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Abstract 
 
The occurrence of Black Swan events, characterized by their extreme rarity and 
significant impact, has posed substantial challenges to the financial industry. In this 
thesis, we investigate the presence and potential implications of Black Swan events in 
the financial markets during the years 2022-2023. To analyze and understand these 
phenomena, we employ a combination of basic time series analysis and complex 
network approaches. 
 
The study begins with a comprehensive examination of historical financial data, 
focusing on identifying and characterizing extreme events that deviate from the 
expected market behavior. We employ basic time series analysis techniques to detect 
patterns, trends, and anomalies within the financial time series data. By exploring 
statistical measures, such as volatility, skewness, and kurtosis, we aim to unveil 
potential indications of Black Swan events during the specified time frame. 
 
Furthermore, we extend our analysis by incorporating complex network methods, 
recognizing that financial markets exhibit intricate interconnectedness. Through the 
construction of temporal networks, we capture the dynamic relationships between 
various financial instruments, institutions, and market segments. This approach enables 
us to identify critical nodes, measure centrality, and study the propagation of shocks or 
disruptions within the financial network. 
 
Our findings highlight the importance of combining basic time series analysis with 
complex network approaches in understanding the occurrence and impact of Black 
Swan events in finance. By integrating these methodologies, we gain insights into the 
underlying patterns, systemic risks, and cascading effects associated with extreme 
events. This research contributes to the broader understanding of risk management, 
financial stability, and the need for proactive measures to mitigate the adverse 
consequences of Black Swan events in the financial industry. 
 
By leveraging basic time series analysis techniques and complex network 
methodologies, this report provides valuable insights into the identification, analysis, 
and implications of Black Swan events in the financial markets for the years 2022-2023. 
The findings contribute to enhancing risk assessment frameworks, fostering financial 
resilience, and improving decision-making processes in an ever-evolving and 
unpredictable financial landscape. 
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Υπεύθυνη δήλωση 
 
Βεβαιώνω ότι είμαι συγγραφέας αυτής της μεταπτυχιακής διπλωματικής εργασίας και 
ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της, είναι πλήρως 
αναγνωρισμένη και αναφέρεται στην μεταπτυχιακή διπλωματική εργασία.  
Επίσης έχω αναφέρει τις όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών 
ή λέξεων, είτε αυτές αναφέρονται ακριβώς είτε παραφρασμένες. Επίσης βεβαιώνω ότι 
αυτή η πτυχιακή εργασία προετοιμάστηκε από εμένα προσωπικά ειδικά για τις 
απαιτήσεις του Διιδρυματικού Διατμηματικού Προγράμματος Μεταπτυχιακών 
Σπουδών Οικονομική Φυσική – Χρηματοοικονομικές Προβλέψεις, Πανεπιστήμιο 
Θεσσαλίας, Τμήμα Οικονομικών Επιστημών, Τμήμα Φυσικής, Διεθνές Πανεπιστήμιο 
της Ελλάδος, Τμήμα Φυσικής 
Βόλος, Ιούνιος, 2023 
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1.Introduction – Black Swans 2022/23 
 
1.1 Definition of Black Swans 

In finance, a "Black Swan" refers to an unpredictable and rare event that has a severe 
impact on the financial markets or the economy as a whole. Coined by Nassim Nicholas 
Taleb in his book "The Black Swan" (1), the term is used to describe an event that is 
highly unexpected, has a significant deviation from normal expectations, and is often 
retrospectively rationalized. 

Black Swan events are characterized by their extreme rarity, their high impact, and the 
difficulty in predicting or foreseeing them using traditional statistical models or 
historical data. These events can lead to significant disruptions, market volatility, and 
financial losses. Examples of Black Swan events in finance include the 2008 financial 
crisis, the dot-com bubble burst in the early 2000s, or the global market crash of 1987. 

The concept of Black Swan highlights the limitations of traditional risk management 
approaches that rely on historical data and assume that future events will resemble the 
past. It emphasizes the need for robust risk assessment methods, the recognition of 
uncertainty, and the development of strategies to handle extreme and unforeseen events. 
Below we discuss the black Swans of 2023. 

 
1.2 Black Swans of 2022-2023 
 
1.2.1 UK Gilt crisis 
 
In September 2022, the U.K. experienced a significant crisis in its Gilt market. Over a 
span of less than three days, 30-year U.K. Gilt yields surged by more than 1.60 percent, 
causing unprecedented volatility. This sudden increase posed a severe challenge for 
U.K. Defined Benefit (DB) pension schemes, which typically manage their liquidity 
based on gradual bond yield changes over a week or more. 
 
The rapid and substantial market movement exceeded the contingency plans of most 
institutions, leading to the need for generating collateral to meet substantial margin calls 
on interest rate swap and FX forward positions. Pension funds and other buy-side 
institutions were compelled to adapt their contingency plans quickly in response to 
unexpected market shifts. To prepare for future uncertainties, these institutions 
recognized the importance of maximizing collateral flexibility by utilizing a wide range 
of assets and optimizing them swiftly and effectively. 
 
The U.K. Gilt crisis was triggered by concerns over the country's fiscal position, 
resulting in a fall in Gilt prices and a subsequent rise in yields. The magnitude of the 
crisis was evident in the intraday range of 127 basis points on the 30-year Gilt, which 
exceeded the annual range for most of the past 27 years. Fund managers, who hold 
significant amounts of Gilts to fulfill non-cleared trades obligations, faced a challenging 
situation. They were also required to post cash as variation margin (VM) on cleared 
trades, further exacerbating the need for collateral. 
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The size of U.K. DB liabilities compared to the overall Gilt market was substantial, 
with £1.4 trillion in liabilities and £2.1 trillion in Gilts. As managers started selling their 
liability-driven investments (LDI) and Gilts to raise cash, it triggered a cycle of falling 
prices. The Bank of England intervened by purchasing Gilts to stabilize prices and halt 
the negative feedback loop. 
 
LDI plays a crucial role in the investment strategy of U.K. pension schemes, aiming to 
align assets with liabilities and mitigate risks associated with interest rate and inflation 
fluctuations. The crisis exposed the vulnerability of leveraged plans that used 
derivatives, introducing liquidity risk to the system. Collateral sufficiency and capital 
buffers needed to be recalibrated, with a greater emphasis on reducing leverage and 
increasing collateral coverage. 
 
While the U.K. experienced this Gilt crisis, it is unlikely to have a similar impact on 
the U.S. LDI market. Structural differences, such as the valuation of pension liabilities 
on different curves and the use of derivatives and leverage, contribute to varying risk 
profiles. U.S. pension funds rely more on physical long-duration bonds for hedging, 
resulting in a more responsive approach to interest rate changes. 
 
In conclusion, the U.K. Gilt crisis highlighted the need for institutions to revise their 
contingency plans and collateral management strategies. The unique circumstances of 
the crisis, coupled with structural differences, make it unlikely for a comparable event 
to occur in the U.S. LDI market. However, the lessons learned from the U.K. crisis can 
inform risk management practices globally, prompting institutions to adopt more 
holistic approaches to collateral and funding. 
 
 
1.2.2 SVB collapse 
 
Between March 8 and March 17, a series of significant events unfolded in the banking 
industry, particularly surrounding the collapse of Silicon Valley Bank (SVB) and its 
implications. The following is a timeline of the key developments during this period: 
 
March 8: 
- SVB announced raising $500 million from General Atlantic and revealed plans for a 
$1.25 billion common stock sale, along with $500 million of depository shares. 
- Earlier in the day, Silvergate, a bank popular among the crypto industry, announced 
its decision to shut down operations, foreshadowing what was to come. 
 
March 9: 
- SVB's stock plummeted 30% as the markets opened, eventually dropping by 60% 
throughout the day. 
- Concerns grew among venture capitalists (VCs) and startups, leading to a significant 
withdrawal of funds from the bank. 
- SVB CEO Greg Becker attempted to calm VCs and startups in a conference video 
call, urging them to "stay calm." However, the bank's update on deposit outflows 
effectively halted the share offering. 
 
March 10: 
- U.S. regulators took control of SVB, resulting in the bank's closure. 
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- In the evening, the Federal Deposit Insurance Corporation (FDIC) informed 
undisclosed SVB employees that they would retain their jobs as part of the newly 
formed bridge bank for the next 45 days. 
 
March 12: 
- Bids for acquiring SVB were due, but no sale occurred. The FDIC reportedly rejected 
the lone bid from an unnamed company. 
- The U.S. government announced its decision to backstop all SVB deposits. 
- Signature Bank in New York was shut down by regulators, citing systemic risk. 
 
March 13: 
- SVB's U.K. arm was sold to HSBC for £1. 
- First Republic Bank's stock experienced a 60% plunge as concerns over a broader 
banking crisis grew. Other regional banks also witnessed declines in their stock prices. 
- SVB reopened as the newly established Silicon Valley Bridge Bank. 
- The Federal Reserve announced a review of SVB's failure. 
 
March 15: 
- Credit Suisse, which had been facing its own challenges, disclosed its plan to borrow 
up to 50 billion Swiss francs ($53.68 billion) from the Swiss National Bank to enhance 
liquidity. 
 
March 16: 
- Treasury Secretary Janet Yellen reassured Congress about the soundness of the U.S. 
banking system. 
- Eleven banks injected $30 billion in deposits into First Republic Bank to demonstrate 
confidence and prevent a similar fate as SVB. 
 
March 17: 
- SVB Financial Group filed for Chapter 11 bankruptcy protection in the Southern 
District of New York. 
 
These events marked a tumultuous period for SVB and had repercussions across the 
banking sector, prompting regulatory interventions and heightened concerns about the 
stability of financial institutions. 
 
 
1.2.3 Credit Suisse collapse 
 
Over its 150-year history, Credit Suisse has played a significant role in supporting 
Switzerland's industrialization and establishing the country as a global finance hub. 
However, in the past three years, the bank has faced a series of scandals and poor 
financial performance that have eroded its reputation and competitiveness, both 
globally and locally against its rival UBS. Below we review the chain of events that led 
to Credit Suisse's downfall. 
 
In February 2020, a spying scandal emerged, leading to the sudden departure of CEO 
Tidjane Thiam. The bank had hired private detectives to spy on its former head of 
wealth management, who had joined UBS. This incident raised concerns about the 
bank's integrity and transparency. 
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In March 2021, another blow hit Credit Suisse when Greensill Capital, a firm it heavily 
invested in, collapsed. This led to the closure of four connected funds and significant 
financial losses for the bank. Swiss financial regulator FINMA criticized Credit Suisse 
for breaching its supervisory obligations. 
 
Just three weeks later, in another major setback, Credit Suisse lost $5.5 billion when 
Archegos Capital Management defaulted. The bank's failure to manage and control 
risks in its Prime Services business was highlighted, resulting in substantial losses. 
 
In October 2021, Credit Suisse was fined $475 million by US and British authorities 
for its involvement in a bribery scandal in Mozambique. The bank's loans to state-
owned companies in Mozambique were diverted for bribes, causing an economic crisis 
in the country. 
 

 
Figure 1 -  Credit Suisse’s key events - Source: Morningstar.hk 

 
 
In January 2022, Antonio Horta-Osorio, brought in to lead a turnaround, resigned as 
chairman after facing accusations of breaking Covid restrictions. He described Credit 
Suisse's crisis as worse than anything he had experienced in his extensive banking 
career. 
 
In February 2022, a global media investigation revealed that Credit Suisse had 
facilitated the stashing of funds by individuals involved in serious crimes, including 
human rights abuses and corruption. This further tarnished the bank's reputation. 
 
In March 2022, Credit Suisse faced legal troubles, with a Bermuda judge ruling that the 
bank owed damages to a former Georgian prime minister. Additionally, the bank was 
found guilty of failing to prevent money laundering by a Bulgarian drug trafficking 
ring. 
 
