it to our needs. We construct a BVH by sort-
ing the scene objects by their geometrical type and then recursively splitting them into two
groups. The objects are enclosed within an axis-aligned bounding box (AABB), which makes
the intersection test with the ray very fast and straightforward. In Listing #.27, is a high-level
view of how this might look in code.

class BVHNode ({

public:

Hittable* left;
Hittable* right;
AABB box;
BVHNode (Hittable** list, size t start, size t end)
{

//

// Construct the BVH node here by sorting objects by their type
and splitting them into two groups

//
}
inline bool Hit (const Ray& r, float t min, float t max, HitRecordé&
rec) const
{

if (!box.hit(r, t min, t max))

return false;

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

19
20

21
22
23
24

72 Chapter 4. Real-Time Path Tracer Implementation

bool hit left = left->hit(r, t min, t max, rec);
bool hit right = right ? right->hit(r, hit left ? rec.t : t max,

rec) : false;

return hit left || hit right;

Listing 4.27: BVHNode Class

When a ray is tested against a BVH node, it first tests against the node’s bounding box. If
there’s no intersection, it’s clear the ray doesn’t hit any object in the subtree, and the function
returns false. If it hits, the ray tests against the children of the node, which recursively applies
the same logic until it reaches the leaf nodes representing actual scene objects. This recur-
sive tree traversal is efficient and allows for rapid culling of irrelevant objects, significantly
speeding up the ray tracing process. Please note that in our actual implementation, we used
an iterative approach, since recursion in CUDA 1is not recommended due to its high stack

usage and performance issues.

4.14 CUDA Implementation Specifics

When we set out to implement our ray tracer, a key goal was to take advantage of the high
performance parallel computing capabilities offered by NVIDIA’s CUDA. As we described
in section .2, this necessitated several design decisions in terms of memory management,
computational strategy, and more, which were essential to optimize our ray tracing algorithm
and ensure efficient execution on the GPU. In this section, we discuss the specifics of our
CUDA implementation, describing how we’ve exploited certain characteristics of CUDA to

enhance our application’s performance.

4.14.1 Kernel Configuration

Kernel configuration is an integral aspect of our CUDA implementation strategy, requir-
ing careful tuning to strike a balance between performance and resource consumption. An
essential part of this process is the configuration of kernel launches, where we have to specify

the number of thread blocks and the number of threads per block for each kernel invocation.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.14.2 Coalesced Memory Access 73

In our case, we’ve settled on using 1024 threads per kernel, guided by the hardware capa-
bilities of modern GPU architectures, which commonly support up to 1024 threads per block.
This number, while being a good starting point, is not set in stone. Depending on the specific
GPU architecture in use and the nature of the problem at hand, different configurations might
yield better performance [[L1].

The _ launch_bounds _ directive has proven to be an indispensable tool in this pro-
cess. By using this directive, we’re able to provide the CUDA compiler with an upper bound
on the number of threads per block for a specific kernel. This information enables the com-
piler to make better decisions on how to allocate and optimize the use of the GPU’s scarce
and valuable resources, such as registers and shared memory. In our implementation, the
__launch_bounds__ directive has been set with the maximum thread block size of 1024,
aligning with our chosen configuration.

Profiling our application with NVIDIA’s Nsight Compute [20], the occupancy of our
application seems optimal since the theoretical occupancy of our application is at 100%. As
for, the achieved occupancy of our application is at 83.3%. The difference between calculated
theoretical (100.0%) and measured achieved occupancy (83.3%) can be the result of warp
scheduling overheads or workload imbalances during the kernel execution. Occupancy in
this context is the percentage of the hardware’s ability to process warps that is actively in use.
Warps are threads that are automatically grouped into bundles [40]. The number of threads
in a warp is a bit arbitrary, and it depends on the manufacturer of the chip.

In Figure §.7, we can visualize the occupancy graphs of our application. The blue dot on
the graphs represents our chosen resource usage of the kernel. The other data points represent
the range of possible block sizes, register counts, and shared memory allocation.

Please note that higher occupancy does not always result in higher performance, however,
low occupancy always reduces the ability to hide latencies, resulting in overall performance
degradation. Large discrepancies between the theoretical and the achieved occupancy during

execution typically indicates highly imbalanced workloads.

4.14.2 Coalesced Memory Access

Performance optimization in CUDA goes beyond just configuring the kernel; it extends
to memory management and access patterns as well. A key strategy we employed in our

application is Coalesced Memory Access, leveraging the function cudaMallocManaged to

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

74 Chapter 4. Real-Time Path Tracer Implementation

Figure 4.7: NVIDIA Nsight Compute Occupancy Graphs

allocate Unified Memory, a shared memory space accessible by both CPU and GPU [#41]].

Coalesced Memory Access refers to the process whereby consecutive threads access con-
secutive memory locations. This pattern is highly beneficial as it maximizes memory band-
width utilization by allowing the threads to fetch memory in a single transaction, thus greatly
reducing the number of transactions required. As GPUs are designed to access memory in
large, aligned chunks, coalescing memory accesses ensures that the full bandwidth of the
memory subsystem is harnessed, leading to efficient memory use and improved performance.

Furthermore, we did some padding on our data structures when their sizes were not mul-
tiples of the warp size (32 bytes). Padding our data structures, helped us ensure that memory
accesses by threads in different warps do not fall into the same cache line, which can improve
coalescing.

