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YIIEYOYNH AHAQZIH IIEPI AKAAHMAIKHE AEONTOAOTI'IAZ
KAI IINEYMATIKQN AIKAICMATQN

«Me TANpPn £Myveorn @V OUVENEIDV TOU VOPOU IEPT MVEURATIKOV SIKAIOPNATOV,
SnAove pnid ot n nmapovod NMAGPATIKY epyaocia, KaBDG KAl tTa NAEKTIPOVIKA ApXE-
ia kat nnyaiot kK®H1KeG MoOU avamuyxdnkav 1 Iponono|dnkav ota niaiola avtng g
epyaoiag, armotelel amOKAEIOTIKA TIPOIOV MPOOMITKNG 10U epyaciag, 6ev mpooBaiAet
KABe popong Sikaimvpata diavonukng 1610KINoiag, MPOCEITIKOTNTAG KAl TTPOCOITIKMV
dedopévav tpitwv, dev iepiExet €pya/e10popig Tpit®v yla ta ornoia anatteitat adsia tov
dnpoupyov/dikalouxmv kat dev eival Ipoiov PEPIKIG 1] OAIKNG avilypadng, Ol MNYES
6e Tou ypnoponoOnkav meplopidoviat ot BBAloypadPikeég avapopEeg Kal POVOV Kal
AN POUV TOUG KAVOVEG TNG EMOTHOVIKHAG Ttapdbesong. Ta onpieia omou €x® Xenotj1omnot-
roet 16éeg, Kefpevo, apyeia r/xkat mnyeg dAAov ouyypapiéwmv, avapépoviatl eudlakpita
OT0 KEIPEVO PE TNV KATAAANAN TAPATIOUTIT KAl 1] OXETIKY avagopd replAapBaveratl
010 THNHA TeV B1BAoYpAPIKeOV avadopaVv Pe AN P eptypadr). AnAove eriong ot ta
anotedéopata g gpyaciag dev £xouv xpnotporonOel yia v anoktnorn dAAou mru-
Xiou. AvaAapBdave MANPEG, ATORIKA KAl TIPOOKOITIKA, OAEG TIG VOUIKEG KAl S101KITIKEG
OUVETIEIEG TTOU dUvatal va MPOoKUYPOoUV OtV MePirtoorn Katd v oroia anodeiyBel, Hia-
XPOVIKA, OTL 1] Epyaoia autr) 1 tufpa g 6ev pou avrket 510t eivatl mpoidv AoyoKAom§».

O/H AnA®v/ouoca

EudayyeAog Mnidkag
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Abstract

Process variation in digital circuits has been an important issue in the semicon-
ductor industry over the years. These naturally occurring phenomena may impact
the timing and functionality of the design, leading to unexpected timing violations.
To deal with these issues, the industry has tried many different approaches in the
field of Stating Timing Analysis (STA). While the traditional corner-based timing anal-
ysis (i.e. typical, slow, fast) might solve the problem by calculating the worst-case
scenario and adjusting the circuit delay to avoid setup and hold violations, it may
also lead to unnecessary over-constraining of the design, since the probability of
worst-case scenario occurrence is relatively low. In situations like these, the use
of Monte-Carlo methodologies is preferred, to calculate the relative behaviour of the
design out of many different random situations. As such, there is a possibility to
prevent timing violations, while also avoiding burdening the design functionality due
to over-constraining. In this thesis, we explore the effects of process variation in the
timing of simple digital circuits by performing Monte-Carlo simulations at the tran-
sistor level using the SPICE-compatible Cadence Spectre tool. Finally, we present
the results of our experiments to explain and analyse the effects of these variations
in the aforementioned designs.
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HepiAnyn

H &wakupavon oto Xpoviopo 1oV YPrnelaKov KUKAQUATOV ATIOTEAEl £€va ONavIIKO
{mpa ot Blopnyavia NUIAyoyov avda ta xpovia. Autd ta @aivopevad PIropouv va
EMINPEACOUV OX1 PHOVO TO XPOVIOHO aAAd KAl T AEITOUPYIKOTNTA TOU OUCTHHATOS ITPOG
oxedlaopo, odnywvtag oe anpoodoknta opdipata kat PAdBeg. a v avuperomon
auteV TV NInpdtev, n opnyavia £xel Soxkipacet MoAAEg H1aPoOPETIKEG TIPOOEYYIioeElg
otov topéa g Ltatikng Xpovikng Avaduong (STA) kurkdepdtev. Eve n supéng drade-
dopévn corner-based avdaduon xpoviopou (typical, slow, fast) evdéxetat va ermAvoet 1o
poBAnpa uroAoyidoviag to Xe1potePo duvato oevdaplo Kat rpooappodoviag v Kabu-
OTEPI O TOU KUKA®PATOG, ®ote va anodpeuxfouv ot setup kat hold napaBidoetg, pro-
pel Tautoypova va odnyrjoel Kal O MEPITIO UTEP-TIEPIOPIONO TOU OXed1aoP0U, Kabwg n
mBavotnta ePPAaviong ToU XEIPOTEPOU OEVAPIOU £1val OXETIKA XAPNAL. L& TETOEG TIEPT-
Woelg, rpotipatat n xpron Monte-Carlo peBododoyidv, mpokeévou va uroAoyotet
1] OXETIKI] OUPIEPIPOPA TOU KUKA®PATOG ATTO TTOAAEG H1aPOPETIKEG TUXATEG KATAOTACELS.
ZUVENRG, UMApPXEL 1 duvatotnta anotporr§ IOV napablaoe®v XPOovioHoU, eve ITapdA-
AnAa anogeuvyetatl 1 MePATEP® EMBAPUVOT TNG AEITOUPYIKOTNTAG TOU CUCTIHATOG TIP0G
0Xe010010 AOY® UTIEPBOAIKGOV TIEPIOPIOPGV. XINV mapouod epyacia, dlepeuvoupe TG
ETUTTIOOELS TOV H1AKUPIAVOE®V OTO0 XPOVIOHO ATTAGV PNPLAKOV KUKA®UAT®V ePpapolo-
vtag nipocopolnoelg Monte-Carlo oe eninedo tpaviiotop, Xpnotponowviag to, oupBato
pe 1 yAdwooa tou SPICE, epyaleio Spectre tng Cadence. Télog, rmapouoialoupe ta
AroTeA£oPATd TRV MEPAPRATOV PAg Yid va eENYHO0UHE KAl va avAAUCOUHE TIG OUVETTELEG
AUTeV 1OV S1aKUPAVoE®V ota ipoavapepBivia KukAopatd.
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Chapter 1

Introduction

Variations in VLSI digital circuits is one of the most relevant matters in the mod-
ern semiconductor industry. The ability to calculate the behaviour of the chip before
the fabrication concerns both foundries and academic research groups. Depending
on the type of each variation, a different approach is applied and a different group
of experts is advised. For example, the resistor tolerance variation is different than
a timing variation in a digital circuit. As such, it is difficult to determine all the
causes of random variations at once, since an extensive research of each factor is
required.

In the following thesis, we will discuss the basic process variations in VLSI digi-
tal circuits and examine how their timing is affected in multiple random situations,
using the Monte-Carlo computational algorithm. This chapter contains the introduc-
tion and the main goal of this work. In chapter 2 we will describe the background
knowledge needed in order to understand our work and in chapter 3 we will mention
relevant works in the literature or industry, as well as the industrial tools used for
this thesis. Chapters 4 and 5 describe our proposed work and the experimental
results respectively. Finally, in chapter 6, we summarise our final conclusions and
briefly describe possible future work on this topic.

1.1 Aim of this Work

The main purpose of this work is to investigate the effects of process variation
in the timing of simple digital circuits. In the field of Static Timing Analysis (STA),
the most common method to evaluate whether timing violations are present in the
design is the corner-based analysis, in which the worst, best and typical cases are
examined. However, the possibility of occurrence for each one of these cases is
not calculated by this method and in most cases, the worst case scenario is rare.
Due to this rarity, if we constrain the design according to the worst case in order
to avoid timing violations, it will most likely end up over-constrained and will work
much slower than intended. In order to avoid this scenario, the necessity to examine
multiple iterations to have a more well-rounded view of the timing variations of the
design has arisen.

In the industry, there are many different variations experts, which investigate

6

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:26:02 EEST - 18.188.57.0



these phenomena in both lower and higher levels of chip design. For this work,
we will only focus on the variations occurring in the transistor level digital circuits,
using SPICE compatible tools. After the theoretical background information, we will
present our own investigation, along with our experimental results and observations
and conclude with our possible future expansions of this work.

1.2 Main Flow of this Work

To examine different outcomes of variation in transistor level circuits, we created
a bash flow which generates automated SPICE decks of buffer and inverter chains,
calls the circuit simulator to perform Monte-Carlo simulations and illustrates the
delay and slew variations of the simulations in graphical histograms. The genera-
tion of the SPICE decks and the results presentation is made using Python scripts
directly executed from the main bash script.

To apply timing variations in the designs under investigation, we generated a set
of pseudo-random numbers from a specified probability distribution, to be used as
derate factors of specific transistor parameters.

7
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Chapter 2

Background

In this chapter, we will present the necessary background knowledge for our
work. We will cover the basic terms of numerical analysis and the Monte-Carlo
method, a simple introduction to the field of Static Timing Analysis (STA) in VLSI
digital circuits and a fundamental review of the SPICE language and how process
variations affects the semiconductor industry.

