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xii Abstract

Master’s Thesis

INPUT SELECTIONS METHODS FOR NEURAL NETWORKS FOR

LOAD AND GENERATION

Theodoros Zerlentis Kafarakis

Abstract

In this thesis multiple prediction simulations were performed, including load, wind, and

solar generation forecasts, in order to assess the efficiency of various feature selection tech-

niques while comparing their significance. The prediction model was developed using a

multi-layered perceptron, which had one hidden layer made up of 24 neurons. Additionally,

the prediction model was trained and tested using three years’ worth of historical load, gen-

eration, and weather data from the years 2019, 2020, and 2021 based on Greece’s energy

grid. Three different locations were chosen, as the source of information for the weather

parameters, based on the load and generation spatial distribution of Greece.

The impact of a feature selection method was thoroughly examined, as multiple evalua-

tion error metrics and variables were calculated and showed that the accuracy and the overall

prediction time of the load and generation forecast was greatly enhanced. Additionally, for

all three different prediction models, a comparison study was perform in order to identify

the optimal amount of feature for each feature selection method. Furthermore, the results

showed that the RReliefF algorithm was able to achieve the best performance over the ma-

jority of the other methods, mainly for the load and solar generation. The algorithm was able

to better predict the variations of the load curve and the high volatility of solar generation,

with less available features. Additionally, the MRMR was also very effective as it was able

to properly forecast the wind generation, with the smallest computational time while mini-

mizing the forecast errors. The RReliefF algorithm also showed similar performance for the

wind generation forecast, but it was outperformed by the MRMR.
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ΜΕΘΟΔΟΙ ΕΠΙΛΟΓΗΣ ΕΙΣΟΔΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΣΕ

ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΕΨΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΚΑΤΑΝΑΛΩΣΗΣ

Θεόδωρος Ζερλέντης Καφαράκης

Περίληψη

Στην παρούσα διπλωματική πραγματοποιήθηκαν προσομοιώσεις πρόβλεψης φορτίου,

αιολικής και ηλιακής παραγωγής, προκειμένου να αξιολογηθεί η αποτελεσματικότητα των

διαφόρων τεχνικών επιλογής χαρακτηριστικών. Το μοντέλο πρόβλεψης αναπτύχθηκε με τη

χρήση ενός πολυεπίπεδου perceptron, το οποίο είχε ένα κρυφό στρώμα αποτελούμενο από 24

νευρώνες. Επιπλέον, το μοντέλο πρόβλεψης εκπαιδεύτηκε και δοκιμάστηκε χρησιμοποιώντας

ιστορικά δεδομένα φορτίου, παραγωγής και καιρικών παραμέτρων τριών ετών από τα έτη

2019, 2020 και 2021 με βάση το ενεργειακό δίκτυο της Ελλάδας. Επιλέχθηκαν τρεις διαφορε-

τικές τοποθεσίες, ως πηγή πληροφοριών για τις καιρικές παραμέτρους, με βάση τη χωρική

κατανομή του φορτίου και της παραγωγής στην Ελλάδα.

Ο αντίκτυπος των μεθόδων επιλογής χαρακτηριστικών εξετάστηκε διεξοδικά, καθώς

υπολογίστηκαν πολλαπλά στατιστικά σφάλματος, τα οποία έδειξαν ότι η ακρίβεια και ο

συνολικός χρόνος πρόβλεψης του φορτίου και της παραγωγής βελτιώθηκε σημαντικά. Επι-

πλέον, και για τα τρία διαφορετικά μοντέλα πρόβλεψης, διεξήχθη συγκριτική μελέτη προκει-

μένου να προσδιοριστεί η βέλτιστη ποσότητα χαρακτηριστικών για κάθε μέθοδο. Επιπλέον,

τα αποτελέσματα έδειξαν ότι ο αλγόριθμος RReliefF ήταν σε θέση να επιτύχει την καλύτερη

απόδοση έναντι της πλειοψηφίας των άλλων μεθόδων, κυρίως για την πρόβλεψη φορτίου και

την ηλιακή παραγωγή. Ο αλγόριθμος ήταν σε θέση να προβλέψει καλύτερα τις διακυμάνσεις

της καμπύλης φορτίου και την υψηλή μεταβλητότητα της ηλιακής παραγωγής, με λιγότερα

διαθέσιμα χαρακτηριστικά. Επιπλέον, οMRMRαλγόριθμος ήταν επίσης πολύ αποτελεσματι-

κός, καθώς ήταν σε θέση να προβλέψει σωστά την αιολική παραγωγή, με τον μικρότερο

υπολογιστικό χρόνο και σφάλμα πρόβλεψης. Ο αλγόριθμος RReliefF παρουσίασε επίσης

παρόμοια απόδοση για την πρόβλεψη της αιολικής παραγωγής, ωστόσο ο MRMR ήταν πιο

αποτελεσματικός.
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Chapter 1

Introduction

The escalating growth of energy consumption combined with the ever lasting climate

change threat that the modern society is faced with, has pushed countries and big corporate

organizations to optimize the energy grid distribution and consumption. With the introduction

of the Renewable Energy Sources (RES), an extra factor for contribution but at the same

time of instability has been introduced to the energy grid. This is the main reason that energy

companies strives to understand and estimate the grid demands but also the energy generation

from RES.

The prediction of the energy for load and generation is a crucial aspect of the energy

industry, affecting not only the energy grid but also the consumers. Multiple forecast algo-

rithms have been developed in the years by using advance mathematics methods and machine

learning algorithms. The later one has been growing exponential the past few year with the

fast growth of computer capacity and computer algorithms. The accuracy of these predictions

depends on the quality, quantity and availability of the related data. With the advancement of

technology, vast amounts of data and parameters are available to be utilized for energy load

and generation prediction, allowing the scientist to create even more advanced and accurate

forecast models. However, some of these parameters might not be relevant to the desired

prediction, leading to more complex and inaccurate models.

Feature selection methods have been proposed as a viable solution to this problem. The

purpose of these a algorithms is to identify themost relevant and significant features, that have

the most impact on the prediction accuracy while in the same time outlining the redundant

features that are not needed or lead to inaccuracies.

1
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2 Chapter 1. Introduction

1.1 Thesis Subject

The objective of this thesis is to review and evaluate the performance of various feature

selection methods for energy load, wind and solar generation forecasting by using an artificial

neural network. The feature selection methods chosen, after an extensive literature review,

are the following:

• RReliefF

• Random Forest

• Mutual Information

• MRMR

• Maximal Information Coefficient

The performance for each method will be measured using a variety of error evaluation

metrics such as the Absolute Error (AE), the Mean Absolute Error (MAE) and the Mean

Absolute Percentage Error (MAPE). Eachmethod is comparedwith the originalmodel, which

does not includes any feature selection method, in matters of accuracy and time performance.

Furthermore, a comparison between each method is performed for each prediction model in

order to locate the best feature selection algorithm. Finally, an evaluation based on the amount

of features provided by the feature selection method is presented. The results of this study

will provide insights into the effectiveness of different feature selection methods and their

impact on the prediction accuracy of energy load and generation.

1.2 Thesis Structure

The Diploma Thesis is structured as follows:

In Chapter 2 the literature review for various Feature Selection Methods is presented.

During this chapter the state of the art Feature Selection algorithms are analyzed based on

their advantages and disadvantages, which are presented by the authors. In Chapter 3 the

main aspects of this thesis are presented, starting with describing the algorithms that were

created for forecasting the load, wind and solar generation models. Furthermore, in the same

Chapter a brief presentation for each Feature Selection Method parameters are discuss. In
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Chapter 4 the results from the simulations are presented and compared. Multiple evaluation

error metrics are considered in order to compare the performance of each Feature Selection

methods. Finally, in Chapter 5 the conclusion of this thesis is presented.
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Chapter 2

Literature review

2.1 Introduction

In this chapter a detailed overview of the Artificial Neural Network (ANN) principles and

the state of the art Feature Selection Methods (FSM) are presented. Concerning the Artificial

Neural Networks, their general structure is briefly discussed combinedwith the purpose of the

activation function, the necessity for data normalization and the different evaluation metrics

that are used for comparing the performance of an ANN. Furthermore, the importance of

Feature Selection Methods is presented, accompanied with a variety of methods used from

the scientific community for energy forecasting.

2.2 Short Term Load and Generation Forecast

Every year the energy needs of society are increasing due to technological developments.

In order to cope with these demands, humanity has to improve and develop the existing power

grid by introducing alternative sources of energy. Until now, this problem has been solved

by using fossil fuels such as coal, natural gas and oil. However, global warming and the

environmental pollution that has occurred in recent years, combined with the deterministic

amount of fossil fuels available around the globe, has prompted most countries to adopt a

more sustainable policy. Some countries are turning to other alternative sources, such as

nuclear energy [1], which, despite its advantages, is facing problems of widespread adoption.

Renewable energy sources (RES) seems to have provided the answer to this issue, as in recent

years there has been a huge interest from countries and major investors in these technologies.

5
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6 Chapter 2. Literature review

With the increasing penetration of Renewable energy sources in the energy market, many

analysts are turning their attention to the implications and difficulties that these technologies

present to the grid’s stability. In particular, wind power is highly volatile in terms of the

amount of electricity produced over a relatively long period of time, as it is entirely depen-

dent on the prevailing weather conditions, since a day without high wind speeds, significantly

reduces energy production. These volatile patterns in electricity generation can have a huge

impact on the electricity grid if not managed properly. Furthermore, the generation of energy

from fossil fuels faces similar issue concerning the amount of energy production. Depend-

ing on the grids demands and performance the energy companies are either producing more

energy than the grid requires or less which can lead to black outs. This issue mostly arises

due to the slow time to adjust of the energy generation facilities.

2.2.1 Benefits of Energy Forecast

As it was discussed previously, the energy load and generation technologies are facing

different difficulties concerning the amount of energy that is provided to the grid. A rela-

tively simple approach was considered by the scientific community, by introducing the idea

of the load and generation forecast [2]. By analyzing historical and forecasted data, based

on various analytical and statistical methods, the scientist were able to identify patterns in

the energy load of the grid while at the same time estimate within a good accuracy level the

amount of energy generated by renewable source of energies.