In the following steps, we will explain how we implemented global memory coalescing

in our application:

1. Define the size of each type of Object (Hittables, Materials, Textures)
2. Calculate the total size of memory needed

3. Allocate unified memory with cudaMallocManaged function

4. Partition memory for the scene’s object and their constituent objects

5. Initialize the hittables with the proper constructors for the material and texture

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.14.3 Iteration over Recursion 75

In addition to adopting coalesced memory access, we employed the advanced features
of NVIDIA’s Nsight Compute, including the Memory Workload Analysis tool and Source
Counters. The Memory Workload Analysis tool was instrumental in examining our applica-
tion’s memory access patterns, identifying inefficiencies, and ensuring that we were achiev-
ing the desired coalesced access.

Source Counters, on the other hand, offered us granular insights into the GPU’s warp
execution efficiency and allowed us to analyze the behavior of our code at the instruction
level. With this feature, we could directly correlate memory access patterns with specific
code lines, helping us better understand where inefficiencies occurred and how we could
optimize them.

With the graphical and detailed breakdown provided by these tools, we identified un-
coalesced accesses, out-of-bounds accesses, and other potential issues. Then, we addressed
them promptly, leading to substantial improvements in our ray tracer’s performance. This
iterative process of analysis, modification, and verification, augmented by Nsight Compute’s
comprehensive profiling capabilities, played a crucial role in optimizing our memory access

patterns, thereby enhancing the overall performance of our application.

4.14.3 Iteration over Recursion

Recursion is an important algorithmic technique often used in programming, but in the
context of CUDA and GPU programming, it comes with some specific limitations and po-
tential pitfalls. The stack size on a GPU is limited compared to a CPU, making it more prone
to stack overflow if recursion depth becomes too large. Moreover, each thread in CUDA has
its own private stack. This means, when recursion is used extensively, it can lead to substan-
tial memory overhead. Recursion can also hinder performance due to the absence of tail-call
optimization [42] in CUDA, potentially leading to inefficient use of the GPU’s resources.

Given these factors, we consciously chose to use iteration instead of recursion in our
device code to circumvent these challenges [43]. This choice was particularly impactful when
applied to our ray-color computation, where we transformed the recursive function into a loop
using a manual stack.

An example implementation of the color device function can be seen in Listing §.28.

I device inline Vec3 color (const Ray& r, Hittable* world, int max depth

)

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

76 Chapter 4. Real-Time Path Tracer Implementation
2 {
3 Ray cur ray = r;
4 Vec3 cur attenuation = Vec3(1.0f, 1.0f, 1.0f);
5 Vec3 background = Vec3(0.0f, 0.0f, 0.0f);
6
7 HitRecord rec;
8
9 for (int i = 0; i < max depth; i++) {
10 if (!'Hit(cur ray, 0.001f, FLT MAX, rec)) {
11 // return the background color (sky)
12 }
13 else {
14 Vec3 emitted = Vec3(0.0f, 0.0f, 0.0f);
15 Ray scattered;
16 Vec3 attenuation;
17
18 switch (material->type) {
19 // return calculated color based on material type.
20 // color = emmited * cur attenuation
21 default:
22 return background;
23 }
24
25 cur attenuation = attenuation * cur attenuation;
26 cur ray = scattered;
27 }
28 }
29
30 return background; // exceeded recursion
31 }

Listing 4.28: Color Computation Device Function

In the BVHNode’s Hit device function, we faced a similar situation. The BVHNode rep-
resents a Bounding Volume Hierarchy (BVH), a tree structure used in ray tracing to im-
prove rendering speed }#.13. Each BVHNode can contain two child nodes, hence the traversal
through the BVH traditionally uses a recursive approach. However, following our strategy,
we reworked this to use iteration. This iterative solution uses a manual stack to store the

nodes for traversal, removing the risk of stack overflow and improving the performance con-

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.14.4 Avoiding Virtual Functions 77

sistency.

Our switch from recursion to iteration allowed us to better manage GPU memory, reduce
latency, and increase throughput. It also led to more predictable performance, as it reduced
the variance in execution times across threads that is usually introduced by the non-uniform
recursion depths. This change, coupled with our other optimization efforts, contributed to

significant performance improvement in our ray tracing application.

4.14.4 Avoiding Virtual Functions

The CUDA programming model provides support for class inheritance and virtual func-
tions. However, in practice, the use of virtual functions in CUDA device code can lead to
performance degradation [44]. This arises due to two primary reasons: an increase in instruc-
tion divergence and the requirement of slower global memory access for the virtual function
table, or vtable.

Instruction divergence occurs when threads within the same warp follow different exe-
cution paths. Since the GPU is a SIMD (Single Instruction, Multiple Data) architecture, it is
most efficient when all threads in a warp perform the same operation. In the context of vir-
tual functions, this divergence arises because different objects may execute different function
implementations depending on their dynamic type, leading to inconsistent execution paths
among threads.

Further, the vtable, which is used for dispatching calls to the correct function implemen-
tation, typically resides in global memory. Global memory accesses are much slower than
shared or local memory accesses, leading to increased latency.

In order to mitigate these issues, we employed a design pattern that involves the use
of unions in our core classes, such as the Hittable, Material, and Texture. By using unions,
we were able to store different types of data in the same memory location and determine at
runtime which variant to use, without the need for virtual functions. This approach enabled us
to effectively emulate the polymorphic behavior usually provided by virtual functions, while
avoiding the associated performance costs.

Furthermore, by structuring our data in this way, we were able to keep related data
close together in memory, improving memory access patterns and potentially leveraging the
hardware cache more effectively. This change was instrumental in the optimization of our

ray tracer, demonstrating that careful consideration of hardware characteristics and CUDA-

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

78 Chapter 4. Real-Time Path Tracer Implementation

specific features can significantly influence application performance.

