
 UNIVERSITY OF THESSALY

 DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

 MSC IN SCIENCE AND TECHNOLOGY OF ELECTRICAL AND COMPUTER ENGINEERING

 Master Thesis

 Implementation and Optimization of Real-Time Networking
 Frameworks for Containerized Remote Access Applications

 Dallas Dimitrios

 Supervising Professor:
 Korakis Athanasios

 Volos, Greece, 2023

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 ii

 UNIVERSITY OF THESSALY

 DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

 MSC IN SCIENCE AND TECHNOLOGY OF ELECTRICAL AND COMPUTER ENGINEERING

 Master Thesis

 Implementation and Optimization of Real-Time Networking
 Frameworks for Containerized Remote Access Applications

 Dallas Dimitrios

 Supervising Professor:
 Korakis Athanasios

 Volos, Greece, 2023

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 iii

 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

 Π.Μ.Σ. ΕΠΙΣΤΗΜΗ & ΤΕΧΝΟΛΟΓΙΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

 Μεταπτυχιακή Εργασία

 Υλοποίηση και Βελτιστοποίηση Δικτυακών Πλαισίων
 Πραγματικού Χρόνου για Εφαρμογές Απομακρυσμένης

 Πρόσβασης σε Απομονωμένα Περιβάλλοντα

 Δάλλας Δημήτριος

 Επιβλέπων Καθηγητής:
 Κοράκης Αθανάσιος

 Βόλος, Ελλάδα, 2023

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 iv

 Approved by the Examination Committee:

 Supervisor: Korakis Athanasios

 Professor, Department of Electrical and Computer Engineering

 University of Thessaly

 Member: Bargiotas Dimitrios

 Professor, Department of Electrical and Computer Engineering

 University of Thessaly

 Member: Antonios Argyriou

 Associate professor, Department of Electrical and Computer Engineering

 University of Thessaly

 Date of approval: 28/06/2023

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 v

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 vi

 ACKNOWLEDGEMENTS

 First and foremost I would like to thank my family. I am truly grateful to my parents for

 being role figures in my childhood and for supporting me in my early adulthood. I am

 sure I can rely on them in times of need. My sister was a great part of my life from when

 I can remember myself and I am truly thankful for her standing by me all this time. I also

 would like to show my appreciation and love to my dear life partner for comforting me on

 bad days and making me smile on all of them.

 In regards to my academic career and the completion of my academic studies, I want to

 express my deepest gratitude to professor Korakis Athanasios. His contribution and

 guidance to this project but more importantly to my development has been crucial since

 my undergraduate studies, and for that he has frankly my respect and appreciation.

 Finally, I would like to thank all my fellow friends, colleagues and coworkers at the

 NITLab research facility for providing a friendly and more than pleasant working

 environment during the past years. Special thanks to Konstantinos Chounos,

 postdoctoral researcher at NITLab, for his most valuable contribution and assistance on

 the current master thesis.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 vii

 DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL

 PROPERTY RIGHTS

 Being fully aware of the implications of copyright laws, I expressly state that this MSc

 thesis, as well as the electronic files and source codes developed or modified in the

 course of this thesis, are solely the product of my personal work and do not infringe any

 rights of 8 intellectual property, personality and personal data of third parties, do not

 contain work / contributions of third parties for which the permission of the authors /

 beneficiaries is required and are not a product of partial or complete plagiarism, while

 the sources used are limited to the bibliographic references only and meet the rules of

 scientific citing. The points where I have used ideas, text, files and / or sources of other

 authors are clearly mentioned in the text with the appropriate citation and the relevant

 complete reference is included in the bibliographic references section. I also declare

 that the results of the work have not been used to obtain another degree. I fully,

 individually and personally undertake all legal and administrative consequences that

 may arise in the event that it is proven, in the course of time, that this thesis or part of it

 does not belong to me because it is a product of plagiarism.

 The Declarant

 Dimitrios Dallas

 05/07/2023

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 viii

 ABSTRACT

 The current thesis proposes an implementation and network-aware optimization for

 real-time frameworks providing remote access to containerized applications. Initially it

 presents a transition of a given remote educational toolkit framework from a monolithic

 architecture to a Kubernetes cluster architecture consisting of multiple basic

 microservices. Its core functionality is serving a great variety of GUI based experiments

 on demand of the user while utilizing Kubernetes Jobs dynamic creation and

 termination. Implementing a cluster on a testbed infrastructure required some

 adjustments to the Kubernetes components compared to a regular cloud based

 infrastructure, like the use of Ingress controllers and Reverse Proxy Servers. Towards

 achieving optimal Quality of Service for the user on the GUI application streaming, a

 network-aware extension for the native Kubernetes scheduling mechanism was

 implemented. Network conditions of each worker node are altered to emulate real

 network heterogeneity of cloud environments. The scoring algorithm takes into account

 the Round Trip Time of the link between every worker and a given user device.

 Evaluating the proposed framework, video streaming metrics are monitored on the

 microservices, examining scenarios for both native and extended scheduling. The

 results promise a 25.4% increase to the average Frames per Second and a 37.3%

 increase to average Encoding Quality for an network heterogeneous cluster of nodes.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 ix

 ΠΕΡΙΛΗΨΗ

 Η παρούσα μεταπτυχιακή διατριβή προτείνει την υλοποίηση ενός δικτυακού πλαισίου

 και την βελτιστοποίηση του βάσει δικτυακής επίγνωσης για την απομακρυσμένη

 προσπέλαση απομονωμένων εφαρμογών πραγματικού χρόνου. Αρχικά παρουσιάζει

 την διαδικασία μετατροπής ενός υπάρχοντος απομακρυσμένου διαδικαστικού πλαισίου

 εργαλείων, από μονολιθική αρχιτεκτονική συστήματος σε ένα σύστημα συμπλέγματος

 κατανεμημένης αρχιτεκτονικής πολλαπλών μικροϋπηρεσιών. Η κύρια λειτουργία του

 είναι η εξυπηρέτηση μιας μεγάλης ποικιλίας εικονικών πειραμάτων γραφικού

 περιβάλλοντος κατόπιν αιτήματος του χρήστη. Οι εφαρμογές αυτές δημιουργούνται και

 τερματίζονται δυναμικά μέσω την χρήσης Jobs του Kubernetes. Η υλοποίηση του

 συμπλέγματος σε μια ερευνητική υποδομή απαιτούσε αρκετές προσαρμογές στα δομικά

 του στοιχεία συγκριτικά με μια τυπική υποδομή νέφους, όπως η χρήση Ελεγκτών

 Εισόδου και Εξυπηρετητές Αντίστροφης Μεσολάβησης. Με στόχο την επίτευξη της

 βέλτιστης Ποιότητας Εξυπηρέτησης για τον χρήστη στην εφαρμογή γραφικού

 περιβάλλοντος, υλοποιήθηκε μία επέκταση δικτυακής επίγνωσης για τον εγγενή

 μηχανισμό δρομολόγησης του Kubernetes. Προκειμένου να μιμούνται την ανομοιογένεια

 των πραγματικών δικτύων στα περιβάλλοντα νέφους, οι συνθήκες δικτύου σε κάθε

 κόμβο εργάτη αλλοιώνονται εξ επίτηδες. Ο αλγόριθμος βαθμολόγησης της εκτεταμένης

 δρομολόγησης λαμβάνει υπ’ όψιν του τον χρόνο μετ’ επιστροφής του συνδέσμου που

 μοιράζονται ένας εργάτης και ένας χρήστης. Για την τελική αξιολόγηση του

 προτεινόμενου πλαισίου, εξετάζονται σενάρια τόσο για τον εγγενή μηχανισμό

 δρομολόγησης όσο και για τον επεκταμένο, στα οποία παρακολουθούνται κάποιες

 μετρήσεις σχετικές με ροή βίντεο στις μικροϋπηρεσίες. Τα πειραματικά αποτελέσματα

 υπόσχονται μια αύξηση 25.4% για τον μέσο όρο των καρέ ανά δευτερόλεπτο και μία

 αύξηση 37.3% για την μέση ποιότητα κωδικοποίησης για ένα σύμπλεγμα κόμβων με

 δικτυακή ανομοιογένεια.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 x

 TABLE OF CONTENTS

 ACKNOWLEDGEMENTS .. vi
 DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS . vii
 ABSTRACT ... viii
 ΠΕΡΙΛΗΨΗ .. ix
 TABLE OF CONTENTS .. x
 LIST OF FIGURES .. xi
 LIST OF TABLES ... xii
 LIST OF ABBREVIATIONS ... xiii
 CHAPTER 1: INTRODUCTION .. 1

 1.1: Background .. 1
 1.2: Problem Statement ... 1
 1.3: Objectives and Scope .. 2
 1.4: Related Work .. 3
 1.5: Structure of the Thesis ... 3

 CHAPTER 2: METHODOLOGY ... 5
 2.1: Overview .. 5
 2.2: Remote Educational Toolkit Framework ... 5

 2.2.1: Graphical User Interface (GUI) Applications .. 5
 2.2.2: X Persistent Remote Applications (Xpra) ... 6
 2.2.3: Docker Environment .. 9
 2.2.4: Web Servers ... 11

 2.3: Kubernetes ... 12
 2.3.1: Pods ... 12
 2.3.2: Workload Resources .. 13
 2.3.3: Networking ... 15
 2.3.4: Kubernetes System Architecture ... 16

 2.4: Networking tools ... 17
 2.4.1: Reverse Proxy Server .. 17
 2.4.2: Traffic Control ... 18
 2.4.3: Ping Round Trip Time .. 18

