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xii Abstract

Diploma Thesis

Obfuscation of Human Wireless micro-Doppler Signatures for

Preventing Passive Human Activity Classification

Margarita Loupa

Abstract

Human activity recognition based onmicro-Doppler signatures is a popular and an active area

of research. When a wireless radar waveform reflects off of a moving target, the resulting re-

flected signal exhibits distinct frequency shifts, caused by the motion of the target. A receiver

can leverage these shifts to generate their corresponding spectrograms, thereby producing the

micro-Doppler signatures associated with the target’s identity and activity. However, due to

the nature of the wireless channel, unauthorized receivers can also intercept the reflected

signal and compute these spectrograms, consequently exposing the target’s identity, which

poses a significant privacy breach when the target remains unaware of it. To attend this is-

sue, two techniques were investigated to obscure the micro-Doppler characteristics, aiming

to impede their interpretation by malicious users. The first technique involved the injection

of a frequency-varied signal into the transmitting radar waveform, effectively obfuscating

the micro-Doppler signatures without disrupting the classification process in the authorized

receiver. The second technique utilized a uniform linear array of 30 isotropic antennas, em-

ploying a specific pattern to activate and deactivate the array elements within specific time

intervals. This approach effectively obscures the micro-Doppler signatures just by leverag-

ing the inherent physical properties of the array, but it affects the classification process in the

active radar to some extent. Both techniques were implemented and evaluated using Math-

works’ MATLAB, testing them across five distinct scenarios that involved the presence of

both pedestrians and bicyclists, using a monostatic radar configuration that utilized FMCW

waveforms for transmission. By utilizing a pre-trained convolutional neural network on a

large dataset, across all five scenarios, the results demonstrated that in both approaches, the

Doppler signatures are successfully obfuscated. The first technique achieved to reduce the

classification accuracy at 30.75%, while the second technique dropped it at 9%.

Keywords: human activity classification, deep learning, micro-Doppler, passive radars
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Διπλωματική Εργασία

Απόκρυψη ανθρώπινης δραστηριότητας από παθητικούς δέκτες μέσω

αλλοίωσης κυματομορφών RADAR

Μαργαρίτα Λούπα

Περίληψη

Η αναγνώριση ανθρώπινης δραστηριότητας βασισμένη στα micro-Doppler χαρακτηριστικά

είναι ένα δημοφιλές και ενεργό πεδίο έρευνας. Όταν ένα ασύρματο σήμα ραντάρ ανακλά-

ται από έναν κινούμενο στόχο, τότε το ανακλώμενο σήμα περιέχει διάφορες μετατοπίσεις

Doppler. Ένας δέκτης μπορεί να εκμεταλλετεί αυτές τις μετατοπίσεις και να δημιουργήσει

τα αντίστοιχα φασματογράμματα, έτσι ώστε να παράξει υπογραφέςDoppler που θα αποκαλύ-

πτουν την ταυτότητα και την δραστηριότητα του στόχου. Παρόλα αυτά, λόγω της φύσης ενός

ασύρματου καναλιού, κάποιος μη εξουσιοδοτημένος δέκτης μπορεί να υποκλέψει την ανα-

κλώμενη ακτινοβολία του στόχου και να παράξει ο ίδιος τα αντίστοιχα φασματογράμματα,

αναγνωρίζοντας έτσι τον στόχο. Κάτι τέτοιο αποτελεί παραβίαση των προσωπικών δεδομέ-

νων του στόχου, αν ο ίδιος δεν γνωρίζει για την δραστηριότητα αυτή. Για να αντιμετωπιστεί

αυτό το θέμα, διερευνήθηκαν δύο τεχνικές που μπορούν με επιτυχία να αλλοιώσουν τις κυ-

ματομορφές ραντάρ, έτσι ώστε οι παραγόμενες υπογραφές των στόχων να μην μπορούν να

αναγνωριστούν από κάποιον κακόβουλο χρήστη. Η πρώτη τεχνική περιλαμβάνει την προ-

σθήκη ενός σήματος μεταβαλλόμενης συχνότητας στην μεταδιδόμενη κυματομορφή, έτσι

ώστε να αλλοιώσει τις προαναφερθέντες υπογραφές χωρίς να επηρεαστεί η διαδικασία ανα-

γνώρισης του στόχου στο εξουσιοδοτημένο ραντάρ, αν αυτή χρειάζεται. Η δεύτερη τεχνική

χρησιμοποιεί μια συστοιχία από 30 γραμμικά τοποθετημένες, ομοιόμορφες, ισοτροπικές κε-

ραίες, όπου κάθε κεραία ενεργοποιείται και απενεργοποιείται με συγκεκριμένο μοτίβο και

σε συγκεκριμένο χρόνο διάστημα. Η δεύτερη προσέγγιση καταφέρνει να αλλοιώσει τις υπο-

γραφές Doppler, απλά εκμεταλλευόμενη των φυσικών χαρακτηριστικών της συστοιχίας. Πα-

ρόλα αυτά, η συγκεκριμένη μέθοδος επηρεάζει την διαδικασία ταυτοποίησης των στόχων και

στο ενεργό ραντάρ κατά έναν βαθμό. Και οι δύο τεχνικές υλοποίηθηκαν και αξιολογήθηκαν

χρησιμοποιώντας την εφαρμογή MATLAB της Mathworks, μέσα από πέντε διαφορετικά σε-

νάρια, που περιλάμβαναν την παρουσία τόσο πεζών όσο και ποδηλατών. Στον προσωμοιωτή

χρησιμοποιήθηκε ένα μονοστατικό ραντάρ που εξέπεμπε FMCW κυματομορφές. Χρησιμο-
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ποιώντας ένα ήδη εκπαιδευμένο συνελικτικό νευρωνικό δίκτυο πάνω σε έναν μεγάλο αριθμό

δειγμάτων, και για τα πέντε σενάρια, τα αποτελέσματα έδειξαν πως είναι δυνατή η αλλοί-

ωση κυματομορφών ραντάρ και στις δύο περιπτώσεις, αποκρύπτοντας έτσι την ανθρώπινη

δραστηριότητα από το παθητικό ραντάρ. Η πρώτη τεχνική κατάφερε να ρίξει την ακρίβεια

κατηγοριοποίησης των στόχων στο 30.75%, ενώ η δεύτερη τεχνική στο 9%.

Λέξεις-κλειδιά: αναγνώριση ανθρώπινης δραστηριότητας, βαθειά μάθηση,micro-Doppler,
παθητικά ραντάρ
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Chapter 1

Introduction

Over the past decades, radar technology has experienced remarkable progress, evolving

from its conceptualization in the late 19th century, as a means to detect targets at specific

distances, to its current application across various domains. Today, radar technology finds

utility in diverse fields, that include weather forecasting, remote sensing, military operations,

space exploration, and as well as residential applications.

As we approach the era of sixth-generation technology (6G) [1], the integration of radars

into the communications’ infrastructure promises to merge communication, networking, and

artificial intelligence capabilities into a joint radar-communication system (JRC) [2]. One in-

triguing aspect of this system, that has already emerged, is the use of radar waveforms for

sensing human movement and activity, enabling the development of applications for smart

homes and devices that leverage the radar’s inherent sensing capabilities. Such applications

involve Human Activity Recognition [3], Vital SignMonitoring [4], Gesture Recognition [5],

as well as Security and Defense Applications [6], all rooted in the fundamental concept of

detecting and analyzing human motion. However, while these advancements hold great po-

tential for improving the quality of life, concerns regarding privacy violations loom large,

necessitating careful consideration and investigation.

1.1 Thesis Scope

In the context of radar sensing, when a transmitting waveform propagates into a wireless

channel and interacts with a moving target, then the reflected echoes contain micro-frequency

fluctuations, caused by the target’s motions. These fluctuations can be properly extracted
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2 Chapter 1. Introduction

through the application of a time-frequency analysis, which produces distinct patterns that

are indicative of specific target movements, commonly known as as micro-Doppler signa-

tures. Various classification algorithms have been developed, to accurately categorize these

signatures. However, due to the nature of the channel, unauthorized users can intercept these

echoes and analyze their patterns, thereby breaching the privacy of individuals who remain

oblivious to such interception.

The objective of this thesis is to investigate effective techniques, aimed at obfuscating

micro-Doppler characteristics, preventing their interpretation by unauthorized users. In Chap-

ter 5, Mathworks’ MATLAB application was utilized to create a simulated environment and

generate the necessary data for testing these methods. Two obfuscation techniques were ex-

amined within five diverse scenarios: a single moving pedestrian, a single moving bicyclist,

two moving pedestrians, two moving bicyclists, and the concurrent presence of a moving

pedestrian and bicyclist in the same scene.

1. The first technique involved applying a frequency variated signal to the transmitting

waveform, without disrupting the demodulation process at the authorized receiver. The

impinged signal distorts the extracted signatures, thus making them unrecognizable for

classification at the unauthorized receiver.

2. The second technique employed a phased array system, strategically toggling the acti-

vation and deactivation of specific elements. This resulted in tampering the produced

signatures of the objected target to a certain degree, thereby making the classification

process very challenging. This approach impacts the authorized receiver to some extent

as well.

1.1.1 Contribution

The contribution of this thesis is summarized as follows:

1. A comprehensive review was conducted on radar theory and its applications in deep

learning.

2. Two simulations were implemented in the MATLAB environment to model the trans-

mission and reception of signals in a monostatic radar system. Both simulations in-

volved performing time-frequency analysis on the received signals and applying a
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1.2 Volume Structure 3

trained Convolutional Neural Network for classification. The first simulation utilized a

single antenna for signal transmission, while the second simulation employed a phased

array configuration.

3. The obfuscation techniques discussed earlier were implemented individually, and their

results were analyzed and compared.

1.2 Volume Structure

This thesis is structured into five chapters, each designed to provide the reader with the

necessary knowledge to progress to the next chapter. Chapter 2 offers a comprehensive ex-

ploration of radar, tracing its historical evolution and examining its diverse modern appli-

cations. Chapter 3 establishes the foundational theoretical framework of radar, which serves

as the basis for the case study in this thesis. In Chapter 4, Convolutional Neural Networks

are extensively reviewed, focusing on the fundamental components commonly utilized in

classification tasks. Chapter 5 presents the detailed analysis of the case study, addressing the

central problem of the thesis and exploring two distinct techniques to solve it. Lastly, Chapter

6 presents the findings of the case study and discusses potential future improvements.
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Chapter 2

Radar History and Applications

2.1 Introduction

This chapter provides a comprehensive exploration of the essence of radar, delving into

its historical evolution, from its inception as an idea in the late 19th century, to its pivotal

advancements during World War II, and ultimately, it sheds light on the modern radar’s ap-

plications, offering a glimpse into the expansive array of operations and functions for which

radars are utilized in the modern era.

2.2 Meaning and Significance of Radar

Originally, radar was an acronym for “RAdio Detection And Ranging”, a term that was

coined in 1939 [7] by the United States Army Signal Corps. However, in modern times, the

technology has become so prevalent that the term has transitioned from an acronym to a com-

monly used noun in English language. A radar, is an electromagnetic system that uses radio

waves to detect, locate, and track objects. This system functions by transmitting electromag-

netic radiation into space and subsequently analyzing the echo signals, reflected back from

an object or target. This provides valuable information regarding the object’s distance, angle,

and velocity, in relation to the radar site. Compared to other sensing technologies, radars pos-

sess significant advantages, due to their ability to operate efficiently over both short and long

distances, and in challenging conditions. These include scenarios with poor visibility due

to darkness, fog, rain, or snow, as well as situations where the object is obscured by other

factors, such as vegetation or terrain. Additionally, radars can penetrate non-conductive ma-
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6 Chapter 2. Radar History and Applications

terials, such as walls, to detect and locate objects on the other side.

The versatility of a radar makes it an indispensable tool for both military and civilian

applications, owing to its exceptional capability to identify and monitor a diverse range of

objects such as airplanes, vessels, missiles, automobiles, meteorological patterns, and even

humans.

2.3 Historical Overview

The origins of radars [8, 9] can be traced back to the experiments conducted by Heinrich

Hertz in the late 19th century. He used an apparatus, similar to a modern-day pulse radar,

which operated at frequencies in the vicinity of 455 MHz. His observations provided experi-

mental evidence for James Clerk Maxwell’s theory on electromagnetism, since he confirmed

that radio waves exhibited similar characteristics to light, but with some variations in the

frequencies between them. During his experiments, Hertz discovered that radio waves were

reflected bymetallic objects, but he further noticed that nearby objects also interfered with the

reflected waves. Around the turn of the century, scientists became aware of this phenomenon

and began to consider how to utilize it. In 1900, Nikola Tesla proposed a wireless system that

would employ the reflected radio waves to detect and locate objects, even measuring their

distance, but his ideas were dismissed at that time.

In the early 20th century, the German inventor Christian Hülsmeyer developed the Tele-

mobiloscope [9, 10], a simple naval detection device that utilized radio echoes to remotely

detect ships and other nearby objects, as a means to help preventing collisions in foggy con-

ditions. The Telemobiloscope consisted of a spark-gap transmitter, connected to an array of

dipole antennas, and a coherer receiver with a rotating cylindrical parabolic antenna that could

detect reflected signals up to 3 km away. Although the device did not initially provide range

information, Hülsmeyer patented a method in 1906 that used two vertical measurements and

trigonometry to calculate approximate range. During bad weather, the device would be pe-

riodically spun to check for nearby ships and, upon detecting a reflected signal, it would

activate a relay that rang an electric bell to alert for objects in close proximity.

In the 1930s, eight countries [7] with existing radio technology and military concerns,

independently and almost concurrently began efforts to utilize radio echoes for aircraft detec-

tion. These countries included the United States, Great Britain, Germany, France, the Soviet
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2.3 Historical Overview 7

Union, Italy, the Netherlands, and Japan, each embarking on the development of radar with

differing degrees of motivation and success. As a result, several of these countries had some

operational radar equipment in military service by the onset of World War II.

Dr. Rudolph Kühnold, who led the German Navy’s signals research in the 1930s, was

studying ways to detect underwater objects using sound waves. He realized that the same

principles could be applied to radio waves above water and, with the help of amateur radio

operators Paul-Günther Erbslöh and Hans-Karl Freiherr von Willisen, founded the company

“Gesellschaft für Elektroakustische und Mechanische Apparate” (GEMA) to develop a radio

measuring device for research. GEMA’s team focused on creating a high resolution radar

and, after several successful attempts, they extended the device’s range up to 80 km by the

end of 1936. The radar, named Freya, became the most important early-warning radar for

German aircrafts and ships in 1938. GEMA also developed a short-range gun ranging radar

called Seetakt, which worked at an even higher frequency than Freya. Later, the Telefunken

company also became interested in radars, right after GEMA started securing significant

military contracts. Telefunken went on to create a small and mobile radar called Würzburg,

which could plot aircrafts with high accuracy, up to 40 km away.

Even though the German industry had initially focused on naval surface radars, it inad-

vertently set the foundations for modern air defense systems. The remarkable technological

advancements in radar technology during this period also played a crucial role in the progress

of World War II and beyond.

