
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Implementation of a mechanism for joint central frequency,

bandwidth and station association in WiFi networks

Diploma Thesis

Grigorios Iliadis

Supervisor: Athanasios Korakis

Month 2022

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Implementation of a mechanism for joint central frequency,

bandwidth and station association in WiFi networks

Diploma Thesis

Grigorios Iliadis

Supervisor: Athanasios Korakis

Month 2022

iii
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Υλοποίηση μηχανισμού για την από κοινού επιλογή

κεντρικής συχνότητας, εύρους και συσχετισμού σταθμών σε

ασύρματα δίκτυα WiFi

Διπλωματική Εργασία

Γρηγόριος Ηλιάδης

Επιβλέπων/πουσα: Αθανάσιος Κοράκης

Μήνας 2022

v
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Approved by the Examination Committee:

Supervisor Athanasios Korakis

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

Member Antonios Argyriou

Associate professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member Dimitrios Bargiotas

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

vii
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Acknowledgements

I want to thank my parents, Dionysios and Zoi, as well as my friends, for their inspiration

and support during my academic career.

I want to thank Professor Athanasios Korakis, my supervisor, for giving me the chance

to interact with a research setting that involves cutting-edge studies.

I also want to express my gratitude to Senior Researcher and Postdoctoral Ilias Syrigos,

who was constantly available to me, guiding and nourishing me with insightful counsel and

aiding me in overcoming the roadblocks I experienced in my projects.

I also want to express my sincere gratitude to Professor Dimitrios Bargiotas and Associate

Professor Antonios Argyriou as members on the committee that reviewed my thesis.

ix
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Grigorios Iliadis

xi
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

xii Abstract

Diploma Thesis

Implementation of a mechanism for joint central frequency, bandwidth

and station association in WiFi networks

Grigorios Iliadis

Abstract

With the growing demand for high-speed internet, the need for efficient and effective WiFi

networks has also increased. One of the critical aspects of a WiFi network is its ability to

handle multiple users and provide seamless handover between Access Points. In this context,

the implementation of a mechanism for joint selection of central frequency, bandwidth, and

station association in WiFi networks can bring significant benefits. This mechanism aims to

enable seamless handover of stations proactively and provide better load balancing, thereby

maximizing the throughput of Stations. Especially we use the 802.11ac WiFi protocol which

is one of the latest versions with significantly increased data transfer rates. This protocol op-

erates on the 5GHz frequency band, which provides more bandwidth than the 2.4GHz band

used by previous WiFi protocols. Also we introduce Deep Q Learning (DQN) algorithm in

order to achieve load balancing, which is a critical aspect of efficient WiFi network design.

With the current WiFi network design, load balancing is done manually, leading to inefficient

use of resources and decreased throughput. The above mechanism uses machine learning al-

gorithm to analyze network traffic and allocate resources dynamically, such as proper channel

selection in 5GHz band. The machine learning algorithm is trained with data collected from

metrics of the wireless card drivers in Access Points. To validate and evaluate our work in

a real environment, we utilize the NITOS Testbed to deploy a simple WiFi topology of two

Access Points (AP) and four Stations (STA) and we examine different association scenarios

between them. This architecture uses a back haul node (BH) in which machine learning and

a python3 application server is deployed in order achieve communication between access

points and back haul node for data collection. This gives the advantage of remote control

of the network. Experiments happened in real-world environments and with the use of sim-

ulation tool. Our results denote that stations can be efficiently distributed among available

channels, while the near-future traffic can be effectively forecast using our Machine Learning

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Abstract xiii

approach.

Keywords:
WiFi, Deep Q Learning (DQN), 802.11ac, load balancing (LB), seamless handover

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

xiv Περίληψη

Διπλωματική Εργασία

Υλοποίηση μηχανισμού για την από κοινού επιλογή κεντρικής

συχνότητας, εύρους και συσχετισμού σταθμών σε ασύρματα δίκτυα

WiFi

Γρηγόριος Ηλιάδης

Περίληψη

Με την αυξανόμενη ζήτηση για υψηλής ταχύτητας ίντερνετ, η ανάγκη για αποτελεσμα-

τικά και αποδοτικά δίκτυα WiFi έχει αυξηθεί επίσης. Ένα από τα κρίσιμα στοιχεία ενός δι-

κτύου WiFi είναι η δυνατότητά του να χειρίζεται πολλαπλούς χρήστες και να παρέχει απρό-

σκοπτη μετάβαση ανάμεσα στα σημεία πρόσβασης. Σε αυτό το πλαίσιο, η εφαρμογή ενός

μηχανισμού για την από κοινού επιλογή κεντρικής συχνότητας, εύρους ζώνης και σύνδε-

σης σταθμών σε δίκτυα WiFi μπορεί να φέρει σημαντικά οφέλη. Ο συγκεκριμένος μηχα-

νισμός αποσκοπεί στην επιτροπή απρόσκοπτης μετάβασης των σταθμών και στη βελτίωση

της ισορροπίας φόρτου, επιτυγχάνοντας έτσι τη μέγιστη επίδοση των σταθμών. Ειδικότερα,

χρησιμοποιούμε το πρωτόκολλο WiFi 802.11ac το οποίο είναι μία από τις πιο πρόσφατες

εκδόσεις με σημαντικά αυξημένες ταχύτητες μεταφοράς δεδομένων. Αυτό το πρωτόκολλο

λειτουργεί στη ζώνη συχνοτήτων των 5GHz, που παρέχει περισσότερο εύρος ζώνης από τη

ζώνη συχνοτήτων των 2,4GHz που χρησιμοποιούνται από προηγούμενα πρωτόκολλα WiFi.

Επίσης, εισάγουμε τον αλγόριθμο Deep Q Learning (DQN) για να επιτύχουμε την ισορρο-

πία φόρτου, που αποτελεί ένα κρίσιμο στοιχείο του αποδοτικού σχεδιασμού των δικτύων

WiFi. Με τον τρέχοντα σχεδιασμό δικτύου WiFi, η ισορροπία φόρτου γίνεται χειροκίνητα,

οδηγώντας σε ανεπαρκή χρήση πόρων και μειωμένες ταχυτήτες. Ο παραπάνω μηχανισμός

χρησιμοποιεί αλγόριθμο μηχανικής μάθησης για την ανάλυση της κίνησης στο δίκτυο και

τη δυναμική κατανομή πόρων, όπως η κατάλληλη επιλογή καναλιού στη ζώνη των 5GHz.

Ο αλγόριθμος μηχανικής μάθησης εκπαιδεύεται με δεδομένα που συλλέγονται από μετρικές

των drivers των ασυρμάτων καρτών δικτύου στα Access Points (AP). Για να επικυρώσουμε

και να αξιολογήσουμε τη δουλειά μας σε ένα πραγματικό περιβάλλον, χρησιμοποιούμε το

NITOS Testbed για να αναπτύξουμε μια απλή τοπολογία WiFi με δύο Access Points (AP)

και τέσσερεις Stations (STA) και εξετάζουμε διαφορετικά σενάρια συνδεσιμότητας μεταξύ

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Περίληψη xv

τους. Αυτή η αρχιτεκτονική χρησιμοποιεί έναν back haul (BH) κόμβο στον οποίο είναι εγκα-

τεστημένος ο αλγόριθμος μηχανικής μάθησης και ένας application server σε python3, προ-

κειμένου να επιτευχθεί η επικοινωνία μεταξύ των Access Points και του back haul κόμβου

για τη συλλογή δεδομένων. Αυτό προσφέρει το πλεονέκτημα του απομακρυσμένου ελέγχου

του δικτύου. Τα πειράματα πραγματοποιήθηκαν σε πραγματικά περιβάλλοντα αλλα και με

τη χρήση εργαλείου προσομοίωσης. Τα αποτελέσματά μας δείχνουν ότι οι stations μπορούν

να διανεμηθούν αποτελεσματικά μεταξύ των διαθέσιμων καναλιών, ενώ η κίνηση στο μέλ-

λον μπορεί να προβλεφθεί αποτελεσματικά χρησιμοποιώντας την προσέγγιση της μηχανικής

μάθησης.

Λέξεις-κλειδιά:
WiFi, Deep Q Learning (DQN), 802.11ac, ισσοροπία φορτίου, απρόσκοπτη μετακίνηση

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiv

Table of contents xvii

List of figures xxi

Abbreviations xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis subject . 2

1.2.1 Contribution . 3

1.3 Content Organization of Thesis . 3

2 WiFi Protocols 5

2.1 WiFi protocols previous to 802.11ac . 5

2.2 802.11ac WiFi Features . 6

2.2.1 Comparison with Previous WiFi Protocols 7

2.3 IEEE 802.11r standard . 8

2.3.1 Relation between 802.11ac and 802.11r protocols 9

3 Client steering mechanism 11

3.1 Default association process in WiFi . 11

3.1.1 Comparison with client steering mechanism 12

xvii
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

xviii Table of contents

3.2 Re-association process . 12

3.2.1 Summary . 15

4 Reinforcement Learning 17

4.1 Introduction . 17

4.2 Deep Q Learning . 18

4.3 Deep Q Learning approach in WiFi association 18

4.3.1 802.11 Association Frame . 18

4.3.2 802.11ac Association Criterias . 19

4.3.3 DQN comparison with default association frame 20

4.4 DQN algorithm presentation . 21

4.4.1 class STA . 21

4.4.2 class AP . 22

4.4.3 class ApEnv . 25

4.4.4 class DQNAgent . 31

5 Experimental Tools 37

5.1 Introduction . 37

5.2 NITOS testbed . 37

5.2.1 Outdoor Testbed . 38

5.2.2 Indoor Testbed . 38

5.2.3 Office Testbed . 39

5.3 ath10k driver . 40

5.4 Iperf3 . 40

5.5 Wireshark . 41

5.6 Chapter Conclusion . 41

6 Experimental WiFi Network Topology and DQN evaluation 43

6.1 Experimental WiFi Network Topology . 43

6.1.1 Data Collection . 45

6.2 DQN training . 47

6.2.1 Off-line training . 47

6.2.2 On-line training . 52

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Table of contents xix

7 Conclusions 53

7.1 Summary and Conclusions . 53

7.2 Future Work . 54

Bibliography 55

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

List of figures

2.1 WiFi Standards . 6

2.2 SU MIMO vs MU MIMO . 8

3.1 Client steering mechanism . 16

5.1 Nitos Architecture . 38

5.2 Nitos Outdoor testbed . 39

5.3 Nitos Indoor testbed . 39

5.4 Nitos Office testbed . 40

6.1 Experimental WiFi Network Topology . 43

6.2 DQN Agent average achieved throughput 50

6.3 DQN Agent average steps per episode . 51

6.4 DQN Agent minimum and average reward 51

xxi
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Abbreviations

AES-CCMP AES-Counter Mode CBC-MAC Protocol

AP Access Point

BH Back Haul

BSS Basic Service Set

BSSID Basic Service Set Identifier

CERTH Centre for Research and development Hellas (CERTH)

CSA Channel Switch Announcement

CSM Client Steering Mechanism

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DQN Deep Q Network

FT Fast BSS Transition

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

LB Load Balancing

ML Machine Learning

MPD Markov Desision Tree

NITlab Network Implementation Testbed Laboratory

NITOS Network Implementation using Open-Source software

OMF Control and Management Framework

QoS Quality of Service

RL Reinforcement Learning

RSSI Received Signal Strength Indicator

TCP Transmission Control Protocol

MIMO Multiple-Input Multiple-Output

xxiii
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

xxiv List of figures

MUMIMO Multiple-User Multiple-Input Multiple-Output

SSID Service Set Identifier

SSL Secure Sockets Layer

STA Station

SU MIMO Single-User Multiple-Input Multiple-Output

TLS Transport Layer Security

UDP User Datagram Protocol

WiFi Wireless Fidelity

WPA2 Wi-Fi Protected Access 2

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Chapter 1

Introduction

1.1 Motivation

The demand for fast and reliable access to the internet through wireless networks from

a constantly growing number of users and devices highlight them as a crucial part of our

daily lives. At the same time new challenges arise facing problems related to the seamless

and efficient operation of wireless networks.