4.14.5 Float Precision

Our ray tracer primarily uses single-precision (32-bit) floats in calculations to maintain
efficient computation and maximize performance. This decision was based on the observa-
tion that GPUs, including those we’ve employed for our study, typically exhibit a higher
throughput for single-precision floating-point operations as compared to double-precision
operations. This is a design characteristic inherent to many contemporary GPUs, stemming
from their original role as processors for graphics rendering, a task where single-precision
computations are often sufficient.

The use of single-precision computations aligns with the architectural strengths of the
GPU, allowing us to fully leverage its computational capabilities. The enhanced speed of
single-precision operations can significantly reduce the overall computation time of our ray
tracing algorithm, thereby enabling the processing of complex scenes in a reasonable time
frame.

In addition to using single-precision floats, we have made extensive use of CUDA’s intrin-
sic functions for arithmetic operations in our ray tracer. These intrinsic functions are specially
designed to exploit the GPU’s hardware capabilities for specific mathematical operations, re-
sulting in faster and potentially more accurate computations. They provide an additional layer
of optimization, and their use can lead to noticeable performance improvements in the ray
tracer.

However, it’s crucial to mention that the usage of single-precision floats also requires
careful consideration. Although they offer substantial performance benefits, they come with
lower precision compared to double-precision floats. This can introduce errors in calcula-
tions, especially for larger or more complex computations. Therefore, the choice of precision
in ray tracing, or in any application, requires a careful balance between performance and the
level of precision required by the task at hand. In our work, we found that single-precision was
adequate for our needs, without introducing noticeable inaccuracies in our rendered images.

In conclusion, the specific techniques we have employed for our CUDA implementation
are critical in leveraging the parallel processing capabilities of modern GPUs, and have sig-
nificantly contributed to the performance of our ray tracer. These techniques demonstrate

that a comprehensive understanding of the CUDA architecture, coupled with an effective

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.15 User Interaction and Experience 79

problem-solving approach, is key to efficient GPU programming.

4.15 User Interaction and Experience

Our ray tracing application offers an engaging and interactive user experience, built around
a feature-rich graphical user interface developed with ImGui [3]. The UI is designed to be
intuitive and responsive, ensuring that users, whether they are beginners or experienced with
ray tracing, can easily interact with the application, modify settings, and visualize the effects

of their adjustments in real-time.

In Figure }.8, is an overview of our application’s complete Ul

Figure 4.8: Application’s Ul

4.15.1 CUDA Generated Image Window

The CUDA Image Window is where the ray tracing magic happens. This window displays
the rendered scene in real-time as rays are traced through the scene, bouncing off objects, and
accumulating color information. It serves as a canvas that dynamically updates to reflect any
changes made through the other interface elements, showcasing the power and flexibility of
ray tracing in producing visually stunning images.

In Figure §.9, we can see the Generated Image ImGui window.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

80 Chapter 4. Real-Time Path Tracer Implementation

Figure 4.9: Generated Image Window

4.15.2 Options Window

The Options Window provides users with granular control over camera and ray tracing
settings. The adjustable camera settings include field of view, camera position and orienta-
tion, allowing the user to view the scene from different perspectives. The ray tracing settings
include modifying the maximum depth of ray bounces and adjusting the number of samples
per pixel that we described in section. These controls provide users with the ability to

fine-tune the ray tracing process to meet their specific needs and preferences.

In Figure §.10, we can see the Options window with the adjustable Camera and Ray

Tracing settings.

Figure 4.10: Options Window

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.15.3 Scene Window 81

4.15.3 Scene Window

The Scene Window is where users can interact directly with the objects in the scene.
Users can add or remove objects, adjust their position and size, and modify the scene’s objects
materials and textures. This includes changing the color, reflectivity, and texture of objects.
The Scene Window also allows users to adjust the background color of the scene, offering

another dimension of customization.

In Figure .11}, is the Scene window with the adjustable Background and Objects settings.

For example, if we want to change the Sphere 6’s material or texture, we can do so by clicking

Figure 4.11: Scene Window

on the dropdown button, respectively.

Furthermore, if the type of texture on an object is an Image, then an Open... button ap-
pears. Clicking on the button, a popup file dialog window appears for choosing the desired

image file, as seen in Figure §.12.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

82 Chapter 4. Real-Time Path Tracer Implementation

Figure 4.12: File Dialog Window

4.15.4 Metrics Window

The Metrics Window serves as a real-time performance dashboard, providing information
about the rendering speed of the application, the running mode of the application (Debug, Re-
lease, Dist), the generated image dimensions, and the time taken to render the current frame.
These metrics are invaluable for users interested in optimizing their scenes for performance
or comparing the speed of different hardware configurations.

In Figure .13, is the Metrics Window.

Figure 4.13: Metrics Window

4.15.5 Console Window

The Console Window is the hub of application log information. It displays important
events, error messages, and status updates from the application, keeping users informed about
the application’s operations and helping them diagnose any issues that might arise.

In Figure §.14, is the Console Window. We can also filter the logs with the searching bar

on top of the window, clear the whole log, and copy it.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.15.6 Dockable Interface 83

Figure 4.14: Console Window

4.15.6 Dockable Interface

Thanks to the use of the ImGui docking branch, all the above windows can be freely
repositioned, resized, and docked according to the user’s preference. This means users have
full control over the layout of the interface, enabling them to create a workspace that best
suits their workflow.

Figure showcases how the ImGui docking interface works, by dragging an ImGui
Window.