In Britain, the possibility of air raids and the potential of invasion by air and sea, due to the

impending World War II, prompted a significant push towards building specialized defence

systems. To address this, in November 1934, the Air Ministry of Britain created the “Com-

mittee for the Scientific Survey of Air Defense” (CSSAD), also known as the “Tizard com-

mittee”. Its primary responsibility was to evaluate the employment of recent developments in

the scientific and technical field, so that to enhance current defense strategies against hostile

attacks.

During 1935, Sir Robert Watson Watt, A. F. Wilkins and H. E. Wimperis, along with Sir

Henry Tizard, contributed to the development of a radar system that is now known as Chain

Home (CH). In 1937, the Bawdsey Research Station constructed a prototype CH station that

was later transferred to the Royal Air Force. The CH station operated at a frequency of 22

MHz, and in favorable weather conditions, it could detect aircraft flying up to 150 km away
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8 Chapter 2. Radar History and Applications

at an altitude of 3 km. By September 1939, 20 CH stations were in operation, and they were

employed in the Battle of Britain. While the CH had some limitations, such as an elevation

limit and an inability to detect low-flying aircraft, it was a resounding success.

Afterwards, in 1937, a beamed radar for airborne and coastal defense was developed,

known as the Chain Home Low (CHL) radar. The CHL operated at 200MHz, had an antenna

that rotated at 1-2.3 rpm and a range of 160 km, with an azimuth accuracy of 1.5 degrees.

The duration of the pulse was adjustable between 5 and 25 μs, with a selectable repetition

rate as either 25 or 50 Hz. Unfortunately, it could not determine height, and only 11 CHLs

were operational by 1941.

However, the ability to generate short pulses of radio energy was a crucial breakthrough

that enabled the emergence of modern radar systems. By timing the pulses on an oscilloscope,

the range could be determined, and the antenna’s direction could reveal the angular location

of targets. The combination of these two pieces of information produced a “fix”, enabling the

target’s relative position to be located. Chain Homewas a significant milestone in the history

of radar technology, and its development marked a turning point in the use of radars.

In the United States, during the same time period, the groundwork for the development

of a pulsed radar system was established, thanks to the contributions of the engineers Al-

bert H. Taylor, Leo C. Young, Lawrence A. Hyland and of the physicist Robert Morris Page.

While carrying out communication experiments at the U.S. Naval Aircraft Radio Laboratory

in 1922, Taylor and Young noticed that while a wooden ship was passing through the Potomac

river, it was interfering with their experiments. Based on this observation, they suggested em-

ploying a system for detecting ships in harbor defense (which shared a configuration similar

to today’s bistatic radars), but their ideawas rejected. However, in 1930, LawrenceA. Hyland,

who was working with Taylor and Young at the U.S. Naval Research Laboratory, detected a

passing aircraft using a similar radio configuration. This achievement led to a proposal and

patent for the technique of interference to detect ships and aircrafts.

In 1924, Robert Morris Page was assigned to implement Young’s suggestion of using

pulsing techniques instead, to directly determine the range to the target. In December 1934,

Page’s transmitter design, operating at 60 MHz and pulsed for 10 μs with 90 μs between

pulses, detected a plane flying up and down the Potomac river, from a distance of 1.6 km.

This experiment demonstrated the fundamental concept of a pulsed radar system and is widely

credited as the world’s first true radar.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:53:36 EEST - 3.145.151.104
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Page’s invention of the duplexer device was also crucial for the development of radar

technology, as it enabled the transmitter and receiver to share the same antenna, eliminating

the risk of damaging the receiver circuitry. This innovation also resolved the issue of synchro-

nizing separate transmitter and receiver antennas, which is essential for precise positioning

of distant targets. Further experiments with pulsed radar resulted in a prototype radar system

demonstrated to government officials in June 1936. Operating at 28.6 MHz, this radar system

successfully tracked an aircraft at distances up to 40 km. However, due to the system’s low-

frequency signals, it required large antennas, making it impractical for mounting on ships or

aircraft.

While the impetus for the early development of radar technology was military, the 20th

century played a crucial role in advancing the research and development of this field. From

the pioneering work of engineers and physicists such as Albert H. Taylor, Leo C. Young,

Lawrence A. Hyland, and Robert Morris Page in the United States, to the breakthroughs

achieved in other countries such as Britain and Germany, radar technology rapidly progressed

from the initial detection of nearby ships and aircrafts, to accurate long-range tracking capa-

bilities.

2.4 Modern Radar Applications

Today, radars are an essential tool used in various fields, ranging fromweather forecasting

to air traffic control, demonstrating the far-reaching impact of the pioneering research con-

ducted in the early stages of radar development. Outlined below are brief descriptions [8, 11]

of the primary domains in which radar technology finds widespread use:

Military: Modern radars are extensively employed in military operations due to their ver-

satility and effectiveness. Capable of operating at different frequencies, military radars can

detect various targets, from ground vehicles and aircraft to missiles and small drones. Con-

sequently, they offer air-defense, early warning, weapon control, and ground surveillance

capabilities, thus becoming an indispensable tool for defense forces around the world.

Remote Sensing: Remote sensing applications have extensively embraced the use of radars,

which offer valuable insights into a plethora of environmental phenomena, including weather

and planetary observations. With radar-based remote sensing, it is now feasible to detect and

measure objects, or features, that are challenging or impossible to observe with traditional
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sensors, such as cameras.

Air-Traffic Control: The safety of modern air travel can be attributed to the successful

integration of radar technology in air traffic control. Major airports rely on surveillance radars

to monitor air traffic and gather weather information in the surrounding area. These airports

also utilize radar systems to oversee and manage aircraft and ground vehicle traffic on the

runways, as well as en route traffic. Such systems are employed globally to ensure effective

and secure air traffic control.

Space: Radar technology finds a broad range of applications in space. Synthetic Aperture

Radar (SAR) is a specialized type of radar that can produce high-resolution images of the

Earth’s surface even in unfavorable weather conditions or at night. This technology is valu-

able for various purposes, including environmental monitoring, natural disaster tracking, and

topography analysis. Planetary exploration missions also utilize radar systems to examine the

surface of planets and moons in the solar system. In addition, radar systems can also be used

to help monitoring and tracking space debris and other objects in orbit, providing crucial data

to ensure the safety of spacecrafts and satellites.

Maritime Industry: Radar technology is an indispensable component of the maritime in-

dustry, as it provides ships with vital information to navigate through challenging conditions,

such as reduced visibility due to fog, darkness, or adverse weather. By detecting and tracking

other coastlines and navigational hazards, radar systems help in the prevention of accidents

and disasters at sea. Moreover, radar systems assist ships in avoiding collisions with other

vessels, thereby enhancing the safety of the crew and passengers onboard.

In conclusion, due to the ever-increasing advancements in this technology, the potential

applications of radars continue to expand, making them an essential component of themodern

world. As such, the study of radar technology is of critical importance for scientists and

engineers, as it equips them with the expertise and skills required to create and implement

pioneering solutions that can address the constantly evolving needs of society. In this way,

the continuing exploration of radar technology promises to yield many more exciting and

groundbreaking developments in the future.
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Chapter 3

Radar Theory

3.1 Introduction

As previously explained in Chapter 2, radars are electromagnetic systems, designed to

detect, locate, and monitor objects, through the use of transmitted electromagnetic radiation.

By analyzing the echoes that are reflected back from targets within the radars’ vicinity, these

systems are able to extract valuable information about the target’s range, velocity and lo-

cation. This process enables radar technology to provide valuable insights and intelligence

across a range of applications, from military surveillance to weather forecasting and beyond.

The ascent of radar technology and its widespread adoption across various aspects of life,

including the military, urban environments, and even residential settings, has paved the way

for an expansive array of applications. This has created opportunities to enhance security,

safety, improve the quality of life, as well as effectively manage well-being. Looking ahead,

the forthcoming sixth generation technology (6G) will introduce an innovative joint radar-

communication system (JRC) [1], that will integrate radar sensing into the communication

infrastructure. This integration holds immense potential, but also presents notable challenges.

Given that radar sensing involves tracking and detecting movements, there is a concern re-

garding privacy violations if individuals being monitored are unaware of the surveillance.

Hence, this thesis focuses on devising mechanisms to safeguard against any malicious at-

tempts to extract information from individuals under radar surveillance.

This chapter provides the essential theoretical framework that will be applied in the case

study of this thesis, accompanied by an adequate description of the signal processing tech-

niques that are critical to the operation of radars, elucidating their most significant features
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and functions. Through this comprehensive and in-depth analysis, readers will gain a robust

understanding of the theoretical concepts and practical techniques that are essential to the

successful design, implementation, and optimization of radar systems.

3.2 Monostatic Radar Model

A fundamental type of radar utilized in modern times is themonostatic radar. This type of

configuration employs both the transmitting and receiving components of the radar system at

the same location, utilizing a singular antenna on a time-shared basis to serve both functions.

The co-location of the transmitter and receiver elements results in a significant reduction

of the complexity of the radar system’s hardware. This feature simplifies the system design

and makes it more economical to construct and maintain, especially when compared to more

complex configurations, such as bistatic and multistatic radars.

Figure 3.1 illustrates the operating principles of a monostatic radar, wherein, an electro-

magnetic signal is generated by a transmitter and is radiated through a single antenna into free

space. When the signal encounters the target, a portion of it is absorbed, while the remain-

ing energy is reflected back in a multitude of directions. Then, the same antenna captures

some of the backscattered energy, which is subsequently delivered to the receiver for further

processing.

Transmitter

Receiver

Antenna Target

Transmitted Signal

Reflected Signal

Target's Range

Figure 3.1: The operating principles of a monostatic radar system [8].

A much more exhaustive and comprehensive illustration of the operational mechanism

of a monostatic radar [8, 12, 13, 14] can be portrayed in the form of a block diagram. Figure

3.2 offers a detailed depiction of the various components of a simple monostatic pulse radar

and their respective arrangements within the configuration.
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Figure 3.2: Block diagram of a simple monostatic pulse radar [12].

3.2.1 Transmission

The radar signal is first created through the use of a waveform generator, which gener-

ates a low-powered signal. In contemporary radar systems, this generator is typically a digital

signal generator, capable of producing a diverse array of waveforms such as pulse and con-

tinuous wave signals. The selection of the waveform will be contingent on the particular

application and the radar’s intended performance characteristics.

The generated waveform undergoes modulation to the desired carrier radio frequency

(RF) at the mixer, resulting in a modulated signal that is subsequently amplified to an ap-

propriate level in the power amplifier. In radar systems, power amplifiers are typically of

high-power, capable of providing tens to hundreds of Watts of power to the antenna. These

amplifiers are engineered to function across a wide frequency range and exhibit a linear re-

sponse to the input signal. The linearity of the amplifier is crucial in upholding the transmitted

signal’s integrity and in mitigating distortion and interference that may occur during trans-

mission. Hence, this system governs the transmitted signal’s strength, ultimately influencing

the radar’s maximum range and resolution. The selection of the amplifier technology and

topology is predicated on the radar’s frequency band, power requirements, and system con-

straints.

Following amplification, the signal is primed for transmission via awaveguide or a trans-

mission line system, ultimately being radiated into space by a shared antenna.Waveguides are

a specialized form of transmission line used in high-power radars, like weather radars and air
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traffic control radars. They are hollow metallic tubes that guide electromagnetic waves with

minimal loss, maximal power handling capacity and minimal distortion. In contrast, trans-

mission lines are utilized for lower frequency signals and are typically employed in small to

medium-sized radars. A transmission line comprises of a two-wire structure that facilitates

the radio-frequency energy transmission from one location to another. The transmission line

is utilized to match the impedance of the antenna to that of the transmitter or receiver, thereby

ensuring optimal energy transfer efficiency. The design and selection of these two systems

are predicated on the radar signal’s frequency, power level, and desired efficiency of the radar

system.

The antenna serves as the conduit for transmitting energy into space and then collecting

echo energy during receive mode. Typically, the antenna is directive, capable of being me-

chanically or electronically steered to yield the desired directionality of the emitted signal.

The antenna is frequently engineered to generate a narrow, directive beam during transmis-

sion, with a correspondingly large area during reception, enabling the detection of weak echo

signals from the target. Furthermore, the antenna functions as a spatial filter, suppressing

signals originating from other directions, such as interference or jamming signals.

Upon leaving the antenna, the radio frequency energy undergoes atmospheric refraction

and attenuation. The energy will be scattered, and a portion of will be reflected back to the

radar.

The utilization of a duplexer enables the antenna to perform both transmission and re-

ception of signals in a time-shared basis, while also safeguarding the receiver from potential

burnout. By allowing the antenna to switch between transmit and receive modes, the duplexer

facilitates the transfer of signals between the radar system and the target object, with greater

efficiency and accuracy.

3.2.2 Reception

In the receive mode, the radar system operates by gathering the weak echoes through the

same antenna, then routing them via the duplexer to a superheterodyne radar receiver. A su-

perheterodyne receiver, also known as a superhet, is a type of radio receiver that employs the

mixing of a locally generated frequency with the carrier frequency, to produce an interme-

diate frequency (IF) signal, with a frequency that is lower than the original modulated one.

The purpose of this frequency conversion is to facilitate the demodulation of the signal by
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3.2.2 Reception 15

reducing it to a more manageable frequency.

In order to optimize the processing of the returned echoes, the receiver has to amplify them

to a more suitable level. However, especially at microwave frequencies, the clutter caused by

unwanted echoes from the environment is the most significant source of noise that affects

a radar’s performance. To address this issue, a low-noise RF amplifier (LNA) is utilized to

amplify the faint radar signals received by the antenna before they reach the mixer, thereby

reducing clutter noise. Yet, it is also crucial to minimize the amount of noise generated by the

receiver itself and for that reason, the LNA is designed with an extremely low noise figure,

which quantifies the amount of noise added to the signal by the amplifier. For this reason,

the LNA helps to improve the sensitivity of the radar system, making it more effective at

detecting targets in the presence of clutter noise, without disrupting the signal-to-noise ratio

(SNR).

The RF signal is then directed to a circuit where it undergoes a heterodyning conversion,

by mixing it with a sine wave signal that was generated by a variable frequency oscillator

known as the local oscillator (LO). The LO and mixer work in tandem to down-convert the

frequency of the received signal to an IF that is more convenient for subsequent processing.

The LO provides a stable and tunable signal, close in frequency to the received RF signal,

whereas the mixer is a non-linear component that multiplies the RF signal by the LO signal.

The mixer produces a signal that includes the original RF signal at fRF, the local oscillator

signal at fLO, as well as the sum and difference frequencies fRF + fLO and fRF − fLO. Tominimize

the appearance of these frequencies, an IF amplifier is then used to amplify and filter the

mixer’s output signal. The use of modulation to IF rather than directly to baseband, results in

a lower conversion loss, thereby enhancing the receiver’s sensitivity.

The IF is designed with high gain, a narrow bandwidth, and low noise figure, making

it ideal for amplifying and filtering the weak IF signals produced by the mixer. Acting as a

matched filter (MF), its bandwidth is aligned with the pulse width of the transmitted radar

signal, allowing for optimal signal amplification and processing, while simultaneously re-

ducing out-of-band noise and interference. Additionally, to minimize the effects of flicker

noise, also known as pink noise, most receivers integrate an extra IF amplification stage. The

IF amplifier’s ability to filter out unwanted noise and interference enhances the radar sys-

tem’s capability to extract useful information from the received signal, resulting in improved

detection and tracking performance. Once the signal is amplified, it is then demodulated to
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16 Chapter 3. Radar Theory

baseband for further processing.