Congestion is one major problem that affects WiFi networks because of the increasing

number of devices connected to the internet. The consequences are saturation of the avail-

able bandwidth, latency issues, slow speeds and unstable connections with periodically dis-

connections. As solutions in congestion problems are preferred the upgrading of network

infrastructure, limitation in number of users as long with the application of Quality of Ser-

vice (QoS) politics in the network. Approaches like this aim to prioritize traffic, or implement

bandwidth throttling to limit the amount of bandwidth that can be used by individual devices

or applications.

The limited range of WiFi networks can also be a problem especially in large buildings or

outdoor areas. Several factors determine the range of networks such as transmission power

of Access Points , antenna design and surrounding obstacles. Network administrators often

use spectrum analyzing tools to examine the coverage area and equip the network with range

extenders or resort to mesh network topology with multiple Access Points for seamless cov-

erage over a larger area.

At last but not least WiFi networks operate transmissions in unlicensed bands where a

variety of other devices can also operate especially in houses and public areas, such as cord-

1
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

2 Chapter 1. Introduction

less phones, Bluetooth devices, and microwave oven. This is a major drawback in network

performance because it can not be controlled by the network designers. They can only take

measures for minimizing interference like appropriate channel selection using spectrum an-

alyzing equipment to detect the source of interference and more advanced antennas less vul-

nerable to interference.

1.2 Thesis subject

The ability of a network to handle efficiently multiple users and to provide seamless han-

dover between Access Points especially in mobility scenarios is critical aspect. Given that

fact we implement a mechanism for joint central frequency, bandwidth, and station asso-

ciation in WiFi networks which focuses on maximizing throughput for stations with load

balancing techniques and proactively handover of stations. Consequently we will examine

the benefits of a mechanism like this which is based on mobilization of Machine Learning

for optimization load balancing and resource allocation problems.

A significant advantage of joint mechanism is that allows the efficient use of the avail-

able bandwidth and as a result decreases the interference and maximizes the performance of

stations. It ensures that Access Points operate on different frequencies and adjusts channel

bandwidth and central frequency dynamically in contrast with the current design of the WiFi

networks where Access Points often operate in same frequencies and use fixed channels to

transmit.

One other aspect of the above mechanism, especially useful in large public spaces such as

airports, malls, train stations etc, is seamless handover of station between Access Points with-

out momentarily disconnection of stations. In contrary with applicable mechanism for Access

Point selection which is based on signal strength and by extension distance fromAccess Point

our implementation allows to associate stations proactively. Taking into advantage the global

knowledge of the network, the centralized approach it can be useful in load balancing and

allows proactive re-associations which are critical especially in movement scenarios.

Finally centralized network designmakes it possible to introduceMachine Learning (ML)

in our mechanism for detecting patterns and taking actions such as station association. Load

balancing in current WiFi networks is difficult because of the frequent changes in network

state and the external interference. Machine learning algorithms are powerful and capable

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

1.2.1 Contribution 3

with proper modeling of network to analyze traffic and allocate resources dynamically in

never seen before ways. It is important to mention that we train our algorithm at first offline

in simulation environment and then online in a real WiFi topology with multiple Access

Points and stations.

1.2.1 Contribution

In this section we present numerically the actions and methodologies of this thesis which

are solving the problems we promised in the previous union:

1. Brief presentation of the previous WiFi protocols compared to the 802.11ac

2. Examine the features of the 802.11ac which is used in our implementation.

3. Analyze the capabilities of 802.11r protocol which gives the ability to stations to switch

between access points without the need for a complete re-association process.

4. Implementation of the client steeringmechanism in order to achieve seamless re-association

of station between our network’s access points.

5. Introduction of the Reinforcement Learning algorithm and examination of different

application approaches.

6. Examination of the data collection process from the Ath10k driver metrics and synthe-

sis process of the data set used for algorithm training.

7. Implementation of the Deep Q Learning algorithm.

8. Off-line algorithm training with simulation data.

9. Nitos testbed wireless WiFi network topology construction and DQN algorithm online

training and experimentation with different association scenarios.

10. Evaluation of DQN algorithm

1.3 Content Organization of Thesis

This Thesis is divided into seven chapters. In chapter 2 we present the evolution of WiFi

protocols up to the 802.11ac protocol which is used in our implementation. In chapter 3 the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4 Chapter 1. Introduction

default station association process in WiFi is shown and is compared with the client steering

mechanism proposed for seamless handover between Access Points. Chapter 4 consists of

an introduction to Reinforcement Learning (RL) and presentation of Deep Q Learning Al-

gorithm (DQN) which is proposed in this thesis. All the experimental tools used to exploit

our implementation are shown in chapter 5. In chapter 6 we present the experimental topol-

ogy exploited in NITOS Tesbed and we evaluate the DQN algorithm performance. Finally,

an overall evaluation of the proposed mechanism and future work prospects are discussed in

chapter 7.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Chapter 2

WiFi Protocols

2.1 WiFi protocols previous to 802.11ac

WiFi, or wireless fidelity, is a popular wireless communication technology used for con-

necting devices to the internet or local networks without the need for cables. The first WiFi

protocol was released in 1997, and since then, there have been several updates and improve-

ments to the technology, each with its own set of characteristics.

In 1999 twoWiFi protocols were released. The first protocol that used 5GHz band was the

802.11a, which achieved higher speeds relative to previous technologies approximately up to

54 Mbps and aimed to performance improvement for multimedia applications, such as video

streaming and gaming. Even though it had advantages especially because it operated on a less

congested frequency band, which meant that it was less susceptible to interference from other

devices, it could not penetrate through walls and other obstacles. That lead to shorter range

compared to other technologies that operated in 2.4GHZ band. Τhen the 802.11b protocol was

introduced which used the 2.4GHz band. This protocol despite achieving lower speed rates,

approximately at 11Mbps, had better performance in terms of penetration through obstacles

and transmission range. In addition with compatibility with existing hardware became the

most commercial WiFi protocol for homes, businesses, and public spaces.

They followed two more protocol releases. In year 2003 802.11g was released which

used the 2.4GHz band and despite it achieved speeds same with 802.11a protocol was only

compatible with 802.11b. Among the advantages compared with 802.11a was larger range

and penetration capabilities through walls and natural obstacles. However on the downsides

it was still vulnerable in interference from other devices that operate in the same frequency

5
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

6 Chapter 2. WiFi Protocols

band. Then in year 2009 a significantly improved protocol compared to the previous was re-

leased. This was 802.11n and achieved transmission rates up to 600 Mbps, i.e ten times more

than the previous 802.11a and 802.11g, with the use of both frequency bands of 2.4GHz and

5GHz. Alongside in this protocol MIMO (multiple-input and multiple-output) technology

was introduced, which allowed for the use of multiple antennas to improve data throughput

and range. Also it is improved in terms of error correction and interference resistance from

other devices. Finally it was compatible with the previous WiFi protocols and so it was ap-

plicable in devices operating with 802.11a-b-g which had as result the wide use of it and

significant upgrade of existing wireless networks without large cost.

Figure 2.1: WiFi Standards

2.2 802.11ac WiFi Features

The most recent and advanced WiFI protocol is 802.11ac, which offers new features and

improvements compared to previous protocol versions. In this section, we will explore the

features of 802.11.ac WiFi and compare it with its predecessors. Below we collocate some

of the most important 802.11.ac WiFi Features:

1. Increased Data Transfer Rates: Αchievement increased data transfer rates, aspect that

makes it ideal for applications that require high-speed internet such as video streaming

and online gaming, is due to operation in 5GHz frequency band. This band provides

more bandwidth than the 2.4GHz band with channels that can be 20 MHz, 40 MHz, 80

MHz, and 160 MHz wide.

2. Multi-User MIMO (MU-MIMO): The use of this technology makes it possible for

multiple devices to simultaneous receive data from a single access point, negating the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

2.2.1 Comparison with Previous WiFi Protocols 7

need for devices to shift while accessing the network. Also allows synchronous data

transmission in multiple devices which reduces the congestion of the network and im-

proves overall throughput. Areas with high traffic (e.g. airports, shopping malls and

universities) can benefit the most from this mode.

3. Beamforming: This technology allows access points to direct wireless signals to spe-

cific devices, improving signal strength and reducing interference. Beamforming is

particularly useful in large spaces where access points need to provide coverage to a

large number of devices.

4. Improved Security: 802.11.ac WiFi also provides improved security features over pre-

vious protocols. This protocol supports the latest encryption standards, includingWPA2

andAES-CCMP, which provide enhanced security for wireless networks. Additionally,

802.11.ac WiFi allows for the use of certificate-based authentication, which ensures

that only authorized devices can connect to the network.

5. Backward Compatibility: One of the significant advantages of 802.11.ac WiFi is its

backward compatibility with previousWiFi protocols. Devices that use older protocols,

such as 802.11a, b, g, and n, can still connect to an 802.11.ac network. However, the

data transfer rates for these devices will be limited to the capabilities of their respective

protocols.

2.2.1 Comparison with Previous WiFi Protocols

The 802.11ac protocol first of all with MU-MIMO technology achieves to restrict net-

works congestion and improve overall throughput giving the ability in multiple devices to

transmit simultaneously. It is an innovative feature, in comparison with previous protocols,

which support only Single-User MIMO (SU-MIMO), i.e. only one device at a time to trans-

mit data. In addition, in regard to Beamforming, the 802.11ac WiFi protocol provides more

complex Beamforming capabilities, advanced in comparison with 802.11n in which Beam-

forming was also available, because it allows in access points to direct signal wireless in

specific devices. Finally, excels in data transfer rates due to the use of the 5 GHz frequency

band, which provides more bandwidth than the 2.4 GHz band used in previous protocols. So,

802.11ac can approach theoretically as a maximum data transfer rate 6.77 Gbps, exceeding

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

8 Chapter 2. WiFi Protocols

by far the 600 Mbps, which are listed as the maximum theoretical data transfer rate for the

802.11n.

Figure 2.2: SU MIMO vs MU MIMO

2.3 IEEE 802.11r standard

The IEEE 802.11r standard, also known as Fast BSS Transition (FT), is an evolution of

the previous protocols in terms of providing enhanced roaming capabilities and is useful in

wireless application because guarantees in users uninterrupted network connectivity. It was

developed to overcome the problems of slow access and loss of connectivity inWiFi networks

during roaming procedure of mobile devices between access points, due to the requirement

of a full re-association process with the new access point. In other words when a device

moves towards a new access point traditionally must resubmitted the to the complete time-

consuming authentication and security handshake process.