2.1 Mathematical Background

We will begin by explaining and presenting the essential mathematical back-
ground used for the purpose of this thesis. The main study covered is numerical
analysis and, more specifically, the Monte-Carlo method, which is the main algo-
rithm for our research work.

2.1.1 Numerical Analysis

Numerical analysis is a field of mathematics that relies on numerical approxima-
tion, instead of symbolic expressions, to solve continuous problems. These numeri-
cal methods are useful in many cases and problems, where the exact result is either
impossible or extremely difficult to calculate using traditional equations [1]. More-
over, numerical analysis, not only gives approximate but accurate solutions, but also
provides general characteristics of each method, such as result accuracy, conver-
gence and computational complexity. Thus, numerical analysis is widely recognised
and used in many different scientific fields, including engineering and economics.
The most common tool associated with applying numerical analysis in various prob-
lems is MATLAB by MathWorks, along with its open-source counterpart Octave and
many application specific tools, such as the one used in this work, which we will
describe in 3.2.

To further understand the concept of approximation, we will briefly describe one
of the most common category of numerical analysis methods, which are the iterative
equation solving algorithms, e.g. the Newton’s method. The main characteristic of
these methods is that, in contrast to direct equation solving methods, they are not
expected to terminate after a finite number of steps and the result of each iteration,

8
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starting from an initial guess, further converges to the actual result, but without
precisely reaching it [2].

To summarise, the field of numerical analysis is one of the most widely-used
sections of mathematics, due to its large amount of applications in the majority of
the sciences with many numerical methods having different uses in complex problem
solving. The Monte-Carlo method is one of these algorithms, which is the one we
used for the purpose of this work and we will explain in the next subsection.

2.1.2 Monte-Carlo Method

In the field of numerical analysis, a Monte-Carlo method is a computational
algorithm that relies on repeated random samples to obtain numerical results [3]. It
is mostly used for solving problems which contain randomness, e.g. the tolerance
of a resistor, and as a result, they are difficult to produce a stable solution. In
microelectronics engineering, Monte-Carlo methods are used to examine and anal-
yse the variations present in analog and digital circuits. As such, many industrial
tools in this field support Monte-Carlo simulations, including the tool used for this
work.

While many different variations of Monte-Carlo methods exist, the general pat-
tern follows these simple steps [3]:

1. From a specified domain of inputs, generate them randomly from a probability
distribution.

2. Run the desired experiment using each of these random inputs, e.g. in this
case the circuit simulations.

3. Aggregate the results.

A probability distribution is a mathematical function that presents the range of
all the different values, along with their frequency of occurrence, a random variable
can have. Within this range, the appearance likelihood of each value is determined
by a number of factors, such as the mean value and the standard deviation [4].
Each probability distribution is defined by a unique Probability Density Function
(PDF), which graphically depicts the likelihood of an outcome for a specific random
variable [5]. PDFs can be used for both discrete and continuous data, however, in
this work, we will focus on the latter. For further understanding of these terms,
we will describe three of the most common probability distributions along with their
PDFs below.

Note: All the graphs were designed using StatDist online tool [6].

Uniform Distribution

The term uniform distribution refers to a probability distribution, in which all
the possible outcomes of a given range have an equal chance to occur. The range
of the distribution is defined by two parameters a and b, which define the lower
and upper bounds of the range respectively, while the interval can be either open or

9
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closed. The uniform distribution can be described by the following PDF:

L a<x<b
S(x) =P (2.1)

0 x<aorx>Dhb

Assuming a = 2 and b = 6, figure 2.1 shows the graphical representation of the
uniform distribution probability density function.

Probability density function

P{X =x)
0.26 —

0.24
0.22
0.20
0.1%
0.16
0.14
0.12
0.10
0.0&
0.06 —{
0.04
0.02 |

0.00 T T T T T T T 1
20 25 an 35 40 45 5.0 55 6.0

Figure 2.1: Uniform Distribution PDF with a =2 and b =6
By generating 5000 random samples, we can confirm the PDF, as shown in the
following figure, where all the variables have an approximate equal occurrence fre-

quency:

Frequency

160

Figure 2.2: Uniform Distribution Samples with a =2 and b=6
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Normal Distribution

A normal or Gaussian distribution is one of the most common type of distri-
bution assumed in statistical analyses [7]. The main characteristic of the normal
distribution is its symmetry around the specified mean value, which describes
that, unlike the uniform distribution where all the data have an equal frequency of
occurrence, the variables close to the mean value have a higher probability to occur
than the ones further from the mean. In other words, the more we deviate from the
mean, the less likely the respective data will occur.

In order to present the properties of the normal distribution, which are essential
to the presentation of this work, we must first explain the key average values used
in statistics. These are the mean, median and mode values.

The mean value (symbolised as p) of a specified data set is the arithmetic average,
i.e. the result of the the sum of all the values of the data set divided by the number of
values present in the set. A general formula of the mean value is shown in 2.2:

Z]i\i1 Xi
=== 2.2
H N 2-2)

where N is the number of values present in the data set. To further clarify this,
assume the following data set A:

A=1,2,3,56,8,11

By using the formula from equation 2.2, with N = 7, we calculate the mean value
from data set A as:

Zli\ilxl
K N
_1+2+3+5+6+8+11 (2.3)
B 7
=5.14

As a result, the mean value of data set A is 5.14.

The median value of a data set is the middle value of the set if we sort it in
ascending order. In data set A above, which is already sorted, the median value
is 5. Note that, if the number of the set elements is even, there are two middle
numbers. In this case, the median value is the mean of the two middle numbers [8].
Finally, the mode value is the number that appears most times in the set. In set A
no number appears more than once, so there is no mode.

These three parameters are very important in statistics and probability analyses
and are also key properties of the normal, as well as the lognormal distribution,
which we will describe later in this work.
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The main properties of the normal distribution are:
e The mean value L.
e The standard deviation o.

Since the normal distribution is symmetrical around the mean value, it is worth
noting that mean of a normal distribution is equal to its median and mode values.
As such, only the mean parameter is used as a main feature of this distribution. The
standard deviation defines the width of the distribution, i.e. the dispersion around
the mean value.

The normal distribution PDF can be described by equation 2.4 below:

f(x) = ——e2%) (2.4)

where x the value of the examined variable, 1 the mean value and o the standard
deviation. If we assume p = 0 and o = 1, an indicative graphical representation of
the normal distribution is shown below, creating the well-known "bell-curve':

Probability density function

0.20
015
0.10
0.05

0.00
Figure 2.3: Normal Distribution PDF with y =0 and 0 =1

To further test this, in figure 2.4 we generate 5000 random samples, like we did for
the uniform distribution above. As expected, the values close to the mean value O
have a higher frequency of occurrence and the more we deviate from the mean the
less probable a value will occur.

Lognormal Distribution

Finally, we proceed to the description of the lognormal (or log-normal) distri-
bution. A random variable x is lognormally distributed when its natural logarithm
y = In(x) is normally distributed. As such, a lognormal distribution can be trans-
formed into a normal using logarithmic calculations and vice versa. Apart from the
distribution parameters mentioned above, for the lognormal distribution we have
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Figure 2.4: Normal Distribution Samples with =0 and o =1

to take into account the skewness as well, which describes the degree of symme-
try in a distribution. This parameter exists for the normal distribution as well,
however, since the normal distribution is always symmetric, its value equals zero.
Furthermore, another difference is that, unlike the normal distribution, the mean,
median and mode values are not equal in the lognormal distribution. As such,
these distributions could be summarised into 3 sub-categories depending on their
skewness:

o The positively or right skewed distribution, in which the tail is on the right
side.

e The symmetrical distribution.
e The negatively or left skewed distribution, in which the tail is on the left side.

Figure 2.5 shows these 3 sub-categories mentioned above, along with the mean-
median-mode relationship for each case:

Mean
Median Median Median
Maode
Mode — | Mean-1 | — Mode
|
] I f
] |
I
]
I |
1 1
I I
I |
] |
Positive Symmetrical Negative
Skew Distribution Skew

Figure 2.5: Distribution Skewness [9]

The lognormal distribution plays a very important role in engineering, because
negative values of specific phenomena are physically impossible [10]. The PDF of the
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lognormal distribution can be summarised as:

1 1oInx—pyo
f(x) = — = e 27
xo V21

where:
e 1 the location parameter.
e 0o the scale parameter.

It is worth noting that these u and o values in equation 2.5 are the mean and
standard deviation of the converted normal distribution of the variable y = In(x),
not for the lognormal distribution of the variable x. In other words, they define the
mean value and standard deviation of the natural logarithm of x. Since it is possible
to convert a lognormal distribution to its respective normal and vice versa, we can
generate a lognormal distribution by either defining the parameters (i, o) of x or In x.
This can be done with the following calculations:

Assume u, and o, the desired mean and standard deviation of the lognormal
distribution of x and u, and o, the mean and sigma of the normal distribution
y = In(x). These can be calculated using the following equations [11]:

2
by = n| —— (2.6)
VIZ + 0F
0-2
oy = ln(l + —;) 2.7)
W

Otherwise, if we would rather avoid more complex calculations, p, could be calcu-
lated after o, with the following equation [10]:

1
py = In(py) — 505 (2.8)

Finally, similar to the previous examples, we present the graphical representation of
the lognormal distribution PDF, assuming p = 0 and o = 1, in figure 2.6 and validate
it with the generation of 5000 random samples in figure 2.7.