Despite efforts to turn the situation around, including job cuts and fresh capital raised, 
Credit Suisse continued to experience massive customer outflows and financial control 
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issues. In March 2022, the bank's shares plummeted, and the Swiss National Bank 
provided a liquidity lifeline. However, it was not enough to restore confidence, and 
Credit Suisse was ultimately taken over by UBS, marking the end of its 167-year 
history. 
 
The acquisition by UBS was seen as a way to salvage the situation and execute a radical 
restructuring of Credit Suisse's business. Shareholders experienced significant losses, 
and UBS emerged as the surviving entity in the deal. 
 
As we see in fig. 1 the downfall of Credit Suisse was the result of a series of scandals, 
financial losses, and control failures. It highlighted the importance of trust, 
transparency, and effective risk management in the banking industry, as well as the 
potential consequences of not upholding these principles. 
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2. Introduction to Complex Network Time Series Analysis 
 
2.1 Time Series 
 
2.1.1 Definitions 

Time series refers to a sequence of data points collected at regular intervals over time. 
It represents the evolution or variation of a particular variable or set of variables over a 
continuous time period. Time series data can be univariate, focusing on a single 
variable, or multivariate, involving multiple variables measured simultaneously. Time 
series analysis aims to extract meaningful patterns, trends, and dependencies from the 
temporal data. It involves techniques such as statistical analysis, forecasting, trend 
detection, spectral analysis, and autocorrelation analysis. Time series analysis helps in 
understanding the underlying dynamics, making predictions, and uncovering hidden 
information in the data. 

 
 
2.1.2 Time Series Descriptions 

Key concepts in Time Series Analysis as also referred in well-regarded sources (3) are: 

1. Time Series Data: Time series data consists of a sequence of observations 
collected over successive time intervals. The data points are typically recorded 
at equally spaced time intervals, such as hourly, daily, monthly, or yearly. 

2. Trend: Trend refers to the long-term pattern or direction of the data. It represents 
the overall tendency of the data to increase, decrease, or remain relatively 
constant over time. 

3. Seasonality: Seasonality refers to the regular and predictable patterns that occur 
at fixed intervals within the time series. These patterns may repeat annually, 
quarterly, monthly, weekly, or at other intervals. 

4. Stationarity: Stationarity is an important assumption in time series analysis. A 
time series is said to be stationary if its statistical properties, such as mean, 
variance, and autocovariance, remain constant over time. Stationary time series 
are easier to model and analyze. 

5. Autocorrelation: Autocorrelation measures the relationship between a time 
series and a lagged version of itself. It helps identify patterns and dependencies 
in the data. Positive autocorrelation indicates a tendency for consecutive 
observations to be similar, while negative autocorrelation suggests an inverse 
relationship. 

6. Forecasting: Time series analysis enables forecasting future values based on 
historical data. Forecasting methods, such as ARIMA (Autoregressive 
Integrated Moving Average) models, exponential smoothing, or machine 
learning algorithms, are used to make predictions and estimate future trends. 

By understanding these concepts and applying appropriate techniques, analysts can 
gain insights into the behavior of time series data, make informed predictions, and 
support decision-making processes in various fields, including finance, economics, 
weather forecasting, and resource planning. 
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2.1.3 Time Series Models 
 
Brief description of basic time series models: 
 
1. Autoregressive (AR) Model: 
The autoregressive (AR) model assumes that the current value of a time series variable 
is a linear combination of its past values, weighted by coefficients. The order of the 
model, denoted as AR(p), represents the number of lagged terms used in the model. AR 
models capture the persistence and memory of the time series. 
 

 
 
Where, y_t represents the current value of the time series, c is a constant term, φ_i 
(for i = 1 to p) are the autoregressive coefficients, y_{t-i} are the lagged values of 
the time series, and ε_t is the error term at time t. 
 
2. Moving Average (MA) Model: 
The moving average (MA) model represents the current value of a time series variable 
as a linear combination of its past prediction errors or residuals. Similar to the AR 
model, the order of the model, denoted as MA(q), represents the number of lagged 
residuals considered. MA models capture short-term dependencies and can help in 
smoothing out noise in the data. 
 

 
 
where, y_t represents the current value of the time series, c is a constant term, θ_i 
(for i = 1 to q) are the moving average coefficients, ε_{t-i} are the past forecast 
errors, and ε_t is the error term at time t. 
 
3. Autoregressive Moving Average (ARMA) Model: 
The autoregressive moving average (ARMA) model combines both the AR and MA 
models. It incorporates the autoregressive component to capture the time series' linear 
dependence on past values and the moving average component to capture short-term 
residual dependencies. The order of the model, denoted as ARMA(p, q), determines the 
number of lagged terms used from both the AR and MA components. 
 
4. Autoregressive Integrated Moving Average (ARIMA) Model: 
The autoregressive integrated moving average (ARIMA) model extends the ARMA 
model by incorporating differencing to make the time series stationary. Differencing 
involves computing the difference between consecutive observations to remove trends 
or seasonality. The order of the model, denoted as ARIMA(p, d, q), represents the 
number of autoregressive, differencing, and moving average terms, respectively. 
ARIMA models are useful for non-stationary time series. 
 
5. Exponential Smoothing (ES) Models: 
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Exponential smoothing models forecast future values of a time series by assigning 
exponentially decreasing weights to past observations. These models are widely used 
for forecasting and come in various forms, such as simple exponential smoothing 
(SES), Holt's linear exponential smoothing (Holt's method), and Holt-Winters' 
exponential smoothing (seasonal smoothing). 
 
These basic time series models provide a foundation for understanding and analyzing 
time series data. They are useful for capturing different characteristics, such as trends, 
seasonality, persistence, and short-term dependencies. More advanced models, such as 
seasonal ARIMA (SARIMA), vector autoregression (VAR), and state space models, 
can be built upon these basic models to handle more complex time series patterns and 
dynamics. 
 
And few non-linear time series models: 
 
1. Nonlinear Autoregressive Exogenous (NARX) Model: 
The nonlinear autoregressive exogenous (NARX) model extends the autoregressive 
(AR) model to incorporate non-linear relationships between the time series variable and 
its lagged values as well as exogenous variables. It captures non-linear dependencies 
and can be useful when there are complex interactions or nonlinear patterns in the data. 
 
2. Threshold Autoregressive (TAR) Model: 
The threshold autoregressive (TAR) model divides the time series data into different 
regimes or states based on a threshold. Within each regime, the autoregressive 
relationship is linear, but the parameters may differ across regimes. The TAR model is 
suitable when the behavior of the time series changes abruptly at certain thresholds or 
levels. 
 
3. Markov-Switching Autoregressive (MSAR) Model: 
The Markov-switching autoregressive (MSAR) model assumes that the time series data 
are governed by different regimes or states that follow a Markov process. In each 
regime, the autoregressive relationship may be different. The model captures changes 
in the time series dynamics and is useful when the underlying process switches between 
different states. 
 
4. Neural Network Models: 
Neural network models, such as feedforward neural networks, recurrent neural 
networks (RNNs), and long short-term memory (LSTM) networks, can be used for non-
linear time series modeling. These models can capture complex and non-linear 
relationships in the data by learning from historical patterns and dependencies. Neural 
networks are particularly useful when the time series exhibit non-linear dynamics or 
have high-dimensional inputs. 
 
5. Gaussian Process Models: 
Gaussian process models are a flexible class of non-linear models that can capture 
complex dependencies in time series data. They are based on a collection of random 
variables, where any finite subset follows a multivariate Gaussian distribution. 
Gaussian process models can handle non-linear patterns, non-stationarity, and 
uncertainties in the data. 
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These non-linear time series models go beyond the linear relationships captured by 
basic models and provide more flexibility in capturing complex patterns, dynamics, and 
interactions in the data. They are valuable tools for analyzing and forecasting time 
series data when the relationships are non-linear, exhibit regime shifts, or have complex 
dependencies. 
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2.2 Complex networks 
 
Complex networks are mathematical and graphical representations used to study 
interconnected systems composed of various entities. Newman defines complex 
networks as a collection of nodes representing entities such as individuals, neurons, or 
computers, with edges representing the connections between them (2). These 
connections capture the relationships, interactions, or dependencies within the system. 
Complex networks exhibit intriguing properties such as small-worldness, scale-free 
degree distribution, and community structure, as described by Newman. By analyzing 
complex networks, researchers gain insights into the underlying structure, dynamic 
changes, and emergent behaviors of interconnected systems, contributing to a deeper 
understanding of complex phenomena. 
 
Importance and applications of complex network time series analysis 
 
Complex network time series analysis holds great importance and finds applications in 
various fields due to its ability to capture the interplay between network structures and 
temporal dynamics. Here are some key reasons for its significance and notable 
applications: 
 
1. Understanding Complex Systems: Complex network time series analysis allows 
researchers to gain insights into the behavior and dynamics of complex systems, 
including social networks, biological networks, transportation networks, and more. It 
helps in unraveling the underlying mechanisms, identifying influential nodes or edges, 
and characterizing emergent behaviors and patterns. 
 
2. Predictive Modeling: By integrating network information and temporal 
dependencies, complex network time series analysis enables the development of 
predictive models and forecasting techniques. It finds applications in stock market 
prediction, disease outbreak forecasting, weather forecasting, and other domains where 
understanding the complex interplay of networks and time is crucial for accurate 
predictions. 
 
3. Brain Network Analysis: Complex network time series analysis is extensively used 
in neuroscience to study the human brain. It allows researchers to model and analyze 
brain connectivity networks over time, enabling the investigation of dynamic brain 
activity, cognitive processes, and neurological disorders. It aids in understanding how 
the brain's network structure and temporal dynamics relate to various cognitive and 
behavioral functions. 
 
4. Social Dynamics and Influence Propagation: Analysis of complex network time 
series data in social networks helps in studying information diffusion, opinion 
dynamics, and influence propagation. It assists in understanding how trends, rumors, or 
innovations spread through a network, and how individuals' interactions and behaviors 
evolve over time. 
 
5. Financial Markets and Risk Analysis: Complex network time series analysis has 
applications in financial markets, where it aids in understanding interconnectedness, 
systemic risk, and market dynamics. It helps in modeling and predicting stock price 
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movements, identifying key market players, and assessing systemic risks by 
considering the evolving network structure and temporal dependencies. 
 
6. Ecological Systems and Environmental Analysis: Complex network time series 
analysis contributes to the study of ecological systems, such as food webs, species 
interactions, and ecosystem dynamics. It helps in understanding species coexistence, 
trophic interactions, and the effects of environmental changes on ecosystems by 
incorporating temporal dynamics and network structure. 
 
7. Social Media and Online Networks: Analysis of complex network time series data 
from social media platforms and online networks provides insights into user behaviors, 
information diffusion, and online community dynamics. It aids in understanding the 
temporal evolution of online interactions, detecting trends, and predicting user 
engagement or sentiment. 
 
These are just a few examples of the wide range of applications of complex network 
time series analysis. Its interdisciplinary nature allows researchers to explore and 
understand complex phenomena, uncover hidden relationships, and make predictions 
in various fields of study. 
 
 
2.2.1 Graph terminology and concepts 
 

Graph terminology and concepts that are commonly used in the field of graph theory: 

 

1. Graph: A graph is a collection of vertices (or nodes) connected by edges. It 
represents a network or a set of relationships between objects. Graphs can be 
directed (edges have a specific direction) or undirected (edges do not have a 
direction). 

2. Vertices and Edges: Vertices are the individual elements or entities in a graph, 
often represented as points or circles. Edges are the connections or relationships 
between vertices, represented as lines or arcs. 

3. Degree: The degree of a vertex is the number of edges connected to that vertex. 
In a directed graph, the degree is divided into the in-degree (number of incoming 
edges) and the out-degree (number of outgoing edges) of a vertex. 

4. Path: A path in a graph is a sequence of vertices connected by edges. It 
represents a route or a series of steps to go from one vertex to another. 
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5. Cycle: A cycle is a path in a graph that starts and ends at the same vertex, 
traversing different vertices and edges. It forms a closed loop within the graph. 