Indeed with the 802.11r standard the goal of more efficient and faster roaming process

was achieved as devices now can switch between access points without undergoing full re-

association process. Fast BSS Transition (FT) is the technique that allows in a device to

quickly switch to a new access point when moving out of the range of the associated ac-

cess point without performing a complete re-association process. This is possible with pre-

authentication of the device with the new access point while it is still connected to the current

access point.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

2.3.1 Relation between 802.11ac and 802.11r protocols 9

It is also important to mention that 802.11r contributed significantly to improvement of

the overall performance of the wireless network. Provides seamless and secure roaming ex-

perience for users minimizing the time it takes for a device to roam between access points.

As a consequence it helps to minimize disruptions in network services and reduces network

congestion by enabling devices to quickly connect to an available access point, reducing the

load on congested access points.

2.3.1 Relation between 802.11ac and 802.11r protocols

While the two protocols serve different purposes, they can work together to improve over-

all wireless network performance. For example, when a mobile device with IEEE 802.11ac

capabilities roams between access points that support IEEE 802.11r, it can benefit from the

seamless and secure handover provided by 802.11r, resulting in uninterrupted network con-

nectivity and a better user experience.

In addition, the higher data transfer rates and improved performance provided by IEEE

802.11ac can help to support more simultaneous connections, reducing network congestion

and enabling more devices to connect to the network. This can be especially important in

high-density WiFi environments such as airports, stadiums, and other public venues.

Overall, in our implementation we take advantage of 802.11r capabilities in order to im-

plement a client (station) steeringmechanism. Thismechanism ensures seamless re-association

of stations between network’s access points.Wewill examine analytically the implementation

of client steering mechanism in the following chapter.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Chapter 3

Client steering mechanism

3.1 Default association process in WiFi

In this section we will describe the default association process of a station in case where

multiple access points are available, because that is the main characteristic of WiFi network

topology examined in this thesis. The factors that determine access point selection is signal

strength, quality and load of the available access points, as well as the predefined roaming

criteria in order to ensure that the station connects to the access point that provides the best

wireless connection.

This process involves the following steps:

1. Scanning: At first the station performs a periodic scan of the available access points,

by sending probe request frames containing the SSID of the target network. Then the

station listens for probe response frames from access points within range that match

the SSID.

2. Signal strength and quality: The station measures the signal strength and quality of the

probe response frames received from each access point, because these are important

factors in determining available access point with the best wireless connection.

3. Authentication and association: After selecting the access point with the strongest sig-

nal and highest quality station sends an authentication request frame. Then if the au-

thentication request is accepted by the access point, the station sends an association

request frame to connect to it.

11
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

12 Chapter 3. Client steering mechanism

4. Connection quality monitoring: After establishing association the station continuously

monitors the quality of the wireless connection. In case where the signal strength and

quality of the connection is decreased, the station will probably decided to roam to a

different access point with a stronger signal.

5. Roaming decision: There is a set of predefined criteria, such as the signal strength,

quality, load of the current access point and neighboring access points, that influence

the station decision to roam. In case where the station detects an available access point

with potentially better performance, it will trigger re-association process by discon-

necting from the current access point and connecting to the new one.

3.1.1 Comparison with client steering mechanism

The abovemechanismmain characteristic is that is triggered from the station’s side. How-

ever in our approach we want to proactively trigger this process from a centralized network

administration system in order to achieve better load balancing exploiting the holistic super-

vision of the WiFi network. So, the client steering mechanism we propose in the following

section mimics the above process in order to achieve seamless re-association without affect-

ing the station’s connection.

3.2 Re-association process

We refer the re-association process as client steering because the centralized network

controller, with use of Machine Learning, decides to move stations from one access point

(AP) to one other in order to achieve better load balancing and maximize total throughput of

stations. Below we will describe the details of the process.

Before diving into the details of the scripts, it’s important to have an overview of the re-

association mechanism. The purpose of this mechanism is to allow a station (client device)

to switch from one access point (AP) to another without disrupting the user’s network con-

nection. This is achieved by performing a ”soft” handover, where the station first associates

with the new acess point and then disassociates from the old one. To accomplish this, the re-

association mechanism uses a feature called ”Concurrent Service Advertisement” (CSA) in

IEEE 802.11 networks. CSA allows the new AP to advertise its presence to the station before

the station disassociates from the old access point. This gives the station time to prepare for

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

3.2 Re-association process 13

the handover and avoid any disruption to the network connection. Be default CSA messages

are used when an access point changes central frequency and wants to let stations now the

new central frequency in order to keep up with it. However in our implementation the access

point sends CSA message without changing central frequency and the new central frequency

is of one other access point. In that way the station moves unaware to one other access point.

Also, in the default channel switch process the CSA message is broadcast so all stations con-

nected to the AP can receive it and after some beacon time intervals all stations move to the

new central frequency where the AP declares in the CSA messages. In our implementation

the CSA message is unicast and only the one station we want to steer receives it.

At first we will describe a simplistic topology of tow access points and one station in

order to explain the basic steps of the client steering mechanism. The topology consists of

tow access points, one station already connected to one of them and one back haul node from

whomwe send ip traffic towards the station. Both access points, station and back haul node are

hosted on different NITOS indoor testbed nodes. We assume that station is initially connected

to AP hosted on node063, with mac ”00:03:1d:0d:bc:81”, and the other AP is hosted on

node075 with mac ”00:03:1d:0d:bc:9b”. In both access points we set up bridge interfaces,

which connect two different interfaces (bridge ports). Bridging two interfaces causes every

Ethernet frame that is received on one bridge port to be transmitted to the other port. Thus,

the two bridge ports participate in the same Broadcast domain. In our case the bridge is a

connection of Ethernet interface of the access point with the Wireless interface. The wireless

interface has the same mac for both access points but the Ethernet have different in order the

back haul, in our scripts named as node060, can direct the traffic properly among the access

points. So the mac addresses mentioned above refer to the Ethernet interface of each access

point. From now on we refer to the AP on node 063 as source AP and to the AP on node 075

as target AP, because our goal is to move the station to the second AP without interrupting

the connection.

The client steering mechanism contains three bash scripts and one python script. The

main bash script which triggers the re-association process is the client_steering.sh and is

executed from the nitlab3 server which has direct access to the name space of the nodes

described above. From that script the tow additional bash scripts target.sh and source.sh

are executed remotely with use of ssh commands. The first is executed in target AP’s terminal

and the second in the source AP, where the station is already connected. Below we appose

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

14 Chapter 3. Client steering mechanism

the three bash scripts.

1 source=$1

2 target=$2

3 mac=$3

4 node3=”node060”

5

6 if [$source -eq ’36’]

7 then

8 node1=”node063”

9 node2=”node075”

10 targetMAC=”00:03:1d:0d:bc:9b”

11 else

12 node1=”node075”

13 node2=”node063”

14 targetMAC=”00:03:1d:0d:bc:81”

15 fi

16

17 ssh root@$node2 ”/bin/bash -s ’$mac’” <./target.sh

18 (ssh root@$node1 ”/bin/bash -s ’$mac $target’” <./source.sh) &> /dev/null

19 ssh root@$node3 ”arp -s 192.168.2.3 ’$targetMAC’”

Listing 3.1: client_steering.sh

1 mac=$(echo ”$1” | head -n1 | awk ’{print $1;}’)

2 echo $mac

3

4 python3 CSA.py $1

5 /root/hostapd-2.6-csa/hostapd/hostapd_cli disassociate $mac

6 echo hw-restart > /sys/kernel/debug/ieee80211/phy0/ath10k/

simulate_fw_crash

Listing 3.2: source.sh

1 /root/hostapd-2.6-csa/hostapd/hostapd_cli new_sta $1 /root/assoc.txt

Listing 3.3: target.sh

The first step of the steering process is to add manually in the target AP, with the use of

hostapd commands, the association request of the station we want to move so the target AP

is aware of the new station’s state and capabilities. For that purpose the hostapd source code

is modified so it takes as argument in the new_sta command the mac address of the station

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

3.2.1 Summary 15

and an association request identical with the one that station does when he enters the network.

The assoc.txt in target.sh script is a part of the association request of the station. We make

a replica of the association request by capturing one when station enters the network, then

we isolate the capabilities of the station and we update them manually in the target AP with

hostapd_cli. In that way the process of exchanging probe request and probe response frames

is bypassed.

The second step of the client steering process takes place in the source AP. There we exe-

cute the CSA.py script in order to inform the station for central frequency switch. The script

is written in Python and uses the scapy library to craft and send wireless packets. The purpose

of the script is to send a unicast Channel Switch Announcement (CSA) to a particular station

(identified by its MAC address) on a specific channel. The CSA packet is constructed with

various parameters such as BSSID, SSID, and the new channel to switch to. The CSA packet

is then sent using the scapy library’s sendp() function. Also we disassociate the station from

the source AP. Finally, the script simulates a firmware crash on the WiFi card by writing the

stringhw_restart to the /sys/kernel/debug/ieee80211/phy0/ath10k/simulate_fw_crash

file.

One other thing to mention is that we have to update the back haul node’s arp table after

the channel switch. The back haul node sends ip traffic, with iperf3 connection between it

self and station connected in the source AP. At first the back haul node knows that station is in

source AP so the traffic is send with destination the mac of the bridge (Ethernet) interface of

source AP. After client steering the station changes to target AP and we must update the arp

table of the back haul node. The mac which is related with the station must now be associated

with the bridge (Ethernet) interface of target AP and the traffic to be send through target AP

in order to reach the station.

3.2.1 Summary

Overall, in the default channel switch process the APmoves to new central frequency and

then the stations move in the new frequency expecting to found the AP there. So we exploit

that and we send a similar CSAmessage declaring that after some beacon interval the AP will

move in the new central frequency. But in our implementation the message is unicast ,i.e. we

send it in one specific station, and the AP does not move in one other frequency. We already

know that in the new central frequency exists an AP with the same mac in which we have

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

16 Chapter 3. Client steering mechanism

previously added the state of the station we want to move, i.e. all the variables that declare

the capabilities of the station, the mac address of the station etc. The wireless interface of

all access points have the same mac, so the station can not recognize the switch and sends

the packets with same way as before. In this way we make the handover transparent.

Below there is a schematic depiction of the client steering process.

Figure 3.1: Client steering mechanism

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Chapter 4

Reinforcement Learning

4.1 Introduction

Machine learning is an enlarged field that contains a variety of techniques for building

intelligent systems. Although Reinforcement Learning is a sub field of machine learning

which involves, as many other techniques, training algorithms to learn from data there are

some key differences between them.

In other types of machine learning, like supervised learning, algorithms are trained on

labeled data sets that specify the correct output for each input. Instead Reinforcement Learn-

ing involves learning in an interactive environment with trial and error approach, where the

feedback may be delayed and noisy. In addition other types of machine learning, such as

unsupervised learning, may not include explicit decision making. Reinforcement Learning

however usually involves sequential decision making where the actions of an agent affect the

state of the environment, which afterwards affects the future reward that agent will receive.

Generally, Reinforcement Learning as technique is chosen in cases where the optimal solu-

tion is not sufficiently defined or changes with time, so the agent must constantly explore the

environment and adjust its behaviour in order to maximize the expected reward.

In summary, Reinforcement Learning is a powerful approach in designing intelligent sys-

tems which are deployed in dynamic and uncertain environments and there are capable to

learn from their own experience.

