
DIPLOMA THESIS

VLSI Circuit Component Variation Investigation &
Optimisation Using Monte-Carlo Methodologies

Student:
Evangelos Bakas

evabakas@uth.gr

Supervisor:
Christos Sotiriou

chsotiriou@e-ce.uth.gr
Committee:

Georgios Stamoulis

georges@e-ce.uth.gr
Fotios Plessas

fplessas@e-ce.uth.gr

A thesis submitted in fulfillment of the requirements
for the degree of Integrated Master

in the
Circuits & Systems Laboratory (CASlab)

Department of Electrical and Computer Engineering

July 11, 2023

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

https://www.linkedin.com/in/vangelis-bakas-42aa12239/
mailto:evabakas@uth.gr
https://www.e-ce.uth.gr/department/faculty/chsotiriou/
mailto:chsotiriou@e-ce.uth.gr
https://www.e-ce.uth.gr/department/faculty/georges/
mailto:georges@e-ce.uth.gr
https://www.e-ce.uth.gr/department/faculty/fplessas/
mailto:fplessas@e-ce.uth.gr
https://caslab.e-ce.uth.gr
https://www.e-ce.uth.gr

Acknowledgements

First and foremost, I would like to thank Prof. Christos Sotiriou for his help and
guidance in this thesis and also for the precious experience I obtained during my time
in CASlab. I would also like to thank Prof. Georgios Stamoulis and Prof. Fotios
Plessas for their presence in my thesis presentation, as well as their contributions to
my academic knowledge through their courses.

Furthermore, I would like to express my sincere appreciation and gratitude to
the other CASlab members and namely PhD candidates Nikolaos Blias and Stavros
Simoglou and undergraduate student Iordanis Lilitsis for the time they spent and the
invaluable support and knowledge they provided me for this thesis.

Finally, my humble thanks to all my friends and family who supported me all
these years throughout my undergraduate academic years.

Evangelos Bakas

Volos, 2023

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that

this diploma thesis, as well as the electronic files and source codes developed or

modified in the course of this thesis, are solely the product of my personal work

and do not infringe any rights of intellectual property, personality and personal

data of third parties, do not contain work / contributions of third parties for which

the permission of the authors / beneficiaries is required and are not a product of

partial or complete plagiarism, while the sources used are limited to the bibliographic

references only and meet the rules of scientific citing. The points where I have used

ideas, text, files and / or sources of other authors are clearly mentioned in the text

with the appropriate citation and the relevant complete reference is included in the

bibliographic references section. I also declare that the results of the work have not

been used to obtain another degree. I fully, individually and personally undertake all

legal and administrative consequences that may arise in the event that it is proven,

in the course of time, that this thesis or part of it does not belong to me because it

is a product of plagiarism».

The declarant

Evangelos Bakas

2

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

ΥΠΕΥΘΥΝΗ ∆ΗΛΩΣΗ ΠΕΡΙ ΑΚΑ∆ΗΜΑΪΚΗΣ ∆ΕΟΝΤΟΛΟΓΙΑΣ

ΚΑΙ ΠΝΕΥΜΑΤΙΚΩΝ ∆ΙΚΑΙΩΜΑΤΩΝ

«Με πλήρη επίγνωση των συνεπειών του νόµου περί πνευµατικών δικαιωµάτων,

δηλώνω ϱητά ότι η παρούσα διπλωµατική εργασία, καθώς και τα ηλεκτρονικά αρχε-

ία και πηγαίοι κώδικες που αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια αυτής της

εργασίας, αποτελεί αποκλειστικά προϊόν προσωπικής µου εργασίας, δεν προσβάλλει

κάθε µορφής δικαιώµατα διανοητικής ιδιοκτησίας, προσωπικότητας και προσωπικών

δεδοµένων τρίτων, δεν περιέχει έργα/εισφορές τρίτων για τα οποία απαιτείται άδεια των