Figure 4.15: ImGui Docking

In Figure §.16, is an alternative ImGui customization.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

84 Chapter 4. Real-Time Path Tracer Implementation

Figure 4.16: ImGui Alternative Customization

4.15.7 Keyboard Controls for User Input

In addition to the graphical interface, our application also incorporates keyboard con-
trols to facilitate camera navigation and certain functionality. Once the user clicks inside the

Generated Image Window to gain focus, they can utilize the following keys:

* W, A, S, D: These keys allow the user to control the camera position, akin to common
navigation controls in video games. W and § move the camera forward and backward
along the viewing direction, respectively, while 4 and D shift the camera left and right,

perpendicular to the viewing direction.

* Ctrl and Space: To adjust the vertical position of the camera, users can use the Ctrl
key to move downward and the Space key to move upward. This feature allows users

to explore the scene from different vertical perspectives and positions.

» Shift: To adjust the speed of the camera, users can hold the Shift key to gain velocity
inside the scene. This feature is particularly useful when the user wants to move the

camera a great distance.

» P: This key serves a unique function - it allows the user to pause and resume the ray
tracing process. This functionality can be particularly useful when the user wishes to

halt the computation to examine the current state of the scene or to make adjustments

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

4.15.7 Keyboard Controls for User Input 85

in the settings before resuming the rendering process.

These keyboard controls provide a more immersive and interactive user experience, giv-
ing users an additional layer of control over the viewing and rendering process. They exem-
plify our application’s commitment to a user-friendly, interactive, and responsive interface
for exploring the possibilities of ray tracing.

Overall, our application’s interface is not just a tool for ray tracing; it’s an immersive
environment that puts the user in the driver’s seat, enabling them to unleash their creativity,

experiment with ray tracing parameters, and witness the impact of their changes in real-time.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Chapter 5

Experiments, Conclusions and Future

Work

As we draw our exploration of GPU-accelerated ray tracing to a close, this final chap-
ter serves to wrap up our research, review our accomplishments, and consider the potential
for further developments. We will take a moment to reflect on the journey that has led us to
successfully build a CUDA-based real-time ray tracer, contemplating the challenges we en-
countered and the solutions we devised. We will also delve into the testing and experimental
evaluation of our application, analyzing its performance and comparing it with CPU-based
implementations. This empirical examination will reinforce our conclusions and shed light
on the benefits and drawbacks of our approach. Lastly, we will look forward into the future,
discussing existing limitations of our ray tracer, outlining potential bug fixes, and envision-
ing additional features and enhancements. Through this final chapter, we will encapsulate the
breadth of our work, providing a comprehensive overview of our findings and speculating on

the exciting paths that lie ahead in GPU-accelerated ray tracing.

5.1 Experiments and Testing

In order to validate the effectiveness of our GPU-accelerated ray tracing application and
compare its performance against other versions of Ray Tracing in One Weekend B, we con-
ducted a series of tests on the three different implementations: RTOW running on a CPU,

RTOW running on a CUDA-enabled GPU, and our own CUDA-based application.

The tests involved rendering the same scene across all three versions with varying input

87

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

88 Chapter 5. Experiments, Conclusions and Future Work

sizes, represented by the number of samples per pixel (SPP). The SPP values chosen for these
tests were 1, 10, 50, 100, 500, and 1000. The scene used for these tests was kept consistent

to ensure a fair comparison. The scene used for testing is displayed in Figure 5.1|. The scene

Figure 5.1: Testing Scene

consists of 100 spheres arranged in a 10x10 grid pattern, with positions offset slightly by a
random factor for variation and realism. Each sphere in this scene has a radius of 0.2 units and
is centered at a position determined by its grid coordinates, again adjusted by a random factor.
The materials of the spheres -—Lambertian, Metal, or Dielectric—- are chosen randomly,

with respective probabilities 0f 0.8, 0.15, and 0.05. The material characteristics are as follows:

1. Lambertian spheres: These spheres are diffuse, with their colors determined by the
square of a random RGB value. This method of color assignment ensures that darker
colors are more frequently chosen, emulating the common real-world observation that

darker colors are generally more prevalent.

2. Metal spheres: These spheres have a reflective surface, with their colors determined
by an RGB value that is an average of a random value and 0.5, ensuring that they have
a brighter, more metallic look. Additionally, these spheres have a fuzz factor, which is

a value up to 0.5 that determines the amount of random reflection.

3. Dielectric spheres: These spheres are transparent and refract light, simulating materials

like glass or water. The refractive index is set at 1.5, typical of glass.
The randomness in color, position, and material type contributes to the complexity of the

scene, making it an effective testbed for our ray tracer’s capabilities and performance.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

5.1 Experiments and Testing 89

To gain a robust measure of each version’s execution time, we ran each test five times
and computed the average execution time in milliseconds. Averaging the results over multiple
runs helps to reduce the impact of random variations and provide a more accurate measure
of performance.

The execution time for each version was obtained by running the executables with a
Python script that utilized the subprocess module. This script not only ran the executables,
but also collected the output and calculated the average execution times.

The results of these tests are visualized in a graph in Figure 5.2, which clearly demon-

strates the execution times for all three versions at different SPP levels.

Figure 5.2: Graph between all three implementations

In the graph, the x-axis represents the samples per pixel, while the y-axis represents the
average execution time in milliseconds. The blue line denotes the CPU version of RTOW,
the red line indicates the CUDA version of RTOW, and the green line represents our ap-
plication. It is evident from the results that there is a substantial disparity in performance
between the CPU and CUDA versions. This distinction, while expected due to the inherent
parallel processing capabilities of GPUs, reaffirms the advantageous utilization of CUDA for
computationally intensive tasks such as ray tracing.