17
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

18 Chapter 4. Reinforcement Learning

4.2 Deep Q Learning

Deep Q-Learning is a reinforcement learning technique for estimating the optimal action-

value function in a Markov Decision Process (MDP), which represents the expected reward

for taking a specific action in a specific state so following the optimal policy afterwards.

In Deep Q-Learning a neural network, known as a Q-network, takes the state of the en-

vironment as input and outputs the expected reward for each possible action. During training

Q-network is updated by using a variation of bellman equation, which relates recursively the

value of a state-action pair to the expected value of the next state-action pair. However, one

drawback of Deep Q-Learning is that it can be unstable and prone to overestimating the value

of actions. Several modifications, such as Double Q-Learning and Prioritized Experience Re-

play, have been proposed to address these issues and improve the stability and convergence

of Deep Q-Learning.

In conclusion, Deep Q learning algorithms are capable of playing complex games and

controlling robotic systems by combing the the power of deep neural networks with the re-

inforcement learning framework. The list of successful application of DQN is expanding in

to a wide range, including playing Atari games, controlling robots, and optimizing energy

consumption in data centers.

4.3 Deep Q Learning approach in WiFi association

In WiFi topologies with multiple access points using Deep Q Learning for station associ-

ation can improve performance and accuracy as well as dynamic adaptation and scalability.

However, there are also potential drawbacks that must be carefully considered before im-

plementing this technique. So in the following sections we will discus the benefits and the

potential drawbacks of applying RL and DQN in order to optimize the association process in

WiFi topologies with multiple access points.

4.3.1 802.11 Association Frame

The default association process for a WiFi station in a topology with multiple access

points is relatively simple and is typically based on the signal strength of the access points.

This process is commonly referred to as the ”best signal” algorithm, as it simply selects the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4.3.2 802.11ac Association Criterias 19

access point with the strongest signal. Particularly, when aWiFi station searches for an access

point to associate with it will scan the area and collect information on the available access

points, including their signal strength, frequency, and other relevant details. Then the station

will evaluate the available access points and choose the one with the strongest signal strength.

While this process can be effective in many situations, it may not always result in the optimal

choice of access point, especially in complex environments with multiple access points and

competing factors, where may prove suitable more advanced algorithms, such as Deep Q

Learning, as they can take into account a broader range of factors and make more informed

association decisions.

4.3.2 802.11ac Association Criterias

In the 802.11ac protocol, the process of access point selection whenmultiple access points

are available is based on the concept of Basic Service Sets (BSS), which is the fundamental

building block of the 802.11 wireless network, and in the use of the 802.11k and 802.11v

standards.

Specifically, the basic service set (BSS) is a set of stations (e.g., clients and access points)

that communicate with each other directly and in amultiple access point environment each ac-

cess point forms its own BSS. In order to select the best access point, a WiFi station scans the

available BSSes and collects information on various parameters such as signal strength, chan-

nel quality, and data rate support, which is provided by the access points using the 802.11k

standard. Consequently evaluates the collected information and selects the best access point

based on the following criteria:

1. Received Signal Strength Indicator (RSSI): This metric measures the signal strength

between the station and the access point.

2. Channel Quality Indicator (CQI): This metric measures the quality of the channel be-

tween the station and the access point.

3. Data Rate Support: This metric measures the maximum data rate supported by each

access point.

4. Load Balancing: This metric balances the load across the available access points to

prevent any one access point from becoming overloaded. The station selects the access

point with the lowest number of connected clients.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

20 Chapter 4. Reinforcement Learning

5. Quality of Service (QoS): This metric ensures that the selected access point can provide

the required QoS for the station’s traffic.

Also the access point is able to provide additional information to the station, such as it’s

capabilities and available services, with the 802.11v standard. The process of access point

selection in the 802.11ac protocol is a more sophisticated and comprehensive approach than

the ”best signal” algorithm used in older protocols because it takes into account multiple

factors to make a more informed decision and provide a better user experience.

4.3.3 DQN comparison with default association frame

Using Deep Q Learning to predict the best association access point in a WiFi topology

with multiple access points offers several benefits compared to the 802.11ac protocol criteria.

1. Flexibility: Deep Q Learning can take into account a broader range of factors than the

802.11ac protocol criteria. For example, it can consider the number of clients connected

to each access point, the available bandwidth, and the traffic congestion on each access

point. This flexibility allows Deep Q Learning to adapt to changing network conditions

and make more informed decisions.

2. Optimization: Deep Q Learning can optimize the association decision for a specific

user or group of users, rather than just selecting the access point with the best signal

strength or channel quality. This can lead to a better user experience, particularly in

complex environments with multiple access points and competing factors.

3. Learning: DeepQLearning can learn from past experiences and improve its association

decisions over time. This means that it can adapt to changes in network conditions and

make more informed decisions based on past successes and failures.

4. Adaptability: Deep Q Learning can adapt to different network environments and sce-

narios, whereas the 802.11ac protocol criteria are based on fixed parameters that may

not be suitable for all situations.

5. Performance: Deep Q Learning can improve the overall performance of the network

by balancing the load across the available access points and reducing congestion. This

can lead to better network efficiency and faster data transfer rates.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4.4 DQN algorithm presentation 21

While the 802.11ac protocol criteria are effective inmany situations, they have limitations

and may not always result in the optimal choice of access point. Deep Q Learning can over-

come some of these limitations and provide a more advanced and comprehensive approach

to access point selection.

However, there are also some potential drawbacks to using Deep Q-Learning for WiFi

association:

1. Training Data: Deep Q-Learning requires a large amount of training data to learn ef-

fectively, which can be challenging to collect in WiFi environments.

2. Complexity: Deep Q-Learning is a complex algorithm that requires specialized exper-

tise to implement and optimize effectively.

3. Resource Requirements: Deep Q-Learning can require significant computational re-

sources, especially when dealing with large and complex WiFi topologies.

In summary, using Deep Q-Learning for WiFi association in topologies with multiple

access points can lead to improved performance and accuracy, as well as dynamic adaptation

and scalability. However, there are also potential drawbacks that must be carefully considered

before implementing this technique.

4.4 DQN algorithm presentation

The DQN algorithm is written in Python 3.8.10 and for the implementation of the neu-

ral network we use the Tensorflow library (tensorflow 2.11.0 version). In order to create

the data set which is used for training the algorithm we use the Pandas library. In our ap-

proach to model the association problem that shows up in an WiFi network with multiple

stations and multiple access points we introduce the following classes: STA, AP , ApEnv

and DQNAgent.

4.4.1 class STA

This class is used to monitor each station’s state. So we store the mac of the station, the

mac of the access point associated to, the requested throughput of the station and the achieved

throughput when is connected to the network.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

22 Chapter 4. Reinforcement Learning

1 class STA:

2 def __init__(self, mac, AP_mac):

3 self.mac = mac

4 self.AP_mac = AP_mac

5 self.req = 0

6 self.ach = 0

7

8 def set_req(self, req):

9 self.req = req

10

11 def set_ach(self, ach):

12 self.req = ach

13

14 def set_AP_mac(self, ap_mac):

15 self.AP_mac = ap_mac

16

17 def get_req(self):

18 return self.req

19

20 def get_ach(self):

21 return self.ach

22

23 def get_AP_mac(self):

24 return self.AP_mac

Listing 4.1: class STA

4.4.2 class AP

In order to capture the state of the access point we store its mac address and a list of

the stations connected to it. The list is updated dynamically with the functions add_sta and

rm_stas.

At every step the machine learning algorithm makes a choice corresponding to the pre-

vious state of the network. Every choice is related to a certain action for each access point,

which basically is the movement of a station from one access point to one other. The space of

actions contains twelve actions because in our modeling the network consists of tow access

points and the maximum number of stations that can be connected in each of them is three.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4.4.2 class AP 23

So for each station there are tow possible actions, e.g. one for moving to each access point.

The same action value is passed as an argument in function action for both access points at

every step and each one decides how to act. More specific if the actions declares a station

movement towards the access point the target station is added in the access point’s station

list and the function move is called in order to make the actual movement of the station in

the network. If the the station is already connected nothing happens and finally if the station

has to move to the other access point it is removed from the station’s list without calling the

move function because it is only called once from the target AP.

In the context of this thesis only to channels are available in the 5GHz band. One trans-

mits at the channel 36 with central frequency 5180 MHz and the other at channel 149 with

central frequency 5745 MHz. The client steering mechanism which has been described in

the previous chapter is triggered from the move function. The DQN algorithm runs remotely

in one of the NITOS testbed nodes and the node does not have access to the name space of

the other nodes where the access points are hosted. So the client_steering.sh script must be

called from the server which have access to the name space of all nodes. In order to achieve

synchronization between the execution in the server and the python script of the algorithmwe

use sshfs command to mount remote file system over ssh. In that way we use a common file

to create a semaphore alike functionality. It is important to notice that we can run the DQN

algorithm remotely, for example in our local computer, and is not necessary to be placed in

of the nodes. More detailed explanation of the experimental topology and the NITOS testbed

will follow in the next section.

The function new_sta is used to check if new stations have been connected to the AP

during the time interval between at every algorithm’s step. If a new station is detected it is

added in the station’s list but it will be declared as not associated until the first association

function that refers to it is taken. More about the process of detection a new station will be

explained also in the following section.

1 class AP:

2 choice_dict = {0: 1, 1: 2, 2: 1, 3: 2, 4: 1, 5: 2,

3 6: 1, 7: 2, 8: 1, 9: 2, 10: 1, 11: 2}

4

5 def __init__(self, mac, num):

6 self.mac = mac

7 self.num = num

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

24 Chapter 4. Reinforcement Learning

8 self.sta_list = []

9

10 def add_sta(self, sta):

11 sta.AP_mac = self.mac

12 self.sta_list.append(sta)

13

14 def rm_sta(self, sta):

15 self.sta_list.remove(sta)

16

17 def is_connected(self, sta_mac):

18 path = ”../state_request/panda_stats/state_request_AP” + str(self

.num)

19 df = pd.read_pickle(path)

20 for column in df:

21 if sta_mac in column:

22 return True

23 return False

24

25 def action(self, choice, all_stas):

26 if choice < (len(all_stas) * MAX_AP):

27 target_num = self.choice_dict [choice]

28 if target_num == self.num :

29 if all_stas[int(choice/MAX_AP)] not in self.sta_list:

30 self.add_sta(all_stas[int(choice/MAX_AP)])

31 if not self.is_connected(all_stas[int(choice/MAX_AP)

].mac):

32 self.move(all_stas[int(choice/MAX_AP)].mac, self.

mac)

33 else:

34 if all_stas[int(choice/MAX_AP)] in self.sta_list:

35 self.rm_sta(all_stas[int(choice/MAX_AP)])

36

37 def move(self, sta_mac, ap_mac):

38 chan1 = 0

39 chan2 = 0

40 if self.num == 1:

41 chan1 = 149

42 chan2 = 36

43 else:

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4.4.3 class ApEnv 25

44 chan1 = 36

45 chan2 = 149

46

47 steering_command = ”bash client_steering.sh ” + str(chan1) + ” ”

+ str(chan2) + ” ” + str(sta_mac)

48 with open(’semaphore/sem1’, ’w’) as f:

49 f.write(steering_command)

50

51 while(os.stat(”semaphore/sem1”).st_size != 0):

52 time.sleep(1)

53

54 return None

55

56 def new_sta(self, all_stas):

57 sta_pend_list = []

58 path = ”../state_request/panda_stats/new_sta_AP” + str(self.num)

+ ”.txt”

59 with open(path, ’r’) as file:

60 lines = file.readlines()

61 for line in lines:

62 if ”-” in line:

63 spl = line[8:].split(”-”)

64 if((len(spl) > 1) and (len(all_stas) < (MAX_AP *

MAX_STAS_PER_AP))):

65 for i in range(0,len(spl)-1):

66 sta_pend_list.append(STA(spl[i], None))

67 return(sta_pend_list)

68 return None

Listing 4.2: class AP

4.4.3 class ApEnv

In our approach for modeling the environment of the wireless network we create a list

of STA objects (see all_stas at line 15) and we also define a dictionary with hard coded

the mac addresses of the network’s access points. The only assumption we make is that we

know the ip address of access point’s wireless interfaces and so the mac addresses could be

found by requesting the python server hosted in each access point. More details for the python

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

26 Chapter 4. Reinforcement Learning

client-server topology will be given below and in the following chapters.