6. Connectedness: A graph is connected if there is a path between every pair of 
vertices. A disconnected graph consists of two or more disconnected 
components. 

7. Weighted Graph: In a weighted graph, each edge is assigned a weight or value. 
The weights can represent distances, costs, or any other relevant quantity 
associated with the edges. 

8. Subgraph: A subgraph is a graph that is formed by selecting a subset of vertices 
and edges from an original graph. 

9. Directed Acyclic Graph (DAG): A directed acyclic graph is a directed graph 
that does not contain any cycles. It often represents a partial order or a directed 
flow of events. 

10. Bipartite Graph: A bipartite graph is a graph whose vertices can be divided into 
two disjoint sets, such that there are no edges between vertices within the same 
set. 

11. Spanning Tree: A spanning tree of a connected graph is a subgraph that is a tree 
(no cycles) and spans all the vertices of the original graph. It forms a connected 
and acyclic subset of the graph. 

These are just a few of the fundamental graph terminology and concepts. Graph theory 
provides a rich framework for analyzing and modeling various real-world systems, such 
as social networks, transportation networks, computer networks, and biological 
networks. 

 
 
2.2.2 Topological metrics 
 
In complex networks, topological metrics refer to quantitative measures or properties 
that characterize the structure and connectivity of the network. These metrics provide 
insights into the organization, efficiency, robustness, and other structural properties of 
the network. 
 
Here are some commonly used topological metrics in complex network analysis: 
 
1. Degree: The degree of a node in a network is the number of edges connected to that 
node. It measures the connectivity or centrality of a node within the network. 
 

 
 

2. Clustering coefficient: The clustering coefficient quantifies the degree to which 
nodes in a network tend to cluster together. It measures the density of connections 
between the neighbors of a node. 
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3. Path length: The path length is the shortest distance between two nodes in a network, 
typically measured as the number of edges or nodes traversed to go from one node to 
another. It characterizes the efficiency of information or resource flow in the network. 
 
4. Degree distribution: The degree distribution describes the probability distribution of 
node degrees in the network. It provides insights into the heterogeneity or homogeneity 
of connectivity patterns in the network. 
 
5. Centrality measures: Centrality metrics, such as betweenness centrality, closeness 
centrality, and eigenvector centrality, quantify the importance or influence of a node 
within the network. They identify nodes that play critical roles in information flow, 
communication, or control. 
 

 
 
6. Modularity(related to Clustering coefficient): Modularity measures the extent to 
which a network can be divided into communities or modules. It captures the presence 
of densely connected groups of nodes with relatively sparse connections between them. 
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7. Assortativity: Assortativity measures the tendency of nodes with similar attributes or 
properties to be connected. It quantifies the degree of homophily or heterophily in the 
network. 
 

 
 

These topological metrics help researchers and analysts understand the structural 
properties, resilience, efficiency, and functional characteristics of complex networks 
across various domains, including social networks, biological networks, transportation 
networks, and technological networks. 
 
Basic Complex Network types 
 
2.3 Motivation for combining Complex Networks and Time Series Analysis 
 
The motivation for combining complex networks and time series analysis stems from 
the understanding that many real-world systems can be represented as both dynamic 
networks and time-evolving processes. By integrating these two fields, researchers aim 
to gain a deeper understanding of the underlying structure and dynamics of complex 
systems. 
 
In the past, couple of interesting papers have been published on the topic and below we 
refer to some of the ones that pioneered the research of the area.  
 
Mantegna in his paper (12) offers a comprehensive overview of complex networks in 
financial markets. It discusses the application of complex network analysis to financial 
time series, focusing on correlation-based networks. The paper highlights the 
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importance of network topology in understanding the structure and dynamics of 
financial markets, providing insights into the interconnectedness of different market 
entities. 
 
Onnela et al in their paper (13) investigate the interconnections between equities in 
financial markets using complex network analysis. It applies the correlation-based 
approach to construct networks based on a large dataset of stocks traded on the Finnish 
Stock Exchange. The study explores the topological properties of these networks, 
shedding light on the underlying structure of interconnected equities in financial 
markets. 
 
Finally Kenett et al in their paper (14) explore the dynamic correlation networks of 
stock returns using complex network analysis. It introduces the concept of time-
dependent correlation matrices to capture the temporal evolution of interconnections in 
financial markets. The study investigates the changing network properties during 
different market conditions, providing insights into the dynamic nature of correlations 
and network structures in stock markets. 
 
These papers contribute to the understanding of complex network analysis in the 
context of financial time series. They provide valuable insights into the 
interdependencies, structure, and dynamics of financial markets, offering a framework 
to study the relationships and patterns within these complex systems. 
 
Here are some key motivations for combining complex networks and time series 
analysis, not only on the financial context: 
 
1. Capturing Interactions and Dependencies: Complex networks provide a framework 
to capture and analyze the interactions, dependencies, and relationships among 
components in a system. Time series analysis, on the other hand, focuses on the 
temporal behavior and patterns within the data. By combining these approaches, we can 
study how the evolving network structure influences the dynamics of the system and 
vice versa, uncovering hidden relationships and dependencies. 
 
2. Characterizing Complex Dynamics: Many real-world systems exhibit complex and 
nonlinear dynamics. By representing the system as a network and analyzing the 
associated time series data, we can uncover the emergent behaviors, identify critical 
nodes or edges, and study how changes in the network structure impact the system's 
dynamics. This integrated analysis provides insights into the underlying mechanisms 
driving the complex behavior of the system. 
 
3. Unveiling Temporal Evolution: Time series analysis allows us to study the temporal 
evolution of a system's variables. By incorporating network analysis, we can investigate 
how the network structure evolves over time, identifying important events, phases, or 
transitions. This combined approach helps in understanding the temporal patterns and 
transitions in complex systems, shedding light on critical time points and dynamic 
processes. 
 
4. Predictive Modeling and Forecasting: Integrating complex network and time series 
analysis enables the development of predictive models and forecasting techniques. By 
considering the network structure and temporal dependencies, we can leverage the 
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collective behavior and interactions of the system's components to make more accurate 
predictions or forecasts. This has applications in various fields, such as predicting stock 
market behavior, epidemic outbreaks, or social dynamics. 
 
5. Interdisciplinary Applications: The combination of complex networks and time 
series analysis has diverse applications across disciplines. It is employed in fields such 
as neuroscience, social sciences, finance, ecology, and engineering, to understand and 
model complex phenomena, including brain dynamics, social networks, financial 
markets, ecological systems, and more. 
 
By integrating the methodologies and concepts from complex networks and time series 
analysis, researchers can gain a more comprehensive understanding of complex 
systems' structure, dynamics, and behaviors, leading to insights and advancements in 
various domains. 
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3. From Time Series to Complex Networks 
 

The process of transforming a time series into a network graph involves representing 
the time series as a set of interconnected nodes and edges. Each node in the graph 
represents a data point or observation from the time series, while the edges between the 
nodes capture the relationships or connections between these data points. 

The transformation typically involves the following steps: 

1. Data Preparation: The time series data is prepared by extracting the relevant 
values from the series or columns of a dataframe, depending on the specific 
implementation. These values will serve as the nodes of the network graph. 

2. Graph Creation: An empty graph structure is initialized, using a network graph 
library such as NetworkX. This graph will hold the nodes and edges 
representing the time series. 

3. Node Addition: Each data point or observation from the time series is added as 
a node to the graph. The nodes can be labeled with their corresponding values 
from the time series, allowing for easy interpretation and analysis. 

4. Edge Construction: The edges between the nodes are defined based on certain 
criteria or conditions. This criteria could involve a threshold value, similarity 
measure, or any other relevant metric. Edges are added to the graph to represent 
the connections or relationships between nodes that meet the defined criteria. 

5. Visualization: Once the graph is constructed, it can be visualized using 
appropriate graph visualization techniques provided by the chosen library. The 
visualization may include the nodes, edges, and their properties, providing a 
visual representation of the underlying structure and connections within the time 
series. 

By transforming a time series into a network graph, it becomes possible to analyze and 
explore the complex relationships, patterns, and dynamics present in the data. Network 
analysis techniques can be applied to gain insights into the connectivity, centrality, 
clustering, and other network properties of the time series, offering a different 
perspective for understanding and interpreting the data. 

 
3.1 Natural Visibility Graph 
 
In the context of complex networks, a Natural Visibility Graph (NVG) is a 
representation of a time series or sequence as a network structure. It is a graph-based 
approach that captures the underlying patterns and relationships in the time series data. 
 
Lacasa et al. (8) introduced the concept of the Natural Visibility Graph (NVG), which 
transforms time series data into a complex network representation. The NVG method 
is based on the visibility algorithm that captures the pairwise visibility between data 
points. The paper demonstrates the application of the NVG to various time series 
datasets and discusses the topological properties and information content of the 
resulting visibility graphs. 
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Charakopoulos et al. (9) further expanded on the concept of the Natural Visibility 
Graph (NVG) and explored its basic properties and applications. The paper discusses 
the algorithmic construction of NVG, its relationship with other graph representations, 
and its robustness to noise and sampling rate. Additionally, it presents applications of 
NVG in various fields such as climate science, finance, and neuroscience, highlighting 
its potential in analyzing complex time series data. 
 
The construction of a Natural Visibility Graph involves the following steps: 
 
1. Time Series: Start with a given time series, which is a sequence of data points 
collected at successive time intervals. 
 
2. Extrema Identification: Identify the local extrema in the time series. Local extrema 
are the points where the values of the time series reach a local maximum or minimum. 
 
3. Line Segments: Connect consecutive local extrema with line segments. Each line 
segment represents a direct visibility between two extrema points in the time series. 
 
4. Visibility Criterion: Determine the visibility criterion to decide if two extrema points 
can "see" each other. Typically, this criterion is based on the relative heights or values 
of the extrema points. For example, one common criterion is that an extrema point A 
can "see" another extrema point B if there are no other points with higher values 
between A and B. 
 
5. Graph Construction: Create a graph representation where the local extrema points 
are represented as nodes, and the line segments between them represent the edges. The 
resulting graph is the Natural Visibility Graph. 
 

 
 
The Natural Visibility Graph provides a network-based representation of the time series 
data, capturing the inherent patterns and visibility relationships within the sequence. It 
enables the application of various network analysis techniques and measures to gain 
insights into the underlying dynamics and properties of the time series. 
 
Researchers and practitioners often use Natural Visibility Graphs in areas such as time 
series analysis, complex systems, and network science to study the characteristics, 
dynamics, and information flow within temporal data. 
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3.2 Average Degree 
Average Degree: The average degree of a network is the average number of connections 
or edges that each node has. It provides an indication of the overall connectivity of the 
network. To calculate the average degree, we sum up the degrees of all nodes in the 
network and divide by the total number of nodes. 
 
 
3.3 Average Path Length 
Average Path Length: The average path length of a network quantifies the typical 
distance between pairs of nodes in the network. It measures how easily information can 
flow between nodes. A shorter average path length indicates a higher level of global 
connectivity. It is calculated by finding the shortest path between all pairs of nodes and 
taking the average of these path lengths. 
 
 
3.4 Number of communities 
Number of Communities: Communities in a network refer to groups of nodes that are 
more densely connected within the group than with nodes outside the group. The 
number of communities is a measure of the network’s division into distinct groups or 
clusters. Community detection algorithms are applied to identify these groups. 
 
 
3.5 Clustering coefficient 
Clustering Coefficient: The clustering coefficient of a node in a network quantifies the 
degree to which its neighboring nodes are connected to each other. It measures the 
tendency for nodes in the network to form clusters or groups. The local clustering 
coefficient of a node is calculated as the ratio of the number of connections between its 
neighbors to the maximum possible number of connections. 
 