As we can observe, the generated lognormal distribution converges to zero quickly,
leaving multiple data points that rarely occur. In most cases, we assume these sam-
ples as the distribution outliers, which may affect the quality of the desired result.
As such, for the purpose of this work, we use the interquartile range (IQR) method,
which trims the outliers of the data set, keeping only the data from the 25th to the
75th percentile (50% of the total data) to improve the quality and accuracy of the
produced results.
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Figure 2.6: Lognormal Distribution PDF with u =0 and o0 =1
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Figure 2.7: Lognormal Distribution Samples with u=0and o =1

2.2 Introduction to STA in Digital Circuits

2.2.1 Static Timing Analysis

Static Timing Analysis (STA) is a technique used to verify the timing of a digital
design. Along with timing simulation, they are the two most common approaches
for timing verification. However, in contrast to timing simulation, STA computes
the expected timing of a design without applying input data values to observe the
result. As such, by defining the external environment of the design, including the
input clocks, STA can determine whether the design can function at the desired
clock frequency [12]. Figure 2.8 shows a basic flowchart of STA.

Static timing analysis is widely recognised and usually preferred over timing
simulations in the semiconductor industry for the timing verification of digital de-
signs, due to its primary benefit of quickly checking all the different timing paths
of a design. Timing simulation produces timing reports only from the circuit paths
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Figure 2.8: Static Timing Analysis [12]

directly affected by the specific data values given as inputs. While STA as a field
contains many different concepts, for the purpose of this work we will discuss and
present two of the most important ones, which are the delay and slew values of a
digital circuit.

2.2.2 Delay and Slew Propagation

To accurately describe the delay and slew of a circuit, we will consider a simple
CMOS inverter circuit as an example (figure 2.9).

IM ouT

Figure 2.9: The CMOS Inverter

We call propagation delay the time between the point where the input signal
reaches 50% of its final value and the point where the output signal reaches 50%
of its final value. In other words, the propagation delay of a circuit describes the
time needed in order for an input change to be evident to the output. As such, it
is an essential part of digital circuit design, since inconsistent propagation delays
in a design with millions and billions of gates may result in poor functionality [13].
Propagation delay is not a constant value and is determined by the transition time at
the input (which can be modified by changing the clock frequency of the design) and
the output load of the logic gate, since higher capacity loads require more time to
be fully charged. In chapter 5 of this work, we will also examine cells with different
loads and compare how the propagation delay is affected.
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There are two types of propagation delay, depending on the input and output
signal:

o Fall Delay
e Rise Delay

As their name suggests, fall delay describes the time from 50% of the input rise signal
to 50% of the output fall signal, while rise delay describes the opposite. Figure 2.10
shows the rise and fall delays of the CMOS inverter using an approximate input and
output waveform:

out

Figure 2.10: Rise and Fall Propagation Delay

For the rest of this thesis, for simplicity, we will refer to propagation delay simply
as ’delay’. We will now present the second value needed for the purpose of this work,
which is the waveform slew or slew rate of an output signal.

We define slew rate as the rate of change of the voltage (or current) of an output
signal to determine how fast the transition between two levels is. As such, the slew
rate is measured as voltage per unit of time and the larger the transition time, the
slower the slew and vice versa [12]. Similar to the delay between two signals, the
slew rate is also categorised into rise and fall slew, depending on the signal. Since
it is difficult to determine the exact starting and ending points of a signal transition,
we choose specific threshold levels as percent of Vdd to define the slew rate. For
example, a rise slew could be the difference from the time the rising edge reaches
20% of Vdd to the time it reaches 80% of Vdd. In this work, we measure the slew
rates as the time between the 10% and the 90% of the signal.

Figure 2.11 presents the measurement of the rise and fall slew rates of a signal
waveform:

e o e o

|

Fall '

Rise
Slew Slew

Figure 2.11: Rise and Fall Slew Measurement
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The delay and slew measurements of a circuit have a very important role in
electronics and digital design, since they, among others, determine the timing and
functionality of a design. As such, they are the main terms we examine and exper-
iment with in this work to determine how process variation affects the design. We
will briefly review these terms in chapter 4 where we will present our work.

2.3 Introduction to SPICE

SPICE, which stands for Simulation Program with Integrated Circuit Empha-
sis, is an open-source electronic circuit simulator, used for both analog and digital
circuits. Its main purpose is to verify the timing and integrity of the circuits and ap-
proximately predict their behaviour. Since it is open-source, there are many different
versions of SPICE, such as PSPICE, LTSPICE, NGSPICE etc. Some of the SPICE ver-
sions use a Graphical User Interface (GUI), while others are terminal based. The
main code used to describe and simulate a circuit with SPICE is called a SPICE
deck or SPICE netlist. We will briefly present the basic features of a SPICE deck
used for the purpose of this work, in order to understand how SPICE simulation
works.

To add a circuit instance in a SPICE deck, the following must be defined in a
single line in that order:

1. Instance name (usually descriptive of its function, e.g. Cout, Cin for a capacitor
at the output or input respectively).

2. Circuit nodes to wich the element is connected.
3. The values of the electrical characteristics of the component.

We will go in more detail on the SPICE instances in chapter 4 where we will present
the flow of our work. The other most important feature of SPICE is the analy-
sis method of the simulation. The most basic types of SPICE simulation analysis
are:

e DC Analysis, which is used to analyse all the static characteristics of the
circuit, i.e. all the DC characteristics.

e AC Analysis, which is used to analyse all the frequency-based properties, such
as capacitance.

e Transient Analysis, which is the time response analysis, i.e. the complete
function of the circuit during a given time interval.

To simulate and measure the effects of process variation in our circuits, we use
transient analysis, since we need to generate the waveforms of each circuit in
relation to time.

2.4 Process Variation in Digital Circuits

In semiconductor engineering, we define process variation as the variation in
the attributes of transistors, e.g. length, thickness, that are present during the
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fabrication of the design. These variations not only affect the timing and functionality
of the design, but they may also cause malfunctions or even complete failure of the
chip. We can separate process variations into two different categories, depending on
the number of transistors they affect:

e Global variations, which affect all transistors of a design, e.g. temperature
variations.

e Local variations, which only affect one or a small group of transistors.

The main topic of research on this work is timing and delay variations, which,
apart from the process variations mentioned above, could also be caused by the
following reasons [14]:

1. Computing errors in timing analysis, due to either inaccuracies of the device
models, either interconnect parasitics which affect the overall timing.

2. Environmental conditions during device operation. These kinds of variation
are present after the complete manufacturing of the device during its operation.
Such are the operating mode, e.g. low power or high performance mode, the
temperature and the natural degradation.

While these two factors might play an important role in timing variations , for the
purpose of this work, we will focus solely on process timing variations, which occur
during the design and fabrication process in transistor-level. To investigate this
topic, we applied the technique of derating, which we will briefly explain in the final
subsection of this chapter.

2.4.1 Derating

In general, the term derating in electronics refers to the concept of a device
operating at less than its mentioned maximum capabilities. It could be applied in
different parameters of a device, such as voltage or power and its main purpose is to
prolong the life of the device. By operating at less than its rated maximum power, the
device becomes more resistant to the various environmental stresses, thus reducing
its degradation rate and increasing its durability.

Out of the many types of derating, in transistor-level we apply derating at the
transistor parameters, e.g. length and height, to alter the timing between the
circuit components and the design timing in general. The numbers which represent
the amount of derating applied to a parameter are called derate factors. In our
investigation, we generate random derate factors using Monte-Carlo method, apply
them to the desired transistor parameters and examine the output timing variations
produced by the different outcomes.
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Chapter 3

Existing Works

Before we move on to the main presentation of our work, let us examine some
of the existing research on the topic of Statistical Static Timing Analysis (SSTA),
in which Monte-Carlo simulation in VLSI circuits belongs to. While SSTA has been
an area of interest of both academic and industrial research, we will present three
academic works which use SSTA to model and investigate circuit power and perfor-
mance.

3.1 Statistical Static Timing Analysis (SSTA) in the
Literature

Statistical Static Timing Analysis (SSTA) refers to the sub-field of STA in
which, instead of the conventional deterministic STA algorithms, the timing of the
circuits is calculated using probability distributions. As such, the output of this
analysis is also a probability distribution of many different outcomes, instead of a
single one.

Monte-Carlo simulations are very common in SSTA investigations, with ran-
domly generated distributions to be used as inputs, in order to examine a variety
of outcomes. In this subsection, we will briefly present three different academic
researches in the field of SSTA, before we move on to the presentation of our inves-
tigation flow.

3.1.1 Investigation on Performance, Power & Area using Deter-
ministic and Monte-Carlo Synthesis Flows

To deal with process variation, the industry tries to calibrate the ASIC flow using
specific golden silicon data obtained from multiple test chip runs. However, these are
mostly applied at the ASIC Back-End flow, i.e. Place & Route, Clock Tree Synthesis,
In-Place Optimisation, Sign-Off. As such, to provide further insight into inter-wafer
and intra-die process variation as well as improved initial data at the Back-End
flow, this first work proposes a deterministic and a Monte-Carlo flow applied at the
post-synthesis gate-level [15].
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Since the worst-case scenario is extremely rare for most cases, the deterministic
flow of this work proposes synthesis at the typical corner accompanied by specific
extra actions to close timing in the worst case as well. These extra actions include
the worst case (slow corner) timing analysis of the netlist synthesised at the typical
process corner and the use of derate factors at the critical paths per endpoint, in
order for the optimiser to put more effort in these portions of the design to achieve
timing closure in the worst case, while also preserving the area benefit of the typical
corner synthesis for non-critical paths. The derate factor for each worst case violated
path is calculated as the delay ratio between slow and typical corner, as seen in the
following equation:

slow

D
Derate = ———— (3.1)
typical

After the derate factor generation, incremental synthesis is performed. Note that
timing closure in the worst case may not be achieved after a single run, so multiple
iterations might be necessary. As such, the typical netlist attains the current worst
case timing conditions and new derate factors are generated. The process is repeated
until all worst case timing conditions are met. Figure 3.1 shows a flowchart of this
iterative deterministic flow.