δηµιουργών/δικαιούχων και δεν είναι προϊόν µερικής ή ολικής αντιγραφής, οι πηγές

δε που χρησιµοποιήθηκαν περιορίζονται στις ϐιβλιογραφικές αναφορές και µόνον και

πληρούν τους κανόνες της επιστηµονικής παράθεσης. Τα σηµεία όπου έχω χρησιµοποι-

ήσει ιδέες, κείµενο, αρχεία ή/και πηγές άλλων συγγραφέων, αναφέρονται ευδιάκριτα

στο κείµενο µε την κατάλληλη παραποµπή και η σχετική αναφορά περιλαµβάνεται

στο τµήµα των ϐιβλιογραφικών αναφορών µε πλήρη περιγραφή. ∆ηλώνω επίσης ότι τα

αποτελέσµατα της εργασίας δεν έχουν χρησιµοποιηθεί για την απόκτηση άλλου πτυ-

χίου. Αναλαµβάνω πλήρως, ατοµικά και προσωπικά, όλες τις νοµικές και διοικητικές

συνέπειες που δύναται να προκύψουν στην περίπτωση κατά την οποία αποδειχθεί, δια-

χρονικά, ότι η εργασία αυτή ή τµήµα της δεν µου ανήκει διότι είναι προϊόν λογοκλοπής».

Ο/Η ∆ηλών/ούσα

Ευάγγελος Μπάκας

3

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Abstract

Process variation in digital circuits has been an important issue in the semicon-

ductor industry over the years. These naturally occurring phenomena may impact

the timing and functionality of the design, leading to unexpected timing violations.

To deal with these issues, the industry has tried many different approaches in the

field of Stating Timing Analysis (STA). While the traditional corner-based timing anal-

ysis (i.e. typical, slow, fast) might solve the problem by calculating the worst-case

scenario and adjusting the circuit delay to avoid setup and hold violations, it may

also lead to unnecessary over-constraining of the design, since the probability of

worst-case scenario occurrence is relatively low. In situations like these, the use

of Monte-Carlo methodologies is preferred, to calculate the relative behaviour of the

design out of many different random situations. As such, there is a possibility to

prevent timing violations, while also avoiding burdening the design functionality due

to over-constraining. In this thesis, we explore the effects of process variation in the

timing of simple digital circuits by performing Monte-Carlo simulations at the tran-

sistor level using the SPICE-compatible Cadence Spectre tool. Finally, we present

the results of our experiments to explain and analyse the effects of these variations

in the aforementioned designs.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Περίληψη

Η διακύµανση στο χρονισµό των ψηφιακών κυκλωµάτων αποτελεί ένα σηµαντικό

Ϲήτηµα στη ϐιοµηχανία ηµιαγωγών ανά τα χρόνια. Αυτά τα ϕαινόµενα µπορούν να

επηρεάσουν όχι µόνο το χρονισµό αλλά και τη λειτουργικότητα του συστήµατος προς

σχεδιασµό, οδηγώντας σε απροσδόκητα σφάλµατα και ϐλάβες. Για την αντιµετώπιση

αυτών των Ϲητηµάτων, η ϐιοµηχανία έχει δοκιµάσει πολλές διαφορετικές προσεγγίσεις

στον τοµέα της Στατικής Χρονικής Ανάλυσης (STA) κυκλωµάτων. Ενώ η ευρέως διαδε-

δοµένη corner-based ανάλυση χρονισµού (typical, slow, fast) ενδέχεται να επιλύσει το

πρόβληµα υπολογίζοντας το χειρότερο δυνατό σενάριο και προσαρµόζοντας την καθυ-

στέρηση του κυκλώµατος, ώστε να αποφευχθούν οι setup και hold παραβιάσεις, µπο-

ϱεί ταυτόχρονα να οδηγήσει και σε περιττό υπερ-περιορισµό του σχεδιασµού, καθώς η

πιθανότητα εµφάνισης του χειρότερου σεναρίου είναι σχετικά χαµηλή. Σε τέτοιες περι-

πτώσεις, προτιµάται η χρήση Monte-Carlo µεθοδολογιών, προκειµένου να υπολογιστεί

η σχετική συµπεριφορά του κυκλώµατος από πολλές διαφορετικές τυχαίες καταστάσεις.