 CHAPTER 3: PROPOSED FRAMEWORK .. 20
 3.1: Overview .. 20
 3.2: Infrastructure and Development tools .. 20
 3.3: Initial approach ... 21

 3.3.1: Containerizing Existing System ... 21
 3.3.2: Cluster-local implementation .. 23

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 x

 3.4: LAN architecture ... 28
 3.4.1: Ingress Controller ... 29
 3.4.2: Reverse-Proxy Service .. 29

 3.5: Latency-Aware Scheduler Extension .. 31
 3.5.1: Native Scheduling Workflow .. 32
 3.5.2: Latency Measurement ... 33
 3.5.3: IP Acquiring .. 34
 3.5.4: Scheduler Extender Server .. 34

 CHAPTER 4: EVALUATION .. 38
 4.1: Overview .. 38
 4.2: Evaluation Setup .. 38

 4.2.1: Metrics and Tools ... 38
 4.2.2: Setup Architecture ... 39
 4.2.3: Scenarios Description .. 40

 4.3: Experiment Results .. 42
 4.3.1: Native Scheduling .. 42
 4.3.2: Low Scoring Extended Scheduling .. 44
 4.3.3: Medium Scoring Extended Scheduling .. 45
 4.3.4: High Scoring Extended Scheduling ... 47
 4.3.5: Evaluation Results ... 48

 CHAPTER 5: CONCLUSION ... 49
 5.1: Outputs and Contribution ... 49
 5.2: Future Work .. 49

 References .. 50

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 xi

 LIST OF FIGURES

 Figure 2.1: Xpra HTML5 Client with GNU Radio Companion virtual experiment 9
 Figure 2.2: Kubernetes Deployment and Jobs Workload resources 14
 Figure 2.3: Kubernetes Deployment and DaemonSet Workload resources 14
 Figure 2.4: Service agnostic communication with Client outside of Cluster 16
 Figure 2.5: Kubernetes Cluster components of Master and Worker nodes 17
 Figure 2.6: Reverse Proxy Server traffic forwarding to different servers and clients 18
 Figure 3.1: Existing system architecture and example ... 22
 Figure 3.2: Transitioning to containerized system architecture 23
 Figure 3.3: Distributed Architecture for client inside the Cluster 27
 Figure 3.4: Proposed Architecture for Users outside the Cluster 31
 Figure 3.5: Kubernetes Scheduling workflow ... 32
 Figure 3.6: Scoring formula for an individual worker node ... 36
 Figure 3.7: Latency-Aware Scheduling over LAN architecture 37
 Figure 4.1: Evaluation phase setups architecture ... 40
 Figure 4.2: Xpra instances distribution on Extender Scheduling scenarios 42
 Figure 4.3: FPS vs Time for Native Scheduling scenario ... 43
 Figure 4.4: Quality vs Time for Native Scheduling scenario ... 43
 Figure 4.5: FPS vs Time for Low Scale Extended Scheduling scenario 44
 Figure 4.6: Quality vs Time for Low Scale Extended Scheduling scenario 44
 Figure 4.7: FPS vs Time for Medium Scale Extended Scheduling scenario 45
 Figure 4.8: Quality vs Time for Medium Scale Extended Scheduling scenario 46
 Figure 4.9: FPS vs Time for High Scale Extended Scheduling scenario 47
 Figure 4.10: Quality vs Time for High Scale Extended Scheduling scenario 47

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 xii

 LIST OF TABLES

 Table 1.1: Overall System outputs for Native and Extended Scheduling 50
 Table 1.2: Extended Scheduling evaluation of the Proposed Framework 50

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 xiii

 LIST OF ABBREVIATIONS

 GUI Graphical User Interface

 CPU Central Processing Unit

 GPU Graphics Processing Unit

 RET Remote Educational Toolkit

 LAN Local Area Network

 XPRA X Persistent Remote Applications

 RTT Round Trip Time

 STEM Science Technology Engineering Math

 K12 Kindergarten to 12th grade

 GRC GNU Radio Companion

 OVTR Open Visual Traceroute

 SDR Software Defined Radios

 IP Internet Protocol

 3D Three Dimensional

 PNG Portable Network Graphics

 RGB Red Green Blue

 HTML HyperText Markup Language

 WSGI Web Server Gateway Interface

 API Application Programming Interface

 HTTP Hypertext Transfer Protocol

 HTTPS Hypertext Transfer Protocol Secure

 ID Identification

 CNI Container Network Interface

 SSL Secure Sockets Layer

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 xiii

 JSON JavaScript Object Notation

 REST Representational State Transfer

 NITOS Network Implementation Testbed using
 Open Source platforms

 PC Personal Computer

 WSL Windows Subsystem for Linux

 RF Radio Frequency

 ICMP Internet Control Message Protocol

 DHCP Dynamic Host Configuration Protocol

 RAM Random Access Memory

 LTS Long Term Support

 UUID Universally Unique IDentifier

 DNS Domain Name System

 RPS Remote Proxy Server

 URL Uniform Resource Locator

 FPS Frames per Second

 MiB Mebibytes

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 1

 CHAPTER 1: INTRODUCTION

 1.1: Background

 Cloud based infrastructures are the go-to solution for more and more applications and

 services nowadays. Software development is peaking day by day with the revolution

 which distributed computing has brought. Containerization of applications with

 frameworks like Docker, with platforms like Kubernetes for container orchestration,

 really paved the way for virtualization techniques on distributed environments. More

 commonly though they are utilized for microservices rather than complete GUI

 applications. Those are traditionally expected to run as desktop applications due to

 demanding resource utilization. Running them on cloud means CPU and GPU intensive

 tasks move from the client side to the services, but the visual components must still be

 available to the users. Utilities for remote desktop sharing and remote desktop access

 can and do provide an agile solution for serving applications otherwise non-distributable

 or not yet developed for cloud usage.

 1.2: Problem Statement

 One of the many advantages which cloud applications provide is the freedom to access

 them from everywhere. Transitioning a framework from a monolithic to a distributed

 architecture adds another level of fault tolerance to the system and also enables scaling

 it up. Combined resources are able to serve more clients according to their demands.

 Kubernetes, like many other orchestration tools, manage near optimally physical

 computing resources and energy efficiency when scheduling new microservices to the

 available distributed hosts.

 Regarding network conditions awareness, the default scheduling of Kubrenetes has

 some inefficiencies, even though there are clearly defined and usable mechanisms to

 manage and optimize in-cluster network links and traffic routing. Dealing with network

 heavy tasks like video streaming, may cause users to experience degradations on the

 quality of the video and latency issues. In the case of remote controlling GUI-based

 applications, the problem is magnified considering the inseparable requirement of

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 2

 interactiveness and responsiveness for user actions and the full-duplex nature of

 client-server communication. The current study contributes a step towards addressing

 such a problem, proposing a framework for distributed remote control of GUI-based

 applications and enhancing it with a latency-aware scheduling extension for Kubernetes

 for improved streaming quality and framerate.

 1.3: Objectives and Scope

 Several challenges are presented with this task, starting with the transition of an existing

 monolithic architecture framework to a distributed scheme. Proper container

 configuration needs to be addressed while also redefining system-level interactions of

 the user. The Remote Educational Toolkit (RET) framework discussed, already handles

 the initialization and termination of individual and short-term GUI-based experiments on

 user demand. Developing a framework for the distributed system to seamlessly provide

 the same functionality is clearly an objective of this work.

 In the phase of implementation of such a framework, it is important identifying and

 overcoming any challenge arising relevant to testbed infrastructure, cluster coordination,

 inter-container communication and application configurations. A testbed environment

 can benefit research and development of a system like this as much as it can introduce

 drawbacks which need to be overcome.

 After completing the system for in-cluster testing and Local Area Network (LAN) usage,

 designing a latency-aware extension for the native Kubernetes scheduling mechanism

 is the final objective of this thesis. An approach effective for a remote control utility like

 Xpra but not quite tailored to it, targets to make optimal use of the network conditions

 between each client and any available worker node and finally validate the proposed

 framework. The scope of this work focuses widely on video streaming applications

 served from cloud computing but more precisely GUI-based applications in cooperation

 with remote control utilities.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 3

 1.4: Related Work

 Summarize three articles

 In “Towards Network-Aware Resource Provisioning in Kubernetes for Fog Computing

 Applications”, Santos J. et al, present the inefficiencies of an orchestration tool to

 manage resources in regard to network conditions of the devices and the network

 requirements of the resources. In their proposed framework, given a cluster of fifteen

 nodes and one master, the cluster is divided in several zones of nodes, and every node

 of each zone has a predefined RTT label. Their Network-Aware Scheduler (NAS) use

 those labels to schedule pods based on their application’s need and even use a

 bandwidth requirement label to help with the scoring. Their test results are validated

 with the implementation of a Random Scheduler as the base scenario and then their

 NAS framework evaluation promises some improvements on the network efficiency.

 In “Network-Aware Container Placement in Cloud-Edge Kubernetes Clusters”,

 Marchese A. and Tomarchio O. address the limitations of the default Kubernetes

 scheduler in the context of Cloud-Edge environments. The authors propose an

 improvement of the default Kubernetes scheduler to make its placement decisions

 aware of the run-time cluster network conditions and the communication interactions

 between microservices. They also propose a custom de-scheduler that periodically

 monitors run-time network state and traffic exchanged between microservices and

 evicts running Pods if they can be rescheduled onto more suitable nodes.

 These papers provide valuable insights into the capabilities and potential of Kubernetes

 as a container orchestration system, its role in future platform development, and the

 need for network-aware scheduling in Cloud-Edge environments.

