
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Decentralized Federated Learning using Distributed

Ledgers and Smart Contracts

Diploma Thesis

Panagiotidis Ioannis

Supervisor:Mountanos Ioannis

July 2023

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Decentralized Federated Learning using Distributed

Ledgers and Smart Contracts

Diploma Thesis

Panagiotidis Ioannis

Supervisor:Mountanos Ioannis

July 2023

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Αποκεντρωμένη Ομόσπονδη Μάθηση χρησιμοποιώντας

Κατανεμημένα Κατάστιχα και Έξυπνα Συμβόλαια

Διπλωματική Εργασία

Παναγιωτίδης Ιωάννης

Επιβλέπων:Μούντανος Ιωάννης

Ιούλιος 2023

v

Approved by the Examination Committee:

Supervisor Mountanos Ioannis

Associate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member Elias N. Houstis

Emeritus Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member Chronaios Alexandros

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

vii

Acknowledgements

First and foremost, I would like to thank from the bottom of my heart my family for their

unending support throughout my life, for enduring my constant whining and for always being

eager to listen me mumble about stuff that they don’t understand.

Also many thanks to my friends for the their company throughout these years. Among

them I hold dearest to my heart my childhood friends, my high school friends and last but not

least the friends that I met in UTH’s Drama Club. Additional thanks to the ones with whom

we shared projects and ideas.

I would also like to thank my teachers in junior high, for teaching me Rhetoric and Pro-

gramming, therefore sparking my interest in computer science.

Many thanks to my tutors in senior high school without whom I would never have come

to Volos.

I would like to express my appreciation to my committee:

First Ι would like to thank Prof. Mountanos for our long and fruitful cooperation and

communication as well as for the depth of his classes and for always setting high standards.

I would like to also thank Prof. Chronaios and Prof. Houstis for the opportunities that

they provided me and the high quality of their classes.

An honorable mention to Dr Dimitris Chatzopoulos whose guidance and assistance was

essential to the formulation and completion of this thesis.

Thank you all.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Panagiotidis Ioannis

xi

xii Abstract

Diploma Thesis

Decentralized Federated Learning using Distributed Ledgers and

Smart Contracts

Panagiotidis Ioannis

Abstract

Blockchain based federated learning employs Blockchain technology in an attempt to

mitigate concerns about current federated learning environments and in order to implement

new features regarding auditability, transparency, immutability and availability of federated

learning models as well as to enhance users’ security and privacy, to provide incentives for

well behaved users and to strike penalties to malicious ones. Most such efforts have been

implemented using Smart contracts in the public Ethereum Blockchain or the private Hyper-

ledger platform. As Hyperledger based approaches require trust in a designated authority we

focused on public platforms for their decentralized (trustless) operation and public security

verification. As Ethereum is known for its low TPS which results in large latencies in Smart

contract execution, in this thesis we implemented a BCFL system in the Solana Blockchain

which promises faster TPS and lower latencies in Smart contracts. We explore the practicality

of implementing a BCFL (Blockchain Federated Learning) system on the Solana Blockchain,

examining both its potential advantages and limitations. Our investigation involves conduct-

ing experiments with Smart contracts at different levels of model quantization and exploring

various techniques for model pruning. The goal is to strike a suitable balance between the

number of participants in the system and number of weights of the stored models.

Keywords:
Solana, Distributed ledgers, Smart contracts, Federated learning, Decentralized technologies

Περίληψη xiii

Διπλωματική Εργασία

Αποκεντρωμένη Ομόσπονδη Μάθηση χρησιμοποιώντας Κατανεμημένα

Κατάστιχα και Έξυπνα Συμβόλαια

Παναγιωτίδης Ιωάννης

Περίληψη

Η ομόσπονδη μάθηση με βάση την τεχνολογία Blockchain (BCFL) χρησιμοποιεί την τε-

χνολογία Blockchain σε μια προσπάθεια να μετριάσει τις ανησυχίες σχετικά με τα τρέχοντα

περιβάλλοντα ομόσπονδης μάθησης και να εφαρμόσει νέα χαρακτηριστικά όσον αφορά την

ελεγξιμότητα, τη διαφάνεια, την αμεταβλητότητα και τη διαθεσιμότητα των μοντέλων ομό-

σπονδης μάθησης, καθώς και να ενισχύσει την ασφάλεια και την ιδιωτικότητα των χρηστών,

να παρέχει κίνητρα για τους καλά συμπεριφερόμενους χρήστες όπως και να επιβάλλει κυ-

ρώσεις στους κακόβουλους χρήστες. Οι περισσότερες τέτοιες προσπάθειες έχουν υλοποιηθεί

με τη χρήση έξυπνων συμβολαίων στo δημόσιο Blockchain Ethereum ή στην ιδιωτική πλατ-

φόρμα Hyperledger. Καθώς οι προσεγγίσεις που βασίζονται στo Hyperledger απαιτούν εμ-

πιστοσύνη σε μια καθορισμένη αρχή τρίτων, επικεντρωθήκαμε στις αποκεντρωμένες (δημό-

σιες) πλατφόρμες για την αναξιόπιστη λειτουργία τους και τη δημόσια επαληθευσιμότητα της

ασφάλειας. Καθώς το Ethereum είναι γνωστό για το χαμηλό TPS του, το οποίο έχει ως απο-

τέλεσμα μεγάλες καθυστερήσεις στην εκτέλεση των Έξυπνων Συμβολαίων, στην παρούσα

διατριβή υλοποιήσαμε ένα σύστημα BCFL στo Blockchain Solana, το οποίο υπόσχεται με-

γαλύτερο TPS και χαμηλότερες καθυστερήσεις στα Έξυπνα συμβόλαια. Διερευνούμε την

πρακτικότητα της υλοποίησης ενός συστήματος BCFL στην πλατφόρμα Solana, εξετάζον-

τας τόσο τα πιθανά πλεονεκτήματα όσο και τους περιορισμούς του. Η έρευνά μας περιλαμ-

βάνει τη διεξαγωγή πειραμάτων με Έξυπνα συμβόλαια σε διαφορετικά επίπεδα κβαντισμού

μοντέλων και τη διερεύνηση διαφόρων τεχνικών για το κλάδεμα μοντέλων. Στόχος είναι να

βρεθεί η κατάλληλη ισορροπία μεταξύ του αριθμού των συμμετεχόντων στο σύστημα και

του αριθμού βαρών των αποθηκευμένων μοντέλων.

Λέξεις-κλειδιά:
Solana, Κατανεμημένα κατάστοιχα, Έξυπνα συμβόλαια, Ομόσπονδη μάθηση, Αποκεντρω-

μένες τεχνολογίες

xiv Περίληψη

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xxiii

List of tables xxv

Abbreviations xxvii

1 Introduction 1

1.1 Purpose of this thesis . 2

1.1.1 Contribution . 3

1.2 Content organization . 3

I Theoretical Backround 5

2 Federated learning 7

2.1 Introduction - ML, Distributed ML . 7

2.2 Motivation . 8

2.3 Federated learning Definition . 9

2.4 Federated learning Types / The How . 9

2.4.1 Horizontal Federated learning . 10

2.4.2 Vertical Federated learning . 11

xv

xvi Table of contents

2.4.3 Hybrid Federated learning . 11

2.5 Horizontal Fl Algorithm - FedAvg . 12

2.6 Formal definitions . 13

2.7 Opportunities in Federated learning . 14

2.8 Aggregation Algorithms . 15

2.8.1 Centralized Aggregation . 15

2.8.2 Hierarchical Aggregator . 16

2.8.3 Decentralized Aggregator . 16

2.9 Challenges in Federated learning . 18

3 Distributed Ledgers 19

3.1 Introduction . 19

3.2 Motivation . 20

3.3 Distributed Ledgers Structure . 21

3.4 Data Structures . 22

3.5 Public Key Cryptography . 23

3.6 Peer to Peer networks . 23

3.7 The need for Consensus . 23

3.7.1 Consensus . 25

3.7.2 Fault classification . 26

3.7.3 Deterministic Consensus . 26

3.8 FLP . 27

3.9 Blockchain . 28

3.10 Blockchain Structure . 29

3.10.1 Blockchain’s core data structure 29

3.10.2 Transactions . 30

3.10.3 Blockchain Header . 32

3.10.4 Mainaining order of transactions 32

3.11 Block Creation . 33

3.12 Proof of work - the mining puzzle . 34

3.13 Bitcoin Weaknesses . 36

3.14 Proof of Stake . 36

3.15 Survey of most popular Blockchains . 37

Table of contents xvii

3.16 Challenges in Distributed Ledgers . 38

4 Smart Contracts 39

4.1 Introduction . 39

4.2 Smart Contracts Definition . 40

4.3 The Ethereum virtual machine . 40

4.4 Blockchains with smart contracts . 41

4.5 Deployment and Execution . 42

4.6 Smart Contract Strengths . 43

4.6.1 Tamper-proofness and Code immutability 43

4.6.2 Transparency . 44

4.7 Challenges . 44

5 Solana platform 45

5.1 Introduction . 45

5.2 Solana structure and components . 46

5.3 Proof of History . 47

5.4 PoH sequence instance with events . 49

5.5 Verification . 51

5.6 Solana Proof of Stake . 51

5.6.1 Staking . 52

5.6.2 Elections . 52

5.6.3 Failure and slashing . 53

5.6.4 Finality . 53

5.7 Solana Challenges . 54

6 Solana Smart Contracts 55

6.1 Introduction . 55

6.2 Definition . 56

6.3 Smart Contract - Client structure . 57

6.4 Memory management . 58

6.5 Solana’s Basic Smart Contract concepts 59

6.6 Solana, Anchor and Seahorse . 60

6.6.1 Native Rust . 60

xviii Table of contents

6.6.2 Solana Anchor . 60

6.6.3 Seahorse Solana . 60

6.7 Creating a First Program and deploying it on chain 61

6.8 Deployment . 61

7 Blockchain based Federated learning 63

7.1 Introduction . 63

7.2 Motivation . 63

7.2.1 Communication costs . 64

7.2.2 Single point of Failure . 64

7.2.3 Code and Weight redundancy . 64

7.2.4 Code and weight transparency . 64

7.2.5 Code and weight immutability . 65

7.2.6 Incentives to clients for good behaviour 65

7.3 Blockchain Based Federated learning . 66

7.4 Blockchain based Federated learning characteristics 66

7.4.1 Decentralization . 66

7.4.2 Immutability . 66

7.4.3 Traceability . 66

7.4.4 Incentives . 67

7.4.5 Integrity and Reliability . 67

7.4.6 Trust . 67

7.5 BCFL system design overview . 68

8 Related Work 71

8.1 Blockchain based approaches to security and privacy in Federated learning 71

8.2 Blockchain based Federated learning record and reward approaches 74

8.3 Blockchain based Federated learning verification and accountable approaches 75

8.4 Open Issues . 77

8.5 Future Directions . 79

Table of contents xix

II Implementation and Testing 81

9 System Design 83

9.1 High Level Overview . 83

9.1.1 Breakdown of components . 84

9.2 Smart Contract aggregator . 85

9.2.1 Aims and requirements . 85

9.2.2 Limitations in Solana Smart Contracts 85

9.2.3 Deployment . 86

9.2.4 Transaction batches . 87

9.2.5 2000 Model Smart Contract . 87

9.2.6 1000 Model Smart Contract . 87

9.2.7 500 Model Smart Contract . 87

9.2.8 250 Model Smart Contract . 87

9.3 Fl client . 88

9.4 Model extraction . 88

9.5 Solana communication . 88

9.5.1 Number of parcticipants . 88

10 Implementation 89

10.1 Solana Smart Contract . 89

10.1.1 2000 u8 Model Smart Contract . 90

10.1.2 1000 u16 Model Smart Contract 90

10.1.3 500 u32 Model Smart Contract . 91

10.1.4 250 f64 Model Smart Contract . 91

10.1.5 Federated Averaging . 91

10.2 RPC Client . 92

10.2.1 web3.js . 92

10.2.2 anchor.js . 92

10.2.3 Types from Solana Smart Contracts 92

10.3 Model training . 93

10.3.1 MNIST Digit . 93

10.4 Baseline 2000 Weight Deep Convolutional neural network 94

xx Table of contents

10.4.1 Neural net architecture . 94

10.4.2 Convolutional network . 94

10.4.3 Deep network . 94

10.4.4 Loss function . 95

10.4.5 Optimizer selection . 95

10.4.6 Batch size and training epochs . 95

10.4.7 Evaluation . 96

10.4.8 Model extraction . 96

10.5 Model pruning . 97

10.5.1 Weight pruning . 97

10.5.2 Neuron pruning . 97

10.5.3 Approaches used in our models 97

11 Evaluation 101

11.1 Methodology . 101

11.2 Testing . 102

12 Discussion of Results 105

12.1 Results per model . 105

12.1.1 250 Model . 105

12.1.2 500 Model . 105

12.1.3 1000 Model . 106

12.1.4 2000 Model . 106

12.2 General Discussion . 106

III Conclusions 107

13 Discussion 109

13.1 Challenges . 109

13.2 Solana as a platform . 110

13.3 Future Directions . 110

13.4 Future Research . 112

13.5 Concluding Remarks . 113

Table of contents xxi

Bibliography 115

List of figures

2.1 Federated learning scheme [28] . 10

2.2 Horizontal Federated learning between clients [51] 10

2.3 Vertical Federated learning between clients [51] 11

2.4 Horizontal FedAvg Schema [51] . 13

2.5 Centralized aggregation [51] . 16

2.6 Hierarchical aggregation [51] . 16

2.7 Decentralized aggregation [51] . 17

3.1 Classic banking vs DeFi [40] . 22

3.2 Data structure examples as foundations of DLTs [29] 22

3.3 Client server model vs peer-to-peer [35] 24

3.4 Linear log (linked list) of transactions [29] 29

3.5 High level overview of bitcoin [25] . 30

3.6 Transactions in bitcoin [61] . 31

3.7 Transactions merkle tree [61] . 31

3.8 Block header hash [97] . 33

3.9 Transaction Block hashing [61] . 33

3.10 Miner [99] . 34

3.11 Transaction Block hashing [68] . 34

3.12 Forks in Blockchain [96] . 35

3.13 Public Blockchain collection [27] . 37

4.1 Solidity Smart contract code example . 41

4.2 Smart Contract Execution Cycle [66] . 42

4.3 Centralized Client-Server vs dApp Architecture[66] 43

xxiii

xxiv List of figures

5.1 Solana structure [104] . 46

5.2 Proof of History [104] . 48

5.3 Proof of History hash sequence [104] . 49

5.4 Proof of History hash sequence with event [104] 49

5.5 Proof of History hash sequence with event [104] 50

5.6 Proof of History with data entry [104] . 50

6.1 Solana Smart Contract [90] . 56

6.2 Solana explorer devnet . 62

7.1 BCFL Architecture [64] . 69

7.2 Smart Contracts based Federated learning [64] 70

8.1 BCFL efforts for security and privacy [64] 72

8.2 BCFL efforts for recording and rewarding [64] 74

8.3 BCFL efforts for verification and accountability [64] 76

9.1 Solana BCFL Architecture . 84

10.1 MNIST DIGIT [45] . 93

10.2 KERAS MODEL . 95

10.3 KERAS Evalutation . 96

10.4 25-100% sparcities . 98

10.5 0-10% sparcities . 99

10.6 Pruning results 25-100% . 100

10.7 Pruning results 0-10% . 100

List of tables

3.1 Public Blockchains . 37

11.1 Search Space . 102

11.2 Maximum participants per model . 103

11.3 Tests conducted in 250 f64 model . 103

11.4 Tests conducted in 500 u32 model . 103

11.5 Tests conducted in 1000 u16 model . 104

11.6 Tests conducted in 2000 u8 model . 104

xxv

Abbreviations

ML Machine Learning

FL Federated Learning

BCFL Blockchain based Federated Learning

BCHFL Blockchain based Federated Learning

SC Smart Contract

TPS Transactions per Second

DLT Distributed Ledger Technology

DeFi Decentralized Finance

DAG Directed Acyclic Graph

DAO Decentralized Autonomous Organisation

GDPR General Data Protection Regulation

VITA Validity, Integrity, Termination and Agreement

NN Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Nerwork

MLP Multilayer Perceptron

FedAvg Federated Average

SGD Stochastic Gradient Descent

ADAM Adaptive Moment estimation

SWIFT Society for Worldwide Interbank Financial Telecommunications

ATM Automated Teller Machine

RAFT Reliable, Replicated, Redundant And Fault-Tolerant

PBFT Practical Byzantine Fault Tolerance

FLP Fischer Lynch Patterson

PoW Proof of Work

xxvii

xxviii List of tables

PoS Proof of Stake

PoH Proof of History

PoET Proof of Elapsed Time

TX Transaction

SHA Secure Hash Algorithm

EVM Ethereum Virtual Machine

NFT Non-Fungible Token

CLI Command Line Interface

ETH Ethereum

SOL Solana’s native coin

SDK Software Development Kit

REST Representational State Transfer

JSON JavaScript Object Notation

RPC Remote Procedure Call

gRPC google Remote Procedure Call

LLVM Low Level Virtual Machine

ELF Executable and Linkable Format

OOP Object Oriented Programming

API Application Programming Interface

SPoF Single point of Failure

DDoS Distributed Denial of Service

SVs Shapley Values

PoSap Proof of Shapley

CSVES Class-Sampled Validation-Error Scheme

DSC Dual skip Chain

ZKP Zero Knowledge Proof

STARK Scalable Transparent Arguement of Knowledge

MNIST Modified National Institute of Standards and Technology

ReLU Rectified Linear Unit

IoT Internet of Things

dApps Decentralized Applications

Chapter 1

Introduction

Federated learning enviroments consist of participating nodes that train models based

on their data and upload their gradients to a centralized server architecture which computes

their Federated Average in order to create a single model. Despite Federated learning seeing

massive success and adoption, the use of a centralized server architecture has faced much

criticism due to its challenges and limitations in terms of availability, privacy preservation,

communication, security, and transparency.

Distributed ledger technologies have been an research topic which although originally

introduced for monetary transactions without the need for third party authorization among

peers, now seesmassive adaptation due to the support of decentralized code execution through

smart contracts.

Blockchain platforms with smart contract support starting with Ethereum have multiplied

bringing with attempts to enable faster TPS, lower transaction latencies, scalability as well

as new technological capabilities such as interoperability, distributed cloud and data privacy.

Blockchains with smart contract support have been employed as replacements to tradi-

tional Federated learning environments where they provide resistance against SPoF andDDos

attacks, code and weight redundancy transparency and immutability, privacy preservation,

incentives for well behaved participants as well as penalties for malicious ones.

While the defacto smart contract platform has been Ethereum, it has been limited by its

low TPS. Solana’s high TPS has driven the accelerated adoption of its smart contracts and

innovation of dApps in its ecosystem.

In this thesis we use Solana smart contracts to build an aggregating server for Federated

learning enviroments.

1

2 Chapter 1. Introduction

1.1 Purpose of this thesis

Current centralized Federated learning environments lack decentralization, immutabil-

ity, traceability, incentives, integrity, and reliability which are crucial for creating more ro-

bust, transparent, and trustworthy systems that can harness the potential of Federated learning

while addressing privacy concerns and fostering collaboration among participants.

To address the aforementioned limitations, Blockchain solutions have emerged as a po-

tential remedy. By leveraging Blockchain technology, decentralized Federated learning en-

vironments can be created to address much of these issues and introduce additional features.

Existing efforts include the implementation of Blockchain solutions using Hyperledger,

which is a private Blockchain framework. While Hyperledger provides certain advantages

such as permissioned access, improved privacy and great performance, it remains a private

Blockchain not suitable for trustless environments. Trustless environments require a decen-

tralized network where participants can interact without relying on a central authority. Private

Blockchains, like Hyperledger, rely on trust in a designated authority, thereby limiting their

effectiveness in fully decentralized scenarios.

Another popular Blockchain platform that has been explored is Ethereum.While Ethereum

offers the advantage of a public Blockchain, it faces challenges in terms of transaction pro-

cessing speed (TPS) and latency. The current scalability limitations of Ethereum result in

lower TPS and higher latencies, which can hinder the performance and real-time nature of

Federated learning environments. These issues need to be addressed to fully harness the

potential of Blockchain technology in creating robust and efficient decentralized Federated

learning systems.

Solana was therefore chosen as the platform to be investigated in this thesis as it is a

public Blockchain platform but its flagship feature is that it promises significantly faster TPS

than current public Blockchains with smart contract support.

However, the development ecosystem of Solana is still in its early stages, resulting in a

slow adoption rate among developers. Additionally, there is a lack of research works dedi-

cated to Solana development.

1.1.1 Contribution 3

1.1.1 Contribution

This thesis’ contribution is summarised as follows :

• Opportunities in the Solana platform

• The properties of Solana smart contracts

• Development in the Solana ecosystem

• Use of Solana smart Contracts for Blockchain Federated learning

• Evaluation of the of Solana for BCHFL in realistic scenarios

• Model pruning methodologies for deployment in constrained environments

1.2 Content organization

This chapter is the introduction 1 Part I of this thesis sets the theoretical backround. The

second chapter 2 presents Federated learning while the third chapter 3 introduces Distributed

Ledger Technologies (DLTs) as well as Blockchains. The fourth chapter 4 introduces Smart

contracts and describes their operating principles. Chapter 5 descibes the Solana Blockchain

which was used to implement the experiments in this thesis and chapter 6 descibes the char-

acteristics of Smart contracts in the Solana platform. Chapter 7 introduces Blockchain based

Federated learning which is the application to be developed in Solana Smart contracts in the

context of this thesis and chapter 8 discusses previous works and efforts in BCFL. Part II of

this thesis describes the propsed system and testing conducted. In chapter 9 the proposed sys-

tem design is described while in chapter 10 we provide the specifics for the implementation

or the proposed system and its components. In chapter 11 we present the Evaluation method-

ology for the proposed system and its results while in chapter 12 we discuss said results. Part

III is about conclusions where chapter 13 discusses challenges faced, while also providing

future directions, research as well as the feasability of BCFL in the Solana ecosystem.

Part I

Theoretical Backround

5

Chapter 2

Federated learning

2.1 Introduction - ML, Distributed ML

Machine learning is the procedure of training models from data automatically [46, 39,

108, 31] . Such a model is defined in terms of its algorithm, and its hyperparameters. Then

the training process uses said data to optimize the structure or the parameters of the model

with aim to improve the algorithms’ performance. New data is processed through the selected

algorithm to produce an output result such as a prediction of the classification of the pattern

in question. Algorithms differentiate themselves based on whether data are labelled or not

into supervised, unsupervised, semi-supervised, and reinforcement learning. In supervised

learning the training data consists of (x,y) pairs, where x denotes the pattern and y its label,

while unsupervised learning consists only of x and no y. Semi-supervised learning contains

a small subset of data with labels but most data do not contain labels. Finally reinforcement

learning further trains already pretrained models in order to adapt them to new environments.

Regarding data, in modern applications it spans enormous volume that cannot be handled

by single machines or is inherently distributed and lies in multiple resources. In both cases the

training procedure must be tweaked in order to accommodate for these new circumstances.

Distributed machine learning is a machine learning paradigm which enables training to take

place in distributed resources which accounts for distributed and huge data while also provid-

ing significant performance benefits as it largely accelerates the training procedure especially

when combined with modern parallelization techniques and modern hardware. It is widely

employed in organizations’ server clusters and datacenters and powers todays commercial

machine learning applications.

7

8 Chapter 2. Federated learning

2.2 Motivation

Collecting users’ data in single organisations and datacenters raises serious concerns re-

garding user privacy and user data security [46, 39, 108, 31, 110]. Privacy related concerns

have been amplified by the increase of data breaches and suspicion about organisations’ data

monetization practices. To combat these practices privacy preserving laws and regulations

across multiple nations and states have limited or even prohibited the collection of users’ raw

data in single organisations or datacenters.

Simultaneously as AI applications see exponential adoption and growth, efforts are fo-

cused on ways to train and deploy better machine learning models. As machine learning mod-

els’ accuracy is highly dependent on the amount of data used to train them, huge amounts of

data must be employed if such models are expected to deliver accurate predictions as well

as usable results in order to be used in realistic scenarios [46]. Such data may include de-

tailed and extensive personal information, the use of which use is dictated by data privacy

regulations.

In classical machine learning applications that rely on data from mobile or IoT devices,

data is sent to servers or datacenters where machine learning algorithms are trained and then

deployed in commercial applications [46]. The concerns discussed above stem from the fact

that users’ raw data are sent in single organisations’ servers in order to be used in model

training. Thus they comprise centralized data used to train centralized models. Moreover

once raw data is in the hands of single organizations one cannot be certain about the practices

used in its processing and whether they are used for other purposes other than training since

they also hold monetary value themselves.