In addition to the comprehensive comparison among the CPU, CUDA, and our applica-

tion, we also prepared a more focused comparison specifically between the CUDA version

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

90 Chapter 5. Experiments, Conclusions and Future Work

and our application. This approach allows us to observe and analyze the efficiency and im-
provements brought about by our optimizations more clearly. The graph, as seen in Figure 5.3,
generated from this test narrows down the comparison to just the CUDA implementations,
thereby eliminating any potential distractions or scaling issues introduced by the vast per-

formance gap between CPU and GPU implementations. This focused comparison provides a

Figure 5.3: Graph between RTOW CUDA and our Application

clear picture of how our CUDA-based ray tracer stands against the original CUDA version in
terms of performance and efficiency. Evidently, the CUDA RTOW execution time is about
8.89 times (or 889%) greater than our application’s execution time at 1000 SPP.

As the graph illustrates, our CUDA-based ray tracer significantly outperforms the CPU-
based version of RTOW across all SPP values. It also showcases competitive performance
when compared to the CUDA version of RTOW, demonstrating the efficacy of the various

optimizations and design decisions we have made throughout our application’s development.

5.2 Conclusions

This thesis has embarked upon a thorough and comprehensive journey into the realm of
GPU-based ray tracing, employing CUDA as the framework of choice. Our study began with

the fundamentals of ray tracing, its principles, algorithms, and their implications for realistic

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

5.2 Conclusions 91

image rendering. We delved into the intricate physics of light and the mathematics of 3D
geometry to understand how ray tracing can simulate the natural behavior of light, creating

lifelike digital images that hold true to the physics of the real world.

From there, our investigation transitioned into GPU programming and the CUDA plat-
form. We explored the architecture of modern GPUs, understanding their massive parallelism
capabilities, and how this computing power can be harnessed using CUDA. The thesis pre-
sented a detailed examination of CUDA’s architecture, its memory hierarchy, and the pro-
gramming model that allows developers to exploit the inherent parallelism in computational

problems.

The primary achievement of our work lies in the successful design and implementation
of an efficient ray tracer on the CUDA platform. Our ray tracing engine stands as a testament
to the potent synergy between the inherent parallelism of ray tracing algorithms and the com-
putational power of modern GPUs. By reimagining a ray tracer in the CUDA environment,
we transformed a traditionally resource-intensive, slow rendering process into a real-time

graphical engine.

The process of converting our ray tracer to operate efficiently under CUDA provided
numerous insights into CUDA optimization techniques. Our project demonstrates how crucial
memory access patterns, coalesced memory access, and other CUDA-specific programming
strategies are to harness the full power of GPU. Additionally, we successfully showcased
how to avoid potential performance pitfalls such as thread divergence and improper use of
CUDA’s memory hierarchy. The efficient handling of recursion, use of intrinsic functions,
avoidance of virtual functions, and the use of the Thrust library are further evidence of the

need for a deep understanding of the CUDA environment.

The end result is a robust, efficient, and fast real-time ray tracing application. It serves
as a practical example and blueprint for leveraging CUDA’s capabilities in creating high-
performance graphics applications. Our ray tracer encapsulates the intricate balance between
the mathematical rigor of ray tracing, the architectural knowledge of GPU programming, and
the practical wisdom of CUDA programming. It stands as an embodiment of the powerful
capabilities that CUDA offers to developers venturing into the realm of high-performance

computing and real-time graphics rendering.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

92 Chapter 5. Experiments, Conclusions and Future Work

5.3 Future Work

Our work on developing a CUDA-based ray tracer has been rewarding, and while we have
accomplished our primary goal, there are several avenues for improvement and expansion.
The current implementation has a few known limitations and potential enhancements that we

can explore in future iterations.

5.3.1 Bug Fixes

There are a few identified issues in our current implementation that need to be addressed
in future iterations of the application. Fixing these will result in an improved user experience
and expanded capability of the ray tracer. Here are some of the main bugs that we have

recognized:

» Camera Snapping: Our current implementation sometimes experiences a glitch where
the camera abruptly ’snaps’ to a new position or orientation when the user clicks in-
side the Generated Image window to gain focus. This unintended behavior disrupts the
seamless navigation experience and can potentially cause disorientation for the user,

especially when they are carefully positioning the camera for a specific view.

* Window Minimization: A persistent issue in our application involves the minimization
of the main application window. Currently, when the window is minimized, it does not
restore properly, rendering the application inaccessible until it is restarted. This is a
significant usability issue that needs to be addressed to improve the overall robustness

of the application.

In subsequent updates to our application, we aim to fix these bugs to improve the user
interface, increase the application’s stability, and expand its capabilities. This will ensure
a smoother and more reliable experience for users while they engage with our ray tracing

engine.

5.3.2 Extra Features and Optimizations

There are also several potential features and optimizations that could be added to increase

the performance and functionality of the ray tracer.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

5.3.2 Extra Features and Optimizations 93

Firstly, we could introduce more advanced rendering techniques, such as importance sam-
pling [45]. This technique prioritizes the sampling of light that significantly contributes to the

final color of a pixel, reducing noise and improving image quality.

Secondly, the addition of more sophisticated ray tracing features like adaptive sampling,
sub-surface scattering, or caustics would enhance the visual fidelity of the renderer. Adap-
tive sampling would improve performance by reducing unnecessary computation, whereas
subsurface scattering and caustics would add to the realism by simulating complex light be-

havior.