 
3.6 Modularity 
Modularity: Modularity is a measure that quantifies the extent to which a network is 
divided into distinct communities or modules. It evaluates the quality of the division by 
comparing the number of edges within communities to the expected number of edges 
if connections were randomly distributed. A higher modularity value indicates a 
stronger community structure. 
 
 
These measures provide valuable insights into the structure, connectivity, and 
organization of complex networks. They help characterize and analyze various types of 
networks, including social networks, biological networks, and technological networks, 
among others. By studying these measures, we can gain a better understanding of the 
network's behavior, resilience, information flow, and other properties. 
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4. Basic Time Series Analysis  
 
4.1 Description of time-series 
 
The time series data used in this analysis consists of various financial indicators 
spanning a specific time window from just before the Covid-19 pandemic break to the 
middle of March 2023. The dataset, retrieved from investing.com, includes stock prices 
of Credit Suisse and SVB Bank (see fig.2), representing two prominent financial 
institutions. Additionally, it incorporates the prices of UK Gilt and US2Y bond (fig. 3), 
providing insights into the bond markets. The data also includes (fig.4) the FED rate, 
which reflects the monetary policy decisions of the Federal Reserve. Furthermore, the 
prices of GBP/USD pair and Gold are considered, offering perspectives on currency 
exchange rates and the precious metals market. For the purpose of our calculations, we 
have focused on the Date and Price columns, extracting the necessary information from 
the initial data source. By analyzing these diverse financial indicators over the specified 
time period, valuable insights can be gained regarding market trends, volatility, and 
potential impacts of significant events like the Covid-19 pandemic. 
 
 
4.2 Preprocessing and data preparation 
 
For preprocessing and data preparation, the first step involved loading the CSV files 
containing the financial data into Python dataframes. Then, to ensure proper analysis, 
the data was transformed to specific datatypes, ensuring that each variable had the 
appropriate format. To streamline the analysis, any unnecessary columns that were not 
required for the study were dropped from the dataframes. The next step involved 
merging the different dataframes into a single consolidated dataframe, combining the 
relevant information from each source. To handle missing or empty records, a technique 
known as backfilling and forward filling was applied. This process involved filling the 
missing values by propagating the last known value forward or the subsequent value 
backward. By employing this technique, all records in the dataframe were aligned, 
ensuring uniformity in the dataset, which is crucial for accurate analysis and modeling. 
These preprocessing and data preparation steps laid the foundation for further analysis 
and exploration of the financial time series data. 
 
 
4.3 Plots 
 

Plots are essential in time series analysis as they provide visual representations of the 
data, allowing us to observe patterns, trends, and relationships that may not be 
immediately apparent from the raw numbers. Here are a few reasons why plots are 
important in time series analysis: 

1. Visualizing Data: Plots help us visualize the data, enabling a better 
understanding of its overall structure and characteristics. By visualizing the time 
series, we can identify patterns, cycles, and irregularities that might not be 
evident in numerical form alone. It allows us to gain insights into the underlying 
dynamics of the data and detect any unusual observations or outliers. 
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2. Trend Identification: Plots help us identify trends in the time series. A trend is 
a long-term movement in the data that can be upward (increasing trend), 
downward (decreasing trend), or flat (no trend). By plotting the data over time, 
we can visually identify the presence and direction of trends, which can be 
crucial for forecasting, decision-making, and understanding the behavior of the 
variable. 

3. Seasonal and Cyclical Patterns: Plots can reveal seasonal or cyclical patterns in 
the data. Seasonality refers to regular patterns that repeat at fixed intervals, such 
as daily, weekly, or yearly patterns. Cyclical patterns, on the other hand, are 
non-regular fluctuations that occur over longer time periods. By examining the 
plots, we can detect these patterns and incorporate them into our analysis and 
forecasting. 

Overall, plots serve as a powerful tool in time series analysis by providing visual 
insights into the data, enabling trend identification, pattern detection, model 
assessment, and aiding in decision-making. They complement quantitative analysis 
and enhance our understanding of the behavior and characteristics of the time series 
data. 
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Figure 2 - CS and SVB Prices plots 
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Figure 3 - UK Gilt and US2Y prices 
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Figure 4 - FED Rate, GPB/USD and Gold prices 
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4.4 Descriptive Statistics 
 
When checking descriptive statistics for a time series, there are several key items we 
can refer to. Here are the common ones: 
 
1. Mean: The average value of the time series, which provides an indication of its 
central tendency. 
 
2. Median: The middle value in the time series when it is sorted in ascending or 
descending order. It represents the value below and above which 50% of the data lie, 
providing insights into the data's central tendency. 
 
3. Standard Deviation: A measure of the dispersion or variability in the time series 
values around the mean. It quantifies the average amount by which each data point 
deviates from the mean. 
 
4. Minimum and Maximum: The lowest and highest values observed in the time series, 
providing information about the range of values. 
 
5. Quartiles: The values that divide the time series into four equal parts. The first 
quartile (Q1) represents the 25th percentile, the second quartile (Q2) represents the 
median, and the third quartile (Q3) represents the 75th percentile. Quartiles help assess 
the data's distribution and identify potential outliers. 
 
6. Skewness: A measure of the asymmetry of the distribution of the time series values. 
Positive skewness indicates a longer right tail, while negative skewness indicates a 
longer left tail. 
 
7. Kurtosis: A measure of the peakedness or flatness of the distribution of the time 
series values. It compares the tails of the distribution to that of a normal distribution. 
Positive kurtosis indicates a relatively peaked distribution with heavy tails, while 
negative kurtosis indicates a relatively flat distribution. 
 
8. Correlation: The degree of linear relationship between the time series and other 
variables. Correlation coefficients range from -1 to 1, with positive values indicating 
positive correlation, negative values indicating negative correlation, and values close 
to 0 indicating weak or no correlation. 
 
9. Autocorrelation: The correlation of a time series with its lagged values. It measures 
the relationship between each observation and its past observations at different time 
lags, providing insights into the presence of patterns or trends in the data. 
 
10. Percentiles: Values that divide the time series into equal parts. Common percentiles 
include the 10th, 25th, 50th (median), 75th, and 90th percentiles, which help understand 
the distribution and identify extreme values. 
 
By referring to these descriptive statistics, we can gain a better understanding of the 
characteristics, distribution, and patterns present in the time series data. 
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Skewness seems to be one of the most important so in more depth we can see the 
following: 
In the context of time series analysis, skewness is a statistical measure that quantifies 
the asymmetry of the distribution of data points in a time series. It provides insight into 
the shape of the distribution and the extent to which it deviates from a symmetric 
distribution. 
 
Skewness measures the degree and direction of skew, or the lack of symmetry, in a 
distribution. It indicates whether the distribution is skewed to the left (negative 
skewness) or to the right (positive skewness) relative to the mean of the data. 
 
- Positive Skewness: If the distribution is positively skewed, it means that the tail of the 
distribution is skewed to the right, and there are more extreme values on the right side 
of the distribution. In other words, the distribution is elongated towards higher values. 
The mean is typically greater than the median in a positively skewed distribution. 
 
- Negative Skewness: If the distribution is negatively skewed, it means that the tail of 
the distribution is skewed to the left, and there are more extreme values on the left side 
of the distribution. In this case, the distribution is elongated towards lower values. The 
mean is typically less than the median in a negatively skewed distribution. 
 
Skewness is a valuable measure in time series analysis as it provides insights into the 
shape of the data distribution and the presence of asymmetry. It helps to understand the 
behavior and potential biases in the data. For example: 
 
- Skewness can indicate the presence of outliers or extreme values that affect the shape 
of the distribution. 
- Skewness can impact forecasting accuracy and model assumptions, as certain 
statistical models assume a symmetric distribution. 
- Skewness can be used in risk analysis to assess the potential for tail events or extreme 
values. 
 
It's important to note that skewness is just one aspect of the distribution, and it should 
be considered in conjunction with other statistical measures and visualizations to obtain 
a comprehensive understanding of the time series data. 
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Table 1 - Descriptive statistics 

 
Using Python we have calculated the matrix shown in Table 1 including most of the 
major measures discussed earlier. 
 
 
4.5 Returns 
 

Returns play a crucial role in time series analysis because they provide valuable insights 
into the changes and relative movements of a variable over time. Here are a few reasons 
why returns are important: 

1. Relative Performance: Returns allow us to compare the performance of a 
variable or asset over different time periods. By analyzing returns, we can assess 
the relative gains or losses and understand the volatility or stability of the 
variable. 

2. Trend Detection: Returns help in identifying trends in the time series data. 
Positive returns indicate an upward trend, suggesting growth or positive 
movement in the variable. Negative returns, on the other hand, indicate a 
downward trend or decline in the variable. Analyzing the patterns of returns can 
provide insights into the underlying dynamics and help identify potential 
turning points or shifts in the data. 

3. Risk and Volatility: Returns are closely related to risk and volatility. Higher 
returns generally imply higher risk or volatility in the underlying variable. By 
analyzing the distribution of returns, measuring their variability, or calculating 
metrics like standard deviation, we can assess the level of risk associated with 
the variable and make informed decisions. 

4. Statistical Analysis: Returns are widely used in various statistical analyses and 
modeling techniques. They often exhibit desirable statistical properties such as 
stationarity (constant mean and variance) and can be easier to work with 
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compared to the original time series data. Returns can be used in regression 
analysis, forecasting models, and other quantitative methods to study 
relationships, estimate parameters, and make predictions. 

5. Investment and Portfolio Management: Returns are crucial in investment and 
portfolio management. Investors and analysts use historical returns to assess the 
performance of investments, calculate risk-adjusted returns, and make informed 
decisions on asset allocation and portfolio diversification. Returns also play a 
role in evaluating investment strategies, measuring performance benchmarks, 
and analyzing risk-return trade-offs. 

Overall, returns provide a concise and standardized representation of the changes in a 
variable over time. They offer valuable information for understanding trends, risk, 
performance, and statistical properties of time series data, enabling better analysis, 
modeling, and decision-making in various fields. 
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4

 
Figure 5 - CS and SIVB Returns 
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Figure 6 - UK Gilt and US2Y Returns 
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Figure 7 - FED Rate,GBP/USD and Gold Returns 
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4.6 Auto-correlation functions 
 

 
Figure 8 - ACF for CS and SVB 
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Figure 9 - ACF for UK Gilt and US2Y 
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Figure 10 - ACF for FED Rate, GBP/USD and Gold 
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The autocorrelation plots provide valuable insights into the correlation between a time 
series and its lagged values. Here's a detailed analysis to interpret the plots: 
 
1. Autocorrelation Function (ACF): 
   - The blue stem plot represents the autocorrelation values for different lags. 
   - The autocorrelation value at lag 0 is always 1 since it represents the correlation of 
the time series with itself. 
   - The autocorrelation values at other lags indicate the strength and direction of the 
correlation between the time series and its lagged values. 
 
2. Confidence Interval: 
   - The red dashed lines represent the confidence interval. 
   - If the autocorrelation values exceed the confidence interval, it suggests that the 
observed correlation is statistically significant and not due to random chance. 
 
Interpretation: 
- If the autocorrelation values oscillate around zero and fall within the confidence 
interval, it indicates a lack of significant autocorrelation. The time series values are not 
correlated with their lagged values. 
- If the autocorrelation values are positive and consistently above the confidence 
interval, it suggests a positive autocorrelation. The current values are positively 
correlated with their lagged values, indicating a tendency for the time series to exhibit 
persistence or trends. 
- If the autocorrelation values are negative and consistently below the confidence 
interval, it suggests a negative autocorrelation. The current values are negatively 
correlated with their lagged values, indicating a tendency for the time series to exhibit 
mean-reversion or reversals. 
 
Remember that autocorrelation analysis is a tool for understanding the temporal 
relationship within a time series. By interpreting the autocorrelation plots, we can gain 
insights into the behavior and potential predictability of the time series. 
 