This has spurred critisism on traditional distibuted machine learning as it requires the

training process to have access to users’ raw training data and therefore raises concerns re-

garding the users’ privacy and data security [31, 110]. It also comes with huge energy and

bandwidth costs for the communication needs of the data which have to be aggregated into

a central location and then distributed in order to achieve learning even when deployed in

datacenters where bandwidth is most available and point to point distances between training

nodes are minimal. All these concerns have guided research to investigate new methods for

achieving distributed training while cutting down on communication costs and preserving

users’ privacy.

2.3 Federated learning Definition 9

2.3 Federated learning Definition

Federated learning, also known as collaborative learning, is a distributed machine learn-

ing paradigm where a machine learning algorithm is trained by combining local models

trained at participating nodes in a single global model which lies in an aggregating server,

all without individual training nodes sharing raw data between themselves or the server

[110, 108]. This is an efficient approach which enables the utilization of distributed data

and distributed computing resources in order to collaboratively train models without shar-

ing data between the nodes and without storing raw data in single organisations’ servers or

datacenters.

Fl differentiates itself from classical distributed machine learning in three key ways. First,

since no raw data is directly exchanged between nodes and the server, law requirements re-

garding users’ privacy and data collection such as GDPR’s data minimalization and consent

principle (GDPR Article 5 and 6 respectively) are met. Second, Fl efficiently takes advan-

tage of the heterogenous and highly distributed resources and data in a multitude of regions,

organizations and devices. This also enables the models to be shared in order to reach col-

laboration between organisations. Third, Fl addresses data privacy and security concerns by

employing encryption and other defensive mechanisms as to preserve the privacy and secu-

rity of raw data and to protect them against leaks which convey financial risks and loss of

reputation.

2.4 Federated learning Types / The How

Federated learning is classified in three types based on the distribution characteristics of

training data into three variants. Horizontal, vertical as well as hybrid Fl [110].

• Horizontal : Same features, different samples

• Vertical : Different features, same samples

• Hybrid : Different features, different samples

10 Chapter 2. Federated learning

Figure 2.1: Federated learning scheme [28]

2.4.1 Horizontal Federated learning

Horizontal Federated learning is applied when datasets of participating clients data have

the same attributes or features but different samples [110, 108]. This does not mean that data

between clients is Indepenent and Identically Distributed, merely that the featureset is the

same.

Figure 2.2: Horizontal Federated learning between clients [51]

This is the most widely adopted Federated learning type for its relative ease of implemen-

tation and privacy preservation properties. As shown in figure 2.2 models are only trained

with the shared features between samples as non shared features require modifications in

2.4.2 Vertical Federated learning 11

models in order to be incorporated into the training process and are therefore simply not uti-

lized. Regarding privacy, each clients’ or organizations’ data can bemixed and remain anony-

mous. This is in contrast to vertical Fl where as explained below requires cryptographic iden-

tification in order to determine which samples are shared between organizations and which

are not [110, 108] . This work focuses on this Fl type which will be explored in depth and

will finally be implemented for the experiments to be conducted.

2.4.2 Vertical Federated learning

Vertical Federated learning is applied when clients’ datasets have different attributes but

the same samples [110, 108]. For example, two financial organizations may hold different

data for their customers in order to compute their credit scores, but may want to create joint

models based on customers from both organizations.

Figure 2.3: Vertical Federated learning between clients [51]

In this scenario the central server is not an aggregator of models but a coordinator as is

called since its purpose is essential to training as it calculates the losses used to train model

parameters. The coordinator employs encryption methods to identify corresponding samples

across organizations by encryption key pairs and uses homomorphic encryption to retain

privacy properties of the data.

2.4.3 Hybrid Federated learning

Hybrid Federated learning addresses scenarios where participating clients not only con-

tain different features in their samples but also different samples completely [110, 108] . Such

12 Chapter 2. Federated learning

real world scenarios require much attention as to not break privacy preservation as differ-

ent training organizations need to share identification of their samples when training. When

training with disjoint data across training parties the combination of models is non-trivial

and together with efforts to retain privacy make up for the majority of research questions in

this area. Protocols are proposed for both such as the Private Set Intersection (PSI) that can

be implemented using classical public-key cryptosystems in order to keep unintersected data

private.

2.5 Horizontal Fl Algorithm - FedAvg

FedAvg was the first algorithm for horizontal Federated learning proposed by B. McMa-

han in [58]. FedAvg and related algorithms are comprised of similar steps [46, 39, 108, 31,

110]:

• Random initialization of parameters that lie in the global ML model and distribution

of the model to all connected nodes.

• Nodes use their own data to train the received model for a number of epochs. After

that they calculate the difference between the trained model and the received model

which in this context takes the place of the updating gradient found in traditional ML

training. Finally nodes send such computed gradients to the aggregating server

• The aggregating server combines the uploaded models to merge updates into its stored

model

• Repetition of steps 2 and 3 until the training ends either by the nodes or by the aggre-

gating server.

This training algorithm is indeed similar to the ones used in synchronous distributed ma-

chine learning. Although they share characteristics, horizontal Federated learning implemen-

tation have to overcome several challenges that arise from the behaviour of edge devices that

participate in the training process who may exhibit availability outages and slow training

times. This results in there being no guarantees in terms of the trained models’ convergence

speed or eventual performance.

2.6 Formal definitions 13

Figure 2.4: Horizontal FedAvg Schema [51]

2.6 Formal definitions

The optimization problem that Fl attempts to solve is formulated in 1 Given n training

datasetsA = A1, A2, . . . , An, which contain points (x, y) ∼ A, Fl aims minimize the expec-

tation of loss over the distribution of all the datasets A\ by learning a function F̂ [58].

F̂ = argmin
F∈H

E
(x,y)∈A

L(y, F (x)), (2.1)

where L(y, F (x)) is the loss (given by the selected loss function L) of F (x) to the label

y. During the training process, the stochastic gradient descent (SGD) approach is generally

used to attempt to find the minima the loss function using Formula 2.1 [58].

Fk+1(x)← Fk(x)− ηk∇Fk(x) (2.2)

Fk(x) is the trained model of iteration kth, ∇Fk(x) is the gradient of the model at itera-

tion kth, ηk is the learning rate, and Fk+1(x) is the model of the kth iteration 2.2. As these

calculations are dispersed among numerous computing entities, the gradient vectors or model

vectors of each node of computing are aggregated using an aggregation algorithm, in order

to achieve consensus of multiple models and to generate a global model. The learning rate

14 Chapter 2. Federated learning

can be dynamically adapted using a local adaptive optimizer, e.g., Adam, and/or cross-round

learning rate schedulers.

Algorithm 1 Federated Averaging. The K clients are indexed by k; B is the local minibatch

size, E is the number of local epochs, and a is the learning rate [58]
Server executes:

initialize w0

for each round t = 1,2,.... do

m =max(C ×K, 1)

Si = (random set ofm clients)

for each client k ∈ Si in parallel do

wk
t+1 = ClientUpdate(k,wt)

wk
t+1 = wt+1 +

∑K
k=1

nk
n wk

L+1

Client executes:

procedure ClientUpdate(k,w) {R}un on client K

B = (split Pk into batches of size B)

for each local epoch i from 1 to E do

for batch b ∈ B do

w← w − η∇l(w; b)

Return w to server

2.7 Opportunities in Federated learning

Techniques currently used in distributed machine learning can be also used in Federated

learning. For instance in horizontal Fl the data parallelism can be exploited in order to train

models in subsets of the training data in parallel, while in vertical Fl paths of a single model

are assigned to different devices to process different feature data.

New techniques are also being developed for the aggregating algorithms and the process-

ing of the final resulting model. Additionally model compression is being employed for the

2.8 Aggregation Algorithms 15

reduction of data transfers across participating nodes, while differential privacy, homomor-

phic encryption and robustness aggregation are used to combat attacts that poison or affect

models in Fl environments or help retain users’ data privacy. All of that to cater to the numer-

ous applications of Fl that include mobile edge networks IoT driven healthcare or Federated

recommendation systems [10].

2.8 Aggregation Algorithms

So far no discussion has taken place for the implementation of the aggregating server

itself. Much like machine learning which has been classically centralized in a single ma-

chine but as efforts and needs evolve has become distributed and eventually decentralized,

aggregation algorithms can be implemented with any of these topologies [51]. Aggregation

algorithms can also be centralized, hierarchical and decentralized. In general an aggregat-

ing server in the Fl context ought to orchestrate and synchronize the participating distributed

computation nodes and to gather their models in order to synthesize the global model.

2.8.1 Centralized Aggregation

In centralized aggregation, all of the above takes place in a single centralized server where

gradients are sent from distributed computing resources. Contributed gradients are combined

with the original model and the resulting model is sent to participating computing resources

for further training. One downside with central parameter servers is that they tend to favour

computing resources with better network conditions relative to the server be that closer prox-

imity or better bandwidth. This also raises concerns in terms of the use of the resulting model

after its training [51]. While the training process in Fl provides security and privacy reas-

surance for the data no guarantees are given for how models are to be used after training of

whether they will be kept as trained by the parameter server. Trust is not guaranteed for the

model itself in this scenario. Finally such centralized system are lack performance in when

nodes lie in distant regions and are single points of failure i.e. when the aggregating server

stops working the whole Fl system halts.

“CR” stands for computer resource. ω are the calculated weights and g are gradients.

16 Chapter 2. Federated learning

Figure 2.5: Centralized aggregation [51]

2.8.2 Hierarchical Aggregator

Hierarchical aggregation is when the centralized aggregating server is replaced by a hier-

archy of parameter servers all of which cooperate in order to accumulate resulting models in

a single server [51]. This can be a 2 layer hierarchy architecture in order to decrease latencies

and increase performance across distant regions and stability as well as to prevent the aggre-

gating server from being a single point of failure, apart from the final aggregating server at

the top of the hierarchy.

Figure 2.6: Hierarchical aggregation [51]

2.8.3 Decentralized Aggregator

Decentralized aggregation is achieved when participating nodes are connected in a peer-

to-peer manner [51]. Here the communication efficiency and convergence speed are deter-

mined by the network topology and connectivity. Note that the classical centralized topology

can be thought of as a special type of decentralized network in a star like topology. In addition

the graph type of the topology can be extended from a star to an exponential graph which can

2.8.3 Decentralized Aggregator 17

greatly improve training speed.

Figure 2.7: Decentralized aggregation [51]

Decentralized aggregation algorithms can be classified as partial or full communication in

terms of the amount of neighbors. In full communication algorithms each node computes an

averaged model based on all the gradients of the last iteration coming from all its neighbors.

In partical communication schemes each node calculates average models based on either a

single one or a selected number of neighbors. The selection of neighbors in each iteration

can be carried out using a gossip algorithm such as a random selection that protects against

poisoning attacts or with a reputation based selection that rewards nodes with a clean record

of consistent results.

Centralized architectures exhibit poor performance when training nodes are in sparce ge-

ographical locations and they are single points of failure meaning that in the event of failure of

the server the whole training process remains ofFline. As no 100% availability exists in such

systems, the halting of the training process may be harmless in most cases but catastrophic

in mission critical applications. These problems are somewhat addressed when hierarchical

architectures are employed but the geographical restrictions may still persist depending on

the location of the participating nodes.

Finally in contrast to centralized or hierarchical architectures where the servers or server

hierarchies are in a single organization, decentralized nodes by their nature can operate be-

tween different organizations and therefore behave more transparently and securely. In cen-

tralized or hierarchical architectures the ownership of models is on the hands of single entities

or organizations which raises concerns regarding the handling of the models themselves after

18 Chapter 2. Federated learning

training has been completed as well as their deployment in production. Such entities provide

no guarantees for the handling of the models nor the validity of the nodes that participated in

the training process.

2.9 Challenges in Federated learning

Horizontal Federated learning lacking compared to centralized learning in three district

ways. First, the communication costs and resources associated with the sending and receiving

of the models as well as the gradients are still a major issue that consumes a lot of bandwidth

and slows down the training process [102]. Second, with the combination of the trained mod-

els of participating nodes model convergence is harsh and especially poor in terms of speed

and number of training required. Third, although the basis of Federated learning is the preser-

vation of users’ data privacy, efforts must be focused in ensuring that no users’ information

is leaked even when sending model updates between the nodes and the aggregating server.

Research efforts have been focused on all three of these areas with aim to reduce commu-

nication costs with some notable ones being sub-sampling of the clients’ model updates and

quantization of the trained models [54, 10].

In Horizontal Federated learning, central servers are thought as honest but curious, that is

they follow the Federated learning protocol in terms of the learning procedure but simultane-

ously attempt to infer the original client data used in training by the resulting trained models

[14]. As the exchanged model updates of clients may be used to extract information about

the raw training data encryption methods are being employed in order to encrypt and protect

model gradients against attacks.

Such methods include homomorphic encryption which allows addition and multiplica-

tion of the encrypted data and is widely used in learning scenarios [108]. It still comes with

drawbacks as instead of reducing the already large communication costs, encrypted messages

increase them substantially as they have to be sent back and forth multiple times in order to

be decrypted. To address these issues differential privacy is utilized, a method that adds noise

in the models of training nodes before sent to the aggregating server which makes it harder

to infer the original data.

Chapter 3

Distributed Ledgers

3.1 Introduction

Today’s worldwide economy is driven the digital exchange of assets such as currency,

stocks and other financial products. A centralized banking system refers to a financial sys-

tem where a single institution, typically a central bank, has the authority and control over

the issuance and distribution of currency, as well as the regulation and supervision of the

banking sector. Centralized banking systems control the computer systems responsible for

the processing and validation of such monetary transactions and constitute the central au-

thoritative systems that power the economy. Systems like VISA, Mastercard and Paypal are

utilized in commercial digital payments while in other cases when banking institutions intent

to make cross party or cross-border transactions, protocols like the SWIFT are employed to

convey messages. For instance Visa [98], as of 2018 boasts 3.3 billion active cards world-

wide with over 65000 transaction messages per second across 200 countries and territories

and across 160 currencies.

19

20 Chapter 3. Distributed Ledgers

3.2 Motivation

Such centralized banking systems have long been criticized for their drawbacks. In terms

of data privacy, major concerns surround the fact that banking institutions and credit card

companies have unlimited and unregulated access to transaction history and data together

with sensitive as well as personal information of clients and their credit records. This results in

customers not having a say in where their information is located and stored therefore owning

none of their personal financial data. Numerous cases of data trading and data breaches have

been reported in such centralized institutions that further speak distrust of customers.

As centralized systems are essentially monopolies in the transaction domain, they have

frequently been reported to charge high percentage-wise transaction fees that affect ATM

withdrawals, wire transfers, and international transactions which makes up for financial bur-

den for low-income individuals or businesses that need to make frequent transactions. Credit

card issuers for example are known to charge upwards of 2.5% commission per transaction

which makes up their revenue from billions of transactions.

Such systems are also tedious to work with in terms of transaction delay and availability,

especially when attempting to make transaction across different banks or across borders. Es-

pecially in those cases apart from the extra fees introduced, transactions may be delayed as

much as a day. Other reasons for bank transfer delays include different currencies, weekend

delays, differences in time zones and finally holidays as transfers are processed only during

working hours.

They also have been known to respond poorly in times of crisis, as only a small sub-

set of large financial institutions manage the majority of the economy’s liquidity. In times

of economic stress banks have been known to shut down withdrawals and transfers or even

promptly shut down without notice. This can have severe consequences for individuals, busi-

nesses, and the overall economy.

Finally although in recent times almost every bank has e banking infastructure and sup-

port, there are still numerous issues regarding operational security and bad security practices

that are found in banking applications such as private key leakage, personal information leak-

age in data breaches that originate from mobile apps or webapps and session hijacking. Few

parties have allocated the resources for proper e banking support and adoption in webapps

and mobile but even so fraud attempts and scams remain great concerns today.

3.3 Distributed Ledgers Structure 21

3.3 Distributed Ledgers Structure

Distributed Ledger Technology (DLT) [29] enables the transactions of digital assets to

be registered, shared and synchronized in a decentralized manner which extinguishes the

need of a central authority to authorize transactions. DLT has cumulated significant interest

as it promises to address problems and deficiencies of traditional centralized ledger systems

such as data privacy, security, transparency and accountability. DLT evolves upon traditional

distributed systems by combining four key computer science fields such as public key cryp-

tography, data structures and consensus algorithms in a peer-to-peer network enviroment in

order evolve existing ledger technologies in terms of decentralization, transparency, open-

ness, immutability, traceability, security and availability among others [3, 29, 4].

While traditional banking uses centralized hierarchical cloud infastructure, databases for

storing transactions and client identification in client server neworking schemes, DLTs are the

enablers of DeFi (Decentralized Finance) where all banking infrastructure such as ledgers, ex-

changes and investing are replaced with decentralized equivalents [3, 29, 4]. We have shown

the limitations of centralized banking systems and decentralized finance promises to offer a

viable alternative. As mentioned DLTs combine joint innovations of these four key computer

science domains [40, 35, 69, 97].

• Data structures : Records pending, processed and finalized transactions and implements

the backbone of DLTs.

• Public Key cryptography : Provides identification of users and signing of transactions.

Each participant in order to record transactions in the Distributed Ledger has a pub-

lic/private keypair. Signing of transactions and user identification build ownership of

data in the Distributed Ledger.

• Distributed peer-to-peer networks : Provides the network protocol that users employ

while communicating in the Distibuted Ledger. It attempts to provide scalability of the

network, prevent single point of failure and to restrain individuals or user groups to

take over the network.

• Consensus protocols : The mechanism which will enable users to agree on the trans-

actions to be accepted (next system state) without being regulated by external third

parties.

22 Chapter 3. Distributed Ledgers

Figure 3.1: Classic banking vs DeFi [40]

3.4 Data Structures

Figure 3.2: Data structure examples as foundations of DLTs [29]

There are various of data structures that DLTs use among linked lists, directed acyclic

graphs (DAGs) or trees. There is a difference between the data that the nodes store and the

structure that store the nodes themselves. Another important aspect is time as most of the

data structures present in DLTs typically aim to stabilize or converge older data entries while

remaining flexible for new ones.More specifically in Blockchains the central linked list struc-

3.5 Public Key Cryptography 23

ture splits in a procedure called a fork when two or more parties successfully publish a new

block while other scaling solutions employ sidechains that store different kinds of transac-

tions and stores sidechain state changes in a central canonical Blockchain.

3.5 Public Key Cryptography

Asymmetric cryptography, commonly referred to as public-key cryptography, is a cryp-

tographic method, that involves a pair of keys consisting of a public key and a private key

known as a keypair. Key pairs are generated through carefully crafted mathematical hash

functions [69, 97]. In such a public encryption scheme any user can encrypt a message with

their private key which can only be can only be deciphered using the corresponding public

key of the user. This leads two characteristics that are crucial and essential to DLTs [29, 3],

first that users sign their transactions in a uniquely identifiable way and second that public

keys can be commonly known in the public domain without risking security. These properties

are used to construct ownership of data or monetary assets in such decentralized systems as

they can be cryptographically tied to users [4, 40, 35].

3.6 Peer to Peer networks

Peer to peer (P2P) networks are networks whose structure deviates from the traditional

client-server model. Such network consists of so called peers i.e., users that are both suppliers

and consumers of resources in contrast to the traditional client-server model [29, 3]. Since

no hierarchical relations exist all nodes behave both as clients and as servers executing the

same protocol [4, 40, 35]. All peers are privileged equally and workloads as well as storage is

partitioned among all of them. This is the core difference with classical systems as the discard

of a central authority is what ultimately realizes the desired decentralized gonvernance of the

protocol [69, 97].

3.7 The need for Consensus

So far we have established that cryptographically idenifiable peers in the p2p network

will record transactions in a Linked list or a DAG structure. Does this imply that any peer

within the network has the ability to submit proposed transactions, and that all those proposed

24 Chapter 3. Distributed Ledgers

Figure 3.3: Client server model vs peer-to-peer [35]

transactions will be subsequently accepted into the ledger? This orders for a protocol that will

select proper transactions among the proposed ones, record them in the data structure and

broadcast them in all participating nodes so that there is no misconception about users’ assets.

In DLTs such a protocol is implemented by employing a consensus algorithm [69, 3, 29].

Consensus algorithms originate from distributed systems where multiple computer nodes

collaborate in a peer to peer message passing enviroment [42, 44, 43, 21, 69]. Contrary to

other multiprocessing environments such as multi threading, distributed systems nodes do not

have a shared memory architecture. Distributed systems nodes can be client server nodes or

peer to peer nodes connected via networking. Any distributed system that requires multiple

process nodes to maintain a common state boils down to resolving the consensus problem

[21, 69].

Use cases of distributed systems include :

• State machine replication i.e., synchronizing replicated state machines ensuring that

all state replicas share a consistent view of the system’s state.

• electing a leader (e.g., for mutual exclusion)

• fault-tolerance in distributed logging while its sequence remains globally consistent

• ability to commit to a transaction or abort transactions in distributed settings

Distributed ledgers have to maintain copies of the backbone data structure across many

participating nodes, so that nodes have access to the latest verified transactions. In every node

creation, that is round where transactions are being verified a single verifying node must be

selected. Their sequence must also be globally consistent so that no dishonest nodes can alter

transaction history. Finally the elected leader must decide on whether to commit on abort on

3.7.1 Consensus 25

the proposed transactions which may be monetary transactions or the execution of general

purpose code as we will see later on.

3.7.1 Consensus

Let a collection of value proposing processes in a message passing environment and a

system which expects only one value. Consensus is the algorithm used to achieve agreement

on a particular single value, that is assurance that a single value from the ones proposed

is chosen based on the individual votes of each process. Then if a value is chosen, all the

participating processes should learn it [42, 44, 43, 21, 69].

Consensus algorithms also assume a synchronization model, which may be either the

Synchronous or the Asynchronous model. The former divides time into rounds where values

are proposed while the latter does not. DLTs operate on asynchronous messaging [69].

Consensus operates in two phases; the leader election phase, that is the selection of the

node that will finalize the value voted and the agreement phase where the proposed value will

be finalized by the elected leader and all peers will be notified. Different consensus algorithms

employ different leader election algorithms and subsequently based on the algorithm chosen,

an agreement algorithm is employed as well.

Consensus algorithms have three safety (validity, agreement, integrity) also abbreviated

as VIA and one liveness property (termination) which makes up for the VITA properties

[69, 43].

• Only a value that has been proposed my be chosen (Validity)

• Only a single value is chosen (Integrity)

• A process never learns a value is chosen unless its has been chosen (Agreement)

• This algortihm terminates (Termination)

Agreement and Integrity are the core consensus properties that ensure that if the algo-

rithm terminates it will provide a single unanimous results across all nodes while validity is

employed in order to rule out trivial solutions and to recognize incorrect protocol outcomes.

Finally termination is a requirement as to establish fault tolerance in such systems as faulty

nodes will force the protocol to run indefinately.

26 Chapter 3. Distributed Ledgers

Consensus algorithms aim to address all of these properties. While this is trivial in non

faulty systems in real world scenarios where nodes become faulty it becomes impossible to

satisfy all of them, at least not completely. But before diving into that it is important to clarify

the definition of faults themselves their classification and why it is important when combined

with the VITA properties.

3.7.2 Fault classification

In distributed systems nodes are known to exhibit crash fails, stop and recover faults, as

well as Byzantine faults [42, 44, 43, 21, 69].

Crash fails are the simplest ones as participating nodes simply come to a halt and other

participating nodes no longer receive messages from them. This may be either to the process

itself stopping of its connection failing. There is no distinction between the two in this case.

Crash Recover fails happen when halted processes spontaneously burst into life due to a

restart, a late arrival of an already sent message or a message re- transmission. Any case has

equivalent results as the newly received messages in the leader will be arrive in an incorrect

protocol state.

”Byzantine” refers to arbitrary faults, that is it models the general kind of fault. This

includes both crash fails, crash recovers along with any kind of deviation from the standard

system protocol, including malfunctions as well as malicious behaviour.

3.7.3 Deterministic Consensus

Consensus protocols are divided into deterministic and non-determinitstic algorithms i.e.,

algorithms with random element where determinism here can affect the algorithmic steps, ei-

ther the leader election or the value proposed. Since values proposed cannot be random in any

case since else how distributed systems whould be meaningless. The randomized algorithmic

elements therefore lie in the leader selection.

Deterministic algorithms include Paxos Raft and PBFT [42, 44, 43].