Library Corner Based
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Figure 3.1: Deterministic Library Corner Based Flow [15]

The Monte-Carlo based flow this work also proposes (figure 3.2), uses as ba-
sis the derate factors calculated from the previous deterministic flow and, using
the Maximum Likelihood Estimation (MLE) method, estimates the parameters

21

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:26:02 EEST - 18.188.57.0



of a possible numerical distribution, whose random samples could generate these
factors as a result. From the estimated distribution, random derate factors are
generated and applied at each component. Then, synthesis at the typical process
corner is performed and PPA (Power, Performance and Area) results are produced.
The process is repeated by regenerating another set of random derate factors from
the same distribution, until the maximum specified number of successful iterations
is reached.
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Figure 3.2: Monte-Carlo Based Synthesis and Optimisation Flow [15]

Both of these flows were tested using four open-source designs and produce an
average 9.74% improvement in area and 22.14% improvement in leakage power in
comparison to netlists synthesised at the worst case, while also meeting worst case
timing.

3.1.2 A Statistical Performance Simulation Methodology for VLSI
Circuits

This second work present a statistical performance simulation (SPS) methodol-

ogy for VLSI circuits by analysing each smaller circuit block separately and generat-

ing the performance distribution for the entire circuit. The main flow consists of the
following steps in general [16]:

1. Generate a statistically significant number of SPICE parameters directly from
Electrical-Test data.
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2. Divide the design into smaller blocks and identify statistically similar and dis-
tinct blocks.

3. Construct a model of the full circuit using the response surface methodology
(RSM).

4. Generate performance distribution of the full model circuit.

A 4

Figure 3.3: Circuit behaviour analysed in blocks [16]

The main idea behind this methodology is to greatly reduce the analysis effort by
separating the circuit into statistically distinct sub-blocks. If a block has a statis-
tically similar behaviour to another, then it is excluded from the analysis reducing
the necessary simulations to be performed. After all the distinct block performance
distributions are generated, as shown in figure 3.4, a full circuit model is created
using RSM, which calculates a function relating the block performances to a full
circuit performance. This methodology, while less accurate than Monte-Carlo, is
computationally more efficient, since identical statistical operations are excluded,
saving time [16].

Block A

| /
22—

| SPICE | — BiockB

Block C

Figure 3.4: Block Performance Distribution Generation [16]

The paper provides more information on RSM and related algorithms used, as
well as experimental results and observations.
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3.1.3 Modelling Circuit Performance Variations due to Statisti-
cal Variability: Monte Carlo Static Timing Analysis

The final work, which we will present here, investigates the impact of random
intra-die statistical variations on digital circuit timing and power consumption. It
compares traditional corner-based STA with Monte-Carlo SPICE simulations and
their proposed method of Monte-Carlo Static Timing Analysis (MCSTA), all tested
on a one bit full adder [17].

Monte-Carlo SPICE Simulations

For this method, RandomSpice was used, a tool which acts as a circuit simulator,
while also providing statistical analysis support. RandomSpice replaces all MOSFET
model instances within a SPICE netlist with randomly picked BSIM instances from
a specific statistical library [17]. The threshold voltages of each transistor was ran-
domly generated from a Gaussian distribution, thus injecting variations into the de-
sign. The investigation was performed on seven levels of threshold voltage variation
(which is represented by the standard deviation oyr of the Gaussian distribution),
from 10% to 50% and 10000 SPICE netlists were generated.

Process Corner Analysis

As mentioned above, corner analysis refers to applying STA while setting pro-
cess and environmental parameters at extreme cases, e.g. worst case scenario (slow
corner), typical corner etc. To apply statistical variations, multiple standard cell li-
braries were generated at +3oyr, where oyt is the standard deviation of the threshold
voltage Gaussian distribution, calculated from the Monte-Carlo SPICE simulations,
while also applying the same simulation input. Since these extreme cases have a
significantly low possibility to occur, corner based STA usually produces a relatively
pessimistic result [17].

Monte Carlo Static Timing Analysis

This proposed method combines the accuracy of Monte-Carlo SPICE simula-
tions with the simplicity and quickness of STA. RandomSpice generates multiple
randomised netlists of each standard cell in order to create an equivalent standard
cell library which includes the statistical differences between transistors [17]. Then,
STA is applied to all of these different randomised netlists in order to produce a tim-
ing and power consumption distribution. Like the two previous methodologies, the
same input was used and at the end of the work, comparison of all three methods
was presented.

3.2 Thesis’ Used Tools

3.2.1 Cadence Spectre Circuit Simulator

For the experiments of our work, we used Cadence Spectre Circuit Simulator.
Spectre is owned and distributed by Cadence Design Systems and provides all the
basic SPICE features and analyses, as well as SPICE language support. However,
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Spectre also includes many improvements over other SPICE tools, such as improved
capacity, accuracy and speed [18]. Apart from the SPICE language support, Spectre
has its own language as well. In this work, we use SPICE netlists for circuit de-
scriptions and measurements, while including Spectre language blocks to perform
the Monte-Carlo simulations. The target language can be changed any time inside
a netlist with the simulator lang command. We will provide further information re-
garding the used Spectre code blocks in the next chapter, where we present our
transistor level Monte-Carlo flow.
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Chapter 4

Monte-Carlo Simulations in Digital
Circuits

After presenting the necessary background knowledge, in this chapter, we pro-
ceed to the presentation of our work. To start with, a sample flowchart of the
transistor level Monte-Carlo flow is shown, describing in detail each of the steps in
the process. Each subsection contains either the description of the input files used,
or the actions to be executed by the user.

The Transistor Level Monte-Carlo Flow is executed by a simple bash script, which
will be described below, while Python was used for the SPICE deck generation, as
well as the collection and visualisation of the results using the matplotlib library.
Though other programming languages could also be used for this project, Python
was selected, due to its simplicity and direct interactivity with the user.

4.1 Transistor Level Monte-Carlo Flow

In 4.1 the basic flowchart of the Transistor Level Monte-Carlo Flow is presented.
The purple block corresponds to the main bash script to be used directly by the
user. All the other steps are executed automatically from the script using the input
parameters given by the user. The Python scripts used are shown in green colour,
while the Spectre execution is shown in red colour.

The flow takes as inputs the following parameters in this specific order:
1. "Source” command and the name of the script, i.e. source run_flow.sh.
The number of Monte-Carlo iterations performed.
The number of chain components, i.e. buffers or inverters.
Input signal type, i.e. rise or fall.

Buffer or inverter chain declaration, i.e. buf of inv.

S

The specific libcell or libcells to be used from the library, ex. BUFx12_ASAP7_75t_R.
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Figure 4.1: Automated Spectre Monte-Carlo Flow

4.1.1 Models Used

For the purpose of this work, a modified version of the ASAP7 7-nm finFET pre-
dictive process design kit was selected, with a maximum voltage threshold of 0.7 V.
This specific library was developed by Arizona State University (ASU) in collabora-
tion with ARM and is open-source, so it is easy to use and modify according to one’s
objective. The PDK, cell libraries and SPICE models are available for download on
GitHub and are regularly updated [19].

4.1.2 Parameters Under Variation

Normally, the transistor length would be an ideal parameter for variation. In
this case however, as shown in 4.2, the transistor length is much shorter than the
transistor width, so process variations in the length are negligible. Thus, the main
parameter under testing is the width. Note that in the transistor models file, the
width (wfin in 4.2) is not a standalone parameter, but a combination of transistor
height and thickness, i.e. hfin and tfin respectively. In order to perform the neces-
sary Monte-Carlo simulations, derate factors must be applied to the aforementioned
parameters, as explained previously in section 2.4.1.

So, to apply these derate factors, two spectre language Monte-Carlo blocks were
added to the models file, one for the NMOS transistor and one for the PMOS. Assum-
ing x derate factor for hfin and y derate factor for tfin, we generate each one of them
randomly from a specific distribution and the total number of samples equals the
number of Monte-Carlo iterations to be performed. Finally, we multiply the default
parameters for height and thickness with the generated derate factors.

Below, we present the Spectre code block for the derate factor generation. Note
that the following code is not used to perform the simulations. This part is included
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Figure 4.2: FinFET Channel Length [20]

in the SPICE deck of each design and will be explained in the next subsections.

simulator lang=spectre
parameters x = 1
statistics {
process {
vary x dist=gauss std=0.2 percent=no
}

truncate tr=5

Vxparam (Vxnode 0) bsource v=x

parameters y =1
statistics {
process {
vary y dist=gauss std=0.2 percent=no

}

truncate tr=5

Vyparam (Vynode 0) bsource v=y
simulator lang=spice

Table 4.1: Derate Factor Generation

Before each statistics block, the default values of the derate factors are set, which
also act as the mean values of each numerical distribution from which the numbers
are randomly generated. In this case, as presented in each statistics block and in
figure 4.3, the normal (gaussian) distribution is used, with a mean value of 1 and a
standard deviation of 0.2. Finally, a truncate factor is used to set the range of valid
generated values. Each result which is not within the appropriate range, is rejected
and regenerated until a valid value is given.