 
4.7 Correlation coefficient matrix 
 

A cross-correlation matrix shows the pairwise correlations between different variables 
or time series in a dataset. It measures the strength and direction of the linear 
relationship between variables, indicating how changes in one variable are associated 
with changes in another. The cross-correlation matrix provides a comprehensive view 
of the interdependencies and relationships among variables. 

 

For the cross-correlation matrix, the interpretation of values closer to 1 or 0 can be as 
follows: 

1. Values close to 1: A value close to 1 indicates a strong positive linear 
relationship between the two variables. It suggests that when one variable 
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increases, the other variable tends to increase as well, and vice versa. The closer 
the value is to 1, the stronger the correlation. 

2. Values close to -1: A value close to -1 indicates a strong negative linear 
relationship between the two variables. It suggests that when one variable 
increases, the other variable tends to decrease, and vice versa. The closer the 
value is to -1, the stronger the negative correlation. 

3. Values close to 0: A value close to 0 indicates a weak or no linear relationship 
between the variables. It suggests that there is no significant association 
between the variables, and changes in one variable do not correspond to 
predictable changes in the other variable. 

 

The heatmap of a cross-correlation matrix visually represents the correlation values 
using colors. It allows us to quickly identify the strength and direction of the 
correlations between variables. In a heatmap, high positive correlations are often 
represented by bright colors (e.g., red), indicating variables that move together in the 
same direction. Conversely, high negative correlations are represented by dark colors 
(e.g., blue), indicating variables that move in opposite directions. The heatmap provides 
an intuitive and visual way to identify strong correlations, patterns, and potential 
relationships within the dataset. It is particularly useful when dealing with a large 
number of variables, as it condenses the information into a compact and interpretable 
format. 

 

 

 
Table 2 - Cross correlation Matrix 
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Figure 11 - Heatmap of cross correlation matrix 

 

 

 

analysis of the cross correlation matrix: 

1. CS_Price and SIVB_Price have a moderate positive correlation of 0.248239. 
2. CS_Price and UK_Gilt_Price have a strong positive correlation of 0.844908. 
3. CS_Price and US2Y_Price have a strong negative correlation of -0.844571. 
4. CS_Price and Fed_Rate_Price have a strong negative correlation of -0.757430. 
5. CS_Price and GBP_USD_Price have a strong positive correlation of 0.760982. 
6. CS_Price and Gold_Price have a weak negative correlation of -0.171201. 
7. SIVB_Price and UK_Gilt_Price have a very weak positive correlation of 

0.006906. 
8. SIVB_Price and US2Y_Price have a weak negative correlation of -0.271503. 
9. SIVB_Price and Fed_Rate_Price have a moderate negative correlation of -

0.445606. 
10. SIVB_Price and GBP_USD_Price have a moderate positive correlation of 

0.615885. 
11. SIVB_Price and Gold_Price have a moderate positive correlation of 0.220448. 
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12. UK_Gilt_Price and US2Y_Price have a strong negative correlation of -
0.933716. 

13. UK_Gilt_Price and Fed_Rate_Price have a strong negative correlation of -
0.819055. 

14. UK_Gilt_Price and GBP_USD_Price have a moderate positive correlation of 
0.607031. 

15. UK_Gilt_Price and Gold_Price have a weak negative correlation of -0.062398. 
16. US2Y_Price and Fed_Rate_Price have a strong positive correlation of 

0.908869. 
17. US2Y_Price and GBP_USD_Price have a strong negative correlation of -

0.754384. 
18. US2Y_Price and Gold_Price have a weak negative correlation of -0.037674. 
19. Fed_Rate_Price and GBP_USD_Price have a moderate negative correlation of 

-0.687955. 
20. Fed_Rate_Price and Gold_Price have a weak negative correlation of -0.103602. 
21. GBP_USD_Price and Gold_Price have a moderate positive correlation of 

0.197925. 
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4.8 Cross correlation for specific time-windows 
 

Its interesting to observe the heatmaps created when we break down the initial time 
window to shorter windows. As we can see in fig. 12 the variations in colours give a 
very quick idea on how things were changing during the covid and post-covid time as 
we can see that few positive correlations in the first time-window which ends 
September 2020 turn gradually into negative in the following ones. 

 

 

Figure 12 - Similar heatmaps but for specific time-windows 

It's important to note that correlation does not imply causation. Correlation measures 
the strength and direction of the linear relationship between variables, but it does not 
provide information about the cause-effect relationship. Other factors and 
considerations should be taken into account when interpreting and analyzing the 
correlation matrix. 

Also, below we isolate the Black Swans of our research and check the correlations 
within a time window of few months before and after the crisis. 
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UK Gilt 2022/08/01-2022/12/31 

 
Figure 13 - UKGilt cross correlation heatmap 

 
Major observations: the highest correlation is with US2Y price and is negative whereas 
GBP/USD and Gold seems to be on a similar path 
 
Credit Suisse 2022/10/01-2023/03/30 

 
Figure 14 - CS cross correlation heatmap 
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Major observations: Negative correlations with FED Rates and Gold give some hints 
on what was catching inverstors’ interest in the same time Credit Suisse was moving 
closer to disaster. 
 
 
SVB 2022/10/01-2023/03/30 

 
Figure 15 - SVB cross correlation heatmap 

 
Major observations: the term Black Swan seems to apply greatly in the SVB case as the 
correlations do not suggest such a negative direction. The problem in that case was 
coming from FED’s decisions and prices of rest in the time-windows before the one 
into consideration. We can also see a correlation with Credit Suisse. They were both 
moving towards their final movements. 
 
 
 
4.9 Granger causality matrix 
 
A Granger causality matrix shows the causal relationships between variables or time 
series in a dataset based on the concept of Granger causality. Granger causality 
examines whether the past values of one variable provide useful information in 
predicting the future values of another variable. The matrix provides a quantitative 
measure of the strength and directionality of the causal relationships between variables. 
Each entry in the matrix represents the degree of causality from one variable to another, 
indicating whether one variable "Granger causes" the other. A higher value suggests a 
stronger causal influence. By analyzing the Granger causality matrix, we can uncover 
the directional dependencies and infer the causal relationships between variables, 
providing insights into the dynamic interactions and information flow within the system 
under study. 
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                CS_Price  SIVB_Price  UK_Gilt_Price  US2Y_Price  \ 
CS_Price        0.000000    0.728641       0.030056    0.010788    
SIVB_Price      0.058662    0.000000       0.012523    0.001901    
UK_Gilt_Price   0.124968    0.153369       0.000000    0.615392    
US2Y_Price      0.186020    0.000198       0.005363    0.000000    
Fed_Rate_Price  0.016394    0.237666       0.000062    0.000001    
GBP_USD_Price   0.020522    0.458858       0.190345    0.047783    
Gold_Price      0.263083    0.498463       0.691829    0.833221    
 
                Fed_Rate_Price  GBP_USD_Price  Gold_Price   
CS_Price              0.023342       0.530724    0.450558   
SIVB_Price            0.013991       0.003649    0.425308   
UK_Gilt_Price         0.638143       0.753499    0.268167   
US2Y_Price            0.001443       0.391608    0.015953   
Fed_Rate_Price        0.000000       0.177776    0.147365   
GBP_USD_Price         0.401885       0.000000    0.908350   
Gold_Price            0.749684       0.614596    0.000000   
 

Table 3 - Granger causality matrix 
 

 

 
Figure 16 - Granger causality based heatmap 
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Based on the Granger Causality matrix the following observations can be made: 

1. CS_Price has a significant Granger causality on SIVB_Price with a p-value of 
0.0587, indicating that CS_Price has some predictive power in explaining 
SIVB_Price. 

2. SIVB_Price has a significant Granger causality on CS_Price with a p-value of 
0.7286, indicating that SIVB_Price has some predictive power in explaining 
CS_Price. 

3. UK_Gilt_Price has a significant Granger causality on US2Y_Price with a p-
value of 0.6154, indicating that UK_Gilt_Price has some predictive power in 
explaining US2Y_Price. 

4. US2Y_Price has a significant Granger causality on SIVB_Price with a p-value 
of 0.0002, indicating that US2Y_Price has some predictive power in explaining 
SIVB_Price. 

5. Fed_Rate_Price has a significant Granger causality on CS_Price, SIVB_Price, 
and GBP_USD_Price with p-values of 0.0164, 0.2377, and 0.0001 respectively, 
indicating that Fed_Rate_Price has some predictive power in explaining these 
variables. 

6. GBP_USD_Price has a significant Granger causality on CS_Price with a p-
value of 0.5307, indicating that GBP_USD_Price has some predictive power in 
explaining CS_Price. 

7. Gold_Price has a significant Granger causality on UK_Gilt_Price, US2Y_Price, 
Fed_Rate_Price, GBP_USD_Price, and Gold_Price itself with p-values of 
0.6918, 0.8332, 0.1474, 0.9084, and 0.0000 respectively, indicating that 
Gold_Price has some predictive power in explaining these variables. 

These results suggest that there are some causal relationships among the variables, 
indicating potential predictive power or information flow between them. However, it's 
important to note that Granger causality does not imply causation in the strict sense, but 
rather captures statistical relationships between variables. 
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Figure 17 - Granger causality heatmaps for time windows 

 
 

To interpret the values closer to 1 or 0 in the Granger causality matrix, we can consider 
the following: 

1. Values close to 1: A value close to 1 indicates a strong evidence of Granger 
causality between the corresponding variables. It suggests that the lagged values 
of one variable have a significant influence on the prediction of the other 
variable. 

2. Values close to 0: A value close to 0 suggests weak or no evidence of Granger 
causality. It indicates that the lagged values of one variable do not provide 
significant predictive power for the other variable. 
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5. Complex Networks implementation 
 
5.1 Transforming Time Series to Complex Network 
 

The process of transforming a time series into a network graph involves representing 
the time series as a set of interconnected nodes and edges. Each node in the graph 
represents a data point or observation from the time series, while the edges between the 
nodes capture the relationships or connections between these data points. 

The transformation typically involves the following steps: 

1. Data Preparation: The time series data is prepared by extracting the relevant 
values from the series or columns of a dataframe, depending on the specific 
implementation. These values will serve as the nodes of the network graph. 

2. Graph Creation: An empty graph structure is initialized, using a network graph 
library such as NetworkX. This graph will hold the nodes and edges 
representing the time series. 

3. Node Addition: Each data point or observation from the time series is added as 
a node to the graph. The nodes can be labeled with their corresponding values 
from the time series, allowing for easy interpretation and analysis. 

4. Edge Construction: The edges between the nodes are defined based on certain 
criteria or conditions. These criteria could involve a threshold value, similarity 
measure, or any other relevant metric. Edges are added to the graph to represent 
the connections or relationships between nodes that meet the defined criteria. 

5. Visualization: Once the graph is constructed, it can be visualized using 
appropriate graph visualization techniques provided by the chosen library. The 
visualization may include the nodes, edges, and their properties, providing a 
visual representation of the underlying structure and connections within the time 
series. 

By transforming a time series into a network graph, it becomes possible to analyze and 
explore the complex relationships, patterns, and dynamics present in the data. Network 
analysis techniques can be applied to gain insights into the connectivity, centrality, 
clustering, and other network properties of the time series, offering a different 
perspective for understanding and interpreting the data. 

 
Below we see the transofmations of our timeseries into network graphs. Even though it 
looks just an artistic feature as its not very readable in terms of values it also provides an 
idea of the nature of each timeseries. For example we can easily see the stability of Gold, 
we can observe the cloudy nature of CS and SVB, we can see the stormy nature of 
GBP/USD pair. 
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Figure 18 - CS and SVB graphs 
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Figure 19 - UK Gilt and US2Y graphs 
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Figure 20 - FED Rate and GBPUSD graphs 
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Figure 21 - Gold graph 
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5.2 Approaches to define nodes and edges 

Different approaches to defining network nodes and edges based on time series 
properties in the construction of temporal networks: 

1. Threshold-based Approach: 
o Nodes: Each time series variable corresponds to a network node. 
o Edges: An edge is created between two nodes if the correlation or 

similarity between their time series values exceeds a predefined 
threshold. This approach focuses on capturing strong pairwise 
relationships. 