After passing through the IF amplifier, the baseband signal is directed to the signal pro-

cessor, a critical component of radar systems that plays a vital role in extracting and analyz-

ing relevant information from the received signal. The signal processor performs advanced

mathematical and digital signal processing techniques to filter out unwanted noise and inter-

ference, allowing it to isolate the desired signal and improve the accuracy of the detection

process.

An excellent example of a signal processing technique is Doppler Filtering. This tech-

nique is used to separate the desired moving targets from undesired stationary clutter echoes,

which can be a significant source of noise and interference in radar systems. The Doppler

effect causes the frequency of the radar echoes from moving targets to shift, and Doppler

Filtering takes advantage of this effect to distinguish between moving targets and stationary

clutter. By applying a filter to the received signal that only allows frequencies within a cer-

tain range (corresponding to the expected Doppler shift of moving targets) to pass through,

Doppler Filtering effectively removes unwanted clutter and enhances the radar’s ability to

detect and track moving targets.

After the received signal has been processed, a decision is made on the presence or ab-

sence of a target. If a target is detected, some radar systems may use a data processor to

perform additional processing before displaying the information. One example of such a pro-

cessor is the Automatic Detection and Tracking System (ADS), which performs a variety

of functions including target detection, track initiation, track association, track update, track

smoothing, and track termination. The ADS helps to improve the accuracy and reliability of

target tracking by using advanced algorithms to filter out noise and other unwanted signals.

Once the data has been processed, it is then displayed on an operator interface or computer,

providing further information for subsequent actions. This final step allows operators to make

informed decisions based on the processed radar data.

3.3 Radar Geometry

A radar system serves a diverse range of purposes, with its most frequently employed

applications encompassing the essential functions of detection, tracking, and imaging. Nev-

ertheless, the primary objective of a radar system will always be to measure the range, or
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3.3 Radar Geometry 17

distance, of a target. This is accomplished by determining the time it takes for a radar signal

to propagate from the source, reflect off the target, and return to the receiver. If the target is

not directly in line with the radar, the angle at which the radar antenna is pointed can be used

to determine the target’s range.

It is possible to derive the range estimation by utilizing the distance formula. The radar

transmits a pulse at some time t1 and the reflected echoes arrive back to the receiver at t2.

Considering that the signal propagates in the medium at a constant speed c, where c is the

speed of light, then the range estimation can be expressed as:

R =
c∆t

2
, (3.1)

where ∆t is the time difference t1 - t2 and represents the round-trip time between the radar

and the object, while the factor 1
2
stems from the fact that only half of the round-trip time is

required to calculate the range R. A monostatic radar employs a spherical coordinate system

to measure the position P of a target, with its origin situated at the phase center of the radar

antenna. This coordinate system, as illustrated in Figure 3.3, is characterized by the antenna’s

boresight direction, which is aligned along the positive x-axis. The azimuth angle θ and the

P = (R,θ,φ)

z

x

y

θ

φ

R

Boresight Direction

Figure 3.3: The spherical coordinate system used for radar measurements, with the target

located at point P [12].

elevation angle φ are used to obtain the direction of the target, relative to the radar system.
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18 Chapter 3. Radar Theory

These angles can be determined from the antenna’s orientation, as the target must typically

be located in the antenna’s main beam to be detected.

On the contrary, the range R of a target can be directly derived from the elapsed time

between transmission and detection, as described in Eq. (3.1), which provides information

on the absolute distance between the antenna and the target, without disclosing any further

details. Therefore, targets situated at the same distance from the antenna may not occupy

identical positions. This situation is accurately presented in Figure 3.4, where targets 1 and 2

are positioned in a circular trajectory from the antenna, drawn as a dashed line. The radar cal-

culates the same range measurements for these targets, but in reality they are not co-located.

Consequently, determining the position of a target requires not only its range from the an-

tenna, but also its elevation and azimuth angles.

R

Target 1

Target 2

Figure 3.4: Targets located in a circular trajectory have the same absolute range from the

antenna but do not occupy the same position [15].

3.4 Range Equation

As previously stated in Section 3.2, it is understood that a monostatic pulse radar oper-

ates by transmitting a pulse of RF energy from an antenna and then the receiver listens for

echo signals. These returned signals represent reflections from a distant object or target. The

strength of the returned signals is dependent upon various factors such as the transmitted

power, the distance to the reflecting target, and the electrical size or reflectivity of the target.
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3.4 Range Equation 19

To further elucidate this concept, it is important to note the existence of the radar range

equation, a deterministic model [8, 15, 16] that serves as a valuable tool for both system

design and analysis. By establishing a relationship between the received echo power (Pr) and

the transmitted power (Pt), this equation correlates the range of a radar and the characteristics

associated with the radar components, target, and environment. Its utility extends beyond the

determination of the maximum range at which a given radar can detect a target, as it also

provides insights into the factors that impact the performance of the radar.

In the event that the transmitted power Pt is radiated by an isotropic antenna, i.e. an

antenna that distributes power equally in all directions, the power density Pd, or the amount

of power per unit area carried by the radiation, at a distance R from the radar, is derived by:

P d =
P t

4πR2
, (3.2)

where Pd is measured in Watt
m2 . Radar systems however, often emit electromagnetic radia-

tion in particular directions, which necessitates the use of directive antennas with narrow

beamwidths, to effectively concentrate the radiated power in the intended direction. The mea-

sure of the increased power density radiated in a specific direction, relative to the power den-

sity that would arise in that direction from a lossless isotropic antenna, is known as gain.

When the power density is maximized, then this value is referred to as G, and Eq. (3.2) can

be rewritten as follows:

P d =
P tG

4πR2
. (3.3)

When electromagnetic radiation is transmitted, a fraction of the energy interacts with

a target, which in return reflects it back in a variety of directions. The power density of

the radiated energy, that is redirected towards the radar’s direction, is the primary focus of

interest. This directional power density can be mathematically expressed as:

P d =
P tG

4πR2
· σ

4πR2
, (3.4)

where σ is the radar cross section (RCS) of a target. RCS is the equivalent area seen by a

radar [17], and has units of area. However, RCS is not directly associated with the target’s

physical size, but is dependent on the target’s shape.

The antenna on the other hand captures a portion of the received electromagnetic energy.

The amount of power that is received at the radar is influenced by two main factors: the inci-

dent power density Pd, that is derived by Eq. (3.4), and the effective area Ae of the receiving
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20 Chapter 3. Radar Theory

antenna, which is a measure of the antenna’s ability to capture the incident energy. The ef-

fective area is reliant on the physical area A of the antenna as Ae = Aρα, where ρα is the

antenna aperture efficiency, i.e., a dimensionless parameter between 0 and 1 that indicates

the degree to which the antenna utilizes all the radio wave power that intersects its physical

aperture [18]. Thus, the received power Pr is expressed as:

P r =
P tGAeσ

(4π)2R4
. (3.5)

The transmitting gain G can be also expressed as:

G =
4πAe

λ2
⇔ Ae =

Gλ2

4π
, (3.6)

where λ is the wavelength of the radiated wave. Substituting Eq (3.5) with Eq. (3.6) will

result in:

P r =
P tG

2λ2σ

(4π)3R4
. (3.7)

Thus far, the influence of atmospheric attenuation, denoted by the factor Lat , has not

been accounted for. The presence of gases in the atmosphere can lead to the attenuation of

a signal, by absorbing energy from the propagating wave. By incorporating the attenuation

factor into Eq. (3.7), the resulting expression will have a more comprehensive form:

P r =
P tG

2λ2σ

(4π)3LatR4
. (3.8)

By solving for the variable R in Eq. (3.8), it is possible to obtain the ultimate expression for

the radar range equation, as shown in Eq (3.9). If the minimum ratio between the transmitted

and received power is known, it becomes feasible to derive the maximum detectable range

of a target.

R = (
G2λ2σ

(4π)3Lat
· P t

P r
)
1
4 . (3.9)

These simplified versions of the range equation may not provide an accurate depiction of

the actual performance of radar systems, as several additional parameters must be taken into

account. Despite this limitation, these simplified equations are deemed adequate for the scope

of this thesis.

3.5 Waveform Analysis

In the context of radar systems, the choice of a radar waveform determines several funda-

mental radar metrics, including the signal-to-noise ratio (SNR), the range/Doppler resolution
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3.5.1 Pulsed Waveforms 21

and the ambiguities in range/Doppler. The selection process takes into consideration multi-

ple other factors, including the cost and complexity associated with implementing a particular

hardware and software solution, as well as the desired radar performance. Therefore, the clas-

sification of radar systems based on waveform types leads to two distinct categories: Pulsed

radar systems and Continuous Wave (CW) radar systems.

3.5.1 Pulsed Waveforms

Pulsed radar systems [12, 19] utilize a single pulse or a series of modulated pulsed wave-

forms with varying characteristics to achieve accurate measurements of target properties. The

transmitted signals, in conventional pulsed radars, are narrowband and passband, and they are

mathematically represented as:

x(t) = a(t) cos (2πfct+ θ(t)) . (3.10)

Here, a(t) represents the constant amplitude pulse envelope, fc denotes the RF carrier fre-

quency, while θ(t) represents either a constant or a phase modulation of the pulse. In general,

it is assumed that a(t) is an ideal, square pulse envelope of amplitude A and τ seconds dura-

tion.

As previously discussed in Section 3.3, a pulsed radar can measure the range of a target by

calculating the round-trip-time∆t of the emitted radiation between the two objects. A train of

short-time pulses, each of width τ , is transmitted in time, with eachmodulated pulse sent after

an interval of PRI seconds (PRI standing for Pulse Repetition Interval). The transmission of

these pulses is illustrated in Figure 3.5.

Power

Time

PRI

τ

Figure 3.5: Transmission of passband modulated pulsed waveforms. Each pulse is of width

τ and is repeatedly emitted after an interval of PRI seconds.
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22 Chapter 3. Radar Theory

In order to prevent potential damage to the sensitive receiver circuits, due to the high-

power transmitted signal leakage, it is essential to isolate the radar receiver from the antenna

during pulse transmission. Therefore, for the first τ seconds after pulse transmission begins,

the duplexer turns the receiver off, resulting in a minimum range of Rmin =
cτ
2
meters, from

which a complete echo can be received.

This becomes more evident when analyzing the baseband signals. Figure 3.6 demon-

strates the transmission of baseband pulses, of width τ and amplitude A. During the time

period PRI - τ, the antenna is in receive mode, allowing it to receive signal echoes from the

target. However, if the time taken by the radar pulse to complete a round trip is longer than

the PRI, then the radar may receive the echo of a prior pulse after the next pulse is transmit-

ted, causing ambiguity in the measured range. To avoid this, the PRI must be greater than∆t,

giving rise to the concept ofmaximum unambiguous ranging. Maximum unambiguous range

refers to the maximum distance Rua that a radar can measure a target without any ambiguity

in the returned signal, and it can be calculated using the formula:

Rua =
c

2
tua (3.11)

where c is the speed of light and tua, is the time difference PRI - τ in which radar signals can

be received without uncertainties.

Amplitude

Time

PRI

τ

A

Switch from Rx to Tx

Figure 3.6: Baseband rectangular pulses of width τ and amplitude A, each transmitted every

PRI seconds. After the end of the first PRI interval, the antenna is switching to transmitting

mode.

In general, the signal at the receiver output will be a combination of delayed echoes of

x(t) from targets, clutter and noise. For this reason, they are also narrowband signals, despite
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3.5.1 Pulsed Waveforms 23

the fact that their amplitude and phase modulation will typically be altered due to propagation

loss and Doppler shifts. Thus, the received signal, resulting from a single pulse echoing from

a target at range R0:

y(t) = k · a (t− t0) e
j[2πfc(t−t0)+θ(t−t0)+ϕ(t)] + n(t), (3.12)

where n(t) is an additive random noise, k is the echo amplitude factor that describes the

attenuated signal due to propagation losses and target reflectivity, and ϕ(t) is the echo phase

modulation due to target interaction.

In the case of multiple targets being present in the vicinity of a radar, the received signal

may include echoes from all the of them. However, if these targets are in close proximity

between them, then these echoes may overlap, making it difficult to decipher the received

information. Therefore, to overcome this challenge, radars introduce an important metric,

known as range resolution, which is one of the most crucial parameters of a radar system.

Range resolution, denoted as∆R, refers to a radar system’s ability to distinguish between two

or more targets, situated in the same angular direction but at different ranges. The efficacy of

range resolution relies on various factors such as the width of the transmitted pulse, size and

nature of targets, and the proficiency of the receiver and indicator. Nevertheless, the pulse

width is the primary determinant of range resolution.

Figure 3.7(a) depicts a simple two-stationary-target system, wherein a single pulse of

width τ, as the one in Figure 3.7(b), initiates transmission at t = 0. The first target is located

at a distance of R0 from the radar, while the second target is located at R0 + ∆R. The pulse

propagates through the medium at the speed of light and reaches targets 1 and 2, which reflect

back the radiation in the form of shifted, lower energy pulses, as shown in 3.7(c). Notably,

the echoes from the two targets are in close proximity without overlapping. Therefore, the

minimum distance between the targets that prevents overlapping is mathematically expressed

as:

∆R =
cτ

2
. (3.13)

Eq. (3.13) emphasizes that for a radar to distinguish between two targets, their distance

should be greater than ∆R. Figure 3.7(d) confirms this assertion, as the second echo from

target 2 overlaps with the first echo, which had not yet been fully received, proving that the

stationary targets where too close to be distinguished. Reducing the pulse width can prevent

overlapping echoes, but it also decreases range resolution, as per the inverse relationship
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t = 0

Target 1 Target 2

ΔRR0

(a)

(b)

τ

t0

t1

(c)

(d)

Figure 3.7: (a) A simple two-target model. Targets 1 and 2 are located at a distance of R0 and

R0 +∆R correspondingly, and reflect the transmitted pulse; (b) the transmission of the single

pulse at t = 0; (c) the borderline case of non overlapping echoes; (d) overlapping.

between pulse width and spectral bandwidth BW = 2
τ
. Narrower pulses have wider band-

widths, which can increase the complexity of radar systems and necessitate advanced signal

processing methods. Furthermore, as per the relationship between the pulse’s energy and its

widthE = A2τ , by reducing the pulse’s width, the energy transmitted per pulse will decrease,

potentially reducing the radar’s detection range for distant targets. Therefore, the balance be-

tween range and resolution must be carefully weighed when designing a radar system.