So, assuming truncate factor tr, the range limits are calculated as:

limits = mean =+ (tr - std) 4.1)

From equation 4.1, we can determine the range of accepted factors. In this
case, the truncate factor is 5, so the range limits are O and 2 respectively. As such,
any value lower than O or higher than 2 will be considered invalid and regenerated

28

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:26:02 EEST - 18.188.57.0



immidiately until a valid one appears. Constraining the results and truncating
invalid values is obligatory, since there cannot be negative derate factors and the
simulations will result in failure.

0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 4.3: The Normal Distribution used

Finally, the Vxsource and Vysource commands in the code are solely used for
the visualisation of the generated derate factors to ensure their validity. They do not
impact the functionality of the flow in any way.

4.1.3 Designs Under Investigation

For the purposes of this work, the designs we used are buffer and inverter
chains, using the library cells presented above. As mentioned at the beginning of
the chapter, the user executes the bash script and sets the appropriate parameters
as input from the command line. The flow executes the Python script for the SPICE
deck generation, so it is not required for the user to write it manually. Then, Cadence
Spectre Simulator is executed using the generated SPICE deck. For each step of the
chain, delay and slew are measured, as shown in 4.4, 4.6 and 4.7. After Spectre
completes its execution, the next Python script is executed, which takes the delay
and slew measurements of the last buffer or inverter of the chain and plots them in
a histogram, in order to determine how the results are distributed. The two Python
scripts will be described in more detail in the sections 4.1.4 and 4.1.5 below.

The following figures present the designs that we tested along with the measured
values, depending on the input signal.

To start with, we will present the buffer chain, which is also the simplest one. As
we can see in 4.4, if the input signal is rise, we measure and store the following
values:

e Rise Delay as the time interval between the 50% of the input signal and the
50% of the output signal.

° as the time interval from 10% to 90% of the output signal.
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Figure 4.4: Buffer Chain

Likewise, if the input signal is fall, we measure the following values:

° as the time interval between the 50% of the input signal and the
50% of the output signal.

e Fall Slew as the time interval from 90% to 10% of the output signal.

Note that in the buffer chain, since the input signal edge does not change from
low to high or vice versa, we can easily determine the last delay and slew values -for
plotting purposes- from the number of chain components given as input. However,
things are more complicated when it comes to inverter chains.

As the name suggests, an inverter shifts the input signal. So, for example, if
the input signal is rise, the output produced will be fall, as shown in 4.5, where the
behaviour of an inverter with a changing input is presented. When the input (red
waveform) is low, the output (yellow waveform) becomes high and vice versa. This
affects the measurements of the delay and slew as well, since the final output varies
depending on both the input signal and the number of the chain components.

To be more specific, the inverter chains are separated into two categories, pre-
sented in figures 4.6 and 4.7 respectively. As such, we take the following measure-
ments for each case:

1. If the inverter chain contains odd number of inverters (figure 4.6):
(@) If input signal is rise:

° as the time interval between
50% of the rise input signal and 50% of the fall output signal.

e Fall Slew as the time interval from 90% to 10% of the fall output
signal.

(b) If input signal is fall:

e Propagation Low-to-High (PLH) Delay as the time interval between
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Figure 4.5: Single Inverter Input and Output

50% of the fall input signal and 50% of the rise output signal.

° as the time interval from 10% to 90% of the rise output
signal.

Fall Output
"""""" A 90%

PHL Delay

Rise Input

Fall Input

Figure 4.6: Inverter Chain

2. If the inverter chain contains even number of inverters (figure 4.7):
(@) If input signal is rise:

e Propagation Low-to-High (PLH) Delay as the time interval between
50% of the fall input signal and 50% of the rise output signal.

° as the time interval from 10% to 90% of the rise output
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signal.
(b) If input signal is fall:

. as the time interval between
50% of the rise input signal and 50% of the fall output signal.

e Fall Slew as the time interval from 90% to 10% of the fall output
signal.

A D >. b. > our

Rise Output

A\ 4

‘ PLH Delay

Rise Input

Fall Input

“ Fall Slew

Figure 4.7: Inverter Chain with Even Number of Inverters

So, to summarise, the above measurements are performed in every component
of the chain for each Monte-Carlo run. At the end of the simulation, Spectre saves
all the values in the design.measure file and shows the minimum and maximum
values, as well as the mean value at the terminal. Out of these results, only the
last delay and slew values are presented in histogram form. More details about the
results of the experiments will be described in chapter 5 below.

4.1.4 SPICE Deck Generation

The first out of the two Python scripts that the flow utilises is responsible for
the automated generation of the component chain SPICE deck. This is mostly done
by a string that stores all the necessary information and it is printed as an output
and redirected to a new file at the end of the script. The inputs of the script are
the number of Monte-Carlo iterations, the number of chain components and the
target libcell or libcells. The script function is almost identical for all design cases
presented in 4.1.3, with some slight differences concerning the measurements of
the inverters. The rise input buffer chain case will be used as the main reference
point for explaining the script, while noting any necessary alterations for the other
cases.

We will now move on to the basic description of the script. Firstly, a string
constant named INITIALBLOCK is set to write the basic SPICE information needed,
i.e. the inclusion of the transistor model files to be used, the ground and power
supply (GND and VDD respectively), the initial diver buffer or inverter with the input

32

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:26:02 EEST - 18.188.57.0



signal and the initial conditions. In the SPICE language each component is written
in this format:

[NAME] [VSS] [VDD] [IN] [OUT] [LIBCELL]
So for example, by using this format, the first component is declared as:
XU1 VSS VDD Ul:A Ul:Q BUFx2_ASAP7_75t_ R

The rest of the process is automated in a for loop and varies depending on the
number of chain components. Since the circuit is a simple chain, the output of
the previous component is the input of the next, so we use the loop index (named
uindex) to determine each component name, input and output wire. The loop code
can be seen explicitly in table 4.2 below:

for uindex in range (2, lastcomponent) :

fullgatename = "XU" + str (uindex)

inputnet = "U" + str(uindex - 1) + ":Q"

outputnet = "U" + str(uindex) + ":Q"

instanceline = fullgatename + " VSS" + " VDD " + inputnet
+ " " + outputnet + " " + gates[uindex%gateslen] + "\n"

# add each instance line to the final spice deck
spicedeck += instanceline

Table 4.2: Chain Component Declaration in Python Script

It is worth mentioning that the last parameter gates of the instanceline, which
is the name of the libcell or libcells to be used in the chain, is an array of strings
containing the different libcell names. In case of multiple libcells, a round robin
policy is used, so the libcells are used consecutively depending on their order stored
in the array. As such, the modulo calculated by divining the current chain uindex by
the total count of libcells given (gates array length) is the index pointing at the libcell
for each iteration, which creates a round robin order and returns to the first array
slot after the last one is used. For the purpose of this work, only a single libcell type
was used for each different experiment, however, it was necessary to mention this
feature, since it might be useful for future work and experiments.

After adding all the components instances in the output SPICE deck string, we
proceed to the delay and slew measurements. Similar to the INITITALBLOCK section,
the first buffer or inverter measurement is declared with a constant string which is
added to the string output. As mentioned in 2.3, to calculate the appropriate values,
the SPICE ".MEAS” command is used. In the case of the rise input buffer chain, the
delay and slew calculations of the first buffer are written as:

e .MEAS TRAN U1l:Q:RISE_SLEW trig V(U1:Q) VAL=0.070000 RISE=1 targ V(U1:Q)
VAL=0.630000 RISE=1

e .MEAS TRAN U1l:Q:RISE_DELAY trig V(U1:A) VAL=0.350000 RISE=1 targ V(U1:Q)
VAL=0.350000 RISE=1

In other words, for the rise slew, the starting point, i.e. trigger, for the measurement
is the first time the rise signal of U1:@ reaches a voltage of 0.07 V (10% of VDD) and
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the ending point, i.e. target, is the first time the same signal reaches a voltage of 0.63
V (90% of VDD). Likewise, the rise delay is measured from the point where the input
U1l:A reaches 0.35V (50% of VDD) until the point where the output Ul:@ reaches the
same voltage value. For the fall input buffer chain, the delay and slew are calculated
using the same logic, but with reversed trigger and target values for the slew (from
90% to 10%) and with FALL=1 indication, meaning that the measurements are to
be performed on the falling slope of the signal instead of the rising.

After the first measurement, the others are automated in a for loop presented
below, which functions in a similar way with the loop for the component declaration
above (table 4.2). After each line is generated, it is added to the output string.

for uindex in range (2, lastcomponent) :
inputnet = "U" + str(uindex - 1) + ":Q"
outputnet = "U" + str(uindex) + ":Q"

measureslew=".MEAS TRAN "+outputnet+":RISE_SLEW trig V ("+outputnet+")
VAL=0.070000 RISE=1 targ V("+outputnet+") VAL=0.630000 RISE=1"

spicedeck += measureslew + "\n"
# 1f uindex == chaincomponents:

measuredelay=".MEAS TRAN "+outputnet+":RISE_DELAY trig V("+inputnet+")
VAL=0.350000 RISE=1 targ V("+outputnet+") VAL=0.350000 RISE=1\n"

spicedeck += measuredelay + "\n"

Table 4.3: Rise Delay and Rise Slew Measurements For Every Buffer

The fall input buffer chain values are measured in the same way. However,
there is an important difference to the measurements when it comes to inverter
chains. Like we described in section 4.1.3 above, the inverter chains are separated
into two categories, depending on whether we have even or odd number of invert-
ers and these two categories are also separated into two different subcategories,
according to the input signal. Since the input slope is reversed after each inverter
instance, the quantities to be calculated are different after each component. For
example, assuming we have a rise input signal, the first inverter measurements
will be PHL_DELAY and FALL SLEW, the second inverter measurements will be
PLH_DELAY and RISE_SLEW etc. In general, this pattern could be implemented as
(for rise input):

e We measure PLH_DELAY and RISE_SLEW for even numbered inverters.
e We measure PHL DELAY and FALL SLEW for odd numbered inverters.