At present, our ray tracer builds the BVH tree on the CPU and then transfers it to the
GPU for ray-object intersection tests. While this approach serves its purpose, it is not the
most efficient way to take advantage of the GPU’s computational capabilities. Offloading
the BVH construction to the GPU could provide substantial performance benefits, due to the

highly parallelizable nature of the process.

Linear Bounding Volume Hierarchies (LBVH) and Spatial Bounding Volume Hierarchies
(SBVH) are two strategies that are particularly well-suited for GPU implementation. These
techniques build the BVHs in a top-down manner, but unlike traditional methods, they exploit
the GPU’s capability for parallel processing to create the BVHs more quickly [46]. This, in
turn, results in faster render times due to reduced time spent in the construction phase and

accelerated intersection tests.

Incorporating LBVH or SBVH techniques into our ray tracer is a complex task, as it would
involve significant changes to our existing architecture. However, we believe the performance

gains that could potentially be realized are well worth the investment of time and effort.

Adding support for rendering triangles is another significant enhancement we aim to im-
plement in future iterations of our ray tracer. As of now, our application primarily deals with

spheres, which limits the complexity of the scenes we can create.

Triangular meshes are a fundamental component of 3D modeling and graphics. The abil-
ity to render triangle meshes would not only increase the richness and variety of the scenes
our application can handle but would also allow us to import and render complex 3D models

from external sources.
Implementing triangle support involves more than just handling a new shape; it requires
a robust method for efficiently managing and accessing potentially vast numbers of triangle

primitives. Strategies like the use of indexed triangle lists and further enhancements to our

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

94 Chapter 5. Experiments, Conclusions and Future Work

BVH system will likely play a critical role in this feature’s successful implementation.

The addition of triangle support is a substantial undertaking that would fundamentally
expand our ray tracer’s capabilities. However, with the significant potential for improving
the visual richness and flexibility of our application, it is a challenge we eagerly anticipate.

Implementing these enhancements will not only improve the visual output and perfor-
mance of our ray tracer, but will also broaden the application’s usability and potential. This

will make our ray tracer a more versatile and effective tool for real-time 3D rendering.

5.4 Epilogue

This thesis has been an enlightening journey into the realm of GPU programming and
real-time ray tracing. It has provided a thorough understanding of CUDA programming, the
intricacies of ray tracing, and how to marry the two for high-performance graphics render-
ing. The project serves as a foundation for further exploration into advanced GPU-accelerated
rendering techniques, paving the way for more realistic, real-time graphics in the future. The
experience and knowledge gained through this endeavor are valuable assets for future re-

search and development in the field of real-time rendering and high-performance computing.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Bibliography

[1] Cuda zone. https://developer.nvidia.com/cuda-zone. Accessed: 18-

06-2023.

[2] Bounding volume hierarchy. https://en.wikipedia.org/wiki/

Bounding volume hierarchy. Accessed: 18-06-2023.
[3] Dear imgui. https://github.com/ocornut/imgui. Accessed: 22-04-2023.

[4] Marco Nobile, Paolo Cazzaniga, Daniela Besozzi, Dario Pescini, and Giancarlo Mauri.
cutauleaping: A gpu-powered tau-leaping stochastic simulator for massive parallel anal-

yses of biological systems. PloS one, 9:¢91963, 03 2014.

[5] M. Usman Ashraf, Fathy Eassa, Aiiad Albeshri, and Abdullah Algarni. Performance and
power efficient massive parallel computational model for hpc heterogeneous exascale

systems. /[EEE Access, PP:1-1, 04 2018.

[6] Cornell box. https://en.wikipedia.org/wiki/Cornell box. Accessed:
14-06-2023.

[7] Ray tracing. https://developer.nvidia.com/discover/ray-

tracing. Accessed: 06-03-2023.

[8] Cudatoolkit. https://developer.nvidia.com/cuda-toolkit. Accessed:
06-03-2023.

[9] Opengl. https://www.opengl.org/. Accessed: 07-03-2023.
[10] Cuda-opengl interoperability. https://www.3dgep.com/opengl—-
interoperability-with-cuda/. Accessedc: 07-03-2023.

95

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

https://developer.nvidia.com/cuda-zone
https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
https://github.com/ocornut/imgui
https://en.wikipedia.org/wiki/Cornell_box
https://developer.nvidia.com/discover/ray-tracing
https://developer.nvidia.com/discover/ray-tracing
https://developer.nvidia.com/cuda-toolkit
https://www.opengl.org/
https://www.3dgep.com/opengl-interoperability-with-cuda/
https://www.3dgep.com/opengl-interoperability-with-cuda/

96 Bibliography

[11] Cuda ct++ programming guide. https://docs.nvidia.com/cuda/cuda-c-

programming-guide/. Accessed: 13-03-2023.

[12] An easy introduction to cuda ¢ and c++. https://developer.nvidia.com/

blog/easy-introduction-cuda-c—-and-c/. Accessed: 20-03-2023.

[13] Cuda samples. https://github.com/NVIDIA/cuda-samples. Accessed:
22-03-2023.

[14] Cuda opengl interop api. https://docs.nvidia.com/cuda/cuda-
runtime-api/group CUDART OPENGL.html#group CUDART
OPENGL. Accessed: 22-03-2023.

[15] Peter Shirley. Ray Tracing in One Weekend. CreateSpace Independent Publishing Plat-
form, 2016.

[16] Accelerated ray tracing in one weekend in cuda. https://developer.nvidia.

com/blog/accelerated-ray-tracing-cuda/. Accessed: 26-03-2023.

[17] Visual studio. https://visualstudio.microsoft.com/. Accessed: 25-04-
2023.

[18] Visual studio code. https://code.visualstudio.com/. Accessed: 25-04-
2023.