3.5.2 LFMWaveforms

On the contrary, when it is desired to increase the transmitted energy for a given power

level, then the rectangular pulse requires an increase in its width. However, elongating the

pulse results in a decrease in its instantaneous bandwidth, which causes a degradation in the

range resolution. Therefore, sensitivity and range resolution seem to contradict each other.
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3.5.2 LFM Waveforms 25

Fortunately, the technique of pulse compression [19, 20] provides a solution to this prob-

lem, by decoupling the pulse duration from its energy. This is achieved by creating different

durations for the transmitted pulse and processed echo, which can be done by designing a fre-

quency modulated pulsed waveform instead of using a constant-frequency pulsed one. One

popular option is the linear frequency modulated (LFM or ”chirp”) waveform, an example

of it illustrated in Figure 3.8.
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Figure 3.8: The real and imaginary part of an LFM waveform, along with its instantaneous

frequency. Here, the frequency increases with time, with a positive slope β and at a constant

rate.

An LFM pulse can be mathematically defined as:

x(t) = cos

(
πβ

τ
t2
)
, 0 ≤ t ≤ τ, (3.14)

where β is the sweep bandwidth. The complex equivalent can be expressed as:

x(t) = ejπ
β
τ
t2 = ejθ(t), 0 ≤ t ≤ τ. (3.15)

The instantaneous frequency (in Hz) of this waveform is the time derivative of the phase

function θ(t):

Fi(t) =
1

2π
· dθ(t)

dt
=

β

τ
t. (3.16)

During the pulse duration, the instantaneous frequency Fi(t) sweeps linearly across over

the desired bandwidth β, as Figure 3.8 presents. This frequency sweep can either increase or
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26 Chapter 3. Radar Theory

decrease, but the rate of frequency change remains constant. The slope of Fi(t) is simply β;

when β is positive, the pulse is an upchirp, but if β is negative, then it is a downchirp.

3.5.3 FMCWWaveforms

The case study of this thesis employs a waveform known as a Frequency Modulated

ContinuousWaveform (FMCW), which is based on the fundamental principles of LFMwave-

forms. The key difference between these two waveform types is that when using an FMCW,

the frequency of the transmitted signal continuously varies by means of a modulating signal,

at a known rate and over a fixed time period, and returns to its starting point at the end of each

sweep. On the contrary, in LFM waveforms, the frequency linearly increases or decreases

over time, depending on the sign of β. Various frequency modulation techniques can be em-

ployed, with sawtooth and triangular modulations being the most commonly used methods

for altering the frequency pattern of the emitted radio wave, as reported in the literature [21].

Figure 3.9 displays a snapshot of an FMCW waveform for 2 sweeps. The system emits a

continuouswave at a specific frequency, and subsequentlymodulates it over time T, providing

the signal with a “time stamp”. Then, the modulated waveform propagates to the target and

a portion of it is reflected back to the radar. The FMCW approach produces a returned signal

A
m
pl
it
ud

e

Time

T

Figure 3.9: The up-chirp waves, using sawtooth modulation. The frequency of the continuous

waveform increases with time during the sweep.

that resembles the initial signal [22]; however, as illustrated in Figure 3.10, the frequency of

the received signal deviates from that of the transmitted signal by an amount of Δf, which

results from the time delay between transmission and reception, and it is also shifted by

∆t, due to the two way propagation. The mixer stage in the receiver circuit calculates this

frequency difference Δf, or most commonly known beat frequency fb, by mixing the received

signal frequency with the transmitted frequency. The beat frequency is directly proportional
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to the range distance R0 and can be utilized to determine the distance using the following

equation:

R0 =
cfbτ

2β
. (3.17)

Frequency

Time

fc

fc + β 

Τ

fd

Δt

t

Δf

Figure 3.10: The instantaneous frequencies of an FMCW signal and its echoed response, uti-

lizing sawtooth modulation. The dashed lines indicate the received signal, which is shifted in

both the frequency and time domain. A moving target is considered, resulting in the appear-

ance of the doppler frequency fd, that will be utilized to determine its velocity [22].

3.6 Doppler Analysis

The Doppler effect gives rise to the concept of Doppler frequency fd, which is a result of

the frequency alterations that occur when an object moves relative to the radar system. This

means that if the targeted object has a radial speed u, with respect to the receiving antenna,

and the signal is observed over several periods, then this additional Doppler frequency shift

fd can be detected. In monostatic radars, the connection between the velocity of a moving

target and its resulting frequency shift, can be extracted by the formula:

fd =
2fc
c

v, (3.18)

where v is the velocity of the moving target and fc is the carrier frequency of the transmitted

signal. If the target is moving with some velocity v0 at an angle θ, with respect to the line

connecting the radar, then the radial velocity is determined by v = vocos(θ).
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When the returned echoes contain signals from both stationary (clutter) and moving tar-

gets, the received signal is a superposition of these signals. If the target is moving towards

the radar, the frequency of the entire echo signal increases at fc + fd, while if the object is

moving away from the radar, the frequency decreases at fc − fd.

It is noteworthy to mention that when various parts of a target vibrate or rotate, they pro-

duce an additional frequency modulation, alongside the Doppler shift caused by the target’s

motion. This phenomenon is commonly referred to as the “micro-Doppler effect”, and a sub-

stantial portion of this study is dedicated to its analysis and exploration. For instance, the

rotation of a vehicle’s wheels or the blades of a helicopter, both generate unique radar micro-

Doppler signatures. Similarly, in humans, the varying motion of the torso, arms, legs, hands,

and feet produces a distinct micro-Doppler signature that can be visually distinguished from

other targets.

Mathematically speaking, the micro-Doppler signatures are obtained through a Time -

Frequency (TF) transform of the complex I/Q radar data, which are represented as:

I = A cos (2πft+ ϕ0) , Q = A sin (2πft+ ϕ0) (3.19)

This transformation allows the observation on how the received Doppler frequencies change

over time. There are two main categories of TF analysis methods: linear transforms and

quadratic time-frequency distributions (QTFDs). In this thesis, the focus is on studying linear

transforms, particularly the Short-Time Fourier Transform (STFT).

The most commonly used TF transform is the spectrogram, denoted as S(t,ω), which is

the squared modulus of the STFT. It can be expressed in terms of the employed window

function, w(t), as:

S(t, ω) =

∣∣∣∣∫ ∞

−∞
w(t− u)x(u)du

∣∣∣∣2 (3.20)

While benefiting from linearity, STFTs face a trade-off between TF resolution and fixed

window length. More detailed information about these transforms can be found in extensive

research, available in the literature [23, 24].

3.7 Signal Processing

The domain of radar signal processing involves the digital processing of receiving sig-

nals, with the goal of extracting the requisite information, while concurrently suppressing
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the unwanted echoes arising from various sources, due to clutter, atmospheric conditions, RF

interference, noise sources, and deliberately produced jamming signals. In recent years, the

need for advanced signal processing techniques has grown exponentially, due to the increas-

ing demands of modern radar systems to detect targets and extract critical parameters from the

received waveforms with high accuracy, such as their position, velocity, shape, and Doppler

signatures. In order to get information from the received signal, the signal and radar pro-

cessors use different methods and techniques, including Matched Filters (MF) [25], Moving

Target Indicators (MTI) [26], Doppler Filtering [27], and Space-Time Adaptive Processing

(STAP) [28].

3.7.1 Matched Filters

As any other signal transmitted over the air, the chirp signal, i.e., the signal in which

its frequency increases or decreases in time, encounters noise during its propagation. In the

simple case of the collected signal being an exact replica of the transmitted signal, reflected

by a stationary target, but delayed per t0, it can be expressed as:

yt = x(t− t0) + n(t), (3.21)

where n(t) is white noise. The presence of noise and other attenuating factors can make the

detection process challenging, and improving the signal-to-noise ratio (SNR) can signifi-

cantly enhance the performance of the system. To maximize the SNR at the receiving end, a

Matched Filter (MF) can be utilized. To determine the optimal receiver frequency response

H(Ω) that would optimize the SNR, it is necessary to consider the received signal’s power.

The received signal’s spectrum can be expressed as Y (Ω) = H(Ω)X(Ω), where X(Ω) de-

notes the transmitted waveform’s spectrum. The power of the received signal at an arbitrary

time tm can be computed by implementing the inverse Fourier transform of Y (Ω) as:

|y (tm)|2 =
∣∣∣∣ 12π

∫ ∞

−∞
X(Ω)H(Ω)ejΩtmdΩ

∣∣∣∣2 . (3.22)

Considering the case where the interference is white noise, with power spectral density σw2.

The noise power spectral density at the output of the receiver will be σw2H(Ω). Thus, the

total output noise power is given by the formula:

np =
σ2
w

2π

∫ ∞

−∞
|H(Ω)|2dΩ. (3.23)
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To determine the optimal receiver frequency response H(Ω) that maximizes the SNR, Eq.

(3.22) and (3.23) are first divided. The choice of H(Ω) that will maximize the division’s

result can be determined via the Schwarz inequality [12], resulting in:

H(Ω) = αX∗(Ω)e−jΩtm or

h(t) = αx∗ (tm − t) .
(3.24)

Here, α is the gain constant, often set equal to unity, and x∗(t) is the complex conjugate of

the transmitted signal.

The resulting response H(Ω), derived from Eq. (3.24) is known as a matched filter, as it

is precisely “matched” to the transmitted waveform, and they are required to be a matched

set in order to maximize the output SNR. By time-reversing the H(Ω) spectrum, the impulse

response h(t) of the matched filter is obtained. If the radar system changes the type of the

transmitted waveform, then the receiver filter response must also be adjusted to maintain a

matched condition. Figure 3.11 illustrates a general block scheme of an MF.

FFT IFFTInput Signal MF Output

FFT of Stored
Replicas

Figure 3.11: Block diagram of a Matched Filter.

Supposing that the input signal in Figure 3.11 is the echo from a stationary target at an

unknown range R0. The delay can be then be derived by the relationship t0 = 2R0

c
. On the

other hand, the output of the MF can be mathematically expressed as the convolution of the

received signal, in the time domain, with the MF’s output response:

y(t) =

∫ ∞

−∞
x (s− t0)αx

∗(s+ τ − t)ds. (3.25)

As presented in Figure 3.12, the output response y(t) will appear as a triangle, with its peak

occurring at tpeak = t0 + τ. This tpeak corresponds to the actual, two way delay to the target t0,

plus the delay of the MF, which is equal to the waveform’s width τ. The target range can be

easily determined as R0 =
c (tpeak−τ)

2
.
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y(t)

t

ατ

t0 t0 + 2τt0 + τ

Figure 3.12: Output response of the MF for a stationary target at range R0 =
ct0
2
.

3.7.2 Detection Theory

Although the approach so far may appear redundant in straightforward cases, such as

those lacking noise, the presence of noise and clutter in real-world scenarios renders the

issue of detection [29], which is considerably more complex and extensively studied. In a

nutshell, radar systems encounter the challenge of separating the useful target echoes from

the interference background that hinders the target detection. Therefore, the primary objec-

tive of a radar processor is to determine whether the collected echoes contain useful signal

components that convey information about a potential target, or if they are simply comprised

of noise/clutter. This issue can be framed in the context of a binary hypothesis test, where:

1. H0: Null Hypothesis; there are only contributions from interference.

2. H0: Alternative Hypothesis; there are contributions from both interference and echoes

from a target.

In Figure 3.13, the output response of a received pulse contains both useful data and

white noise. In the presence of noise, distinguishing between these components can be quite

difficult. To mitigate this problem, an MF can be employed, which effectively reduces noise

and clutter, thus subsequently enhancing the SNR of the overall signal. The MF response

exhibits a prominent peak, signifying the existence of a target and, thus, enabling the accurate

estimation of crucial target parameters such as its range.

On closer inspection of Figure 3.14, it is evident that the received pulse, depicted in the

upper plot, is simulated with a higher level of noise. Despite the use of an MF, the presence

of a target in the radar’s vicinity still remains uncertain. Even though the received signal is
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Figure 3.13: Output response of a noisy pulse at the receiver’s end (upper plot) and at the

output of a Matched Filter (lower plot). Despite the knowledge that a target is present in the

radar’s vicinity, extracting valuable target information from interference in noisy environ-

ments is a challenging task that necessitates the use of various signal processing techniques.

comprised of multiple peaks, not all of them are relevant for detecting the presence of a tar-

get. As previously established, a peak must exceed a certain threshold level to be considered

indicative of a target. The hypothesis test described earlier is utilized to determine whether

a target is present or not. Each measurement, collected by the radar system, is subjected to

this test, and the hypothesis that best fits the data is chosen. The threshold level can be com-

puted using various techniques that are found in the literature, such as the Neyman-Pearson

(NP) detection rule [30], Likelihood Ratio Test (LRT), and the Log-Likelihood Ratio Test

(LLRT) [29].

On a final note, the clutter and/or hostile noise jamming in radar systems can often surpass

the receiver’s internal noise, leading to an increase in the detection threshold and subsequent

false alarms. False alarms on radars occur when the radar system detects a signal that is not

actually a target of interest. To combat this issue, the popular technique of Constant False

Alarm Rate (CFAR) [31] is utilized to automatically adjust the threshold level and prevent

the system from becoming overloaded with irrelevant information, ultimately reducing the

incidence of false alarms. However, while CFAR is effective at mitigating false alarms, it can
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Figure 3.14: Output response of the same pulse as in Figure 3.13, but with increased noise

levels, highlighting the difficulty in differentiating the target from interference, even with the

use of an MF.

also decrease the probability of detecting actual targets.

3.8 Phased Array Systems

Radar antennas are a fundamental part of any radar system, as they are responsible for the

sensitivity and angular resolution of the radar. Their primary function is to convert electrical

signals into electromagnetic waves and vice versa.

A plethora of antenna types are employed in radar systems, each with distinct advantages

and limitations. While the theoretical isotropic antenna [8, 14] serves as a reference for mea-

suring the performance of practical antennas, it does not exist in reality. In practice, nearly

all radar antennas are directive and have some form of beam-steering mechanism, allowing

them to emit narrow beams of radiation in specific directions. This feature is particularly im-

portant, as it enables accurate angular measurements and the ability to resolve closely spaced

targets, which would be impossible with a non-directive antenna.

A fascinating aspect of antenna systems is the ability to alter the radiation pattern by ar-

ranging the antennas in specific configurations, without physically moving them. This leads
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to improved gain, directivity, and overall performance in a desired direction. Such configura-

tions are known as phased arrays, which find extensive use in modern radar systems, due to

their numerous advantages. The fundamental principle of a phased array system is based on

the superposition of two or more radiated signals. When these signals are in-phase, they con-

structively interfere, leading to an additive amplitude signal. Conversely, when the signals

are out-of-phase or counter phase, they destructively interfere and cancel each other out. This

phase-dependent property allows the radiation pattern to be steered electronically by adjust-

ing the relative phases of the signals across the individual antennas in the array. Consequently,

the direction of the beam can be adjusted without the need for mechanical movement of the

antenna system, enabling the phased array to track moving targets or respond to changing

environmental conditions very rapidly [32].

This property of phased arrays is accurately depicted in Figure 3.15. The upper plot il-

lustrates the radiation pattern of a single, isotropic antenna that uniformly radiates at 0 dB

across the range of −90◦ to 90◦. On the other hand, the lower plot shows how arranging 15

isotropic antennas linearly, separated by λ
2
, creates a narrower beam in the boresight direction,

establishing it as the direction of peak gain of the array.
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Figure 3.15: Radiation patterns of an isotropic antenna (upper plot) and of a multi-element

linear array (lower plot).
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Linear arrays, while a well-known type of phased array, are just one among a multitude of

available configurations. Scientific literature has extensively documented a diverse array of

options that can be employed in place of linear arrays, as evidenced by the extensive coverage

in works by Skolnik and Balanis [13, 33].