The most important and obviously the larger function of this class is the step function.

As an argument in the function we pass the action that has been selected from the DQN

algorithm. The structure of the function can be summarized in the following parts:

1. Current state: At first we request every access point’s server for new connected sta-

tions and if any new stations are detected we append them in the all_stas list. Then

we request again every access point in order to form the current state of the network.

Each AP responds with a pandas Dataframe containing every associated station’s mac

address, requested throughput and achieved throughput. The request is made by exe-

cuting the app− client.py with subprocess python library. Ass arguments we pass the

ip of the server, the port that has been predefined and the name of the request. Based

on the Dataframes collected we update the all_stas list with update_stas_list func-

tion. Finally we make a copy of the current state which will be used later in order to

determine the reward for the given action in that step.

2. Action: We call the action function for each AP

3. Next state: We repeat the process described in current state. But instead of copying the

station list we create an array of integers with size same as the stations of the network

to model the stations associations. So for every station we put -1 if not associated yet

by a valid action, 1 if associated in the first AP and 2 if associate din the second AP.

4. Calculate reward: For every action takenwe calculate rewardwith the followingmethod.

reward = 0.35 ∗ weighted_sum+ 0.40 ∗ avg_throughput_ratio

+ 0.25 ∗ total_ach_thr_factor

By adjusting the weights in front of weighted_sum and avg_throughput_ratio, we

can control the balance between prioritizing individual station throughput and load

balancing. Also, the total_ach_thr_factor is used to prioritize over all greater channel

utilization. The way that the above metrics are calculated is shown in the code below

at lines 96-100. At last but not least we add a negative reward in two cases. The first is

when an action is selected that does not corresponds to any station in cases where less

than six stations (i.e the maximum number of stations) are connected. The second is

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4.4.3 class ApEnv 27

when not associated stations exist waiting to connect and the action which is selected

corresponds to an already connected station, so the number of pending stations remains

the same. This negative reward aims to force the agent to immediately associate new

stations.

5. Check for Terminal state: As terminal state we consider the completion of 15 episodes

if no satisfying enough reward is accomplished earlier. The reward satisfaction crite-

ria is basically the maximization of reward. The maximum value of reward is 1 but is

not possible to be achieved at every topology. For that reason we define a theoretical

threshold (see reward_norm at line 115) for the ideal reward considering the theo-

retical capacity of the network and the total requested throughput for each topology.

So we accept as terminal state a state where is evaluated with reward greater than the

reward_norm or where 95% of the capacity of the network is utilized. Also all stations

must have been associated in order a state to be considered as terminal.

1 class ApEnv:

2 MOVE_PENALTY = 1

3 PENDING_STA_PENALTY = 50

4 ACTION_SPACE_SIZE = MAX_STAS_PER_AP*MAX_AP*MAX_AP

5

6 AP1 = 1 # AP1 key in dict

7 AP2 = 2 # AP2 key in dict

8

9 d = {1: ”00:03:1d:0d:bc:81”,

10 2: ”00:03:1d:0d:bc:9b”}

11

12 choise_dict = {0: 1, 1: 2, 2: 1, 3: 2, 4: 1, 5: 2,

13 6: 1, 7: 2, 8: 1, 9: 2, 10: 1, 11: 2}

14

15 all_stas = []

16

17 def __init__(self):

18 self.all_stas = self.all_stas

19 self.AP1 = AP(self.d[self.AP1], self.AP1)

20 self.AP2 = AP(self.d[self.AP2], self.AP2)

21

22 def reset(self):

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

28 Chapter 4. Reinforcement Learning

23 self.episode_step = 0

24 self.all_stas = []

25 observation = np.zeros(MAX_STAS_PER_AP * MAX_AP)

26

27 return observation

28

29 def step(self, action):

30 pending_stas = ””

31 subprocess.run([”python3”, ”../state_request/app-client.py”, ”

192.168.2.2”, ”5800”, ”search”, ”new_sta”])

32 subprocess.run([”python3”, ”../state_request/app-client.py”, ”

192.168.2.4”, ”5900”, ”search”, ”new_sta”])

33 new_sta = self.AP1.new_sta(self.all_stas)

34 accepted = ”04:f0:21:28:a9:74” + ”04:f0:21:28:a9:6f” + ”04:f0

:21:28:a9:a1” + ”04:f0:21:2c:6d:d1” + ”04:f0:21:28:a9:94” + ”04:f0

:21:25:1f:f0”

35 if new_sta is not None:

36 for st in new_sta:

37 if (st.mac in accepted) and (str(st.mac) not in

pending_stas):

38 pending_stas += (str(st.mac) + ” ”)

39 self.all_stas.append(st)

40 new_sta = self.AP2.new_sta(self.all_stas)

41 if new_sta is not None:

42 for st in new_sta:

43 if (st.mac in accepted) and (str(st.mac) not in

pending_stas):

44 pending_stas += (str(st.mac) + ” ”)

45 self.all_stas.append(st)

46

47 subprocess.run([”python3”, ”../state_request/app-client.py”, ”

192.168.2.2”, ”5800”, ”state_request”])

48 subprocess.run([”python3”, ”../state_request/app-client.py”, ”

192.168.2.4”, ”5900”, ”state_request”])

49 df1 = pd.read_pickle(”../state_request/panda_stats/

state_request_AP1”)

50 df2 = pd.read_pickle(”../state_request/panda_stats/

state_request_AP2”)

51 df_total = pd.concat([df1,df2], axis=1)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4.4.3 class ApEnv 29

52

53 self.update_stas_list(df_total, self.all_stas)

54 old_observation = copy.deepcopy(self.all_stas)

55 self.episode_step += 1

56

57 self.AP1.action(action, self.all_stas)

58 self.AP2.action(action, self.all_stas)

59

60 subprocess.run([”python3”, ”../state_request/app-client.py”, ”

192.168.2.2”, ”5800”, ”state_request”])

61 subprocess.run([”python3”, ”../state_request/app-client.py”, ”

192.168.2.4”, ”5900”, ”state_request”])

62 df1 = pd.read_pickle(”../state_request/panda_stats/

state_request_AP1”)

63 df2 = pd.read_pickle(”../state_request/panda_stats/

state_request_AP2”)

64 df_total = pd.concat([df1,df2], axis=1)

65

66 self.update_stas_list(df_total, self.all_stas)

67

68 new_observation = np.zeros(MAX_STAS_PER_AP * MAX_AP * 3)

69 for i in range(0,len(self.all_stas)):

70 if self.all_stas[i].AP_mac == None:

71 new_observation[i*3] = -1

72 else:

73 new_observation[i*3] = self.reverse_lookup(self.d, self.

all_stas[i].AP_mac)

74 new_observation[i*3+1] = self.all_stas[i].req

75 new_observation[i*3+2] = self.all_stas[i].ach

76

77 not_associated_stas = 0

78 reward = 0

79 total_req_thr = 0

80 total_ach_thr = 0

81 for i in range(0, len(self.all_stas)):

82 total_req_thr += self.all_stas[i].req

83 total_ach_thr += self.all_stas[i].ach

84 if self.all_stas[i].AP_mac == None:

85 not_associated_stas += 1

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

30 Chapter 4. Reinforcement Learning

86

87 if action >= (len(self.all_stas) * MAX_AP):

88 if len(self.all_stas) == 0:

89 reward = 0

90 else:

91 reward = -100

92 else:

93 if old_observation[int(action/MAX_AP)].AP_mac != None and

not_associated_stas > 0:

94 reward = -50

95 else:

96 num_stations = len(self.all_stas)

97 # Calculate achieved throughput ratio for each station

98 throughput_ratios = [self.all_stas[i].ach / self.all_stas

[i].req for i in range(num_stations)]

99 # Calculate weight for each station based on requested

throughput

100 weights = [self.all_stas[i].req / total_req_thr for i in

range(num_stations)]

101 # Calculate average achieved throughput ratio

102 avg_throughput_ratio = sum(throughput_ratios) /

num_stations

103 # Calculate weighted sum of achieved throughput ratios

104 weighted_sum = sum([throughput_ratios[i] * weights[i] for

i in range(num_stations)])

105 # Calculate total achieved throughput factor

106 total_ach_thr_factor = float(total_ach_thr/(MAX_AP *

MAX_AP_THR))

107 # Combine average throughput ratio and weighted sum with

appropriate weights

108 reward = float(100)*(0.25 * weighted_sum + 0.25 *

avg_throughput_ratio + 0.5 * total_ach_thr_factor)

109

110 done = False

111 if total_req_thr == 0:

112 reward_norm = 0.85*100

113 else:

114 reward_norm = (1/float(total_req_thr/(MAX_AP * MAX_AP_THR)))

*100

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4.4.4 class DQNAgent 31

115 if reward_norm < 0.85*100:

116 reward_norm = 0.85*100

117

118 if (self.episode_step >= 15) or ((len(self.all_stas) == MAX_AP*

MAX_STAS_PER_AP) and ((total_ach_thr >= 0.95*MAX_AP*MAX_AP_THR) or (

reward >= reward_norm)) and (not_associated_stas == 0)):

119 done = True

120

121 return new_observation, reward, done

122

123 def update_stas_list(self, df, sta_list):

124 for i in range(0,len(sta_list)):

125 for column in df:

126 if sta_list[i].mac in column:

127 if sta_list[i].AP_mac != None:

128 if ”_req” in column:

129 sta_list[i].set_req(df[column].iloc[0])

130 if ”_ach” in column:

131 sta_list[i].set_ach(df[column].iloc[0])

132 if ”_AP” in column:

133 sta_list[i].set_AP_mac(df[column].iloc[0])

134

135 def reverse_lookup(self, d, v):

136 for k in d:

137 if d[k] == v:

138 return k

139 return None

Listing 4.3: class ApEnv

4.4.4 class DQNAgent

The neural network is created using the tf.keras API, which is a high-level interface for

building and training deep learning models using TensorFlow. The neural network architec-

ture consists of four fully connected layers:

1. Input layer which expects a 1D array of lengthMAX_STAS_PER_AP∗MAX_AP∗

3. For every connected station we take as input three parameters: AP associated with,

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

32 Chapter 4. Reinforcement Learning

requested throughput and achieved throughput. So for six station (i.e maximum number

of stations) in our implementation we have eighteen units as input layer.