2. Sliding Window Approach: 
o Nodes: Each time series variable corresponds to a network node. 
o Edges: A sliding window of fixed size moves across the time series, and 

an edge is created between two nodes if their values within the window 
exhibit a certain level of correlation or similarity. This approach 
captures local patterns and changes in relationships over time. 

3. Granger Causality Approach: 
o Nodes: Each time series variable corresponds to a network node. 
o Edges: Granger causality analysis is applied to determine causal 

relationships between the variables. An edge is created from node A to 
node B if the past values of A help predict the future values of B better 
than using B's own past values. This approach focuses on capturing 
directional causal relationships. 

4. Visibility Graph Approach: 
o Nodes: Each data point in the time series corresponds to a network node. 
o Edges: An edge is created between two adjacent nodes if there are no 

higher data points between them. This approach captures the visibility 
relationships in the time series, revealing changes in trends and peaks. 

5. Symbolic Approach: 
o Nodes: Symbols or discrete states are assigned to specific ranges or 

patterns of the time series values. 
o Edges: Transitions between symbols or states create edges. Edges can 

be determined based on the occurrence of specific patterns, thresholds, 
or statistical properties in the symbolic representation of the time series. 
This approach allows capturing patterns and transitions in a discretized 
representation of the time series. 

These approaches provide different perspectives on constructing temporal networks 
based on the properties of time series data. The choice of approach depends on the 
specific research question, characteristics of the time series, and the desired focus on 
correlation, causality, local patterns, or symbolic representations. 
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5.3 Hierarchical Clustering 
 

 
Figure 22 - Hierarchical Clustering 

 

The dendrogram shows the hierarchical clustering of the time series data based on their 
similarity. Here's how we can interpret the dendrogram: 

• The vertical axis represents the distance or dissimilarity between the time series. 
• The horizontal axis represents the individual time series or clusters of time 

series. 
• The height of each vertical line in the dendrogram represents the distance at 

which clusters merge. The longer the line, the greater the dissimilarity between 
the merged clusters. 

• The horizontal lines connecting two clusters indicate the merge points, and the 
vertical lines extending from those merge points represent the individual time 
series or clusters. 

By observing the dendrogram, we can identify clusters or groups of time series that are 
more similar to each other based on their patterns or behaviors. The height at which we 
choose to cut the dendrogram determines the number of clusters we wish to identify. 

We can interpret the dendrogram by looking for distinct branches or clusters that merge 
at different heights. Time series within the same branch or cluster are more similar to 
each other, while time series in different branches or clusters are more dissimilar. 

By understanding the clustering structure in the dendrogram, we can gain insights into 
the relationships and similarities among the time series in our data. 
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5.4 Network based on Cross correlation matrix 
 

 
Figure 23 - Network graph based on cross correlation 

 
Good thing with complex networks is that they provide the ability to see same graph 
from different perspectives. Above graph is based on the same data as below but in 
graph below we have used positive and negative correlation to colour the edges and any 
in the middle have stayed isolated. 
 

 
Figure 24 - Cross correlation based graph with emphasis on positive/negative 
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NVG graph 
 

 
Figure 25 - NVGraph for Cross correlation matrix 

 

The Natural Visibility Graph (NVG) is a visualization technique used to analyze the 
cross-correlation matrix of a dataset. To interpret the NVG output: 

1. Node Representation: Each node in the NVG represents a column in the 
filled_df DataFrame. 

2. Edge Representation: The edges in the NVG represent the cross-correlation 
relationships between the variables. An edge between two nodes indicates a 
significant cross-correlation between the corresponding time series. The 
strength of the cross-correlation is reflected by the thickness or weight of the 
edge. 

3. Node Positions: The layout algorithm (spring_layout) is used to position the 
nodes in the NVG. Nodes that are closer together are more strongly correlated, 
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while nodes that are further apart have weaker or no correlation. The positions 
of the nodes are determined based on their relationships in the cross-correlation 
matrix. 

5.5 Network based on Granger causality matrix 
 

 
Figure 26 - Granger causality based network graph 

 
The above graph represents the Granger causality network based on the significant 
edges determined by the Granger causality matrix. Some comments on the graph: 
 
- The graph is directed, indicating the causal relationships among the variables. The 
direction of the edges represents the direction of causality, where an edge from node A 
to node B suggests that variable A Granger causes variable B. 
 
- The graph includes only significant edges based on a predefined threshold (e.g., p-
value < 0.05). These significant edges indicate statistically significant causal 
relationships between the variables. 
 
- Nodes (variables) are represented by circles, and the labels correspond to the variable 
names. The light blue color of the nodes provides a visual distinction for better clarity. 
 
- The significant edges in the graph are shown in green. These green edges indicate the 
causal relationships between variables that are statistically significant based on the 
Granger causality analysis. 
 
- The layout of the graph is determined by the spring_layout algorithm, which positions 
the nodes based on an attractive and repulsive force simulation. This layout helps to 
minimize edge crossings and provides a more organized representation of the network. 
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For the first graph above, the edges are added to the graph based on a fixed threshold 
value (e.g., p-value < 0.05). This means that only the edges with a p-value below the 
threshold will be included in the graph. In the case of 'Gold_Price', there might be only 
one significant causal relationship with other variables, resulting in a single edge. 

In the second graph below, the Granger causality matrix is calculated using the 
grangercausalitytests function, which computes p-values for different lag lengths. 
The code snippet then iterates over the matrix and adds edges to the graph if the p-value 
for a particular lag length is below the threshold (0.05). This allows for multiple edges 
between variables, indicating significant causal relationships at different lag lengths. 
Consequently, 'Gold_Price' may have multiple edges in the graph, representing the 
significant causal relationships found at different lag lengths. 

The difference in the number of edges between the two graphs highlights the variation 
in the significance of causal relationships for the 'Gold_Price' variable depending on 
the specific implementation and threshold used. 

 

 
Figure 27 - Granger causality based network graph- implementation with lags 
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NVG Graph 
 
The Natural Visibility Graph (NVG) for Granger causality provides insights into the 
causal relationships among the time series variables. Here's how we can interpret the 
NVG: 
 
- Nodes: Each node in the NVG represents a time series variable. The nodes are labeled 
with the names of the variables. 
 
- Edges: The edges in the NVG represent the causal relationships between the variables. 
An edge from node A to node B indicates that variable A has a Granger causal influence 
on variable B. The direction of the edge represents the direction of the causal influence. 
 
- Edge Weight: The values on the edges indicate the strength or significance of the 
Granger causality. They provide information about the extent of the causal influence 
between the variables. In the NVG, the edges are labeled with the values, typically with 
two digits precision. 
 
By examining the NVG, we can identify the causal relationships between the variables 
and gain insights into the flow of information or influence among them. The nodes 
represent the variables, and the edges provide information about the direction and 
strength of the causal connections. 
 
Analyzing the NVG can help us understand which variables are driving or influencing 
others, revealing important relationships and dependencies in our data. It provides a 
visual representation of the Granger causality relationships, making it easier to identify 
patterns and draw conclusions about the causal dynamics in our time series data. 
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Figure 28 - NVGraph based on Granger causality 

 
 
 
5.6 Topological measures – calculation and interpretation 
 
For Cross correlation based network: 
Average Degree: 8.0 
Average Path Length: 1.0 
Number of Communities: 7 
Modularity: 1.0678890493762143 
 

• Average Degree: An average degree of 8.0 suggests that, on average, each node 
in the network is connected to 8 other nodes. This indicates a moderate level of 
connectivity in the network. 

• Average Path Length: An average path length of 1.0 indicates that nodes in the 
network are very closely connected, as it only takes a single step to reach any 
other node. This suggests a high level of efficiency in information or signal 
propagation throughout the network. 
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• Number of Communities: The presence of 7 communities suggests that the 
network has distinct groups or clusters of nodes that are more densely connected 
within each community compared to connections between communities. This 
indicates a level of structural organization and modularity within the network. 

• Modularity: A modularity value of 1.0678890493762143 indicates a relatively 
high level of division or separation of the network into communities. It suggests 
that the network's partitioning into communities is meaningful and distinct, with 
stronger connections within communities and weaker connections between 
communities. 

Overall, the provided values indicate a network with moderate connectivity, high 
efficiency in information propagation, distinct community structure, and a clear 
separation of communities. These characteristics are important in understanding the 
organization and behavior of complex networks. 

 
 
For NVG on Cross correlation: 
Average Degree: {14: 7.0} 
Average Path Length: 1.0 
Number of Communities: 7 
Modularity: 1.1637658746614183 
 
 
For Granger Causality based network: 
 
Average Degree: 10.571428571428571 
Average Path Length: 1.2857142857142858 
Number of Communities: 2 
Modularity: 0.11102994886778678 
 

• Average Degree: An average degree of 10.571428571428571 suggests that, on 
average, each node in the network is connected to approximately 10 other nodes. 
This indicates a relatively higher level of connectivity compared to the previous 
example. 

• Average Path Length: An average path length of 1.2857142857142858 
indicates that nodes in the network are still closely connected, but it takes 
slightly more steps on average to reach any other node compared to the previous 
example. This suggests a slightly lower level of efficiency in information or 
signal propagation. 

• Number of Communities: The presence of 2 communities suggests that the 
network has two distinct groups or clusters of nodes that are more densely 
connected within each community. This indicates a less pronounced community 
structure compared to the previous example. 

• Modularity: A modularity value of 0.11102994886778678 suggests a relatively 
low level of division or separation of the network into communities. It indicates 
a weaker distinction between communities compared to the previous example. 

Overall, the provided values indicate a network with higher connectivity, slightly lower 
efficiency in information propagation, a less pronounced community structure with 
only two communities, and a weaker separation between communities. These 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 09:52:30 EEST - 18.227.52.103



 65 

characteristics suggest a different structure and behavior compared to the previous 
example. 

 
 
Degree Centrality: 
{'CS_Price': 1.8333333333333333,  
'SIVB_Price': 1.6666666666666665,  
'UK_Gilt_Price': 2.0,  
'US2Y_Price': 2.1666666666666665,  
'Fed_Rate_Price': 1.8333333333333333,  
'GBP_USD_Price': 1.6666666666666665,  
'Gold_Price': 1.1666666666666665} 
 

The Degree Centrality values provided represent the centrality or importance of each 
node (variable) in the Natural Visibility Graph (NVG). Here are some comments on the 
Degree Centrality values: 

• 'CS_Price': This variable has a Degree Centrality value of 1.83, indicating that 
it has moderately strong connections with other variables in the dataset. It plays 
a significant role in the correlation structure of the NVG. 

• 'SIVB_Price': This variable has a Degree Centrality value of 1.67, suggesting 
that it has relatively fewer connections compared to 'CS_Price'. It has a 
moderate impact on the overall correlation structure. 

• 'UK_Gilt_Price': This variable has a Degree Centrality value of 2.0, indicating 
that it has the highest number of connections among all variables. It is highly 
central and plays a crucial role in the correlation structure of the NVG. 

• 'US2Y_Price': This variable has a Degree Centrality value of 2.17, suggesting 
that it has a slightly higher number of connections compared to 'UK_Gilt_Price'. 
It is highly central and has a significant influence on the correlation 
relationships. 

• 'Fed_Rate_Price': This variable has a Degree Centrality value of 1.83, similar 
to 'CS_Price'. It has moderate connections and contributes to the overall 
correlation structure. 

• 'GBP_USD_Price': This variable has a Degree Centrality value of 1.67, similar 
to 'SIVB_Price'. It has relatively fewer connections and plays a moderate role 
in the correlation relationships. 

• 'Gold_Price': This variable has the lowest Degree Centrality value of 1.17, 
indicating that it has relatively fewer connections compared to other variables. 
It has a relatively lower impact on the overall correlation structure. 