Consensus among honest and fault-free processes is trivial. This is solved by the two-

phase commit protocol. In such a protocol an coordinating node (elected leader) is selected

which is assigned with determining the protocol’s result, while the rest of the nodes execute

the protocol based solely on the leader’s commands. The leader puts forward a value which

3.8 FLP 27

is communicated to all the participating nodes and nodes store the proposed value. In a trans-

action system this procedure is repeated as long as there are transactions to be processed. The

caveat is that in order for this to work all processes must be always honest,always alive and

in an environment where communication is flawless.

Faults in this case may be failures in terms of the processes or their communication.When

such failures occur the two-phase commit protocol must either wait indefinitely or restart.

3.8 FLP

The central question is, can we achieve consensus in an asynchronous network model?

FLP impossibility [21], also known as Fischer-Lynch-Paterson impossibility, is a theo-

retical result that states that it is impossible to solve the consensus problem i.e. derive and

algorithm that guarantees both safety and liveness deterministically in a message passing

asynchronous distributed system in the presence of even a single node that suffers fromCrash-

Failures.

In other words, FLP impossibility shows that in an asynchronous system, where nodes

may fail or have arbitrary (infinite) message delay, there is no consensus algorithm that can

always guarantee that all correct nodes agree on the same value within a finite amount of

time, even if only one node fails [42, 44, 43, 21, 69]. This means that in an asynchronous

system, it is impossible to completely avoid the risk of a consensus failure, where nodes may

disagree on the outcome of a consensus even if they follow the protocol correctly.

FLP’s proof dictates that in protocols that retain consistency andweak validity in the asyn-

chronous setting there will in any case exist an algorithm run where participating nodes will

run indefinitely without outputting a result which therefore violates the liveness property of

termination [69, 21]. Immediately it is important to investigate why the FLP result differen-

tiates between deterministic and random based algorithms and this is true because in random

based algorithms such non terminating runs have a very small probability of occurring. This

implies that runs have a high probability of successful termination.

Randomness or (somewhat) synchronized clocks can be employed to mitigate the FLP

impossibility and derive consensus protocols in the asynchronous message passing enviro-

ment [42, 44, 43, 21, 69]. This is the core distinction between consensus algorithms, Classical

ones like Paxos Raft PBFT that have existed since Lamport’s days and lottery based Con-

28 Chapter 3. Distributed Ledgers

sensus algorithms like PoW PoS DPoS etc. Here lottery based refers to the random leader

selection process [69].

DLTs have been known to employ any of these algorithms when recording transactions by

repeated consensus. Lottery based algorithms have been the core backbone ofmost Blockchains,

i.e. linked list DLTs and were introducted with the emergence of Bitcoin and the first such

algorithm Proof of Work [69]. Before talking about proof of Work we will first explain

Blockchain’s structure and how it stacks up among DLTs.

3.9 Blockchain

Bitcoin [61], introduced in 2009, is a distributed Ledger with a cryptogaphically linked list

core and a lottery based consensus algorithm combining the longest chain protocol as well

as proof of work [65]. After Bitcoin’s success emerged multiple efforts such as Ethereum,

Hyperledger, Smart Chain and fast forward to today where Blockchain implementations are

custom built to cater for specific applications. Blockchains implement a native coin to the

platform, e.g. Bitcoin in the Bitcoin Blockchain and Ether in the EthrereumBlockchain which

is awarded upon block creation to participants in the network or can be purchased using

traditional currency [106].

There are three kinds of Blockchain systems depending on the nature of users’ priv-

iledges. (i) permissionless (ii) permissioned, and (iii) private. Permissionless Blockchains

are public Blockchains that allow any user to operate and submit transactions (e.g., Bitcoin

and Ethereum). In permissioned Blockchains network participants are specified and multiple

organizations cooperate in order to control and manage Blockchain gonvernace (e.g., Hy-

perledger. Private Blockchains are single organization managed with such an organization

having full control over the network. In terms of our comparison, we mainly consider the

properties of permissionless platforms [4, 3, 29].

Blockchain has unique features that distinguish it from other Distributed Ledger Tech-

nologies (DLTs). One of its main advantages is the increasing number of implementations,

which suggests that the community recognizes its potential across various domains. The ex-

isting implementations address different issues and target different application domains, but

they are all fundamentally implementations of a distributed ledger.

3.10 Blockchain Structure 29

3.10 Blockchain Structure

Blockchain is a linear log of transactions that achieves repeated consensus for transac-

tion immutability by employing Lottery based consensus protocols. Lottery based protocols

attempt to solve the consensus by randomly selecting the round leader either by competitive

puzzle solving (PoW) or by a probability proportional to their investment in the platform

(PoS). These are the main components of a Blockchain.

• Transactions, which are cryptographically signed pieces of information created by par-

ticipants and then once accepted are broadcast to the rest of the nodes in the network.

• Blocks, are collections of transactions that are appended to the Blockchain after being

validated

• The Blockchain which is a ledger of all the created blocks that make up the network

• Τhe Blockchain relies on cryptographically signed blocks in order to implement block

connection and block sequence

• A consensus mechanism is employed to select the blocks which are to be added to the

Blockchain.

Figure 3.4: Linear log (linked list) of transactions [29]

3.10.1 Blockchain’s core data structure

The underlying data structure is a cryptographically linked list also known as a chain.

Nodes are identified by hash values which are being used as pointing values to the previous

30 Chapter 3. Distributed Ledgers

node. The linked list nodes are also referred to as blocks, hence the name Blockchain. Blocks

are comprised of a block header where data about the block are stored and a block body which

stores transaction data. In each block header there exists a field which contains the previous

block hash which is calculated based on the previous blocks’ header. This implies that each

block is cryptographically linked to the previous one. Note here that the notion of ”previous”

requires keeping track of time which is achieved storing timestamps in the block header and

using them to compute the blocks’ header hash. Finally as time moves forward the chain may

split in a process called a fork which essentially means that from the block where the fork

was created onward, two chains record transactions and thus continue the Blockchain.

Figure 3.5: High level overview of bitcoin [25]

Bellow we will analyze each component of the Blockchain in-depth starting with individ-

ual transactions, block headers, block bodies, timestamps, calculation of block header fields,

block creation, Blockchain consensus and fork resolutions using bitcoin as a use case .

3.10.2 Transactions

A transaction refers to the transfer of digital assets or data from one account or entity to

another on the network. A transaction typically includes information such as the sender’s ad-

dress, the recipient’s address, the amount of digital assets or data being transferred, and trans-

action fees. Once a transaction is initiated, it is broadcast to the network, validated by nodes

in the network, and included in a block. After the block is appended to the Blockchain, the

transaction becomes permanent and irreversible, creating an immutable record of the trans-

action history on the Blockchain. In this system, electronic currency is transferred between

users when payees digitally sign a hash of the previous transaction and the public key of the

intended recipient, subsequently appending it to the end of the chain.

3.10.2 Transactions 31

Figure 3.6: Transactions in bitcoin [61]

Transactions are therefore verified by the owner’s public key and signed by the owners

private key. Each transaction uses the owners’ public key to create a hash of a transaction

which will be used when blocks are created so that transactions can be verified later.

Figure 3.7: Transactions merkle tree [61]

When blocks are being proposed, transactions are gathered from a pool of pending trans-

actions and placed in the proposed block’s body. There all hashes of the proposed transactions

are gathered and used to construct a merkle tree whose root is identification of the transactions

in the Blockchain.

A hash tree, commonly referred to as a Merkle tree, is a cryptographic data structure

employed in the field of cryptography used for data integrity verification, that is to securely

verify the integrity of large data sets.

A Merkle tree is constructed by recursively hashing pairs of data, resulting in a binary

tree structure where each leaf node represents a single piece of data and each non-leaf node

32 Chapter 3. Distributed Ledgers

represents the hash of its child nodes. Starting from the leaves which store hashes, tree nodes

accumulate their children hashes and obtain the resulting hash which is the hash of the current

node up towards the root. The root node of the tree represents the top-level hash, also known

as the Merkle root.

Merkle trees are commonly used to allow for efficient and secure verification of transac-

tions. In this context, each leaf node represents a transaction, and the Merkle root is included

in the block header. The Merkle root can be used to verify the integrity of the entire data set,

as any changes to the data will result in a different Merkle root and is used to identify each

blocks’ transactions.

3.10.3 Blockchain Header

The block header without transactions would be approximately 80 bytes. Starting with

the version of the protocol then continuing onward with the hash of the previous block, the

merkle root of the transaction data, the timestamp, the target and finally the nonce 3.8.

The block header’s fields along with 48 bytes of padding totaling 128 bytes are split

into 2 512-bit segments, which are hashed using the SHA-256 algorithm, concatenated along

with padding and hashed once more to create the final 256 bit block hash. This serves as

identification of the present block and will be stored in the ”previous block hash” field of the

next block as to show their continuity 3.8.

The ”target” and ”nonce” are very important fields which are essential components of the

mining problem, the underlying mechanism for leader election in Blockchain’s consensus

algorithm. This is true for the ”time” field of the struct as it is used to maintain the sequence

and order of blocks which is important for the longest chain property, also a component of

Blockchain’s consensus algorithm.

3.10.4 Mainaining order of transactions

Here Blockchain’s solution starts by employing a timestamp server. The timestamp server

works by taking the block hash and publishing the hash value. This timestamp proves that at

the time of its creation data existed at the time in order to participate in the hash calculation.

The timestamps themselves also form a chain, as each timestamp’s hash requires the previous

hash’s value in order to be calculated 3.11.

3.11 Block Creation 33

Figure 3.8: Block header hash [97]

Figure 3.9: Transaction Block hashing [61]

3.11 Block Creation

So far we have established that Blockchain implements a DLT based on peers that store

transactions in blocks which are recorded in a cryptographically linked list. We also explored

block structure. Whats left is selection of the leader who will authorise the next block and the

process of block creation. This is addressed by the Blockchains consensus algorithm, proof

of work with longest chain. Proof of work is a competitive protocol and together with the

longest chain property select the new block to be placed.

34 Chapter 3. Distributed Ledgers

Figure 3.10: Miner [99]

3.12 Proof of work - the mining puzzle

We described the hashing process of the Blockchain header in Figure 3.8. In order to

introduce a new block to the chain two things must hold true.

• The first node to solve the mining puzzle will publish its new block

• The new block must be added to the longest chain

The mining puzzle is a cryptographic puzzle where nodes seek to find a correct number

(nonce in the present context) that makes the resulting hash contain zeros in a number of

most significant places. Here this hash is the block hash.

Figure 3.11: Transaction Block hashing [68]

As we have seen in Figure 3.8 the nonce is itself concatenated to the other block header

fields in order to formulate the double hash input. When competing nodes attempt to formu-

3.12 Proof of work - the mining puzzle 35

late blocks they gather transactions, and brute force nonces in order for the resulting hash to

start to be less than the value in the target field.

Among competing nodes, the first one to collect a valid set of transactions and to find

the appropriate nonce so that the block hash is less than the target get to be the elected leader

equivalent and will record their block in the Blockchain so long as the block’s previous hash

value refers to the final block of the longest chain 3.10.

The longest chain rule is key here as it resolves the forks of the Blockchain 3.12. Forks

occur when two or more parties manage to simultaneously succesfully mine a correct block

and place it in the Blockchain. In this instance the Blockchain splits in two and contains two

transaction histories. However, as future blocks continue the longest chain and most nodes

build on one side of the fork rather than the other they get resolved by the network itself.

Figure 3.12: Forks in Blockchain [96]

With these two mechanisms Blockchains manage to circumvent the FLP impossibility in

order to achieve probabilisitc consensus in this asynchronous setting. Leader election here is

random or lottery based as the competition in order to solve the mining puzzle is practically

random itself. This also solves the non termination issue as PoW is a probabilistic algorithm

but raises the question on what happens when the low probability of PoW failing occurs.

PoW failure does not in the termination property but rather in the aggreement property.

Proof of Work definitely terminates in each round of block creation but there is a certain low

probability that two nodes will not be in agreement of the chain state. This of course is what

happens when forks occur and that probability diminishes to zero as time moves on and forks

are resolved. This process of blocks becoming immutable at time marches is called finality.

Finality in bitcoin is about 6 blocks and takes about an hour.

36 Chapter 3. Distributed Ledgers

3.13 Bitcoin Weaknesses

One of the primary criticisms of Bitcoin is its scalability [69, 100]. The current Bitcoin

network can handle only a limited number of transactions per second which can result in

delays and high transaction fees during periods of high network traffic. The limited block

size and the time required for block confirmation result in slower transaction processing

times, making it less suitable for high-volume transactions. Secondly, the energy consump-

tion caused by Bitcoin mining has provoked significant criticism due to its environmental

impact. The Proof of Work consensus mechanism employed by Bitcoin requires substantial

computational power due to the repeated hashing calculations required, leading to significant

energy consumption [106].

3.14 Proof of Stake

Scalability and energy concerns lead to the search for suitable alternatives to Proof of

work [106]. Efforts focused on solutions that attempted to solve the consensus problem in

the asynchronous setting without the computational and energy requirements of competitive

mining as well as also reducing delays and increasing theoretical transaction throughput 3.1.

Proof of State starts with the same basis as Proof of Work, meaning that it also assumes a

Blockchain data structure with blocks that store transactions, a peer-to-peer network protocol

and cryptographic verification of transactions and blocks [69]. The differentiation between

PoW and PoS is in leader selection, where PoS discards cryptographic puzzles.

Validators replace traditional miners in PoW and are chosen by the protocol to validate

transactions and create new blocks randomly in each round by a probability value assigned to

thembased on their ownership and willingness to ”stake” a certain amount of cryptocurrency

as collateral in the platform. Note here that while not all Blockchains house a native coin,

PoS requires a currency enabled Blockchain to work. Although in Proof of Work is a public

consensus protocol, PoS implements a permmissioned consensus algorithm as the protocol

starts with a well defined set of staking validators [69].

So Proof of Stake skips latencies stemming from PoW’s competitive nature and is able to

reach must faster block creation times, a much desired feature of modern Blockchains. While

bitcoin boasts 15 TPS with 60-minute finality times, the PoS based Blockchains can already

reach 2000 (Solana) or even 4500 (Avalance) with finality times in the seconds.

3.15 Survey of most popular Blockchains 37

Performance and Energy comparison

Bitcoin Ethereum Cardano Solana Avalance

Transaction speed 5 TPS 15-20 TPS 2 TPS 2000 TPS 4500 TPS

Transaction finality 60 min 14 min 10-60 min 21-46 s 2-3 s

Energy Efficiency 1,449 kWh 238 kWh 0.5 KWh 0.00051

KWh

0.00013

KWh

Table 3.1: Public Blockchains

Finally alternatives to PoS have been proposed with each Blockchain implementing a

slightly different protocol such as DPoS PoET PoH.

3.15 Survey of most popular Blockchains

Figure 3.13: Public Blockchain collection [27]

Since Ethereum [100, 49] introduced Smart Contract support, the entire focus of new

Blockchain ecosystems has shifted to smart contract support as well as the implementation

38 Chapter 3. Distributed Ledgers

and support of new features such as new methods for on-chain storage, privacy and security

enhancements all towards the implementation of fully functional decentralized cloud systems.

Furthermore, as various chains are being contstantly introduced efforts are focused towards

interoperability with cross-chain platforms such as Cosmos and Polkadot that enable cross-

chain transactions and perhaps more importantly for our purposes cross-chain smart contracts

3.13.

3.16 Challenges in Distributed Ledgers

Besides Blockchain, there are DLT implementations utilizing various data structures and

consensus mechanisms. Blockchain remains highly popular but even Blockchain variants

continue to multiply as new efforts try to address problems and deficiencies that trace back

since the adoption of bitcoin begun [1].

There are several challenges associated with the adoption and implementation of DLT.

Firstly, interoperability between different DLT platforms remains a significant challenge, as

there is a lack of standardization and uniformity in DLT protocols [69]. This limits the ability

to share data across different platforms, hindering the potential for broader adoption and

network effects. Secondly, scalability remains a challenge for many DLT platforms, as they

face limitations in processing capacity and transaction speed, particularly in high-volume

scenarios [100, 49].

Additionally, the security of DLT platforms is a critical concern, as vulnerabilities and

attacks can result in significant financial losses and undermine user confidence in the tech-

nology. Another challenge is the regulatory environment, which is still evolving and can

vary significantly across jurisdictions, creating legal and compliance challenges for busi-

nesses seeking to adopt DLT solutions. Finally, there are challenges related to governance

and decision-making within DLT networks, as stakeholders may have differing incentives

and goals, requiring consensus-building mechanisms to ensure the integrity and functional-

ity of the network. Despite such challenges, current research and development efforts are

exploring solutions to address these issues and promote the wider adoption and success of

DLT .

Such developments have resulted in perhaps the most important feature of modern DLTs,

that is Smart Contractss which will be discussed in the next chapter.

Chapter 4

Smart Contracts

4.1 Introduction

The commercial success of bitcoin and its mass adoption incentivised other pioneers and

organisations to deploy public Blockchain DLTs. Among these efforts was the Ethereum

Blockchain which apart from being an alternative to bitcoin also came with significant tech-

nological advances. Bitcoin is a Blockchain DLT but a simple one at that as only ledger

operations are supported among its users who can only send and receive the platforms na-

tive currency, that its bitcoin. Ethereum [100] pioneered with the introduction of the EVM

(Ethereum Virtual Machine) when Vitalik Buterin and the Ethereum Team realized that the

simple transactions that bitcoin supports can be extended to a fully fledged instruction set for

operations in the Ethereum Blockchain.

The Ethereum Virtual Machine (EVM) is a runtime environment for executing such in-

structions in bytecode or smart contracts on the Ethereum Blockchain. It is a crucial com-

ponent of Ethereum, enabling the execution of decentralized applications (dApps) and the

implementation of complex logic. Since the introduction of Ethereum most Blockchains im-

plement a Virtual Machine which in turn supports code execution.

Ethereum’s focus has been on providing a programmable Blockchain platform that sup-

ports the execution of smart contracts, enabling developers to build decentralized applications

with diverse functionalities. DApps have seen tremendous commercial success and have

driven innovations in multiple industries who seek to migrate applications and services in

Blockchains instead of traditional centralized or cloud applications.

39

40 Chapter 4. Smart Contracts

4.2 Smart Contracts Definition

Smart contracts are programs that run on a Distributed Ledger and extend its use. They

are essentially scripts that are executed in a decentralized manner on Blockchains and other

DLTs and are immutablemuch like transactions in a Blockchain [26, 35]. They also undergoes

cryptographic verification to ensure their integrity and reliability .

Smart contracts main feature is that much like Blockchains, they operate in a peer-to-peer

manner without the need for a central authority to regulate code execution [66, 24, 40]. They

enforce and execute the code when specified conditions are met, all without being explicitly

activated by a third party. This along with the fact that they are operating on a fault tolerant

distributed systems means that they provide great service availability, although sometimes at

the cost of execution speed.

4.3 The Ethereum virtual machine

The Ethereum Virtual Machine (EVM) is a stack-based virtual machine, that is, a stack

based data structure wihch uses a set of opcodes to execute instructions beyond monetary

transactions in the Ethereum Blockchain [100, 49].

Smart contracts on Ethereum are written in high-level programming languages like So-

lidity and are compiled into bytecode that the EVM can understand.

When a transaction involving a smart contract is initiated, the EVM receives the byte-

code and begins executing it. Each opcode represents a specific operation, such as arithmetic

calculations or storage manipulation. The EVM executes the opcodes one by one, updating

the program’s state and modifying the Blockchain as necessary.

Much like transactions though, instructions on the EVMare executed upon block creation.

Instruction executions are proposed to the network in the same fashion as transactions which

are then gathered in order to create a block and then executed when the current leader election

places that block in the Blockchain.

The EVM provides a deterministic environment, meaning that given the same inputs and

state, the execution of a smart contract will always produce the same output. This determin-

ism is crucial for maintaining consensus across all Ethereum nodes and ensuring that the

Blockchain remains immutable and trustworthy.

4.4 Blockchains with smart contracts 41

4.4 Blockchains with smart contracts

There are multiple implementations of smart contracts as new Blockchains are constantly

implemented and introduced. Besides Ethereum, Binance Smart Chain [13] aswell asAvalance

[16] are both examples of Blockchain platforms compatible with the Ethereum Virtual Ma-

chine (EVM) and the Solidity language.

Hyperledger Fabric [2], an enterprise level permissioned Blockchain which focuses on

meeting the specific requirements of enterprises, offering features such as modular architec-

ture, permissioned networks, and fine-grained access control. It aims to provide a flexible and

scalable infrastructure for building and deploying Blockchain-based solutions within busi-

ness environments. It provides extensive smart contract support for the permissioned setting.

Tezos [22] is another Blockchain which utilizes on chain administration where partici-

pants in the network can propose changes to the protocol which are reviewed by stakeholders.

It supports smart contracts in its native language Michelson.

Eos [23] is another Blockchainwith smart contracts using the C++ programming language

which gained popularity due to its high transaction throughput and low transaction cost.

Stellar [57] is a Blockchain focused on transaction speed and cost-efficiency which is

shown by the fact that the platform only supports basic smart contracts releated to monetary

functions therefore not being capable of dApp support.

Solana [104] is a high-performance public Blockchain platform designed for decentral-

ized applications and crypto-currencies. It provides fast transaction processing and low fees,

making it suitable for applications requiring high throughput. Solana deviates from the EVM

while being a public Blockchain and supports smart contracts using the Rust language.

There are other examples of smart contract supporting Blockchain platforms but the key

takeaway here is the diversity of the ecosystems proposed. Multiple paradigms and program-

ming languages are present with implementation being custom to each network.

Figure 4.1: Solidity Smart contract code example

42 Chapter 4. Smart Contracts

4.5 Deployment and Execution

Smart contracts are written in each chains’ supported programming language and then

compiled into the supported bytecode of the Blockchain. Then smart contracts are deployed

in the platform in a series of transactions in order for the smart contract code to be in every

peer node ready to be executed [26, 66].

First step in execution (step 0) involves the initialization of smart contracts. There are

multiple ways to interface with each Blockchain network, as smart contracts may handle or

process data coming from external systems. Ethereum SDK [100] and the Hyperledger Fabric

SDK [2] support building applications with REST API support.

External interfacing applications submit their requests for smart contract functionality in

the underlying Blockchain (Step 1). Here when such transactions are being requested sanity

checks are performed on whether there are runtime errors associated with the requested code

(Step 2). Then authentication and legitimacy checks are performed in order to investigate

whether such actions were invoked by members of the network by cross referencing their

digital signature [26, 66].

If the node determines that the transaction (Step 3) as a legitimate one, the smart contract

code is executed in order to produce a transaction (Step 4). The transasction is processed and

appended to the block being processed and the node mines the current block (Step 5). The

successfully mined block is then added to the Blockchain (Step 6) and partitipaiting nodes

reach agreement as to whether it will be the new block to be appended to the Blockchain (Step

7) following the consensus protocol. If block creation is successful, it is placed on the chain

(Step 8) and now the effects of the smart contract are broadcasted into all nodes [26, 66].

Figure 4.2: Smart Contract Execution Cycle [66]

4.6 Smart Contract Strengths 43

4.6 Smart Contract Strengths

By eliminating the need for a centralized third party, smart contracts ensure uninterrupted

service and facilitating peer-to-peer execution. By autonomously following predefined con-

ditions, smart contracts ensure accurate operations, free from human error or bias as well

as guaranteed service avaliability [26, 66]. Consequently, smart contracts are a promising

alternative for applications that require trustless solutions without intermediaries .

Figure 4.3: Centralized Client-Server vs dApp Architecture[66]

4.6.1 Tamper-proofness and Code immutability

As the integrity of transaction records in a distributed ledger is ensured through digital

signatures and smart contract deployment and operation relies on transaction, smart contracts

are rendered immutable and tamper-proof both in terms of their code as well as their execu-

tion. Individual alteration of transactions is impossible, as they are immutable once placed in

the Blockchain. Thus the smart contract code deployed on the Blockchain and its execution

results are also immutable, making it tamper-evident. Finally while tampered smart contracts

cannot be executed, they can be updated if necessary, with the agreement of the Blockchain

network’s nodes.

44 Chapter 4. Smart Contracts

4.6.2 Transparency

Transparency is a feature of major significance that Blockchains provide to smart con-

tracts. The transparency of smart contracts has two aspects. Firstly, the code written in smart

contracts is publicly visible to all participating nodes in the network. Secondly, the collection

of transactions that contain smart contract code execution results are also transparent to the

public. As a result, participants within the Blockchain network can trust the code and the

results of code execution. This concept is very powerfull as it ensures that auditability for

all code run in dApps which itself is a very desirable feature not found in traditional cloud

applications which are closed source.