2. Dense layer with 16 units and relu activation function. This layer is the first hidden

layer in the neural network.

3. Dense layer with 16 units and relu activation function. This layer is the second hidden

layer in the neural network.

4. Dense layer withMAX_STAS_PER_AP ∗MAX_AP ∗MAX_AP units and linear

activation function. This layer is the output layer of the neural network and uses the

linear activation function. The output of this layer is the predicted Q-values for each

possible action. So for six stations we have twelve action and the same number of

output layer units.

The relu activation function (short for ”rectified linear unit”) is a common activation

function used in deep neural networks. It is defined as relu(x) = max(0, x), which means

that it returns the input value if it is positive, and 0 otherwise. The linear activation function

simply returns the input value unchanged. By using a neural network with multiple layers

and nonlinear activation functions, the DQNAgent is able to learn a more complex mapping

from states to Q-values, which can improve its ability to make accurate predictions and learn

to play the game more effectively.

The train function is responsible for training the Deep Q-Network by updating its weights

based on the loss and accuracy values obtained during the training process. The function takes

in two parameters: terminal_state and step. The terminal_state parameter is a boolean

value that indicates whether the current state is a terminal state or not. A terminal state is a

state where the episode has ended, and there are no further actions to be taken. The step param-

eter, on the other hand, keeps track of the number of steps taken so far during the training pro-

cess. The function first checks if the number of samples in the replay memory is greater than

the minimum replay memory size specified byMIN_REPLAY _MEMORY _SIZE. If it

is not, the function returns without performing any training. If the minimum replay memory

size is met, the function randomly samples a minibatch of transitions from the replay memory

with a size ofMINIBATCH_SIZE. The current and future states and the corresponding

action, reward, and done flag for each transition are extracted from the minibatch. Next, the

function preprocesses the current and future states to ensure they are in the appropriate format

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4.4.4 class DQNAgent 33

for the neural network. It then predicts the Q-values for the current and future states using

the main and target networks, respectively. The function then constructs the training data,

which consists of the current states and the corresponding updated Q-values. The updated

Q-values are calculated based on the Bellman equation and the target Q-values predicted by

the target network. Eventually, we converge the two models so they are the same, but we

want the model that we query for future Q values to be more stable than the model that we’re

actively fitting every single step.

Finally, the function trains the main network using the training data and logs the loss and

accuracy values to TensorBoard if the current state is a terminal state. If the target update

counter reaches the specified UPDATE_TARGET_EV ERY value, the function updates

the target network with the weights of the main network.

1 class DQNAgent:

2 def __init__(self):

3 self.model = self.create_model()

4 self.target_model = self.create_model()

5 self.target_model.set_weights(self.model.get_weights())

6

7 if LOAD_MODEL is not None:

8 self.replay_memory = pickle.load(open(’models/buffer2.pkl’, ’

rb’))

9 else:

10 self.replay_memory = deque(maxlen=REPLAY_MEMORY_SIZE)

11

12 self.tensorboard = ModifiedTensorBoard(log_dir=”logs/{}-{}”.

format(MODEL_NAME, int(time.time())))

13 self.target_update_counter = 0

14

15 def create_model(self):

16 if LOAD_MODEL is not None:

17 model = tf.keras.models.load_model(LOAD_MODEL)

18 else:

19 model = tf.keras.models.Sequential()

20 model.add(tf.keras.layers.Dense(units=16, activation=’relu’,

input_shape=(MAX_STAS_PER_AP*MAX_AP*3,)))

21 model.add(tf.keras.layers.Dense(units=16, activation=’relu’))

22 model.add(tf.keras.layers.Dense(units=(MAX_STAS_PER_AP*MAX_AP

*MAX_AP), activation=’linear’))

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

34 Chapter 4. Reinforcement Learning

23

24 model.compile(loss=”mse”, optimizer=Adam(lr=0.001), metrics=[

’accuracy’])

25 return model

26

27 def update_replay_memory(self, transition):

28 self.replay_memory.append(transition)

29

30 def train(self, terminal_state, step):

31 if len(self.replay_memory) < MIN_REPLAY_MEMORY_SIZE:

32 return

33

34 minibatch = random.sample(self.replay_memory, MINIBATCH_SIZE)

35

36 current_states = np.array([transition[0] for transition in

minibatch])/MAX_AP

37 current_qs_list = self.model.predict(current_states)

38

39 new_current_states = np.array([transition[3] for transition in

minibatch])/MAX_AP

40 future_qs_list = self.target_model.predict(new_current_states)

41

42 X = []

43 y = []

44

45 for index, (current_state, action, reward, new_current_state,

done) in enumerate(minibatch):

46 if not done:

47 max_future_q = np.max(future_qs_list[index])

48 new_q = reward + DISCOUNT * max_future_q

49 else:

50 new_q = reward

51

52 current_qs = current_qs_list[index]

53 current_qs[action] = new_q

54

55 # And append to our training data

56 X.append(current_state)

57 y.append(current_qs)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

4.4.4 class DQNAgent 35

58

59 self.model.fit(np.array(X)/MAX_AP, np.array(y), batch_size=

MINIBATCH_SIZE, verbose=0, shuffle=False, callbacks=[self.tensorboard]

if terminal_state else None)

60

61 if terminal_state:

62 self.target_update_counter += 1

63

64 if self.target_update_counter > UPDATE_TARGET_EVERY:

65 self.target_model.set_weights(self.model.get_weights())

66 self.target_update_counter = 0

67

68 def get_qs(self, state):

69 return self.model.predict(np.array(state).reshape(-1, *state.

shape)/MAX_AP)[0]

Listing 4.4: class DQNAgent

Replay Memory

In Reinforcement Learning the technique of Replay memory is used in order the train-

ing of a neural network to become more effective and stable. According to Reinforcement

Learning an agent learns to take actions in an environment to maximize a reward signal and

interacts with the environment by state observation, taking an action, receiving a reward and

transition to a new state. During training through interaction, the agent updates his strategy

based on the experiences he gained through interaction, which are stored in a buffer called

Replay memory. The agent takes samples of a small batch of experiences from Replay mem-

ory in order to update its policy. Below are listed some of the major advantages of Replay

memory:

1. Improved sample efficiency: As the agent can learn from past experiences the need for

additional interactions with the environment is limited so saving time and resources is

achieved.

2. Increased stability: By sampling experiences randomly from the replay memory, the

agent is less likely to over fit to recent experiences and can explore better the environ-

ment.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

36 Chapter 4. Reinforcement Learning

3. Better use of data: The agent uses the stored information in order to update its policy

multiple times, increasing the number of updates per experience

Minibatch trainning

Minibatch training is a common machine learning technique for improving the training

of deep learning models, including neural networks. Specifically, Minibatch refers to a small

subset of the training data used for training of a model in a single iteration of the optimization

algorithm. During minibatch training, the training data is divided into small batches and the

model parameters are updated based on the average of the gradients computed on the sam-

ples in the minibatch. The size of minibatch is a hyper parameter that must be set based on

available memory and the complexity of the model.

Using mini-batches has many advantages, including:

1. Reduced memory requirements: This kind of training demands less memory compared

to batch training which makes it more appealing for large data sets that cannot be stored

in memory.

2. Faster convergence: The convergence of the optimization algorithm is faster than using

a large batch due to the more frequent updating model parameters with smaller batches.

3. Better generalization: The randomness introduced in the learning process with mini-

batch training approach can help the model generalize

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Chapter 5

Experimental Tools

5.1 Introduction

In this section we will describe the most important instruments which we use to evaluate

the experimental implementation. These are the following:

1. NITOS, a wireless testbed located in University of Thessaly, Greece.

2. ath10k driver, an open-source Linux kernel driver for Atheros 802.11ac wireless LAN

chips.

3. Iperf3, a widely used command-line tool for measuring network performance.

4. Wireshark, an open-source network protocol analyzer used to capture and analyze net-

work traffic.

5.2 NITOS testbed

The Center for Research TechnologyHellas (CERTH) is associated with the Network Im-

plementation Testbed Laboratory of the Department of Electrical and Computer Engineering

at University of Thessaly (NITlab). The design, analysis, and implementation of wireless

and wired methods, as well as how well they perform in actual environments, are the main

topics of the lab’s research. NITlab has created a facility called NITOS, short for Network

Implementation Testbed utilizing Open Source platforms, in this context[10].

The NITOS facility, which presently has more than 100 active wireless nodes, was built

to facilitate protocol and application evaluation in real-world contexts while simultaneously

37
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

38 Chapter 5. Experimental Tools

achieving reproducibility of experimentation. Three deployments of the NITOS facility are

separated by geography. TheUniversity of Thessaly (UTH) campus building has three testbeds:

an outdoor one on the building’s exterior, an indoor one in the basement, and an office testbed

set up in CERTH’s office building in Volos[10]. The cOntrol and Management Framework

(OMF) open-source software is used to control and manage the facility. By reserving slices

(nodes, access points, base stations, or frequency spectrum) of the testbed through the NITOS

scheduler, which works in conjunction with OMF to promote ease of use for experimentation,

users can conduct their experiments[10].

Figure 5.1: Nitos Architecture

5.2.1 Outdoor Testbed

Powerful nodes used in the NITOS Outdoor deployment have numerous wireless inter-

faces and enable testing of heterogeneous (Wi-Fi, WiMAX, LTE) wireless technologies. It

has 50 strong nodes and is installed on the outside of a University of Thessaly (UTH) campus

building, as seen in the following figure. The nodes are spread out throughout the building’s

roof, 25 of them in a grid topology, and 25 of them on its floors[11].

5.2.2 Indoor Testbed

The NITOS RF Isolated Indoor Deployment is set up inside one of the University of

Thessaly’s campus buildings and consists of 50 Icarus nodes with Wi-Fi, WiMAX, and LTE

wireless interfaces. In a big testbed, experimenters can run and assess power-demanding pro-

cessing algorithms and protocols. Additionally, it has directional antennas and other cutting-

edge prototypes. The NITOS indoor testbed’s isolated environment is surrounded by sym-

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

5.2.3 Office Testbed 39

Figure 5.2: Nitos Outdoor testbed

metrically positioned Icarus nodes, creating a grid topology. The nodes’ distance from one

another is fixed at 1.2 meters, and they are all the same height. As a result, a homogeneous

environment with isobaric nodes and equal capabilities is produced[12].

Figure 5.3: Nitos Indoor testbed

5.2.3 Office Testbed

Ten strong Icarus nodes of the second generation make up the Office Indoor Testbed. The

nodes contain a variety of heterogeneous technologies, including WiMAX, LTE, and WiFi,

and they enable experimenters to create and carry out realistic scenarios in a deterministic

office setting[10].

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

40 Chapter 5. Experimental Tools

Figure 5.4: Nitos Office testbed

5.3 ath10k driver

Ath10k is an open-source Linux kernel driver for Atheros 802.11ac wireless LAN chips,

which was originally developed by Qualcomm Atheros and was later open-sourced to the

Linux community. It provides support for the QCA988x and QCA6174 series of wireless

chips and supports both access point (AP) mode and station (STA) mode. Ath10k uses the

mac80211 subsystem of the Linux kernel to communicate with the wireless hardware and is

compatible with various advanced features, including 802.11ac MU-MIMO, beamforming,

and packet injection. Also supports regulatory domain and channel settings in order to comply

with regional regulations regarding wireless networking. Instead of relying solely on the CPU

ath10k supports firmware offloading, which allows the wireless hardware to handle some of

the processing tasks, such as encryption and decryption, improves performance and reduces

CPU usage leading to better overall system performance. Ath10k driver is maintained as part

of the Linux kernel, and it is actively developed and updated by the Linux community while

those characteristics enhanced to be widely used in various wireless networking devices,

including routers, access points, and wireless network cards.