Degree Centrality provides insights into the importance of each variable in the NVG 
based on their connectivity. Higher Degree Centrality values indicate stronger 
connections and greater influence on the correlation relationships. It helps identify key 
variables that contribute significantly to the correlation structure and can be useful in 
understanding the network dynamics of the dataset. 

 
 
Closeness Centrality: 
{'CS_Price': 0.75,  
'SIVB_Price': 0.8571428571428571,  
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'UK_Gilt_Price': 0.8571428571428571,  
'US2Y_Price': 0.8571428571428571,  
'Fed_Rate_Price': 0.8571428571428571,  
'GBP_USD_Price': 0.75,  
'Gold_Price': 0.6} 
 
The Closeness Centrality values provided represent the centrality or importance of each 
node (variable) in the Natural Visibility Graph (NVG) based on their closeness to other 
nodes. Here are some comments on the Closeness Centrality values: 
 
- 'CS_Price': This variable has a Closeness Centrality value of 0.75, indicating that it is 
relatively closer to other variables in terms of the shortest path length. It has a moderate 
level of connectivity and accessibility in the NVG. 
 
- 'SIVB_Price', 'UK_Gilt_Price', 'US2Y_Price', and 'Fed_Rate_Price': These variables 
have the same Closeness Centrality value of 0.857, suggesting that they are highly 
central and have close proximity to other variables. They are well-connected and easily 
accessible in the NVG. 
 
- 'GBP_USD_Price': This variable has a Closeness Centrality value of 0.75, similar to 
'CS_Price'. It also has moderate closeness to other variables and contributes to the 
overall connectivity. 
 
- 'Gold_Price': This variable has the lowest Closeness Centrality value of 0.6, indicating 
that it is relatively less central and has a slightly higher shortest path length to other 
variables. It is less connected and accessible compared to other variables in the NVG. 
 
Closeness Centrality measures the average distance of a node to all other nodes in the 
graph. Higher Closeness Centrality values indicate closer proximity and easier access 
to other variables, implying a higher level of influence and potential for information 
flow. It helps identify variables that are central and have efficient communication 
within the network. 
 
 
Betweenness Centrality: 
{'CS_Price': 0.04444444444444444,  
'SIVB_Price': 0.008333333333333333,  
'UK_Gilt_Price': 0.05833333333333333,  
'US2Y_Price': 0.1722222222222222,  
'Fed_Rate_Price': 0.03055555555555555,  
'GBP_USD_Price': 0.06666666666666667,  
'Gold_Price': 0.01944444444444444} 
 
The Betweenness Centrality values provided indicate the extent to which each variable 
(node) in the Natural Visibility Graph (NVG) acts as a bridge or intermediary in the 
flow of information between other variables. Here are some comments on the 
Betweenness Centrality values: 
 
- 'CS_Price': This variable has a relatively low Betweenness Centrality value of 0.044, 
suggesting that it has a lesser role as a bridge between other variables in the network. It 
has a relatively lower influence on the overall flow of information in the NVG. 
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- 'SIVB_Price': This variable has a very low Betweenness Centrality value of 0.008, 
indicating that it plays a minimal role as an intermediary between other variables. It has 
limited influence on the information flow in the NVG. 
 
- 'UK_Gilt_Price' and 'GBP_USD_Price': These variables have Betweenness Centrality 
values of 0.058 and 0.067, respectively, suggesting a moderate level of bridging 
between other variables. They contribute to connecting different parts of the network 
and facilitating information flow to some extent. 
 
- 'US2Y_Price': This variable has a relatively higher Betweenness Centrality value of 
0.172, indicating that it serves as a significant bridge or intermediary between other 
variables. It plays a crucial role in facilitating the flow of information in the NVG. 
 
- 'Fed_Rate_Price' and 'Gold_Price': These variables have relatively lower Betweenness 
Centrality values of 0.031 and 0.019, respectively, suggesting a lesser role as 
intermediaries in the network. They have a relatively lower impact on the overall 
information flow in the NVG. 
 
Betweenness Centrality measures the extent to which a node lies on the shortest paths 
between other nodes in the graph. Higher Betweenness Centrality values indicate that 
a node serves as a crucial bridge or intermediary, facilitating the flow of information 
between different parts of the network. 
 
 
Eigenvector Centrality: 
{'CS_Price': 0.3346786708871331,  
'SIVB_Price': 0.4437466250138594,  
'UK_Gilt_Price': 0.4437466250138594,  
'US2Y_Price': 0.41697378405506513,  
'Fed_Rate_Price': 0.4437466250138594,  
'GBP_USD_Price': 0.3098467747662905,  
'Gold_Price': 0.16548361005663684} 
 
The Eigenvector Centrality values provided represent the influence or importance of 
each variable (node) in the Natural Visibility Graph (NVG) based on its connections to 
other highly influential variables. Here are some comments on the Eigenvector 
Centrality values: 
 
- 'CS_Price': This variable has an Eigenvector Centrality value of 0.335, indicating a 
moderate level of influence within the network. It is connected to other influential 
variables but to a lesser extent compared to some other variables. 
 
- 'SIVB_Price', 'UK_Gilt_Price', and 'Fed_Rate_Price': These variables have identical 
Eigenvector Centrality values of 0.444, suggesting a relatively high level of influence 
within the NVG. They are connected to other influential variables and contribute 
significantly to the flow of information in the network. 
 
- 'US2Y_Price': This variable has an Eigenvector Centrality value of 0.417, indicating 
a relatively high level of influence. It is connected to other influential variables and 
plays an important role in information flow within the network. 
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- 'GBP_USD_Price': This variable has an Eigenvector Centrality value of 0.310, 
suggesting a moderate level of influence. It is connected to other influential variables 
but to a lesser extent compared to some other variables. 
 
- 'Gold_Price': This variable has the lowest Eigenvector Centrality value of 0.165, 
indicating a relatively lower level of influence within the NVG. It is less connected to 
other influential variables and has a lesser impact on the overall information flow in the 
network. 
 
Eigenvector Centrality measures the influence of a node based not only on its direct 
connections but also on the influence of its neighboring nodes. Higher Eigenvector 
Centrality values indicate that a node is connected to other highly influential nodes, 
contributing to its own importance within the network. 
 
 
PageRank: 
{'CS_Price': 0.12907503544964127,  
'SIVB_Price': 0.16876286425011186,  
'UK_Gilt_Price': 0.16876286425011186,  
'US2Y_Price': 0.16493702479245434,  
'Fed_Rate_Price': 0.16876286425011186,  
'GBP_USD_Price': 0.12094649069785084,  
'Gold_Price': 0.07875285630971812} 
 
The PageRank values provided represent the importance or centrality of each variable 
(node) in the Natural Visibility Graph (NVG) based on the concept of web page 
ranking. Here are some comments on the PageRank values: 
 
- 'CS_Price': This variable has a PageRank value of 0.129, indicating a moderate level 
of importance within the network. It is influential but to a lesser extent compared to 
some other variables. 
 
- 'SIVB_Price', 'UK_Gilt_Price', and 'Fed_Rate_Price': These variables have identical 
PageRank values of 0.169, suggesting a relatively high level of importance within the 
NVG. They play crucial roles in the information flow and are among the most 
influential variables. 
 
- 'US2Y_Price': This variable has a PageRank value of 0.165, indicating a relatively 
high level of importance. It contributes significantly to the overall information flow in 
the network. 
 
- 'GBP_USD_Price': This variable has a PageRank value of 0.121, suggesting a 
moderate level of importance. It has influence but to a lesser extent compared to some 
other variables. 
 
- 'Gold_Price': This variable has the lowest PageRank value of 0.079, indicating a 
relatively lower level of importance within the NVG. It has less influence on the overall 
information flow in the network compared to other variables. 
 
PageRank assigns importance to a node based on the number and importance of its 
incoming edges (connections). Nodes that are connected to other important nodes 
receive higher PageRank values, indicating their significance within the network. 
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Higher PageRank values imply that a node is important and has influential connections 
in the network. 
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6. Conclusion 
 
6.1 Summary 
 
In this thesis, we investigated the presence of Black Swans for the years 2022-2023 in 
global financial environment using tools from the sectors of Time Series Analysis and 
Complex Networks. We initially referred to the timeline that drove the major three 
Swans being the UK Gilt, the SVB and the Credit Suisse. A significant amount of time 
was spent to familiarize with Python libraries that are used to build network graphs 
and calculate measures related with Complex networks. Short snippets of that code 
can be found in the following Appendix. 

Complex networks capture the interconnectedness and relationships between entities in 
a system, while time series represents the evolution or variation of variables over time. 
The integration of complex networks and time series analysis provides a powerful 
framework for studying the structure, dynamics, and temporal behaviors of complex 
systems. 

Such a system was created by selecting specific timeseries which are important factors 
of the global financial system. The most important part for the creation of the complex 
networks-graphs was the calculation of cross correlation and granger causality matrices 
which were then used as input. 

In the cross correlation matrix, we observed Fed_Rate_Price shows moderate to strong 
negative correlations with several variables, such as CS_Price, UK_Gilt_Price, and 
GBP_USD_Price. This indicates that changes in Fed_Rate_Price are inversely related 
to these variables. 

In the Granger causality matrix, Fed_Rate_Price has low p-values (indicating 
significant causality) with respect to CS_Price, UK_Gilt_Price, and GBP_USD_Price. 
This suggests that changes in Fed_Rate_Price may have a causal influence on these 
variables. 

Considering both measures, Fed_Rate_Price shows consistent relationships with other 
variables, both in terms of correlations and causality. Therefore, it can be considered a 
significant column in the dataset. 

 
 
6.2 Future work 

In terms of future work, since the python library used provides a great variety of options 
it would be helpful to check different settings to make the graphs much cleaner and 
more readable so that the final result is getting closer to outputs like ones coming from 
state of the Art tools like Gephi. That would assist in making more precise justifications 
for all the time-series and their connections, either correlation or causality. 
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Part of future work could be some analysis based on the recurrence plots. Recurrence 
plots can be helpful in analyzing time series data, as they provide a visual representation 
of the recurrence patterns within a time series. By plotting the data points against each 
other, recurrence plots can reveal recurring patterns, periodicity, and other 
characteristics of the time series. 

Recurrence plots are particularly useful for detecting non-linear and complex dynamics 
in time series data. They can help identify periodic behaviors, phase transitions, 
stability, and other interesting features that may not be easily apparent from the raw 
time series. 

 

Based on the recurrence plots couple of points for future work and analysis exist such 
as: 
 

1. Pattern analysis: Study the patterns and structures present in the recurrence 
plots, such as diagonal lines, clusters, and recurrent points. Explore the meaning 
and significance of these patterns in the context of our specific time series. For 
example, we can investigate the recurrence patterns during different market 
conditions or identify recurring behaviors. 

2. Nonlinear dynamics: Use the recurrence plots to assess the presence of 
nonlinearity and complex dynamics in the time series. Look for features like 
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folds, twists, and self-similar structures. We can employ methods like 
recurrence quantification analysis (RQA) to quantify different aspects of the 
recurrence plots and extract relevant nonlinear measures. 

3. Time series forecasting: Utilize recurrence plots as a tool for forecasting future 
values of the time series. By analyzing the recurrence patterns and their 
evolution over time, we may gain insights into the predictability and future 
behavior of the series. Consider employing machine learning or time series 
forecasting models to leverage the information extracted from the recurrence 
plots. 

 

4. Network analysis: Convert the recurrence plots into recurrence networks and 
analyze the resulting network structures. Explore network measures such as 
degree centrality, clustering coefficient, or community detection algorithms to 
uncover the underlying connectivity patterns and relationships in the time series 
data. 

