
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

TRANSPARENT MECHANISM FOR THE

COMPRESSION OF NETWORK FLOWS

Diploma Thesis

Vasileios Kyriakakis

Supervisor: Christos Antonopoulos

June 2023

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

TRANSPARENT MECHANISM FOR THE

COMPRESSION OF NETWORK FLOWS

Diploma Thesis

Vasileios Kyriakakis

Supervisor: Christos Antonopoulos

June 2023

iii
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΑΦΑΝΗΣ ΜΗΧΑΝΙΣΜΟΣ ΣΥΜΠΙΕΣΗΣ

ΔΙΚΤΥΑΚΩΝ ΡΟΩΝ

Διπλωματική Εργασία

Κυριακάκης Βασίλειος

Επιβλέπων: Αντωνόπουλος Χρήστος

Ιούνιος 2023

v
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Approved by the Examination Committee:

Supervisor Christos Antonopoulos

Associate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member Spyros Lalis

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

Member Nikolaos Bellas

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

vii
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Acknowledgements

I would like to expressmy sincere gratitude tomy supervisor, Professor ChristosAntonopou-

los for his guidance throughout the entire research process. I would also like to thank Pro-

fessor Spyros Lalis for offering me advice and being a part of examination committee, and

Professor Nikolaos Bellas for his contributions as a committee member.

To my parents Ioanna and Nikos and my siblings Stavroula, Sotiris and Anastasia, thank

you for your unconditional love and support.

To my girlfriend Elena, thank you for being there for me in every step of this difficult

process, while supporting me in every conceivable manner, no matter how difficult things

were.

To my friends, Aris, Thodoris, Themis, and Vangelis thank you for the fun times and

support.

To every other person that supported me during my studies, even if it was in a small way,

even if we aren’t in contact anymore, thank you.

ix
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Vasileios Kyriakakis

xi
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

xii Abstract

Diploma Thesis

TRANSPARENT MECHANISM FOR THE COMPRESSION OF

NETWORK FLOWS

Vasileios Kyriakakis

Abstract

Cloud computing as we know it is unable to cope with the enormous amounts of data pro-

duced in the network edge, especially considering the proliferation of IoT devices. The edge

computing paradigm seeks to solve this issue by moving the data processing to the edge of the

network, away from the cloud and closer to the entities that generate or consume the data. Be-

cause some of the links in the network edge can be slow, the large amounts of data exchanged

might lead to decreased performance. In this Thesis, we designed and implemented a library

that uses lossless data compression over TCP, in order to reduce the amount of transmitted

data in the network edge and mitigate the effects of the low bandwidth edge links. We vali-

dated the correctness of our implementation and evaluated its performance using a platform

we built over Mininet. From the experimental data, we conclude that our library performs

better than plain TCP in low bandwidth and/or high packet loss rate networks and that when

it is used in such networks, its CPU overhead is negligible.

Keywords:
cloud computing, edge computing, data compression, zlib, bandwidth, Mininet

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Περίληψη xiii

Διπλωματική Εργασία

ΔΙΑΦΑΝΗΣ ΜΗΧΑΝΙΣΜΟΣ ΣΥΜΠΙΕΣΗΣ ΔΙΚΤΥΑΚΩΝ ΡΟΩΝ

Κυριακάκης Βασίλειος

Περίληψη

Το cloud computing, όπως το γνωρίζουμε, δεν μπορεί να ανταπεξέλθει στοΝ τεράστιο όγκο

δεδομένων που παράγονται στο edge, ιδίως λόγω της ανάπτυξης των συσκευών IoT. Το edge

computing επιδιώκει να λύσει αυτό το ζήτημα μεταφέροντας την επεξεργασία δεδομένων στο

edge, μακριά από το cloud και πιο κοντά στις οντότητες που παράγουν ή/και καταναλώνουν

τα δεδομένα. Επειδή κάποιες από τις ζεύξεις στο edge είναι αργές, οι μεγάλες ποσότητες

δεδομένων που ανταλλάσσονται μπορεί να οδηγήσουν σε μειωμένη απόδοση. Σε αυτήν τη

διπλωματική εργασία, σχεδιάσαμε και υλοποιήσαμε μια βιβλιοθήκη που χρησιμοποιεί συμπί-

εση δεδομένων χωρίς απώλειες πάνω στο TCP, στοχεύοντας να μειώσουμε την ποσότητα των

δεδομένων που μεταδίδονται και να αντιμετωπίσουμε τις επιπτώσεις των ζεύξεων χαμηλής

χωρητικότητας στο edge. Επιβεβαιώσαμε την ορθότητα της υλοποίησης μας και αξιολογή-

σαμε την απόδοσή της χρησιμοποιώντας μια πλατφόρμα που αναπτύξαμε πάνω στο Mininet.

Με βάση τις μετρήσεις που προέκυψαν, καταλήξαμε ότι η βιβλιοθήκη μας παρουσιάζει καλύ-

τερη απόδοση από το απλό TCP σε δίκτυα χαμηλής χωρητικότητας ή/και υψηλή πιθανότητα

απώλειας πακέτων και ότι επιβαρύνει τη CPU σε αμελητέο βαθμό όταν χρησιμοποιείται σε

τέτοιου είδους δίκτυα.

Λέξεις-κλειδιά:
cloud computing, edge computing, συμπίεση δεδομένων, zlib, χωρητικότητα δικτύου,Mininet

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Structure . 3

2 Background 5

2.1 Terminology . 5

2.1.1 Data compression . 5

2.1.2 Compression ratio . 6

2.1.3 Library . 6

2.1.4 Dynamic library interception . 6

2.1.5 Bandwidth . 6

2.1.6 Effective bandwidth . 7

2.1.7 Latency . 7

2.1.8 Acknowledgment . 7

xv
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

xvi Table of contents

2.1.9 Round-trip time . 7

2.1.10 Packet loss rate . 7

2.2 zlib . 8

2.3 Mininet . 8

3 Design 9

3.1 Placement in the network stack . 9

3.2 Architecture . 10

3.2.1 Sending side . 11

3.2.2 Receiving side . 12

4 Implementation 15

4.1 Dynamic Library Interception . 15

4.2 Compression Method . 16

4.3 Data Structures . 16

4.4 Initialization . 17

4.5 Sending side . 18

4.6 Receiving side . 19

4.6.1 Receiving compressed data from TCP 19

4.6.2 Flushing . 20

4.6.3 Buffering logic . 20

4.7 Cleanup . 22

5 Evaluation 23

5.1 System specifications . 23

5.2 Benchmarks . 24

5.3 Experimental setup . 25

5.3.1 Basic setup . 25

5.3.2 Network emulation setup . 25

5.4 Compression efficiency evaluation . 28

5.4.1 Compression ratio . 28

5.4.2 Compression overhead . 30

5.5 CPU overhead experiment . 33

5.6 Comparison between TCP and the library 36

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Table of contents xvii

5.6.1 Bandwidth . 36

5.6.2 Latency . 38

5.6.3 Packet loss rate . 39

5.6.4 Realistic conditions . 41

6 Related work 43

6.1 Application layer solutions . 43

6.2 Solutions in other layers . 44

7 Conclusion 45

Bibliography 47

APPENDICES 51

A.1 Code snippets . 52

A.1.1 Send implementation . 52

A.1.2 Recv implementation . 53

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

List of figures

3.1 The library intercepts TCP socket calls to compress/decompress the data first. 10

3.2 The sending and receiving sides of the library. 10

3.3 The format of the compressed data. 11

3.4 The functionality of the sending side. 11

3.5 The functionality of the receiving side. 12

4.1 The sending side implementation buffering logic. 19

4.2 The helper function for receiving compressed buffers from TCP. 21

4.3 The receiving side implementation buffering logic. 22

5.1 The experimental setup. Blue denotes a program while yellow denotes a file. 27

5.2 Boxplot of the compression ratio for files of different formats. 29

5.3 Plot of the mean compression ratio vs BUF_SIZE for various files. 30

5.4 Plot of the total compression time vs BUF_SIZE. 31

5.5 Plot of the L1-dcache miss rate (%) vs BUF_SIZE. 31

5.6 Plot of the mean buffer compression time vs BUF_SIZE. 32

5.7 Plot of the total decompression time vs BUF_SIZE. 32

5.8 Plot of the mean buffer decompression time vs BUF_SIZE. 33

5.9 Plot of the CPU load for the compression and decompression vs BUF_SIZE. 34

5.10 Plot of the CPU load vs bandwidth. 35

5.11 Plot of the CPU load vs latency. 35

5.12 Plot of the CPU load vs packet loss rate. 36

5.13 Execution time vs bandwidth comparison between TCP and the library. . . 37

5.14 Effective bandwidth vs bandwidth comparison between TCP and the library. 37

5.15 Execution time vs latency comparison between TCP and the library. 38

5.16 Effective bandwidth vs latency comparison between TCP and the library. . 39

xix
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

xx List of figures

5.17 Execution time vs packet loss rate(%) between TCP and the library. 40

5.18 Effective bandwidth vs packet loss rate(%) comparison between TCP and the

library. 40

5.19 Execution time comparison for various network technologies. 41

5.20 Effective bandwidth comparison for various network technologies. 42

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

List of tables

5.1 The specifications of the machine we used to run our experiments. 23

5.2 The files used in the evaluation of our library. 24

5.3 The sets ofMininet parameters we used to model popular network technologies. 41

xxi
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Chapter 1

Introduction

1.1 Motivation

The migration of company resources into the cloud was accelerated due to the COVID-

19 pandemic [1], and is still ongoing, with Gartner [2] forecasting that worldwide end-user

spending on public cloud services will grow 20.7% to total $591.8 billion in 2023. Enter-

prises that move their operations into the cloud enjoy many benefits such as elasticity, cost-

effectiveness, and the offload of infrastructure administration to the cloud service providers

[3].