4.7 Challenges

One key challenge is the issue of security vulnerabilities [26, 66, 12]. Due to their com-

plexity and the potential for coding errors, smart contracts can be susceptible to exploitation

by malicious actors. Even small mistakes in the code can lead to significant financial losses.

Additionally, the immutability of smart contracts poses a challenge when errors are discov-

ered or updates are required. Unlike traditional software, once a smart contract is deployed

on the Blockchain, it becomes difficult to modify or correct without the consensus of the net-

work participants. Furthermore, the scalability of smart contracts is an ongoing concern. As

more transactions and applications are added to the Blockchain, the increased computational

and storage demands can hinder the efficient execution of smart contracts. These challenges

highlight the need for thorough code auditing, robust security practices, and innovative solu-

tions to address the limitations of smart contracts in order to realize their full potential.

The increasing adoption of dApps has shifted the focus of Blockchains as transaction

ledgers to them as smart contract platforms. Smart contract have reached the point of requir-

ing a significant portion of the platforms transaction both in terms of throughput as well as

processing. This has lead to developers seeking faster platform for contract development and

deployment that will be able to handle such workloads.

Chapter 5

Solana platform

5.1 Introduction

As Blockchains evolve as an ecosystem, new platforms are being introduced to mitigate

challenges that Bitcoin and Ethereum have faced related to their energy consumption, slow

confirmation times, and limitations in scaling. Since Bitcoin, two important paradigm shifts

have emerged in the public Blockchain world. The first major paradigm shift is the adoption

of Smart Contract support in most of the Blockchains that were introduced after the Smart

Contract pioneer Ethereum and the second one was the shift from PoW based to PoS based

Blockchains. Almost all modern public Blockchains employ a flavour of Proof of Stake for

their consensus, while Smart Contract support has been a prominant feature in all types of

Blockchains.

Still effors are continued in order to reduce transaction and finality times even further.

As such times are being reduced, transaction throughput is increased which results in higher

performance and reliability in Smart Contract execution. This has proven to be essential as

Smart Contracts have evolved to the point of requiring substantial amount of code execution.

Simultaneously new platforms aim to compete against traditional centralized ledger systems

such as Visa.

Simultanoursly Smart Contract development requires modern tools and flexibility for de-

velopers. New tools as well as techniques are constantly being developed with dApp adoption

rising and expanding in new segments. DApps utilize as much throughput they can leverage

in a platform so that their performance is comparable to traditional cloud applications.

45

46 Chapter 5. Solana platform

5.2 Solana structure and components

Solana is a public Blockchain introduced in 2017 [104]. Solana evolves upon the estab-

lished Proof of Stake algorihm by realizing its consensus protocol combined with Proof of

History (PoH) [104, 103, 105] which is a proof of verifying time deltas between events that

is used to maintain passage of time and thus order. PoH greatly reduces messaging overhead

in a Blockchain resulting in second level finality times in the Solana Blockchain.

The Solana Blockchain platform presents a compelling solution to the scalability and

speed challenges faced by many Blockchain networks. Its innovative architecture, incorpo-

rating Proof of History, and sharding, enables Solana to achieve high throughput, low latency,

and cost-effective transactions [104, 103, 105]. It also provides low overhead Smart Con-

tract support by the use of the Rust programming language. These features position Solana

as a promising Blockchain platform for applications requiring scalability and speed, such

as decentralized finance, gaming, and decentralized exchanges [104, 103, 105]. As Solana

continues to evolve and gain adoption, its impact on the Blockchain industry is likely to be

significant, fostering innovation and enabling new possibilities for decentralized applications.

Figure 5.1: Solana structure [104]

Existing public Blockchains currently do not have a reliable time mechanism or make

assumptions about participants’ ability to maintain accurate time. Each node typically relies

5.3 Proof of History 47

on its own local clock, unaware of the timekeeping of other participants in the network. This

lack of a trusted time source introduces uncertainty when using message timestamps to accept

or reject messages since there is no guarantee that all participants will make the same decision.

The Proof of History (PoH) introduced here aims to establish a ledger that provides verifiable

time passage, including the duration between events and the order of messages [103]. It is

expected that each and every single node in the network be able to rely on the recorded time

passage in the ledger without relying on trust in other participants.

At any given moment, a system node is designated as the Leader, responsible for gener-

ating the sequence known as Proof of History [104, 103, 105]. This sequence ensures global

read consistency in the network and establishes a verifiable passage of time. The Leader orga-

nizes user messages in a specific order that optimizes processing efficiency for other nodes,

thereby maximizing throughput. It executes transactions based on the current state stored in

RAM and shares the transactions along with a signature of the final state with replication

nodes called Verifiers. Verifiers [104, 103, 105] independently execute the same transactions

using their own copies of the state and publish their computed signatures as confirmations.

These published confirmations serve as votes for the consensus algorithm.

5.3 Proof of History

Proof of History [104, 103, 105] is a computational sequence that enables cryptographic

verification of time passage between two events. It employs a cryptographically secure func-

tion designed in such a way that the output cannot be predicted from the input and must be

fully executed to generate the output. The function runs sequentially on a single core, using

the previous output as the current input, periodically recording the current output and the

number of iterations. External computers can then parallelly recompute and verify the output

by checking each segment of the sequence on separate cores. To include data in the sequence,

the data itself or a hash of the data can be appended to the function’s state. By recording the

state, index, and data as they are appended to the sequence, a timestamp is established, guar-

anteeing that the data was created before the subsequent hash in the sequence. This design

also supports horizontal scaling for participants as multiple generators can synchronize by

merging their states into each other’s sequences.

The operational concept of the system is as follows: utilizing a collision resistant crypto-

48 Chapter 5. Solana platform

Figure 5.2: Proof of History [104]

graphic hash function (such as sha256 or ripemd) with the property that its output cannot be

determined without executing the function, initiate the function from a random initial value.

Take the output generated by the function and feed it back as the input for the subsequent

execution of the same function [103]. Maintain a record of the count of function calls and

the output produced at each call. Now it is only required to for a small subset of hashes and

indices to be published in each interval.

Assuming the selected hash function is resistant to collisions, the series of hashes can

only be computed sequentially by a single thread on a computer. This is as there is no way to

predict the hash value at a specific index, such as index 300, without actually executing the

algorithm starting from the initial value 300 times. Therefore, based on the properties of this

data structure, we can conclude that real-time has elapsed between index 0 and index 300.

In the example in Figure 5.2, hash 62f51643c1 was outputed on execution number

510144806912 and hash c43d862d88 was outputed on execution number 510146904064. By

trusting the preciously defined properties of the PoH algorithm, we can deduce between count

510144806912 and count 510146904064 actual real time has elapsed.

Note that the accurate amount of time elapsed is of no concern here. Essentially the re-

peated hash calculation constructs a notion of time by event sequencing. This technique is

meant to replace the timestamp block header field hash employed in the bitcoin Blockchain

in order to maintain event sequencing.

The series of hashes can be utilized to indicate that a certain piece of data was generated

prior to a specific hash index [103]. This is achieved by employing a ’combine’ function that

merges the data with the current hash at the present index. The data can be represented as

5.4 PoH sequence instance with events 49

a unique cryptographic hash of any event-related information. The combine function can be

a straightforward append operation or any other operation that ensures collision resistance.

Subsequently, the next generated hash serves as a timestamp for the data since it could have

only been generated after the particular data was inserted [103].

5.4 PoH sequence instance with events

Let a hash sequence instance in the PoH setting. We start with index 1 and jump to index

200 and then 300 5.3.

Figure 5.3: Proof of History hash sequence [104]

When PoH records some event like for example taking a photograph, or the creation of

any type of digital data such as a transaction then its hash can be appended to the hash of

the previous hash of the sequence in order for the next hash to contain the fingerprint about

digital data.

Figure 5.4: Proof of History hash sequence with event [104]

Hash336 is generated by combining the binary data of hash335 and the sha256 of the

photograph 5.4. The sequence output includes the index and the sha256 of the photograph,

allowing anyone who verifies the sequence to reproduce this modification. As the initial pro-

cess remains sequential, we can deduce that entries added to the sequence must have occurred

before the computation of the subsequent hashed value in the future.

50 Chapter 5. Solana platform

Figure 5.5: Proof of History hash sequence with event [104]

In the sequence depicted in Figure 5.5, photograph2 precedes hash600, and photograph1

precedes hash336. When data is inserted into the sequence of hashes, it alters all subsequent

values in the sequence. As long as the chosen hash function is resistant to collisions and the

data is appended, it should be computationally infeasible to pre-compute any future sequences

based on prior knowledge of the data that will be included in the sequence [103].

In the illustration provided in Figure 5.6, the input ”cfd40df8...” was added to the Proof

of History sequence. It was inserted at count 510145855488, and the state at that point was

”3d039eef3.” This modification to the sequence affects all subsequent generated hashes, as

indicated by the change in color in the figure.

Figure 5.6: Proof of History with data entry [104]

This results in a publicly verifiable sequence where observing nodes can determine the

ordering of events and by the count of hashes between events estimate the time elapsed.

5.5 Verification 51

5.5 Verification

All this effort to devise such an intricate mechanism for event sequence proof was driven

by its ease of verification. The protocol discussed above is highly parallelizable in nature

which means that GPUs can be employed in the verficiation process accelerating the verifi-

cation procedure and minimizing execution time in verfying validators [104].

When provided with a certain number of cores, such as a modern GPU with 4000 cores,

the verifier has the capability to divide the sequence of hashes and their corresponding indexes

into 4000 segments. The verifier can then simultaneously validate each segment, ensuring the

correctness of the sequence from the initial hash to the final hash within each segment. This

parallel verification process allows for efficient verification of the entire sequence [104, 103,

105].

As all input strings are documented in the output, along with the corresponding counter

and state to which they are appended, the verifiers can replicate each segment in parallel.

This parallel replication process enables efficient and simultaneous verification of all slices

of the sequence.

4000 hps would result in generating 160 kilobytes of data, which would take a GPU with

4000 cores rouhgly 0.25-0.75 milliseconds of time to verify [104, 103, 105].

5.6 Solana Proof of Stake

Generally in Proof of Stake, verifiers commit a certain amount of coin as a stake, which

enables them to participate in the voting process for specific sets of transactions. The act

of staking coins as collateral is considered a transaction itself and is recorded in the PoH

stream, just like any other event. This is the one of the main reasons for employing the PoH

sequencing in Solana’s consensus mechanism [105, 103].

To cast a vote, a Proof of Stake verifier must sign the hash of the state, which represents

the state after processing all the transactions up to a specific position in the PoH ledger. This

vote is also recorded as a transaction in the PoH stream. By examining the PoH ledger, one

can deduce the duration between each vote, as well as identify the duration for which each

verifier was unavailable in the event of a partition. Essentially, the PoH ledger provides proof

of the passage of time between votes and the periods of unavailability for each verifier during

a partition.

52 Chapter 5. Solana platform

This particular implementation of Proof of Stake is specifically designed for rapidly con-

firming the current sequence generated by the Proof of History generator. It is also used for

voting and selecting the next Proof of History generator, as well as penalizing any validators

that engage in malicious behavior. The algorithm relies on the timely delivery of messages

to all participating nodes within a specified timeout period.

5.6.1 Staking

In this context the staked collateral coin while validators are validating transactions in the

network is known as a bond. An amount of coin is taken from verifying nodes to an account

which holds bonds under the staking user’s identity. Such collateral coin has a predetermined

timeout period which occurs after themajority of stakers have confirmed the current sequence

[105].

The expectation is that the Proof of History generator will periodically publish a signature

of the state. Each bonded identity is required to verify and confirm this signature by publishing

their own signed signature of the state [105]. The voting process is straightforward, with

only a ”yes” vote option available, without a ”no” option. If a supermajority of the bonded

identities submit their votes within the specified timeout period, then this branch or proposal

would be considered valid and accepted.

5.6.2 Elections

Elections for a new PoH generator take place when a failure of the current PoH generator

is detected. Then for the new PoH generator election stakers are sorted in terms of their staked

collateral and the one with highest voting power validator is selected [105]. To establish the

new sequence, a supermajority of confirmations from the validators is required.

In order to switch votes, a validator is required to vote at a higher PoH sequence counter

and include the votes it wishes to switch in the new vote. Failure to meet these conditions

would make the second vote susceptible to penalty. Vote switching is designed to occur only

at a height where a supermajority has not been reached.

Once a PoH generator is established, another validating node is chosen to process trans-

actions If a Secondary exists, it will be considered as the next leader in the event of a Primary

failure.The platform is structured in a way that allows the Secondary to become the Primary,

5.6.3 Failure and slashing 53

and lower-ranked generators to be promoted, either when an exception is detected or accord-

ing to a predefined schedule [105].

PoH generators are equipped with an identity that signs the generated sequence [105]. A

fork in the Blockchain can only happen if the identity of the PoH generator has been compro-

mised. A fork is identified when two distinct historical records are published under the same

PoH identity. This serves as an indication that the integrity of the PoH generator’s identity has

been compromised, leading to the creation of multiple conflicting versions of the Blockchain.

5.6.3 Failure and slashing

Errors or failures in the PoH generator would be apparent in this case in the generation

of an invalid state, causing the published signature of the state to not align with the local

validators’ computations [105]. In such a scenario, validators will disseminate the correct

signature through gossip communication, which would initiate a new round of elections.

Validators who accept and validate an invalid state will face penalties in the form of

having their bonded funds reduced i.e., their bonds will be slashed [105]. This incentivizes

validators to carefully verify the correctness of the state and take necessary actions to prevent

the acceptance of invalid or maliciously generated states.

Penalties here are executed through the compromise of the staked collateral by the pro-

tocol. This is a process known as slashing. When a malicious vote is detected its proof will

take the malicious node’s collateral and place it in the reward pool for the block creator.

Additionally slashing can occur when a voting node votes on an invalid hash. However two

sequential votes where the first one has successfully been in the PoH sequence are not deemed

as malicious but the second one is simply removed from the voting process.

5.6.4 Finality

PoH enables network verifiers to gain insights into past events with a certain level of

confidence regarding the timing of those events. As the PoH generator generates a continuous

stream of messages, all verifiers are expected to submit their signatures of the state within a

specified timeframe, such as 500ms. This timeout duration can be further shortened based on

the network conditions [104].

Since each verification is recorded in the stream, every participant in the network can

verify that all verifiers have submitted their votes within the prescribed timeout, even without

54 Chapter 5. Solana platform

directly observing the voting process. This allows for validation of timely participation by

verifiers without the need for direct observation of the voting activity.

5.7 Solana Challenges

Solana has experienced multiple instances of network outages, with a total of 11 major

outages and 3 minor outages in the year 2022. The duration of these outages varied, lasting

from 1 hour 15 minutes to 17 hours 7 minutes. The most recent outage was particularly

significant, marking the longest period of downtime in over a year.

Scalability concerns: While Solana is known for its high throughput and fast transaction

processing, concerns have been raised about its ability to maintain scalability as the network

grows. As the number of nodes and transactions increases, it may face challenges in sustaining

its performance [104].

Network centralization: Some critics argue that Solana’s consensus mechanism, which

relies on a small set of validators known as ”the Council,” introduces a level of centralization.

This has raised concerns about the platform’s decentralization and censorship resistance.

Reliance on validators: Solana’s security depends on the honesty and proper functioning

of the network validators. If a significant number of validators behave maliciously or expe-

rience technical issues, it could impact the overall security and reliability of the platform.

Complexity and learning curve: Solana’s architecture and development ecosystem can

be complex, requiring a deeper understanding of its unique features and programming mod-

els. This may pose a challenge for developers and hinder wider adoption by the developer

community.

Limited Smart Contract language support: At the time of writing, Solana’s flagship lan-

guage for Smart Contracts is the Rust programming language. This limitation may restrict

the accessibility of the platform for developers who prefer other programming languages,

potentially reducing the pool of talent and available tooling.

It’s important to note that Blockchain platforms constantly evolve and address these

weaknesses over time, and the Solana team may already be actively working on mitigating

these concerns.

Chapter 6

Solana Smart Contracts

6.1 Introduction

Smart Contracts have become increasingly popular in the realm of Blockchain technology

due to their ability to enable distributed, transparent, and trustless computing. These contracts

have gained significant attention, considering the market capitalization of cryptocurrencies

driven by Smart Contracts exceeds $1TB. However, their appeal to attackers is also notable,

as the open-source nature of Smart Contract code presents opportunities for exploiting vul-

nerabilities and potentially stealing substantial amounts of funds. For instance, theWormhole

network suffered a loss of over $ 320 million due to a missing key check, while the Poly Net-

work experienced a vulnerability in its Smart Contract that resulted in a loss of $ 611 million

[66]. These incidents highlight the importance of ensuring robust security measures in Smart

Contracts to protect against potential exploits [26, 24, 40].

Ethereum (ETH) is widely recognized as one of the leading platforms for Smart Con-

tracts, with a vast number of applications deployed and a market capitalization exceeding

$374 billion. However, Ethereum faces limitations in terms of processing speed, currently

operating at a range of 10-15 transactions per second (TPS). This constraint is attributable to

several factors, including the use of Proof of Work (PoW) consensus mechanism. Addition-

ally, the design of Ethereum Smart Contracts involves maintaining a single copy of states,

resulting in a sequential execution requirement for updating these states within the same con-

tract. These factors contribute to the scalability challenges faced by Ethereum in terms of

transaction throughput.

Solana Smart Contract platform aim to overcome Ethereum’s speed limitations. It is

55

56 Chapter 6. Solana Smart Contracts

renowned as the fastest Blockchain globally, boasting transaction speeds surpassing 2,000

transactions per second (TPS) [27]. With Solana’s scalability, transaction fees remain low,

amounting to less than $0.01, and the platform achieves rapid transaction processing rates of

around 400 milliseconds per block. This enhanced efficiency enables previously underserved

users to access the decentralized ecosystem, including areas such as Decentralized Finance

(DeFi), Non-Fungible Tokens (NFTs), and other Web 3.0 applications. Solana’s capabilities

provide an efficient platform for various emerging use cases in the Blockchain space.

6.2 Definition

Solana introduces a distinct Smart Contract model compared to traditional EVM-based

Blockchains [90]. In traditional EVM-based chains, a contract combines both code/logic and

state, and the entire contract is deployed on the Blockchain. In contrast, Solana’s approach

involves separating the Smart Contract into two components: the Smart Contract itself, which

consists solely of program logic and is read-only or stateless, and the state, which is main-

tained separately. When deployed on Solana, the Smart Contract can be interacted with by

external accounts, allowing for more flexibility and efficiency in contract execution. This

design choice in Solana offers a different approach to managing and interacting with Smart

Contracts compared to traditional EVM-based platforms.

Figure 6.1: Solana Smart Contract [90]

The accounts that interact with the programs serve as storage for data associated with

6.3 Smart Contract - Client structure 57

program interaction. This design choice establishes a clear distinction between the state, rep-

resented by these accounts, and the contract logic contained within the programs. This dif-

ferentiation is a fundamental divergence between Solana and EVM-based Smart Contracts.

In Ethereum, accounts primarily serve as references to individuals’ wallets, whereas Solana

accounts have the capability to store data, including wallet information. This key difference

allows Solana accounts to have a broader functionality in terms of data storage and handling

compared to Ethereum accounts.

Solana introduces Sealevel [87], a feature that enables parallel execution of Smart Con-

tracts. Unlike many other Blockchain networks where only one Smart Contract can influence

and modify the Blockchain state at a time, Solana’s runtime has the capability to process

numerous contracts simultaneously. This parallel processing enables concurrent execution

of non-overlapping transactions and allows transactions that only read the same state to ex-

ecute concurrently as well. By leveraging Sealevel, Solana achieves greater scalability and

efficiency in executing Smart Contracts.

Additionally Solana offers its CLI [81] as well as its own JSON RPC API [79] that can

be employed by dApp developers in order to interact with the Solana Blockchain. There are

also available SDKs in order to communicate with Solana programs.

6.3 Smart Contract - Client structure

Although Solana Smart Contracts can be written in any of the C , C++ and Rust program-

ming languages the most widely adopted one is Rust [84].

Rust is a powerful andmodern programming language that combines the performance and

low-level control of languages like C and C++ with the safety and simplicity of higher-level

languages. Rust enforces strict compile-time checks and prevents common programming er-

rors such as null pointer dereferences, buffer overflows, and data races. Rust thus delivers

memory safety and unlike C/C++ explicit low-level memory management is not necessary

[15].

Clients in the Solana platform are untrusted [85], similar to userspace in Operating Sys-

tems terms but have the flexibility to create a program using their preferred front-end lan-

guage such as C/C++/Rust. This program is then compiled locally by the client using LLVM.

The compilation process involves converting the higher-level language program into a stan-

58 Chapter 6. Solana Smart Contracts

dard ELF object file. This ELF file contains the specific bytecode optimized for efficient

verification and conversion to the local machine instruction set supported by Solana.

On the kernel equivalent side of the Smart Contract [80], the ELF file undergoes a series of

steps for verification, loading, and execution. First, a verifier checks the validity and safety

of the bytecode, ensuring it is suitable for execution. Subsequently, a loader prepares the

necessary memory to load the code and marks the corresponding segment as executable.

Finally, the Solana runtime takes over and initiates the execution of the program, managing

the runtime environment and handling any modifications to the virtual machine.

By employing this approach, Solana enables users to develop programs [83] in their pre-

ferred front-end languages and compile them into a bytecode format that can be quickly veri-

fied and executed on the Solana Blockchain [80]. This design allows for a more efficient and

secure execution of user-created programs within the Solana ecosystem.

As the program is loaded in the validator [80] and the bytecode is checked for instruction

compliance with the supported instructions and memory as well as runtime [86] constraints,

the times associated with these procedure make up for the most performance draining proce-

dures when executing. Thus the target goal in this use case is the easiest fastest and simplest

way to verify the instruction set.

6.4 Memory management

Memorymanagement is the most important aspect that significantly impacts performance

in the Solana engine. The engine’s performance is directly influenced by the concurrent ex-

ecution of contracts without any data dependencies. This implies that if all scheduled con-

tracts are independent, they can be executed simultaneously, leveraging the available cores.

As a result, the engine’s throughput will scale with the increasing number of cores, following

Moore’s law with a doubling rate every two years [105].

The management of memory begins with the ELF itself, where contracts are initially lim-

ited to a single read-only code and data segment. This composition consists of executable code

and read-only data, without any mutable globals or static variables. While this requirement

may be relaxed in the future, it currently offers a straightforward solution for the aforemen-

tioned fourth requirement.

6.5 Solana’s Basic Smart Contract concepts 59

6.5 Solana’s Basic Smart Contract concepts

The account model is a fundamental component of the Solana Smart Contracts [85, 91].

Accounts are the primary units for storing data and state. Each account is identified by a

unique address, which is derived from a public key. Accounts can hold various types of data,

including tokens, program instructions, and custom data structures defined by Smart Con-

tracts. Solana’s accounts are similar to classes in Object Oriented Programming and define

the information that will be stored on chain.

Themost important aspect of Solana’s accounts is the fact that they are statically allocated.

Once an account is allocated no reallocations are possible and thus once a Smart Contract is

on-chain no alterations can be made. The same applies for data stored on chain which is a

feature of Blockchains in general but troublesome for development.

Account States: Solana accounts can have different states based on their usage and per-

missions. The most common states include:

Read/Write Accounts: These accounts allow read and write access, meaning they can be

modified by authorized parties such as Smart Contracts or external entities.

Read-Only Accounts: These accounts provide read-only access, allowing users or Smart

Contracts to retrieve information from the account without modifying its state.

Program Accounts: Program accounts are specialized accounts associated with Smart

Contracts. They store the program code and relevant data for executing the logic defined by

the Smart Contract.

A token account [91] may store token balances and metadata, while a program account

may store the program instructions and state variables. The ownership of an account is deter-

mined by the associated private key, which is used to sign transactions and authorize changes

to the account’s state.

As Solana accounts can interact with each other through transactions [88], transactions

specify the operations to be performed on one or more accounts such as transferring tokens,

updating data or invoking Smart Contract methods. Accounts can be both the source and

destination of these transactions. In this case the clients invoke Smart Contract functions

which target the Smart Contracts program id as the transaction receipient [83].

60 Chapter 6. Solana Smart Contracts

6.6 Solana, Anchor and Seahorse

Solana’s platform provides three main alternatives when developing Solana contracts

[91]. This reflects a very different featureset than other Smart Contract enabled platforms.

Such alternatives are different in terms of the level of abstraction provided by the underlying

framework.