A big interest of the scientific community hasmoved towards technologies for forecasting

energy related topics. It can be seen in Figure 2.1 that in the recent year the amount of

publication in the field of energy forecasting has almost doubled in the last five years. This

can be surely traced due to the increased amount of data that are available as more and more

smart devices with sensors and networking capabilities are introduced to the energy grid. This

trend can also be linked to the economic and environmental factors that the energy forecasting

technologies provide. By using such technologies the energy grid’s demand and supply can

be optimized, by utilizing at the out most the renewable sources of energy, while at the same

time producing the minimum required amount of energy for big generation facilities, which

leads to less energy waste, less environmental foot print and more profits [3].
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Figure 2.1: Amount of publications for different types of energy forecasts [2].

2.2.2 Forecast Methods Comparison

The utilization and favor of different load forecast methodologies varies in the literature,

as various method have their own pros and cons. In the recent years, a big emphasis and

research has been given to Artificial Neural Networks, which are increasingly used for ma-

chine learning and load forecast applications. In addition, another well known method is the

Support Vectors Machines, which have been used for many years in a variety of applications.

On the other hand, Random Forests and k-Nearest Neighbors are showing less growth in the

load forecast and generation sector, but in general application are still popular. Figure 2.2

shows the use graph of these methods over the years.

One of the main factors that affect the performance and robustness of machine learning

algorithms, in the field of energy load and generation forecast, is the number and type of

features characteristics derived from meteorological data. More specifically, the algorithms

Random Forests, k-Nearest Neighbors and Support Vector Machines show fairly good ac-

curacy for a big amount of features [4, 5, 6], thus enabling the reduction of noise from any

erroneous or irrelevant data that might be preset in the data set and cause performance degra-

dation. On the other hand, Artificial Neural Networks facemajor problems of over-adaptation

and instability when the data set is quite extensive. However, this problem can be addressed

by pre-processing the data [7], by data normalization and feature selection methods, thus

reducing the discrepancies. Moreover, the advantage of the ANN, after proper tuning, is lo-

cated in the superior accuracy of the results for non-linear values, which makes them one of

the most attractive and desirable methods of energy forecast applications.
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8 Chapter 2. Literature review

Figure 2.2: Different load forecast methods [8].

2.3 Artificial Neural Networks

A computational model known as an artificial neural network (ANN) is modeled after

the structure and operation of biological neural networks, such as the human brain. It is a

machine learning algorithm made to spot patterns in data, learn from it, and then predict

or decide. An artificial neural network’s basic building blocks are interconnected nodes,

also known as artificial neurons or units, arranged in layers. Each neuron receives input,

processes the information, and then generates an output. The connections between neurons

are weighted, which means that each connection’s strength or significance is denoted by a

weight, a numerical value. In Figure 2.3 an artificial’s neural network structure is presented.

Depending on the architecture used and the problem being solved, an artificial neural

network’s structure may change. The feedforward neural network, which has an input layer,

one or more hidden layers, and an output layer, is a popular architecture. Information moves

in a straight line, without loops or cycles, from the input layer via the hidden layers to the

output layer in a feedforward network.

An artificial neural network learns to modify the weights of its connections based on a

supplied dataset throughout the training process. The difference between the network’s pro-

jected output and the desired output is utilized to update the weights in a process known as

backpropagation to make this adjustment. The network continuously increases its capacity

to generate precise predictions or classifications by iteratively updating the weights. The
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2.3.1 Structure 9

Figure 2.3: Artificial Neural Network [9].

artificial neural networks have excelled in a number of fields, including audio and picture

recognition, recommendation systems, natural language processing, and many other chal-

lenging tasks. They have the capacity to learn from massive data sets, identify important

features, generalize patterns, and make predictions on fresh, unforeseen data.

It’s vital to remember that there are various kinds of artificial neural networks, including

the Generative Adversarial Networks (GANs) for creating fresh data samples, the Recurrent

Neural Networks (RNNs) for processing sequence data, the Convolutional Neural Networks

(CNNs) for processing images and many more. The artificial neural networks are a versatile

and effective tool in the field of machine learning and artificial intelligence since each form

of network is designed to tackle particular problems and tasks.

2.3.1 Structure

Depending on the particular architecture and problem being solved, an ANN’s structure

might change, but there are some basic elements and ideas that remain constant:

• The Input Layer is the neural network’s first layer which represents the characteristics

or properties of each neuron. The dimensionality of the input data affects how many

neurons are present in the input layer.

• The Hidden Layers are the layers between the input and output. The network can learn

and represent complicated patterns and relationships in the data thanks to the hidden
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10 Chapter 2. Literature review

layers. Depending on the complexity of the problem and the network’s design, the

number of hidden layers and the number of neurons in each hidden layer may change.

• The Output Layer is the neural network’s final layer and is responsible for producing

the output or prediction. The type of problem being solved determines how many

neurons are present in the output layer. For instance, in a binary classification task,

a single neuron may represent the likelihood of falling into one class, whereas in a

multi-class classification problem, numerous neurons may represent the likelihoods of

falling into each class.

• Weights and Connections: Through connections or edges, neurons in one layer are

linked to neurons in the next layer. Each connection has a weight attached to it that

controls how strong the connection is. The network can adapt and modify its behavior

based on the input data since the weights are learned throughout the training process.

• The Activation function represent the generated based on weighted sums of it’s input.

The network can learn intricate associations thanks to the activation function’s intro-

duction of non-linearity. The activation processes sigmoid, tanh, ReLU, and Softmax

are frequently used.

• The Bias represents an extra variable for each neuron that can be changed during train-

ing. The bias enables the network to change the activation function, which has an

impact on the network’s general behavior and adaptability.

• The Feedforward and Backpropagation are two different type of process or flow of

infomation inside the neural network. In the feedforward secnarion the information

feeds forward from the input layer via the hidden layers to the output layer. During the

backpropagation process the network updates the weights depending on the discrep-

ancy between the projected output and the desired output during training. The error is

reduced and the network’s performance is enhanced by this iterative procedure.

Depending on the issue and the desired outcome, an artificial neural network’s structure

and architecture might differ greatly. To handle particular types of data and tasks, many ar-

chitectures, including feedforward neural networks, convolutional neural networks (CNNs),

and recurrent neural networks (RNNs), have been developed.
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2.3.2 Activation Function

An activation function in a neural network is a mathematical function that establishes a

neuron’s or node’s output depending on the weighted sum of its inputs. The network gains

non-linearity from the activation function, which enables it to learn and simulate intricate

interactions between inputs and outputs. The activation function generates an output value

or activation value based on the weighted sum of the inputs to a neuron, also known as the

activation. The neural network’s following layer receives this output as input [10].

An activation function’s primary objective is to create non-linearities into the neural net-

work. A neural network would only be able to convert the input data linearly if no activation

function is presented. Furthermore, it can learn and represent more complex interactions be-

tween the inputs and outputs by employing non-linear activation functions. Given enough

neurons and the right parameters, it enables the network to approximate any continuous func-

tion. Some commonly used activation functions include:

• The Sigmoid function converts the input into a probability represented by a number

between 0 and 1. It improves output quality and helps with binary classification issues.

• Similar to the sigmoid function, the hyperbolic tangent (tanh) function transforms the

input into a number between -1 and 1. Problems with classification can also benefit

from it.

• The Rectified Linear Unit (ReLU) maintains the positive values while setting all neg-

ative values to zero. It is frequently used in deep learning because it makes big neural

networks’ training more effective.

• Leaky ReLU is a variant of ReLU that permits a negligible, non-zero gradient for the

input. This lessens the ”dying ReLU” issue, in which neurons may become imprisoned

in a state of dormancy.

• The Softmax function is frequently employed to solve multi-class classification issues.

The outputs are transformed into a probability distribution, where each output repre-

sents the likelihood that the input belongs to a particular class.

The type of the issue and the network architecture determine the activation function to

use. In Figure 2.4 the three most common activation functions are presented. Different ac-

tivation functions have various characteristics that can impact the network’s generalization,
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12 Chapter 2. Literature review

(a) Sigmoid and Tanh activation functions [11].

(b) ReLu activation function [12].

Figure 2.4: Activation function of a neural network.

convergence rate, and training dynamics. To ensure that the neural network performs at its

peak, it is crucial to choose an activation function that is appropriate for the task at hand.

2.3.3 Data Normalization

Machine learning algorithms are data driven processes, meaning that the performance

and the outcome of the end product is solely data dependent. Although nowadays there is an

abundant number of data to use in such application, sometimes missing or extreme values of

theses data can cause huge performance and accuracy degradation. This issue is even more

serious for short term load forecast, as noise in data or outliners or even missing values are

quite common in the data acquisition processes which then feeds these values to the forecast
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model. Another common issue to the forecast models is the existence of non-numeric fea-

tures, such as the day of the week or special days of the year etc, that can only be translated

to certain values, most of the time either 0 or 1. This can lead to worse performance of the

forecast model as the weights of each neuron cannot predict and produce a good outcome to

values that are very high, like the load of the energy grid, and the same time very low values,

like the non-numeric features. In order to solve this issue researchers developed several ways

to normalize the data, so that all features have a specific range of values that is proportional

to their original values. The most common data normalization method is the min-max, which

takes into account the maximum and minimum value of each feature and then translate each

value to a proportion that is equivalent to the difference of the maximum and minimum value

[13]. The following equation describes the min-max method:

x∗
ij =

xij −mini

maxi −mini

(2.1)

where i is the feature, j is the data line, x∗ is the normalized data, x is the data to be

normalized,maxi andmini is themaximum andminimumvalue of the feature i, respectively.