5.4 Iperf3

Iperf3 is a command-line tool for measuring network performance and is the successor

to the original iperf and iperf2 tools. Expanding the capabilities of the previous versions

iperf3 is designed to provide a more modern and feature-rich approach to measuring network

bandwidth, throughput, and various network parameters. One very important application of

iperf3, which is also adopted in our implementation, is to perform network performance tests

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

5.5 Wireshark 41

between two endpoints, typically a client and a server. It supports both TCP and UDP pro-

tocols and offers a range of options to customize the test parameters. Some other common

use cases for iperf3 include network troubleshooting, network capacity planning, and perfor-

mance benchmarking.

5.5 Wireshark

Wireshark is an open-source network protocol analyzer that is able to capture and analyze

network traffic in real-time or by uploading saved packet capture files, e.g captured files with

use of tcpdump command. Below we present some of the most important functionalities of

Wireshark.

It supports a large number of protocols, including popular ones like TCP, UDP, HTTP,

DNS, DHCP, SSL/TLS, and it can dissect and display the details of each packet according

to the specific protocol. Wireshark also provides powerful filtering capabilities in order to

examine specific packets or protocols of interest by creating complex display filters to search

for specific criteria. One other feature is that provides detailed packet-level analysis, allow-

ing user to inspect packet headers, payloads, track packet flows, and analyze packet timing.

The fact that can dissect and decode different protocols, providing a human-readable repre-

sentation of network traffic helps user to understand the structure and content of each packet,

aiding in troubleshooting and analysis. It also supports a modular architecture with the instal-

lation of additional dissectors, plugins, and scripts. These extensions enhance its capabilities

and enable analysis of specialized protocols or provide additional features. Finally, a fea-

ture which we exploit in our implementation in order to evaluate the network performance

is statistical analysis capabilities of Wireshark, as it is able to generate various statistics and

summaries based on captured packets such as protocol distribution, packet lengths, round-trip

times, and more.

5.6 Chapter Conclusion

In this chapter we present the experimental tools as well as the infrastructure used to

deploy the experimental WiFi network topology. Specifically, the WiFi topology that we will

describe in the next chapter was deployed in Nitos Indoor RF Isolated Testbed where the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

42 Chapter 5. Experimental Tools

Icarus Nodes hosted the AP and STA entities of our topology. Both STAs and APs operate in

5GHz band and 802.11ac protocol using the ath10k driver. With iperf3 we send UDP traffic

between a back-hole node and the STAs and with Wireshark we analyze the traffic that flows

through the APs.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Chapter 6

Experimental WiFi Network Topology

and DQN evaluation

6.1 Experimental WiFi Network Topology

Figure 6.1: Experimental WiFi Network Topology

At chapter 3 a simplistic topology of tow access points and one station is described in

order to explain the basic steps of the client steering mechanism. Now we will describe the

43
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

44 Chapter 6. Experimental WiFi Network Topology and DQN evaluation

complete experimental topology that has been exploited in NITOS Indoor RF isolated testbed.

The topology consists of two access points, six stations and one back haul node from whom

we send ip traffic towards the stations. All of them, access points, stations and back haul

node, are hosted on different testbed nodes. In both access points we set up bridge interfaces,

which connects two different interfaces (bridge ports). Bridging two interfaces causes every

Ethernet frame that is received on one bridge port to be transmitted to the other port. Thus,

the two bridge ports participate in the same Broadcast domain. In our case the bridge is a

connection of Ethernet interface of the AP with the Wireless interface. The wireless interface

has the same mac for both access points but the Ethernet have different in order the back haul

can direct the traffic properly among the access points.

All nodes are connected to the nitlab3 server with Ethernet interface (eth0) which gives

as the ability to execute ssh and sshfs commands as we describe in the client steering mech-

anism. In addition the testbed infrastructure provides each node with one other Ethernet in-

terface (eth1). So by utilizing eth1 interface we send UDP traffic from the back haul node

towards the access points targeting the stations.When then packets reach the access points are

transmitted wireless to the stations. The two access points have the same ssid and the same

mac which is achieved with bridge mechanism and is the key of seamless handover between

access points. In all access points and stations we deploy ath10k driver in AP and STAmode

respectively and we add a monitor interface over wlan0. Also we update arp table in back

hole node when a station is re-associated so UDP traffic towards the station is forwarded to

the access point that the station is now connected.

As we can see in the picture above in BH node we exploit the DQN algorithm and in

each AP a python3 server. The DQN agent as we describe in chapter 4 sends request in

every access point’s server in order to be informed about networks state. There are to type

of request, newstarequest and staterequest. The server is capable of supporting binary or

json content messages. The first request is a json content request because the server responds

with the mac address of recently connected stations. Specifically each AP uses tcpdump over

monitor interface to capture probe request frames of stations. In order to connect to a specific

AP each STA sends a probe request frame and receives a probe response frame. So each

probe request captured corresponds to a newly connected station. The second staterequest

is a binary request because the server responds with a Pandas Dataframe that contains access

point’s current state. The state of the AP is defined by the stations connected to it so in each

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

6.1.1 Data Collection 45

Dataframe the AP stores the mac address, the achieved and the requested throughput for

every station connected to it. The process of collecting the above metrics for every station is

described in the section below.

6.1.1 Data Collection

Data collection happens in driver level. More specifically, in the content of this thesis

ath10k driver is used. The data that we take under consideration are either metrics related to

the AP or metrics related to stations connected to it. The data come from the commands ”iw

wlan0 survey dump”, ”iwwlan0 station dump” and the file ”/sys/kernel/debug/ieee80211/phy0/

ath10k/fw_stats”. Data collection process is fully automated with the use of schell script and

python3 scripts. The data are updated dynamically every one second. Below we cite a link

for a small demo of the dynamical data collection process for a topology of one AP and two

stations connected to it.

link: https://www.youtube.com/watch?v=1ahY5kRNuWQ

With the automated process of data collection we are able to include in the data set any of

the metrics the iw commands and the fw_stats provide us. However not all of those metrics

are capable to contribute in the prediction of the best association scenario. A key concept to

introduce at this point is that of feature importance, which refers to techniques that assign

”weights” to input metrics in terms of their usefulness in predicting the target variable. For

that reason, after we make an initial separation of the metrics, we keep only those that we

consider important. As part of the work, this process was initially done manually since many

of the metrics are not updated as expected by the driver. Since we ended up at a more limited

number of metrics we performed an analysis to remove ”irrelevant” columns from the data

set and with the same analysis we try to reduce the problem of multicollinearity. Therefore,

we will settle on the following final list of metrics which we use for the ML algorithm as we

will explain below.

1. Transmitted bytes (txb): Refers to STA’s transmitted bytes in the observation period of

time. A list of values is formed one for every STA connected to the AP.

2. Transmitted packets (txp): Refers to STA’s transmitted packets in the observation pe-

riod of time. A list of values is formed one for every STA connected to the AP.

3. Transmission Failures (txf): Refers to the number of packets STA failed to transmit in

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

https://www.youtube.com/watch?v=1ahY5kRNuWQ

46 Chapter 6. Experimental WiFi Network Topology and DQN evaluation

the observation period of time. A list of values is formed one for every STA connected

to the AP.

4. Channel active time (actt): Refers to the time in milliseconds of the observation period

that the channel, where the AP is tuned and transmits, is active. Referring to the channel

as active means that a transmission occurs in the channels central frequency.

The data set that DQN algorithm takes as input is updated dynamically once the DQN

agent is exploited in the experimental topology. With the use of iperf3 and schell script we

simultaneously start transmissions from the stations that implement the iperf3 clients to the

BH node that implements the iperf server. In order to exploit different association scenarios at

every scenario we connect all stations to the network in a time interval of 60 seconds. During

that period of time the moment that each STA is connected is selected randomly as well as

the requested throughput for each one. In this way we can create many different scenarios

simulating real conditions of a network in order to create a sufficiently large and sufficient

data set that will feed the ML algorithm.

As we mention in the chapter 4 in ML implementation for every station we measure the

requested and achieved throughput in every topology. In order the access point to be informed

about the demand of each station connected to it, i.e it’s requested throughput, we advertise

the throughput demand of every station exploiting tos feature in iperf3. More specifically we

define 3 categories representing different levels of demand and each one of them corresponds

to a specific tos value. So for each STA the higher the demand, the higher the value of tos

selected. Below we present the 3 levels of demand based on tos values where max_thr is

referred to the theoretical maximum throughput that the AP can provide to a single STA

and num_of_stas to the number of stations connected to the access point in the moment of

measurement.

1. Tos 0x10: Supports rates from 0 to 30% of max_thr and the proportional demand is

max_thr/num_of_stas in MBps

2. Tos 0x38: Supports rates from 30% to 60% ofmax_thr and the proportional demand

is 2*(max_thr/num_of_stas) in MBps

3. Tos 0x58: Supports rates from 60% to 100% ofmax_thr and the proportional demand

ismax_thr in MBps

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

6.2 DQN training 47

The access point is informed about the demand of each station by capturing UDP packets

and decoding tos fieldwith the use of tcpdump overmonitor interface. Sowhen anew_sta_request

arrives the tos values are correlated with the connected stations and a response messages is

send back to the DQN client.

Formeasuring the achieved throughput for every connected STA theAP utilizes the driver

metrics mentioned above. When a state_request is send by the DQN Agent the access point

starts measurements which are made every 1 second with a total duration of 15 seconds

and then achieved throughput for every STA is calculated and stored in the servers response

Dataframe. The achieved throughput is calculated with the following formula.

Achieved throughput =
txb ∗ txp−txf

txp

actt ∗ 1000
in MBps (6.1)

It is important to mention that the fully automated creation of the data set enables us

to train the ML algorithm not only in advance but also during its implementation in a real

system.

6.2 DQN training

The process of training the DQN agent is probably the most important and difficult part of

our implementation. In order the algorithm to behave in an efficient and stable way must be

trained in thousands of association scenarios and the reward function, which is explained in

the previous section, must be well defined. Before concluding in the code that is presented in

chapter 4 we examined different hyper parameters for the ML algorithm and different reward

functions through experimental testing. Because of the large number of iterations which are

necessary to create a large enough data set initially we trained the algorithm off-line in a

simulation topology.We have the ability to save anymodel that satisfies are behaviour criteria

and then to load it in the DQN agent. When the agent is exploited in the real implementation

continues its training with real data since the form of the data set (columns of the data set)

remains the same.

6.2.1 Off-line training

In our approach to make a simulation environment we made some changes in the classes

AP andApEnv compared to the codes presented in chapter 3. More specifically wemodified

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

48 Chapter 6. Experimental WiFi Network Topology and DQN evaluation

the function new_sta in classAP , see code below, and now we randomly create new stations

to associate with the access points with random throughput demand. It is important to mention

that in simulation topology we have the same number of stations and access points with the

real testbed topology (2 AP and 6 STA).