6.6.1 Native Rust

Νative Rust development [84] where the JSON RPC communication must be performed

explicitly as messages are serialised on communication with the server. The main library that

Smart Contract functionality is based on is the Solana program library (SPL). SPL provides

a collection of pre-built programs and tools that developers can leverage to build Smart Con-

tracts. Developers can also create their own custom programs using the Solana SDK [91].

6.6.2 Solana Anchor

Solana Anchor [72] is a Rust framework [77] which attempts to remove some of the

boilerplate code surrounding JSON RPC communication and remote function calls.

This boilerplate code is regarding serialization and deserialization of data which is essen-

tial in Solana programming as all data and remote function calls must be serialized and then

converted to the JSON RPC format in order to be sent to the validator.

6.6.3 Seahorse Solana

Searhorse [95] framework is a framework where source code is written in a very con-

strained subset of python like syntax [94] but with explicit Rust types [93]. This initial source

code is later transpiled to a Rust Anchor program that is then compiled to Solana bytecode.

Seahorse is very early stage software introduced in September of 2022 with many unsup-

ported features. It makes prototyping faster as it automatically creates the safe underlying rust

code. However when running into unsupported features the generated rust code is provided

and the programmer can implement such features in the Rust source.

6.7 Creating a First Program and deploying it on chain 61

6.7 Creating a First Program and deploying it on chain

Solana program compilation is different for each of the Frameworks used. What remains

the same in all cases is that compiled contracts are deployed using the Solana-cli [81]. There

are three networks where Smart Contracts can be deployed i.e. the Solana mainnet, Devnet

as well as a local Solana network [89].

The Solana mainnet is Solana’s main network where Smart Contracts run on real valida-

tors and the Solana coin used for transaction has real monetary value. Once Smart Contracts

have completed development they are deployed there to enable their dApp functionality. Note

here that once deployed in the mainnet no alterations can be made in the Smart Contract code.

The Devnet is a Solana network which uses real validating nodes and attempts to simulate

the mainnet but coins here have no monetary value since they can be obtained using the

Solana’s devnet faucets that provide coin on request for developers seeking to test their Smart

Contract transactions.

Local hosting in this scenario is when attempting to create a local Solana network using

the Solana-test-validator cli tool [89, 81]. This tool creates a verifying node locally which can

support transactions as well as Smart Contract and deployment execution. This is important

as unlike mainnet and devnet this network can be trashed and created again which is crucial

when trying to apply changes to Smart Contract code.

6.8 Deployment

After compilation of the Smart Contract code, dedicated Solana account [85] is created to

hold the program and serve as the entry point for executing the contract’s logic. The account

can be funded with SOL tokens to cover transaction fees [88].

The program is deployed to the Solana Blockchain by submitting a set of transactions

that include the program’s bytecode and the necessary instructions to create the account.

This transaction is broadcasted to the Solana network for processing.

Once the transaction is confirmed and included in a block by the Solana network valida-

tors, the program’s account becomes active and ready for interaction.

Users [92] can now interact with the deployed Smart Contract by invoking its methods

or sending transactions to the associated program account. These interactions trigger the ex-

ecution of the contract’s logic on the Solana network.

62 Chapter 6. Solana Smart Contracts

Deployed Smart Contracts can be viewed in Solana’s block explorer [91] which allows

users to see all transactions in the chain including Smart Contract deployment and execution

transactions.

Figure 6.2: Solana explorer devnet

Chapter 7

Blockchain based Federated learning

7.1 Introduction

As discussed, Federated learning (Fl) is an innovative approach to distributed machine

learning that enables model training without exposing individual data and ensuring privacy.

It leverages collaborative learning principles to create privacy-preserving models. However,

Fl faces challenges including privacy risks, unreliable parameter uploading, high communi-

cation costs, and more. Blockchain, being a decentralized technology, attempts to provide

solution for the challenges that Fl environments face and enhance Fl performance by elimi-

nating the need for a centralized server and replacing it with a Blockchain distributed system.

So far we have discussed the the motivating factors that drive the need for Federated

learning as well as its challenges. We have also discussed the use of dedicated Blockchains

or Blockchain powered Smart Contracts in the implementation of decentralized systems. Ef-

forts have attempted to combine these two domains in Blockchain based Federated learning

where Blockchain Smart Contracts implement the aggregating server that stores models and

coordinates model collection in Federated learning environments.

7.2 Motivation

Various Federated learning challenges and problems can be compensated by the employ-

ment of Blockchain platforms and Smart Contracts.

63

64 Chapter 7. Blockchain based Federated learning

7.2.1 Communication costs

Although Fl environments optimize communication costs by exchanging models and not

data there is still room for improvement as communications can be altered to be even more

distributed among client nodes. Efficient strategies and protocols need to be employed to

further minimize communication costs and optimize the overall performance of Federated

learning systems and this can be done with the use of peer to peer networks.

7.2.2 Single point of Failure

In Federated learning scenarios where a single centralized aggregator is responsible for

collecting and aggregating models from multiple participants, there are inherent vulnerabili-

ties that can lead to Single Point of Failure (SPoF) and Distributed Denial of Service (DDoS)

attacks [109, 64]. The reliance on a single aggregator creates a critical dependency, as any

failure or disruption in its operation can halt the entire Federated learning process. This makes

the system susceptible to SPoF, where the failure of the aggregator would render the entire

network non-functional. Additionally, the centralized nature of the aggregator makes it an

attractive target for malicious actors to launch DDoS attacks, overwhelming the aggrega-

tor’s resources and causing service disruptions. Distributed or decentralized aggregators can

mitigate such risks.

7.2.3 Code and Weight redundancy

In traditional centralized or hierarchical Federated learning final total model weights are

gathered in a single server and no other copies of the model are present outside the central

aggregating server. Without code redundancy, there is a risk of clients running different ver-

sions of the code, leading to inconsistencies in the learning process and potentially impacting

the accuracy of the aggregated model [64]. As code and data are stored in transactions in

Blockchain environments they are replicated in all validating nodes as part of the chain.

7.2.4 Code and weight transparency

Without code transparency, participants have limited visibility into the algorithms and

processes used for model storage and inference in the aggregating server, making it diffi-

cult to assess the fairness, bias, or potential vulnerabilities in the system. The lack of weight

7.2.5 Code and weight immutability 65

transparency prevents participants from verifying the integrity and accuracy of the aggregated

model’s parameters. This lack of transparency can lead to concerns about trust, accountabil-

ity, and the potential for malicious manipulation of the learning process or model outputs

[109]. Clients that use the deployed Fl model to be able to cross reference the deployed

model’s weights. o address these downsides, it is essential to establish mechanisms for code

and weight transparency, allowing participants to inspect, audit, and validate the processes

and parameters involved in centralized Federated learning.In Blockchain environments this

issue is resolved as both the operating logic as well as weights are stored in publicly audible

transactions.

7.2.5 Code and weight immutability

Without code immutability, there is a risk of unauthorized modifications or tampering

with the algorithms and processes used for model training. This can undermine the integrity

and reliability of the learning system, potentially leading to biased or inaccurate model out-

puts. Similarly, the absence of weight immutability raises concerns about the trustworthiness

of the aggregated model’s parameters. If the weights can be easily modified or manipulated, it

becomes difficult to ensure the consistency and reproducibility of the learning process. Mech-

anisms against of the model mutations that are unauthorised must be in place in order for Fl

models to be trusted by clients who want to deploy them in applications or systems. There

can be no discrepencies between deployed models unless explicitly requested by clients. This

is resolved as storage in Blockchain systems is immutable [101].

7.2.6 Incentives to clients for good behaviour

Aggregating servers must provide protection against model poisoning, where malicious

actors may force training nodes to train models with false data. Such faulty models will there-

fore propagate to the aggregated model unless detected by the aggregated server and rejected.

If the model is averaged into the global model then it is impossible to undo the damage done.

Parallel to that Fl aggregating systems must be able to detect the quality of service provided

by clients in such environmnents. Mechanisms must be in place that recognize misbehaving

lazy as well as malicious participants in Fl environments. When using Blockchain for Fl coin

rewards can be donated to well behaved and willing participants.

66 Chapter 7. Blockchain based Federated learning

7.3 Blockchain Based Federated learning

Blockchain Based Federated learning (BCFL) is a Federated learning paradigmwhere the

Fl employs Blockchain in order to implement the aggregating server.Model training is carried

out in Blockchain client peer nodes that communicate via peer to peer networking protocols

while models are stored on-chain and replicated across participating nodes. By leveraging

Blockchain, model updates can be securely stored and accessed in a distributed manner thus

addressing the aforementioned Federated learning challenges [101].

7.4 Blockchain based Federated learning characteristics

BCFL’s use and strength is shown through its unique characteristics [109, 64]:

7.4.1 Decentralization

The decentralized nature of Blockchain based Federated learning ensures that model up-

dates are stored across multiple servers, providing resistance against attacks and data re-

dundancy issues that plague traditional Federated learning systems. Here multiple servers

are leveraged distributed across the network, making it more resilient to such failures. Ad-

ditionally greater availability is ensured for the Federated learning system’s operation as

Blockchain is known to be fault tolerant.

7.4.2 Immutability

Furthermore, the use of decentralized storage mechanisms, such as Blockchain, guaran-

tees the immutability of the models as well as executing logic as they are both stored in

transactions, making them resistant to tampering or unauthorized modifications. This im-

mutability is guaranteed in the Blockchain system itself and does not rely on third parties.

Simply put in order to mutate said models or the executing code one would have to attack the

entire Blockchain network and compromise it.

7.4.3 Traceability

The inherent transparency ensures that participants cannot deny their authorship of model

updates. Additionally, the use of Blockchain technology enables the detection and prevention

7.4.4 Incentives 67

of tampering with the records. Each block of transactions in the chain is used to generate

a unique hash value, making it permanent and immutable. This means that any attempt to

modify or tamper with the records can be easily detected by the server. The Blockchain-

based approach provides a robust and secure framework for Federated learning, ensuring the

integrity and traceability of model updates. Finally malicious agents can be identified by their

cryptographic keys and excluded from future training.

7.4.4 Incentives

Participants in Blockchain-based Federated learning are incentivized through rewards or

incentive mechanisms. These incentives motivate participants to contribute high-quality data

and model updates, ultimately leading to the development of an accurate global model. This

can be quantified by the measurement of the participants’ contribution ratio. By rewarding

motivated with meaningful contributions with coin, the interests of participants will be with

the success of the Federated learning system.

7.4.5 Integrity and Reliability

The cryptographic connection between blocks ensures that any alteration or tampering of

data can be readily detected within the Blockchain. Specifically this will result in what we

descibed as a fork which will be rejected in some blocks’ time and will not be finalized in

the network. This inherent feature of Blockchain technology provides a high level of security

and reliability.

7.4.6 Trust

In Blockchain-based Federated learning, a consensus algorithm is employed to establish

trust among the participants without third parties incolved. Participants who agree to the terms

of the contract are granted permission to participate in the training rounds. This consensus

mechanism helps ensure the integrity and fairness of the Federated learning process as well

as designing penalties for the foul participants in the system.

68 Chapter 7. Blockchain based Federated learning

7.5 BCFL system design overview

The architecture of Blockchain-based Federated learning consists of several key compo-

nents. First, there are Fl participants who contribute their data and model updates. Second,

there is the integration of Fl with Blockchain technology. Third, miners are involved in the

Blockchain network, performing computational tasks. Fourth, a Smart Contracts governs the

rules and interactions within the Fl system. Fifth, a consensus algorithm is used to establish

agreement among participants. Lastly, the Blockchain network itself provides the underlying

infrastructure for secure and transparent transactions. Together, these components form the

foundation of a Blockchain-based Fl system.

Federated learning participants in a Blockchain-based system operate similarly to tradi-

tional Fl environments. These participants can be entities or devices that contribute to model

training. They are actively involved in the process of sending local model updates for veri-

fication and aggregation. Initially, the initial model is distributed to all participants in the Fl

system. Each participant generates local model updates based on their respective raw datasets.

In the Blockchain-based Fl system, participants and miners establish direct communication

with each other, facilitating the exchange of information and coordination throughout the

training process.

The integration of Federated learning with Blockchain serves as a middleware layer that

enables interaction between Fl participants and theBlockchain. In previous studies, researchers

have employed various methods to achieve this integration. For instance, Martinez et al. [56]

utilized the REST-API to interact with the Hyperledger Fabric Blockchain. This approach

allowed for the recording and incentivization of gradient uploads. Additionally, the gRPC

API has been used to facilitate data transfer between Fl clients and the Ethereum Blockchain

network. These APIs enable efficient communication and data exchange, enhancing the in-

tegration of Federated learning with Blockchain technologies.

The miners in the Federated learning system can encompass personal computers, standby

servers, or cloud-based nodes that voluntarily download the mining software. During this

stage, Fl participants transmit their local model updates to the miners. Each Fl participant or

data holder establishes a direct connection with a miner to enable continuous communica-

tion. The role of the miners is to receive the local model updates from the participating Fl

devices or participants. Subsequently, the aggregation process takes place, utilizing the con-

sensus algorithm to reach a consensus on the updated global model. Once the aggregation is

7.5 BCFL system design overview 69

Figure 7.1: BCFL Architecture [64]

completed, a block containing the aggregated model is uploaded to the Blockchain network,

ensuring the integrity and transparency of the Federated learning process.

The Smart Contracts play a vital role in the Blockchain-based system, enabling decen-

tralized applications and automating the execution of program logic based on predefined

conditions. These conditions are transparent and immutable to all participating Fl clients,

and they must agree to them before joining the Fl model training process. By leveraging

Smart Contracts, clients can establish agreements without the need for a trusted third party.

In the context of Federated learning, researchers have utilized Smart Contracts for various

purposes, including participant registration, coordination of model training, aggregation of

local model updates, evaluation of participant contributions, and rewarding participants. In

the architecture depicted in Figure 7.1, the Smart Contracts acts as an intermediary between

the Fl participants and theminers, facilitating their interactions and enforcing the agreed-upon

rules and incentives.

The Smart Contracts plays a vital role in the Blockchain-based system, enabling decen-

tralized applications and automating the execution of program logic based on predefined

70 Chapter 7. Blockchain based Federated learning

Figure 7.2: Smart Contracts based Federated learning [64]

conditions. These conditions are transparent and immutable to all participating Fl clients,

and they must agree to them before joining the Fl model training process. By leveraging

Smart Contracts, clients can establish agreements without the need for a trusted third party.

In the context of Federated learning, researchers have utilized Smart Contracts for various

purposes, including participant registration, coordination of model training, aggregation of

local model updates, evaluation of participant contributions, and rewarding participants. In

the architecture depicted in Figure 7.2, the Smart Contracts acts as an intermediary between

the Fl participants and theminers, facilitating their interactions and enforcing the agreed-upon

rules and incentives.

Finally once the local model updates have been verified and aggregated, new blocks con-

taining these updates are added to the Blockchain network. This process ensures the integrity

and immutability of the Fl model. The Fl model training continues until it reaches the desired

learning rate or convergence criteria. Once this is achieved, Fl clients or other participants

have the option to request and download the global model for their specific purposes. The

miners, who have received the updated global model, can then distribute it to the Fl partici-

pants who need access to the finalized model. This way, the global model becomes available

for download and utilization by the participants involved in the Federated learning process.

Chapter 8

Related Work

We present here the related implementations of Blockchain based Federated learning and

investigate them in three different categories. Approaches that focus on providing security

and privacy, approaches that focus on recording and rewarding participants as well as efforts

that employ verification and accountability. New efforts are constantly being introduced and

this assembly of efforts is valid through June 2023.

8.1 Blockchain based approaches to security and privacy in

Federated learning

Decentralized approaches based on Blockchain technology offer effective solutions to ad-

dress security and privacy issues in the Federated learning (Fl) environment [47, 48]. These

approaches aim to tackle challenges such as Single Point of Failure (SPoF), poisoning attacks,

free-riding, and Distributed Denial of Service (DDoS) attacks. Several studies have proposed

Blockchain-based Fl frameworks and implementations to enhance security and privacy. For

example, the BytoChain framework, introduced by Li et al. [48], utilizes Blockchain technol-

ogy to secure Fl systems. BytoChain involves different entities such as data owners, verifiers,

miners, and task publishers. Verifiers play a crucial role in reducing the verification overhead

for miners by working in parallel. Moreover, a consensus algorithm called Proof of Accuracy

(PoA) is employed to detect privacy loss effectively. These Blockchain-based approaches

contribute to enhancing the security and privacy of Fl systems, and they are discussed in Fig-

ure 8.1, including the key contributions, Blockchain implementation frameworks, consensus

algorithms, and block structures utilized in these studies [67, 50].

71

72 Chapter 8. Related Work

Figure 8.1: BCFL efforts for security and privacy [64]

BytoChain has demonstrated its effectiveness in countering various security attacks such

as reverse model poisoning as well as Distributed Denial of Service (DoS). It maintains com-

parable accuracy to Fl systems operating without any attacks, even under attack settings.

Another notable framework, ChainsFL proposed by Yuan et al. [107], combines Blockchain

and Federated learning in a two-layer architecture. The main-chain, based on the Raft con-

sensus algorithm, coordinates devices to perform model training tasks with significant com-

putational and storage capabilities. Additionally, a sub-chain composed of a Directed Acyclic

Graph (DAG) or tangle consensus handles interactions at the sub-chain layer. ChainsFL [107]

successfully detects fake model updates and addresses issues related to lazy clients. Com-

parative experiments involving convergence and robustness metrics were conducted against

FedAvg [58] and Asynchronous Fl (AsynFL) by Cong Xie et al. [102]. The results demon-

strate that ChainsFL effectively detects and eliminates malicious devices and model updates,

showcasing its performance and resilience.

8.1 Blockchain based approaches to security and privacy in Federated learning 73

In the BLADE-Fl framework proposed by Ma [55], Blockchain is leveraged to enhance

decentralized Federated learning (Fl) by addressing malicious learning updates and single

point of failure (SPoF) attacks. The framework consists of three layers: the network layer

handles task publishing and node training, the Blockchain layer tracks and aggregates model

updates, and the application layer executes Fl events using Smart Contracts. Incentives are

provided to participants and miners for their contributions to the training round and success-

ful aggregation and broadcasting of the model. BLADE-FL also tackles privacy concerns,

resource allocation, and lazy participant issues. Another approach, introduced by Kang et al.

[33], is the Blockchain-enabled federated edge learning (BFEL) method. It utilizes a con-

sortium Blockchain with a Proof of Verifying (PoV) consensus algorithm to identify poison-

ing model updates and verify their quality. Miners, selected based on their computational

and storage resources, implement the consensus algorithm, while those with insufficient re-

sources are eliminated in real-time. BFEL incorporates a gradient compression scheme to

reduce gradient leaks from inference attacks. The method offers flexibility in model training,

detects malicious model updates, and mitigates computation overhead.

Short et al. [70] implemented Blockchain technology to address security issues in Fed-

erated learning. Their algorithm, implemented in a Smart Contract, ensures privacy of client

datasets and can integrate external tools. Hyperledger Fabric, a private Blockchain tool, was

utilized for the experiment. The proposed algorithm demonstrated effectiveness against poi-

soning attacks. In the work by Zhao et al. [110], the Blockchain-based Fl committee (BFLC)

consensus algorithm was introduced to defend against malicious attacks and reduce compu-

tation overhead. The BFLC framework consists of three steps: Blockchain storage, commit-

tee consensus algorithm, and model training. Local and global model updates are stored in

separate blocks, and the consensus algorithm verifies and assigns scores to gradient updates

before adding them to the Blockchain. Model training involves aggregating verified local

model updates into a global model. A profit sharing scheme based on contribution is imple-

mented to incentivize participants in the model updates process. BFLC performs well under

malicious attacks andminimizes transmission costs. Kumar et al. [41] proposed decentralized

training for Fl with Blockchain, incorporating security measures such as Differential Privacy

and Homomorphic Encryption. Additionally, Elastic Weight Consolidation was employed to

enhance the operation of the global model.

74 Chapter 8. Related Work

8.2 Blockchain based Federated learning record and reward

approaches

Financial compensation in the form of coin can be used to provide incentives for self-

interested workers or data holder devices that may be hesitant to participate elsehow. How-

ever, previous studies have shown that devices can contribute their resources effectively in

Federated learning, but the cost of model training becomes a concern [41, 110]. Additionally,

in Fl, there is a risk of untrusted participants performing malicious actions by sending mali-

cious model updates, leading to model poisoning attacks. To address this, tracing or record-

ing model updates can help detect such malicious actions, allowing for the identification and

punishment of the involved participants. Incentivizing reliable participants through rewards

for sending benign model updates becomes crucial. Therefore, well-designed approaches are

needed to measure the beneficial contributions of participants and provide appropriate re-

wards. Table 8.2 provides a summary of Blockchain-based Federated learning approaches

that incorporate record and reward schemes for motivating participating workers in model

training rounds.

Figure 8.2: BCFL efforts for recording and rewarding [64]

Fedcoin [52] is a Blockchain-based approach that incentivizes Fl participants to update

the model. Previous studies have used Shapley Values (SVs) for profit distribution, but the

calculation process for SVs can be time-consuming and computationally complex. In Fed-

coin, SVs are defined as proof of Shapley (PoSap) protocol with a Blockchain consensus

algorithm, providing Fl participants with non-repudiation and incentives. The authors have

also developed a demonstration system that performs Fl tasks in real-time and rewards par-

ticipants based on their performance.

8.3 Blockchain based Federated learning verification and accountable approaches 75

Martinez et al. [56] proposed a record and reward approach by evaluating the contribu-

tions of participants in the model training process. Through the cryptographic signatures of

transactions in Blockchain, the model update contributions are identitfied, recorded, and re-

warded based on the computation power cost utilized by Fl participants. A Class-Sampled

Validation-Error Scheme (CSVES) is introduced to validate valuable model updates for re-

warding through a Smart Contract. As a result, participants receive incentives for their model

updates, leading to more robust Fl models.

Kang et al. [34] introduced reputation as a fair metric for evaluating the robustness and

trustworthiness of participants in Fl systems. They designed a reputation-aware participant

selection scheme using Blockchain technology. By leveraging the properties of Blockchain,

such as non-repudiation and resilience, honest reputation management of workers in updating

Fl models is enabled. Additionally, the incentive approach is combined with reputation met-

rics to encourage devices to contribute high-quality data for model training. The researchers

conducted experiments using real datasets and successfully achieved accurate reputation cal-

culation of devices, resulting in significant improvements in model accuracy.

Behera et al. [9] utilized a Smart Contract based on the Ethereum Blockchain to incen-

tivize Fl participants. The participants’ contributions to the model training process are mea-

sured and associated with the rewards they receive. Similarly, in the work of Batool et al. [8],

a monetization scheme based on Blockchain is introduced for Fl clients, along with a multi-

dimensional auction called FL-MAB. Clients are selected based on their resources, such as

data size, bandwidth, and relative rewards, which they submit as bids. Blockchain-based Fed-

erated learning offers non-repudiation, integrity, and incentivizes clients with cryptocurrency

rewards.

8.3 Blockchain based Federated learning verification and

accountable approaches

Verification and accountability are crucial in preventing attackers from sending malicious

model updates in Blockchain-based Fl approaches. Smart Contracts are used to detect and fi-

nancially penalize attackers. Lazy clients, who send malicious or fake model updates to save

computational cost, also need to be addressed. Verification procedures are implemented to

ensure the integrity and authenticity of model updates during the training process, mitigating

76 Chapter 8. Related Work

malicious attacks. The immutable nature of Blockchain enables data provenance and trace-

ability in the Fl training procedure. Various Blockchain-based Fl verification schemes are

presented in Table 8.3, aiming to establish trust and enhance security.

Figure 8.3: BCFL efforts for verification and accountability [64]

VFChain [63] is a verifiable and auditable Fl approach that utilizes Blockchain technol-

ogy. It introduces a committee selection scheme for aggregating and verifying model updates,

which are recorded in the Blockchain. Auditability is supported through a data structure called

Dual Skip Chain (DSC), enabling authenticated and secure committee search and rotation.

VFChain also includes an optimization method for multiple model training tasks. Experimen-

tal results demonstrate the effectiveness of VFChain in achieving verifiability and auditability

in Fl using Blockchain.

Awan et al. [6] propose a privacy-preserving Fl approach using Blockchain. It involves

a server, clients, and aggregators, with a distributed immutable ledger used to record lo-

cal and global model updates for tamper resistance. By tracking model transactions on the

Blockchain, trust and verificationmechanisms are provided in the Federated learning process.

The tracking process also measures each client’s contribution to model updates, facilitating

rewards schemes.