 1.5: Structure of the Thesis

 This master thesis consists of 5 chapters. After the current Chapter 1, a complete

 technical background and methodology follows in Chapter 2, discussing the selected

 tools and techniques to approach the problem. Chapter 3 analyzes in detail the specifics

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 4

 of the proposed framework, the challenges revealed during implementation and the

 solutions towards the objectives. Evaluation of the proposed framework is presented

 thoroughly in Chapter 4, discussing the implications of derived results, while also adding

 some extra info on the implementation of the metrics monitoring system. Finally, the

 thesis is completed with Chapter 5, which concludes the scope of the design and

 evaluation of the system and discusses future directions for further research.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 5

 CHAPTER 2: METHODOLOGY

 2.1: Overview

 In this chapter, a great variety of many different tools and technologies are outlined; all

 necessary for the research procedure of this thesis to be carried out. The objective was

 to examine existing core methods and mechanics currently in use on the RET in order

 to establish a solid foundation for the distributed cluster implementation. Past the

 developing tools of the proposed framework, the methodology chapter partially focuses

 on complementary tools and technologies dedicated to evaluate its performance

 characteristics.

 2.2: Remote Educational Toolkit Framework

 The Remote Education Toolkit Framework is an experimental education toolkit platform

 which allows K12 students to learn basic as well as advanced STEM concepts through

 running experiments on a remote Virtual Machine. The toolkit provides a curriculum that

 consists of Mathematics (Algebra and Geometry), Science (Physics and Life Science),

 and Computer Science (Signals and Networks), each offering a variety of lesson plans,

 in accordance to the different grades of the students that could access it. The three

 disciplines blend into an educational package supporting interactive virtual lab

 experiments through the use of a conventional computer and a Web Browser.

 2.2.1: Graphical User Interface (GUI) Applications

 The virtual lab experiments offer the users of the RET the opportunity to practically

 apply and test the knowledge of their corresponding lesson plan through audiovisual

 demonstration. GUI applications are a fundamental medium providing both audiovisual

 stimuli and interactiveness, making them excellent tools for virtualized labs. The chosen

 applications to be presented in the labs are highly relevant with the primary concepts of

 STEM education and also served as case studies for this research. Those are GNU

 Radio Companion (GRC) and Open Visual Traceroute (Ovtr).

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 6

 Being free and open-source software, both GRC and Ovtr offer high adaptability for

 research and development works like this. GRC provides blocks for signal processing

 through a toolkit developed with Python bindings for the cross-platform Qt GUI widgets

 toolkit. Originally used in cooperation with Software Defined Radio (SDR) devices, the

 ADALM Pluto SDR, all signals are virtually generated in order for the experiments to be

 completely simulated. Using that visual interface, many signal processing flow graphs

 were developed, corresponding to the variety of lesson plans which end users can see

 executed simply by the press of a button. The majority of those experiments allow

 configurations for user input and change the output of the flow graphs, but all of them

 have features for scrolling and zooming in or out in the application window.

 OvTr makes use of IP packet traceroute information, such as the geographical path or

 the hops from one network location to another. It combines both a powerful network

 diagnostic tool and a visually appealing presentation of the traceroute, which within the

 context of the RET framework blends with Mathematics and Computer Science

 principles. It provides spherical navigation of a 3D representation of the globe and also

 keyboard and clipboard forwarding.

 GUI applications hosted within containerized environments present peculiar challenges,

 because, typically, containers are tailored for server applications rather than interactive

 GUI applications.

 2.2.2: X Persistent Remote Applications (Xpra)

 Xpra Server

 Xpra (or "X Persistent Remote Applications") is an open-source multi-platform remote

 display server and remote desktop software. Xpra operates by attaching to running X

 sessions (X11 forwardings) and can also "detach" and "re-attach" to these sessions

 later. This gives a kind of persistence akin to GNU Screen for terminal sessions, but for

 graphical applications. It effectively allows users to run remote X11 applications and

 manage them as though they were running locally.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 7

 Xpra's unique design allows it to handle higher latency connections and maintain the

 graphical user interface's responsiveness, which can be a common issue with traditional

 X11 forwarding. It does this by utilizing different compression and encoding techniques

 to optimize the data transfer.

 ● Compression:

 Xpra uses various compression techniques to reduce the amount of data needed

 to be sent over the network. This compression can be applied at the pixel level

 (such as PNG or WEBP compression) or applied to the entire screen's pixel data

 (such as video encodings like H264, VP9, etc.). The choice of compression is

 dynamic and depends on several factors, including network bandwidth and

 latency, areas of the screen that are changing (and how much they're changing),

 and so on.

 ● Encodings:

 Xpra dynamically adapts to the available network bandwidth and tries to optimize

 the user experience by using different encoding techniques for the graphical

 data. It can switch encoding schemes on the fly. The encoding can range from

 raw RGB data (for local networks) to highly compressed H.264 video encoding

 (for slow or high-latency networks). It also supports lossless encodings for text

 and other areas where clarity is crucial.

 Xpra HTML5 Client

 The Xpra HTML5 client allows users to interact with the Xpra server, using a web

 browser, leveraging the WebSocket protocol. This client implementation is particularly

 useful because it doesn't require any special software to be installed on the client

 machine except for a modern web browser. The actual software is a web server

 installed side by side with the Xpra server. The client then can be accessed from within

 the frontend application of the distributed system. In the context of the RET, the Xpra

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 8

 HTML5 Client is embedded within an HTML iframe component on every virtual class. It

 is only visible though only after the user initializes an experiment.

 When the Xpra HTML5 client connects to the Xpra server, it establishes a WebSocket

 connection and begins receiving drawing commands. These commands instruct the

 client on how to render the remote application within the browser window, or in the

 embedded window component. The client sends back user inputs (mouse, keyboard,

 etc.) to the Xpra server.

 The Xpra HTML5 client can be customized with options such as scaling, encoding,

 quality, and speed, providing flexibility for the user's network conditions and

 requirements.

 Metrics

 Xpra has an integrated statistics module that provides various performance metrics of

 the Xpra server and the established connections. These metrics include details like

 damage events (how often and how much of the screen is updated), latency,

 compression and encoding speed, data sent/received, etc.

 In the context of this research, a sidecar container was used to periodically fetch these

 metrics from the Xpra server using its control interface. These metrics are then

 analyzed to evaluate the impact of network conditions on the performance of the Xpra

 server and the user experience.

 Integrating the Xpra utility in RET was a crucial feature because it enables the

 previously local desktop and CPU intensive desktop application to run on a remote

 machine. Users are able to experience the virtual labs just by receiving the audiovisual

 stream through the use of a conventional computer and a Web Browser, avoiding

 specific installations and powerful computing resources.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 9

 Figure 2.1: Xpra HTML5 Client with GNU Radio Companion virtual experiment

 2.2.3: Docker Environment

 Docker is an open-source platform designed to automate the deployment, scaling, and

 management of applications by using containerization. Containerization encapsulates

 an application along with its environment, making it highly portable and ensuring that it

 works uniformly across different computing environments.

 Container Images

 Docker container images are lightweight, standalone, and executable software

 packages including every necessary dependency needed to execute a piece of

 software, including the code, a runtime, libraries, environment variables, and config

 files. Images are immutable, meaning they do not change once created. This makes

 them ideal for version control and promoting changes from development environments

 to production.

 Resource Management

 Docker provides extensive resource management mechanisms that help control how

 much system resources a container can consume. Using Docker, you can specify

 limitations for CPU and memory usage, ensuring that a single container does not

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 10

 exhaust system resources. Docker also includes storage and network I/O controls,

 making it easier to manage resource consumption.

 Networking

 Docker creates its own network for inter-container communication. Each container gets

 its own network namespace, providing isolation from the host and other containers.

 Docker supports a variety of networking models, including bridge networks for isolation,

 host networking for performance, overlay networks for multi-host networking, and

 MACVLAN for routing network traffic to containers.

 Port Forwarding

 Docker is able to map any port within the container to a port on the Docker host. This

 port mapping allows the outside world to interact with the application inside the

 container as if it were running directly on the host itself.

 Volume Sharing

 Docker allows the sharing of data between the host and containers or between

 containers through the use of volumes. Docker volumes are managed by Docker and

 are designed to persist data independently of the container’s life cycle, thus offering a

 reliable way to store data generated by and used by Docker containers. Another use for

 them is to free some memory from each individual container’s file system by accessing

 some common and constant files directly from the host’s file system. This also serves

 the purpose of sharing periodically updated files like SSL certifications or systematically

 updated directories with new or debugged virtual labs.

 Portability

 Docker's containerization approach ensures that applications run the same no matter

 where they are or what machine they are running on. This uniformity simplifies the

 process of building, testing, and deploying applications across various environments,

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 11

 making Docker highly portable. Even though the selected hosting environments both for

 the RET and the current work are strictly linux based.

 Integration with Xpra

 Docker can be used to deploy applications along with Xpra. The appropriate application

 for each virtual lab and the Xpra utility can be packaged into individual Docker

 containers, for startup times and sizes proportional to the needs of the experiment. All

 files needed for the experiments and for Xpra connectivity are shared via volumes.

 Containers do not use their host networking but they occupy opportunistically a

 predetermined range of host ports with port forwarding. This setup allows the

 application to be run remotely via Xpra, with Docker handling the dependencies,

 isolation, and resource control.

 Docker was already used to containerize the GUI-based applications and Xpra utilities

 in the core functionality of RET. In the context of this thesis it was also used to

 containerize the frontend and backend applications as well as any other software

 required for the challenges that appeared, facilitating their deployment on Kubernetes.

 2.2.4: Web Servers

 Flask is a lightweight web application micro-framework based on web server gateway

 interface (WSGI). Getting started is quick and easy by design of Flask, which is able to

 scale up to complex applications. Even though it offers suggestions, it require any

 change of dependencies or project layout.