2.3.4 Evaluation Metrics

One of the most important steps for creating a good machine learning algorithm, is the

ability to evaluate the outcome of the model, meaning that whether or not the end result is

worthy. In order to evaluate these algorithms multiple metric have been developed, with

almost everyone of them being based around the performance error. For the neural networks

and the load and generation forecast the error can be easily defined, by simply subtracting the

actual value that we want to predict with the one that the neural network calculated. Although

this is the main idea of the error metric, multiple variations of this measurement have been

introduced, like the Root Mean Square Error (RMSE), the Mean Absolute Percentage Error

(MAPE) and the Mean Absolute Error (MAE) [14, 15]. In the following, the three main

evaluation metrics equations that will be used in this thesis are presented.

RMSE =

√∑n
i=1(xi − yi)2

n
(2.2)

MAPE =
1

n

n∑
i=1

|xi − yi|
xi

(2.3)
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MAE =

∑n
i=1 |xi − yi|

n
(2.4)

where n is the number of predicted loads, xi and yi is the actual load and the predicted

load, respectively.

2.4 Feature Selection Methods

As more and more data and features are available during load and generation forecasting,

it becomes more urgent to filter those redundant or unworthy features. This is issue can be

solved by utilizing a big variety of feature selection methods. More importantly, FSM can

locate and isolate the best features for the forecast algorithm in order to improve both overall

performance and accuracy of the model, reduce overfitting and reduce computational time

and power [16]. Multiple methods have been developed and proposed for short-term load

forecasting problems, with each method having advantages and disadvantages over the other

ones. In this sectionmultiple Feature SelectionMethods are discuss by comparing the finding

from the literature.

2.4.1 Mutual Information

Mutual Information is based on the theory of information between two instances. When

two instances are considered independent thenMutual information is equal to zero. If the two

instances are dependent with each other then Mutual Information has a positive value. As

a feature selection method, Mutual Information evaluates how much information each indi-

vidual feature provide to the target value. Mutual Information has been used extensively as a

feature selection method as it is able to capture both linear and non-linear correlation between

instances [17]. In Figure 2.5 a generic representation of Mutual Information is shown.

In the bibliography a thorough investigation have been done around the performance of

Mutual Information as a feature selection for short term load forecasts. In [18] the researchers

used 1 year of load data to evaluate the performance of Mutual Information, by splitting the

data set into three different time periods, one for the summer season, one for winter and one

for the rain season. For each season they used the Mutual Information algorithm to find

out the best features out of a pool of twenty features in total. Those twenty features were

consisting out of four different types, as energy load data, load difference, temperature and
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Figure 2.5: Mutual Information [19].

irradiance data, of the previous five days from STLF targeted day. Afterwards, they created

six different scenarios based on the number and type of features. The first scenario included

all twenty data, while the second and third one had only fifteen features, with the difference

being between those two that the third scenario did not include temperature data. The fourth

scenario had ten feature while the fifth had fifteen feature without load difference data. Fi-

nally, the sixth scenario did not include load data variables. After evaluation of the final

results the researcher find out that by using MI for feature selection improves significantly

the accuracy of the forecast. In more details, the second scenario showed the best results

minimizing the error almost up to half from the forecast without the use of MI. Furthermore,

out of three seasons the winter season data set showed slightly better results, while in general

the overall forecasts showed small deviations between seasons. This resulted in a more stable

and robust forecast that is capable of anticipating season’s changes.

In [20] the authors used a two stage feature selection algorithm based on the Mutual In-

formation theory. The first stage calculates the relevancy of the feature by using a modified

version of the Relief algorithm, that offers fast and robust performance, and assigns a rel-

evance weight to each feature. Furthermore, based on that weight, the best more relevant

feature are selected in order to create a new subset of features. Afterwards, the second stage

calculates the redundancy of the new subset of features by utilizing the Interaction Gain cri-

terion, which compares the mutual information of two variables and a target value, with the

mutual information of each individual variable and the target. Based on that criterion, mul-

tiple redundant features can be identified and eliminated from the final prediction. For the

case studies the researchers compared the proposed feature selection method with multiple
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algorithm like, the principal component analysis, correlation analysis, mutual information,

two stage correlation analysis, Numerical Sensitivity Analysis etc. The results showed that

the proposed two stage algorithm can achieve better results and accuracy than the rest of the

feature selection methods.

In another research, [21] the authors used a Conditional Mutual Information algorithm as

a feature selection method for a short term load forecast model using hybrid neural networks.

During their approach they used the measurement of entropy, which is based on the infor-

mation theory, in order to measure the uncertainty of a feature V and a variable C. In the

beginning, they calculated the Mutual Information of all the features based on the target val-

ues and ranked theses features. The top best performing features then are selected and moved

to a new subset Vnew, with the one feature to maximize the mutual information to be moved

to another subset new S. Afterwards, the conditional mutual information for all pairs of the

subset Vnew and S is calculated in correspondence to the target values of C. By comparing

the conditional mutual information values of all the pairs, the authors were able to select the

next best feature that is actually providing accuracy to the model based on the already ex-

isting top features. By performing the above algorithm multiple times, a new more refined

subset of the original features is identified. In order to evaluate the performance of the algo-

rithm the researchers compared the proposed method with algorithms based on Correlation

analysis, Mutual information and the RReliefF. The results showed that for the short term

load forecasting the Conditional Mutual information was superior from the other methods,

by almost having the half Mean Absolute Percentage Error (MAPE).

2.4.2 Maximum Relevancy Minimum Redundancy

MaximumRelevancy andMinimumRedundancy, also know as (MRMR), is awell known

feature selection method in machine learning, similar to Mutual Information. The idea be-

hind this method is to calculate and find the most relevant features while at the same time

trying to minimize the redundancy of features. The main concept of this method is based on

the information theory, by comparing the mutual information of each features. Specifically,

the relevant feature achieves high values of mutual information based on the target value,

while the redundant features have high value of mutual information based on other features

[22]. The MRMR method is well used in short term load forecast applications as a feature

selection method, as it is able to find the best feature for the forecast while minimizing the
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Figure 2.6: MRMR representation.

redundant feature, leading to better accuracy and more robust forecast algorithms. Figure 2.6

shows a representation of the MRMR.

An improvement to the classic MRMR algorithm was utilized in [23], which not only

takes into account the relevancy and the redundancy of each feature, but also involves the

synergy between two or more features. Specifically, the synergy criterion helps to identify

features that may improve the accuracy of the forecast when they are combined with other

features. While the redundancy or relevance filter might show that these feature are not the

best our of the feature pool, when combine with others the overall outcome might be better.

This method gives an extra step of selecting the best features that in most cases of other

algorithms those features will be thrown out of the top feature set. The algorithm is called

MaximumRelevancy,MinimumRedundancy,MaximumSynergy (MRMRMS). In this paper

the authors introduced a three stage filter algorithm as the feature selection method. In the

first filter the relevancy of each feature is calculated based on the target values of the data

set. Furthermore, the synergy of each feature with another is calculated in the first stage,

in order to combine both values of synergy and relevancy, of each feature, in order to rank

them. In the second filter, the output from the first filter is used, which involves the best

ranked features. During the second stage the redundancy of each feature is calculated in

order to identify which feature affects the forecast similar to another. Furthermore, for each

feature all three criteria, relevancy, redundancy and synergy, are combined and compared

with a threshold value, which decides whether the feature is good or not. All the worthy
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features are transferred to a separate subset S, while the unworthy ones are added to the

subset −S. The threshold value is defined by the user, and in the case of the paper it was

fine tuned after multiple simulations. Finally, in the third filter, the two worthy and unworthy

subsets S and −S are compared once more based on the synergy between the two subset’s

features. During this stage, any remaining worth synergy between two features is considered

and decided whether or not those will be transferred to the final set of the selected features. In

order to evaluate the performance of this algorithm, the authors comparedmultiple evaluation

error metrics with other algorithms like correlation analysis, mutual information, numerical

sensitivity analysis, maximum relevancy etc. The results showed that the proposed algorithm

achieved better accuracy with an average computational time than the rest of the methods.

A hybrid feature selection approach was used in [24] by combining the Maximum In-

formation Coefficient (MIC), as an early stage of non-numeric features selection, and the

Maximum Relevancy, Minimum Redundancy algorithm for the rest of the features. Specif-

ically, in the first stage, the MIC is used to calculate the nonlinear dependencies between

non numeric features and the target values. Those non numeric features are composed of

workdays, Saturday, Sunday and seven different holidays. By utilizing the MIC method, the

authors were able to identify whether or not those features improved the overall accuracy of

the STLF or introduced fluctuations and inaccuracy to the forecast model. Furthermore, after

the first stage is completed, the worthy features were combined with the rest of the numeric

one, in order to be evaluated by the MRMR method. During that stage, for each feature the

relevancy and the redundancy is calculated in order to be ranked from the most worthy fea-

tures to the least one. The authors used an Improved Long-Short Term Memory network and

a classical Long-Short Term Memory network with and without the hybrid feature selection

method, in order to evaluate it’s performance. They additionally compared the results with

some well know algorithms like the Support Vector Regression and the Gated Recurrent Unit

methods. The results showed that for each algorithm that used the hybrid feature selection

method, the accuracy of the end results was greatly improved. The only drawback that the re-

searchers noticed, was the additional computational time that the hybrid method introduced,

which in some cases was more than eight times.
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2.4.3 Random Forest

Random Forest (RF) is an ensemble learning method most commonly used for regression

and classification applications. The Random Forest algorithm calculates the importance of

each feature based on the model’s predictive performance. One of the main reasons that this

method is popular as a feature selection method in energy load and generation forecast is

the ability to handle multi-dimensional data-sets with relevant easy and the ability to achieve

good accuracy even with nonlinear features [25]. In Figure 2.7 the representation of the

Random Forest algorithm is shown.

In the [26], the researchers utilized the Random Forest algorithm as a feature selection

method combined with a convolutional neural network to perform a short-term load forecast.

During their research, they used two different data sets for their short term load forecast, one

based on hourly historical data of 1 year from New Zealand and one based on half hourly

historical data of 1.5 years from China. The researchers used the Random Forest algorithm

for both data sets in order to identify the best features. The results showed similarities in

the ranking of features, with the top ones being the temperature, temperature variation of

previous days and humidity. In order to evaluate the overall performance of the algorithm

the authors compared the results from both data sets with four other algorithms. The results

showed that in both cases of different data set the proposed algorithm with the use of Random

Forests as a feature selection method performed better than the rest.