Desai et al. [17] develop an accountable Fl method called BlockFLA, which addresses at-

tacks through accountability using hybrid Blockchain technology. Public and private Blockchain

8.4 Open Issues 77

tools, such as Ethereum and Hyperledger Fabric, are used. The public Blockchain archi-

tecture executes intensive algorithms and allows anyone to retrieve data, while the private

Blockchain ensures communication efficiency and handles sensitive data to prevent data leak-

age. BlockFLA is evaluated using FedAvg and SignSGD algorithms, incorporating various

features including parallelism.

Lo et al. [53] propose a trustworthy Federated learning framework that incorporates Blockchain

to enhance accountability and equality in Fl systems. They introduce a Smart Contract and a

weighted fair data algorithm in the data model registry to enable accountability and fairness,

respectively. The framework is evaluated using a COVID-19 X-ray dataset and achieves im-

proved accuracy compared to traditional Federated learning settings.

BlockFLow [60] focuses on accountability and privacy in decentralized Federated learn-

ing systems. It includes a model auditing process to evaluate the behavior of model contrib-

utors, distinguishing between good and malicious behavior. Contributors are rewarded with

cryptocurrencies based on the public Ethereum Blockchain after the auditing process. Eval-

uation results demonstrate that auditing scores effectively reflect the quality of honest and

malicious participants.

8.4 Open Issues

In Federated learning systems based on Blockchain, miners play a crucial role in model

aggregation and reaching a consensus algorithm to receive rewards. However, some miners

with malicious intent exploit vulnerabilities in the incentive distribution mechanisms. This

behavior negatively impacts the revenue of honest miners and poses a significant threat to

the mining pool, resulting in pool mining attacks. While previous studies have discussed this

type of attack [19, 106] the specific implications of malicious miners in Blockchain-based

Federated learning systems have not been thoroughly explored.

The selection of miners is an important consideration in the architecture of Blockchain-

based Federated learning. The integrity and trustworthiness of miners ensure the security and

privacy of the models. Two types of miners, static and dynamic (or moving), have been iden-

tified by Alladi et al. [1]. Static miners utilize fiber-optic networks to communicate with end

devices for model update transactions, while dynamic miners rely on wireless networks for

interaction and sharing model parameters. Careful planning is necessary for the selection of

78 Chapter 8. Related Work

miners, considering factors such as network resource consumption and secure design, which

should be addressed in future research [33].

The immutability feature of Blockchain ensures that transactions in Blockchain-based

Federated learning systems, including model updates, are permanently stored and tamper-

proof. While this is advantageous, it also has drawbacks. Errors in transactions cannot be

rectified, and Smart Contract assignments are unchangeable even if both parties agree to

the changes. Additionally, Smart Contracts themselves are irreversible once implemented.

Furthermore, any attempts to hack or access the model for legal or illegal purposes are per-

manently recorded in the Blockchain.

Smart Contracts, which execute predetermined logic and store the final state immutably,

are susceptible to exploitation if not implemented properly [66]. Vulnerabilities and security

issues are found in existing Smart Contracts. Common vulnerabilities include the execution

of unknown code indirectly and incorrect handling of exceptions. For example, the activation

fallback function in Smart Contracts can lead to parameter type confusion when invoked by

a developer. Additionally, in Solidity (a programming language for Smart Contracts), excep-

tions are thrown and must be handled collaboratively between contracts. If exceptions are not

resolved correctly, adversaries can exploit the contracts, resulting in transaction rollbacks.

Blockchain frameworks used in Federated learning, such as the EOS.IO Blockchain, have

demonstrated higher performance throughput and efficiency compared to Ethereum. How-

ever, these frameworks have also been vulnerable to security attacks, resulting in significant

financial losses. Bugs in Ethereum Smart Contracts and copy-paste vulnerabilities have been

identified and analyzed by researchers.

In Federated learning, various end devices participate in the model training process and

contribute local model updates. However, malicious devices can inject poisoned or tampered

model data, compromising the integrity of the global model. This can lead to inaccurate ag-

gregation results and increased resource consumption. To ensure secure and reliable Fl model

convergence, it is essential to have trusted and authenticated end devices [39, 31].

The asynchrony of end devices in Federated learning can impact the efficiency and ac-

curacy of the global model. Devices may enter or exit the training process at different times,

leading to an unbalanced distribution of rewards and affecting the accuracy of the global

model. Various factors, such as network issues or device limitations, can cause devices to

drop out from the training process.

8.5 Future Directions 79

Synchronization is an issue in Federated learning where the system runs in a synchronous

manner, waiting for all local model updates before proceeding to the next training round

and aggregation. This can lead to slower model convergence due to the presence of lazy

participants who take longer to complete a training iteration [15].

Blockchain forking occurswhenmultipleminers simultaneouslymine a block, potentially

leading to multiple versions of the Blockchain. Higher scalability in Blockchain systems can

increase the chances of forking. Misconducted miners exploiting the system’s insufficient

computing power can also contribute to Blockchain forks. Customized probabilistic verifi-

cation schemes can be employed to counter and mitigate forking issues in Blockchain-based

Federated learning systems.

8.5 Future Directions

The integration of Blockchain technology into Federated learning shows promise in en-

hancing security and privacy models. It enables the implementation of recording and reward

mechanisms with accountability. However, there are still open issues that need to be ad-

dressed.

Authentication scheme for Blockchain-based Federated learning: To ensure the recog-

nition of end devices in the Federated learning system, an authentication scheme should be

implemented. Devices need to be registered and assigned unique IDs before participating in

model training. Developing frameworks to select devices that provide reliable and authentic

model updates is crucial for the success of Blockchain-based Federated learning systems.

Vulnerabilities in Smart Contracts: Prior to implementation in Blockchain-based Feder-

ated learning systems, Smart Contracts should undergo static analysis to detect vulnerabili-

ties. It is essential to ensure the security of Smart Contracts through code auditing, analysis,

and review. Testing Smart Contracts against vulnerabilities is also important [12]. Automated

tools for static analysis can provide detailed insights and help verify and fix issues. Addi-

tionally, frameworks like ZEUS [32] can be utilized for Smart Contract verification and the

development of robust security tools.

Selection and Verification Mechanism for Miners: Miners play a crucial role in adding

new blocks to a Blockchain network. However, there is a risk of malicious miners introduc-

ing falsified results and gaining incentives from honest miners. To address this issue, it is

80 Chapter 8. Related Work

suggested to propose mechanisms for selecting and verifying miners. One approach could

involve choosing a leader among miners based on their performance and participation in the

Blockchain-based Federated learning system. The leader would assume additional respon-

sibilities such as miner selection, registration, verification, authentication, and other related

tasks. Once miners are selected, their model updates are verified, and the models are down-

loaded and aggregated.

Enhancing Privacy in Ethereum Blockchain-based Federated learning: To introduce pri-

vacy to the Ethereum Blockchain, zero-knowledge proofs (ZKPs) technologies can be em-

ployed. In particular, the authors Ben-Sasson et al. [11] introduced ZKPs through scalable

transparent argument of knowledge (STARKs). For future research in Blockchain-based Fed-

erated learning, it is recommended to implement ZKPs using STARKs to enhance proof cre-

ation performance, ensure post-quantum security, and eliminate the need for a trusted setup.

Contract Management Life Cycle: The utilization of contract management tools can ad-

dress challenges related to immutability and irreversibility. By effectively managing the life

cycle of contracts, these limitations can be overcome. An example of a contract management

solution is Fabasoft contracts Fabasoft [20], which is widely used in Europe. This solution

enables contracts to be stored in an audit-proof format and offers pre-defined contract man-

agement schemes, automated rights modeling, and verification capabilities.

Generally in this section we have investigated works in the field of Blockchain based

Federated learning and the targets aims implementations and shortcomings of such works.

Part II

Implementation and Testing

81

Chapter 9

System Design

The objective for this thesis is a Federated learning environment consisting of the aggre-

gating server logic, the client logic and model training in order to conduct experiments that

access the feasability and practicality of Solana as a robust Federated learning environment.

9.1 High Level Overview

The proposed system’s aim is that it must achieve the following:

• Gather data for training in participating nodes and prepare them for training

• Train a defined and shared machine learning model in each computational node

• Extract and serialize the trained model’s weights in a weight vector

• Perform post training model pruning in the extracted weight vector

• Perform post training model quantization in the pruned weight vector

• Submit model update vector transactions to the Smart Contract

• Server gathers model updates from various number of participants

• Server performs the Federated Averaging

• Server makes the aggregated model available

• Clients can download model for inference

83

84 Chapter 9. System Design

This Federated learning system is model agnostic meaning that it can be used with any

model so long as it fits in the spatial constraints imposed by Solana’s Smart Contracts.

To this end, multiple technologies (programming languages, frameworks etc) were em-

ployed as they are fit for different purposes (model training client code and server code) as

well as multiple communication protocols and components.

Figure 9.1: Solana BCFL Architecture

9.1.1 Breakdown of components

The proposed system must include the following components

• Aggregating server : Aggregating logic implemented as a Solana Smart Contract

• Models : Creating and training a deep neural network model in multiple variants using

post training model pruning

• Training nodes : Training models and client side code for communication to the Solana

network

9.2 Smart Contract aggregator 85

9.2 Smart Contract aggregator

9.2.1 Aims and requirements

The implementation of theAggregator in this environment is achieved using Solana Smart

Contracts, which must at implement four key functions.

• Inintialization of the Smart Contract

• Reset of the Smart Contract

• Receive gradients

• Federated Average

In Solana Smart Contracts [77], initialization is a mandatory step that must be performed

by an account before any other functions within the contract can be invoked. It is important

to note here that the initialization function can be only invoked by the Smart Contract owner

which is the wallet that originally deployed the Smart Contract on chain.

The reset function is also essential as once Smart Contracts are deployed to the chain they

cannot be deployed again even with no changes to the code. The reset function allows the

system to be easily reconfigured with different models and participants enabling the reuse of

the Federated learning system with various configurations

The initialize and reset functions here take as arguements the signing authorities as well

as the number of participants in the Federated learning environment which will be used in

the final average calculation [72].

9.2.2 Limitations in Solana Smart Contracts

Solana promises that it can hold 10 Mb of data on chain [78, 73]. This however is not

realistic as transactions are also bounded in terms of the code execution [74] that each trans-

action can provide. Through thorough testing it was established that a total of 2008 bytes can

be used for on chain model aggregation. As some bytes are required for the Smart Contract

functions 2000 ended up being used for the models. Smart Contracts catering to all possible

variants were implemented and experiments were conducted in order to measure the limi-

tations of each implementation and the number of participants that can be supported. Such

2000 bytes can be allocated as follows:

86 Chapter 9. System Design

• 2000 variables with 1 byte per weight

• 1000 variables with 2 byte per weight

• 500 variables with 4 byte per weight

• 250 variables with 8 byte per weight

9.2.3 Deployment

During the development stages, the deployment of the Federated learning system was fa-

cilitated using Solana’s Solana-test-validator CLI [89]. This CLI tool enabled the initiation of

a Solana node within the user’s local network, which served as a processing unit for transac-

tions within the local environment. This approach allowed for convenient and efficient testing

and development of the Federated learning system on the Solana Blockchain.

In contrast, when working with the Ethereum network during the Proof of Work era, es-

tablishing a local network for testing purposes necessitated the use of tools like Ganache.

Ganache enabled the creation of a simulated network with multiple nodes, mimicking a real-

istic scenario where nodes would compete for block creation. This approach was necessary

to assess the performance and behavior of the system under varying network conditions.

However, Solana differs in its consensus mechanism by utilizing a Proof of Stake system.

In Solana, even when there is only a single validator present in the network, it is always

selected as the leader for block creation. This unique characteristic ensures that the block

creation process remains efficient and streamlined, even in scenarios with fewer network

participants. This design choice simplifies the development and deployment process, as the

need for setting up a complex network with multiple nodes is not required.

It is crucial to highlight that when deploying Smart Contracts on the Solana Blockchain,

each Smart Contract and wallet combination can only be deployed once. This limitation arises

from the fact that the program ID associated with the deployed Smart Contract is generated

during the Solana deployment process [76]. Once the Smart Contract is deployed with a spe-

cific wallet, it becomes uniquely identified by the program ID [76], preventing the deploy-

ment of the same Smart Contract with the same wallet combination again. This constraint

ensures the integrity of Smart Contracts on the Solana Blockchain, maintaining a clear map-

ping between deployed contracts and their corresponding wallet addresses [75, 73].

9.2.4 Transaction batches 87

9.2.4 Transaction batches

Solana resistrictions also impose an upper limit of 1000 bytes per transaction [88, 74].

This is important as the uploaded models must be sent to the Smart Contract through trans-

actions. In parallel to that there are also restrictions in terms of the number of values that the

Smart Contract can handle per transaction as Solana also imposes a computational limit to

code execution.

In any case model updates are uploaded to the Smart Contract in large batches of 64-bit

hexadecimal values which are decoded at the Smart Contract into single byte, two byte four

byte or eight byte words. These batches can either be in 250 or 125 variants in size.

9.2.5 2000 Model Smart Contract

This version of the Smart Contract allocates the 2000 available bytes into 2000 1 byte

weights which are stored as unsigned 8-bit integers in the chain. They are uploaded using 2

250 64-bit value batches and decoded in the Smart Contract to receive the 8-bit weights.

9.2.6 1000 Model Smart Contract

This version of the Smart Contract allocates the 2000 available bytes into 1000 2 byte

weights which are stored as unsigned 16-bit integers in the chain. They are uploaded using 2

250 64-bit value batches and decoded in the Smart Contract to receive the 8-bit weights.

9.2.7 500 Model Smart Contract

This version of the Smart Contract allocates the 2000 available bytes into 500 4 byte

weights which are stored as unsigned 32-bit integers in the chain. They are uploaded using 2

250 64-bit value batches and decoded in the Smart Contract to receive the 8-bit weights.

9.2.8 250 Model Smart Contract

This version of the Smart Contract allocates the 2000 available bytes into 250 8 byte

weights which are stored as unsigned 64-bit double precision floats in the chain. They are

uploaded using 2 125 64-bit value batches but in this case require no decoding as the values

can be stored directly.

88 Chapter 9. System Design

9.3 Fl client

Clients here refer to the participating nodes in the Solana BCFL environment. Clients

have three major components in terms of functionality.

• Data retrieval

• Model training

• Solana RPC

9.4 Model extraction

All participating nodes within the network must agree on the specific model architecture

that is to be trained. Since our Fl environment supports horizontal Federated learning then so

long as the data have the same attributes or features among nodes then there are no restrictions

in terms of the number of examples that nodes are able to train models with.

The required functions in term of the model aspect of the participating nodes is the ability

to define a model to be trained and after the model’s training to extract its weights and convert

them to the selected format for upload to the Smart Contract aggregator.

9.5 Solana communication

Each participating node takes the encoded weights and uploads them to the Smart Con-

tract aggregator through the implemented commit functions of the Smart Contract which

gather the model weights through transactions [88]. These can either be done in a single or

dual transactions per participant.

9.5.1 Number of parcticipants

In typical Federated learning setups, the number of participants usually ranges from 10 to

100. However, during our testing, we conducted experiments with varying participant counts,

starting from a single participant as a proof of concept to a maximum of 100 participants. This

broad range allowed us to assess the functionality and scalability of the Smart Contract across

different participant scenarios.

Chapter 10

Implementation

10.1 Solana Smart Contract

For conducting the experiments, the Smart Contract code was developed by combin-

ing high-level code from the Seahorse framework and making necessary adjustments to the

generated Rust code. By leveraging the high-level code in the Seahorse framework [95],

the development process was streamlined, allowing for efficient implementation of the de-

sired Smart Contract functionalities. The framework provided pre-defined structures, func-

tions, and utilities that simplified the coding process and ensured adherence to the Solana

Blockchain’s programming standards. It also automatically handles mutexes, packages, de-

rived attributes as well as transaction signing and more. Tweaks to the underlying Rust code

could involve modifying variables, adding or removing certain operations, or integrating ad-

ditional functionality as necessary [93, 94, 73, 77].

It is important to note that while the code in the Seahorse framework may resemble

Python, the underlying types used in the codebase are inherited from Rust. Therefore, the

code primarily utilizes specific types such as u8, u16, u32, and f64 [77]. In this context,

the data types in the code align with their Rust counterparts. However, it is worth mention-

ing that Seahorse only includes a 64-bit floating-point type (f64) and does not support other

floating-point types such as f32. To accommodate the representation of 8-bit, 16-bit, and

32-bit floating-point values, the code utilizes the u8, u16, and u32 types respectively, repur-

posing them to store floating-point data. This approach allows the framework to work within

the constraints of the available data types while still providing functionality for floating-point

operations and calculations.

89

90 Chapter 10. Implementation

10.1.1 2000 u8 Model Smart Contract

In this context, the available storage of 2000 bytes, represented as u8 values, is divided

into two distinct 1000-byte models: model A and model B. To upload these models to the

Solana Blockchain, a total of two transactions would be required, as the constraint on the

size of each transaction is 1000 bytes.

Thus, given the 1000-byte transaction limit our initial effort was to upload each model in

two transactions. However, it was discovered that the process of decoding and storing 1000

weights in the Smart Contract exceeded the computational quota enforced by the Solana

Blockchain. Consequently, the sending transactions were further split into 500-byte chunks,

enabling the upload of 500 weights per transaction.

Once uploaded onto the Smart Contract, the Smart Contract code takes the received 8-

byte values and utilizes the ”int_bytes” function provided by the Solana prelude library. This

function is responsible for converting the 8-byte values into 8 separate single-byte integers.

These single-byte integers are then added to the existing stored values within the defined

model A and model B.

10.1.2 1000 u16 Model Smart Contract

Here, the provided space of 1000 bytes which are u16 ints in this case, is divided into 500-

byte models. To upload these models to the Solana Blockchain, a total of two transactions

would be required, as the constraint on the size of each transaction is 1000 bytes.

So this was our initial made to upload each model in two transactions, given the 1000-

byte transaction limit. However, it was discovered that the process of decoding and storing

1000 weights in the Smart Contract exceeded the computational quota enforced by the Solana

Blockchain. Consequently, the sending transactions were further split into 500-byte chunks,

enabling the upload of 500 weights per transaction.

In this scenario, as there are no additional functions available, such as the ”int_bytes”

function, the decoding of the sent values is done differently. The decoding process utilizes

bit masks spanning two bytes. Each of the four encoded values is extracted by applying the

appropriate bit mask, and then these extracted values are appended to the previously accu-

mulated values in their respective models. This can all be done with two transactions per

node.

10.1.3 500 u32 Model Smart Contract 91

10.1.3 500 u32 Model Smart Contract

In this particular case, the available storage of 500 units, represented as u32 values, is

divided into two distinct 250-unit 4-byte models, namely model A and model B. To upload

these models onto the Smart Contract, the process is carried out in two separate transactions.

During the upload process, four-byte bitmasks are employed to extract the encoded values

within each 8-byte chunk. Since in this case as well we can afford to computationally digest

all 1000 bytes at once there is no need for utilizing more than two transactions per participant

for model upload.

10.1.4 250 f64 Model Smart Contract

Contrary to the previous cases discussed, the implementation of this system was straight-

forward and required no additional decoding of values. The transactions involved in this

system directly send double-precision floating-point numbers to the Smart Contract. These

numbers are then directly added to the previously stored values, and the resulting values are

stored on the Blockchain.

For each participant, the transactions in this system send a total of 125 f64 values to the

Smart Contract. This process allows for the seamless integration of the participant’s model

updates into the existing model stored on the Blockchain. Two transactions are required for

each participant’s model upload, ensuring the accurate representation of their contributions

to the Federated learning process.

10.1.5 Federated Averaging

For the FedAvg part it is important to note that while in every case as the aggregated

values are integers integer division is employed to compute the average whereas in the f64

case floating point division is used to compute the resulting model.

More specifically in every case the average is calculated for all created models in the

Smart Contract and client side logic can be used to download the model to the client as

downloading an account’s data in the Solana platform is implemented through the Solana

library.

92 Chapter 10. Implementation

10.2 RPC Client

The method that Solana uses for Smart Contract Remote procedure calls is called JSON

RPC [79]. JSON RPC packages requests in a JSON file which is later serialized and sent to

the awaiting platform. While many languages and frameworks can utilize JSON RPC com-

munication in our environment we implemented the Client side code using typescript which is

a statically typed JavaScript and can therefore utilize JavaScript’s libraries and frameworks.

There are two key JavaScript frameworks used in this scenario, web3 as well as anchor.

10.2.1 web3.js

Web3.js [82] is a JavaScript library that provides developers with a comprehensive set of

tools and functionalities to interact with Ethereum and similar Blockchain Smart Contracts

such as the Solana’s smart conrtacts.WithWeb3.js, developers can create, deploy, and interact

with Smart Contracts, retrieve and manipulate Blockchain data, and execute transactions on

the Solana network. It offers a user-friendly interface, extensive documentation, and a wide

range of features, making it a popular choice among developers for building decentralized

applications.

10.2.2 anchor.js

Anchor.js [72] is a JavaScript library designed specifically for developers working with

Solana Blockchain applications. It serves as a powerful toolkit that simplifies the process

of building decentralized applications on the Solana network. With Anchor.js, developers

can easily interact with Solana’s Smart Contracts, deploy and manage programs, and han-

dle transactions seamlessly. Anchor.js abstracts away the complexity of Solana’s low-level

programming, allowing developers to focus on their application’s logic and functionality. It

offers various utilities and tools, such as state management, event handling, and program

testing, to streamline the development process.

10.2.3 Types from Solana Smart Contracts

Finally a file with type definitions stemming from the Smart Contract compilation is

imported which is used when downloading the values from the Solana Account in order to

unpack received data from the chain.

10.3 Model training 93

10.3 Model training

To conduct our experiments, we employed Tensorflow’s Keras high-level API [37] in

Python to create models within the participating nodes. Tensorflow’s Keras provides a user-

friendly and intuitive interface for building and training neural networks, enabling efficient

and streamlinedmodel development. In our specific experiments, we chose to focus on testing

network architectures for the MNIST-DIGIT dataset [45, 36].

By utilizing Tensorflow’s Keras API, we were able to create and configure the neural

network models within the nodes. This involved defining the layers, specifying activation

functions, configuring loss functions, and selecting optimization algorithms. Tensorflow’s

Keras abstracts away the low-level details, allowing us to focus on the high-level design of

the models and their training.

This provided a solid foundation for evaluating the efficacy and practicality of our Fed-

erated learning environment. The combination of a powerful machine learning framework

and a well-established dataset allowed us to analyze the performance and convergence of the

models within our Federated learning setup.

10.3.1 MNIST Digit

The MNIST-DIGIT dataset [45] is a widely used benchmark dataset in the field of ma-

chine learning and computer vision. It consists of a large collection of handwritten digit im-

ages, each labeled with the corresponding digit it represents. By selecting this dataset for

our experiments, we aimed to evaluate the performance and effectiveness of our Federated

learning setup in training models on a well-known and standardized dataset.

It is also realatively demaning in terms of the neurons required for this classification task.

Figure 10.1: MNIST DIGIT [45]

94 Chapter 10. Implementation

10.4 Baseline 2000 Weight Deep Convolutional neural net-

work

10.4.1 Neural net architecture

For our testing purposes, we employed a hybrid convolutional [59] deep learning ap-

proach as the model architecture. This approach incorporates both convolutional layers [62]

and deep neural network layers, allowing for effective feature extraction and classification

in the context of the MNIST-DIGIT dataset. It is important to note here that the test set made

up of the 33% percent of the original data.

10.4.2 Convolutional network

The initial stage of the model architecture comprises two convolutional layers. The first

convolutional layer consists of four filters, each with a kernel size of 7x7. This layer is de-

signed to receive the 28x28 greyscale images as input. Following the convolution operation,

a Rectified Linear Unit (ReLU) activation function is applied, enhancing the non-linear rep-

resentation of the extracted features. The output of this first convolutional layer is then passed

through the second convolutional layer, which comprises two 2x2 filters, each also utilizing

a ReLU activation function.

After the second convolutional layer, the model proceeds with a maxpooling layer, which

reduces the spatial dimensions of the features while retaining their essential information. Sub-

sequently, a flatten layer is introduced to transform the pooled features into a vector represen-

tation, facilitating the transition from the convolutional layers to the fully connected layers

of the deep neural network.

10.4.3 Deep network

The deep neural network component of the model consists of four fully connected layers.

The first three layers contain 8, 8, and 4 ReLU neurons, respectively. These layers contribute

to the abstraction and combination of features learned from the earlier convolutional layers.

Finally, the output layer comprises ten softmax neurons, allowing for the classification of the

input images into the ten different digits.