3.8.1 Uniform Linear Arrays

A part of the case study in this thesis has been conducted by employing a Uniform Linear

Array (ULA) [34]. A ULA consists of a series of identical and uniformly spaced apart radiat-

ing elements, arranged in a linear topology. The array can be comprised of either isotropic or

omnidirectional antenna elements. Isotropic antennas radiate power uniformly in all three di-

mensions, whereas omnidirectional antennas radiate equal power in all horizontal directions.

Throughout the study, it is assumed that isotropic antenna elements are employed, providing

a reference point for measuring the performance of real-world antennas.

y[N] y[n] y[1]y[2] d

θ θθθ

Reference Element

dsinθ

xn(t)

......

Figure 3.16: System model for DOA estimation using a ULA of N elements [35].

Figure 3.16 illustrates a N-element ULA system, in which, each element is separated by

a distance d, restricted to half the wavelength λ of the collected waveform. A source, located

in the far field, emits radiation in the form of:

x(t) = ej2πfct (3.26)

The elements of the ULA individually collect the incident waveforms that impinge upon them

at a specific angle θ, that is also referred to as the Direction of Arrival (DOA). The DOA is
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typically measured with respect to the boresight direction and is independent of the array’s

orientation.

In this scenario, the incoming signal is received first by the rightmost element, which is

designated as the “reference element”. The other elements will receive the signal with a time

delay that increases incrementally, due to the geometry of the ULA, and is mathematically

expressed as:

τn =
(n− 1)dsin(θ)

c
, 1 ≤ n ≤ N (3.27)

Eq. (3.27) is a function of the distance between the elements, the DOA of the incoming signal,

and the propagation speed. Therefore, the output of the nth sensor can be expressed as:

yn(t) = x(t− τn) ⇔ yn(t) = x(t) e2πfcτn , (3.28)

with n ranging from 1 to N. According to Eq. (3.28), it is worth emphasizing that the output

of each sensor is dependent on this delay, which is directly related to the phase difference

between the signals. Therefore, by carefully examining Eq. (3.27) and (3.28), it is concluded

that the output response of each element is directly related to the time delay at which the

waveform arrived, giving rise to the concept of the Steering Vector. The steering vector is a

mathematical representation of the array’s directional sensitivity, formulated as:

a(θ) =
[
1 ej2πfc

dsin(θ)
c · · · ej2π(N−1)fc

dsin(θ)
c

]T
, (3.29)

where fc is the carrier frequency of the incoming waveform. One practical application of the

steering vector is to align the array towards the direction of the incoming signal, allowing

amplification or suppression of signals arriving from a particular direction, while attenuating

signals from other directions [35]. Figure 3.17 illustrates this function, by presenting the

response of a 15-element ULA, with half-wavelength spacing between the elements, at a

carrier frequency of 24 GHz. In the lower plot, it is evident how the main lobe has steered

towards 30◦ azimuth, in comparison to the upper plot where the narrow beam points in the

broadside direction.

Another technique that can also be used for directional signal transmission or reception

is beamforming. Beamforming is a powerful technique employed in sensor arrays, such as

antennas, microphones, and sonars, to improve the detection or transmission of signals in a

specific direction. The technique operates as a spatial filter that combines the outputs of indi-

vidual sensors in the array, in a manner that results in a desired beam pattern with enhanced

directivity, while concurrently tries to mitigate interference located at other directions.
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Figure 3.17: Radiation patterns of a 15-Element ULA. In the upper plot, the main lobe points

in the broadside direction while in the lower plot, it has steered in the direction of 30◦ azimuth.

Conventional [36] beamformers employ fixed weights for combining the sensor outputs,

resulting however in a static beam pattern that cannot adapt to changes in the environment

or interference. On the other hand, adaptive beamformers, such as the Minimum Variance

Distortionless Response (MVDR) beamformer [35], use algorithms that modify the weights

based on the incoming signals and the environment, thereby achieving better interference

rejection, improved SNR, and better target detection in dynamic environments. However, a

critical challenge associated with adaptive beamforming is achieving an optimal balance be-

tween reducing antenna sidelobes, and maintaining a narrow mainbeam for high resolution

and gain. Sidelobes represent unwanted radiation lobes that emanate from the antenna, in

directions other than the main beam. Reducing the sidelobes is crucial for minimizing inter-

ference and improving the SNR. Nonetheless, the weights chosen to achieve this reduction

lead to a wider mainbeam, resulting in degraded resolution and gain.

To explore these techniques further, the literature provides a wealth of knowledge, includ-

ing various approaches and advancements in phased arrays and beamforming. Thus, further

study and research in these fields can lead to more innovations and advancements in the

development of sensor arrays for various applications.
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3.9 Radar Sampling

Section 3.3 has provided a thorough explanation of the three-dimensional operation of

radar systems. Nowadays, with the advent of digital processing, all of the data processing

is performed in a digital format. Consequently, to depict the space-time processing more

intuitively, the concept of a radar data cube has been introduced.

The radar data cube is a convenient, three-dimensional graphic depiction the space-time

processing of sampled radar data. To construct the radar data cube [37], the pre-processing

stage converts the RF signals to complex-valued baseband samples, as expressed in Eq.

(3.19). This results in the formation of a complex signal I + iQ. These samples are arranged

in a three-dimensional array of size K×N×L, as illustrated in Figure 3.18. K, defines the

length of the fast-time dimension, N, the length of the spatial dimension, while L, the length

of the slow-time dimension.
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Figure 3.18: An illustration of the radar cube’s arrangement [37].

Fast-Time: The fast-time dimension involves the analysis of a K×1 subvectors along

the fast-time axis, as illustrated in red in the preceding diagram. Each row in this subvector

represents a sequence of complex-valued baseband samples, extracted from a single pulse

that was obtained from a specific array element. These samples are acquired at the system’s

highest sampling rate, denoted as Fs, and consequently, this dimension is designated as fast-

time. The sampling interval, Ts, is determined simply as the reciprocal of Fs (Ts =
1
Fs
).

It is noteworthy to mention that the fast-time dimension is also known as the range di-

mension. When fast-time sample intervals are converted to distance, by employing Eq. (3.1),
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then the resulting intervals are referred to as range bins. The examination of the distribution

of radar returns within the range bins is instrumental in constructing range profiles, which in

return yield valuable insights into the target’s shape and structure.

Slow-Time: Within this dimension, each K×L submatrix in the data cube comprises of

K row vectors, with a dimension of 1×L, as illustrated in blue colour in the Figure above.

These row vectors represent complex-valued baseband samples, obtained from L different

pulses in the same range bin. For each of the N array elements, there is a corresponding K×L

matrix. The sampling interval, between L consecutive samples in the slow-time dimension,

is commonly referred to as the pulse repetition interval (PRI). Typically, the PRI is consid-

erably longer than the fast-time sampling interval, allowing for the acquisition of samples

across multiple pulses. Consequently, the samples obtained within this dimension are known

as slow-time samples. Through data processing in the slow-time dimension, valuable infor-

mation regarding the Doppler spectrum at a specific range bin can be derived. By analyzing

the variations in the acquired signals over the PRI, the radar system can estimate the frequency

content and velocity characteristics of targets within the observed range bin.

Spatial Sampling: The spatial sampling dimension in radar systems plays a vital role in

capturing the spatial characteristics of the incident waveform, as phased arrays consist of

multiple array elements. Within each K×N submatrix of the radar cube, there are K fast-time

samples in each column, obtained from a single pulse at one single array element. In total, the

N column vectors, marked in green in Figure 3.18, represent the same pulse sampled across N

array elements simultaneously. By examining the data across the array elements, it becomes

possible to determine the spatial frequency associated with each received pulse, which is the

equivalent of estimating the angle of arrival (AOA).

An important technique utilized in this context is beamforming. As mentioned earlier,

beamforming involves a spatial filtering operation that selectively enhances or suppresses

waveform incidents on the array, from specific directions. By intelligently combining the

data across the array elements, beamforming allows for improved spatial resolution and the

ability to focus the radar system’s sensitivity towards desired targets or directions of interest.

This technique plays a crucial role in enhancing the radar system’s performance in terms of

detection and tracking capabilities.
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3.9.1 A Processing Example

To further investigate radar processing, an illustrative example of the processing method

is being presented in Figures 3.19 and 3.20. In this example, the received FMCW signal that

is presented in Figure 3.9 will be sampled for processing.
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Figure 3.19: Radar Sampling Processing: Application of the FFT algorithm for range estima-

tion [22].

The FMCW signal exhibits an instantaneous frequency Fi(t), as visually represented in

Figure 3.10. Figure 3.19 shows that the initial step involves performing a Fast Fourier Trans-

formation (FFT) on the received signal. This transformation enables themapping of each sam-

ple to a specific bin. By employing the FFT technique, the FMCW signal undergoes spectral

analysis, allowing for the identification and localization of targets based on their range. By

repeating this process for each chirp, comprehensive range information across the fast-time

dimension can be obtained.

After the acquisition, storage, and processing of all the chirps, a Doppler-FFT analysis

can be conducted to extract precise velocity information regarding the target. This evaluation

is done once every L chirps in the slow-time. This evaluation occurs periodically, once ev-

ery L chirps, within the slow-time dimension. Subsequently, the K×L data samples, obtained
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across all elements of the array, are merged to form the third dimension of the radar cube. This

dimension provides crucial insights into the spatial position of the target, encompassing its

spatial distribution within the radar’s field of view. By combining the information from mul-

tiple array elements, a comprehensive representation of the target’s location and movement

can be obtained, facilitating accurate target tracking and identification.
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Figure 3.20: Practical illustration of the Radar Data Cube. The far left plot depicts the sampled

data, used for range estimation. In the middle, the data combined from multiple chirps are

used to calculate the velocity of the target, while in the right plot, data from all of the array

elements are combined together to determine the spatial position of the target [22].

In conclusion, this fusion of data across the elements further enhances the three-dimensional

characterization of the radar cube, enabling precise analysis and interpretation of the target’s

spatial attributes.
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Chapter 4

Deep Learning for Radars

4.1 Introduction

Deep Learning (DL) [23] is an exciting and rapidly advancing branch ofMachine Learn-

ing (ML), that has made significant progress in addressing complex challenges in computer

vision and natural language processing. It has outperformed traditional methodologies that

were previously regarded as cutting-edge. The key to this success lies in the utilization of

deep neural networks (DNNs), which distinguish themselves from conventional approaches

by focusing more on automatic feature learning, rather than manual feature engineering and

model training. By capitalizing on extensive datasets, DNNs have demonstrated unparalleled

capabilities in tackling tasks that were once impossible to handle, thus pushing the boundaries

of what can be achieved in the realm of artificial intelligence.

Recently, there has been a notable surge in the adoption of deep neural network algorithms

by distinguished researchers worldwide, to attend significant obstacles in radar signal pro-

cessing. The research conducted by Zhe Geng, He Yan, Jindong Zhang, and Daiyin Zhu [38]

extensively explores a multitude of deep learning techniques, employed in the domain of

radar processing. These techniques, which hold immense potential, are effectively synthe-

sized and visually represented in Figure 4.1, which depicts a comprehensive block diagram

that illustrates the most prominent deep learning techniques used in radar processing.

This chapter aims to provide a comprehensive exposition of the theoretical framework

underlying the Convolutional Neural Network (CNN), by analysing the fundamental building

blocks that are commonly employed in classification tasks. In the context of this thesis, the

CNN algorithm serves as the practical algorithm used for the classification of micro Doppler

43
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signatures, exhibited by pedestrians and bicyclists, which lies in the field of Automatic Target

Recognition.

Deep Learning for
Radars

Radar Waveform
and Array Design

Radar Waveform
Recognition

Automatic Target
Recognition

Interference
Suppression

Spectrum Sharing

Waveform Analysis

Array Design

LPI Radar

Passive Radar

Doppler Signatures

HRR Profiles

SAR videos/images

Jamming

Clutter

Figure 4.1: Block diagram of the most prominent deep learning techniques used in radar

processing, as analyzed in the literature [38].

4.2 Convolutional Neural Networks

A section of the case study of this thesis is dedicated to the classification of Doppler

signatures associated with pedestrians and bicyclists. This classification task is accomplished

by employing a special type of deep learning algorithm, commonly known as convolutional

neural network (CNN). A CNN, is a mathematical framework that consists of three main

types of layers, which are the building blocks of the network: convolutional layers, pooling

layers, and fully connected layers [39]. For in-depth exploration of CNNs and deep learning

in general, Phil Kim’s work [40] provides extensive analysis and insights into these concepts.

4.2.1 Convolutional Layer

The Convolutional Layer is a fundamental component within the CNN architecture, that

serves the purpose of feature extraction. It involves a combination of linear and nonlinear

operations, specifically the convolution operation and activation function.

Convolution is a specialized linear operation utilized for feature extraction. It involves the

application of a small array of numbers, referred to as a kernel, across an input array of num-
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bers, known as a tensor. At each position of the tensor, an element-wise product is computed

between each element of the kernel and the corresponding element of the input tensor. These

products are then summed to yield the output value, which is placed in the corresponding

position of the output tensor. This output tensor is commonly referred to as a feature map.

An example of this process is illustrated in Figure 4.2. Multiple kernels are employed in this

1 2 1 0 2

2 0 0 1 0

1 0 2 1 0

0 1 0 2 1

0 2 1 0 2

Input Tensor

*

1 0 1

0 1 0

1 0 1

Kernel

5 3 6

2 6 2

5 3 7

Feature Map

Figure 4.2: An example of the convolution operation with a kernel size of 3×3 [39].

process, generating a variable number of feature maps that represent different characteristics

of the input tensors. The convolution operation is defined by two key parameters: the size of

the kernel (typically 3×3, but occasionally 5×5 or 7×7) and the number of kernels, which

determines the depth of the output feature maps and can vary as desired.

However, the output featured map is reduced in height and width, compared to the input

sensor, which would result in successively smaller and smaller feature maps after each con-

volution operation. This is why the center of each kernel is not allowed to overlap with the

outermost element of the input sensor. To address this issue, padding is commonly applied,

often in the form of zero padding. Zero padding involves adding rows and columns of zeros

to each side of the input tensor, allowing the center of a kernel to align with the outermost

element and maintaining the same in-plane dimension throughout the convolution operation,

as depicted in Figure 4.3. This technique is widely used in modern CNN architectures to

preserve in-plane dimensions and facilitate the application of multiple layers.

Another variable that defines the convolution operation the stride, which describes the

shifting of pixels between two consecutive positions of the kernel. A stride of 1 is commonly

chosen, but occasionally, a larger stride is utilized to achieve downsampling of the feature

maps. A comprehensive illustration of these operations can be found in the work of Raghuram

Vadlamani and Anjali Vishnubhai Patel [41].

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:53:36 EEST - 3.145.151.104



46 Chapter 4. Deep Learning for Radars
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Figure 4.3: An example of the convolution operation with zero padding [39].