However, the centralized nature of cloud computing paired with the fact that network

bandwidth has remained stagnant [4], causes the performance to degrade when very large

amounts of data are sent to the cloud. Also, the proliferation of IoT devices [5], will lead

to enormous amounts of data being generated at the edge of the network, rendering cloud

computing as we know it unable to service them. Another problem with the cloud computing

model is that the applications are less responsive the farthest from the data center the users are,

due to WAN latency [6]. This is an issue for time-sensitive applications such as autonomous

vehicles [7], which collect large amounts of data with their sensors that need to be processed

in order for the system to make predictions, where a delay in the response could cause serious

accidents.

The edge computing [4] paradigm promises to solve the above issues and more, by mov-

ing the data processing to the edge of the network, away from the cloud, and closer to the end

users. Since the total traffic will be distributed among the edge nodes, there exists no central

point which might get congested. Also, since the edge nodes will be closer to the users, the

1
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

2 Chapter 1. Introduction

latency will be significantly reduced and the interactive services’ quality will be improved.

However, this solution is not without its problems. Some links in the edge of the network

are relatively slow, which is acceptable if the edge is populated mainly by users sending data

to the cloud, but if processing nodes, which will receive large amounts of data, are to be

created at the edge this might pose a problem. Replacing all the edge links with high-speed

links is impractical, so we turned our attention to finding a software-based solution.

We hypothesized that the low bandwidth could be mitigated by reducing the amount of

transmitted data that is necessary for the applications to operate. One way to achieve this

is by compressing the data before sending it and decompressing it before delivering it to

the recipient (where the sender or recipient could be the end-user or the edge processing

node). The problem with this approach is that additional CPU cycles must be spent in order

to compress or decompress the data, which could outweigh any performance improvements

by reducing the transmitted data.

With all that in mind, we set out to implement our own data compression solution.

1.2 Contribution

In this Thesis, we aimed to reduce the amount of application data by introducing a lossless

compression layer between the application and TCP, hoping to improve overall application

performance. A number of problems had to be solved first, including finding a way for ap-

plications to use the proposed functionality without needing to be rewritten, and carefully

designing the way the data is sent/received in order to not cancel-out the benefits of com-

pressing it.

After we finished with the design and implementation of our solution, we validated its

correctness and evaluated its performance along different metrics, as well as its resource

utilization. This data was necessary in order to study the aforementioned CPU-bandwidth

trade-off in various network conditions, corresponding to both fast and slow links.

We also compared its performance with that of plain TCP in different network conditions,

which we emulated using an evaluation platform we built on top of Mininet.

Our contribution can be summarized as follows:

• We developed our compression-over-TCP library.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

1.3 Structure 3

• We used the dynamic library call interception mechanism, in order for applications to

be able to use our implementation through the Unix socket API.

• We validated the correctness of our implementation.

• We evaluated the performance and resource utilization of the library.

• We developed an evaluation platform that can test our implementation in various net-

work conditions using Mininet.

• We compared the performance of our library to that of plain TCP in various network

conditions.

1.3 Structure

In Chapter 2 we introduce various concepts that will be necessary for the comprehension

of the methodologies in our Thesis. We outline the general architecture of our compression

library in Chapter 3. We discuss implementation details in Chapter 4. We present and discuss

the experimental results in Chapter 5. We discuss work related to ours in Chapter 6. Finally,

Chapter 7 concludes the Thesis.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Chapter 2

Background

2.1 Terminology

2.1.1 Data compression

Data compression [8] is the process of transforming data into a different representation

that uses less bits. Data compression algorithms can be broadly separated in two categories,

those that perform lossless compression and those that perform lossy compression.

Lossless data compression allows the original data to be perfectly reconstructed from

the compressed data in a process that is called decompression. This is possible thanks to the

redundancy present in the data. Two broad categories of lossless compression algorithms are

entropy coding and dictionary-based algorithms.

Entropy coding algorithms first create a statistical model for the symbols appearing in the

data, and then use that model to map the symbols to bit sequences so that symbols that appear

often are replaced by shorter sequences than those that appear rarely. Huffman coding [9] and

arithmetic coding [10] are commonly used algorithms of this type.

Dictionary-based algorithms build a list of commonly occurring patterns in the data, then

use it to substitute these patterns with their index in the list. Most algorithms of this type are

based on the Lempel-Ziv algorithms, LZ77 [11] and LZ78 [12].

In lossy compression the size of the data is reduced by discarding part of it. This leads

to a higher amount of data reduction compared to lossless compression, however the process

is irreversible. The choice of which parts to discard is made so that the resulting data ap-

proximates the original for the purposes of the end user. The most popular lossy compression

5
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

6 Chapter 2. Background

algorithm is DCT [13] (discrete cosine transform).

2.1.2 Compression ratio

The compression ratio is the ratio between the uncompressed size and compressed size

of the same data. The higher the compression ratio is, the more efficient the compression was

at decreasing the size of that data. In general, the more redundant the data, the more it will

be compressed and the ratio will be higher.

2.1.3 Library

A library is a collection of functions and variables that can be used by programs through

a well-defined interface. Libraries can be broken down into two categories: statically linked

and dynamically linked.

When using a statically linked library, its contents are embedded into the final executable

during the build process. This process is performed by the linker, a program that combines a

group of object files into an executable program or library.

On the other hand, when using a dynamically linked library its contents are loaded into

memory and linked when the program is executed. This is done by a component of the oper-

ating system, the dynamic linker.

2.1.4 Dynamic library interception

When we use the term interception in the text, what we mean is that instead of the dy-

namic library that is supposed to provide some functionality, another one is loaded first and

its functions are accessed by the program instead. This is done to alter the functionality of

programs using the original library, without having to rewrite them.

2.1.5 Bandwidth

The bandwidth of a computer network is the maximum rate of data transfer through it. It

is typically measured in Mbps (Megabits / sec).

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

2.1.6 Effective bandwidth 7

2.1.6 Effective bandwidth

The rate of application data transfer, which is also measured in Mbps (Megabits / sec).

It might differ from the actual network bandwidth depending on the manner in which the

application data is encoded to messages and transmitted.

For example, if the application data is compressed, the messages that are actually trans-

mitted contain a larger amount of data, so the effective bandwidth may be higher than the

actual bandwidth. Also, an application might produce data at a slower rate than the avail-

able bandwidth, or transmit control data as part of its function, in which case the effective

bandwidth will be lower than the actual bandwidth.

2.1.7 Latency

The latency in a computer network is the time it takes for a bit of data to travel from the

sender to the receiver.

2.1.8 Acknowledgment

The acknowledgment (ACK) is a message that is sent to the sender of a packet, to signify

that the packet has been received successfully.

2.1.9 Round-trip time

The round-trip time (RTT) is the time required for a sent packet to reach its destination,

plus the time required for the corresponding acknowledgment to reach the sender.

2.1.10 Packet loss rate

Packet loss occurs when one or more packets of data traveling across a computer network

fail to reach their destination. Packet loss can be caused by errors in data transmission, or

network congestion. The packet loss rate is the percentage of packets lost with respect to

packets sent.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

8 Chapter 2. Background

2.2 zlib

zlib is a software library that performs lossless data compression. It is an important part of

many applications, and has many desirable qualities, such as an easy-to-use interface, control

over the size reduction/speed trade-off by setting a compression level parameter, and thread-

safety.

It uses the DEFLATE [14] compression algorithm, which first uses the dictionary-based

LZ77 algorithm to replace commonly occurring strings with a <length, backward distance>

pointer to their previous appearance. Afterwards, the Huffman coding algorithm is applied,

mapping symbols to bit sequence in the manner described in Section 2.1.1. Both byte literals

and pointers are counted as symbols for this purpose. The decompression is performed using

the INFLATE algorithm.

2.3 Mininet

Mininet [15] is a network emulator which creates a network of virtual hosts, switches,

controllers, and links.