It is important to note here that the use of the softmax activation function is responsible

10.4.4 Loss function 95

for much of the deep network’s connections. Contrary to a regression neural network or even

binary classification, multi-class classifications require more neurons in the final layers of

the network.

Figure 10.2: KERAS MODEL

10.4.4 Loss function

During the training process, the categorical crossentropy loss function was used, which

is well-suited for multi-class classification tasks like the MNIST-DIGIT dataset. This loss

function measures the dissimilarity between the predicted probability distribution and the

true labels of the input images, encouraging the model to accurately classify each digit [30].

10.4.5 Optimizer selection

To optimize the model’s parameters, we utilized the ADAM optimization algorithm.

ADAM combines the advantages of both adaptive gradient descent and root mean square

propagation. It dynamically adjusts the learning rate for each parameter based on its past

gradients, allowing for efficient and effective convergence during training [38].

10.4.6 Batch size and training epochs

To balance the trade-off between computational efficiency and model performance, we

selected a batch size of 128. This means that during each training iteration, the model pro-

cessed 128 images before updating its weights. Additionally, we allocated 30% of the avail-

able data as the validation set, which allowed us to monitor the model’s performance on

unseen data and make informed decisions regarding its generalization capabilities.

96 Chapter 10. Implementation

10.4.7 Evaluation

Throughout the training process, the model iterated through approximately 200 epochs.

Eventually, themodel achieved an accuracy of 93.37% on the test set, demonstrating its ability

to accurately classify the MNIST-DIGIT dataset.

Figure 10.3: KERAS Evalutation

The selection of this specific architecture was driven by the need to balance model perfor-

mance with the limitations of Federated learning environments. In such Federated learning

environments, it is common to encounter resource-constrained or low-powered devices that

participate in the training process.

By opting for a model architecture that utilizes only 2000 weights, we aimed to lower that

the computational and storage requirements of the participating devices. This smaller model

size allows for more efficient training and inference processes on these devices, while still

maintaining satisfactory performance.

10.4.8 Model extraction

Once the model training process is complete, the next step involves extracting the weights

of the trained model from the Tensorflow framework. To prepare the weights for uploading

to the Smart Contract, a crucial step is to linearize them. This process involves transforming

the multi-dimensional weight tensors into a one-dimensional vector.

This is done using the provided TensorFlow instructions but is important to be performed

identically in each computing node as if this is not the case then missmatched weights will

be aggregated resulting in invalid models.

After the aggregated model has been trained and downloaded the inverse procedure must

deserialize the weights properly in order to place them in the correct weight locations as to re-

produce the trainedmodel. This means that all participating nodes must share the serialization

algorithm.

10.5 Model pruning 97

10.5 Model pruning

With the 2000 Weight model as a baseline we proceeded to implement the rest of the

models through model pruning. Neural network pruning involves the removal of unnecessary

weights or neurons from a trained model. The concept of pruning can be likened to pruning

in agriculture, where unnecessary branches or stems are cut off from a plant to enhance its

growth and efficiency. Neural network pruning offers several methods to reduce the size of

a model [7].

10.5.1 Weight pruning

One approach is weight pruning, which involves setting individual parameters to zero.

This process leads to the creation of a sparse network where unnecessary weights are elimi-

nated. Consequently, the overall parameter count of the model decreases, resulting in smaller

model sizes. By eliminating unnecessary weights, the total number of parameters in themodel

decreases, while the overall architecture remains unchanged [7]. This reduction in parameters

can lead to smaller model sizes and improved computational efficiency without compromis-

ing the original network structure.

10.5.2 Neuron pruning

Another method of pruning involves removing entire nodes from the network. This ap-

proach aims to shrink the overall architecture of the network while striving to maintain the

accuracy achieved by the initial larger network. By selectively removing nodes that contribute

less to the overall performance, the pruned network can achieve a smaller size and potentially

better efficiency while retaining its predictive capabilities [7].

10.5.3 Approaches used in our models

For pruning our models we tested both cases of model pruning in varying percentages of

pruning in order to seek the optimal accuracy per lower weight count as well as neuron count.

We tested all possible sparcities starting from 25− 99% sparcities and then performed an

in depth analysis in the 0− 10% range.

98 Chapter 10. Implementation

Figure 10.4: 25-100% sparcities

In our analysis, we noticed a significant and abrupt decline in model accuracy beyond the

25% pruning threshold. This decline was characterized by a sharp drop, resembling an elbow

shape, in the accuracy curve. Concurrently, we observed a corresponding increase in model

loss, indicating a deteriorating performance as the sparsity level exceeded 25% 10.4.

In contrast, when considering neuron pruning, we discovered that no pruning could be

effectively performed until the sparsity level reached 25%. This is because lower sparsity

percentages did not result in the removal of any neurons, as they were not substantial enough

to warrant the cutoff of a single neuron. Consequently, the effects of neuron pruning on model

performance were not evident until a certain threshold of sparsity was reached.

These observations highlight the delicate balance between sparsity and model perfor-

mance. While higher sparsity percentages can lead to reductions in model size, it is crucial

to consider the impact on usability and accuracy. Our findings indicate that maintaining a

sparsity level below 5% for weight pruning and considering sparsity levels above 25% for

neuron pruning can help strike a balance between model size reduction and preserving model

functionality and accuracy.

10.5.3 Approaches used in our models 99

Figure 10.5: 0-10% sparcities

During our in-depth analysis in the 0-10% range, we noticed an interesting trend regarding

the impact of sparsity on model performance. We observed that as the sparsity of the mod-

els increased beyond 5%, their usability began to decline gradually. Despite this decrease

in usability, we found that the accuracies of the models remained relatively stable, ranging

between 90% and 93%, when weight sparsity was introduced 10.5.

The trade-off between sparsity and accuracy is critical when applying pruning techniques.

While higher sparsity can lead to reduced model size, there is a limit beyond which accuracy

suffers significantly. Striking the right balance between sparsity and accuracy is crucial to

ensure the model remains functional and performs well.

This testing indicated that in such small models neuron pruning is especially difficult as it

imposes the risk of destroying the model. On the other hand weight pruning can be beneficial

in small percentages as in such contraint scenarios even cutting off 3% of the 2000 weights

discussed is major savings.

100 Chapter 10. Implementation

Figure 10.6: Pruning results 25-100%

Figure 10.7: Pruning results 0-10%

Chapter 11

Evaluation

In our evaluation of the proposed Federated learning system, our primary objective is to

determine the optimal balance within the Smart Contract environment. This balance encom-

passes two key aspects: the number of participants involved and the capacity to store weights

efficiently 11.1.

By varying the number of participants, we aim to understand the scalability and perfor-

mance implications of the Federated learning system. We will examine scenarios with differ-

ent participant sizes, ranging from a small proof-of-concept setting with a single participant

to larger experiments involving a considerable number of participants.

Simultaneously, we will explore the capacity of the Smart Contract to store weights ef-

fectively. This entails analyzing the limitations and capabilities of the underlying Blockchain

infrastructure in handling and managing a varying number of weights [111].

11.1 Methodology

Initially, we focused on testing four different models with different numbers of weights:

250 weights 11.3, 500 weights 11.4, 1000 weights ??, and 2000 weights 11.6. By examining

these models individually, we aimed to understand how the system performs with varying

model complexities and sizes.

Then we explored the impact of participant numbers on the system’s behavior and scala-

bility, by starting with a single participant and gradually increased the participant count up to

1000 participants 11.3. This approach allowed us to assess the system’s performance under

different participant densities.

101

102 Chapter 11. Evaluation

11.2 Testing

Table 11.1 represents the search space explored. The tests were conducted in terms of the

Weight Vector T × num, the models and the number of participants k.

Weight Vector T × num 250 × f64, 500 × u32, 1000 × u16, 2000 × u8

Models
Model 250, Model 500, Model 1000, Model

2000

Number of Participants k 1, 5, 10, 50, 100 ,1000

Table 11.1: Search Space

This table represents the max number of participants supported by each Smart Contract

per model. The capacity of each Smart Contract was found to be influenced by the data type

used to store the model.

To provide a comprehensive overview of the results obtained from all the experiments

conducted, the following table summarizes the findings. This consolidated view allows for a

quick comparison and analysis of the system’s performance across various model and Smart

Contract configurations 11.2.

Note that this evaluation is carried out in terms of the capacity of a single Smart Con-

tract. This means that should multiple deployed Smart Contracts be introduced, the number

of weights that are supported can be increased. This comparison is relevant as it seeks the

optimum storage configuration in a single Smart Contract.

The subsequent tables provide a detailed breakdown of the individual experiments con-

ducted for each model and Smart Contract configuration.

The experiments conducted revealed that the primary reason for experiment failure was

the occurrence of an overflow in the aggregating values. This overflow led to the halt of fur-

ther transaction processing and invalidated any subsequent model uploads. While the specific

behavior varied depending on the model being tested, the general conclusions drawn from

these results are applicable to any model [71].

Although smaller numerical values might allow for the addition of a few participants in

the federated environment, such changes were deemed negligible. The focus of the experi-

ments was primarily on assessing the order of magnitude in terms of the number of partici-

pants in the Federated learning system.

11.2 Testing 103

Maximum participants per Model

250 × f64 500 × u32 1000 × u16 2000 × u8

250 × f64 1000 5 1 1

500 × u32 - 5 1 1

1000× u16 - - 1 1

2000 × u8 - - - 1

Table 11.2: Maximum participants per model

Model 250

250 × f64 500 × u32 1000 × u16 2000 × u8

1 ✓ ✓ ✓ ✓

5 ✓ ✓ X X

10 ✓ X X X

50 ✓ X X X

100 ✓ X X X

1000 ✓ X X X

Table 11.3: Tests conducted in 250 f64 model

Model 500

250 × f64 500 × u32 1000 × u16 2000 × u8

1 X ✓ ✓ ✓

5 X ✓ ✓ X

10 X X X X

50 X X X X

100 X X X X

1000 X X X X

Table 11.4: Tests conducted in 500 u32 model

104 Chapter 11. Evaluation

Model 1000

250 × f64 500 × u32 1000 × u16 2000 × u8

1 X X ✓ ✓

5 X X X X

10 X X X X

50 X X X X

100 X X X X

1000 X X X X

Table 11.5: Tests conducted in 1000 u16 model

Model 2000

250 × f64 500 × u32 1000 × u16 2000 × u8

1 X X X ✓

5 X X X X

10 X X X X

50 X X X X

100 X X X X

1000 X X X X

Table 11.6: Tests conducted in 2000 u8 model

Chapter 12

Discussion of Results

12.1 Results per model

12.1.1 250 Model

Among the model and Smart Contract configurations tested, the experiment using the 250

weights and 250 f64model in the corresponding Smart Contract was the only one that encom-

passed a wide range of participant numbers, extending up to the thousands. This particular

experiment warrants further discussion, which will be addressed later.

While the 250 f64 model fits within the other Smart Contracts, it is noteworthy that the

250 f64 Smart Contract, designed specifically for double precision floating-point numbers,

provides greater capacity for aggregation. As a result, it is recommended to use the 250 f64

Smart Contract in scenarios involving this particular model 11.3.

These observations highlight the importance of selecting the appropriate Smart Contract

configuration based on the specific model requirements, particularly considering the potential

for overflow and the capacity for aggregation.

12.1.2 500 Model

This case is recommended for environments with low participant counts as it can only

accomodate 1 to 5 participants for model aggregation. Even with 32-bit integers the system

experienced overflows and failed to accommodate all transactions. It is important to note here

that 1 to 5 participants can also be serviced with a private Blockchain approach 11.4.

105

106 Chapter 12. Discussion of Results

12.1.3 1000 Model

Similar to the findings with the 250 f64 model, the experiments conducted with the 1000

u16 model revealed that it can only be stored on the Blockchain by a single participant.

Although this outcome showcases the potential benefits of model auditability, immutability,

and transparency, it does not create a practical Federated learning environment 11.5.

12.1.4 2000 Model

In the case of the 2000 u8 model, it also faced limitations in terms of storage within the

Smart Contract. Even with the presence of two participants, it was not feasible to train the

model simultaneously. Consequently, the 2000 u8 model cannot effectively utilize the Smart

Contract for Federated learning purposes 11.6.

These observations highlight the importance of considering the model size and the limi-

tations of the Smart Contract storage capacity when designing a Federated learning environ-

ment. While the implementation of certain models and Smart Contract configurations may

offer advantages in terms of auditability and transparency, it is crucial to ensure that the cho-

sen setup is capable of supporting multiple participants and facilitating collaborative model

training effectively.

12.2 General Discussion

So taking everything into consideration trying the only viable Smart Contract execution

is the 250 f64 model 11.2. This does not mean that we can only store 250 weights on the ag-

gregating server. To accomodate larger models multiple Solana Smart Contract deployments

can be employed. This while expensive and troublesome when deploying in the Solana de-

vnet will increase throughput and further decentralize the federated model. Further expansion

options will be discussed in part three though.

In parallel, our pruning analysis demonstrated that when employing Smart Contracts for

model aggregation even the smaller model reduction can be important for storing on chain.

In the MNIST model demonstrated through cutting of more than 3% of the model’s weights

rendered it useless. The pruning analysis for deployment in the Smart Contract must be done

ad hoc per model trained as it will provide different results in various use cases.

Part III

Conclusions

107

Chapter 13

Discussion

The central question that this thesis aimed to address is Is Solana suitable for BCHFL?

The short answer is that Solana is a very fast platform but its ecosystem is very immature

for efficient development. It also deals with serious limitations in terms of the computational

budget allowed per transactionwhich further constraints development efforts but is a common

occurence in Blockchain platforms.

13.1 Challenges

The main challenges surrounding this thesis revolved arround the technical challenges in

writing the Smart Contract itself and establishing communication to the Solana Blockchain.

Neural network model development has seen tremendous adoption and iterative design to the

point where it is trivial to create various architectures in seconds. Simultaneously technolo-

gies like JSON RPC and TypeScript web clients are mature enough where documentation is

ample and accurate. However this is not the case with developing for Solana.

During the development process documentation for the Solana platformwere severly lim-

ited with only the docs and a handful of blogs and repositories available for referencing. In

terms of academic adoption only a single work from Duffy et al. [18] we found was acco-

modated with code with most papers about Solana referencing it in terms of its potential as a

platform and not actually implementing code for it [5].

Another challenge was the limited available space which forced us to consider pruning

methods in order to accomodate for our model storage. This may not be an issue when dealing

with small scale models such as linear models but such testing would not be realistic.

109

110 Chapter 13. Discussion

13.2 Solana as a platform

As Solana evolves and gains wider adoption, efforts will be made to address and over-

come the challenges it has faced. The development and deployment processes will be stream-

lined, making it more accessible for developers interested in web3 development. With time,

Solana’s ecosystem is expected to mature, similar to Ethereum’s, and there will be a focus on

implementing projects that are native to the Solana Blockchain.

However, it’s important to acknowledge that Solana has encountered intermittent network

disruptions and blackouts in the past, primarily driven by high transaction volumes and net-

work congestion. These events have temporarily impacted the availability and reliability of

the Solana Blockchain, raising concerns about its stability and potential limitations during

periods of peak usage. It will be crucial for the Solana team to address these scalability and

performance challenges to ensure a robust and resilient network infrastructure.

Simultaneously, Solana’s high throughput and low latency capabilities make it well-suited

for handling a large number of transactions and supporting real-time applications. Its unique

architecture, leveraging a combination of Proof of History (PoH) and Proof of Stake (PoS)

as discussed, enables fast transaction finality and scalability.

These promising features will incentivise developers with building decentralized appli-

cations (dApps) and interact with the Solana Blockchain.

13.3 Future Directions

In the context of Solana as a platform for Blockchain-based Collaborative Federated

learning (BCHFL), there are several additional features that can be implemented to enhance

security, privacy, and overall functionality.

One important aspect is the implementation of advanced security measures to identify and

handle lazy or misbehaved participants. By incorporating mechanisms to detect participants

who are not actively contributing or are behaving maliciously, the integrity and effectiveness

of the Federated learning process can be preserved.

Furthermore, the integration of collateral mechanisms can add an extra layer of security

and trust in the BCHFL system on Solana. Collateral requirements can ensure that partici-

pants have a vested interest in the accuracy and success of the collaborative learning process,

discouraging any potential malicious actions or data manipulation.

13.3 Future Directions 111

To address privacy concerns, techniques like differential privacy and homomorphic en-

cryption can be employed in Solana-based BCHFL. Differential privacy techniques can help

protect sensitive participant data by adding controlled noise to the aggregated model updates,

preserving individual privacy while still enabling meaningful learning. Homomorphic en-

cryption can enable secure computation on encrypted data, allowing participants to securely

share model updates without revealing their raw data.

To mitigate poisoning attacks, which involve injecting malicious or biased data into the

Federated learning process, Solana can incorporate mechanisms that verify the integrity and

authenticity of participant contributions. Techniques like anomaly detection and reputation

systems can help identify and exclude participants who attempt to manipulate or poison the

learning process.

The utilization of secret sharing schemes can further enhance privacy and security in

Solana’s BCHFL. By dividing sensitive model parameters or updates into multiple shares

distributed among participants, no single participant has access to the complete information,

protecting against data breaches or unauthorized access.

Tracking both local and global models can provide transparency and accountability in

the Federated learning process on Solana. By monitoring the evolution of individual partici-

pants’ local models and aggregating them into a global model, it becomes possible to ensure

consistency, detect any deviations, and evaluate the overall progress of the learning process.

In a Proof of stake Blockchain like Solana incentives can be employed in order to reward

diligence of participating nodes. Since Smart Contracts in Solana can hold coin and coin

transactions are native to the platform, this can be done elegantly with Solana’s native coin

SOL.

Lastly, integrating the use of Shap values, which quantify the impact of individual features

on model predictions, can enable tracking of effective changes made by participants’ model

updates. By rewarding participants based on their contributions and the effectiveness of their

updates, Solana’s BCHFL can incentivize active and valuable participation while maintaining

fairness and accuracy.

Implementing these additional features in Solana’s BCHFL ecosystem can enhance the

security, privacy, and performance of the Federated learning process, making it a more robust

and efficient platform for collaborative machine learning.

112 Chapter 13. Discussion

13.4 Future Research

n addition to implementing extra features within the Solana Blockchain, there are alterna-

tive approaches that can be employed to address the limited on-chain storage capacity and en-

hance the functionality of the Blockchain-based Collaborative Federated learning (BCHFL)

system.

One approach is to leverage the integration of Solana with Arweave, a decentralized stor-

age network. By utilizing Arweave’s permanent and scalable data storage capabilities, the

BCHFL system can offload the storage of large models or training data to the Arweave net-

work. This allows for efficient utilization of on-chain storage within Solana while ensuring

the availability and accessibility of the necessary data for collaborative learning.

Another approach is to integrate Solana with decentralized cloud platforms. By lever-

aging decentralized cloud solutions, such as platforms utilizing Blockchain or peer-to-peer

networks, the BCHFL system can utilize distributed storage resources that are not limited

by the on-chain storage capacity of Solana. This enables the system to efficiently store and

retrieve large models or training data while benefiting from the scalability and fault-tolerance

offered by decentralized cloud environments.

Furthermore, Solana’s BCHFL can be effectively utilized in edge cloud environments.

Edge cloud refers to the deployment of cloud resources closer to the edge devices or end-

points, reducing latency and enabling real-time processing. By leveraging Solana’s high through-

put and low latency capabilities, the BCHFL system can be deployed in edge cloud environ-

ments, allowing for efficient collaboration and learning directly at the edge devices. This

enables Federated learning scenarios in resource-constrained environments, such as Internet

of Things (IoT) devices or edge computing devices, without requiring extensive on-chain

storage.

Finally Solana’s cross-chain compatibility enables interoperability with other Blockchain

networks and must be explored in the context of Federated learning. Through the imple-

mentation of bridging mechanisms, such as cross-chain bridges or protocols like Wormhole,

Solana enables the seamless transfer of assets and data between different Blockchain ecosys-

tems. This cross-chain compatibility expands the scope of Solana’s capabilities, facilitating

the integration of decentralized applications (DApps) and services from other Blockchains

into the Solana network.

13.5 Concluding Remarks 113

13.5 Concluding Remarks

This thesis aimed to investigate the development of a Federated learning aggregator in the

Solana platform. Besides development it is in fact one of the most promising candidates for

real time dApps and therefore Blockchain based Federated learning. Even though Ethereum

has a more mature ecosystem, BCHFL efforts there remain proofs of concept as they are not

high throughput enough for real deployment. Other efforts based on Hyperledger are not as

fair as Hyperledger is a private Blockchain which brings significant performance improve-

ments in itself but must be deployed in a trusted environment. While this can be the case and

private Blockchains are applicable to Federated learning environments we focused on a pub-

lic Blockchain as its security relies on the security of the Blockchain platform it is deployed

on.

Bibliography

[1] Alladi, T., Chamola, V., Sahu, N., and Guizani, M. Applications of blockchain in

unmanned aerial vehicles: A review. Vehicular Communications 23 (2020), 100249.

[2] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., Caro, A. D.,

Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C.,

Nguyen, B., Sethi,M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolić,

M., Cocco, S. W., and Yellick, J. Hyperledger Fabric: A Distributed Operating System

for Permissioned Blockchains. Association for Computing Machinery.

[3] Antal, C., Cioara, T., Anghel, I., Antal, M., and Salomie, I. Distributed Ledger Tech-

nology Review and Decentralized Applications Development Guidelines. Future In-

ternet 13 (2 2021), 62.

[4] Asante, M., Epiphaniou, G., Maple, C., Al-Khateeb, H., Bottarelli, M., and Ghafoor,

K. Z. Distributed Ledger Technologies in Supply Chain Security Management: A

Comprehensive Survey. IEEE Transactions on Engineering Management 70 (2 2023),

713–739.

[5] Ashraf, M., and Heavey, C. A Prototype of Supply Chain Traceability using Solana as

blockchain and IoT. Procedia Computer Science 217 (2023), 948–959.

[6] Awan, S., Li, F., Luo, B., and Liu, M. Poster: A Reliable and Accountable Privacy-

Preserving Federated Learning Framework Using the Blockchain. Association for

Computing Machinery, pp. 2561–2563.

[7] Bandaru, R. Neural network pruning, 9 2020. Date Accessed 08/06/2023.

115

https://doi.org/10.1016/j.vehcom.2020.100249
https://doi.org/10.1016/j.vehcom.2020.100249
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.3390/fi13030062
https://doi.org/10.3390/fi13030062
https://doi.org/10.1109/TEM.2021.3053655
https://doi.org/10.1109/TEM.2021.3053655
https://doi.org/10.1016/j.procs.2022.12.292
https://doi.org/10.1016/j.procs.2022.12.292
https://doi.org/10.1145/3319535.3363256
https://doi.org/10.1145/3319535.3363256
https://towardsdatascience.com/pruning-neural-networks-1bb3ab5791f9

116 Bibliography

[8] Batool, Z., Zhang, K., and Toews, M. FL-MAB: Client Selection and Monetization

for Blockchain-Based Federated Learning. Association for Computing Machinery,

pp. 299–307.

[9] Behera, M. R., Upadhyay, S., and Shetty, S. Federated Learning using Smart Contracts

on Blockchains, based on Reward Driven Approach. arXiv (7 2021).

[10] Ben, W., Z. V., Kai, C., Liu, Y. Q. Y., and Tan. Federated Recommendation Systems,

2020.

[11] Ben-Sasson, E., Bentov, I., Horesh, Y., and Riabzev, M. Scalable, transparent, and

post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. (2018), 46.

[12] Blaize. We secure defi smart contracts, 2021. Date Accessed 08/06/2023.

[13] BnB-Smart-Chain. BnB Smart Chain, 4 2020. Date Accessed 08/06/2023.

[14] Cheng, Y., Liu, Y., Chen, T., and Yang, Q. Federated Learning for Privacy-Preserving

AI. Commun. ACM 63 (11 2020), 33–36.

[15] Cui, S., Zhao, G., Gao, Y., Tavu, T., and Huang, J. VRust: Automated Vulnerability

Detection for Solana Smart Contracts. ACM, pp. 639–652.

[16] Daniel Laine, S. B., and Sekniqi, E. G. S. K. Avalance Platform, 6 2020.

[17] Desai, H. B., Ozdayi, M. S., and Kantarcioglu, M. BlockFLA: Accountable Federated

Learning via Hybrid Blockchain Architecture. Association for Computing Machinery,

pp. 101–112.

[18] Duffy, F., Bendechache, M., and Tal, I. Can Solana’s high throughput be an enabler

for IoT? IEEE, pp. 615–621.

[19] Eyal, I., and Sirer, E. G. Majority is Not Enough: Bitcoin Mining is Vulnerable. Com-

mun. ACM 61 (6 2018), 95–102.