The ability of Random Forest (RF) Algorithms to identify and separate the important

data, that greatly affect the accuracy of the prediction, combined with the robustness they

offer, have prompted researchers to combine multiple AI algorithms in order to improve the

accuracy of the results. In the study conducted by Wenting et al. [27], Random Forests were

utilized to pre-process the data in order to identify and isolate the important features that

affects the prediction. Then, by combining a new type of Convolutional Neural Networks

called Temporal Convolutional Networks, the researchers were able to predict the electrical

output of a wind farm, for a short period of time, with very good accuracy. Furthermore, the

researchers compared the prediction model with and without the Random Forest algorithm

for feature selection. They also used the Random Forest algorithm combined with two other

prediction models, one based on the Long Short TermMemory (LSTM) model, and the other

one based on the variant of the classical LSTM, which is called Gated Recurrent network.

Firstly, the comparison between the models with and without the Random Forest algorithm,
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Figure 2.7: Random Forest representation [28].

showed that the overall performance of the model with the RF, was greatly improved al-

most up to 25% from the one without feature selection. The researchers noticed also a huge

improvement in the total computation time of the model, which is an additional benefit of

Random Forest algorithm. Finally, the comparison between the different prediction models

showed that all three algorithms were benefited by the introduction of the feature selection

method of Random Forests, that allowed better overall performance.

2.4.4 Maximal Information Coefficient

In 2011 Reshef et al. [29] introduced the Maximal Information Coefficient (MIC) as

a measure of dependence between two different instances. In general, MIC is a statistical

measure, based on the concept of information theory, that is capable of calculating the linear-

ity and non-linearity association of two variables. By measuring the amount of information

shared between two instances, this method is able to rank all features and decide which is

best suitable for the application. Some of the many advantages of this method is the ability

to maintain good performance even if outliners exists in the data set, and also handle mixed

data types like numeric, continuous or non continuous values. This method although faces

some issues with big data sets and high dimensional data sets, which can lead to performance

degradation.

Tang et al. [15] utilized the Maximal Information Coefficient algorithm as a feature se-

lection methods combined with a Temporal Convolutional Network as the predictors and the

Fuzzy c-means as a clustering method. The authors used six years of data in total from the

public grid in order to perform a short term load forecast. For this data set, they used the

MIC to identify the relevancy between features and the target load values and also outline
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redundant features. The feature selectionmethod indicated that there is a strong relevancy be-

tween the load and the maximum, minimum and average temperatures from the data sets. In

order to evaluate the overall performance of the algorithm, the authors compared the results

with other prediction models like the Support Vector Regression, Temporal Convolutional

Networks, Least Square Support Vector Machine etc. The results showed that the proposed

algorithm showed superior performance from the other ones, by reducing the overall error of

the prediction.

In [30], the authors used a Long Short Term Memory network as a predictor for a short

term load forecast, combined with the Maximal Information Coefficient method for feature

selection. Specifically, the MIC algorithm was able to correlate the importance of tempera-

ture, relative humidity and wind speed variables as the most relevant features. Less impor-

tance showed other meteorological data, like rainfall, atmospheric pressure and solar radia-

tion intensity. By filtering the numerous features that were present in the data set, the authors

were able to improve the overall accuracy and performance of the prediction model.

A hybrid approach was considered by Yao et al. [31], by using the Maximal Information

Coefficient method as an early stage of feature selection and ranking. Afterwards, the top

selected features were fed to a second algorithm , the so called LightGBM, in order to fur-

ther refine the features by creating a correlation between the features and the targeted values.

Those features were then fed to a regression analysis model, based on LightGBM and XG-

boost algorithms, to perform predictions. The process was repeated until certain termination

thresholds were met. In the end, the feature set with the best accuracy is selected as the end

result. The authors in order to correctly evaluate the performance of the proposed algorithm,

calculated a variety of evaluation errors based on models that utilized only the Maximal In-

formation Coefficient, models with only XGboost or LightGBM for feature selection and a

model having only the predictor, without any further data correlation and analysis. Further-

more, they utilized six different predictors based on the LightGBM, XBboost, Support Vector

Machines, Random Forest, the ARIMA model and a Back Propagation Neural network. The

results from the simulations showed that the standalone model with the Maximal Information

Coefficient, for all the different predictors, achieved the second best results. The proposed

algorithm achieved the best results for all the prediction models, minimizing the error and at

the same time achieving small computational time.
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2.4.5 RReliefF

In 1992 the first Relief algorithm was introduced by utilizing the instance based learning

for classification problems with only two classes [32]. The algorithm is able to distinguish

values between near instances by estimating the quality of their attributes. When it was

introduced the algorithm faced problems with data quality, due to either noise or missing

values in the data sets. An extension of the original Relief Algorithm was developed in 1994

by [33] and it was called ReliefF. This extended version of the original algorithm was not

limited to only two classes for classification, it was more robust and was able to cope with bad

quality data. Finally, the further improved version of the original, the RReliefF algorithm,

was developed in 1997 as a regression problem solving method [34]. This version selects

randomly instances from the data set and then utilizes the K-nearest neighbors algorithm in

order to rank each individual feature and add a weight value to it. This extension further

enhanced the robustness and performance of the algorithm.

In [35] the authors proposed a new method for Short Term Load Forecast (STLF) by

utilizing a combination of the Innovative Features method and the RReliefF as a feature

selection algorithm. Firstly, the Innovative Features gather a pool of features that represent

the dynamic and non-linear attributes of the grid in order for the RReliefF algorithm to select

the best feature for forecasting. The authors compared this combined method with other

STLF algorithms, like the Support Vector Regression method or the Levenberg-Marquardt

neural network algorithm etc, and the results showed that the proposed method had the best

performance.

An extensive comparison of different feature selection methods was performed in [36].

In this case study, two year of electricity load data were used to compare three different pre-

diction models, a Neural Network, a Linear Regression and a Model Tree Rule algorithm.

For all three prediction methods, four different feature selection algorithms were used. More

specifically, the authors used the Mutual Information, the RReliefF, the Autocorrelation and

the Correlation-Based Selectionmethods for feature selection. The results showed that for the

Neural Networks and the Linear Regression model the RReliefF achieved the best results but

with the highest computing time. For the Model Tree Rule algorithm the RReliefF achieved

the worst results out of the other three feature selection methods. However, comparing the

overall performance for the load forecast with the prediction model, the combination of Neu-

ral Networks and the RReliefF as the feature selection method, achieved the best accuracy.
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2.5 Summary

In this chapter a brief literature review was presented for the energy forecast and the ma-

chine learning algorithms. Starting on, the importance of the short term load and generation

forecast was presented, by explaining the benefits but also the current trends of forecast meth-

ods. Moreover, a brief explanation of the artificial neural network structure and parameters

are presented, with a reference also to the state of the art algorithms that are available in the

literature for performing energy load and generation forecasts. Finally, five different feature

selection methods were discussed based on the available literature review. The Mutual In-

formation, the Random Forest, the RReliefF, the Maximal Information Coefficient and the

MRMR were the five discussed algorithms.

In the next chapter, the three prediction models for load, wind and solar generation are

presented. Specifically, the parameters selected as the overall feature pool will be presented

and explained. Furthermore, a detailed overview of the artificial neural network will be pre-

sented, elaborating with the amount of hidden layers, the amount of neurons and the type of

activation function used.
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Chapter 3

Load and Generation Forecast Models

3.1 Introduction

This chapter presents the different short term load and generation forecast models that will

be used in order to compare all the different feature selectionmethods. Specifically, a detailed

overview is presented for the load forecast model, by analyzing all the available features

and the parameters for the artificial neural network. Afterwards, a similar approach will be

presented for the wind and solar generation algorithm that will be used for the evaluation of

the variety of feature selection methods.

3.2 Load Forecast Model

A correlation between the day of the week can be seen, as the energy demand of a com-

munity follows the patterns of the daily life of people. For example during the weekdays,

in the morning, the majority of the people are at their jobs, meaning that the factories and

companies are consuming more energy than the weekends. This correlation can be exploited

to further enhance the performance of the load forecasting. In Figure 3.1 the correlation be-

tween the forecasted day and the previous ones is exhibited. By analyzing the diagram, it

can be seen that the day before the forecast and one week before, achieves the best results,

leading to the conclusion that these days can influence greatly the performance of the forecast

model. In Figure 3.1 the correlation between the day is shown. Additionally, this implies and

further enforce the perception that each specific day of the week has a different influence and

demand on the energy load of the grid. For this reason multiple prediction models utilizes

25
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Figure 3.1: Correlation between previous days of the week [37].

this phenomenon to improve the prediction accuracy [37].

In order to predict energy load accurately, temperature information is essential. Since

temperature directly influences how much heating and cooling is needed in the residential,

commercial, and industrial sectors, there is a strong correlation between temperature and

energy demand. By utilizing this kind of data, forecast simulations can find patterns that aid in

predicting future energy demand by analyzing historical temperature patterns and correlating

them with data on energy consumption [38]. For instance, higher temperatures typically

result in increased electricity use for air conditioning during the hot summer months. In a

similar situation, colder winter weather raises demand for heating. Energy providers can

decide wisely about resource allocation, generation capacity planning, and grid stability by

incorporating temperature data into energy load forecasts.

• Inputs 1 to 24: Load per hour for day d− 1.

• Inputs 25 to 48: Load per hour for day d− 7.

• Input 49 and 50: Minimum and Maximum Temperature for day d.

• Input 51 and 52: Minimum and Maximum Temperature for day d− 1.

• Input 53 and 54: Square deviation of maximum temperature for day d and day d − 1
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with the comfort temperatures.

CT =


(Tmax − Tcmin)

2, if Tmax < Tcmin

0, if Tcmin ≤ Tmax ≤ Tcmax

(Tmax − Tcmax)
2, if Tmax > Tcmax

(3.1)

where Tcmax = 25oC is the maximum and Tcmin = 17oC is the minimum comfort

temperature.