[19] Neovim. https://neovim.io/. Accessed: 25-04-2023.

[20] Nvidia nsight compute. https://developer.nvidia.com/nsight-
compute. Accessed: 25-04-2023.

[21] Nvidia nsight graphics. https://developer.nvidia.com/nsight-
graphics. Accessed: 25-04-2023.

[22] Amd pprof. https://www.amd.com/en/developer/uprof.html. Ac-
cessed: 25-04-2023.

[23] Intel vtune profiler. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html. Accessed: 25-04-
2023.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
https://github.com/NVIDIA/cuda-samples
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OPENGL.html#group__CUDART__OPENGL
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OPENGL.html#group__CUDART__OPENGL
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OPENGL.html#group__CUDART__OPENGL
https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda/
https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda/
https://visualstudio.microsoft.com/
https://code.visualstudio.com/
https://neovim.io/
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nsight-graphics
https://www.amd.com/en/developer/uprof.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

Bibliography 97

[24] Glad. https://glad.davld.de/. Accessed: 25-04-2023.
[25] An opengl library | glfw. https://www.glfw.org/. Accessed: 25-04-2023.

[26] Opengl mathematics. https://github.com/g-truc/glm. Accessed: 25-04-
2023.

[27] Thrust. https://docs.nvidia.com/cuda/thrust/index.html. Ac-
cessed: 25-04-2023.

[28] stb - single file public domain libraries for c/c++. https://github.com/
nothings/stb. Accessed: 25-04-2023.

[29] spdlog. https://github.com/gabime/spdlog. Accessed: 25-04-2023.
[30] Cmake. https://cmake.org/. Accessed: 25-04-2023.
[31] Premake. https://premake.github.io/. Accessed: 25-04-2023.

[32] F. Gonzalez and G. Patow. Continuity and interpolation techniques for computer graph-

ics. Comput. Graph. Forum, 35(1):309-322, feb 2016.

[33] Opengl shading language. https://www.khronos.org/opengl/wiki/
Core Language (GLSL)|. Accessed: 24-04-2023.

[34] Imgui image loading and displaying examples. https://github.com/
ocornut/imgui/wiki/Image-Loading—-and-Displaying-Examples.

Accessed: 22-04-2023.

[35] Lambertian reflectance. https://en.wikipedia.org/wiki/Lambertian

reflectance. Accessed: 22-04-2023.

[36] Specular reflection. https://en.wikipedia.org/wiki/Specular
reflection. Accessed: 22-04-2023.

[37] Fresnel equations. https://en.wikipedia.org/wiki/Fresnel
equations. Accessed: 25-04-2023.

[38] Schlick’s approximation. https://en.wikipedia.org/wiki/Schlick%

27s approximation. Accessed: 25-04-2023.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

https://glad.dav1d.de/
https://www.glfw.org/
https://github.com/g-truc/glm
https://docs.nvidia.com/cuda/thrust/index.html
https://github.com/nothings/stb
https://github.com/nothings/stb
https://github.com/gabime/spdlog
https://cmake.org/
https://premake.github.io/
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://github.com/ocornut/imgui/wiki/Image-Loading-and-Displaying-Examples
https://github.com/ocornut/imgui/wiki/Image-Loading-and-Displaying-Examples
https://en.wikipedia.org/wiki/Lambertian_reflectance
https://en.wikipedia.org/wiki/Lambertian_reflectance
https://en.wikipedia.org/wiki/Specular_reflection
https://en.wikipedia.org/wiki/Specular_reflection
https://en.wikipedia.org/wiki/Fresnel_equations
https://en.wikipedia.org/wiki/Fresnel_equations
https://en.wikipedia.org/wiki/Schlick%27s_approximation
https://en.wikipedia.org/wiki/Schlick%27s_approximation

98 Bibliography

[39] Peter Shirley. Ray Tracing The Next Week. CreateSpace Independent Publishing Plat-
form, 2016.

[40] Jonathan Passerat-Palmbach, Jonathan Caux, Pridi Siregar, Claude Mazel, and David
Hill. Warp-level parallelism: Enabling multiple replications in parallel on gpu. ESM
2011 - 2011 European Simulation and Modelling Conference: Modelling and Simulation
2011, 01 2015.

[41] How to access global memory efficiently in cuda c/ct++ kernels. https:
//developer.nvidia.com/blog/how-access-global-memory—

efficiently-cuda-c-kernels/. Accessed: 23-05-2023.

[42] Tailcall. https://en.wikipedia.org/wiki/Tail call. Accessed: 26-05-
2023.

[43] Alejandro Segovia, Xiaoming Li, and Guang Gao. Iterative layer-based raytracing on
cuda. In 2009 IEEE 28th International Performance Computing and Communications
Conference, pages 248 — 255, 01 2009.

[44] Mengchi Zhang, Ahmad Alawneh, and Timothy G. Rogers. Judging a type by its
pointer: Optimizing gpu virtual functions. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS °21, page 241-254, New York, NY, USA, 2021. Association for
Computing Machinery.

[45] Christoph Peters. Brdf importance sampling for polygonal lights. ACM Trans. Graph.,
40(4), jul 2021.

[46] Thinking parallel, part iii: Tree construction on the gpu. https://
developer.nvidia.com/blog/thinking-parallel-part-iii-

tree-construction-gpu/. Accessed: 10-06-2023.

[47] Github repository. https://github.com/Trippasch/CudaRayTracer.
Accessed: 14-06-2023.