[20] Fabasoft. Digital contract management made easy., 1 2021. Date Accessed

08/06/2023.

[21] Fischer, M. J., Lynch, N. A., and Paterson, M. S. Impossibility of Distributed Consen-

sus with One Faulty Process, 1985.

https://doi.org/10.1145/3477314.3507050
https://doi.org/10.1145/3477314.3507050
https://doi.org/10.48550/arXiv.2107.10243
https://doi.org/10.48550/arXiv.2107.10243
https://doi.org/10.1007/978-3-030-63076-8_16
http://eprint.iacr.org/2018/046
http://eprint.iacr.org/2018/046
https://blaize.tech/security/
https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md
https://doi.org/10.1145/3387107
https://doi.org/10.1145/3387107
https://doi.org/10.1145/3548606.3560552
https://doi.org/10.1145/3548606.3560552
https://assets.website-files.com/5d80307810123f5ffbb34d6e/6008d7bbf8b10d1eb01e7e16_Avalanche%20Platform%20Whitepaper.pdf
https://doi.org/10.1145/3422337.3447837
https://doi.org/10.1145/3422337.3447837
https://doi.org/10.1109/QRS-C55045.2021.00094
https://doi.org/10.1109/QRS-C55045.2021.00094
https://doi.org/10.1145/3212998
https://www.fabasoft.com/en/fabasoft-proceco/contracts-contract-management
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

Bibliography 117

[22] Goodman, L. Tezos — a self-amending crypto-ledger White paper, 9 2014.

[23] Grigg, I. EOS - An Introduction, 7 2017.

[24] Guo, H., and Yu, X. A survey on blockchain technology and its security. Blockchain:

Research and Applications 3 (6 2022), 100067.

[25] Guru, A., Mohanta, B. K., Mohapatra, H., Al-Turjman, F., Altrjman, C., and Yadav, A.

A Survey on Consensus Protocols and Attacks on Blockchain Technology. Applied

Sciences 13 (2 2023), 2604.

[26] Hewa, T. M., Hu, Y., Liyanage, M., Kanhare, S. S., and Ylianttila, M. Survey on

Blockchain-Based Smart Contracts: Technical Aspects and Future Research. IEEE

Access 9 (2021), 87643–87662.

[27] Holovský, M. Comparison of public Blockchain platforms, 1 2021.

https://medium.com/coinmonks/unhyped-comparison-of-blockchain-platforms-

679e122947c1.

[28] Huang, X., Ding, Y., Jiang, Z. L., Qi, S., Wang, X., and Liao, Q. DP-FL: a novel

differentially private federated learning framework for the unbalanced data. World

Wide Web 23 (7 2020), 2529–2545.

[29] Ioini, N. E., and Pahl, C. A Review of Distributed Ledger Technologies, 2018.

[30] Janocha, K., and Czarnecki, W. M. On Loss Functions for Deep Neural Networks in

Classification. arXiv (2 2017).

[31] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N.,

Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D’Oliveira, R. G. L., Eichner,

H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gib-

bons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu,

J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konecný, J., Korolova, A., Koushan-

far, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A.,

Pagh, R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song, D., Song, W., Stich,

S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z.,

Yang, Q., Yu, F. X., Yu, H., and Zhao, S. Advances and Open Problems in Federated

Learning. Foundations and Trends® in Machine Learning 14 (2021), 1–210.

https://tezos.com/whitepaper.pdf
https://whitepaper.io/document/671/eos-1-whitepaper
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.3390/app13042604
https://doi.org/10.1109/ACCESS.2021.3068178
https://doi.org/10.1109/ACCESS.2021.3068178
https://medium.com/coinmonks/unhyped-comparison-of-blockchain-platforms-679e122947c1
https://doi.org/10.1007/s11280-020-00780-4
https://doi.org/10.1007/s11280-020-00780-4
https://doi.org/10.1007/978-3-030-02671-4_16
https://doi.org/10.48550/arXiv.1702.05659
https://doi.org/10.48550/arXiv.1702.05659
http://dx.doi.org/10.1561/2200000083
http://dx.doi.org/10.1561/2200000083

118 Bibliography

[32] Kalra, S., Goel, S., Dhawan, M., and Sharma, S. ZEUS: Analyzing Safety of Smart

Contracts. Internet Society.

[33] Kang, J., Xiong, Z., Jiang, C., Liu, Y., Guo, S., Zhang, Y., Niyato, D., Leung, C.,

and Miao, C. Scalable and Communication-Efficient Decentralized Federated Edge

Learning withMulti-blockchain Framework. Z. Zheng, H.-N. Dai, X. Fu, and B. Chen,

Eds., Springer Singapore, pp. 152–165.

[34] Kang, J., Xiong, Z., Niyato, D., Xie, S., and Zhang, J. Incentive Mechanism for Re-

liable Federated Learning: A Joint Optimization Approach to Combining Reputation

and Contract Theory. IEEE Internet of Things Journal 6 (2019), 10700–10714.

[35] Karthika, V., and Jaganathan, S. A quick synopsis of blockchain technology. Inter-

national Journal of Blockchains and Cryptocurrencies 1 (2019), 54–66.

[36] Keras. Keras Datasets. Date Accessed 08/06/2023.

[37] Keras. Keras API. Date Accessed 08/06/2023.

[38] Kingma, D. P., and Ba, J. Adam: A Method for Stochastic Optimization. arXiv (12

2014).

[39] Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D.

Federated Learning: Strategies for Improving Communication Efficiency. arXiv (10

2016).

[40] Krichen, M., Ammi, M., Mihoub, A., and Almutiq, M. Blockchain for Modern Appli-

cations: A Survey. Sensors 22 (7 2022), 5274.

[41] Kumar, S., Dutta, S., Chatturvedi, S., and Bhatia, M. Strategies for Enhancing Training

and Privacy in Blockchain Enabled Federated Learning. IEEE, pp. 333–340.

[42] Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System. Com-

mun. ACM 21 (7 1978), 558–565.

[43] Lamport, L. Paxos made simple, 11 2001.

[44] Lamport, L., Shostak, R., and Pease, M. The Byzantine Generals Problem. ACM

Trans. Program. Lang. Syst. 4 (7 1982), 382–401.

http://dx.doi.org/10.14722/ndss.2018.23082
http://dx.doi.org/10.14722/ndss.2018.23082
https://doi.org/10.1007/978-981-15-9213-3_12
https://doi.org/10.1007/978-981-15-9213-3_12
https://doi.org/10.1109/JIOT.2019.2940820
https://doi.org/10.1109/JIOT.2019.2940820
https://doi.org/10.1109/JIOT.2019.2940820
https://10.1504/IJBC.2019.101852
https://keras.io/api/datasets/
https://keras.io/api/
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.3390/s22145274
https://doi.org/10.3390/s22145274
https://doi.org/10.1109/BigMM50055.2020.00058
https://doi.org/10.1109/BigMM50055.2020.00058
https://doi.org/10.1145/359545.359563
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://doi.org/10.1145/357172.357176

Bibliography 119

[45] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86, 2278–2324.

[46] Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Federated Learning: Challenges,

Methods, and Future Directions. IEEE Signal Processing Magazine 37 (5 2020), 50–

60.

[47] Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., and Yan, Q. A Blockchain-Based

Decentralized Federated Learning Framework with Committee Consensus. IEEE Net-

work 35 (12 2021), 234–241.

[48] Li, Z., Yu, H., Zhou, T., Luo, L., Fan, M., Xu, Z., and Sun, G. Byzantine Resistant

Secure Blockchained Federated Learning at the Edge. IEEE Network 35 (7 2021),

295–301.

[49] Lim, M. Breaking Down the Ethereum Yellow Paper, 2021. Date Accessed

08/06/2023.

[50] Lin, S.-Y., Zhang, L., Li, J., li Ji, L., and Sun, Y. A survey of application research

based on blockchain smart contract. Wireless Networks 28 (2 2022), 635–690.

[51] Liu, J., Huang, J., Zhou, Y., Li, X., Ji, S., Xiong, H., and Dou, D. From distributed

machine learning to federated learning: a survey. Knowledge and Information Systems

64 (4 2022), 885–917.

[52] Liu, Y., Ai, Z., Sun, S., Zhang, S., Liu, Z., andYu, H. FedCoin: A Peer-to-Peer Payment

System for Federated Learning, 2020.

[53] Lo, S. K., Liu, Y., Lu, Q., Wang, C., Xu, X., Paik, H. Y., and Zhu, L. Toward Trust-

worthy AI: Blockchain-Based Architecture Design for Accountability and Fairness of

Federated Learning Systems. IEEE Internet of Things Journal 10 (2 2023), 3276–

3284.

[54] Lyu, L., Yu, J., Nandakumar, K., Li, Y., Ma, X., Jin, J., Yu, H., and Ng, K. Towards

Fair and Privacy-Preserving Federated Deep Models. IEEE Transactions on Parallel

amp; Distributed Systems 31, 2524–2541.

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/MNET.011.2000263
https://doi.org/10.1109/MNET.011.2000263
https://doi.org/10.1109/MNET.011.2000604
https://doi.org/10.1109/MNET.011.2000604
https://pencilflip.medium.com/breaking-down-the-ethereum-yellow-paper-f734287e427e
https://doi.org/10.1007/s11276-021-02874-x
https://doi.org/10.1007/s11276-021-02874-x
https://doi.org/10.1007/s10115-022-01664-x
https://doi.org/10.1007/s10115-022-01664-x
https://doi.org/10.1007/978-3-030-63076-8_9
https://doi.org/10.1007/978-3-030-63076-8_9
https://doi.org/10.1109/JIOT.2022.3144450
https://doi.org/10.1109/JIOT.2022.3144450
https://doi.org/10.1109/JIOT.2022.3144450
https://doi.org/10.48550/arXiv.1906.01167
https://doi.org/10.48550/arXiv.1906.01167

120 Bibliography

[55] Ma, C., Li, J., Shi, L., Ding, M., Wang, T., Han, Z., and Poor, H. V. When Federated

Learning Meets Blockchain: A New Distributed Learning Paradigm. IEEE Computa-

tional Intelligence Magazine 17, 26–33.

[56] Martinez, I., Francis, S., and Hafid, A. S. Record and Reward Federated Learning

Contributions with Blockchain. IEEE, pp. 50–57.

[57] Mazieres, D. The Stellar Consensus Protocol: A Federated Model for Internet-level

Consensus, 2014.

[58] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A.

Communication-Efficient Learning of Deep Networks from Decentralized Data.

[59] Mrazova, I., and Kukacka, M. Hybrid convolutional neural networks. pp. 469–474.

[60] Mugunthan, V., Rahman, R., and Kagal, L. BlockFLow: An Accountable and Privacy-

Preserving Solution for Federated Learning. arXiv (7 2020).

[61] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[62] O’Shea, K., and Nash, R. An Introduction to Convolutional Neural Networks. arXiv

(11 2015).

[63] Peng, Z., Xu, J., Chu, X., Gao, S., Yao, Y., Gu, R., and Tang, Y. VFChain: Enabling

Verifiable and Auditable Federated Learning via Blockchain Systems. IEEE Transac-

tions on Network Science and Engineering 9 (1 2022), 173–186.

[64] Qammar, A., Karim, A., Ning, H., and Ding, J. Securing federated learning with

blockchain: a systematic literature review. Artificial Intelligence Review 56 (2023),

3951–3985.

[65] Raphael, M. The Bitcoin whitepaper, explained and commented, 2020. Date Accessed

08/06/2023.

[66] Sayeed, S., Marco-Gisbert, H., and Caira, T. Smart Contract: Attacks and Protections.

IEEE Access 8 (2020), 24416–24427.

[67] Shayan, M., Fung, C., Yoon, C. J. M., and Beschastnikh, I. Biscotti: A Blockchain

System for Private and Secure Federated Learning. IEEE Transactions on Parallel

and Distributed Systems 32 (12 2021), 1513–1525.

https://doi.org/10.1109/MCI.2022.3180932
https://doi.org/10.1109/MCI.2022.3180932
https://doi.org/10.1109/CyberC.2019.00018
https://doi.org/10.1109/CyberC.2019.00018
https://whitepaper.io/document/2/stellar-whitepaper
https://whitepaper.io/document/2/stellar-whitepaper
https://doi.org/10.48550/arXiv.1602.05629
https://doi.org/10.1109/INDIN.2008.4618146
https://doi.org/10.48550/arXiv.2007.03856
https://doi.org/10.48550/arXiv.2007.03856
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.1109/TNSE.2021.3050781
https://doi.org/10.1109/TNSE.2021.3050781
https://doi.org/10.1007/s10462-022-10271-9
https://doi.org/10.1007/s10462-022-10271-9
https://meyer-raph.medium.com/the-bitcoin-whitepaper-explained-and-commented-section-1-introduction-55f23e96a110
https://doi.org/10.1109/ACCESS.2020.2970495
https://doi.org/10.1109/TPDS.2020.3044223
https://doi.org/10.1109/TPDS.2020.3044223

Bibliography 121

[68] Sheriff, K. Mining Bitcoin with pencil and paper, 2017. Date Accessed 08/06/2023.

[69] Shi, E. Foundations of Distributed Consensus and Blockchains, in progress ed.,

vol. Preliminary Draft. 2020. Date Accessed 08/06/2023.

[70] Short, A. R., Leligou, H. C., Papoutsidakis, M., and Theocharis, E. Using Blockchain

Technologies to Improve Security in Federated Learning Systems. IEEE, pp. 1183–

1188.

[71] Solana-Anchor-Documentation. Anchor error reference. Date Accessed 08/06/2023.

[72] Solana-Anchor-Documentation. Anchor high-level overview. Date Accessed

08/06/2023.

[73] Solana-Anchor-Documentation. Anchor accounts. Date Accessed 08/06/2023.

[74] Solana-Anchor-Documentation. Anchor constraints. Date Accessed 08/06/2023.

[75] Solana-Anchor-Documentation. Anchor programmodule. Date Accessed 08/06/2023.

[76] Solana-Anchor-Documentation. Anchor CLI. Date Accessed 08/06/2023.

[77] Solana-Anchor-Documentation. Anchor Rust code reference. Date Accessed

08/06/2023.

[78] Solana-Anchor-Documentation. Anchor space reference. Date Accessed 08/06/2023.

[79] Solana-Documentation. JSON RPC API. Date Accessed 08/06/2023.

[80] Solana-Documentation. Solana deploy a program. Date Accessed 08/06/2023.

[81] Solana-Documentation. Solana CLI. Date Accessed 08/06/2023.

[82] Solana-Documentation. Solana web3.js. Date Accessed 08/06/2023.

[83] Solana-Documentation. Solana programs. Date Accessed 08/06/2023.

[84] Solana-Documentation. Solana developing with Rust. Date Accessed 08/06/2023.

[85] Solana-Documentation. Solana accounts. Date Accessed 08/06/2023.

[86] Solana-Documentation. Solana runtime compute budget. Date Accessed 08/06/2023.

http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.html
http://elaineshi.com/docs/blockchain-book.pdf
https://doi.org/10.1109/MNET.011.2000263
https://doi.org/10.1109/MNET.011.2000263
https://book.anchor-lang.com/anchor_in_depth/errors.html
https://book.anchor-lang.com/anchor_in_depth/high-level_overview.html
https://book.anchor-lang.com/anchor_in_depth/the_accounts_struct.html#the-account-type
https://book.anchor-lang.com/anchor_in_depth/the_accounts_struct.html#the-account-type
https://book.anchor-lang.com/anchor_in_depth/the_program_module.html
https://book.anchor-lang.com/anchor_references/cli.html#cluster
https://book.anchor-lang.com/anchor_references/reference_links.html
https://book.anchor-lang.com/anchor_references/space.html
https://docs.solana.com/api
https://docs.solana.com/cli/deploy-a-program
https://docs.solana.com/cli/
https://docs.solana.com/developing/clients/javascript-api
https://docs.solana.com/developing/intro/programs
https://docs.solana.com/developing/on-chain-programs/developing-rust
https://docs.solana.com/developing/programming-model/accounts
https://docs.solana.com/developing/programming-model/runtime#compute-budget

122 Bibliography

[87] Solana-Documentation. Solana runtime. Date Accessed 08/06/2023.

[88] Solana-Documentation. Solana transactions. Date Accessed 08/06/2023.

[89] Solana-Documentation. Solana test validator. Date Accessed 08/06/2023.

[90] Solana-Documentation. What is Solana? Date Accessed 08/06/2023.

[91] Solana-Documentation. Solana terminology. Date Accessed 08/06/2023.

[92] Solana-Documentation. Solana wallets. Date Accessed 08/06/2023.

[93] Solana-Seahorse-Documentation. Seahorse accounts. Date Accessed 08/06/2023.

[94] Solana-Seahorse-Documentation. Seahorse instructions. Date Accessed 08/06/2023.

[95] Solana-Seahorse-Documentation. The Seahorse language. Date Accessed 08/06/2023.

[96] Theymos. Fork, 2010. Date Accessed 08/06/2023.

[97] Uddin, M. A., Stranieri, A., Gondal, I., and Balasubramanian, V. A survey on the

adoption of blockchain in IoT: challenges and solutions. Blockchain: Research and

Applications 2 (6 2021), 100006.

[98] Visa. Visa Statistics. Date Accessed 08/06/2023.

[99] Walker, G. How does Bitcoin Work ?, 2020. Date Accessed 08/06/2023.

[100] Wood, G. Ethereum: A secure decentralised generalised transaction ledger, 2014.

[101] Wu, X., Wang, Z., Zhao, J., Zhang, Y., and Wu, Y. FedBC: Blockchain-based Decen-

tralized Federated Learning. IEEE, pp. 217–221.

[102] Xie, C., Koyejo, S., and Gupta, I. Asynchronous Federated Optimization. arXiv (3

2019).

[103] Yakovenko, A. Proof of History: A Clock for Blockchain. Date Accessed 08/06/2023.

[104] Yakovenko, A. Solana: A new architecture for a high performance blockchain v0.8.13,

2017.

[105] Yakovenko, A. High performance memory management for smart contracts, 8 2018.

Date Accessed 08/06/2023.

https://docs.solana.com/developing/programming-model/runtime
https://docs.solana.com/developing/programming-model/transactions
https://docs.solana.com/developing/test-validator
https://docs.solana.com/introduction
https://docs.solana.com/terminology
https://docs.solana.com/wallet-guide
https://seahorse-lang.org/docs/accounts
https://seahorse-lang.org/docs/instructions
https://seahorse-lang.org/docs/seahorse-lang
https://en.bitcoin.it/wiki/File:Blockchain.png
https://doi.org/10.1016/j.bcra.2021.100006
https://doi.org/10.1016/j.bcra.2021.100006
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://learnmeabitcoin.com/
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1109/ICAICA50127.2020.9182705
https://doi.org/10.1109/ICAICA50127.2020.9182705
https://doi.org/10.48550/arXiv.1903.03934
https://medium.com/solana-labs/proof-of-history-a-clock-for-Blockchain-cf47a61a9274
https://solana.com/solana-whitepaper.pdf
https://medium.com/solana-labs/high-performance-memory-management-for-smart-contracts-aa9b3bc950fb

Bibliography 123

[106] Yonatan, Ayelet, Z. A. S., and Sompolinsky. Optimal Selfish Mining Strategies in

Bitcoin. B. G. Jens and Preneel, Eds., Springer Berlin Heidelberg, pp. 515–532.

[107] Yuan, S., Cao, B., Peng, M., and Sun, Y. ChainsFL: Blockchain-driven Federated

Learning from Design to Realization. pp. 1–6.

[108] Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., and Gao, Y. A survey on federated learning.

Knowledge-Based Systems 216 (2021), 106775.

[109] Zhao, J., Wu, X., Zhang, Y., Wu, Y., and Wang, Z. A Blockchain Based Decentralized

Gradient Aggregation Design for Federated Learning. I. Farkaš, P. Masulli, S. Otte,

and S. Wermter, Eds., Springer International Publishing, pp. 359–371.

[110] Zhu, H., Zhang, H., and Jin, Y. From federated learning to federated neural architecture

search: a survey. Complex Intelligent Systems 7 (4 2021), 639–657.

[111] Zhu Yiming, Ehsan-ul Haq, L.-H. L. G. T. P. H. A Reddit Dataset for the Russo-

Ukrainian Conflict in 2022. arXiv (7 2022).

https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1109/WCNC49053.2021.9417299
https://doi.org/10.1109/WCNC49053.2021.9417299
https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/10.1007/978-3-030-86340-1_29
https://doi.org/10.1007/978-3-030-86340-1_29
https://doi.org/10.1007/s40747-020-00247-z
https://doi.org/10.1007/s40747-020-00247-z
 https://doi.org/10.48550/arXiv.2206.05107
 https://doi.org/10.48550/arXiv.2206.05107

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Purpose of this thesis
	Contribution

	Content organization

	I Theoretical Backround
	Federated learning
	Introduction - ML, Distributed ML
	Motivation
	Federated learning Definition
	Federated learning Types / The How
	Horizontal Federated learning
	Vertical Federated learning
	Hybrid Federated learning

	Horizontal Fl Algorithm - FedAvg
	Formal definitions
	Opportunities in Federated learning
	Aggregation Algorithms
	Centralized Aggregation
	Hierarchical Aggregator
	Decentralized Aggregator

	Challenges in Federated learning

	Distributed Ledgers
	Introduction
	Motivation
	Distributed Ledgers Structure
	Data Structures
	Public Key Cryptography
	Peer to Peer networks
	The need for Consensus
	Consensus
	Fault classification
	Deterministic Consensus

	FLP
	Blockchain
	Blockchain Structure
	Blockchain's core data structure
	Transactions
	Blockchain Header
	Mainaining order of transactions

	Block Creation
	Proof of work - the mining puzzle
	Bitcoin Weaknesses
	Proof of Stake
	Survey of most popular Blockchains
	Challenges in Distributed Ledgers

	Smart Contracts
	Introduction
	Smart Contracts Definition
	The Ethereum virtual machine
	Blockchains with smart contracts
	Deployment and Execution
	Smart Contract Strengths
	Tamper-proofness and Code immutability
	Transparency

	Challenges

	Solana platform
	Introduction
	Solana structure and components
	Proof of History
	PoH sequence instance with events
	Verification
	Solana Proof of Stake
	Staking
	Elections
	Failure and slashing
	Finality

	Solana Challenges

	Solana Smart Contracts
	Introduction
	Definition
	Smart Contract - Client structure
	Memory management
	Solana's Basic Smart Contract concepts
	Solana, Anchor and Seahorse
	Native Rust
	Solana Anchor
	Seahorse Solana

	Creating a First Program and deploying it on chain
	Deployment

	Blockchain based Federated learning
	Introduction
	Motivation
	Communication costs
	Single point of Failure
	Code and Weight redundancy
	Code and weight transparency
	Code and weight immutability
	Incentives to clients for good behaviour

	Blockchain Based Federated learning
	Blockchain based Federated learning characteristics
	Decentralization
	Immutability
	Traceability
	Incentives
	Integrity and Reliability
	Trust

	BCFL system design overview

	Related Work
	Blockchain based approaches to security and privacy in Federated learning
	Blockchain based Federated learning record and reward approaches
	Blockchain based Federated learning verification and accountable approaches
	Open Issues
	Future Directions

	II Implementation and Testing
	System Design
	High Level Overview
	Breakdown of components

	Smart Contract aggregator
	Aims and requirements
	Limitations in Solana Smart Contracts
	Deployment
	Transaction batches
	2000 Model Smart Contract
	1000 Model Smart Contract
	500 Model Smart Contract
	250 Model Smart Contract

	Fl client
	Model extraction
	Solana communication
	Number of parcticipants

	Implementation
	Solana Smart Contract
	2000 u8 Model Smart Contract
	1000 u16 Model Smart Contract
	500 u32 Model Smart Contract
	250 f64 Model Smart Contract
	Federated Averaging

	RPC Client
	web3.js
	anchor.js
	Types from Solana Smart Contracts

	Model training
	MNIST Digit

	Baseline 2000 Weight Deep Convolutional neural network
	Neural net architecture
	Convolutional network
	Deep network
	Loss function
	Optimizer selection
	Batch size and training epochs
	Evaluation
	Model extraction

	Model pruning
	Weight pruning
	Neuron pruning
	Approaches used in our models

	Evaluation
	Methodology
	Testing

	Discussion of Results
	Results per model
	250 Model
	500 Model
	1000 Model
	2000 Model

	General Discussion

	III Conclusions
	Discussion
	Challenges
	Solana as a platform
	Future Directions
	Future Research
	Concluding Remarks

	Bibliography