• Input 55: Difference between maximum temperature of day d and day d− 1.

• Input 56 to 62: Days of the week, where value 1 corresponds to the day of the week,

and the value 0 is set to the rest of the days.

• Input 63: Holidays, where 1 means that this day is a holiday and 0 means it is not a

holiday.

where day d is the desired forecasted day, d− 1 is the previous day of the forecasted day

and d− 7 is one week before.

3.3 Wind Generation Forecast Model

Similarly to the load forecast, the most important historical data are the Wind produc-

tion for the previous days. As wind production is mainly influenced by the wind, short-term

historical production data can help identify and predict patterns for the wind generation fore-

casts. For this reason the historical hourly wind production data of the two previous days are

considered as inputs for the prediction model. Furthermore the minimum and maximum tem-

perature data for the forecasted day and the previous one were chosen as there is a correlation

between wind speed and temperature.

Wind speed is a crucial parameter for wind power planning and operations because it is

crucial for predicting wind generation. Wind speed directly affects how much electricity is

produced bywind turbines. For wind farms to operate as efficiently as possible, accurate wind

speed forecasts are essential because they tell operators when and where to deploy resources.

Operators of wind farms can use this knowledge to maximize energy output, control grid

integration, and guarantee the dependability and stability of the power supply. Additionally,
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wind speed data enables utilities to decide on backup power sources and grid balancing in an

informed manner, reducing costs. For this reason the maximum and minimum wind speed

of the forecasted day is considered to the prediction model. Additionally, the average wind

speeds for the previous two days is also taken into consideration [39].

• Inputs 1 to 24: Wind production per hour for day d− 1.

• Inputs 25 to 48: Wind production per hour for day d− 2.

• Input 49 and 50: Minimum and Maximum Temperature for day d.

• Input 51 and 52: Minimum and Maximum Temperature for day d− 1.

• Input 53: Maximum forecasted wind speed for day d.

• Input 54: Minimum forecasted wind speed for day d.

• Input 55: Average Wind speed for day d− 1.

• Input 56: Average Wind speed for day d− 2.

where day d is the desired forecasted day, d− 1 and d− 2 is previous and the second day

before the forecasted day, respectively.

3.4 Solar Generation Forecast Model

For the solar generation forecast, the two previous days of historical hourly solar data

was chosen as input for the artificial neural network. There is a high correlation between the

pattern of the solar energy production and the future output, considering short term predic-

tions. As the solar generation has a high volatility and it is impacted by variables that are

hardly predicted and forecasted, the time window for the available and useful information

is very short. Furthermore, the minimum and maximum temperature for the forecasted day

and the day before is considered closely related to the solar generation, as it is impacting the

performance but also the weather conditions that the solar panels are operating [39].

For precise solar forecast simulations, solar irradiation data is crucial. The solar irradia-

tion has a direct impact on the output and effectiveness of solar photovoltaic systems. Fore-

casters canmore accurately predict future solar power generation by analyzing historical solar
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irradiation data to find patterns and variations in the solar energy availability. Solar power

operators can optimize system performance, create maintenance schedules, and guarantee

reliable electricity generation with the aid of solar irradiation data, which offers insightful

information about the anticipated solar energy resource. By allowing utilities to forecast the

solar energy contribution and manage the fluctuating nature of solar generation, it also helps

with grid integration and load balancing. For this precise reason the average solar irradiation

of the forecasted day and the day before is taken into account.

• Inputs 1 to 24: Solar production per hour for day d− 1.

• Inputs 25 to 48: Solar production per hour for day d− 2.

• Input 49 and 50: Minimum and Maximum Temperature for day d.

• Input 51 and 52: Minimum and Maximum Temperature for day d− 1.

• Input 53: Average forecasted solar irradiation for day d.

• Input 54: Average forecasted solar irradiation for day d− 1.

where day d is the desired forecasted day, d− 1 and d− 2 is previous and the second day

before the forecasted day, respectively.

3.5 Artificial Neural Network Approach

In order to evaluate the performance of multiple feature selection methods, a forecasting

model is required in order to produce an outcome based on the available data. As it was

described in the previous chapter, the artificial neural networks are excellent candidates for

performing load and generation forecast. Based on the neural network’s structure and set-

tings, different outcomes and performances can be achieved, allowing this kind of methods

to be considered very versatile.

3.5.1 Proposed Structure

In this thesis, a simple Multi Layer Perceptron is chosen in order to compare the per-

formance of the feature selection methods. More specifically, the multi layer perceptron is

comprised of three layers in total, one input, one hidden and one output layer. Figure 3.2
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Figure 3.2: Artificial Neural Network [9].

shows a simplified structure of a multi layer perceptron. This simple but robust neural net-

work is the perfect candidate to check and evaluate feature selection methods and how well

they can perform. Moreover, this allows for a more generic approach to the topic, without

involving special characteristics and combinations of other case sensitive forecast methods

combine with feature selection methods, which might lead to wrong conclusions.

Considering the details of the Multi Layer Perceptron’s structure, the input layer consist

of a determined amount of neurons based on the available features. In this thesis, an investi-

gation for the best amount of features for each method is also completed. In order to achieve

this a variable amount of input layers is required.

In order to determine the optimal amount of neurons in the hidden layer, an analysis was

performed by comparing the mean absolute percentage error for different amount of neurons.

In principal, a load forecast model was used with a total of 63 features was used to make the

initial estimation of the neurons. As can be seen in Figure 3.3, the optimal amount of neurons

for the hidden layer is 24, as the minimum MAPE is achieved. Similar performance with

less accuracy can be seen for the scenario with the 30 neurons. Moreover, some scenarios,

like the ones with the 26 and 18 neurons, can offset the overall performance of the results

significantly. Finally for the output layer, 24 output neurons are chosen, one for each hour of

the forecasted day.
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Figure 3.3: Number of neurons in the hidden layer.

3.5.2 Activation Function

Due to its efficiency in deep learning, the Rectified Linear Unit (ReLU) activation func-

tion is frequently used for the hidden layers and output layers of a neural network. ReLU is a

well known option due to a number of benefits. In comparison to other activation functions

like sigmoid or tanh, computing the ReLU activation is computationally efficient. Second,

ReLU adds non-linearity to the network, allowing it to learn nuanced patterns in the data

and model complicated relationships. Another advantage is that ReLU prevents saturation

for positive inputs by allowing them to pass through unchanged, which lessens the vanishing

gradient issue that might arise during training. ReLU also gives the network sparsity by map-

ping negative inputs to zero, which enables the network to concentrate on crucial features and

ignore unimportant ones. For these reasons, the ReLU activation function was chosen to be
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used in the hidden and the output layer, as provides simplicity, computational effectiveness

and non-linearity.

3.6 Summary

In this chapter, three different forecast model were presented. Starting with the load

forecast model, a detailed overview of the available features that will be used in the prediction

models was presented. From a big pool of irrelevant data 63 in total features were selected

as the inputs for the neural network. Moving on, for the wind generation model, a similar

approach was presented, leading to a total of 56 features that will be used for prediction.

Lastly, for the solar generation forecast 54 candidates were selected as the inputs for the neural

network. Furthermore, the approach of the artificial neural network that was utilized during

these simulations was presented. In details, a the Multi Layer Perceptron with one hidden

layer was chosen as the building block for performing the load and generation forecasts.

Additionally, a study case was performed to determine the amount of neurons in the hidden

layer. The results showed that the optimal amount of neurons in the hidden layer should be

24, as it minimizes the error of the forecast.

In the next chapter, the results from the simulations for the load, wind and solar gener-

ation, using the feature selection methods, are presented. More specifically, multiple case

scenarios are simulated by using the Mutual Information, the Random Forest, the RReliefF,

the Maximal Information Coefficient and the MRMR as the feature selection methods. For

each method multiple scenarios with different amount of features are presented, in order to

identify the best method for feature selection.
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Chapter 4

Feature Selection Simulations Results

4.1 Introduction

In this chapter the final forecast simulation are presented and compared with a variety

of feature selection methods. Firstly, a brief demonstration of the used data and prediction

horizon is presented, explaining the year and location of data that were used for predicting the

load and generation of the energy grid. Furthermore, an early data preparation was perform

in order to remove noise and outliners from the data in order to further improve the accuracy

and performance of the models. Finally, a detailed explanation of the results for each feature

selection method, with different amount of used features is presented.

4.2 Data and Prediction Horizon

The right mix of training and test data for an artificial neural network depends on a number

of variables, including the dataset’s size, the difficulty of the task, and the data’s accessibility.

A typical strategy is to divide the data into training and testing, with the remaining 20–30%

going to each. This guarantees that the network has enough data to discover the underlying

links and patterns during the training phase. On the other hand, test data is used to assess

how well the trained network performs and how well it generalizes to new data. It’s criti-

cal to strike a balance between having enough training data to support efficient learning and

sufficient test data to appropriately gauge the network’s performance. Additionally, it is im-

portant to avoid using the test data of any model for tuning or parameter selection because

doing so can result in overfitting and false results of model’s performance.

33
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Figure 4.1: Historical data divided into Training and Test Sets.

Three years of hourly historical data fromGreece’s energy grid, obtain by [40], were used

in the forecast models and feature selection method. Particularly, the years of 2019, 2020

and 2021 were chosen, which included hourly load and generation data. From these data sets

the actual energy load, the wind generation and solar generation for the entire Greece was

extracted in order to be used in the forecast models. As represented in Figure 4.1 the year of

2019 and 2020 were chosen as the training data to train the artificial neural network, while

2021 was chosen as the test set.

The location of historical meteorological data used to in load and generation forecast,

using neural networks is crucial. Weather conditions can vary greatly from one region to

another, and these differences have a direct impact on the patterns of energy production and

consumption. Neural networks can sufficiently capture the complex interactions between

weather variables and energy demands by using historical meteorological data that is rel-

evant to the target area. Local meteorological variables like temperature, humidity, wind

speed, and solar radiation can give important information on seasonal variations in energy

use. Furthermore,artificial neural network models may more accurately comprehend and

forecast the energy requirements and fluctuations particular to that area by taking the actual

location into account, leading to more accurate and efficient energy predictions.