The outputs of the convolution operation are then passed through a nonlinear activation

function. Although smooth nonlinear functions, such as sigmoid or hyperbolic tangent func-

tions, were used previously because they are mathematical representations of a biological

neuron behavior, the most common nonlinear activation function used presently is the recti-

fied linear unit (ReLU), a graphical illustration of which is presented in Figure 4.4. The ReLU

simply computes the function: f(x) = max(0, x), which converts all the negative values to

zero and leaves all the positive values the same.

-5 -4 -3 -2 -1 0 1 2 3 4 5
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1
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ReLU activation function

Figure 4.4: Rectified Linear Unit (ReLU) activation function.

In conclusion, an important aspect in training a CNN model, specifically regarding the

convolution layer, is to determine the optimal kernels that are most effective for a given
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task, based on a provided training dataset. The kernels are the only parameters that are auto-

matically learned during the training process within the convolution layer. However, prior to

training, certain parameters such as the size of the kernels, the number of kernels, the padding

technique, and the stride value need to be predefined.

4.2.2 Pooling Layer

Apooling layer is a crucial component of a convolutional neural network, that plays a vital

role in downsampling the feature maps obtained from the preceding convolutional layers. Its

primary objective is to reduce the spatial dimensions of the feature maps, while preserving

the most important and relevant information.

To achieve downsampling, the pooling layer partitions the input feature map into non-

overlapping regions, usually in the form of squares with a predefined size.Within each region,

a pooling operation is performed to summarize the information. The most commonly used

pooling operation is max pooling, which selects the maximum value within each region and

discards the rest. An example of this function is presented in Figure 4.5. This helps to preserve

the most prominent features that were present in the region.

8 3 5 9

4 7 2 4

6 5 2 1

1 7 3 6

Input Feature Map (4x4)

Max pooling
8 9

7 6

Output (2x2)

Figure 4.5: An example of the max pooling function with a pooling size of 2×2, no padding,

and a stride of 2 [39].

Another pooling procedure worth mentioning is the global average pooling. A global av-

erage pooling is an extreme type of downsampling inwhich a featuremap of size height×width

is downsampled into a 1×1 array, by simply taking the average of all the components in each

feature map, while still preserving the depth of the feature maps. This step is normally per-

formed only once before the fully connected layers.
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The choice of pooling size and stride in a pooling layer has a direct impact on the degree

of the achieved downsampling, and plays a crucial role in shaping the resulting feature maps.

The pooling size refers to the dimensions of the pooling regions, commonly represented as

2×2 or 3×3 squares. By selecting a larger pooling size, a more aggressive downsampling

is performed, resulting in a greater reduction in spatial dimensions. Conversely, a smaller

pooling size leads to a more conservative downsampling approach, retaining more spatial

information. In addition to the pooling size, the stride parameter determines the spacing be-

tween neighboring pooling regions. Typically, the stride is set to be equal to the pooling size,

ensuring non-overlapping regions during the pooling operation. This configuration helps to

avoid redundancy and ensures that each region contributes unique information to the down-

sampling process.

Lastly, it is noteworthy to mention that the pooling layer, to some extent, compensates for

eccentric and tilted objects. While the convolutional layer detects objects within an image,

the pooling operation aids in determining the location of the object within the image.

4.2.3 Fully Connected Layers

The fully connected layers serve as amappingmechanism for the extracted and downsam-

pled features. After the feature maps have undergone convolutional and pooling operations,

the output of the pooling layer is typically subjected to a transformation known as flatten-

ing. This process converts the feature maps into a vector representation, allowing them to be

used as inputs for one or more fully connected layers. In these fully connected layers, every

input neuron is connected to every output neuron through learnable weights. To enhance the

performance of the network, these weights are constantly adjusting throughout training. The

flattened features, which have been extracted by the convolutional layers and downsampled

by the pooling layers, are then passed through these series of fully connected layers. In each

fully connected layer, a nonlinear activation function is applied to the outputs. As mentioned

previously, the ReLU is a commonly used activation function that introduces non-linearity

and helps the network learn complex representations.

The final fully connected layer typically consists of a number of output nodes equal to

the number of classes in the classification task. The choice of activation function for this

last layer differs from the others and depends on the specific task at hand. For multi-class

classification tasks, a popular activation function is the softmax function. It normalizes the
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output values from the previous layer into target class probabilities, ensuring that each value

falls between 0 and 1, and the sum of all values equals 1. This enables the network to provide

probabilities for each class, aiding in the final classification decision.
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Chapter 5

Case Study

5.1 An Overview of the Case Study

Following this comprehensive review of the literature, it is important to keep in mind that

radars used for target detection, tracking and identification, frequently leverage the Doppler

shift property, which describes how the frequency of a wave varies, as its source moves rela-

tive to the observer. Depending on the direction of the moving target with respect to the radar

system, the reflected signals will present a shift in their frequency. For instance, if the target

moves towards to the receiver, the reflected waves will be compressed and a rise in their

frequency will be expected. This is often referred to as a positive Doppler shift. On the other

hand, a target that moves away from the receiver will result in stretching out the reflected

waves, inducing a drop in their frequency. This is commonly known as a negative Doppler

shift. By analyzing the frequency shift of the reflected waves, the radar system can deter-

mine the speed and direction of the target relative to the radar and the extracted information

can be later used for a variety of purposes, like detecting the presence of moving vehicles or

pedestrians.

However, multiple point objects that move along different directions produce additional

frequency modulations that are frequently referred to as micro – Doppler signatures. These

signatures can then be used to identify targets that consist of multiple moving and distinct

parts, such as humans or vehicles, by analysing their respective spectrograms. A spectrogram

is a visual representation of the signal strength across a time period at various frequencies

that are present in a particular waveform. Each spectrogram provides a unique signature, thus

making the classification/identification process feasible. To classify them and extract valu-
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able information from them, a properly trained CNN can be employed. There is a lot of work

done in this field that leverages these signatures, including “WiSee” [42], a novel gesture

recognition system that leverages wireless signals (e.g., WiFi) to enable whole-home sens-

ing and recognition of human gestures, “E-eyes” [43], an approach that senses and identifies

fine-grained WiFi signal changes when an activity is performed, “MARS” [44], an assistive

rehabilitation system that tracks a patient’s movement using a low-cost mmWave radar.

It is noteworthy to mention that the observed Doppler signatures represent frequency

modulations within the radar waveform, which is emitted by an active radar system and

scattered in various directions upon encountering a moving target. Subsequent sections will

demonstrate that these scattered waveforms can also be captured by passive receivers, as

indicated in the work of Vishwakarma et al. (2021) [45]. If such receivers suspect that the re-

ceived signal potentially contains signatures of individuals present within a specific location,

such as a room, they can employ a classification algorithm to identify them. This situation

introduces a significant concern regarding individuals’ privacy.

Accordingly, the objective of this thesis is to develop methodologies that obscure the

transmitted radar waveform, in order to prevent unauthorized receivers from deciphering

the echoes carrying these signatures, thus enhancing the sense of security and privacy for

individuals.

5.2 Simulation Setup

To initiate the search for methods aimed at obfuscating human wireless micro-Doppler

signatures, in order to prevent passive human activity classification, the first step is to set

up the grounds for the simulation. The simulation will be built upon the foundation of an

established project developed by MathWorks, titled “Pedestrian and Bicyclist Classification

Using Deep Learning” [46]. This project is a complete example that demonstrates how to

train and use a Convolutional Neural Network (CNN) to classify moving pedestrians and

bicyclists, based on their micro – Doppler characteristics. It also includes car objects, but

they are considered as noise sources, thus they will be ignored in this study. The project

is built using MATLAB, and it includes the Deep Learning, Signal Processing and Radar

Toolboxes.
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5.2.1 Layout

The project commences with data generation and preparation. Firstly, radar returns are

reflected signals from walking pedestrians and moving bicyclists. The pedestrian walking

model [47] coordinates the movement of 16 body segments, imitating natural motion, and

simulates the radar reflectivity of each body segment. The moving bicyclist model [48] cre-

ates an object consisting of both the bicycle and its rider, and the motion of the object is sim-

ulated. Then, the sum of all the reflected signals from numerous distinct scatterers located on

the object is computed. Afterwards, by calculating the Short-Time Fourier Transform (STFT)

of each radar return, the corresponding micro-Doppler signatures are generated. In the exper-

iments, it was assumed that a monostatic radar model was used, with the active radar being

fixed at its origin and the targeted objects being uniformly distributed in a rectangular area of

[5,45] and [–10,10] meters along the X and Y axes, respectively, as indicated in Figure 5.1.

[5,45]

[-10,10]

X

Y

Figure 5.1: The layout plan. The targeted objects are moving strictly inside this rectangular

area [46].

5.2.2 Data Preparation

To generate spectrogram illustrations of the pedestrian and the bicyclist, and prior to pro-

ceeding with the obfuscation methods, the simulation will be executed twice. One simulation

run will focus on a single pedestrian, while the other will specifically consider a single bicy-

clist.
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The stationary radar transmits an FMCW waveform at 24 GHz, with a bandwidth of 250

MHz, a sampling rate of 500 MHz, and of 1 μsec duration. On the 1st experiment, the sole

pedestrian is initially located at [22.00, 4.00] m, that moves at a speed of 1.3 m/s, with an

initial orientation of 140 degrees, measured from the x-axis towards the y-axis. On the 2nd

experiment, a single bicyclist is present in the area, that starts at [10.00,−4.00] m and heads

at -30 degrees, at a constant speed of 4.5 m/s. All the tunable parameters for these two objects

are presented in Tables 5.1 and 5.2:

Table 5.1: Tunable parameters for the pedestrian object.

Parameters Pedestrian Acceptable values
Height 1.7 m [1.5, 2] m
Speed 1.3 m/s [0, 1.4Height] m/s
Heading 140◦ [−180◦, 180◦]
Location [22, 4, 0] m [[5, 45], [−10, 10], 0] m

Table 5.2: Tunable parameters for the bicyclist object.

Parameters Bicyclist Acceptable values
Speed 4.5 m/s [1, 10] m/s
Heading −30◦ [−180◦, 180◦]
Location [10,−4, 0] m [[5, 45], [−10, 10], 0] m
Gear Transmission Ratio 4 [0.5, 6]
Pedaling or Coasting Pedaling 50% Pedaling, 50% Coasting

After generating the reflected signals from both experiments, an STFT algorithm is ap-

plied to create the desired spectrograms. As shown in Figure 5.2, the computed spectrograms
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Figure 5.2: The spectrograms of a walking pedestrian (left) and a moving bicyclist (right).

The Doppler signatures between these two objects are quite dissimilar.

of the pedestrian (left) and the bicyclist (right) exhibit quite distinct signatures.
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In particular, these spectrograms exhibit rich micro-Doppler signatures resulting from

distinct movements such as the swinging of arms and legs for pedestrians, and the rotation

of wheels for bicyclists. Notably, the spectrograms of each category showcase discernible

dissimilarities, highlighting the uniqueness of the generated Doppler signatures.

It is possible to combine the experiments for detecting pedestrians and bicyclists into a

single experiment. In scenarios where multiple objects coexist within the radar’s detection

region, the radar returns encompass a summation of the detected signals, emanating from all

objects present. Below, a new set of parameters is presented, which will be applied to create

a second realization of a pedestrian and a bicyclist.

Table 5.3: Tunable parameters for the second pedestrian object.

Parameters Pedestrian Acceptable values
Height 1.6 m [1.5, 2] m

Speed 1.4 m/s [0, 1.4Height] m/s

Heading 110◦ [−180◦, 180◦]

Location [26,−3, 0] m [[5, 45], [−10, 10], 0] m

Table 5.4: Tunable parameters for the second bicyclist object.

Parameters Bicyclist Acceptable values
Speed 6 m/s [1, 10] m/s

Heading −40◦ [−180◦, 180◦]

Location [15, 1, 0] m [[5, 45], [−10, 10], 0] m

Gear Transmission Ratio 5 [0.5, 6]

Pedaling or Coasting Pedaling 50% Pedaling, 50% Coasting

Figure 5.3 provides a display of spectrograms, representing various combinations of pedes-

trians and bicyclists, further augmented by the addition of Gaussian background noise. In

order to accurately generate these spectrograms, the parameters presented in Tables 5.3 and

5.4 were used, to generate a second realization of one pedestrian and one bicyclist. The spec-

trogram on the right-hand side was generated using the first realization of the pedestrian and

bicyclist object, but other combinations are also feasible (e.g., using the first realization of

the pedestrian and the second of the bicyclist, or the second realization of both objects).

Classifying a single realization as either a pedestrian or a bicyclist is fairly straightfor-

ward, since both objects have distinct and unique Doppler signatures. However, in cases

where the objects overlap, like the one presented in Figure 5.3, distinguishing between mul-

tiple objects can be challenging.
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Figure 5.3: The spectrograms of two walking pedestrians (left), one walking pedestrian and

one moving bicyclist (middle) and two moving bicyclists (right). In this occasion the pedes-

trian and bicyclist signatures overlap in both time and frequency.

5.2.3 Creation of a CNN

The next step involved the development of a deep learning model that could differentiate

between a bicyclist, a pedestrian, or a combination thereof, based on an input spectrogram.

A Convolutional Neural Network (CNN) was chosen for this project, that accepts an image

as input and generates a probability of its content. The input images were labeled as contain-

ing either a pedestrian, a bicyclist, two pedestrians, two bicyclists, or a combination of one

pedestrian and one bicyclist.

The CNN architecture implemented in this case was comprised of five convolutional

layers, followed by pooling layers, a fully connected layer, and a softmax layer. The first

four convolutional layers were succeeded by a batch normalization layer, a rectified linear

unit (ReLU) activation layer, and a max pooling layer. In the final convolutional layer, the

max pooling layer was substituted with an average pooling layer. The output layer was a

classification layer that used softmax activation.

5.2.4 Network Training and Classification Parameters

For CNN training purposes, a pre-existing dataset containing 10,000 pedestrian and 10,000

bicyclist signals was employed [46]. These signals were merged, followed by the addition of

Gaussian noise and the computation of their micro-Doppler signatures, resulting in 5,000

signatures per classification category (either a pedestrian, a bicyclist, two pedestrians, two

bicyclists, or a combination of one pedestrian and one bicyclist). 80% of these (4,000 sig-

natures) were allocated for the training dataset, while 20% (1,000 signatures) were reserved
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for the test dataset across all categories. The spectrograms fed into the neural network are

presented in decibels and normalized to fit within the range of [0,1]. As certain returns may

be significantly stronger than others, stronger signals can mask weaker ones, resulting in dif-

ficulties for analysis. To tackle this issue, logarithmic scaling (dB) is applied to enhance the

features and create a fairer comparison between the received signals. In addition, amplitude

normalization aids the CNN into converging more rapidly.

The specified neural network was trained on an HP laptop with an AMD Ryzen 5 3500U

with Radeon Vega Mobile Gfx 2.10 GHz CPU, utilizing the parameters outlined in [46].