Each virtual host or switch is a process with its own network interfaces, routing table,

and ARP table (using Linux’s network namespaces feature). All of these processes run on

the same Linux kernel. The virtual hosts can run any Linux program, while the switches

support the OpenFlow protocol for software-defined networking. Also, the switches need a

controller to function.

The network is defined by the user, through a set of commands in a CLI environment

(ran using the mn command) or programmatically using the Python API [16]. The user can

insert hosts and switches (with their controllers) into the network, and connect their (virtual)

network interfaces using links. The behavior of the links can be modified through parameters

that correspond to physical properties such as bandwidth, packet loss rate, and latency.

Mininet is often used for the development of a network by simulating it and running test

applications on the hosts without needing to actually wire the physical network to debug

it or measure its performance. It can also be used in application development to test the

performance of the applications themselves in networks with different topologies and link

parameters with similar benefits.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Chapter 3

Design

In this chapter, we will describe the general architecture of our compression library,

namely the modules of which it consists, as well as the way it interfaces with the user appli-

cations and TCP. Also, we will discuss the buffering logic used in the sending and receiving

modules in an abstract manner (we will offer more detail in Chapter 4).

3.1 Placement in the network stack

As seen in Figure 3.1, the compression library lies between the application and TCP. Our

library intercepts the calls made by the application to the libc socket functions and calls the

original functions in the context of the compression/decompression process.

Specifically, when a send() call is intercepted, the data is compressed and then the

original send() is called by the library to pass the data to TCP. Similarly, when a recv()

call is intercepted, the original recv() is called to receive compressed data from TCP, which

is then decompressed and delivered to the application.

The reason we decided on the above, instead of just implementing the library and provid-

ing an API to the applications, is that applications written using the libc socket API will be

able to use the library’s functionality without needing to be rewritten.

9
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

10 Chapter 3. Design

Application 1 Application 2

Library Library

TCP/IP TCP/IP

Network

send(comp(D)) recv(comp(E))

send(D) recv(E) recv(D)send(E)

recv(comp(D))send(comp(E))

Interception

Figure 3.1: The library intercepts TCP socket calls to compress/decompress the data first.

3.2 Architecture

The library comprises two symmetric sides as shown in Figure 3.2. One side, the sending

side, processes the intercepted send() calls, and the other one, the receiving side, processes

the intercepted recv() call. We will explain the functionality of each side in the following

subsections.

send buffer
zlib

compression

TCP

recv buffer
zlib

decompression

interception

App

Library

serialization

deserialization

Figure 3.2: The sending and receiving sides of the library.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

3.2.1 Sending side 11

3.2.1 Sending side

The sending side receives data from the application and places it in a buffer, which it then

compresses using zlib and forwards to the transport layer in the format shown in Figure 3.3.

compressed length compressed data

<compressed length> B4B

Figure 3.3: The format of the compressed data.

Even if the application sends its data in small chunks, the buffering implemented by TCP

will bundle them into larger segments before sending them into the network, so that prob-

lems associated with small segments, like wasting bandwidth on a larger number of segment

headers, will be avoided.

However, since compression tends to perform better (achieving a higher compression ra-

tio) when the input data is large, the library inserts the application data into a buffer, and when

enough data has been stored, its contents are compressed and passed to TCP. We summarize

the sending process in the flowchart in Figure 3.4.

Application calls send()

Store the application data to the
send buffer

Interception

Has enough data been
amassed? Return

Compress the send buffer

Pass the compressed data to TCP
through the original send()

no

yes

Figure 3.4: The functionality of the sending side.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

12 Chapter 3. Design

3.2.2 Receiving side

When the application requests len bytes of data using recv(), the receiving side re-

ceives compressed data from TCP in the format shown in Figure 3.3, which it then decom-

presses using zlib and uses it to deliver the len bytes. The whole process for receiving data

is summarized in Figure 3.5.

Application calls recv() for <len> B of
data

Does the receive buffer contain
at least <len> bytes?

Remove <len> bytes
from the buffer and

deliver them to the app

yes

Remove all of the data from the buffer
and deliver it to the app

no

Flush the send buffer

Receive compressed data from TCP
and decompress it until you have

amassed the remainder of the <len>
bytes

Insert the leftover uncompressed data
into the receive buffer

Interception

Figure 3.5: The functionality of the receiving side.

Because the decompressed data might be more than what the application needs at the mo-

ment, the leftovers should be stored in a buffer so that they can be delivered to the application

at a later recv() call. At every call, this receive buffer should be checked so that any data

stored there can be retrieved to be returned to the application. If more data than what was

stored in the buffer was requested, the library should receive more compressed data from

TCP, decompress it , and repeat the process.

Also, a send() call for a small amount of data followed by a recv() call will cause

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

3.2.2 Receiving side 13

the application to block forever, as the small data will never be sent due to the send buffering

mentioned in Section 3.2.1, so the recipient application will never send its response. The

solution to this problem is to flush the send buffer (by compressing the stored data and passing

it to TCP even if it is a small amount) if the data in the receive buffer is not sufficient to serve

the recv() call.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Chapter 4

Implementation

In this chapter, we discuss the various aspects of our C implementation.More specifically,

how exactly the socket library calls are intercepted, the data structures that we used and

the corresponding initialization/cleanup processes, and the finer details of the sending and

receiving sides which were already discussed in Chapter 3.

4.1 Dynamic Library Interception

As mentioned in Section 3.1, the library doesn’t offer an API that applications can use,

instead it intercepts calls made to the libc socket API. In this section, we will describe exactly

the steps we followed to achieve this.

For every socket API function that our implementation intercepts by implementing a

function with the same name, after our own added functionality is finished, we must call

the original function in order for the application to work as intended. The function dlsym

from <dlfcn.h> is used to implement this behavior as follows:

typedef T0 (*orig_foo_t)(T1 arg1, T2 arg2, ..., TN argN);

T0 foo(T1 arg1, T2 arg2, ..., TN argN) {

orig_foo_t orig_foo = (orig_foo_t)dlsym(RTLD_NEXT, ”foo”);

added_foo_functionality(arg1, arg2, ..., argN);

return orig_foo(arg1, arg2, ..., argN);

}

15
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

16 Chapter 4. Implementation

When dlsym is called using RTLD_NEXT as the first argument, it returns a function

pointer to the next function named foo in the dynamic library stack (which comprises all

the libraries that were dynamically linked at the start of the execution). As seen below, our

library will be loaded first, so the next foo in the stack is the original.

To run an application using our library, we first compiled our implementation as a shared

library using the following command:

gcc -DBUF_SIZE=204800 -shared -fPIC comp_tcp_lib.c -o comp_tcp_lib.so -ldl -lz

After that, the library’s compression functionality can be used with any application that

uses the libc socket API to communicate through TCP, by running the application in this

manner (supposing that the compiled library is in the working directory):

LD_PRELOAD=$PWD/comp_tcp_lib.so <application-command>

This command loads the library before running the application, so the functions that have

the same names as those in libc are higher in the dynamic library stack and will be called

instead.

4.2 Compression Method

We opted to use the zlib lossless data compression library to implement the compres-

sion/decompression functionality of our library, because it is a mature library that is perfor-

mant and easy to use. We will describe the way we used it in the following sections.

4.3 Data Structures

Provided the maximum number MAX_SOCKETS of sockets that will be created by the

application is known, the data structures we used in our implementation are the following

(Bytef and uLong are types provided by zlib and correspond to unsigned char and

unsigned long respectively):

Bytef *send_buf[MAX_SOCKETS] = {NULL};

Bytef *send_comp_buf[MAX_SOCKETS] = {NULL};

Bytef *recv_comp_buf[MAX_SOCKETS] = {NULL};

Bytef *recv_buf[MAX_SOCKETS] = {NULL};

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

4.4 Initialization 17

uLong send_len[MAX_SOCKETS] = {0};

uLong recv_pos[MAX_SOCKETS] = {0}, recv_len[MAX_SOCKETS] = {0};

Each of the above data structures is an array of pointers to byte buffers, or an array of

length/position information associated with one of the buffers. They are indexed by the socket

file descriptors returned by the original socket() or accept(), so each socket has a set

of pointers to its own buffers. The reason for this is that an application might use a number

of sockets concurrently from different threads. This way, each thread accesses completely

separate memory areas from the others, so there is no risk of thread interference.

The byte array send_buf[sockfd] is the send buffer for the socket sockfd (as was

mentioned in Section 3.2.1), that amasses application data until there is enough for efficient

compression. The size of the array, which is also the amount of data required before com-

pression takes place is BUF_SIZE. The array is filled from left to right, and the number of

filled positions is stored in send_len[sockfd].