Regarding the source of the historical weather data used during this thesis simulations,

the NASA’s project POWER [41] was used to obtain the required data. Two major location

were chosen as the starting points based in Greece. The location of Athens, as the capital
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Figure 4.2: Spatial Distribution of Greek Wind Capacity [42].

of Greece with the majority of the population located around there, combined with the loca-

tion of Thessaloniki, which is the second largest city, were chosen as the data points for the

weather parameters. For a better evaluation of the weather parameters the average values of

the two locations were extracted in order to further enhance the performance of the predic-

tion models. These weather data were utilized for the load forecast models as the entirety of

Greece’s energy grid was taken into account.

Furthermore, for thewind predictionmodel the location of the extracted data was different

from the previous cases. This has to do with the Wind farms distribution in Greece, which

can be found in multiple locations. The majority of the wind farms are located in the central

Greece as it can be seen from Figure 4.2. This location is set to be around the town of Lamia.

For this reason the same location was chosen as the weather data extraction location, in order

to better anticipate the fluctuations of the energy generation.

Regarding the solar generation models a similar approach with the wind generation was
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Table 4.1: Spatial Distribution of Greek Solar Capacity 2021 [43].

Location Solar Capacity (MW)

East Macedonia 361.816

Central Macedonia 675.133

West Macedonia 230.23

Aegean 9.101

Epirus 16.77

Thessaly 637.706

West Greece 326.56

Central Greece 1185.94

Peloponnisos 314.08

Attiki 209.35

Crete 78.291

used. As it can be seen from Table 4.1 the majority of the solar capacity can be detected

around the central Greece. This is because the biggest part of central Greece has flat planes

used for agriculture and solar farms, with an average yearly solar irradiation, compared with

the rest of the country. For this reason the same location as the one for the wind generation

forecast model was chosen to extract weather data related to solar generation.

For neural networks to be trained and perform well, it is essential that invalid data, out-

liers, and extreme values be removed from the data. For neural networks to produce reliable

predictions or classifications, the data must contain patterns and relationships. The dataset

may, however, produce biased or incorrect model results if it contains invalid or false data

points, such as missing values or inconsistent entries. Similar to outliers and extreme values,

learning can be disproportionately affected, which affects how well the network can gener-

alize and predict outcomes. The main concept of data preparation is to improve the used

data in order to allow the neural network to focus on useful patterns and generalization. This

method improves the network’s predictions’ accuracy, effectiveness, and interpretability, al-

lowing for better decisions and insights based on the model’s outputs.

For the above mentioned reason a data preparation was performed in the original data sets

in order to purify and improve the overall data quality. Specifically, the linear approximation
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Figure 4.3: Actual and forecasted load based on the model without an FSM.

Table 4.2: Evaluation errors for the original load forecast model without a FSM.

MAPE (%) MAE (MW) RMSE (MW)

5.63 286.79 390.13

method based on the previous and the next available values was used in order to fill any

missing or invalid data in the data set. Furthermore, values that had unnaturally high values,

most probably due to logging errors or noise, were removed in order to improve the prediction

model’s performance.

Finally, all the simulations were executed using R 4.3.0, a popular programming language

for statistical analysis and data manipulation. The hardware used for these simulations con-

sisted of an Intel Core i7-5500U CPU operating at a frequency of 2.4 GHz, equipped with

four cores, and an NVIDIA GeForce 840M graphics card with 2GB of memory.
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4.3 Load Forecast

Starting with the first scenario for the load forecast, the original prediction model did not

include a feature selectionmethod, meaning that it utilized all the available features. In Figure

4.3 the hourly load data for the time period of 2021 is presented. Specifically, a comparison

between the actual and the forecasted data is shown. By analyzing the figure, an overall good

performance can be seen for the proposed scenario as it can greatly anticipate the fluctuation

of the energy grid load. At some specific points, for example between the months of January

and February, the prediction model underestimated the load requirements by some hundred

up to thousand of MW. This can be cause due to big fluctuation of temperatures or demands

in the energy grid that the neural network could not anticipate. Furthermore, by examining

the Table 4.2 it can be seen that an overall of 5.63% of the Mean Absolute Percentage Error

is achieved. In general this could be described as a good overall performance for a prediction

model, as it leads to up to 286.8MW of Mean Absolute Error, which compared with the total

amount of the available load of the grid, the error is relative small.

In order to select the most effective features for load forecast, a comprehensive evalua-

tion was conducted using the Mutual Information, the Maximum Relevancy and Minimum

Redundancy, the Random Forest, the RReliefF and the Maximal Information Coefficient as

the feature selection methods. Multiple scenarios were tested, based on the proposed algo-

rithm in Chapter 3.2, to determine the optimal number of features for accurate predictions.

Specifically, eleven different scenarios were examined, each varying in the number of fea-

tures included, in order to identify the best case. These scenarios encompassed 20, 24, 28,

32, 36, 40, 44, 48, 52, 56, and 60 features, which were compared against the original sce-

nario that included all 63 features. The interval between the scenarios was chosen to be four

features, as the gap between the scenarios are not that big and it can capture the variations of

performance between them very well. Additionally, the total amount of scenarios remained

relatively small.

Regarding the first set scenarios of 20, 24, 28 and 32 features, the results for each feature

selection method can be shown in Figure 4.4. Specifically, it can be seen that by reducing

the available features for the forecast models, their overall performance decreases. For the

scenarios with the 20 and 24 feature the evaluation errors based on the Mean Absolute Per-

centage Error, shows that the error is almost double in most of the cases from the original

scenario. This can be explain by the incompetence of the artificial neural network to pre-
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(a) MAPE of the top 20 features. (b) MAPE of the top 24 features.

(c) MAPE of the top 28 features. (d) MAPE of the top 32 features.

Figure 4.4: Load forecast performance with feature selection for the 20, 24, 28 and 32 top

features.

dict the fluctuations of the energy load based on the available features. The information and

correlation between each individual feature could not give enough weight to each individ-

ual neuron in order to produce the desired output. From the other hand, the Random Forest

algorithm is able to better correlate the best features from the available pool and improve

the performance of the prediction model compared with the other feature selection methods.

Additionally, for the scenario of the 28 total feature the MAPE for this scenario could be

identified as 3.71%, which is far superior that the original scenario.
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(a) MAPE of the top 36 features. (b) MAPE of the top 40 features.

(c) MAPE of the top 44 features. (d) MAPE of the top 48 features.

Figure 4.5: Load forecast performance with feature selection for the 36, 40, 44 and 48 top

features.

Moving on with the second set of scenarios, with 36, 40, 44 and 48 available feature, the

results in Figure 4.5 shows that the performance of the prediction models, greatly increases.

Particularly, for the scenarios with the 44 and 48 features, the results are almost all better

than the original model. For the scenario with the 44 features in Figure 4.5c, the RReliefF

algorithm shows the best results with a 3.45%MAPE, which surpasses any previous perfor-

mance. For the 48 scenarios the Mutual Information Coefficient also shows great promise

as it achieves 3.82% MAPE, while the rest of the algorithm perform worse. Furthermore,
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(a) MAPE of the top 52 features. (b) MAPE of the top 56 features.

(c) MAPE of the top 60 features.

Figure 4.6: Load forecast performance with feature selection for the 52, 56, and 60 top fea-

tures.

Mutual Information seems to perform worse with fewer available features, as the error is de-

creasing while the features are getting more and more. For the scenario with the 44 features

MI seems to perform very well compared with the other scenarios of features, but compared

with the other methods the results are still worse. Regarding the Maximum Relevancy and

Minimum Redundancy algorithm, during the scenario with the 40 features, it surpasses the

performance of the other results, leading to 4.62% MAPE, while RReliefF follows closely

with a 4.69%MAPE.
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Table 4.3: Overall performance of the best feature selection methods.

Method Num. of Features MAPE

(%)

MAE

(MW)

RMSE

(MW)

Calc. Time (sec)

Original 63 5.63 286.79 390.13 56.2

RReliefF 52 3.62 215.12 303.73 55.9

MIC 48 3.82 226.61 319.74 97.1

RReliefF 44 3.45 212.12 300.49 54.6

MRMR 44 3.89 257.02 358.24 56.1

MI 44 4.12 266.73 454.95 57.1

RF 28 3.71 221.58 316.36 73.1

Lastly, for the scenarios with the 52, 56 and 60 features, the results for all the feature se-

lection methods are presented in Figure 4.6. As was expected Mutual Information performs

even better with more available features, compared with the majority of the previous scenar-

ios. In Figure 4.6b with the 56 features, Mutual Information achieves the best results, with

a 4.34%MAPE. Furthermore, once more RReliefF achieves the best performance for the 60

and 52 features scenarios, with the last one achieving a 3.62%MAPE.

Based on the above mentioned simulations, multiple feature selection methods with dif-

ferent amount of feature show promising results. In Table 4.3 a summary from the best

scenarios is presented. Particularly, the type of method and the amount of used features is

presented with all three evaluation metrics. Additionally, in the last column the overall cal-

culation time of the neural network plus the feature selection method is presented.

By comparing the results from Table 4.3 it can be seen that RReliefF shows the best per-

formance for multiple scenarios, while at the same time the lowest calculation time. Specifi-

cally, the lowest time is achieved due to the low computational time that the RReliefF needs

to calculate the most relevant features. Additionally, due to the removal of the redundant

features the artificial neural network is able to converge faster, leading in the end with lower

overall computational time. Furthermore, the scenario with the 44 features achieves the best

results from the rest of the simulations, by having the lowest evaluation errors. While other

feature selection methods achieves better results from others, like the Random Forest sce-

nario with the 28 features, the overall computational time is much bigger. This is due to the

performance of each feature selection method and the ability to produce fast results.
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Figure 4.7: Hourly actual data compared with the original scenario, RReliefF and Random

Forest with 44 and 28 features, respectively.