 Within the RET core functionality, Flask is used to create a publicly exposed API that

 handles HTTP/HTTPS requests and acts as an interface between the client and the

 Docker API. With each HTTP request from the client, Flask processes them, and

 triggers the creation or termination of individual Xpra containers. The response it

 generates are the ID of the container and the forwarded host port. With this information,

 the user can either access the Xpra HTML5 client within the container or trigger its

 termination.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 12

 Flask's simplicity and flexibility make it a good choice for such a task but also for

 extended uses within the frames of the proposed framework. It can be easily modified to

 access Kubernetes API rather than Docker API and is used to create easy and reliable

 remote functions like latency monitoring or a scheduler extension for Kubernetes.

 Apache HTTP Server, colloquially known as Apache, is one of the most popular and

 widely used web servers in the world. Apache is recognized for its power, flexibility, and

 broad feature set, which includes a strong architecture for security and authorization,

 customizable log files, load balancing, and dynamic content negotiation. It was used to

 serve static and dynamic website content for the RET frontend, hosts the virtual labs

 files, the lesson plans and every educational material. It also serves as the web server

 of the proposed framework’s frontend application.

 2.3: Kubernetes

 Kubernetes is an open-source platform designed to automate deploying, scaling, and

 orchestrating application containers. During the implementation and evaluation of the

 proposed framework it was used as the orchestration platform for all microservices

 applications hosted on Docker containers. It is a powerful tool which allows advanced

 and complex system architectures, with many more components than a traditional

 monolithic system. Kubernetes has a great variety of components, all containerized

 software, either to ensure the functionality of the orchestration procedures or to enrich

 the features and capabilities of any orchestrated system.

 2.3.1: Pods

 A Pod is the simplest unit and the smallest entity in the scope of Kubernetes object

 model. Each Pod encapsulates one or multiple entangled application containers,

 storage resources, and are provided with a unique network IP, and configurations

 declaring a normal container execution. Containers within a Pod share an IP address

 and port space, and can communicate via localhost. They can also share storage

 volumes, allowing data exchange and communication between containers or even

 accessing the same application resources as if they run in the same host.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 13

 A Sidecar Container is a secondary, auxiliary container deployed inside a Pod to

 augment and enhance the functionality of the primary application container without

 changing the application itself. This pattern is crucial for tasks like logging, monitoring,

 or any functionality that we want to abstract away from the main application logic.

 2.3.2: Workload Resources

 Deployments

 Kubernetes Deployments are used to declare a template for the desired application

 pods and ensure a specified number of pod replicas are running distributed across the

 worker nodes at any given time. On this template, everything is defined, from metadata

 and labels for the pods to the container image, exposed ports and volume mounts. A

 Deployment controller provides declarative updates for Pods according to the desired

 state. At any occurring change on the system, like a pod failure, the Deployment

 controller changes the actual state to the desired state at a controlled rate.

 Secrets allow for the management of sensitive information, such as passwords, ssh

 keys, etc. Secrets are decoupled inside the Pod or Deployment definition and do not

 store its information within the application code.

 Jobs

 Jobs are another kind of controller like Deployments that creates one or more Pods and

 sees through successfully terminating a specified number of them. Jobs in Kubernetes

 are used to run finite tasks or batch processes. They ensure the completion of one or

 more tasks and are well-suited for computational tasks and setup tasks. Jobs are suited

 for running tasks to completion, like batch jobs or one-time configurations. And for that

 dynamic and temporary they fit perfectly for defining the Xpra Pods running the

 experiments on user demand.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 14

 Figure 2.2: Kubernetes Deployment and Jobs Workload resources

 Daemon Sets

 DaemonSets are used to ensure that some or all nodes run a copy of a Pod, which can

 be useful for deploying system-wide services. With the addition of new nodes to the

 cluster, Pods are added to them. Upon their removal or failure, those Pods are garbage

 collected. This can be particularly useful for microservices required on the totality of the

 worker nodes, and needed to be deployed from their addition to the cluster.

 Figure 2.3: Kubernetes Deployment and DaemonSet Workload resources

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 15

 2.3.3: Networking

 Services

 Services in Kubernetes are an abstract way to expose a specific kind of applications

 running on a set of Pods. The set of Pods targeted by a Service is usually determined

 by a selector. Services without selectors and those that target a specific Pod are also

 possible use-cases. Depending on the use case, Services can be exposed in different

 ways by specifying a type in the serviceSpec: ClusterIP, NodePort, LoadBalancer, and

 ExternalName.

 Networking

 Kubernetes provides several networking features that were vital to this project. Its flat

 networking model ensures every pod can communicate with every other pod and node

 in the cluster. It supports Network Plugins, and the Container Network Interface (CNI) is

 a specification that should be used by these plugins. Flannel is one such CNI compliant

 network plugin that provides a simple and easy way to configure a layer 3 network fabric

 designed for Kubernetes. Network policies can be defined to control the flow of traffic,

 while ingress and services expose applications to the outside world.

 Ingress Controller

 In the Kubernetes ecosystem, the Ingress Controller is an integral component that

 governs and manages external access to the services within a cluster. Essentially, it is

 responsible for directing external HTTP and HTTPS traffic to the appropriate internal

 services, based on a collection of rules defined in the Ingress resource. This controller

 is responsible for monitoring Ingress objects in the cluster and configuring a HTTP load

 balancer to route traffic accordingly. It also provides features like SSL termination,

 path-based routing, and host-based routing.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 16

 Figure 2.4: Service agnostic communication with Client outside of Cluster

 (Source: DevPress)

 2.3.4: Kubernetes System Architecture

 Kubernetes uses a client-server architecture, where its components can be divided into

 those that manage an individual node and those providing the cluster's control plane.

 The latter includes the API Server, Controller Manager, and Scheduler.

 API Server

 The API Server, or kube-apiserver, is the main management component of Kubernetes.

 It serves the Kubernetes API using JSON over HTTP, which provides both the internal

 and external interfaces to Kubernetes. It processes REST operations, validates them,

 and updates the corresponding objects in etcd, which is a consistent and

 highly-available key value store used as Kubernetes’ backing store for all cluster data.

 The API Server is the front end for the control plane.

 Controller Manager

 The Controller Manager, or kube-controller-manager, runs the core control loops within

 Kubernetes. A control loop is a non-terminating loop that normalizes the state of a

 system. The controllers include the Node Controller, Replication Controller, Endpoints

 Controller and Service Account among others. These controllers observe the shared

 state of the cluster through the API Server and make changes in an attempt to regulate

 the current state towards the desired state.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

https://devpress.csdn.net/k8s/62ebe59a89d9027116a0fb29.html

 17

 Scheduler

 The Kubernetes Scheduler, or kube-scheduler, keeps a scheduling queue for created

 Pods with no assigned node and selects a node to host and execute them. Factors

 taken into account for scheduling decisions include individual and collective resource

 requirements, hardware or policy constraints, affinity and anti-affinity specifications, data

 locality, and inter-workload interference. The Scheduler ensures that resources are

 utilized effectively while respecting defined constraints, leading to optimized workload

 performance.

 Figure 2.5: Kubernetes Cluster components of Master and Worker nodes

 (Source: Andrew J. Younge)

 2.4: Networking tools

 2.4.1: Reverse Proxy Server

 A reverse proxy server, a crucial architectural component in many network

 infrastructures, is a server that retrieves resources on behalf of a client from one or

 more servers. His counterpart, the forward proxy is an intermediary for its associated

 clients to contact any server, but a reverse proxy works as an intermediary for its

 associated servers to be contacted by any client. This effectively abstracts the network

 and provides security, load balancing, and caching functionalities. In this context, it can

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

https://www.researchgate.net/figure/Kubernetes-Components-The-Kubernetes-setup-has-at-least-three-components-kublet-daemon_fig1_336889240

 18

 be considered a technique for ensuring that network traffic is efficiently and securely

 managed.

 Figure 2.6: Reverse Proxy Server traffic forwarding to different servers and clients

 A reverse proxy server acquires and collects resources on behalf of a client from one or

 more servers of his choosing. NGINX was used in this capacity, directing client requests

 to appropriate Xpra servers.

 2.4.2: Traffic Control

 Traffic control, in the context of network management, involves the process of managing

 and controlling network traffic to reduce congestion, latency, and packet loss. It includes

 techniques like bandwidth shaping, prioritization, and access control. In Kubernetes, it

 can be particularly useful for simulating different network conditions and testing how

 applications behave under those conditions. With the 'tc' (traffic control) utility in Linux, it

 can be used for creating conditions of network latency, control network bandwidth,

 delay, jitter, and packet loss in the network to measure the impact on Xpra's

 performance.

 2.4.3: Ping Round Trip Time

 Round trip time (RTT) is a critical metric in network performance, measuring the time it

 takes for a signal to travel from a source to a destination and back again. In essence, it

 is a gauge of the latency in a network. In applications that require real-time

 communication, such as video streaming or online gaming, low RTT is crucial for a good

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 19

 user experience. Tools like 'ping' or 'traceroute' can be used to measure RTT, providing

 insights about network performance and aiding in troubleshooting network issues.

 A network diagnostic tool like ‘ping’ can be used to test if a host is reachable on an

 Internet Protocol (IP) network and to measure the RTT for packets sent from the

 originating host to a destination. It was used as a basic tool for network latency

 measurements.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 20

 CHAPTER 3: PROPOSED FRAMEWORK

 3.1: Overview

 In this chapter, the general procedure towards the implementation of the proposed

 framework is described. Small and steady steps are taken targeting the objectives of

 this thesis and challenges occur along the way. First, a brief description is presented for

 the research environment’s infrastructure and the development specific tools and

 commands which facilitated the current implementation. Following that are the transition

 steps towards the final architecture approach. And finally, on the stable and normally

 functioning Distributed RET, a scheduler extension mechanism is implemented and

 analyzed focusing on latency awareness and leads to evaluation of the system in the

 next chapter.