The array send_comp_buf[sockfd] stores the compressed data that will be for-

warded to TCP, while recv_comp_buf[sockfd] stores the compressed data that is re-

ceived fromTCP until it is decompressed. The size of this array iscompressBound(BUF_SIZE)

where compressBound() is a zlib function that computes the maximum size of the data

that results from the compression of some amount of data.

Finally, recv_buf[sockfd] stores the decompressed data until the application re-

quests it (asmentioned in Section 3.2.2). The size of this array is alsoBUF_SIZE because that

is the maximum amount of data that will result from decompression. Once again, the array is

filled from left to right, with the number of filled positions being stored inrecv_len[sockfd].

The data is also consumed from left to right, so the number of consumed positions is also

stored in recv_pos[sockfd]. These two variables are used to calculate how much data

is left in the receive buffer.

4.4 Initialization

Each time the application calls socket(), our version is called instead. It first calls the

original function to obtain a socket file descriptor. Then it checks whether the desired socket

is a TCP socket or not, that is if domain = AF_INET and type = SOCK_STREAM

from the provided arguments. If it is, the arrays introduced in Section 4.3 are allocated (using

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

18 Chapter 4. Implementation

malloc()) and are associated with that socket file descriptor. In any case, the function

returns the file descriptor to the application. The version of accept() we implemented

behaves in a similar manner.

4.5 Sending side

Any application calls to send() are intercepted and our version is called instead. The

provided sockfd is used to access the correct data structures.

The compression of the send buffer is performed using the compress2() function from

zlib, which takes a data buffer and returns a compressed data buffer insend_comp_buf[sockfd],

using the default compression mode. Also, the compressed data are passed to TCP using the

original send function in the format shown in Figure 3.3.

We will now discuss the buffering logic for the sending side. Supposing that the applica-

tion wants to send len bytes of data from buf, the implementation attempts to insert it into

send_buf[sockfd]. If send_buf[sockfd] does not fill up completely, there is not

enough data for efficient compression, so our send() just returns len without forwarding

anything to TCP. However, if the buffer fills up, it is compressed and then passed to TCP.

In case the implementation can not insert all of the len bytes into the send buffer, it

separates them into groups of BUF_SIZE bytes, each of which it then compresses and for-

wards to TCP. Please note that the data is taken directly from buf instead of being put into

send_buf[sockfd] first, in order to avoid wasting time on unnecessary copying.

If some bytes still remain, or there were not enough to create any of the aforementioned

groups in the first place, they are just inserted intosend_buf[sockfd] andwill be utilized

in a future send() call.

In every case, our version of send() returns the size of application data len, so it

complies with the libc socket API.

The flowchart in Figure 4.1 summarizes the above functionality. We provide a simplified

version of the actual buffering logic implementation in Appendix A.1.1.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

4.6 Receiving side 19

Would send_buf[sockfd] fill up
if buf was copied into it?

Copy buf into
send_buf[sockfd]

ssize_t send(int sockfd, const void *buf, size_t len, int flags)

Is send_buf[sockfd] empty?

true

false

true

Fill the remainder of
send_buf[sockfd] using data from

buf, compress it then pass it to
TCP

Are there more than
BUF_SIZE bytes remaining

in buf?

false

Take BUF_SIZE bytes directly
from buf, compress them and

pass them to TCP

Copy the remaining data into
the empty send_buf[sockfd]

Return len

false

true

Figure 4.1: The sending side implementation buffering logic.

4.6 Receiving side

Similarly to the sending side, the application calls to recv() are intercepted, our version

is called instead, and the provided sockfd is used to access the correct data structures.

Compressed buffers are received fromTCP using the originalrecv() and decompressed

in order to be delivered to the application. The decompression is done usingzlib’suncompress()

function, which takes a zlib compressed data buffer (recv_comp_buf[sockfd] in our

case), and outputs the original data buffer.

4.6.1 Receiving compressed data from TCP

The interfacing with TCP is more complex than that in send(). We have encapsulated

this functionality in the helper function_recv_comp_data(), which fillsrecv_comp_buf[sockfd]

with a compressed buffer.

First, the original recv() is called in order to read the length header shown in Figure 3.3.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

20 Chapter 4. Implementation

If at least some bytes have been delivered to the application, it is called in non-blockingmode.

The reason for this is that fewer than expected bytes might have been sent to the application

and waiting for the exact number it requested will lead to it blocking, but at the same time

some bytes must be delivered. If the read fails with errno = EAGAIN or EWOULDBLOCK,

the implementation will stop trying to fetch more compressed data for the remainder of this

call to our recv().

If the other side closed the connection and 0 was returned, our recv() is notified of

that fact because it will receive a compressed buffer of length 0 and will stop fetching data,

similarly to the non-blocking case.

If the length header was received successfully, the original recv() is called until the

length bytes of the compressed buffer have been amassed inrecv_comp_buf[sockfd].

Afterwards _recv_comp_data() returns and our recv() goes on to decompress the

buffer.

The whole process is summarized in the flowchart in Figure 4.2.

4.6.2 Flushing

As mentioned in Section 3.2.2, flushing the send buffer is necessary whenever the ap-

plication waits for data to be delivered from the network, else the application will block in-

definitely. The flushing mechanism is simple: a helper _flush() function is called, which

compresses the data in send_buf[sockfd] even if it is less than BUF_SIZE bytes long,

and passes the compressed buffer to TCP.

4.6.3 Buffering logic

Supposing that the application requests that len bytes are delivered into buf by calling

recv(), the implementation attempts to service the request using the contents ofrecv_buf[sockfd].

If it contains enough data, len bytes are copied from it to buf and the function returns len.

In case the bytes in recv_buf[sockfd] are less than len, all of its bytes are copied

into buf, and send_buf[sockfd] is flushed. Afterwards, the implementation receives

compressed buffers from TCP, which it then decompresses and copies directly into buf.

This process continues as long as the application needs more than BUF_SIZE bytes to be

delivered. That is because the maximum size for a decompressed buffer is BUF_SIZE, so if

the application needs less than that, the remainder of the buffer has to be handled somehow.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

4.6.3 Buffering logic 21

int _recv_comp_data(int sockfd, uLong *comp_len_p, int flags, int received_bytes)

received_bytes > 0

false

true
Set original recv() mode

to non-blocking

Attempt to read at least one byte of the
length header

Did the read fail because no
 data is available?

Attempt to read at least one byte of the
length header

Did recv() return 0?

false

Read the rest of the header, and the
compressed data

Set the mode to
blocking

false

Return to our version
of recv()

*comp_len_p = 0 to notify that
the connection closed

true

true

*comp_len_p = compressed
data length

Figure 4.2: The helper function for receiving compressed buffers from TCP.

To deliver the remaining bytes to the application, the implementation receives one fi-

nal compressed buffer from TCP, which it then decompresses. Whatever bytes the appli-

cation needs are copied from the decompressed buffer to buf, and the rest are copied to

recv_buf[sockfd] for future use.

In any case, our recv() function returns the size of the data delivered to the application

(which might be less than len), so it respects the libc socket API. Also, when the connection

has been closed and no more data is left to be delivered, it returns 0 to notify the application

that EOF has been reached, just as the original recv().

Once again, the flowchart in Figure 4.3 that summarizes the above functionality, and

Appendix A.1.2 provides a simplified version of the actual buffering logic implementation.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

22 Chapter 4. Implementation

Is the data in recv_buf[sockfd]
enough to deliver len bytes?

ssize_t recv(int sockfd, void *buf, size_t len, int flags)

Copy len bytes from
recv_buf[sockfd] to buf

Copy all of recv_buf[sockfd]
into buf, and flush
send_buf[sockfd]

Are more than BUF_SIZE
bytes needed to fill buf?

Receive compressed data
from TCP, decompress it

and copy it directly into buf

Is buf completely filled?

Receive compressed data
from TCP, decompress it

and copy it into
recv_buf[sockfd]

Copy min{recv_len[sockfd], len - buf_len}
bytes from recv_buf[sockfd] to buf

Return the total
number of bytes put

into buf

true

false

true

false

true

false

Figure 4.3: The receiving side implementation buffering logic.

4.7 Cleanup

Once again, when the application calls close(), our version is called instead. It checks

if the file descriptor corresponds to a TCP socket by checking if the library data structures

for that file descriptor have been created or not. If it does, the send buffer is flushed (as in

recv()), and then the data structures associated with the file descriptor are freed. Finally,

the original close() is called on the file descriptor.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Chapter 5

Evaluation

In this chapter, we describe the experimental setup we used to validate the correctness

of our implementation, as well as to evaluate the efficiency and resource utilization of the

compression process and the performance of our implementation versus that of plain TCP in

different network conditions. Also, we present and discuss the results of our experiments.

5.1 System specifications

We performed all of the experiments described in this chapter on a desktop computer with

the specifications shown in Table 5.1.