Finally, in Figure 4.7 the hourly actual data is presented and compared with the original

scenario without any feature selection method, the RReliefF with 44 features and the Random

Forest algorithm with 28 features. It can be clearly seen that the RReliefF method can better

predict the fluctuation of the energy grid, compared with the other methods. Additionally,

the Random Forest with the impressive 28 features shows also very good results and better

performance than the original scenario. In Table 4.4 the actual features for the best scenario

of the RReliefF with the 44 features is presented. The majority of the most relevant features

are the historical load data of the previous day and the day before one week. Furthermore,

a big importance seems to have the maximum temperature of the forecasted day, combined

with two features of the squared temperature variables. Finally, the type of day for whether

it is or not Monday, Saturday or Sunday seems to highly influence the results. The holiday

type also seems to influence the end results.
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Table 4.4: Most relevant features based on the RReliefF method.

Input Feature Input Feature

1 H1,d-1 23 H23,d-1

2 H2,d-1 24 H24,d-1

3 H3,d-1 25 H1,d-7

4 H4,d-1 26 H2,d-7

5 H5,d-1 27 H3,d-7

6 H6,d-1 28 H4,d-7

7 H7,d-1 29 H5,d-7

8 H8,d-1 30 H6,d-7

9 H9,d-1 31 H7,d-7

10 H10,d-1 32 H8,d-7

11 H11,d-1 33 H9,d-7

12 H12,d-1 34 H10,d-7

13 H13,d-1 38 H14,d-7

14 H14,d-1 44 H20,d-7

15 H15,d-1 46 H22,d-7

16 H16,d-1 50 Max Temp,d

17 H17,d-1 53 CT,d

18 H18,d-1 54 CT,d-1

19 H19,d-1 56 Day type

20 H20,d-1 61 Day type

21 H21,d-1 62 Day type

22 H22,d-1 63 Holidays
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4.4 Wind Generation Forecast

Regarding the wind generation forecast, the original prediction model with the total of 56

features did not include a feature selection method. In Figure 4.8 the hourly wind generation

data for the time period of 2021 is presented. Specifically, in the figure it can be seen a

comparison the actual and the forecasted data. The results shows that the overall performance

of the wind forecast model is less accurate compared to the one for the load forecast. This

has to do with the nature of the forecast, as multiple factors, like weather conditions, highly

contribute to big fluctuation of the energy generation. Furthermore, by examining the figure it

seems that the accuracy of the model is better when the fluctuation of wind generation are not

that rapid, meaning that for bigger period of time when the generation transit more smoothly,

the predictionmodel is able to achieve better results. This can be explained by the dependency

of the feature data based on the previous two days for wind generation data, but also for

weather conditions for the forecasted days. So if rapid changes in weather happens is a short

time of period, the model will not be able to predict very well the expected wind generation.

Additionally, by examining the Table 4.5 it can be seen that an overall of 345.23MW of

the Mean Absolute Error is achieved. In general this could be described as a good overall

performance for a wind prediction model, compared with other models in the literature.

In order to select the most effective features for wind generation forecast, a comprehen-

sive evaluation was conducted using the five proposed feature selection methods. Multiple

scenarios were tested, based on the proposed algorithms, in order to determine the optimal

number of features for an accurate and fast predictions. In total nine different scenarios were

examined, each varying in the number of features included. Similarly to the load forecast

scenarios, the interval of four features was chosen. These scenarios encompassed 20, 24, 28,

32, 36, 40, 44, 48, 52 which were compared against the original scenario that included all 56

features.

For the first set scenarios of 20, 24 and 28 features, the results for each feature selection

method can be shown in Figure 4.9. Specifically, by analyzing the diagram, the RReliefF

algorithm shows the best results for all three scenarios. Particularly, for the scenario with the

28 features the RReliefF algorithm achieved a 275.63MW MAE, which is far better from

the original scenario. For the same figure the Maximal Information Coefficient achieved a

289.01MW MAEwhich is the second best result out of the three diagrams. MRMRalgorithm

showed the least accuracy out of all the other feature selection method, implying that this
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method is sensitive to scarce available features.

Figure 4.8: Actual and forecasted wind generation based on the model without an FSM.

Table 4.5: Evaluation errors for the original wind generation model without a FSM.

MAE (MW) RMSE (MW)

345.23 404.58

Moving on with the scenarios of 32, 36 and 40 features, RReliefF is again in the lead with

the best results, as it can be seen from Figure 4.10. For example in the scenario with the 36

features RReliefF achieved 262.12MW MAE, which is even lower that the rest of the fig-

ures. In contrast with the previous scenarios MRMR algorithm show a better and promising

performance, as the more available features allowed MRMR to make better estimation re-

garding the most relevant features. Specifically, for the scenario 36 and 40 MRMR achieved

a 264.21MW and 285.81MW MAE, respectively. On the other hand for the scenario of

32 features Maximal Information Coefficient showed promising results with an 269.12MW

MAE, achieving the third best results for the mentioned scenarios.
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(a) MAE of the top 20 features. (b) MAE of the top 24 features.

(c) MAE of the top 28 features.

Figure 4.9: Wind generation forecast performance with feature selection for the 20, 24 and

28 top features.

Finally, for the last three scenarios of 44, 48 and 52 features, the results can be seen in

Figure 4.11. For those three scenarios RReliefF acomplished one of the worst results com-

pared with the other methods. The same pattern seems to be followed by the MIC algorithm

which had the worst overall performance. In contrast, MRMR showed better overall results

compared with the other scenarios with fewer features, allowing it to achieve a 273.32MW

MAE. Additionally, Mutual Information showed an excellent performance for the scenario of

48 features with an 278.92MW MAE. By comparing all the results it seems that the RReliefF
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algorithm can better estimate the relevant features based on an average amount of features,

while having more variables can lead to overfitting and less accuracy.

(a) MAE of the top 32 features. (b) MAE of the top 36 features.

(c) MAE of the top 40 features.

Figure 4.10: Wind generation forecast performance with feature selection for the 32, 36 and

40 top features.

Based on the above mentioned simulations, multiple feature selection methods with dif-

ferent amount of feature show promising results. In Table 4.6 a summary from the best

scenarios is presented. A comparison between this features is completed based on the two

evaluation error MAE and RMSE. Furthermore, in the last column the overall calculation

time of the neural network plus the feature selection method is presented.
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(a) MAE of the top 44 features. (b) MAE of the top 48 features.

(c) MAE of the top 52 features.

Figure 4.11: Wind generation forecast performance with feature selection for the 44, 48 and

52 top features.

By analyzing the results from Table 4.6 it can be seen thatMRMR shows themost promis-

ing performance for multiple scenarios, while at the same time it achieves the most rapid cal-

culation time. MRMR shows very good stability and robustness in highly volatile scenarios

like the wind generation forecast, being able to capture very well the non linearities of the

forecast. Particularly, for the scenario with the 36 features, MRMR achieves the second best

MAE but the first best RMSE compared with the RReliefF. By comparing the two scenarios,

it is very hard to decide which feature selection method is better. Overall MRMR achieves
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Table 4.6: Overall performance of the best feature selection methods.

Method Num. of Features MAE

(MW)

RMSE

(MW)

Calc. Time (sec)

Original 56 345.23 404.58 70.2

MI 48 278.92 372.26 65.9

MRMR 44 273.32 385.93 49.1

MRMR 40 285.81 382.31 50.6

MRMR 36 264.21 372.21 50.3

RReliefF 36 262.12 378.71 51.7

MIC 32 289.01 398.62 83.4

RReliefF 28 275.63 385.12 51.3

smaller calculation time which might be considered as an additional advantage. Furthermore,

Mutual Information with the scenario of the 48 features achieves very good results, although

requiring more computational time from the rest of the scenarios. Similarly, Maximal In-

formation Coefficient also is capable to achieve a good result with only 32 features, but the

impact in the calculation time can be considered as significant as it requires much more time.

Finally, in Figure 4.12 the hourly actual data is presented and compared with the original

scenario without any feature selection method, the RReliefF with 36 features and the MRMR

algorithm with 36 features. The difference between the two feature selection method is very

small, as both outperform the original scenario. MRMR seems to perform much better with

higher values of wind generation over the bigger spans of the time, while RReliefF is slightly

better in predicting the changes of wind energy in shorter time periods. Overall both meth-

ods perform very well with the MRMR having the advantage of smaller computational time

compared with the RReliefF.

In Table 4.7 the actual features for the best scenario of the MRMR with the 36 features is

presented. The majority of the most relevant features are the historical wind generation data

of the previous day and the day before. Furthermore, a big importance seems to have the

maximum and minimum wind speed of the forecasted day, as the main drive for wind energy

production is the air speed. Furthermore the average wind speed of the previous two days

have an important impact to the prediction model. Finally, the minimum temperature of the

forecasted day was considered as a relevant feature.
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Figure 4.12: Hourly actual data compared with the original scenario, RReliefF and MRMR

with 36 features.
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Table 4.7: Most relevant features based on the RReliefF method.

Input Feature Input Feature

4 H4,d-1 22 H22,d-1

5 H5,d-1 23 H23,d-1

6 H6,d-1 24 H24,d-1

7 H7,d-1 37 H13,d-2

8 H8,d-1 38 H14,d-2

9 H9,d-1 39 H15,d-2

10 H10,d-1 40 H16,d-2

11 H11,d-1 41 H17,d-2

12 H12,d-1 42 H18,d-2

13 H13,d-1 43 H19,d-2

14 H14,d-1 45 H21,d-2

15 H15,d-1 46 H22,d-2

16 H16,d-1 47 H23,d-2

17 H17,d-1 49 Min Temperature,d

18 H18,d-1 53 Max Wind Speed,d

19 H19,d-1 54 Min Wind Speed,d

20 H20,d-1 55 Average Wind speed,d-1

21 H21,d-1 56 Average Wind speed,d-2
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4.5 Solar Generation Forecast

About the solar generation forecast simulations, the first scenario considers the original

model, with the total of 54 features which did not include a feature selection method. Particu-

larly, in Figure 4.13 the hourly solar generation data for the time period of 2021 is presented.