 3.2: Infrastructure and Development tools

 The entirety of the research, development and evaluation phase was exclusively carried

 out on the NITOS Testbed, deployed in the facilities of the University of Thessaly

 campus. NITOS supports experimentation-based research in the area of wired and

 wireless networks and is continuously available and remotely accessible. The nodes

 selected as workstations were part of the Indoor RF Isolated Testbed. The base

 workstation was a Windows 10 PC with WSL 2 for development and testing operations

 and the application interface with the proposed framework was a conventional web

 browser. An inbound firewall rule was added on windows defender to permit and

 respond to ICMP packet traffic.

 Each node has natively enabled only one ethernet interface which interconnects them

 via their common isolated subnet. They are equipped, though, with another interface for

 ethernet connections via the University’s network. When enabled with the ̀dhclient`

 command, it receives an IP address from the gateway’s DHCP server and an IP route

 rule is added forwarding traffic towards the subnet of the base workstation. Because the

 evaluation of the proposed framework targets network heterogeneity, all nodes occupied

 were equipped with Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz, two RAM devices of

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 21

 8GiB DDR3 Synchronous 1600MHz and have operating system Ubuntu 18.04.2 LTS

 with 4.15.0-47-generic kernel. With those features and a configuration in their affinities,

 resource homogeneity is achieved so that the evaluation results are strictly focused on

 networking resources.

 All of the tools previously mentioned in Chapter 2: Methodology played a crucial role in

 the implementation of the proposed framework. The command-line tools kubectl,

 kubeadm and kubelet are all in their GitVersion v1.20.0 and provide a stable

 environment for the cluster. Kubectl is the basic command that accesses the API Server

 of the Master node and makes requests regarding the resources of the cluster, either

 creating, terminating or inspecting them. Kubeadm is the tool which allows a master

 node to initialize a cluster with specific configurations and generates valid tokens and

 discovery information so that other nodes can join the cluster. Finally, kubelet is the

 main agent in the nodes responsible for managing the container runtime and making

 sure YAML and JSON definitions of objects are running properly. The container runtime

 is Docker version 19.03.6 which also allows the use of Dockerfile definitions. Dockerfiles

 were accountable for the creations of the multiple docker images used in this

 implementation and pushed to Docker Hub, the distributor from which each cluster node

 pulled the desired resources.

 3.3: Initial approach

 3.3.1: Containerizing Existing System

 The first step towards creating an orchestrated distributed system was to disengage the

 core functionalities of the existing framework from their host. Their respective

 applications should convert from system processes to container applications in order to

 adapt in the cluster environment which requires software portability. So the existing

 system running on a Virtual Machine in a public server, was replicated with a fresh

 installation on a Testbed node. All running under the same device, Docker is the basic

 system process which needs to be executed directly under the node host.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 22

 Figure 3.1: Existing system architecture and example

 The backend server of the existing system is using the Python Docker API to access

 Docker functionalities and manage containers. That is the case because the Flask web

 server runs side by side with the Docker Engine, on the same host, and has direct

 access to Docker's daemon. This daemon listens to a Unix socket located on

 /var/run/docker.sock . When containerizing the application, the Python module needs

 access to the host’s daemon so the chosen practice is to share the socket file with a

 mounted volume between host and container. This can be achieved on docker run

 command:

 :~# docker run -d -p 8090:5000 -v

 /var/run/docker.sock:/var/run/docker.sock backend_image

 Other than the mounted volume with ‘-v’ argument, ‘-p’ enables port forwarding of the

 container internal port 5000 to host port 8090. Inside the backend server’s code it only

 needs the addition of the following snippet.

 import docker

 client = docker.from_env()

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 23

 Figure 3.2: Transitioning to containerized system architecture

 With this setup configuration, a client can have the same experience virtually even

 though the inner workings of the system processes are different. This transition is the

 very first step towards creating a distributed system. Running all core functionalities

 under a container runtime offers great portability and abstraction to a system. Now this

 new architecture of the host device is just an abstract architecture for every worker node

 in the proposed framework and now the system can move to a cluster approach.

 3.3.2: Cluster-local implementation

 Containerizing system processes lets the Docker Engine manage resources but even

 that practice can not fully exploit the available resources and deal with techniques like

 fault tolerance, scalability and availability. When dealing with a cluster system,

 resources are combined and so can the instances of the microservices, not strictly

 binded to the resources of a single host.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 24

 With concepts previously mentioned on Chapter 2: Methodology, the various

 applications of the existing system were integrated to workload resources of the

 Kubernetes system. Frontend and backend applications were assigned to Deployment

 definitions with appropriate application labels and a selected number of replicas on their

 respective YAML files. The Controller Manager of the Master node works to constantly

 provide the exact number of the desired replicas, after Pod failures or Node failures.

 Each template within the YAML files give a specific name for the container applications

 of the same Deployment, one or multiple port numbers which represents the internally

 exposed ports of the container application and finally declare the desired container

 image for the application. As stated previously, this image is pulled from the Docker Hub

 database with an optionally selected policy in the specification definition, like

 IfNotPresent or Always , in order for each individual node to pull the most updated image

 version.

 Each Deployment, though, had its own distinctions to function properly. Because Docker

 Hub distributes publicly docker images, the frontend images were stored in a private

 repository within the stated platform, in order to secure the copyrighted material of the

 existing RET framework. For that reason, the frontend Deployment had the addition of

 imagePullSecrets field on the template specification, which makes use of the Secret

 resource of Kubernetes. That kind of resource extracts account authorization

 credentials, encrypted to base64 data and stored to a configuration file.

 Settling to a cluster environment requires an alternative for the dynamic nature of the

 Xpra instances representing a virtual experiment. Kubernetes Jobs are exactly the

 workload resource controller needed for dynamically created and terminated pods.

 Usually, this applies for executions with a well defined goal or execution time, which can

 start, fulfill their purpose and terminate normally. Even though that is the case with many

 of the virtual experiments of the RET, some others run indefinitely until the user

 requests their termination. In case of an Xpra-pod failing, the Job controller creates a

 new one to replace it. Kubernetes Jobs have similar YAML definitions as Deployments

 with the addition of the job-name label.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 25

 For the backend template specification, the initial addition was the Docker daemon

 socket mounted volume, reflecting the initial approach of the containerized existing

 system. This had drawbacks of not fully utilizing cluster features because each

 deployed backend pod had access to the specific daemon socket of its own worker

 node host. So every backend pod which received HTTP requests for virtual experiments

 could only create Xpra container instances on his host environment and not Xpra Jobs,

 they were not actually inspected and controlled by the Kubernetes system. The best

 practice for the desired functionality was to replace the Docker module with the

 Kubernetes module in Python.

 from kubernetes import client, config, utils

 import uuid, yaml, tempfile

 # Configure in-cluster client

 config.load_incluster_config()

 backend_pod_uid = os.environ.get('BACKEND_POD_UID')

 batch_v1 = client.BatchV1Api()

 core_v1 = client.CoreV1Api()

 k8s_client = client.api_client.ApiClient()

 Loading the “in-cluster” configuration on the python runtime of the backend Pod, allows

 the creation of a kubernetes client on that runtime to communicate with the Kubernetes

 API server, and access it accordingly to an assigned ServiceAccount. This

 ServiceAccount resource, through the use of a RoleBinding resource, is combined with

 a Role resource. The Role resource is the one which clearly defines the api groups

 (batch, extensions, apps), resources (jobs, services) and verbs (create, delete) the

 desired ServiceAccount will have privileges for. The ServiceAccount field is filled inside

 the Backend Deployment definition.

 Another feature mandatory to the distributed system’s backend server is the ability to

 initiate every possible virtual experiment available for a current user. On the existing

 RET system, the backend server constructed the appropriate execution command for

 the GUI applications and passed it to the Xpra container initialization as an entrypoint

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 26

 argument. All required files were resigning inside Xpra docker images. In order for the

 same feature to be replicated on Job creation and configuration rather than container

 initialization. This is why on the proposed framework, the backend pods contain YAML

 templates of the Xpra jobs definitions. On user demand, the backend extracts the

 requested information and replaces the appropriate fields inside the templates.

 def create_xpra_job (unique_id, version, start_command, client_ip):

 with open("xpra-job.yaml" , 'r') as file:

 job_template = file.read()

 job_template = job_template.replace("{{unique_id}}" , unique_id)

 job_template = job_template.replace("{{version}}" , version)

 job_template = job_template.replace("{{start_command}}" , start_command)

 # Create a temporary file

 with tempfile.NamedTemporaryFile(mode= 'w' , suffix= '.yaml') as temp_yaml_file:

 temp_yaml_file.write(job_template)

 temp_yaml_path = temp_yaml_file.name

 utils.create_from_yaml(k8s_client, temp_yaml_path)

 In the above snippet of code, the backend server designates the unique_id of the

 Xpra-job, its version defining the docker image with the desired GUI application and

 finally start_command determines the particular files instructions for executing a specific

 experiment. A unique_id is just a generated Universal Unique Identifier (UUId) using its

 own backend-pod metadata.uid as prefix. This metadata.uid is passed as an

 environment variable on the Deployment definition and was developed as a fail-safe

 mechanism so that duplicate generated uuid will not occur, regardless of the UUId

 versioning. Once the customized temporary YAML file is ready, backend communicates

 with Kubernetes API Server and requests the desired resource to be created and

 scheduled.