OS Ubuntu 20.04.5 LTS x86_64

Kernel 5.4.0-139-generic

CPU Intel i5-7500 (4) @ 3.800GHz

Memory 2 x 8GB

zlib 1.2.11

Mininet 2.3.0.dev6

Table 5.1: The specifications of the machine we used to run our experiments.

23
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

24 Chapter 5. Evaluation

5.2 Benchmarks

In this section, we will discuss the characteristics of the files (datasets) we used to test

our implementation. We obtained some of these files from the Canterbury Corpus [17], a file

set specifically developed for testing lossless compression algorithms. The files relevant to

this chapter are shown in Table 5.2.

Descriptor Size (MB) Contents Corpus name

bin 12.8 Executable -

non-fiction 0.6 Non-fiction book (troff format) book2

E.coli 4.4 Complete genome of the E. Coli bacterium (txt) E.coli

xls 1.0 Excel spreadsheet kennedy.xls

src 2.4 C# source code -

fiction 4.3 Fiction book (txt) -

cia guide 2.4 The CIA world fact book world192.txt

png 10.5 An image in the png format -

mp4 29.2 A video in the mp4 format -

zip 1.3 A compressed archive in the zip format -

pdf 79.5 A pdf document -

mp3 14.1 An audio file in the mp3 format -

jpg 0.8 An image in the jpg format -

megabook 32.4 Concatenation of multiple literary works (txt) -

enwik8 95.4 First 108 bytes of the English Wikipedia dump on 3/3/2006 -

enwik9 953.7 First 109 bytes of the English Wikipedia dump on 3/3/2006 -

Table 5.2: The files used in the evaluation of our library.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

5.3 Experimental setup 25

5.3 Experimental setup

We wanted to perform experiments in order to:

• Validate the correctness of the implementation.

• Evaluate the performance of the compression method we used.

• Quantify system resource utilization on a single communication node.

• Compare the performance of plain TCP with that of our library in different network

conditions.

5.3.1 Basic setup

We built the main experimental platform around a simple one-way transmission scenario:

A client application (which we will refer to as oneway_client) reads a file from the disk

in chunks, sends the data in the file, using our compression library, to a server application

(which we will refer to as oneway_server), which in turn writes the received chunks to

the disk.

To validate our implementation, we run the experiment for each file mentioned in Sec-

tion 5.2 for various values of BUF_SIZE, then used diff to compare the file read by

oneway_client with that written by oneway_server. This way, we made sure that

the implementation runs correctly for a variety of cases in the buffering logic. We also used

another client-server pair, echo_client and echo_server, in which the client read the

file in chunks like before, but after every chunk it sent, it waited to receive that same chunk

from the server before writing it to the disk. We did that in order to make certain the imple-

mentation worked correctly when nodes act as both senders and receivers.

5.3.2 Network emulation setup

The above setup was also used for simple performance measurements. However, in order

to reliably evaluate our implementation for different network conditions in a controlled way,

we had to use the network emulator Mininet.

Our first attempt at creating such a setup was to run the aforementioned client-server

pair inside Mininet, where we would be able to create the desired conditions by setting link

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

26 Chapter 5. Evaluation

parameters such as bandwidth, latency, etc. The issue with this approach was that the client

(which compresses data), the server (which decompresses data), and Mininet all run on the

same computer, so they compete for system resources. Therefore, any resource utilization

measurements would be invalid.

Another idea was to run those three programs in separate nodes. Besides the difficulty in

implementing this solution, due to programs running inside Mininet not being able to com-

municate easily with external programs in the same host through their network interfaces, and

the performance degradation because of the addition of extra recipient programs between the

original server-client pair because time inside the Mininet simulation is slower than time in

real life, this solution would provide time measurements for the whole of the client-Mininet-

server system that are much higher than what they would be on a real network.

In the end, we decided thatoneway_client, Mininet and oneway_servermust run

sequentially in order to satisfy all of the experiment requirements. We achieved that by modi-

fying the library so that it reads from, or writes to logs containing timestamps and compressed

buffers, instead of forwarding or receiving data from TCP. This way, while the components

of the system do not run at the same time, they can read the timestamps and use them to

simulate the delays in their execution if they had to wait for data from another component.

An added benefit to this method is that the setup could be run on just one machine.

The final setup we used is shown in Figure 5.1. We will now describe the latency break-

down steps shown in the figure. Each step corresponds to a step of the actual concurrent

communication between oneway_client and oneway_server that we started with.

Step 1 - Compression and sending

The original client oneway_client reads the file from the disk in chunks, that are

passed to our implementation, which creates two logs, one that contains <compression buffer

size, compressed data> pairs which we will refer to as buf_log from now on, and another

one that contains <compression end timestamp, compression buffer size> pairs, which we

will call comp_ts_log.

Step 2 - Transmission through the emulated network

A new client-server pair mininet_client and mininet_server is run in two vir-

tual hosts of a Mininet network that emulates the desired network conditions.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

5.3.2 Network emulation setup 27

oneway_client mininet_client mininet_server oneway_server

<buffer size, compressed buffer data>

<compression timestamp, buffer size> <receipt timestamp>test file test file copy

Step 1 Step 2 Step 3

Figure 5.1: The experimental setup. Blue denotes a program while yellow denotes a file.

The client reads comp_ts_log, and uses it to send byte buffers filled with zeros which

have the same size as the compressed buffers generated in Step 1, after waiting for the differ-

ence between two timestamps in the log comp_ts_log[i] - comp_ts_log[i-1],

which corresponds to the duration of the compression of that buffer, for each one. By doing

that, the delays between the end of one compression and the beginning of another are repro-

duced just as they happened in oneway_client, ensuring that the behavior is close to that

in the original setup, even though the task of compressing a buffer and sending it is split into

two applications.

The server reads comp_ts_log in order to know the size of the buffers it will receive.

Afterwards, each time it receives a compressed buffer, it writes the current timestamp in

another log, named recv_ts_log.

Step 3 - Receipt and decompression

The original server applicationoneway_server, which received the file fromoneway_client

and wrote it to the disk is run next. My implementation starts by noting the current time

and then reads the contents of recv_ts_log. Each time a chunk is requested by the ap-

plication, the implementation waits until the time corresponding to the next timestamp in

recv_ts_log. Then, it reads a compressed buffer from buf_log which it then decom-

presses and delivers to the application as is normally done.

Once the application closes the socket, the current time is noted, and then the difference

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

28 Chapter 5. Evaluation

close_time - init_time is computed. This is the quantity we take as the measure-

ment of the total execution time for the system. This is valid because the waiting time written

in recv_ts_log essentially contains the delays from the client-side disk reading, the com-

pression of the buffers, and the traversal through the network.

This process was run 10 times for each set of network parameter values we wanted to

test, with the final time measurements resulting from averaging the 10 measurements. The

chunk size that oneway_client uses to read the file is 10240 B.

5.4 Compression efficiency evaluation

In the following subsections, we will provide experimental results plots for various met-

rics and the corresponding explanations. All of the X-Y plots use a logarithmic x-axis with

base 2. Also, the values of each metric are the average of the measurements from 10 experi-

ments to eliminate the statistical error. We omitted Mininet in this set of experiments because

we only wanted to measure the compression algorithm’s performance.

5.4.1 Compression ratio

First, we set BUF_SIZE to 102400 and then ran the experiment for files with different

formats in order to better understand how well compression would work for each of them. As

seen in Figure 5.2, the size of most of the files is not reduced after compression or it might

even be increased (due to extra headers added by the compression algorithm). We expected

that since those files are images, videos, zip archives, or pdf documents, all of which are

already compressed.

On the other hand, most of the chunks of the text files and the executable had their size

reduced by a factor of 2 or more, so the compression was meaningful in this case. This makes

sense, as files in these formats are not already compressed and have a lot of redundant infor-

mation which can lend itself to efficient compression. This is especially apparent in the case

of the source code file, which contains text in a programming language where the syntax is

strict leading to a larger degree of redundancy, where 75% of its chunks had their size reduced

by a factor of more than 6.

So, we concluded that some commonly transmitted file formats like text files can be

compressed successfully, therefore our approach could lead to an increase in performance in

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

5.4.1 Compression ratio 29

adverse network conditions as we hypothesized.

Figure 5.2: Boxplot of the compression ratio for files of different formats.

We calculated the mean compression ratio for a given execution of the above setup by av-

eraging the compression ratios for each send_buf[sockfd] passed to compress2().

To compute the individual ratios, we just divided the uncompressed size by the compressed

size. We repeated the above process for various files and BUF_SIZE values, leading to the

plot in Figure 5.3.

As BUF_SIZE which is also the size of the compression unit increases, the compression

ratio becomes larger until some limit value (after some point the increase in redundancy is

negligible given that most files are probably homogenous in that respect). Most files reached

their final mean compression ratio by BUF_SIZE = 204800 so that is a good choice for

a default BUF_SIZE value with respect to compression efficiency.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

30 Chapter 5. Evaluation

0

1

2

3

4

5

6

7

8

9

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

M
ea

n
 b

u
ff

er
 c

o
m

p
re

ss
io

n
 ra

ti
o

BUF_SIZE (B)

bin non-fiction E.coli xls src fiction cia guide

Figure 5.3: Plot of the mean compression ratio vs BUF_SIZE for various files.