Because of this, the above loop is different for the inverter chains. In 4.4 the mea-
surement code block for the inverter chains with rise input is presented. For the
chains with fall input, the pattern is the opposite, i.e. for even numbered invert-
ers we measure PHL_DELAY and FALL_SLEW and for odd numbered inverter we
measure PLH DELAY and RISE_SLEW. Since the code block for this case is almost
identical, it will be omitted for simplicity reasons. Also note that, in this part of the
flow, the number of inverters (even or odd) does not affect the implementation. This
difference only concerns the results collection.
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# for even numbered inverters, measure low-high delay and rise slew

# for odd numbered inverters, measure high-low delay and fall slew

for uindex in range (2, lastcomponent) :

inputnet = "U" + str(uindex - 1) + ":Q"

outputnet = "U" + str(uindex) + ":Q"

if (uindex % 2 == 0):

measureslew = ".MEAS TRAN "+outputnet+":RISE_SLEW trig V ("+outputnet+")
VAL=0.070000 RISE=1 targ V(" + outputnet + ") VAL=0.630000 RISE=1"

spicedeck += measureslew + "\n"

measuredelay = ".MEAS TRAN "+outputnet+":PLH_DELAY trig V ("+inputnet+")
VAL=0.350000 FALL=1 targ V(" + outputnet + ") VAL=0.350000 RISE=1\n"

spicedeck += measuredelay + "\n"

else:
measureslew = ".MEAS TRAN "+outputnet+":FALL_SLEW trig V("+outputnet+")
VAL=0.630000 FALL=1 targ V(" + outputnet + ") VAL=0.070000 FALL=1"

spicedeck += measureslew + "\n"

measuredelay = ".MEAS TRAN "+outputnet+":PHL_DELAY trig V ("+inputnet+")
VAL=0.350000 RISE=1 targ V(" + outputnet + ") VAL=0.350000 FALL=1\n"

spicedeck += measuredelay + "\n"

Table 4.4: Rise Delay and Rise Slew Measurements For Every Inverter

Following this loop, we proceed to the Monte-Carlo simulation section of the
deck. Since we use Spectre as the simulator, we switch the language to the native
Spectre language, as we mentioned in 3.2, for this part. This is mandatory, due to the
fact that each circuit simulator program has its own unique Monte-Carlo simulation
and while Spectre is compatible with the SPICE language, it cannot recognise all
the different functions that are unique to different tools. In the Spectre language, a
Monte-Carlo simulation is declared as follows:

simulator lang=spectre
mcl montecarlo variations=all seed=1234 numruns=[no. of runs] {

swl sweep param=temp values=[27] {
tranl tran start=0 stop=5n step=0.001p

simulatorOptions options save=none

simulator lang=spice

Table 4.5: Spectre Language Monte-Carlo Runs Declaration

By observing the Spectre code in table 4.5, in order for the tool to run Monte-
Carlo simulations correctly, the following conditions must apply:

1. A montecarlo block, named mc1 in this case, must be declared, along with the
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appropriate parameters:

(a) variations to specify which type of variations to apply: process, mismatch
or both. While mostly process variations concern us in this work, for these
specific experiments, there is no important difference, so the parameter is
set to all.

(b) seed to determine the seed value of the pseudo-random derate factor
generation. In this case, the default 1234 value is set.

(c) numruns for the number of Monte-Carlo runs to be executed. In this
flow, this number is taken as an input from the command line, so it is
left to the user’s discretion. However, for the purpose of this work, all the
experiments performed 2000 runs.

2. Inside the montecarlo block, a sweep block is obligatory, mostly to set the
different temperatures for the experiments. However, since sweep analyses
go beyond the scope of this thesis, all the values remain unchanged at their
default values, including the temperature at 27°C.

3. Finally, inside the sweep block, there is a tran command, which is similar to
SPICE transient analysis. As seen in the code above, the paremeters set are
the starting and ending points and the step, which is the time interval between
measurement repetitions. The values set in the code sample are the same for
all the experiments.

Important Note: For the Monte-Carlo simulations to take effect, one or more statis-
tics blocks, which are responsible for the component variations, must be declared
in the file containing the parameters to be varied, as presented in section 4.1.2.
The simulator will read those blocks and generate the random derate factors for
each run. In any other case, the Monte-Carlo block will not have any parameters to
variate and the simulator will produce a warning.

Finally, after the Spectre Monte-Carlo block is inserted into the output string,
the SPICE deck is complete and is written using the Python print command to a
newly created ".sp” file. Then, the bash flow executes Spectre simulator using the
following command:

spectre -64 generated_spice_deck.sp

Spectre performs all the necessary simulations and produces the requested mea-
surements after each run. At the end of last Monte-Carlo run, the minimum, max-
imum and mean values of each result is presented. More about the results will be
presented in chapter 5.

4.1.5 Results Collection

At last, we have the second Python script, which is also the final step of the
Spectre Monte-Carlo flow and is used for the collection and visualisation of the
results. After Spectre finishes all the simulations, it produces a .measure file which
contains all the results from each run. For example, in this case, since we want
to measure the delay and slew of each buffer or inverter, the file will contain all
these values for each Monte-Carlo iteration. This file will be used as input for the
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script and, by using Python libraries matplotlib and numpy we will visualise in a
histogram the desired results, which in this case are the delay and slew of the last
buffer or inverter. Although with the following explanation of the script, it would
be simple to plot the delay and slew values of all the components, we omit them
since the results would not be that different and thus the more output files are
redundant.

The main purpose of the result visualisation is to investigate how the desired
output values are distributed for the different iterations by taking into consideration
the normally distributed derate factors from the input. To be more specific, in
the VLSI field, this is useful to determine in which values the delay and slew of a
circuit converge, so that the designer will constrain the chip accordingly. This result
examination is done by counting how many times an output is repeated between
Monte-Carlo iterations and by plotting these repetitions for each different number.
So, in detail, the designated results are presented in a Cartesian coordinate system
like this:

e X-axis contains all the different output values produced from the .measure file,
i.e. all the delay and slew values of the last component.

e Y-axis contains how many times each respective value of the x-axis is gener-
ated.

As a result, the generated graph will take the form of a numerical distribution,
which is a logical conclusion, since the input derate factors are normally distributed.
Also, in order to generate the results correctly, a simplification of the delay and slew
numbers must be done: Spectre produces each output with high accuracy, thus
containing many decimal point digits. If we take all the numbers unmodified as
Spectre generates them, the plot or histogram will be unreadable, since, if we take
into account all the digits, no number is repeated more than once. However, if we
round all the numbers to the same amount of significant digits, we could create the
histogram and determine its distribution, without affecting the quality of the results,
since the latter digits in a floating point number do not make much of a difference in
cases like this. For the experiments of this work, the parameter SIGNIFICANTDIGITS
for the buffer chains was set to 13 and for the inverter chains to 14, except where
noted otherwise.

With that in mind, we proceed to the explanation of the script. Its functionality
could be summarised in the following steps:

e

. Two integer arrays are set, for delays and slews respectively.

2. Two string for the names of the last component measurements are set.
3. The .measure file is opened in read mode.

4. In a loop, the file is read line by line and two checks are performed:

e If a component delay name is found, the next line is read using the readline
command and the number is rounded and appended to the delay array.

e Same process, but for slew.

o1

. Using the unique function of the numpy library, the frequency of occurrence
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of each unique delay and slew value is calculated, i.e. how many times a
number is repeated in the iterations. Each of these frequencies is stored in the
unique array, the length of which will be used as the total count of bins in the
histogram.

6. Finally, using the hist function of the matplotlib library, the histograms pre-
senting the distribution for the delay and slew are created and stored.

While the process is almost the same for the inverter chains, there is a slight dif-
ference. As we mentioned in 4.1.3, the last component measurements are different
depending on the total count of inverters (even or odd) and the input. So, according
to these cases presented above, we set a flag variable mode to determine which values
to look for in the Spectre output file. In the code, all the cases can be summarised

like this:
# get last component delay and slew, depending on the input signal
# and the number of chain components
if ((inputsignal == "rise" and inverters % 2 != 0) or
(inputsignal == "fall" and inverters % 2 == 0)):
lastcomponentdelay = "u" + chaincomponents + ":qg:phl_delay"
lastcomponentslew = "u" + chaincomponents + ":qg:fall_slew"
mode = 1
elif ((inputsignal == "rise" and inverters % 2 == 0) or
(inputsignal == "fall" and inverters % 2 != 0))
lastcomponentdelay = "u" + chaincomponents + ":g:plh_delay"
lastcomponentslew = "u" + chaincomponents + ":g:rise_slew"
mode = 2

Table 4.6: Last Component Measurement Cases for Inverter Chains

After the collection and rounding of the numbers in the arrays, a mode check
is performed, in order to create the correct histograms. Apart from these slight
alterations, the rest of the results collection process stays the same. The script
then stores the histograms locally in png format and the execution of the flow is
terminated.