 After applying all those Deployments and Jobs to the Kubernetes cluster, the multiple or

 individual pods needed a resource to be discovered or reachable. Two constant

 ClusterIP services were applied for frontend and backend pods respectively. Services

 were also used for reaching each individual Xpra-pod created by a given Xpra-job-uuid .

 A backend-pod, using the same technique previously demonstrated for creating

 Xpra-jobs, requests from the API Server a corresponding Xpra-service-uuid , which has

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 27

 a selector field matching the job-name of Xpra-job-uuid . In that way, Xpra-jobs and

 Xpra-services have a one-on-one relationship. In a typical cloud based environment, the

 best practice would be to make use of a LoadBalancer Service selecting generally every

 Job with prefix xpra-job , and have it route traffic to the appropriate one.

 def delete_xpra_job_and_service (unique_id):

 delete_options = client.V1DeleteOptions(propagation_policy= "Background")

 batch_v1.delete_namespaced_job(name=f "xpra-job-{unique_id}" , body=delete_options)

 core_v1.delete_namespaced_service(name=f "xpra-service-{unique_id}")

 After a user has sufficiently executed his experiment, he sends a termination request to

 the backend server. The client sends the stored UUId value to the server and he

 requests the termination of the appropriate resources from the API Server.

 Figure 3.3: Distributed Architecture for client inside the Cluster

 In this initial approach of clustering the existing system core functionalities, the testing

 client was originally a node device connected to the cluster but disengaged of any

 workload resources. The client could access every established service using its

 ClusterIP because he also is part of the cluster. But Xpra-services are dynamically

 created and the application level interaction of the client to the backend server would

 require a delay and data overhead. The backend server should request to inspect a

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 28

 freshly created xpra-service from the API Server to be informed of its assigned

 ClusterIP and then communicate it back to the client. Instead of that, on the user's

 initialization request, the backend server responds with the assigned UUId if the Xpra

 instance.

 In this scenario it was best utilized the feature of DNS records of the Kubernetes

 system. Any cluster pod application can discover and communicate with another cluster

 pod or service with the user its DNS, being abstractly

 name.namespace.object.cluster-domain.example . Now with that approach, and all

 services applied in the default namespace, the frontend application could statically refer

 to its own address with frontend.default.svc.cluster.local and to the backend address

 with backend.default.svc.cluster.local . In a similar manner, with the use of a runtime

 variable in the frontend application, the client can dynamically change the requested

 address of an Xpra-service, accessing it through xpra-<uuid>.default.svc.cluster.local.

 This address is passed to the source attribute of the iFrame component of the HTML,

 and can be updated between user requests. The final issue to be addressed is the

 addition of the kube-dns nameserver in the /etc/resolv.conf of the client node, because it

 is configured only internally in the pod system.

 3.4: LAN architecture

 With the implementation discussed above on Subsection 3.3.2, many of the core

 functionalities and features of the proposed framework were already deployed and

 serviceable. Optimally though, the desired setup for the proposed framework of this

 thesis and its evaluation requires a more cloud-like approach, meaning that the cluster

 system should be abstract and agnostic for each client communicating with it. The

 default assumption is that the client will not be part of the cluster and thus will only be

 able to reach it via a public IP or even a public DNS uri. Due to the current infrastructure

 of the NITOS Testbed, and not a paid plan in a cloud provider, this cloud-resembling

 setup is simulated within the Local Area Network (LAN) with the use of a known host

 and a Kubernetes Ingress Controller.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 29

 3.4.1: Ingress Controller

 An Ingress Controller, as previously explained in Chapter 2: Methodology, is a

 Deployment of one or multiple replicas of reverse proxy servers using NGINX which is

 deployed over an according amount of worker nodes and is usually exposed with a

 LoadBalancer Service. Again, adapting to the Testbed infrastructure, the optimal service

 type for Ingress Controller should be NodePort. This type of service exposes a specific

 port across all worker nodes’ primary interface and allows the controller pods deployed

 on a specific worker node to be accessed from outside the cluster. So a typical client

 reaching the NITOS worker nodes on LAN, can access an Ingress Controller pod from a

 given NodePort. For convenience of setup, only one worker node was selected to host

 only a single Ingress Controller pod.

 This Ingress Controller receives requests from a client on LAN. The HTTP routing

 properties of it are defined through a set of rules called Ingress rules. Ingress rules do

 not expose specific endpoints, but rather declare which specific endpoint prefixes

 correspond to already existing cluster services. So the Ingress Controller parses every

 HTTP request it receives and forwards it according to the endpoint it tries to reach using

 the DNS records of the services. In the current architecture step, the Ingress rules know

 about frontend-service and backend-service. This comes with a major drawback which

 is the lack of being aware prematurely of the dynamically created xpra-services and

 their DNS records. In order for the client to be able to communicate with the

 xpra-services without being part of the cluster, the following Reverse Proxy Service

 technique is proposed.

 3.4.2: Reverse-Proxy Service

 After the initialization of an xpra-service with a given UUId, a DNS record is created on

 the name xpra-service-<uuid>.default.svc.cluster.local and every pod with the kube-dns

 resolver can access it on creation time. For the proposed framework component of the

 Ingress Controller to work, there needed to be a mechanism for dynamic traffic routing

 of HTTP requests targeting the xpra-instances. This mechanism works with any request

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 30

 reaching the Ingress Controller and does not contain neither a frontend prefix nor a

 backend prefix, this request will be forwarded to the DNS of Reverse Proxy Service

 (RPS), meaning reverse-proxy.default.svc.cluster.local , as defined by the Ingress rules.

 Therefore, for a supposed constant and unchanging xpra-service created and

 terminated on user demand, traffic is routed from the Ingress Controller to the RPS and

 from then to xpra-service-<uuid> . Traffic follows the same hops back to the client. The

 RPS is implemented with a standard NGINX image deployment with a volume mounted

 on /etc/nginx/conf.d providing it a modified version of the default.conf file displayed

 below.

 server {

 listen 80 ;

 resolver kube-dns.kube-system.svc.cluster.local valid= 5s ;

 location / {

 set $target "http://xpra-service- $cookie .default.svc.cluster.local:9876" ;

 proxy_pass $target ;

 proxy_http_version 1 . 1 ;

 proxy_set_header Upgrade $http_upgrade ;

 proxy_set_header Connection "upgrade" ;

 proxy_set_header Host $host ;

 proxy_set_header X-Real-IP $remote_addr ;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for ;

 }

 }

 The above snippet shows that the RSP uses the kube-dns resolver in order to obtain

 the DNS of xpra-service-<uuid> and will keep that response for 5 seconds before

 requesting him again. The HTML5 client of an xpra-instance is requesting many

 resources which are common among all generic Xpra servers and there is no native

 way to distinguish them from their prefix on the Ingress rules or in RPS. In view of the

 fact that a single RPS could have workloads from multiple clients which have requested

 similar resources, the proposed framework benefits from the use of browser cookies.

 When a backend-pod responds to the UUId of an Xpra-instance to a client, this

 information is stored in a browser cookie for the sole purpose of appropriate traffic

 forwarding from an RPS to the desired Xpra-service. This cookie is simply used as a

 string variable within the DNS record of the targeted Xpra-service.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 31

 Figure 3.4: Proposed Architecture for Users outside the Cluster

 In this architecture for LAN users, the proposed framework is fully functional and the

 transition is seamless from the existing RET framework. The client machine adds to its

 known host, under the hostname ingress.controller , the NodeIP of the worker hosting

 the Ingress Controller. In this way, within a conventional browser, every request

 resembling http://ingress.controller:nodeport/endpoint is reaching the Ingress Controller

 and is forwarded to frontend, backend and reverse-proxy services. For example

 http://ingress.controller:nodeport/index.html is forwarded to the frontend applications,

 http://ingress.controller:nodeport/backend/create/experiment-x is forwarder to the

 backend applications and every other request on the root endpoint is routed to the RPS

 applications.

 3.5: Latency-Aware Scheduler Extension

 With the above subsection, a stable system was implemented and deployed, functioning

 in a distributed manner and enables experimentation towards its optimization. Many

 directions were open for optimization on the current system but as stated in Chapter 1:

 Introduction, the objective of this thesis was to increase the general quality of a video

 streaming application, such as the Xpra remote desktop control application. In this

 context, an extension to the native Kubernetes scheduling process is proposed and

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 32

 developed with cluster components and resources. The objective of deploying a

 Network-Aware extension for scheduling is to bind pods in the scheduling queue on

 worker nodes which better serve the corresponding client. Searching and targeting for

 the worker-client link with minimum latency relative to the rest of the worker nodes is a

 mechanism which will result in general quality improvement on the Xpra applications.

 3.5.1: Native Scheduling Workflow

 The native scheduling workflow of Kubernetes consists of multiple stages and points,

 some of them extensible, some other not. The crucial and most easily comprehensible

 stages of said workflow is a 2-step operation, the filtering phase and the scoring phase.

 These two steps are basically responsible for assigning a requested pod to a promising

 worker node, in regard to the native scheduling rules. Initially a pod in the scheduling

 queue is selected and in the filtering phase, all worker nodes are examined through

 various conditions like NodeAffinities and those not suitable are filtered out. The node

 objects which pass the filtering test gradually end up in the scoring phase. While in that

 phase, the kube-scheduler calculates a specific score for every one of those nodes,

 based on conditions like CpuPressure or MemoryPressure, energy efficiency indicators

 and results in a list of ranked nodes with a base score. The higher the value of a node

 score, the more likely this node will be finally, after more steps of the workflow, selected

 to host the pod from the scheduling queue.