[48] Gnu general public license. https://www.gnu.org/licenses/gpl-3.0.
txt. Accessed: 14-06-2023.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://en.wikipedia.org/wiki/Tail_call
https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/
https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/
https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu/
https://github.com/Trippasch/CudaRayTracer
https://www.gnu.org/licenses/gpl-3.0.txt
https://www.gnu.org/licenses/gpl-3.0.txt

APPENDICES

99

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

Appendix A

Software Documentation

A.1 Installation

A.1.1 System Requirements

* NVIDIA CUDA-capable GPU

+ CUDA SDK

A.1.2 Installation Steps

All the installation steps of the ray tracing application can be found on the online GitHub

repository [47].

A.2 Usage

Once installed, you can run the application via the command line, using the executable

created during the build process. More information can be found on the GitHub project

page [47].

A.3 Contact Information

For further information or if you have any questions, inquiries, or feedback related to the
project, please feel free to contact the project maintainers:

Paschalis Choropanitis

101

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

102 Appendix A. Software Documentation

* Email: pchoropan@uth.gr

* GitHub: https://github.com/Trippasch
Panayiotis Yiannoukkos

* Email: pgiannoukkos@uth.gr

* GitHub: https://github.com/pgiannoukkos

Please respect that this is a voluntary project, and response times may vary. For bug re-

ports or feature requests, consider opening an issue directly on the GitHub project page [47].

A.4 License

The software is released under the GNU General Public License version 3 (GPLv3). This
is a strong copyleft license that requires anyone who distributes the code or a derivative work
to make the source available under the same terms. It also provides an express grant of patent
rights from contributors to users.

The full license text is included in the LICENSE file in the root directory of the project’s
source code. The terms of the GPL ensure that the software remains free and open-source,
enabling users and contributors to use, modify, and distribute the software while keeping it
open and free for all.

For the full details of the GNU General Public License version 3 (GPLv3), you may refer
to the official GNU website [48] or the LICENSE file in our repository. For any legal advice,

please consult with a legal expert.

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

https://github.com/Trippasch
https://github.com/pgiannoukkos

Appendix B

Images

B.1 Sample Test Scenes

Figure B.1: Scene featuring four spheres with all the supported materials

103

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

104 Appendix B. Images

Figure B.2: Scene featuring a textured rectangle with the logo of the University of Thessaly

Figure B.3: Scene featuring the Milky Way as a skybox

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

B.1 Sample Test Scenes 105

Figure B.4: Scene featuring a Cornell Box [(6] with three spheres and a light inside it

Figure B.5: Scene featuring 10000 spheres with a sunset sky as a skybox

Institutional Repository - Library & Information Centre - University of Thessaly
18/06/2024 09:17:22 EEST - 18.219.169.153

	Abstract
	Περίληψη
	Table of contents
	List of figures
	Abbreviations
	Introduction
	Problem Statement
	Contribution

	Thesis structure

	Background
	Introduction
	NVIDIA GPU Architecture
	NVIDIA CUDA Architecture
	Threads
	Blocks and Grids
	Streaming Multiprocessors (SMs)
	Memory Hierarchy
	Registers
	Local Memory
	Shared Memory
	Global Memory
	Constant Memory
	Texture Memory

	CUDA Computing API
	Kernel Functions
	Memory Management
	Performance Optimization

	CUDA Programming Model
	CUDA-OpenGL Interoperability
	OpenGL
	CUDA-OpenGL Interoperability

	Ray Tracing: A Brief Overview

	Similar Projects
	Ray Tracing In One Weekend
	Output an Image
	The vec3 Class
	Rays, a Simple Camera, and Background
	Adding a Sphere
	Surface Normals and Multiple Objects
	Antialiasing
	Diffuse Materials
	Metal
	Dielectrics
	Positionable Camera
	Defocus Blur
	Where Next?

	Accelerated Ray Tracing In One Weekend in CUDA

	Real-Time Path Tracer Implementation
	Introduction
	Tools, Technologies and Libraries
	Hardware Configuration
	Development Environment and Language
	Debugger and Profiler Tools
	Glad for Generating OpenGL Functions
	GLFW for Creating Windows, Contexts and Surfaces
	ImGui for Graphical User Interfaces (GUIs)
	GLM for Vector Math
	CUDA's Thrust Library
	stb for Image Loading
	spdlog for Logging
	CMake and Premake for Building the Project
	Project Folder Structure

	Window Creation and Management with GLFW and OpenGL
	Creating the Window
	Managing Inputs
	Clearing the Screen

	CUDA to OpenGL Interoperability
	NVIDIA's simpleCUDA2GL Sample Approach
	Our Approach

	Integrating ImGui for User Interface and Texture Display
	Ray Tracing Implementation
	Ray Generation and Virtual Camera
	Ray-Object Intersections
	Surface Normals
	Materials
	Lambertian
	Metal
	Dielectrics
	Diffuse Light

	Textures
	Constant Textures
	Checker Textures
	Image Textures

	Antialiasing
	Bounding Volume Hierarchies
	CUDA Implementation Specifics
	Kernel Configuration
	Coalesced Memory Access
	Iteration over Recursion
	Avoiding Virtual Functions
	Float Precision

	User Interaction and Experience
	CUDA Generated Image Window
	Options Window
	Scene Window
	Metrics Window
	Console Window
	Dockable Interface
	Keyboard Controls for User Input

	Experiments, Conclusions and Future Work
	Experiments and Testing
	Conclusions
	Future Work
	Bug Fixes
	Extra Features and Optimizations

	Epilogue

	Bibliography
	APPENDICES
	Software Documentation
	Installation
	System Requirements
	Installation Steps

	Usage
	Contact Information
	License

	Images
	Sample Test Scenes