5.4.2 Compression overhead

We used the file referred to as ”enwik8” in Section 5.2 because we wanted to use a larger

file for performance testing. Also, we measured the time taken by zlib’s compress2()

and uncompress() for each buffer, using clock(). Using those values, we calculated

the total compression and decompression times (by adding them) and the mean compression

and decompression time for a single buffer (by averaging them).

We plotted the total compression time in Figure 5.4.We expected it to decrease asBUF_SIZE

increased, because fewer calls to compress2() would be made, which creates data struc-

tures for the DEFLATE algorithm each time it is called (as we found out by studying the

source code), so fewer allocations and then deallocations are performed. This does happen

until a certain point, however, afterwards the total compression time starts to increase again.

We suspected that this was due to the buffers growing too large to fit inside the cache

leading to an increased cache miss rate and decreased performance. In order to test our hy-

pothesis, we ran the client using perf and observed the values of the performance counters

relevant to cache performance. Most of them did not change with the increase in buffer size,

but we found that the value of L1-dcache-load-misses started to increase at the same

point as the total compression time, so our hypothesis was confirmed. The L1-dcache miss

rate is plotted in Figure 5.5.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

5.4.2 Compression overhead 31

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

To
ta

l c
o

m
p

re
ss

io
n

 ti
m

e
(s

ec
)

BUF_SIZE (B)

Figure 5.4: Plot of the total compression time vs BUF_SIZE.

0

2

4

6

8

10

12

14

16

18

20

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

L1
-d

ca
ch

e-
lo

ad
 m

is
s

ra
te

 (%
)

BUF_SIZE (B)

Figure 5.5: Plot of the L1-dcache miss rate (%) vs BUF_SIZE.

We have also plotted the mean compression time for a single buffer in Figure 5.6. It

increases linearly with BUF_SIZE (the curve is exponential in a lin-log graph), which was

expected as DEFLATE (which is used by zlib) is an O(N) algorithm.

The total decompression time in Figure 5.7 only decreases as BUF_SIZE increases, as

we expected. Also, the mean decompression time for a single buffer in Figure 5.8 increases

linearly with BUF_SIZE, which is normal considering that the INFLATE algorithm also has

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

32 Chapter 5. Evaluation

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

M
e

a
n

 b
u

ff
e

r
co

m
p

re
ss

io
n

 t
im

e
 (m

s)

BUF_SIZE (B)

Figure 5.6: Plot of the mean buffer compression time vs BUF_SIZE.

linear time complexity.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

To
ta

l d
ec

o
m

p
re

ss
io

n
ti

m
e

(s
ec

)

BUF_SIZE (B)

Figure 5.7: Plot of the total decompression time vs BUF_SIZE.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

5.5 CPU overhead experiment 33

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

M
ea

n
 b

u
ff

er
 d

ec
o

m
p

re
ss

io
n

ti
m

e
 (m

s)

BUF_SIZE (B)

Figure 5.8: Plot of the mean buffer decompression time vs BUF_SIZE.

5.5 CPU overhead experiment

We measured the CPU load induced by our implementation by calculating the following

quantity:

L(%) =
cputime

realtime · cores
1̇00% (5.1)

Where realtime is the real time difference between the start of the initialization and the

end of the cleanup of the library (the timestamps are computed using gettimeofday())

and cputime is the processor time difference between the same events (using clock()).

Also, cores is the number of CPU cores in the system.

We started by investigating the relationship of the CPU percentage utilized by our im-

plementation to BUF_SIZE, with the client and server communicating through the loopback

interface. We plotted the CPU load for the sending side and the receiving side in Figure 5.9.

On the sending side, the percentage is 24−25%, independent of BUF_SIZE. Our system

has 4 cores, so that is equivalent to using 96 − 100% of one of them, which is expected

since the implementation is single threaded and it spends most of the time doing CPU-bound

compression, because sending data through loopback is very fast.

The receiving side has to wait for data to arrive so its CPU utilization is lower than that

of the compression side.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

34 Chapter 5. Evaluation

0

5

10

15

20

25

30

35

40

45

50

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

C
P

U
 L

o
a

d
 (

%
)

BUF_SIZE (B)

Compression Decompression

Figure 5.9: Plot of the CPU load for the compression and decompression vs BUF_SIZE.

One could conclude that the sending-side is CPU-bound because, during its execution,

one CPU core is always utilized. However, we did not take into account the communication

delays that are present when communicating through a network. We used the experimental

setup we showed in Section 5.3 to measure the CPU utilization for both the sending and the

receiving sides in various network conditions, usingMininet’s bandwidth, latency, and packet

loss rate parameters.

As shown in Figure 5.10, the CPU is utilized by both sides to a greater extent as the

bandwidth increases. This is because if the bandwidth is small, the data is transmitted slowly

and each side spends more time waiting for IO to finish.

When the latency increases, the CPU load is decreased for both sides as shown in Figure

5.11, because they once again spend more time waiting on IO operations. That is because

TCP does not send more data if it has not yet received ACKs for the previously sent data,

and these acknowledgments will arrive after at least one RTT has passed (provided that the

packet or the acknowledgment was not lost). So if the latency is large enough, the RTT will

be also large and the ACKs will take a long time to arrive, limiting TCPs effective bandwidth.

Finally, as shown in Figure 5.12, when the packet loss rate is large, the CPU load de-

creases. If packets are lost often in the network and TCP has to re-transmit them in order for

them to reach the destination, the communication slows down and both the sender and the

receiver spend more time waiting for IO operations to complete.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

5.5 CPU overhead experiment 35

Based on all of the above, both the sending and the receiving sides of our implemen-

tation are actually IO-bound as expected for a communications library. Please note that we

performed these experiments on a CPU that is stronger than the typical edge device CPU, in

which case the CPU utilization percentage will be higher than the one we measured.

0

5

10

15

20

25

30

35

40

45

50

5 10 20 40 80 160 320 640

C
PU

 lo
ad

 (%
)

Bandwidth (Mbps)

latency = 0ms, loss = 0%

Compression Decompression

Figure 5.10: Plot of the CPU load vs bandwidth.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200

C
P

U
 lo

a
d

 (%
)

Latency (ms)

bandwidth = 1000Mbps, loss = 0%

Compression Decompression

Figure 5.11: Plot of the CPU load vs latency.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

36 Chapter 5. Evaluation

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10

C
P

U
 lo

a
d

 (%
)

Loss rate (%)

bandwidth = 1000Mbps, latency = 0ms

Compression Decompression

Figure 5.12: Plot of the CPU load vs packet loss rate.

5.6 Comparison between TCP and the library

In this section, we will compare the application execution time and effective bandwidth

when using vanilla TCP with that of our compression library for different network conditions

in order to experimentally validate our hypothesis that data compression can speed up com-

munication when those conditions are adverse. The file we used is the same as that in Section

5.4.2, the chunk size was still 10240 B, and BUF_SIZE was set 204800 B.

5.6.1 Bandwidth

We started by investigating the effect of bandwidth on performance. To do that, we set

the Mininet packet loss rate parameter to 0% and the delay parameter to 0 ms which are

ideal values, and tried various bandwidth parameter values. Then, we used the setup outlined

in Section 5.3 to produce the plots in Figures 5.13 and 5.14. The horizontal axis is in log scale

with base 2.

When the bandwidth is small, the performance is considerably better using our library

compared to TCP, as the data compression ensures that less data needs to be transmitted over

the network. As the bandwidth increases, the difference between the performance becomes

smaller and at some point, the performance of plain TCP becomes slightly better than that of

the library. That happens because the network is fast enough to support the rate at which the

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

5.6.1 Bandwidth 37

application produces and sends the data, so the library just wastes time compressing it.

0

20

40

60

80

100

120

140

160

180

5 10 20 40 80 160 320 640

M
ea

n
 t

im
e

 (s
ec

)

Bandwidth (Mbps)

latency = 0ms, loss = 0%

TCP Library

Figure 5.13: Execution time vs bandwidth comparison between TCP and the library.

4

104

204

304

404

504

604

704

804

904

1004

5 10 20 40 80 160 320 640

Ef
fe

ct
iv

e
b

an
d

w
id

th
 (M

b
p

s)

Bandwidth (Mbps)

latency = 0ms, loss = 0%

TCP Library

Figure 5.14: Effective bandwidth vs bandwidth comparison between TCP and the library.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

38 Chapter 5. Evaluation

5.6.2 Latency

To investigate the effect of latency, we set the packet loss rate parameter to 0% and the

bandwidth parameter to 1000Mbps, and performed a parameter scan on the delay parameter.