 Figure 3.5: Kubernetes Scheduling workflow

 (Source: Kubernetes documentation)

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

 33

 For extending any step of the scheduling workflow, the Kubernetes system provides an

 easy configuration field on the kube-scheduler manifest. With that, a single

 KubeSchedulerConfiguration can be passed an argument inside the kube-scheduler

 container. With this Kubernetes resource, the native scheduler procedure is prompted to

 communicate with a custom extender server before it concludes its scoring. This

 extender is declared inside the resource. The definition consists of its urlPrefix , meaning

 the ClusterIP service and port of the extender application pods, the verbs or the

 workflow steps which the kube-scheduler must be advised from the extender and finally

 a weight value which will multiply the node score list and will further affect the

 scheduling decisions. In the proposed framework, only the prioritize verb is significant

 for the Network-Aware Scheduling extension.

 3.5.2: Latency Measurement

 Before describing the workflow of the Scheduler Extender, it is important to clarify the

 supplementary applications and techniques required for this task. In order for the

 Extender to be able to receive latency measurements from a set of worker nodes, a

 Latency-monitoring application must be developed. A single instance of this application

 can be containerized and then be deployed distributed to the cluster with the use of a

 workload resource. Because the task necessitates the existence of exactly one

 latency-monitoring pod per worker node, the DaemonSet resource of Kubernetes was

 utilized. DaemonSet is deployed and keeps exactly one pod per node per application

 specified in the YAML file.

 The application developed for use in the DaemonSet is an HTTP server with the Flask

 web microframework. It exposes many endpoints, but the main one benefiting the

 proposed framework is the /ping_client endpoint. In this application, the Ping3 Python

 module is used to provide an easy way to measure the Round Trip Time (RTT) in

 real-time and on demand of the Scheduler Extender. The ping command and therefore

 the /ping_client endpoint, provide a set of mandatory or optional arguments for the

 execution, and all of them are posted as url parameters from the Scheduler Extender

 HTTP request. The optional parameters all have default values but for convenience, the

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 34

 time unit is selected to be milliseconds (ms), the timeout of the ping execution is

 proportional to the total size of the ICMP packet and finally the payload size which can

 vary form the default 56 to approximately 65.500 bytes. The ICMP packet total size is 8

 bytes for the header plus the payload mentioned previously. In the context of the

 proposed system, which has principally to deal with video streaming via WebSocket

 connection, the selected payload size to be used on ping was 65.500 bytes, in order to

 achieve maximum ICMP packet size and therefore stress the system latency-wise. The

 only argument that must definitely be set is the IP of the desired client. The pod

 application then sends the traffic upwards to the interfaces layers, starting from the veth ,

 to flannel , to cni and finally to the eth1 interface from where it reaches the client. For the

 latency-monitoring application to have knowledge of the desired IP there is another

 feature to be implemented on the backend server application.

 3.5.3: IP Acquiring

 When an HTTP request from a client device, travels through the Ingress Controller and

 finally reaches a backend application checks its HTTP headers and looks for X-Real-IP

 to find the IP of the client, or, if absent, looks for the X-Forwarded-For header and

 specifically for the 1st IP on the x-forwarded list. If both of these headers are absent,

 then the fail-safe IP to acquire is a device’s static IP on the Testbed and test just the

 network capabilities of the worker nodes but not related to the specific client. After

 acquiring the IP information of the client, the backend server, while customizing the

 YAML template of the initializing Job, it adds an extra client-ip metadata label on the

 template of the Xpra-job. In that way, the Scheduler Extender will be able to also

 acquire this information and communicate it to the DaemonSet pods.

 3.5.4: Scheduler Extender Server

 This implemented Scheduler Extender is simpy an HTTP server developed over the

 Flask web microframework which exposes an endpoint for the prioritize verb of the

 kube-scheduler. The workflow of this Extender to initially have access to each of the

 filtered nodes provided to him. Utilizing the kubernetes API in-cluster-configuration in a

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 35

 similar manner to the backend application, the Extender inspects every pod in the

 cluster matching with the Label “app: latency-monitoring” , the application described

 above. From the pods it inspects, it communicates only with the ones residing on worker

 nodes which passed the filtering phase of the scheduling, the rest are bypassed.

 In the extender’s phase when it tries to collect latency data, it loops through the

 available pods and requests their latency with the client from their /ping_client endpoint

 with a suitable delay between the requests to avoid congestion issues. All latencies are

 then stored in a dictionary structure where the keys are the client’s IP matching to

 another dictionary value where the cluster node names are the keys and their

 respective values are their latencies with the client.

 The final step for the Scheduler Extender is the score calculating phase. In this, for the

 same client which triggered the latency measurements, a score is calculated for every

 worker node which either communicated with or even for nodes that the ICMP request

 timed out. The score is anti-proportional with the client-worker latency, meaning that the

 higher the latency a link has, the lower the calculated score for scheduling.

 def calculate_scores (client_ip):

 client_dict = client_node_latency[client_ip]

 max_lat = max(client_dict.values())

 min_lat = min(client_dict.values())

 scores = dict(client_dict.items())

 for node, latency in client_dict.items():

 if latency:

 scores[node] = round(scale * (max_lat - latency)/(max_lat - min_lat)) + 1

 else :

 scores[node] = 1

 return scores

 In the snippet above is the function responsible for calculating scores for all the worker

 nodes which passed the filtering phase. Working on the dictionary entry of the specific

 client IP, the maximum and minimum latencies observed for this client are stored in their

 respective variables. For each node in the client’s dictionary, the relative percentage of

 this node’s latency to the range of observed latencies is calculated. The occurring value

 is on the scale from 0 to 1, so it is multiplied with a scaling factor, given that the lowest

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 36

 score in the kubernetes scheduling is 1. The scaled value is then rounded and an ace is

 added for the case of the maximum latency node, again to line with scheduling’s

 minimum scoring. If a worker node’s ping timed out, the latency observation is absent

 so this node gets the minimum scoring of 1. The scoring formula for an individual worker

 node is displayed below.

 Figure 3.6: Scoring formula for an individual worker node

 Summarizing the proposed framework, when a client wants to run a virtual experiment,

 it sends an HTTP request to the backend service via the Ingress Controller NodePort

 service. The backend runtime acquires the X-Real-IP of the client device and assigns it

 on the Xpra-Job definition before requesting its creation from the Kubernetes API

 Server. Along the scheduling workflow, the Scoring phase sends an HTTP request to

 the Scheduler Extender for the /prioritize verb. The Extender requests the observable

 latencies for client-worker links from all latency-monitoring pods of the DaemonSet, for

 filtered nodes only. After obtaining the observable latencies, the Extender calculates a

 score for each individual worker node, anti-proportional to the latency it provided. After

 constructing the node-score list it sends it back to the system’s kube-scheduler to

 proceed with the scheduling workflow. The general architecture of the proposed

 framework after the addition of the Scheduler Extender is displayed below.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 37

 Figure 3.7: Latency-Aware Scheduling over LAN architecture

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 38

 CHAPTER 4: EVALUATION

 4.1: Overview

 In this chapter, after developing and implementing the proposed framework in the

 available infrastructure of NITOS, it is evaluated to extract useful insights on the

 experimental value of the Latency-Aware Scheduling optimization. Initially, it presents a

 brief description on the additional implementation of metrics monitoring and

 measurement collection process as well as the evaluation setup. After that, an analytic

 presentation of the derived result is displayed through graph figures, while also

 discussing the implications of the derived results.

 4.2: Evaluation Setup

 4.2.1: Metrics and Tools

 In order to evaluate the system, there should be objective metric indicators on the high

 level application of the proposed framework, the Xpra video streaming, which would

 reveal a variation between the native scheduling and the latency-aware scheduling.

 These metrics are provided by the Xpra utility, and more specifically on the Xpra server

 side inside the Pods. Off all the available metrics information, valuable for the context of

 the current evaluation are the frame rate of the video streaming and the quality of the

 image encoding of each frame. The former is found under client.window.1.damage.fps ,

 or simply called Frames per Second (FPS) and has a range from 0 to 130 (maximum

 observed). The latter is located on client.window.1.encoding.quality.cur , or simply

 referred to as Quality, and has a standard range of 1 (minimum quality) to 100

 (maximum quality).

 Because the valuable information resides within an already functioning xpra-pod, the

 challenge of the evaluation was to access these metrics while running concurrently the

 video streaming task. This was achieved with the use of a sidecar container, the

 xpra-monitor , alongside the main Xpra container. The container image is a slim-buster

 debian distribution with only the Xpra utility and its dependencies installed. Because the

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 39

 xpra-monitor is defined in the same YAML template of the Xpra-jobs, three

 emptyDirectory volumes are mounted to both main-xpra and xpra-monitor, and it is

 configured for process namespace sharing. There are three directories linked and those

 are /run/xpra where xpra-sockets files are stored, the user directory /run/user and the

 Xpra root folder /root/.xpra . Those three together link the two containers and let them

 function as if they were one host, so the one can run the server and the other take info

 for the same xpra instance.

 4.2.2: Setup Architecture

 The objective of this evaluation process is to test and prove that the system has actual

 promising effects on heterogeneous networks. As previously mentioned in Chapter 3:

 Proposed Framework, the worker nodes are selected based on resource homogeneity

 to reduce as much as possible their effect on the applications performance.