This concludes the explanation of the Transistor-level Monte-Carlo flow. In the
next chapter, the results of our experiments with the flow will be presented and
explained.
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Chapter 5

Experimental Results

As mentioned in the previous chapter, when Spectre finishes all the Monte-Carlo
runs, the terminal shows a summary of the results stored in the .measure file. At
the end of each Spectre run, we can see the minimum, maximum and mean values
of every variable measured. The sknewness of the distribution of each value is also
shown. It is important to observe this summary of the results before moving on to
the histogram examination, since from these values we can determine if an error in
the calculations has occurred. If all these values (min, max, mean, skewness) are
the same for each different entry, then each random derate factor generated was the
same. This indicates that the derate factor generation was not successful, because
by applying the same factor in every run, there is no process variation. In any other
case, we can assume that the flow was completed successfully and examine the
results produced by the last step of the flow.

The .measure file contains all the calculated delay and slew values from the
Spectre runs. As explained in section 4.1.5, only the last chain component delay
and slew results are presented graphically for simplicity reasons and to avoid redun-
duncy. The two key factors of the experiments are the number of components and
the load drive of the selected libcell, i.e. BUFx2, BUFx4 etc, with the BUFx4 driving
higher load than the BUFx2. By experimenting with these two design properties, we
can examine the behaviour of the delay and slew in many different situations. For
the buffer chains, we used chains of 4 and 20 components respectively and for the
inverter chains, the same count was used along with the inclusion of 21-inverter
chains, to examine the odd-numbered chains as well.

As for the load drive of the libcells, the concept was to try three different cases:
low, middle and high. So, the following libcells were selected:

e Buffers:

- BUFx2 (lowest)

- BUFx10

— BUFx24 (highest)
e Inverters:

- INVx2 (lowest)
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- INVx8
— INVx13 (highest)

In the chapter sections, all the results histograms will be presented and com-
pared. Section 5.1 contains the buffer chain experimental results, while section 5.2
contains the inverter chain experimental results. After the explanations of all the
graphs, a conclusive summary of all the results will be included for possible further
expansion of this research work.

5.1 Buffer Chains

Like we mentioned above, for each different libcell, we present the experimental
results in each subsection and cover both rise and fall input cases. After all the
histograms are shown, there will be a comparison of the results within each subsec-
tion. Finally, at the end of this subsection, the differences between the three libcells
tested will be explained.

For each subsection, buffer chains with 4 and 20 components are included.

5.1.1 BUFx2 Chain
4 BUFx2 - Rise Input

Figures 5.1a and 5.1b show the rise delay and slew of the last buffer in a 4
component buffer chain:

Rise Delay Repetitions Rise Slew Repetitions

801

60 4

Counts

40

0.5 10 15 2.0 2.5 3.0 35 0.25 0.50 0.75 1.00 1.25 150 175 2.00
Rise Delay le—11 Rise Slew le—11

(a) 4 BUFx2 Rise Delay (b) 4 BUFx2 Rise Slew

Figure 5.1: 4 BUFx2 Rise Results

4 BUFx2 - Fall Input

Figures 5.2a and 5.2b show the fall delay and slew of the last buffer in a 4
component buffer chain:

From a first glance at the result histograms, the output delay measurements
create a normal distribution (with the exclusion of the outliers) and the slew mea-
surements from the multiple iterations create a slight lognormal distribution, which
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(a) 4 BUFx2 Fall Delay (b) 4 BUFx2 Fall Slew

Figure 5.2: 4 BUFx2 Fall Results

is often expected, as noted by variation experts, since the input derate factors are
generated randomly from a normal distribution. Also, it is worth noting that the fall
delay is slightly higher than the rise one.

Note that these observations are present in all the following experiments, so they
will not be mentioned again.
20 BUFx2 - Rise Input

We will now move on to the longer BUFx2 chains, containing a total of 20 com-
ponents each. Figures 5.3a and 5.3b contain the rise delay and rise slew result
histograms respectively:

Rise Delay Repetitions Rise Slew Repetitions

801

60 4

Counts

40

0.5 10 15 2.0 2.5 3.0 35 0.25 0.50 0.75 1.00 1.25 150 175 2.00
Rise Delay le—11 Rise Slew le—11

(a) 20 BUFx2 Rise Delay (b) 20 BUFx2 Rise Slew

Figure 5.3: 20 BUFx2 Rise Results

20 BUFx2 - Fall Input

Similarly, we present the corresponding histograms for fall input (figures 5.4a
and 5.4b):
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Figure 5.4: 20 BUFx2 Fall Results

As we can observe, the results are almost identical to the smaller 4 BUFx2
chains. So, for the BUFx2 chains, we can assume that the number of components
does not affect the overall distribution and behaviour of the results.

5.1.2 BUFx10 Chain

In this subsection, the same buffer chains will be examined, but with a different
buffer libcell. Instead of BUFx2, a higher drive cell BUFx10 is used.

4 BUFx10 - Rise Input

Figures 5.5a and 5.5b contain the output result histograms for the BUFx10 rise
input chains:
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Figure 5.5: 4 BUFx10 Rise Results

4 BUFx10 - Fall Input

Likewise for fall input (figures 5.6a and 5.6b):
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Figure 5.6: 4 BUFx10 Fall Results

The same observations concerning the normal distribution of the delay results
and the lognormal distribution of the slew results can be seen here as well, we can
see that the mean and median values of each histogram in order, are higher than
their respective ones in the BUFx2 chains. Again the fall delay is slightly higher on
average, than the rise delay. However, while we expected both the delay and slew
distributions to be a bit higher than the BUFx2 ones, due to the higher load, we can
see that does not happen here. So, in this case, the difference in the load does not
make much of an impact.

20 BUFx10 - Rise Input

In a similar manner, below we present the same results for the longer 20 BUFx10
chains. For rise input, the results are shown here in figures 5.7a and 5.7b respec-
tively:
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Figure 5.7: 20 BUFx10 Rise Results

20 BUFx10 - Fall Input

Likewise for fall input (figures 5.8a and 5.8b):
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Figure 5.8: 20 BUFx10 Fall Results

As we can determine from these results in figures 5.8a and 5.8b, the number of
components in the chain does not alter the distribution of the results greatly, like
we mentioned in the BUFx2 experiments. Other than that, the conclusions we came
to in the smaller BUFx10 chains apply here as well.

5.1.3 BUFx24 Chain

Finally, we present the experimental results using the BUFx24 libcell.

4 BUFx24 - Rise Input

Figures 5.9a and 5.9b show the results for the 4 BUFx24 rise input chains:

Rise Delay Repetitions Rise Slew Repetitions
140 4
120 4 250
100 4 200 4
» 807 8
= £ 150
8 8
60 4
100 4
40 4
50 4
204
0+ 0- * . .
10 15 2.0 2.5 3.0 35 04 0.6 0.8 Lo 12 14 16
Rise Delay le—-11 Rise Slew le-11
(a) 4 BUFx24 Rise Delay (b) 4 BUFx24 Rise Slew

Figure 5.9: 4 BUFx24 Rise Results

4 BUFx24 - Fall Input
Likewise for fall input (figures 5.10a and 5.10b):
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Figure 5.10: 4 BUFx24 Fall Results

As expected due to the much higher load, the distributions are shifted to the
right of the x-axis, meaning that both delay and slew values are higher. Now that we
have tested all the three different libcells, it is worth mentioning that the higher the
drive cell, the more lognormally skewed the distributions become, especially when
it comes to the slew distributions. Now, let us examine whether in this final case
for the buffer chains, the number of buffers affects the output delay and slew or
not.

20 BUFx24 - Rise Input
The result histograms for the 20 BUFx24 rise input chains are shown in figures

5.11aand 5.11b:
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Figure 5.11: 20 BUFx24 Rise Results

20 BUFx24 - Fall Input

And finally, we present the 20 BUFx24 fall input chains (figures 5.12a and
5.12b):
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Figure 5.12: 20 BUFx24 Fall Results

As we can observe by comparing the histograms in figures 5.11 and 5.4 with
their respective ones in 5.9 and 5.10, we conclude that the number of buffers does
not greatly affect the output results in any case.

5.1.4 Result Summary for Buffer Chains

From the above Monte-Carlo simulations, we examined the basic timing be-
haviour of different buffer chains. As such, we now have a general idea of the
process variation of the delay and slew values by generating pseudo-random derate
factors at the input of each circuit. Considering that the input derate factors are
calculated from a normal distribution, as explained in chapter 4.1.2, from the ex-
perimental results presented, we come to the following conclusions about the timing
of the circuits while simultaneously taking into account this simple process variation
case created from the derate factors:

e The slew values measured at the output of the chain are distributed lognor-
mally and right-skewed.

e Fall delay is slightly higher than rise delay.

e The number of components in the chain, does not greatly affect the output
delay and slew values.

e The higher the buffer drive cell, the higher the delay and slew values and the
more skewed the output distributions become.