The resulting plots are shown in Figures 5.15 and 5.16.

Initially, the latency is small and plain TCP performs better than the library. As it in-

creases, the difference between them gets smaller and when the latency is large their positions

are reversed.

Both our implementation and plain TCP face the issue discussed in Section 5.5, however

in the case of our library, because the data is compressed and the same number of TCP seg-

ments contains more of it, the effective bandwidth is higher. However, compression is not

worth it when the latency is not very high because the data (and the corresponding ACKs)

would reach their destinations very quickly anyway, so time is wasted performing it.

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180 200

M
ea

n
 t

im
e

 (s
ec

)

Latency (ms)

bandwidth = 1000Mbps, loss = 0%

TCP Library

Figure 5.15: Execution time vs latency comparison between TCP and the library.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

5.6.3 Packet loss rate 39

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

Ef
fe

ct
iv

e
b

a
n

d
w

id
th

 (M
b

p
s)

Latency (ms)

bandwidth = 1000Mbps, loss = 0%

TCP Library

Figure 5.16: Effective bandwidth vs latency comparison between TCP and the library.

5.6.3 Packet loss rate

To investigate the effect of the packet loss rate, we set the bandwidth parameter to 1000

Mbps and the delay parameter to 0 ms and performed a parameter scan. The resulting plots

are shown in Figures 5.17 and 5.18.

When the loss rate is small, plain TCP performs slightly better than the library, but with

larger loss rates the library performs considerably better compared to TCP. With data com-

pression, fewer data have to be sent so fewer TCP segments are created and transmitted. If

fewer packets are transmitted, the probability of some of them being lost and having to be

re-transmitted is smaller. So, when using the library fewer packets are lost and less time is

wasted on re-transmissions compared to using plain TCP. As with the other parameters, when

the loss rate is small, very few packets will be lost so the data compression just wastes time.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

40 Chapter 5. Evaluation

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10

M
e

a
n

 t
im

e
 (s

e
c)

Loss rate (%)

bandwidth = 1000Mbps, latency = 0ms

TCP Library

Figure 5.17: Execution time vs packet loss rate(%) between TCP and the library.

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10

Ef
fe

ct
iv

e
b

an
d

w
id

th
 (M

b
p

s)

Loss rate (%)

bandwidth = 1000Mbps, latency = 0ms

TCP Library

Figure 5.18: Effective bandwidth vs packet loss rate(%) comparison between TCP and the

library.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

5.6.4 Realistic conditions 41

5.6.4 Realistic conditions

We modeled four popular network technologies, using the three parameters we investi-

gated above, with bandwidth getting split into upload speed and download speed because

those are not equal in some of them, in Mininet and we ran the experiment for each one of

them, resulting in Figures 5.19 and 5.20. The parameter combinations we used are shown in

Table 5.3. So while using our library in fast networks is not practical or necessary, it provides

a worthwhile performance improvement compared to plain TCP in networks with adverse

conditions.

Name Latency (ms) Download speed (Mbps) Upload speed (Mbps) Loss rate (%)

Gbps Ethernet 0.1 1000 1000 0

WiFi 10 40 40 1

4G 25 20 6 0

5G [18] 13 300 64 0

Table 5.3: The sets of Mininet parameters we used to model popular network technologies.

0

20

40

60

80

100

120

140

160

Gbps Eth WiFi 4G 5G

M
e

a
n

 t
im

e
 (s

e
c)

TCP Library

Figure 5.19: Execution time comparison for various network technologies.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

42 Chapter 5. Evaluation

0

100

200

300

400

500

600

700

800

900

1000

Gbps Eth WiFi 4G 5G

Ef
fe

ct
iv

e
b

a
n

d
w

id
th

 (M
b

p
s)

TCP Library

Figure 5.20: Effective bandwidth comparison for various network technologies.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Chapter 6

Related work

In this chapter, we discuss other attempts to use data compression in order to increase

performance in low-bandwidth networks. Some of them run in the application layer just like

ours, whereas others run in different layers of the network stack.

6.1 Application layer solutions

Jeannot [19] developed a user-level communication library using lossless data compres-

sion. This library is not transparent to applications (unlike ours), but it uses threading for

concurrent compression and sending of data and can change the compression level based on

how fast the network is, using the AdOC algorithm. Also, they implemented a compression

decision mechanism, which decides whether a block of application data is to be compressed

or not, based on the compression efficiency for the previous blocks.

Krintz, C. and Sucu, S. [20] designed and implemented ACE, a system that intercepts

TCP socket calls and uses system and network predictions from the NetworkWeather Service

to determine whether to compress or not, and which algorithm to use. ACE uses a 32KB

block size because they concluded it exhibited the best trade-off across file types and metrics,

compared to our BUF_SIZE = 204800 B which we selected based on compression ratio

only.

Gutwin, C. at al. [21] designed a system for use with groupware, which compresses

groupware messages using the redundancy between messages, by automatically detecting the

message formats used by the groupware, and the redundancy within each message similarly

to how we compress each buffer.

43
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

44 Chapter 6. Related work

HTTP [22] includes the option to specify that the payload is compressed using compres-

sion algorithms such as gzip, in order to reduce the bandwidth needed to fetch the resources.

FTP [23] features a compression mode, where run-length encoding is used to compress se-

quences consisting of repeated characters.

6.2 Solutions in other layers

Min Wang et al. [24] proposed TCPComp, a data compression scheme in the transport

layer (whereas our implementation resides in the application layer). Their compression unit

size is not fixed, compared to our implementation where it is BUF_SIZE, but computed

according to a compression ratio estimate and the TCP maximum segment size (MSS).

Moo-Yeol Lee et al. [25] also suggested a kernel-level TCP data compression scheme

while focusing on mobile devices communicating over WiFi. They implemented and evalu-

ated both using MSS as the compression unit and using every application message as a sep-

arate compression unit, with the second approach performing better. In our implementation,

we compress BUF_SIZE B of application data and pass it to TCP.

V. Jacobson [26] proposed a method for compressing TCP/IP headers, to improve perfor-

mance when the bandwidth is low, by omitting header fields that are constant during a TCP

session. A. Shacham et al. [27] proposed IPComp, a protocol that uses data compression on

the IP datagram payload.

In the data link layer, CCP [28] is a method to negotiate data compression for commu-

nication over a PPP link. Cisco [29] internetworking devices use lossless data compression

algorithms to reduce the bandwidth needed to transmit a frame, and speed-up communica-

tions in the same way as our implementation.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Chapter 7

Conclusion

In this Thesis, we focused onmitigating the performance degradation caused by low band-

width links in the network edge by reducing the amount of transmitted data. To that end, we

designed and implemented a library that performs lossless data compression over TCP. Af-

terwards, we validated the correctness of our library and evaluated its performance using a

testing platform we developed over Mininet’s network emulation.

By comparing the performance of our library with that of plain TCP in various network

conditions, we conclude that our library is worth using over plain TCP when the bandwidth is

low, confirming our initial hypothesis. We also observe that our library is preferable to plain

TCP when the packet loss rate is high.

Finally, by measuring the library’s CPU utilization in different network conditions, we

observe that in low bandwidth or high packet loss rate networks, the CPU utilization de-

creases considerably. From this result, we conclude that while the CPU-bandwidth trade-off

for compression exists, considering that our library is intended for low-bandwidth networks,

the CPU load is low and compression can be a viable strategy. Further experiments need to

be performed in order to determine whether compression could be used in the edge devices,

which have weaker CPUs than the one we used.

45
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

Bibliography

[1] David Gibson and Ben Popper. Pandemic lockdowns accelerated cloud migration

by three to four years. https://stackoverflow.blog/2021/09/02/

pandemic-lockdowns-accelerated-cloud-migration-by-three-

to-four-years/. Retrieved March 21, 2022.

[2] Gartner forecasts worldwide public cloud end-user spending to reach nearly $600 billion

in 2023. https://www.gartner.com/en/newsroom/press-releases/

2022-10-31-gartner-forecasts-worldwide-public-cloud-end-

user-spending-to-reach-nearly-600-billion-in-2023. Retrieved

February 22, 2022.

[3] Peshraw Ahmed Abdalla and Asaf Varol. Advantages to disadvantages of cloud com-

puting for small-sized business. In 2019 7th International Symposium on Digital Foren-

sics and Security (ISDFS), pages 1–6, 2019.

[4] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[5] Rachel Azafrani, John Barett, and Hanane et al. Becha. The internet of things: Appli-

cations for business. Technical report, The Economist Intelligence Unit, 2020.

[6] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies. The case

for vm-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4):14–23,

2009.

[7] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. Edge

computing for autonomous driving: Opportunities and challenges. Proceedings of the

IEEE, 107(8):1697–1716, 2019.