5. Comparison and classification: Compare recurrence plots across different time 
series or subsets of our data. Identify similarities or differences in the recurrence 
patterns, which can provide insights into the relationships and dynamics 
between different variables. We can also use recurrence plots as input features 
for classification tasks to differentiate between different classes or states. 
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6. Embedding and dimensionality reduction: Apply embedding techniques such as 
delay embedding or other dimensionality reduction methods to transform the 
time series data into a lower-dimensional space. This can help reveal the 
underlying dynamics and facilitate further analysis. 
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Appendix of Python code 
 
Below are brief snippets of Python code used during the above research: 
 
 
# Define a list to store the merged dataframes 
merged_dfs = [] 
# List of CSV files to import 
csv_files = ["/Users/christos/Desktop/MScComplexNetworkAnalysis/CS.csv", 
"/Users/christos/Desktop/MScComplexNetworkAnalysis/SIVB.csv", 
"/Users/christos/Desktop/MScComplexNetworkAnalysis/UK_Gilt.csv", 
"/Users/christos/Desktop/MScComplexNetworkAnalysis/US2Y.csv", 
"/Users/christos/Desktop/MScComplexNetworkAnalysis/Fed_Rate.csv", 
"/Users/christos/Desktop/MScComplexNetworkAnalysis/GBP_USD.csv", 
"/Users/christos/Desktop/MScComplexNetworkAnalysis/Gold.csv"] 
# Iterate over the CSV files 
for file in csv_files: 
    # Import the CSV file 
    df = pd.read_csv(file, usecols=["Date", "Price"]) 
 
    # Get the filename without extension 
    filename = os.path.basename(file).split(".")[0] 
 
    # Rename the "Price" column 
    df = df.rename(columns={"Price": f"{filename}_Price"}) 
 
    # Append the dataframe to the list 
    merged_dfs.append(df) 
 
# Merge the dataframes based on the "Date" column 
merged_df = pd.merge(merged_dfs[0], merged_dfs[1], on="Date", how="outer") 
 
# Iterate over remaining dataframes and merge 
for i in range(2, len(merged_dfs)): 
    merged_df = pd.merge(merged_df, merged_dfs[i], on="Date", how="outer") 
 
# Display the merged dataframe 
print(merged_df) 
 
# Convert "Date" column to datetime format 
merged_df["Date"] = pd.to_datetime(merged_df["Date"]) 
 
# Sort the dataframe based on the "Date" column 
sorted_df = merged_df.sort_values(by="Date") 
 
# Save the sorted dataframe to a new CSV file 
sorted_df.to_csv("sorted_data.csv", index=False) 
----------------------------------------------------------------------------------- 
# Backfill and forwardfill the dataframe  
filled_df = sorted_df.fillna(method='bfill') 
filled_df = sorted_df.fillna(method='ffill') 
----------------------------------------------------------------------------------- 
# Get descriptive statistics 
statistics = filled_df.drop(columns='Date').describe() 
# Calculate skewness for each column 
skewness = filled_df.drop(columns='Date').skew() 
# Calculate kurtosis for each column 
kurtosis = filled_df.drop(columns='Date').kurtosis() 
# Add skewness and kurtosis to the statistics dataframe 
statistics.loc['skewness'] = skewness 
statistics.loc['kurtosis'] = kurtosis 
----------------------------------------------------------------------------------- 
import matplotlib.pyplot as plt 
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# Extract the columns to plot 
columns_to_plot = filled_df.columns[1:]  # Exclude the 'Date' column 
 
# Set up the figure and subplots 
fig, axes = plt.subplots(nrows=len(columns_to_plot), figsize=(10, 6 * 
len(columns_to_plot))) 
# Iterate over the columns and create a plot for each 
for i, column in enumerate(columns_to_plot): 
    ax = axes[i] 
    ax.plot(filled_df['Date'], filled_df[column]) 
    ax.set_xlabel('Date') 
    ax.set_ylabel(column) 
    ax.set_title(column) 
 
# Adjust spacing between subplots 
plt.tight_layout() 
plt.savefig('plots.pdf', dpi=300) 
# Show the plots 
plt.show() 
 
----------------------------------------------------------------------------------- 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from statsmodels.tsa.stattools import acf 
 
# Calculate log returns for each column 
returns_df = filled_df.copy() 
returns_df.iloc[:, 1:] = np.log(returns_df.iloc[:, 1:]).diff() 
 
# Get the column names 
columns = returns_df.columns[1:] 
 
# Calculate and plot autocorrelation for log returns of each column with 20 lags 
fig, axes = plt.subplots(nrows=len(columns), figsize=(8, 6*len(columns))) 
 
lags = 20  # Number of lags to consider 
 
for i, column in enumerate(columns): 
    data = returns_df[column].dropna()  # Remove NaN values 
    autocorr_values = acf(data, nlags=lags) 
    confidence_interval = 1.96 / np.sqrt(len(data)) 
    upper_bound = confidence_interval * np.ones_like(autocorr_values) 
    lower_bound = -confidence_interval * np.ones_like(autocorr_values) 
    ax = axes[i] if len(columns) > 1 else axes 
    ax.stem(autocorr_values, linefmt='b-', markerfmt='bo', basefmt='r-', 
label='Autocorrelation') 
    ax.plot(upper_bound, 'r--', label='Confidence Interval') 
    ax.plot(lower_bound, 'r--') 
    ax.set_xlabel('Lag') 
    ax.set_ylabel('Autocorrelation') 
    ax.set_title(f'Autocorrelation for {column} (Lags={lags}) - Log Returns') 
    ax.legend() 
    ax.grid(True) 
 
plt.tight_layout() 
 
# Show the plots 
plt.show() 
----------------------------------------------------------------------------------- 
import pandas as pd 
import numpy as np 
 
 
# Calculate cross-correlation matrix 
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cross_corr_matrix = filled_df.iloc[:, 1:].corr() 
 
# Display the cross-correlation matrix 
print(cross_corr_matrix) 
----------------------------------------------------------------------------------- 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
# Plot the cross-correlation matrix as a heatmap 
plt.figure(figsize=(10, 8)) 
sns.heatmap(cross_corr_matrix, annot=True, cmap='coolwarm', center=0) 
plt.title('Cross-correlation Matrix') 
plt.show() 
----------------------------------------------------------------------------------- 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
# Specify the start and end dates for the desired window 
start_date = '2022-10-01' 
end_date = '2023-03-30' 
 
# Subset the dataframe based on the date window 
window_df = filled_df.loc[(filled_df['Date'] >= start_date) & (filled_df['Date'] <= 
end_date)] 
 
# Calculate the cross-correlation matrix for the window 
cross_corr_matrix = window_df.iloc[:, 1:].corr() 
 
# Keep only the row corresponding to "SVB_Price" 
sivb_corr = cross_corr_matrix.loc['SIVB_Price'] 
 
# Display the cross-correlation for "SVB_Price" 
print(sivb_corr) 
 
plt.figure(figsize=(6, 4)) 
sns.heatmap(sivb_corr.to_frame(), annot=True, cmap='coolwarm', center=0, 
cbar=False) 
plt.title('Cross-correlation with SVB_Price') 
plt.show() 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.preprocessing import StandardScaler 
from scipy.cluster.hierarchy import dendrogram, linkage 
 
# Extract the time series columns from the filled_df 
time_series_data = filled_df.iloc[:, 1:].values 
 
# Standardize the time series data 
scaler = StandardScaler() 
standardized_data = scaler.fit_transform(time_series_data) 
 
# Calculate the linkage matrix using hierarchical clustering 
linkage_matrix = linkage(standardized_data.T, method='complete', 
metric='euclidean')  # Transpose the data 
 
# Plot the dendrogram 
plt.figure(figsize=(12, 6)) 
dendrogram(linkage_matrix, labels=filled_df.columns[1:], leaf_rotation=90) 
plt.title('Hierarchical Clustering Dendrogram') 
plt.xlabel('Time Series') 
plt.ylabel('Distance') 
plt.tight_layout() 
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plt.show() 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import networkx as nx 
from statsmodels.tsa.stattools import grangercausalitytests 
 
# Calculate the Granger Causality Matrix 
granger_matrix = pd.DataFrame(np.zeros((len(filled_df.columns[1:]), 
len(filled_df.columns[1:]))), 
                              index=filled_df.columns[1:], 
columns=filled_df.columns[1:]) 
 
for col in filled_df.columns[1:]: 
    for row in filled_df.columns[1:]: 
        if col != row: 
            granger_result = grangercausalitytests(filled_df[[row, col]], maxlag=5, 
verbose=False) 
            p_values = [result[0]['ssr_ftest'][1] for result in 
granger_result.values()] 
            granger_matrix.loc[row, col] = min(p_values) 
 
# Create Network Graph for Granger Causality Matrix 
granger_graph = nx.from_pandas_adjacency(granger_matrix) 
 
# Filter out non-causal relationships 
causal_edges = [(u, v, granger_graph[u][v]['weight']) for (u, v, d) in 
granger_graph.edges(data=True) if d['weight'] < 0.05] 
 
# Create a high DPI plot 
plt.figure(figsize=(10, 8), dpi=300) 
 
# Draw the network graph with edge labels 
pos = nx.spring_layout(granger_graph, seed=42) 
nx.draw_networkx(granger_graph, pos=pos, with_labels=True, node_size=500, 
node_color='lightblue', 
                 arrowstyle='->', arrowsize=10, edgelist=[(u, v) for (u, v, _) in 
causal_edges]) 
edge_labels = {(u, v): f'{w:.2f}' for (u, v, w) in causal_edges} 
nx.draw_networkx_edge_labels(granger_graph, pos=pos, edge_labels=edge_labels, 
font_color='red', label_pos=0.3) 
plt.title('Granger Causality Network Graph') 
 
# Save the plot to a file 
plt.savefig('granger_network_graph.png', dpi=300) 
plt.show() 
 
import networkx as nx 
 
# Calculate average degree 
average_degree = sum(dict(granger_graph.degree()).values()) / len(granger_graph) 
 
# Calculate average path length 
average_path_length = nx.average_shortest_path_length(granger_graph) 
 
# Calculate number of communities and modularity using Louvain method 
communities = 
nx.algorithms.community.modularity_max.greedy_modularity_communities(granger_graph) 
number_of_communities = len(communities) 
modularity = nx.algorithms.community.modularity(granger_graph, communities) 
 
# Print the calculated measures 
print("Average Degree:", average_degree) 
print("Average Path Length:", average_path_length) 
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print("Number of Communities:", number_of_communities) 
print("Modularity:", modularity) 
 
 
Code snippet for transformation 
import networkx as nx 
 
# Create an empty dictionary to store the graphs 
graphs = {} 
 
# Determine the threshold for creating edges 
threshold = 0.05   
 
# Iterate over the columns and create network graphs 
for column in filled_df.columns[1:]: 
    # Create an empty graph 
    graph = nx.Graph() 
 
    # Extract the column data 
    data = filled_df[column] 
 
    # Add nodes to the graph 
    for i, value in enumerate(data): 
        graph.add_node(i, value=value) 
 
    # Add edges to the graph 
    for i in range(len(data)): 
        for j in range(i+1, len(data)): 
            diff = abs(data[i] - data[j]) 
            if diff <= threshold: 
                graph.add_edge(i, j, weight=diff) 
 
    # Add the graph to the dictionary 
    graphs[column] = graph 
 
# Plot the network graphs 
for column, graph in graphs.items(): 
    plt.figure(figsize=(8, 6)) 
    pos = nx.spring_layout(graph) 
    edge_weights = nx.get_edge_attributes(graph, 'weight') 
    node_values = nx.get_node_attributes(graph, 'value') 
    nx.draw_networkx(graph, pos=pos, with_labels=True, node_size=500, font_size=10, 
alpha=0.8, edge_color='gray', width=1.5) 
    nx.draw_networkx_edge_labels(graph, pos=pos, edge_labels=edge_weights, 
font_size=8) 
    nx.draw_networkx_labels(graph, pos=pos, labels=node_values, font_size=8, 
verticalalignment='bottom') 
    plt.title(f'Complex Network for {column}') 
    plt.axis('off') 
    plt.show() 
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