 Another issue which demands addressing is the load balance between the nodes of

 interest. The cluster has many more applications to host which will have their own traffic

 handling requests and may cause congestion of traffic on their host node and influence

 the Xpra’s auto-adjusting, especially when working as an Ingress controller or a

 Reverse Proxy server. Pods of all these applications are by default distributed among

 worker nodes with the inner algorithms and scoring of Kubernetes scheduling. Mendling

 mildly and legitimately with native scheduling, a nodeSelector attribute was added on

 the template’s specification for the respective YAML definition of each cluster

 Deployment. In that way, all basic and core functionalities of the proposed system are

 hosted on a selected node, and for that same node, the Scheduler Extender is filtering it

 out, configured to ignore it from the scoring phase. The rest of the nodes are fully

 functional and hosting only the latency-monitor pods and are available for hosting

 exclusively Xpra-pods. The described setup architecture is utilized for the sole purpose

 of the evaluation and is not mandatory for the proposed framework to optimally function.

 It is displayed on the below diagram.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 40

 Figure 4.1: Evaluation phase setups architecture

 Of the 5 given nodes of the cluster system, there is the master node M, the proxying

 node W4 and the rest of the nodes are tasked with simulating network heterogeneity

 within the cluster. Using Traffic Control a delay value of the millisecond class was added

 on each worker on their respective CNI interfaces, achieving link aggravation between

 them and both the client device and the rest of the cluster. In the above architecture

 displayed above the assigned latencies per worker are:

 ● Worker 1 (w1) => 0ms

 ● Worker 2 (w2) => 20ms

 ● Worker 3 (w3) => 50ms

 4.2.3: Scenarios Description

 The selected scenarios presented to demonstrate the effectiveness of the proposed

 framework, all tested with 6 virtual experiments, meaning 6 xpra instances, running per

 execution and all experiments had a 30 seconds duration before terminating. Not in the

 context of this thesis, previous evaluation results examining the scalability of hardware

 and network resources on the existing system, indicated a flat memory usage of roughly

 350MiB per instance and a linearity of approximately 3 Mbit/s per instance. The total 18

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 41

 Mbit/s of traffic is insignificant for the client’s device networking because of the high

 tethered connectivity of the institutional network, reaching speeds of 1 Gbit/s. There will

 not be traffic congestion issues on the client part which could potentially affect Xpra

 auto-adjusting settings and reduce the metrics of interest.

 In order to examine the improvement ratio and contribution of the proposed framework,

 there must first be an extensive understanding of Native Scheduling evaluation results.

 As previously mentioned in Chapter 2: Methodology and subsection 3.5.1 about

 Kubernetes Scheduling, it emphasizes aspects more related to hardware and energy

 efficiency. Because the Testbed nodes have relatively very good hardware aspects, the

 Native Scheduling tended to be partialed to specific nodes just because they had the

 capacity to host more pods. In order to take unbiased measurements of the system with

 Native Scheduling, an even instance distribution was preferred. Using the

 PodAntiAffinity attribute within Xpra-job YAML templates, the Native Scheduling was

 able to assign Xpra-pods in a Round Robin way. PodAntiAffinity with the hostname of

 each node just tries to avoid scheduling a pod of a certain application on the same node

 where another pod of this kind already exists. For the 6 instances per execution, an

 even distribution of 2 instances per node was achieved.

 The Extended Scheduling of the proposed framework can be evaluated for multiple

 scenarios. According to the formulation of the scoring algorithm, the Scale factor can

 offer a great variety of possibilities for the instance distribution. The 1st scenario

 concerns a low scaling factor, valuing an absolute 10, and this results the scoring range

 to be between 1 and 10, and as consequence, the instance distribution is uneven, but

 all worker nodes take part in the workload share out. On the next step of the scaling

 scenarios, the factor of value 20 extends the maximum node score to 20 and so w3 with

 maximum latency and minimum score was omitted from the scheduling procedure.

 Finally, the scenario where the scale factor, and thus latency, takes a bigger role, is with

 an absolute value of 50, the scheduling ends up being biased on the node with the best

 network link and that single node undertakes all instances. A descriptive graph of

 scenario distribution is shown below:

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 42

 Figure 4.2: Xpra instances distribution on Extender Scheduling scenarios

 4.3: Experiment Results

 4.3.1: Native Scheduling

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 43

 Figure 4.3: FPS vs Time for Native Scheduling scenario

 Figure 4.4: Quality vs Time for Native Scheduling scenario

 As shown by the graphs above, each of the w1, w2 and w3 resulted in an average of

 90.5, 78.97 and 23.79 FPS respectively, while they landed 91.46, 51.79 and 41.19 on

 the average Quality. From the total executions of this scenario, the system is on a base

 of 64.42 average FPS and 61.48 average Quality for all Xpra instances it serves.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 44

 4.3.2: Low Scoring Extended Scheduling

 Figure 4.5: FPS vs Time for Low Scale Extended Scheduling scenario

 Figure

 4.6: Quality vs Time for Low Scale Extended Scheduling scenario

 As shown by the graphs above, each of the w1, w2 and w3 resulted in an average of

 92.21, 66.07 and 23.87 FPS respectively, while they landed 82.92, 55.68 and 44.77 on

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 45

 the average Quality. From the total executions of this scenario, the proposed framework

 with a low scaling scoring achieves a 72.11 on average FPS and 67.48 on average

 Quality for all Xpra instances it serves.

 4.3.3: Medium Scoring Extended Scheduling

 Figure 4.7: FPS vs Time for Medium Scale Extended Scheduling scenario

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 46

 Figure 4.8: Quality vs Time for Medium Scale Extended Scheduling scenario

 Now participating only in w1 and w2, the above graph displays an average of 94.67 and

 37.20 FPS respectively, and the average Quality reaches 87.48 and 78.23. From the

 total executions of this scenario, the proposed framework with a medium scale scoring

 reaches 72.11 on average FPS and 67.48 on average Quality for all Xpra instances it

 serves.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 47

 4.3.4: High Scoring Extended Scheduling

 Figure 4.9: FPS vs Time for High Scale Extended Scheduling scenario

 Figure 4.10: Quality vs Time for High Scale Extended Scheduling scenario

 On the highest tested evaluation scenario with only w1 undertaking instances, all traffic

 passes through him. The above graph shows 80.77 on average FPS, and the average

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 48

 Quality is 77.75. These numbers on absolute value are lower than the results previously

 shown from w1 with the minimum latency, but the proposed framework system overall

 presents an increase.

 4.3.5: Evaluation Results

 Below are displayed the collected values for average FPS and average Quality from the

 totality of evaluation scenarios and experiments.

 Scheduling/Metric FPS Quality

 Native 64.42 61.48

 Low Scale Extended 72.11 67.48

 Medium Scale Extended 75.52 84.40

 High Scale Extended 80.77 77.75

 Table 1.1: Overall System outputs for Native and Extended Scheduling

 The above measurements show a promising evaluation for the proposed framework

 because it displays a relative increase on every single scenario for both FPS and

 Quality metrics. The interesting thing to discuss from the results is the peak on average

 Quality with a medium scale scoring while the average FPS for the same scenario

 remains lower than the high scale scenario. This is a drawback for CPU intensive work

 a single node has to make in the high scale scenario which results in a least optimal

 solution for Quality but still the most effective for FPS increase.

 Scheduling/Metric FPS Quality

 Low Scale Extended 11.9% 9.8%

 Medium Scale Extended 17.2% 37.3%

 High Scale Extended 25.4% 26.5%

 Table 1.2: Extended Scheduling evaluation of the Proposed Framework

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 49

 CHAPTER 5: CONCLUSION

 5.1: Outputs and Contribution

 Summarizing this master thesis, a full implementation of an orchestrated cluster system

 was presented. The existing RET system was successfully transitioned to a distributed

 containerized system and all challenges regarding the implementation within the

 Testbed infrastructure were addressed. The developed system is not only able to serve

 containerized GUI applications to clients on LAN but also achieves this in a cloud

 oriented manner. The proposed framework of the current thesis is completed with the

 addition of Latency-Aware extension for the native Kubernetes scheduling workflow,

 targeting the general improvement of Quality of Service attributes, which was achieved.

 The distributed Remote Desktop Control applications of interest, are scheduled to be

 hosted on nodes based on a latency related prioritization, acquiring the best possible

 network link between worker and client. The proposed framework and scoring algorithm

 is evaluated resulting in positive and promising improvements on Quality of Service.

 5.2: Future Work

 Various techniques and concepts offer an interesting view towards improving and

 extending the proposed framework of the current work. A major update can be the

 development of a recurring latency monitoring daemon which is constantly updated for

 client-worker network links and works in a stateful approach, adding or deleting recent

 clients on its runtime memory. In that context, it would be very interesting to implement a

 rescheduling mechanism from either on demand latency measurements or the

 mentioned recurring latency monitoring. This would allow the adaptability of the system

 in case a worker node suffers from a failure or network deprivation, or in case a client

 changes his network conditions. If experimentation with a real cloud provider, many

 reconfigurations and adjustments should be done to the system according to the cloud

 infrastructure. This could potentially pave the road to substitute current ClusterIP

 services with LoadBalancer services and work on load balancing algorithms and

 mechanisms, rather than or alongside scheduling extensions.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

 50

 References

 J. Santos, T. Wauters, B. Volckaert and F. De Turck, "Towards Network-Aware Resource

 Provisioning in Kubernetes for Fog Computing Applications," 2019 IEEE

 Conference on Network Softwarization (NetSoft), Paris, France, 2019, pp.

 351-359, doi: 10.1109/NETSOFT.2019.8806671.

 A. Marchese and O. Tomarchio, "Network-Aware Container Placement in Cloud-Edge

 Kubernetes Clusters," 2022 22nd IEEE International Symposium on Cluster,

 Cloud and Internet Computing (CCGrid), Taormina, Italy, 2022, pp. 859-865, doi:

 10.1109/CCGrid54584.2022.00102.

Institutional Repository - Library & Information Centre - University of Thessaly
03/06/2024 13:09:10 EEST - 18.191.130.254