47
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

https://stackoverflow.blog/2021/09/02/pandemic-lockdowns-accelerated-cloud-migration-by-three-to-four-years/
https://stackoverflow.blog/2021/09/02/pandemic-lockdowns-accelerated-cloud-migration-by-three-to-four-years/
https://stackoverflow.blog/2021/09/02/pandemic-lockdowns-accelerated-cloud-migration-by-three-to-four-years/
https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023

48 Bibliography

[8] Khalid Sayood. 1 - introduction. In Khalid Sayood, editor, Introduction to Data Com-

pression (Third Edition), The Morgan Kaufmann Series in Multimedia Information and

Systems, pages 1–11. Morgan Kaufmann, Burlington, third edition edition, 2006.

[9] David A. Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, 1952.

[10] Khalid Sayood. 4 - arithmetic coding. In Khalid Sayood, editor, Introduction to Data

Compression (Third Edition), TheMorgan Kaufmann Series inMultimedia Information

and Systems, pages 81–115. Morgan Kaufmann, Burlington, third edition edition, 2006.

[11] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337–343, 1977.

[12] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.

IEEE Transactions on Information Theory, 24(5):530–536, 1978.

[13] N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transform. IEEE Transactions

on Computers, C-23(1):90–93, 1974.

[14] P. Deutsch. Deflate compressed data format specification version 1.3. https://

www.rfc-editor.org/info/rfc1951, 1996.

[15] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid proto-

typing for software-defined networks. page 19, 10 2010.

[16] Mininet python api reference manual. http://mininet.org/api/. Retrieved

February 20, 2022.

[17] The canterbury corpus. https://corpus.canterbury.ac.nz/index.

html. Retrieved February 22, 2022.

[18] Therdpong Daengsi, Pana Ungkap, and Pongpisit Wuttidittachotti. A study of 5g net-

work performance: A pilot field trial at the main skytrain stations in bangkok. In 2021

International Conference on Artificial Intelligence and Computer Science Technology

(ICAICST), pages 191–195, 2021.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc1951
http://mininet.org/api/
https://corpus.canterbury.ac.nz/index.html
https://corpus.canterbury.ac.nz/index.html

Bibliography 49

[19] E. Jeannot. Improving middleware performance with adoc: an adaptive online com-

pression library for data transfer. In 19th IEEE International Parallel and Distributed

Processing Symposium, pages 10 pp.–, 2005.

[20] C. Krintz and S. Sucu. Adaptive on-the-fly compression. IEEE Transactions on Parallel

and Distributed Systems, 17(1):15–24, 2006.

[21] Carl Gutwin, Christopher Fedak,MarkWatson, Jeff Dyck, and TimothyBell. Improving

network efficiency in real-time groupware with general message compression. pages

119–128, 11 2006.

[22] J. Mogul et al. R. Fielding, J. Gettys. Hypertext transfer protocol – http/1.1. https:

//www.ietf.org/rfc/rfc2616.txt, 1999.

[23] J. Reynolds J. Postel. File transfer protocol (ftp). https://www.ietf.org/rfc/

rfc0959.txt, 1985.

[24] MinWang, JunfengWang, XuanMou, and SunyoungHan. On-the-fly data compression

for efficient tcp transmission. KSII Transactions on Internet and Information Systems,

7(3):471–489, March 2013.

[25] Moo-Yeol Lee, Hyun-Wook Jin, Ikhwan Kim, and Taehyoun Kim. Improving tcp good-

put over wireless networks using kernel-level data compression. In 2009 Proceedings

of 18th International Conference on Computer Communications and Networks, pages

1–6, 2009.

[26] V. Jacobson. Compressing tcp/ip headers for low-speed serial links. https://www.

rfc-editor.org/rfc/rfc1144, 1990.

[27] R. Pereira M. Thomas A. Shacham, R. Monsour. Ip payload compression protocol

(ipcomp). https://www.rfc-editor.org/rfc/rfc3173, 2001.

[28] D. Rand. The ppp compression control protocol (ccp). https://datatracker.

ietf.org/doc/html/rfc1962, 1996.

[29] Understanding data compression. https://www.cisco.com/c/en/

us/support/docs/wan/data-compression/14156-compress-

overview.html. Retrieved March 20, 2022.

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc0959.txt
https://www.ietf.org/rfc/rfc0959.txt
https://www.rfc-editor.org/rfc/rfc1144
https://www.rfc-editor.org/rfc/rfc1144
https://www.rfc-editor.org/rfc/rfc3173
https://datatracker.ietf.org/doc/html/rfc1962
https://datatracker.ietf.org/doc/html/rfc1962
https://www.cisco.com/c/en/us/support/docs/wan/data-compression/14156-compress-overview.html
https://www.cisco.com/c/en/us/support/docs/wan/data-compression/14156-compress-overview.html
https://www.cisco.com/c/en/us/support/docs/wan/data-compression/14156-compress-overview.html

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

APPENDICES

51
Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

52 Bibliography

A.1 Code snippets

A.1.1 Send implementation

In the following simplified version of my send function, we have abstracted the above

functionality into a compress_and_send(buf, len) function, so as to highlight the

buffering logic.

ssize_t send(int sockfd, const void *buf, size_t len, int flags) {

size_t rem_len = len;

if (len + send_len[sockfd] < BUF_SIZE) {

memcpy(send_buf[sockfd] + send_len[sockfd], buf, len);

send_len[sockfd] += len;

rem_len = 0;

}

else if (send_len[sockfd] > 0) {

memcpy(send_buf[sockfd] + send_len[sockfd], buf, BUF_SIZE - send_len[sockfd]);

compress_and_send(send_buf[sockfd], BUF_SIZE);

rem_len = rem_len - BUF_SIZE + send_len[sockfd];

send_len[sockfd] = 0;

}

while (rem_len >= BUF_SIZE) {

compress_and_send(buf + len - rem_len, BUF_SIZE);

rem_len -= BUF_SIZE;

}

if (rem_len > 0) {

memcpy(send_buf[sockfd], buf + len - rem_len, rem_len);

send_len[sockfd] = rem_len;

}

return len;

}

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

A.1.2 Recv implementation 53

A.1.2 Recv implementation

In the following simplified version of my recv function, we have abstracted the receiving

fromTCP and decompression functionality into areceive_and_decompress(buf, &len)

function, so as to highlight the buffering logic. Also, we have omitted the error and EOF han-

dling to simplify the presentation.

ssize_t recv(int sockfd, void *buf, size_t len, int flags) {

uLong decomp_len;

size_t total_recv = 0;

if (len < recv_len[sockfd] - recv_pos[sockfd]) {

memcpy(buf, recv_buf[sockfd] + recv_pos[sockfd], len);

recv_pos[sockfd] += len;

total_recv = len;

}

else {

if (recv_len[sockfd] - recv_pos[sockfd] > 0) {

memcpy(buf, recv_buf[sockfd] + recv_pos[sockfd], recv_len[sockfd] - recv_pos[sockfd]);

total_recv += recv_len[sockfd] - recv_pos[sockfd];

recv_pos[sockfd] = recv_len[sockfd] = 0;

}

_flush(sockfd);

}

while (len - total_recv >= BUF_SIZE) {

receive_and_decompress(buf + total_recv, &decomp_len);

total_recv += decomp_len;

}

if (total_recv == len) {

return total_recv;

}

receive_and_decompress(recv_buf[sockfd], &recv_len[sockfd]);

if (len - total_recv < recv_len[sockfd]) {

memcpy(buf + total_recv, recv_buf[sockfd], len - total_recv);

recv_pos[sockfd] = len - total_recv;

total_recv = len;

}

else {

memcpy(buf + total_recv, recv_buf[sockfd], recv_len[sockfd]);

total_recv += recv_len[sockfd];

recv_len[sockfd] = 0;

}

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

54 Bibliography

return total_recv;

}

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:18:24 EEST - 18.119.213.204

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Introduction
	Motivation
	Contribution
	Structure

	Background
	Terminology
	Data compression
	Compression ratio
	Library
	Dynamic library interception
	Bandwidth
	Effective bandwidth
	Latency
	Acknowledgment
	Round-trip time
	Packet loss rate

	zlib
	Mininet

	Design
	Placement in the network stack
	Architecture
	Sending side
	Receiving side

	Implementation
	Dynamic Library Interception
	Compression Method
	Data Structures
	Initialization
	Sending side
	Receiving side
	Receiving compressed data from TCP
	Flushing
	Buffering logic

	Cleanup

	Evaluation
	System specifications
	Benchmarks
	Experimental setup
	Basic setup
	Network emulation setup

	Compression efficiency evaluation
	Compression ratio
	Compression overhead

	CPU overhead experiment
	Comparison between TCP and the library
	Bandwidth
	Latency
	Packet loss rate
	Realistic conditions

	Related work
	Application layer solutions
	Solutions in other layers

	Conclusion
	Bibliography
	APPENDICES
	Code snippets
	Send implementation
	Recv implementation