The only alteration made was that a CPU was used instead of a GPU. Through this training

method, an accuracy of nearly 86% was achieved over 30 epochs. The results extracted from

the confusion matrix are displayed in Table 5.5, offering a detailed analysis of the prediction

accuracy for each category. The matrix demonstrates that the network accurately predicts

the labels of the signals in the existing test dataset across all different scenarios with high

accuracy.

Table 5.5: The prediction results for the 5 different scenarios. The table demonstrates that the

average detection and classification accuracy for each category is rather high.

Scenario Accuracy
Pedestrian 91.7%

Bicyclist 93.6%

Pedestrian + Bicyclist 76%

Pedestrian + Pedestrian 85%

Bicyclist + Bicyclist 83.4%

Overall 86%

5.2.5 Concerns

A moving object, targeted by an active radar, becomes a virtual transmitter that reflects

the emitted radiation. While the active radar receives the echoes for further processing, an

unauthorized receiver, such as a passive radar, can also detect the scattered radiation [49].

Though the passive radar lacks knowledge of the active radar’s operating parameters and

modulation techniques, it can still receive the signal. Conducting the same experiments as

indicated in Section 5.2.4, it is demonstrated that by applying an STFT to the received, non-

demodulated signals, the produced spectrograms almost perfectly resemble those obtained
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by the active radar, as demonstrated in Figure 5.4. This raises significant privacy concerns

for the targeted individuals.
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Figure 5.4: The produced spectrograms of two walking pedestrians (a), one walking pedes-

trian and one moving bicyclist (b), two moving bicyclists (c), one walking pedestrian (d) and

one moving bicyclist (e). The distinct features for each scenario almost perfectly resemble

those illustrated in Figures 5.3 and 5.2, respectively.

To further investigate the matter, two datasets were generated, where each of those con-

sisted of 200 pedestrian and 200 bicyclist objects, using the steps outlined in Section 5.2.2.

However, for the simulations this time, the waveform’s bandwidth was decreased to 20MHz,

resulting in a lower sampling rate of 40 MHz. Although this change was made for efficiency

reasons, the resulting spectrograms still exhibit the same unique characteristics that are neces-

sary for the CNN to classify properly. It is important to note that the only difference between

the first and second datasets is that in the former, the signals reflected from the simulated ob-

jects were processed at the active radar receiver, while the latter only includes the scattered

radiation an unauthorized receiver can collect.

Active Radar

The first dataset used in this study included various categories of objects, namely “pedes-

trian”, “bicyclist”, “pedestrian + pedestrian”, “pedestrian + bicyclist”, and “bicyclist + bicy-
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clist”. To classify this dataset, the trained network from Section 5.2.4 was employed. How-

ever, it is worth noting that the categories “pedestrian + pedestrian” and “bicyclist + bicyclist”

consisted of only 100 spectrograms each, instead of the usual 200, as the objects weremerged,

leading to a reduced dataset. The results of the classification process are shown in Table 5.6,

with an average accuracy of 76.9%. The outcome extracted from the confusion matrix in-

dicates that the trained network performed much better in predicting scenes with multiple

objects.

Table 5.6: The resulting predictions of the confusion matrix for the active radar. Most pre-

diction errors occur when the network classifies the ”pedestrian” object as ”pedestrian +

pedestrian” or ”pedestrian + bicyclist”.

Scenario Accuracy
Pedestrian 56%

Bicyclist 90%

Pedestrian + Bicyclist 80%

Pedestrian + Pedestrian 77.5%

Bicyclist + Bicyclist 81%

Overall 76.9%

Passive Radar

Moving on to the second dataset, it contained the same information as the first one, except

for the fact that the reflected signals were not processed and demodulated. However, the net-

work was able to successfully identify most of the objects, as demonstrated in Table 5.7, in a

similar manner as it did for the first dataset. This implies that the passive radar, despite lack-

ing knowledge about the active radar operating parameters and modulation techniques and

while not being able to perform range or Doppler estimation, it can still predict the presence

of pedestrians and bicyclists in a room with an impressive accuracy of 73.9%. It is important

to note that the accuracy results may differ slightly from user to user due to the network being

trained on different computers, but the classification results for each dataset are expected to

be relatively consistent.

In conclusion, upon comparing Figures 5.2 and 5.3 with Figure 5.4, it becomes appar-

ent that no significant differences can be discerned, apart from some minor variations in the

spectrograms’ resolution. This raises a grave concern, as unauthorized devices have the po-
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Table 5.7: The resulting predictions for the received signals at the unauthorized receiver. The

passive radar can still identify with high accuracy the presence of an object in a room.

Scenario Accuracy
Pedestrian 58%

Bicyclist 73.5%

Pedestrian + Bicyclist 80%

Pedestrian + Pedestrian 76%

Bicyclist + Bicyclist 82%

Overall 73.9%

tential to collect the scattered radiation that contains these micro-Doppler signatures, employ

classification algorithms based on known patterns, and extract sensitive details regarding the

target’s identity. Consequently, it is imperative to develop novel methodologies that safe-

guard the privacy of individuals under surveillance. Of particular interest is the exploration

of waveform obfuscation techniques, which, as it is explored in subsequent sections, have

proven to be remarkably effective in concealing crucial information from malicious users.

5.3 Obfuscation Techniques

Signal obfuscation is a technique used to deliberately obscure or conceal information

contained in a signal, in order to prevent unauthorized access, manipulation or interpretation.

In the context of wireless communications, signal obfuscation is often used to protect against

eavesdropping, jamming or other forms of interference, ensuring that the signal can only be

understood by authorized users who possess the necessary decryption key or other means of

deciphering the signal.

5.3.1 Case 1: Obfuscation through Frequency Fluctuations

In Section 5.2.5, it was demonstrated that an unauthorized receiver has the capability to

use the reflected signals from a moving target to accurately track and identify it, which poses

a major violation of privacy if the individual is unaware of it. So, one potential solution

to address this problem is to introduce frequency fluctuations into the transmitted signals,

which can obscure these micro – Doppler signatures. This technique has been the subject

of extensive research, as highlighted in the work of Argyriou [50], where the insertion of
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an artificial, frequency variated signal in the transmitted waveform, so as to alter the real

micro-Doppler effects, is investigated.

To successfully obfuscate the micro doppler signatures that reveal the identity of a mov-

ing target, an oscillating sinewave was used to encapsulate the emitted signal. In the time do-

main, this waveform is defined as a frequency modulated (FM) waveform with a maximum

instantaneous frequency shift of Fimax and a frequency of fm, resulting in an instantaneous

frequency of Fi(t) = fc + Fimax · cos (2πfmt) [51]. The introduction of this waveform will

not affect the demodulation of the digital communication signal at the active receiver. The

FM alternated signal is then expressed as:

xobf (t) = ej
Fimax
fm

sin(2pifmt) (5.1)

This waveform produces in the frequency domain a signal that spreads between themaximum

instantaneous frequencies shifts of −Fimax to Fimax, at a rate of fm Hz.

The purpose of using the oscillating sinewave as a modulation technique is to obfus-

cate micro - Doppler signatures in the frequency domain, thereby making it harder to extract

information about the target’s identity. The frequency at which various human body parts

move is typically in the range of a few 10’s of Hz, and thus, the maximum instantaneous

frequency shift should be around that limit. In previous experiments, the objects were uni-

formly distributed in a rectangular area, and the other properties were adjusted randomly

within specified ranges, as indicated in Tables 5.1 - 5.4. The height of the pedestrian objects

was uniformly distributed between 1.5 and 2 meters, resulting in walking speeds ranging

from 0 to 1.4 times their height, in meters per second. Therefore, a human with a height of

2 meters would have a maximum speed of 2.8 m/s, resulting in a maximum Doppler shift of

448 Hz. However, since the average walking speed is 1.4 m/s [52], the average Doppler shift

is 224 Hz. Taking into consideration that the speed is uniformly distributed in the range of [0,

2.8] m/s, a maximum instantaneous frequency shift Fimax of ±200 Hz is sufficient to smear

the received signal spectrograms effectively, as shown in Figure 5.5. The value of fm, which

was set to 10 Hz, is already high enough to cover the moving pedestrian that presents peaks

in the spectrograms of Figure 5.2 (left) with a peak-to-peak difference of 0.5 seconds (2 Hz).
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5.3.2 Simulation

Figure 5.5 depicts the experiments performed in accordance with Section 5.2.4, utilizing

the same parameters. However, this time, the obfuscation technique that was employed in the

transmitted signals, for Fimax = ±200 Hz and fm = 10 Hz, resulted in the reflected Doppler

returns appearing too abstract, devoid of any distinguishable features that the classification

algorithm could identify in the passive receiver.
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Figure 5.5: The results of the obfuscating technique in the passive receiver, across the five

categories of two walking pedestrians (a), one walking pedestrian and one moving bicyclist

(b), two moving bicyclists (c), one walking pedestrian (d) and one moving bicyclist (e). It is

worth noting that smearing the signals has destroyed the doppler signatures.

To evaluate the impact of obfuscation, a new dataset was created, which consisted of 200

pedestrian and 200 bicyclist objects. The dataset was generated using the same parameters

as those used in Section 5.2.5, except for the use of the obfuscating technique. The trained

network from Section 5.2.4 was utilized to classify the spectrograms that had been smeared.

5.3.3 Results

In comparison to the 73.9% of accuracy that was achieved in the previous experiment

of Section 5.2.5, the classification process this time yielded a significantly lower average
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accuracy of 30.75%, as shown in Table 5.8. This table represents the classification predictions

for each scenario, extracted from the confusion matrix illustrated in Figure 5.6.

The confusion matrix provides a summary of the classification results. Each row repre-

sents the predicted class, and each column corresponds to the true class. The diagonal cells

represent the correctly classified observations, while the off-diagonal cells represent the in-

correct classifications. The number in each cell indicates the number of observations in that

particular category. The column on the right side displays the precision and false discovery

rate. The precision (in blue colours) represents the percentage of correctly classified exam-

ples for each predicted class, while the false discovery rate (in red colours) represents the

percentage of incorrectly classified examples for each predicted class.
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Figure 5.6: The prediction performance of each scenario, when obfuscation is used. In sce-

narios with multiple targets present, the prediction accuracy is higher.

In the scenarios of a single pedestrian and a single bicyclist, the confusion matrix reveals

that many pedestrian objects were falsely identified as a combination of a pedestrian and a

bicyclist and sometimes as two pedestrians. Similarly, bicyclist objects often resembled a

combination of a pedestrian and a bicyclist or two bicyclists. As a result, there were frequent

misclassifications between the ”pedestrian” and ”bicyclist” categories, effectively achieving

the intended goal of obfuscation. It is worth noting that, as mentioned in Section 5.2.5, the

dataset for scenarios involving two pedestrians or two bicyclists present in the scene, was
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created by combining 200 samples of pedestrians and 200 samples of bicyclists. As a result,

there were only 100 samples available for these specific scenarios, instead of the original 200

samples.

Table 5.8: Classification results for the smeared data. Even though the passive radar is unable

to classify individual objects, it can classify combos of them.

Scenario Accuracy
Pedestrian 0%

Bicyclist 0%

Pedestrian + Bicyclist 66.5%

Pedestrian + Pedestrian 56%

Bicyclist + Bicyclist 57%

Overall 30.75%

Nevertheless, the passive receiver can still predict with sufficient accuracy the identity of

multiple objects that exist concurrently in the area, particularly in scenarios where a pedes-

trian and a bicyclist are present together, as indicated in Table 5.8. This is likely due to similar-

ities in the overlapping frequencies between the spectrograms shown in Figure 5.3 (middle)

and in Figure 5.5(b). Therefore, the obfuscation technique cannot fully conceal and safeguard

the unaware targets.

Hence, it is necessary to explore alternative techniques that offer a diverse range of obfus-

cation. This aspect is thoroughly examined in Section 5.3.4, where the utilization of a phased

array is investigated as a substitute for a single antenna.

For future reference, alternative values were explored for the parameters Fimax and fm

before settling on the final choices. For Fimax values of 1000, 800, and 500 Hz, the amplitude

in the frequency axis exceeded greatly the maximum Doppler shift of 448 Hz for the pedes-

trian scenario. However, the overall classification outcome remained unaffected, thus, the

smallest feasible value Fimax = 200 Hz was chosen, which does not affect the classification

process. It is worth noting that it is still possible to achieve similar results, even with higher

values of Fimax.

On the other hand, when using fm values below 10Hz, it was noticed during the study that

the waveform along the time axis does not exhibit significant alterations, allowing the passive

receiver’s classifier to still identify scenarios with single pedestrians or bicyclists accurately.

Values higher than 10 Hz resulted in an excessive number of spikes, which adversely affected
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the classification process. However, values up to fm = 15Hz do not impact the classification

accuracy.

5.3.4 Case 2: Obfuscation Through Phased Arrays

An alternative approach that disrupts the accurate extraction of micro-Doppler signa-

tures at the receiver, when intentionally desired by the transmitter, involves the utilization of

phased arrays. The underlying concept is that the resulting spectrograms, will exhibit different

patterns compared to those examined in Sections 5.2.2 and 5.2.5, if certain array elements are

turned off while others remain active during specific time stamps. By periodically altering the

geometry of the phased array, the radiated signal can be effectively obfuscated. This means

that the characteristics of the signal, including the micro-Doppler signatures, will undergo

multiple disruptions at regular intervals. Thus, the task of extracting valuable information

from the transmitted signal can become significantly more challenging for passive receivers.

5.3.5 Phased Array Setup

The experimental setup, described in Section 5.2.2, has been upgraded to include phased

arrays for both the transmission and reception of signals in the active radar system, as de-

picted in Figure 5.7. By employing phased arrays, the radar system gains the capability to

dynamically adjust the geometry and configuration of the antenna elements, as well as to

better manipulate and control the transmitted and reflected signals.

Transmitter Radiator
(Phased Array)

Channel
(Environment)

Target
(Pedestian / Bicyclist)

Channel
(Environment)

Reflect

Propagate

Collector
(Phased Array)ReceiverBeamforming

(Signal Processor)

FMCW
 (Wave Generator)

Figure 5.7: Upgraded setup, employing phased arrays for transmission and reception of sig-

nals in the active radar system.

In this study, a Uniform Linear Array (ULA) configuration was selected, although other
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configurations could also be suitable. The ULA consists of 30 isotropic antennas, each uni-

formly radiating in all directions. As explained in Section 3.8.1, by increasing the number of

isotropic antennas in the linear array, the produced interference pattern will lead to a more

concentrated and directional central beam. For this reason, the use of a ULA enables elec-

tronic beam steering, allowing the direction of the beam to be adjusted rapidly.

Array Configuration

In order to implement the idea of selectively turning on and off elements of the array at

specific time intervals, various configurations were experimented with. Among these config-

urations, one particular pattern has shown promising results and is described as follows:

1. In the beginning of the simulation, the first 15 elements (1 to 15) of the array are turned

on, where each element is separated by λ
2
.

2. In each time interval Tsamp, the subsequent element in the array is turned on, while the

1st turned on element in the sub-array is turned off. For example, if the first 15 elements

are initially on, then, during the second time interval, the 16th element will be turned

on, and the 1st element will be turned off. This pattern of turning on and off elements

continues in a consecutive manner.