These results can be further investigated, by testing more different components
and circuits, in order for a designer to constrain the chip accordingly. In the next
section, the experimental results of our second design type, the inverter chains, will
be presented and analysed.
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5.2 Inverter Chains

While the inverter chains are created from the same flow as the buffer chains,
their output measurements are dependent on the number of components and the
input signal. As such, we've also included chains with 21 inverters as well for the
following experiments, to examine the case where the output signal is opposite of
the input signal as well. Below we present all the results extracted from the inverter
chains and analyse the output delay and slew values, as we explained them in
4.1.3.

5.2.1 INVx2 Chain
4 INVx2 - Rise Input

Figures 5.13a and 5.13b present the output distribution for the delay and slew
values for the 4 INVx2 chains with rise input:
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(@) 4 INVx2 PLH Delay (b) 4 INVxX2 Rise Slew

Figure 5.13: 4 INVx2 Rise Results

At first glance, we can observe that both graphs lean towards a slight lognormal
distribution, while their average values are also lower than their respective buffer
chains. It is worth mentioning that only for 4 INVx2 chains, the SIGNIFICANTDIGITS
parameter for the results collection was reduced from 14 to 13, which is the same
number set in the buffer chains. This was done in order to provide a more clear
presentation of the results, due to higher variation.

4 INVx?2 - Fall Input

Below we present the same chains for fall input signal (figures 5.14a and 5.14b).
While both distributions have a similar shape with the rise input ones, we can
observe that their average delay and slew values are lower. This is especially visible
in the slew graph.

20 INVx2 - Rise Input
Now let us try increasing the number of inverters to 20. In figures 5.15a and
5.15b the output delay and slew results of INVx2 chains consisting of 20 components
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Figure 5.14: 4 INVx2 Fall Results

and rise input signal are presented. The SIGNIFICANTDIGITS parameter was set
back to 14, since the observations are clearer now. Average values remain the
same compared to the 4-component INVx2 rise chains. However, since we had to
reduce the number of SIGNIFICANTDIGITS for the above case, we can assume that
the variation here is slightly lower, albeit much higher than their respective buffer
chains. The skewness of the distributions is also a bit lower, leaning towards a
normal distribution.
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Figure 5.15: 20 INVx2 Rise Results

20 INVx2 - Fall Input

Let us present now the above values for the fall input 20-component INVx2
chains, as shown in figures 5.16a and 5.16b. As observed by the following graphs,
the results are similar to the above cases: the average delay and slew values are
lower than the rise chains -as seen in the 4-component chains as well- but the
distributions lean more towards a normal distribution, similar to the 20-component
rise chains.
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Figure 5.16: 20 INVx2 Fall Results

21 INVx2 - Rise Input

In figures 5.17a and 5.17b we present the output delay and slew values of the
21-component inverter chain with rise input. Note that the output values are the
opposite of the previous rise input inverter chains, since there is one more inverter
present.
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Figure 5.17: 21 INVx2 Rise Results

From the above graphs, we determine that the average delay and slew values are
also dependent on the output signal, since the distribution are more similar to the
previous fall input chains instead of the rise input ones.

21 INVx2 - Fall Input

Similar case with fall input, producing again the opposite values compared to
the input (figures 5.18a and 5.18b. As observed in the exact above case, the results
here follow the same pattern, as they are more similar to the rise input chains with
even number of components.
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Figure 5.18: 21 INVx2 Fall Results

5.2.2 INVxS8 Chain
4 INVxS8 - Rise Input

The smallest of the INVx8 chains with rise input, produces these distributions
as results (figures 5.19a and 5.19b):
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Figure 5.19: 4 INVx8 Rise Results

The distributions are slightly more skewed and lean more towards a lognormal
distribution. However, both delay and slew values are relatively lower than the INVx2
chains, which is the opposite phenomenon we observed in the buffer chains, where
the higher the input load, the higher the output delay and slew values as well.

4 INVxS8 - Fall Input

In figures 5.20a and 5.20b we present the same chain with fall input. Similar to
the INVx2 chains, average delay and slew values are lower than the ones in the rise
input chains. The delay distribution is a little less skewed for this case.
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Figure 5.20: 4 INVx8 Fall Results

20 INVxS8 - Rise Input

le—12

We will now present the larger INVx8 chains, starting from the 20-inverter rise

input chain, as shown in figures 5.21a and 5.21b:
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Figure 5.21: 20 INVx8 Rise Results

le-12

While in the INVx2 chains, we observed that the 20-component chains produced
slightly less variation than the 4-component ones, that does not seem to be the case
here, where the variation looks similar to the 4-component rise input INVx8 chains,
with the average delay and slew values being almost the same as well.

20 INVxS - Fall Input

In the equivalent fall input chains (figures 5.22a and 5.22b), we come at the

same conclusions regarding the fall delay and slew values, which are relatively lower
than the rise ones. Most of the distribution characteristics remain the same as the 4-
component fall input inverter chain, with a slight exception in the delay distribution
wich is a bit more skewed. So, the number of components does not affect the overall
variation in this case either.
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Figure 5.22: 20 INVx8 Fall Results

21 INVxS8 - Rise Input

With the inclusion of an extra inverter in the rise input chain we have (figures
5.23a and 5.23b):
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Figure 5.23: 21 INVx8 Rise Results
Similar to the 21-component rise input chain, the output values produced are
the opposite ones (i.e. fall delay and slew) and the results are more similar to the fall
even numbered INVx8 chains.
21 INVxS8 - Fall Input

The same conclusion could also be drawn from the equivalent fall input chain,
as seen in figures 5.24a and 5.24b:
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Figure 5.24: 21 INVx8 Fall Results

5.2.3 INVx13 Chain
4 INVx13 - Rise Input

We will now move on to the highest inverter libcells. Below we present the
4-component INVx13 rise input chain results (5.25a and 5.25b):
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Figure 5.25: 4 INVx13 Rise Results

While the average values are closer to the INVx2 chains, the skewness of the
distribution is higher, clearly leaninng towards a lognormal distribution.

4 INVx13 - Fall Input

The same findings can be observed in the fall input chain as well, i.e. distribution
skewness is larger and the average delay and slew values are realtively lower than
the rise ones (figures 5.26a and 5.26Db).
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Figure 5.26: 4 INVx13 Fall Results

20 INVx13 - Rise Input

In figures 5.27a and 5.27b we present the results of the rise input INVx13 chains
when increasing the number of components to 20:
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Figure 5.27: 20 INVx13 Rise Results

The distributions are almost identical to the 4-component rise input INVx13
chains, so the number of component does not greatly affect the variation.

20 INVx13 - Fall Input

The same observations are present in the fall input 20-component INVx13 chains
(figures 5.28a and 5.29b), which produce similar results to the 4-component equiv-
alent chains.

21 INVx13 - Rise Input

By adding one more inverter and setting the input signal to rise, the following
results are produced, as shown in figures 5.29a and 5.29b. The same conclusions
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Figure 5.28: 20 INVx13 Fall Results

we reached by examining the previous 21-inverter chains, are present here as well,
meaning that, not only the distributions are more skewed, but also the results are
more dependent on the output signal.
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Figure 5.29: 21 INVx13 Rise Results

21 INVx13 - Fall Input

Finally, the 21-inverter fall input chain results (figures 5.30a and 5.30b), where
we draw the same conclusions as before. Likewise, since the output signal is the
opposite of the input, the results here are closer to the rise input even numbered
inverter chains.
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Figure 5.30: 21 INVx13 Fall Results

5.2.4 Result Summary for Inverter Chains

To summarise, by generating the same input derate factors, we performed the
same simulation for different inverter chains and investigated their basic timing
behaviour. As such, although there were some unique observations present in some
cases, we have come to the following general conclusions for the inverter chain
experiments:

The output timing variations of higher libcells, while keeping a similar range of
values, generate a more lognormal distribution than the lower ones.

In most of the cases, similar to the buffer chains, the number of inverters
present in the chain, does not greatly affect the output delay and slew values.

The output values are also dependent on the type of the output signal, while
fall (PHL) delays and slews are relatively lower than the rise ones. This could
imply that a fall output of an inverter is slightly faster than a rise one.

Inverter chains generally produced more variations than buffer chains.

Higher inverter libcells produced slightly less variations than the lower ones.

Similar to the buffer chains, these results can be further investigated by testing more
complex inverter circuits.
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Chapter 6

Conclusion and Future Work

In this work, we created and presented an investigation-oriented transistor level
Monte-Carlo flow to research process variation in simple digital circuits its effect on
their timing analysis. By generating a distribution-based variation in the form of
derate factors, we performed multiple simulations with this flow and presented the
experimental delay and slew results in numerical distributions as well. While this
flow currently only support simple basic circuits like the ones tested, it could be
used as the basis to create more automated Monte-Carlo flows for more complex
circuits, thus providing a more well-rounded approach in the field of SSTA. As such,
this study could be expanded upon to integrate more and more statistical methods
of timing analysis in the industry and thus, reducing the amount of pessimism of
traditional STA and leading to the ovrall performance and functionality improvement
of ASICs in the long run.

As part of our future work, the expansion of this flow to support circuits with
a fanout-of-4 is intended, as well as the implementation of a Gate-Level Monte-
Carlo flow, which, instead of transistor level, applies derating in gate level of a
specific component or library cell type. Gate-level Monte-Carlo, while less accurate,
is much more computationally efficient, since the amount of SPICE simulations is
greatly reduced. As such, a combinational method of transistor and gate level Monte-
Carlo could be used, in order to easily apply derating and multiple simulations in
much larger circuits, while also retaining the transistor level SPICE simulations for
specified critical parts of the design, that require higher accuracy.
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