1 def new_sta(self, all_stas):

2 if random.uniform(0,1) > 0.5:

3 if len(all_stas) < (MAX_AP * MAX_STAS_PER_AP):

4 st = STA(”0:0:0:” + str(len(all_stas)+1), None)

5 st.set_req(10*random.randint(1,7))

6 st.set_ach = 0

7 return st

8 return None

Listing 6.1: new_sta function

Because in the simulation the network topology does not exist the Agent does not need to

send request in the access points in order to be informed for the networks state. So the step

function inApEnv ismodified and instead of theupdatestaslist function theupdate_state_EXP

function is called, which has the same arguments.

1 def update_state_EXP(self, sta_list):

2 ap1_count = 0

3 ap2_count = 0

4

5 for st in sta_list:

6 if st.get_AP_mac() == self.AP1.mac:

7 ap1_count += 1

8 if st.get_AP_mac() == self.AP2.mac:

9 ap2_count += 1

10

11 if ap1_count == 0:

12 ap1_count = 1

13 if ap2_count == 0:

14 ap2_count = 1

15

16 for i in range(0, len(sta_list)):

17 if sta_list[i].AP_mac == self.AP1.mac:

18 if sta_list[i].req < (MAX_AP_THR/ap1_count):

19 sta_list[i].ach = sta_list[i].req

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

6.2.1 Off-line training 49

20 else:

21 sta_list[i].ach = MAX_AP_THR/ap1_count

22 if sta_list[i].AP_mac == self.AP2.mac:

23 if sta_list[i].req < (MAX_AP_THR/ap2_count):

24 sta_list[i].ach = sta_list[i].req

25 else:

26 sta_list[i].ach = MAX_AP_THR/ap2_count

Listing 6.2: update_state_EXP function

As you can see in the code above, we set a theoretical available throughput capability for

each access point andwemake the assumption that the bandwidth is evenly distributed among

the stations connected to it. In other words all stations of a specific access point achieve the

same throughput. This approach is not realistic but is good enough to start training algorithm

in basic but very important scenarios that are common. For example one of them is to associate

new stations immediately to an access point not leaving them in pending state for a lot of

iterations. We train the DQN agent over 3000 episodes and in each episode has a maximum

limit of 15 actions to find the best association schema for the given topology. Because in the

real environment such as the Nitos testbed at every iteration, e.g every episode, the Agent

observes the environment almost one minute it is difficult and resource consuming to train

the Agent over so many episodes.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

50 Chapter 6. Experimental WiFi Network Topology and DQN evaluation

Evaluation

Belowwe present somemetrics during training process that are related with the efficiency

of the DQN agent.

As we can see in figure 6.2, the total achieved throughput, i.e the sum of stations indi-

vidual achieved throughput, increases over episodes and after 3000 episodes 170 Mbps is

achieved. Assuming that theoretical maximum available throughput is set to 200 Mbps, 100

Mbps for each AP, we achieve a 85% utilization of the network.

Figure 6.2: DQN Agent average achieved throughput

As we can see in figure 6.3, the average steps that the DQN Agent needs to find terminal

state is is minimally reduced over episodes. It is important to note that a greater reduction

would be desirable and this is something left as future work.

As we can see in figure 6.4, both minimum and average reward that DQN Agent per

episode increase over episodes and after 3000 episodes the minimum reward is steadily pos-

itive and average reward about 700 is achieved.

The fact that both average total achieved throughput and average reward increase over

episodes shows that the DQN agent training is well oriented and application in real environ-

ment has good prospects.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

6.2.1 Off-line training 51

Figure 6.3: DQN Agent average steps per episode

Figure 6.4: DQN Agent minimum and average reward

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

52 Chapter 6. Experimental WiFi Network Topology and DQN evaluation

6.2.2 On-line training

Once the agent is connected to the real testbed topology the previously trained model is

loaded and now at every iteration the agent explores the topology by requesting APs and up-

dates its training data set with the current state. The DQN agent code is the same with the one

presented in chapter 4. In order to evaluate the Agent’s performance in the real environment

we tested the DQN algorithm performance in different topologies compared to the default

association method of 802.11ac protocol. At every experiment we connect each station at a

random moment between 0 and 60 sec, we select a random throughput demand for each one

and the Agent has also a maximum of 15 actions to find the best association schema. The

network set up and the topology reset after each episode end is done automatically with shelh

script commands and python3 scripts. Below we present a demo from an episode during run

time. However, the evaluation of the DQN Agent in the real environment is left as future

work because the training in the real testbed for an satisfying number of episodes is very

time and resource consuming process.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Chapter 7

Conclusions

7.1 Summary and Conclusions

In the context of this thesis we presented the implementation of a mechanism for joint

selection of central frequency, bandwidth and station association in WiFi networks. At first

we had a brief historical analysis of theWiFi protocols up to the 802.11ac which is used in our

implementation. Then we introduced a client steering mechanism which is used to achieve

seamless and efficient handover of stations between access points. In our in our attempt to

optimize station associations in a WiFi network with multiple stations and access points we

suggest the use of Machine Learning and especially Reinforcement Learning. As we present

in previous chapter we propose the DQN Agent in our approach for global management of

the network. The training of the agent was initially done in a simulation environment and

then the mechanism was implemented in the NITOS testbed (i.e a real environment).

During the first part of the training in the simulation environment the Agent seems to

have responded satisfactorily. More specifically the evaluation of the Agent showed increase

in total achieved throughput (i.e utilization of the network) and increase of the average re-

ward over the pass of episodes. This encouraged us to test the application on a real network.

However, training the algorithm in the testbed is extremely time and resource consuming

proccess and so the training and evaluation in realistic topologies is left as future work.

53
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

54 Chapter 7. Conclusions

7.2 Future Work

The most important prospect of the proposed mechanism is its application in real and

large scale WiFi Networks, such as public places. As we mention above the DQN agent must

be trained in the testbed environment where we can simulate a lot of realistic scenarios, such

as topologies with high congestion and interference and different mobility scenarios. Further

more, the DQN agent can be enriched with more metrics as input. Also optimizing neural

networks internal hyper parameters can be examined more through experimental testing. Fi-

nally, as future work we aim to add in the Agent abilities channel selection for the access

points among networks available frequencies. This process refers to the selection of central

frequency for the access points and also the selection of the channel bandwidth among the

802.11ac available channel widths.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

Bibliography

[1] Sibren De Bast, Rodolfo Torrea-Duran, Alessandro Chiumento, Sofie Pollin, and Haris

Gacanin. Deep reinforcement learning for dynamic network slicing in ieee 802.11 net-

works. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), Paris, France, Sept. 2019.

[2] Piotr Gawłowicz and Anatolij Zubow. ns-3 meets openai gym: The playground for

machine learning in networking research. In MSWiM 2019, Miami Beach, USA, Nov.

2019.

[3] M. Carrascosa and B. Bellalta. Decentralized ap selection using multi-armed bandits:

Opportunistic ε -greedy with stickiness. In 2019 IEEE Symposium on Computers and

Communications (ISCC), Barchelona, Spain, Jun. 2019.

[4] Mohamed Amine Kafi, Alexandre Mouradian, and Véronique Vèque. On-line client

association scheme based on reinforcement learning for wlan networks. In 2019 IEEE

Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco,

Apr. 2019.

[5] Eric Rozner, Yogita Mehta, Aditya Akella, and Lili Qiu. Traffic-aware channel assign-

ment in enterprise wireless lans. In 2007 IEEE International Conference on Network

Protocols, Beijing, China, Oct. 2007.

[6] Chi-Yu Li, Chunyi Peng, Songwu Lu, Xinbing Wang, and Ranveer Chandra. Latency-

aware rate adaptation in 802.11n home networks. In 2015 IEEE Conference on Com-

puter Communications (INFOCOM), Hong Kong, China, Apr. 2015.

[7] Keshav Sood, Shigang Liu, Shui Yu, andYongXiang. Dynamic access point association

using software defined networking. In 2015 International Telecommunication Networks

and Applications Conference (ITNAC), Sydney, NSW, Australia, Nov. 2015.

55
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

56 Bibliography

[8] Wangkit Wong, Avishek Thakur, and S.-H. Gary Chan. An approximation algorithm

for ap association under user migration cost constraint. In IEEE INFOCOM 2016 -

The 35th Annual IEEE International Conference on Computer Communications, San

Francisco, CA, USA, Apr. 2016.

[9] Ouldooz Baghban Karimi, Jiangchuan Liu, and Jennifer Rexford. Optimal collabora-

tive access point association in wireless networks. In IEEE INFOCOM 2014 - IEEE

Conference on Computer Communications, Toronto, ON, Canada, Apr. 2014.

[10] Nitlab. https://nitlab.inf.uth.gr/NITlab/. Accessed: 29-06-2023.

[11] Nitlab outdoor testbed. https://nitlab.inf.uth.gr/NITlab/outdoor-

hidden. Accessed: 29-06-2023.

[12] Nitlab intdoor testbed. https://nitlab.inf.uth.gr/NITlab/indoor-

hidden. Accessed: 29-06-2023.

[13] Ath10k. https://github.com/kvalo/ath10k-firmware. Accessed: 29-

06-2023.

[14] Wireshark. https://www.wireshark.org/. Accessed: 29-06-2023.

[15] iperf. https://iperf.fr/. Accessed: 29-06-2023.

[16] Tensorflow. https://www.tensorflow.org/. Accessed: 29-06-2023.

[17] Pandas dataframe. https://pandas.pydata.org/docs/reference/api/

pandas.DataFrame.html. Accessed: 29-06-2023.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 05:51:46 EEST - 3.143.25.27

https://nitlab.inf.uth.gr/NITlab/
https://nitlab.inf.uth.gr/NITlab/outdoor-hidden
https://nitlab.inf.uth.gr/NITlab/outdoor-hidden
https://nitlab.inf.uth.gr/NITlab/indoor-hidden
https://nitlab.inf.uth.gr/NITlab/indoor-hidden
https://github.com/kvalo/ath10k-firmware
https://www.wireshark.org/
https://iperf.fr/
https://www.tensorflow.org/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	Abbreviations
	Introduction
	Motivation
	Thesis subject
	Contribution

	Content Organization of Thesis

	WiFi Protocols
	WiFi protocols previous to 802.11ac
	802.11ac WiFi Features
	Comparison with Previous WiFi Protocols

	IEEE 802.11r standard
	Relation between 802.11ac and 802.11r protocols

	Client steering mechanism
	Default association process in WiFi
	Comparison with client steering mechanism

	Re-association process
	Summary

	Reinforcement Learning
	Introduction
	Deep Q Learning
	Deep Q Learning approach in WiFi association
	802.11 Association Frame
	802.11ac Association Criterias
	DQN comparison with default association frame

	DQN algorithm presentation
	class STA
	class AP
	class ApEnv
	class DQNAgent

	Experimental Tools
	Introduction
	NITOS testbed
	Outdoor Testbed
	Indoor Testbed
	Office Testbed

	ath10k driver
	Iperf3
	Wireshark
	Chapter Conclusion

	Experimental WiFi Network Topology and DQN evaluation
	Experimental WiFi Network Topology
	Data Collection

	DQN training
	Off-line training
	On-line training

	Conclusions
	Summary and Conclusions
	Future Work

	Bibliography