3. After the last element (30th) of the array is turned on, the process will reverse, resulting

in the last turned on element being turned off, and the element preceding the 1st turned

on element of the sub-array being turned on. For example, if in a specific time interval

the elements 16 to 30 are on, then in the next time interval the elements 15 to 29 will

be on. This pattern of backward progression ensures the cyclic operation of turning on

and off elements within the array.

4. Steps 2 and 3 are repeated until the simulation is completed.

5.3.6 Simulation

Before conducting extensive tests on various datasets, it is necessary to examine how the

new array configuration distorts the micro-Doppler signatures for the moving pedestrians and

bicyclists, in both the active and passive receivers. In order to accomplish this, the simulation

will be firstly executed for two scenarios, where the first one involves a moving pedestrian
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and the second one a moving bicyclist. The tunable parameters of the targeted objects are

outlined in Tables 5.9 and 5.10, respectively. In Figure 5.8, noticeable discrepancies can

Table 5.9: Tunable parameters for the pedestrian object.

Parameters Pedestrian Acceptable values
Height 2 m [1.5, 2] m

Speed 2 m/s [0, 1.4Height] m/s

Heading −150◦ [−180◦, 180◦]

Location [13.8, 7.5, 0] m [[5, 45], [−10, 10], 0] m

Table 5.10: Tunable parameters for the bicyclist object.

Parameters Bicyclist Acceptable values
Speed 4.5 m/s [1, 10] m/s

Heading −30◦ [−180◦, 180◦]

Location [10,−4, 0] m [[5, 45], [−10, 10], 0] m

Gear Transmission Ratio 5 [0.5, 6]

Pedaling or Coasting Pedaling 50% Pedaling, 50% Coasting
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Figure 5.8: The spectrograms of a walking pedestrian, under the new array configuration.

The left subplot depicts the doppler signature of the pedestrian, had the configuration been

the original one, while the centered and right subplots illustrate the resulting signatures the

active and passive receivers produce, respectively.

be observed in the resulting signatures, obtained from both the active and passive radars.

These differences arise due to the rapid and dynamic changes that take place in the array

configuration, throughout the simulation. The left subplot serves as a reference, so that to

assess the impact of turning off and on the array elements on the Doppler signatures.

While the signatures in the active radar bear resemblance to the ones depicted in the left

subplot, it was observed during the simulations that these signatures exhibit a strong cor-

relation with the pedestrian’s position and heading direction. Consequently, if for example
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the heading direction is altered to 100◦, it will lead to discernible deviations from the origi-

nal spectrograms, potentially impacting the classification procedure. Figure 5.9 presents the

distorted spectrograms.
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Figure 5.9: The spectrograms of a walking pedestrian, if the heading direction is changed to

the random value of 100◦. It is evident that the resulting signatures are highly dependent on

the heading direction of the moving target.

On the other hand, in order for the passive receiver to accurately decode the reflected

signals that traverse the wireless medium, it is crucial to have knowledge of the channel’s

propagation characteristics. These characteristics are encapsulated by the term “Channel State

Information” (CSI) [53], which provides valuable insights into how a signal propagates from

the transmitter to the receiver, enabling a better understanding of the channel’s behavior.

In the frequency domain, the relationship between the transmitted signalX(fc, t) and the

received signal Y (fc, t), with fc denoting the carrier frequency, can be expressed as follows:

Y (fc, t) = H(fc, t) ·X(fc, t), (5.2)

where H(fc, t) is the Channel Frequency Response (CFR), measured at time t. The use

of CSI estimates for calculating the Doppler spectrogram at the passive receiver is crucial

in this simulation, considering that the channel conditions change rapidly and that the CSI

measurements are sensitive to the surrounding environment and the RF reflections from the

human body [54]. As mentioned in this chapter, these reflections produce distinct frequen-

cies/signatures, depending on the activities being performed. To analyze these frequencies

in the time-frequency domain, an STFT is applied to the received signal. The STFT divides

the signal into equally-sized segments using a sliding window, and performs a FFT on each

segment.
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However, since human movements introduce frequency fluctuations that impinge on the

reflected signal, then these fluctuations create variations at the power of the received signal

over certain frequency bands, meaning that the CFR is affected. For this reason, by squaring

the CFR, which is contained in the CSI measurements, the magnitude/power of the channel

response can be captured. This squared CFR is then used to calculate the spectrogram of the

signal.

The resulting spectrogram, as shown in the right subplot of Figure 5.8, demonstrates the

effectiveness of employing this method for obfuscating the transmitting signal. The differ-

ences between the produced spectrogram and the reference spectrogram validate the ability

of the array variations to successfully distort the signal.

Applying the same approach as described above, the spectrograms obtained from the sec-

ond scenario involving a single moving bicyclist are depicted in Figure 5.10. Similar to the

previous case, notable alterations can be observed in the Doppler signature of the passive

receiver. This demonstrates the effectiveness of the method in obfuscating the transmitting

signals by leveraging the physical properties of the array. The significant changes in the

Doppler signature further validate the potential of this technique for enhancing privacy and

security in radar communication.
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Figure 5.10: The spectrograms of a moving bicyclist, under the new array configuration.

The left subplot depicts the doppler signature of the bicyclist, had the configuration been the

original one, while the centered and right subplots illustrate the resulting signatures the active

and passive receivers produce, respectively.

To assess the effectiveness of this particular obfuscation technique, a new dataset com-

prising of 200 pedestrian and 200 bicyclist objects was generated. The dataset parameters

were adjusted to align with the setup described in Section 5.3.5, while being consistent with

the parameters used in Section 5.2.5. In this evaluation, the spectrograms generated by both
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the active and passive receivers were classified using the previously trained network from

Section 5.2.4. It is important to note that this obfuscation technique impacts the classification

performance of the active receiver as well, warranting its evaluation in this context.

5.3.7 Results

The classification process for Case 2 exhibited an average accuracy of only 9.88% at

the passive receiver. In comparison to the results discussed in Section 5.3.3, in which the

experiments of Case 1 had yielded an average accuracy of 30.75%, it becomes apparent how

remarkably effective this specific technique is in concealing micro-Doppler signatures from

unauthorized users, just by leveraging the physical properties of the phased array. Table 5.11

indicates that the network fails to accurately predict scenarios involving a single pedestrian or

a single bicyclist, successfully accomplishing the intended goal of obfuscation. Furthermore,

in scenarios with multiple objects, the passive receiver’s predictions regarding the identity

of these objects lack of any significant accuracy, thus demonstrating the obfuscation of the

resulting signatures obtained from all scenarios is sufficient. In contrast, Case 1 could only

effectively obfuscate signatures representing sole objects.

Table 5.11: The resulting predictions for the received signals at the passive receiver. The

passive radar can no longer identify with high accuracy the presence of an object in a room.

Scenario Accuracy
Pedestrian 0.5%

Bicyclist 0%

Pedestrian + Bicyclist 15%

Pedestrian + Pedestrian 12%

Bicyclist + Bicyclist 36%

Overall 9.88%

Nevertheless, as stated earlier, this approach impacts the classification procedure in the

active receiver by introducing some degree of alteration to the resulting signatures. The pre-

dictions of the trained neural network at the active receiver, illustrated in Table 5.12, exhibit

a prediction accuracy of merely 18.75%. This accuracy is significantly lower compared to

the 76.9% achieved in Section 5.2.5, indicating that this technique is sub-optimal when clas-

sification in the active receiver is necessary.

A way to improve the ability of the active receiver to classify the targeted objects more ef-
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Table 5.12: The resulting predictions for the received signals at the active receiver. The active

radar struggles to identify with high accuracy the presence of a target in a room, due to the

impact of obfuscation in the resulting signatures.

Scenario Accuracy
Pedestrian 22%

Bicyclist 1.5%

Pedestrian + Bicyclist 15.5%

Pedestrian + Pedestrian 7%

Bicyclist + Bicyclist 65%

Overall 18.75%

fectively is by slightly modifying the Phased Array Setup, described in Section 5.3.5. Instead

of activating and deactivating the array elements at each time interval Tsamp, the alternation

can occur every 100Tsamps. Through simulations, it was observed that while the spectrograms

in the passive receiver remained obfuscated to the same extent as in the original planar con-

figuration, the spectrograms in the active receiver exhibited improvement. This observation

is further supported by the analysis of Tables 5.13 and 5.14.

Table 5.13: The new predictions for the received signals at the active receiver, employing

the updated configuration. In this setup, the active radar can identify with better accuracy the

presence of an object in a room, in comparison to the predictions depicted in Table 5.12.

Scenario Accuracy
Pedestrian 43.5%

Bicyclist 10%

Pedestrian + Bicyclist 51%

Pedestrian + Pedestrian 78%

Bicyclist + Bicyclist 33%

Overall 40%

According to the findings presented in Table 5.13, the active radar system now demon-

strates an improved ability to accurately predict scenarios involving pedestrians in the scene.

This improvement is evident in the overall accuracy, which has increased to 40%. This rep-

resents a significant advancement compared to the results depicted in Table 5.12, where the

overall accuracy was only 18.75%. On the other hand, as indicated in Table 5.14, the overall

accuracy of 9% at the passive receiver suggests that the obfuscated signatures are not really

influenced by this new alteration. This observation aligns with the results presented in Table
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5.11, thus the resulting accuracy remains at a low of 9 - 10%.

Table 5.14: The new predictions for the received signals at the passive receiver, employing

the updated configuration. In this setup, the passive radar still struggles to correctly predict

the identity of the targeted object.

Scenario Accuracy
Pedestrian 5%

Bicyclist 0%

Pedestrian + Bicyclist 8%

Pedestrian + Pedestrian 17%

Bicyclist + Bicyclist 29%

Overall 9%
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Chapter 6

Discussion

Radar technology plays a crucial role in various aspects of human life, offering numer-

ous applications and advantages. Unlike other sensing technologies, radars excel in operating

effectively across both short and long distances, even under challenging environmental con-

ditions. They possess the unique capability to penetrate non-conductive materials, such as

walls, thus enabling the detection and localization of objects on the other side. This particu-

lar aspect of radar ability is currently an active and extensively studied area of research.When

a radar waveform is transmitted through a wireless channel and interacts with a moving tar-

get, composed of multiple parts that move in various directions, the resulting reflected signal

exhibits distinct frequency shifts known as micro-Doppler signatures. Spectrograms serve

as an effective representation and analysis method for these signatures. By inputting these

spectrograms into a neural network, trained for this purpose, the network can recognize the

target’s identity and the specific activity being performed, based on the patterns formed by

these signatures. However, the inherent characteristics of the wireless channel allows unau-

thorized users to intercept the reflected signals that contain these signatures. By employing

a classification algorithm, they can also accurately determine the identities of these targets.

This situation gives rise to significant privacy concerns regarding the targeted individuals.

The objective of this thesis was to investigate efficient techniques for obfuscating these

micro-Doppler characteristics, aiming to hinder their interpretation by malicious users. In

particular, two obfuscation techniques were examined, in a simulated environment where the

targets were moving pedestrians or moving bicyclists. The first technique involved applying

a frequency variated signal to an FMCW transmitting waveform, and the second one uti-

lized a phased array system, strategically toggling the activation and deactivation of specific
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elements to alter the resulting micro-Doppler characteristics. These methods were evaluated

across five distinct scenarios, which included a single moving pedestrian, a single moving bi-

cyclist, two moving pedestrians, two moving bicyclists, as well as the simultaneous presence

of a moving pedestrian and a moving bicyclist within the same scene. To further test the ac-

curacy of these methods, a pre-trained Convolutional Neural Network was utilized to classify

200 sample data of pedestrians and 200 sample data of bicyclists, across all five scenarios,

by running the classifier at both the active radar and the unauthorized receiver.

6.1 Conclusion

Both approaches demonstrated promising results in terms of obfuscating these micro-

Doppler signatures. Comparing the classifier’s predictions from a simulation run without

utilizing these techniques (76.9% for the active radar and 73.9% for the passive receiver), the

updated predictions are as follows:

Case 1

The first technique, that involved encapsulating an oscillating sinewave to the transmit-

ting waveform, resulted in a prediction rate of 30.75% for the passive receiver. In comparison

to the referenced prediction rate of 73.9%, this represents an acceptable level. For scenarios

where there is only one pedestrian or one bicyclist present, the prediction rate is 0%, which is

optimal. However, in other scenarios with multiple targets, the prediction rate exceeds 50%

for each scenario, suggesting that this technique may not be suitable in such cases. For the

active receiver, as the added waveform is known and can be easily subtracted, the prediction

rate remains unaffected.

Case 2

The second technique, which utilized the physical properties of the phased array system

to alter the micro-Doppler characteristics, demonstrated a remarkably low accuracy of only

9.88%. In scenarios involving single pedestrians and single bicyclists, the prediction rate

nearly approached 0%. In cases where two pedestrians or one pedestrian and one bicyclist

were present concurrently, the prediction rate remained at around 15% for each case. How-

ever, for the scenario with two bicyclists, the prediction rate reached 36%, indicating that
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this technique may not be ideal when multiple bicyclists are present. However, it is impor-

tant to note that this method also impacts the classification process in the active receiver. The

prediction results revealed an overall accuracy of only 18.75%, which is sub-optimal when

reliable classification is required in the active receiver. Specifically, the prediction rate for a

single pedestrian is 22%, while for a bicyclist, it is only 1.5%. These effects extend to sce-

narios involving multiple objects, with accurate predictions of two pedestrians at only 7%,

one pedestrian and one bicyclist at 15.5%, and two bicyclists at 65%.

To address the issue of low accuracy in the active receiver, by reducing the rate at which

the array elements are activated and deactivated, it was concluded that while the overall re-

sults in the passive receiver did not exhibit significant changes, there was a remarkable im-

provement in the predictions at the active radar. Now, the overall accuracy in the passive

receiver stands at 9%. While in the bicyclist scenario the accuracy remained at 0%, for the

pedestrian scenario it increased to 5%. In cases where multiple objects were present, the pre-

diction rate for two bicyclists decreased to 29%, while for the combination of a pedestrian

and a bicyclist, it decreased to 8%. However, in the scenario involving two pedestrians, the

prediction rate increased to 17%. On the other hand, the active radar exhibited a significant

improvement in accuracy, reaching 40%. In the pedestrian scenario, the accuracy percentage

doubled, while for the bicyclist scenario, it reached 10%. Notably, the accuracy prediction

for two pedestrians reached an impressive 77%, and for the combination of one pedestrian

and one bicyclist, it reached 51%, indicating that this technique is effective when pedestrians

are present in the scene. However, in the scenario involving two bicyclists, the prediction

percentage decreased to 33%.

6.2 Future Work

In summary, both techniques are effective in obfuscating radar waveforms to hinder

passive human activity classification. The first technique greatly reduces the recognition of

pedestrians and bicyclists, but it requires modifying the transmitting waveform and employ-

ing additional signal processing techniques to restore the original waveform at the active

receiver. On the other hand, the second technique achieves obfuscation by manipulating the

array geometry, without the need for waveform alteration. However, the classification pro-

cess in the active receiver is also affected by this technique, resulting in a decreased prediction
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accuracy.

For future reference, it is worth considering experimenting with alternative phased array

setups that could potentially improve the prediction results for both the passive and active

receiver.
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