Specifically, in the figure a comparison between the actual and the forecasted data can be

seen. The findings indicate that the solar forecast model performs less accurately overall

than the load forecast model, and comparatively similar to the wind generation forecasts.

This has to do , similarly with the wind generation, about the fluctuation of variables that

can be very hardly be predicted like weather conditions and solar irradiance. Additionally, it

appears from the figure that the model’s accuracy is higher when solar generation fluctuates

less dramatically, i.e., the prediction model performs better over a longer time span when

the generation transitions more smoothly. This can be explained by the dependence of the

featured data based on the solar generation data from the previous two days as well as the

forecasted days’ weather. Additionally, by looking at the table, it is clear that a mean absolute

error of 175.32MW was achieved overall. In comparison to other models in the literature,

this could be characterized as a good overall performance for a wind prediction model.

The five suggested feature selection methods were thoroughly assessed in order to choose

the most useful features for solar generation forecast. The best number of features for precise

and quick predictions was tested in a variety of scenarios based on the suggested algorithms.

Eight distinct scenarios were looked at in total, with each having a different number of fea-

tures. These scenarios, which included features 20, 24, 28, 32, 36, 40, 44, and 48, were

contrasted with the initial scenario, which had all 54 features.

Table 4.8: Evaluation errors for the original solar generation model without a FSM.

MAE (MW) RMSE (MW)

175.32 418.68

For the first set scenarios of 20, 24 and 28 features, the results for each feature selection

method can be shown in Figure 4.14. Specifically, by analyzing each figure, the Random

Forest algorithm shows the best performance for the majority of the scenarios. Particularly,

for the scenario with the 28 features the RF algorithm achieved a 156.12MW MAE, which is

far better from the original scenario. For the same amount of features the RReliefF achieved
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Figure 4.13: Actual and forecasted solar generation based on the model without an FSM.

a 257.14MW MAE which is one of the worst results out of the three diagrams. Although,

RReliefF showed bad performance for the 28 features, for the least amounts, it was able to

capture better the solar generation forecast by achieving an 159.21MW MAE. This shows a

fluctuation of error for the RReliefF algorithm, which means that this algorithm is sensitive

to the correct amount of features. Lastly, Maximal Information Coefficient had a similar

performance with the Random Forest algorithm, with the best results of 162.45MW MAE

for the 28 features.

For the next set of features of 32, 36 and 40 the results are depicted in Figure 4.15. For

sets of the scenarios, RReliefF shows far better performance compared with the previous

simulations. For the scenario with 36 features RReliefF achieved 102.18MW MAE, which is

the lowest value achieved for theses simulations. Again, RReliefF showed a sensitivity with

the amount of features as for the scenario with the 40 variables the error from this algorithm

was much higher than the rest. In contrast to the earlier scenarios, the MRMR algorithm

performs better and shows promise because it was able to better estimate the solar generation

due to the increased number of features that were available. Specifically, for the scenario 36
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(a) MAE of the top 20 features. (b) MAE of the top 24 features.

(c) MAE of the top 28 features.

Figure 4.14: Solar generation forecast performance with feature selection for the 20, 24 and

28 top features.

and 40 MRMR achieved a 132.15MW and 139.29MW MAE, respectively. The Random

Forest algorithm also showed robustness and accuracy as it achieved the second best results

of the scenarios with the 32 and 40 features. Specifically, for the 32 features it achieved

134.75MW MAE.

Finally, for the last two scenarios of 44 and 48 features, the results can be seen in Figure

4.16. Comparing the two scenarios, RReliefF outperformed all the other four feature selec-

tion methods by achieving 105.77MW and 106.33MW MAE for the 44 and 48 scenarios,
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respectively. For the 48 features scenario, Mutual Information achieved the second best re-

sults with a 142.33MW MAE. Finally, MRMR showed promising results for the 44 scenario

as it achieved 141.76MW MAE.

(a) MAE of the top 32 features. (b) MAE of the top 36 features.

(c) MAE of the top 40 features.

Figure 4.15: Solar generation forecast performance with feature selection for the 32, 36 and

40 top features.

Based on the aforementioned simulations, results from multiple feature selection meth-

ods with various features we compared. A summary of the top scenarios is shown in Table

4.9. Based on the two evaluation errors, MAE and RMSE, a comparison of these features

is completed. The total amount of time the neural network and the feature selection method
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took to calculate is also shown in the last column.

(a) MAE of the top 44 features. (b) MAE of the top 48 features.

Figure 4.16: Solar generation forecast performance with feature selection for the 44 and 48

top features.

Table 4.9: Overall performance of the best feature selection methods.

Method Num. of Features MAE

(MW)

RMSE

(MW)

Calc. Time (sec)

Original 54 175.32 418.68 51.2

MI 48 142.33 223.79 55.9

RReleifF 48 106.33 211.28 53.1

RReleifF 44 105.77 219.73 49.6

MRMR 40 139.29 279.59 55.3

RReliefF 36 102.18 208.08 51.7

MRMR 36 132.15 239.36 59.3

RF 28 156.12 293.34 56.4

RReliefF 20 159.21 269.88 46.3

By analyzing the results from Table 4.9 it can be seen that RReliefF shows the most

promising performance for multiple scenarios, while at the same time it achieves the most

rapid calculation time. RReleifF is able to minimize the prediction error, by better capturing
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Figure 4.17: Hourly actual data compared with the original scenario, RReliefF and MRMR

with 36 and 40 features.

the highly volatility of multiple variables in the data set. Particularly, for the scenario with

the 36 features RReleifF achieves the best MAE and RMSE from all the other methods, with

a very small penalty of time. In general RReleifF has one of the smallest calculation times

compared with other feature selection methods, like Mutual Information or Random Forest.

Furthermore, MRMRwas the second best algorithm, with the scenario of 40 features. Finally,

an amazing result was achieved by RReliefF for a bare minimum of 20 features, which also

achieved the lowest calculation time than the rest of simulations.

In Figure 4.17 the hourly actual data is presented and compared with the original sce-

nario without any feature selection method, the RReliefF with 36 features and the MRMR

algorithm with 40 features. Since both methods outperform the initial scenario, there is very

little difference between them. RReliefF performs marginally better in predicting changes in

solar energy over shorter time spans, while MRMR appears to perform significantly better

with higher values of solar generation over longer time spans. Overall, the RReliefF shows

the best robustness and accuracy from all the other feature selection methods.
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In Table 4.10 the actual features for the best scenario of the RReliefF with the 36 features

is presented. The majority of the most relevant features are the historical soalr generation

data of the previous day and the day before, mostly on the day hours. Furthermore, a big

importance seems to have the maximum and minimum temperature of the forecasted day and

the day before, as it plays a major role in the solar energy production. Finally, as expected

the average solar irradiation was considered as a relevant feature as it is the most important

factor for solar energy.

Table 4.10: Most relevant features based on the RReliefF method.

Input Feature Input Feature

7 H6,d-1 35 H11,d-2

8 H7,d-1 36 H12,d-2

9 H9,d-1 37 H13,d-2

10 H10,d-1 38 H14,d-2

11 H11,d-1 39 H15,d-2

12 H12,d-1 40 H16,d-2

13 H13,d-1 41 H17,d-2

14 H14,d-1 42 H18,d-2

15 H15,d-1 43 H19,d-2

16 H16,d-1 44 H20,d-2

17 H17,d-1 45 H21,d-2

18 H18,d-1 46 H22,d-2

19 H19,d-1 49 Min. Temperature,d

20 H20,d-1 50 Max. Temperature,d

31 H7,d-2 51 Min. Temperature,d-1

32 H8,d-2 52 Max. Temperature,d-1

33 H9,d-2 53 Average Solar Irradiation,d

34 H10,d-2 54 Average Solar Irradiation,d-1
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4.6 Summary

In this chapter the simulation results were presented. Several cases were performed for

load, wind and solar generation, comparing simulations between the original scenario with-

out any feature selection method and models with different amount of features. The results

showed that for the load generation the RReliefF and the Random Forest algorithm achieved

the best performance with 44 and 28 features, respectively. For the wind generation forecast

the MRMR and the RReliefF algorithm outperformed the rest of the methods with 36 avail-

able features. Finally for the solar generation model, the RReliefF and the MRMR algorithm

achieved the least amount of errors for 36 and 40 features, respectively.
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Chapter 5

Conclusion

5.1 Summary

The main objective for this thesis was to perform an analysis for different kind of pre-

dictions, like the load, wind and solar forecasts, and evaluate the performance of multiple

feature selection methods and their importance. The use of a multi layered perceptron was

used in order to create the prediction model, with one hidden layer which was comprised of

24 neurons. Furthermore, three year of historical load, generation and weather data, from the

year of 2019, 2020 and 2021 was used to train and test the prediction model.

Multiple feature selection methods were tested during this thesis. For load, wind, and

solar generation, several cases were completed, comparing simulations of the original sce-

nario without any feature selection method and models with various numbers of features.

The outcome, demonstrated that the RReliefF and Random Forest algorithms, with 44 and

28 features, respectively, achieved the best performance for the load generation models. The

MRMR and RReliefF algorithms, which each had 36 features, performed better than the other

methods for predicting the wind generation. For the solar generation, the RReliefF and the

MRMR algorithms, produced the least amount of errors for 36 and 40 features respectively.

Overall, the RReliefF algorithm showed the best performance cross prediction models. Al-

most for all three type RReliefF achieved the best outcomewhile at the same timeminimazing

the computational time required.
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62 Chapter 5. Conclusion

5.2 Future extensions

In this thesis the topic of the best performing feature selection method was discussed.

Although, feature selection is a very important task concerning the energy prediction and the

neural networks, further investigation is needed to identify theweaknesses and the advantages

of each method for multiple types of prediction models. A case study about the impact of the

performance of feature selection method based on the type or structure of a Neural Network

should be further investigated and in order to identify possible weaknesses for each method.
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