Συνεπώς, υπάρχει η δυνατότητα αποτροπής των παραβιάσεων χρονισµού, ενώ παράλ-

ληλα αποφεύγεται η περαιτέρω επιβάρυνση της λειτουργικότητας του συστήµατος προς

σχεδιασµό λόγω υπερβολικών περιορισµών. Στην παρούσα εργασία, διερευνούµε τις

επιπτώσεις των διακυµάνσεων στο χρονισµό απλών ψηφιακών κυκλωµάτων εφαρµόζο-

ντας προσοµοιώσεις Monte-Carlo σε επίπεδο τρανζίστορ, χρησιµοποιώντας το, συµβατό

µε τη γλώσσα του SPICE, εργαλείο Spectre της Cadence. Τέλος, παρουσιάζουµε τα

αποτελέσµατα των πειραµάτων µας για να εξηγήσουµε και να αναλύσουµε τις συνέπειες

αυτών των διακυµάνσεων στα προαναφερθέντα κυκλώµατα.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

VLSI Circuit Component Variation Investigation

& Optimisation Using Monte-Carlo

Methodologies

Evangelos Bakas

evabakas@uth.gr

Copyright © Evangelos Bakas 2023

Με επιφύλαξη παντός δικαιώµατος. All rights reserved.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

mailto:evabakas@uth.gr

΄Ερευνα και Βελτιστοποίηση ∆ιακύµανσης

Στοιχείων VLSI Κυκλωµάτων µε τη Μεθοδολογία

Monte-Carlo.

Ευάγγελος Μπάκας

evabakas@uth.gr

Copyright © Ευάγγελος Μπάκας 2023

Με επιφύλαξη παντός δικαιώµατος. All rights reserved.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

mailto:evabakas@uth.gr

Contents

1 Introduction 6

1.1 Aim of this Work . 6

1.2 Main Flow of this Work . 7

2 Background 8

2.1 Mathematical Background . 8

2.1.1 Numerical Analysis . 8

2.1.2 Monte-Carlo Method . 9

2.2 Introduction to STA in Digital Circuits 15

2.2.1 Static Timing Analysis . 15

2.2.2 Delay and Slew Propagation . 16

2.3 Introduction to SPICE . 18

2.4 Process Variation in Digital Circuits 18

2.4.1 Derating . 19

3 Existing Works 20

3.1 Statistical Static Timing Analysis (SSTA) in the Literature 20

3.1.1 Investigation on Performance, Power & Area using Deterministic

and Monte-Carlo Synthesis Flows 20

3.1.2 A Statistical Performance Simulation Methodology for VLSI Circuits 22

3.1.3 Modelling Circuit Performance Variations due to Statistical Vari-

ability: Monte Carlo Static Timing Analysis 24

3.2 Thesis’ Used Tools . 24

3.2.1 Cadence Spectre Circuit Simulator 24

1

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

4 Monte-Carlo Simulations in Digital Circuits 26

4.1 Transistor Level Monte-Carlo Flow . 26

4.1.1 Models Used . 27

4.1.2 Parameters Under Variation . 27

4.1.3 Designs Under Investigation . 29

4.1.4 SPICE Deck Generation . 32

4.1.5 Results Collection . 36

5 Experimental Results 39

5.1 Buffer Chains . 40

5.1.1 BUFx2 Chain . 40

5.1.2 BUFx10 Chain . 42

5.1.3 BUFx24 Chain . 44

5.1.4 Result Summary for Buffer Chains 46

5.2 Inverter Chains . 47

5.2.1 INVx2 Chain . 47

5.2.2 INVx8 Chain . 50

5.2.3 INVx13 Chain . 53

5.2.4 Result Summary for Inverter Chains 56

6 Conclusion and Future Work 57

2

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

List of Figures

2.1 Uniform Distribution PDF with a = 2 and b = 6 10

2.2 Uniform Distribution Samples with a = 2 and b = 6 10

2.3 Normal Distribution PDF with µ = 0 and σ = 1 12

2.4 Normal Distribution Samples with µ = 0 and σ = 1 13

2.5 Distribution Skewness [9] . 13

2.6 Lognormal Distribution PDF with µ = 0 and σ = 1 15

2.7 Lognormal Distribution Samples with µ = 0 and σ = 1 15

2.8 Static Timing Analysis [12] . 16

2.9 The CMOS Inverter . 16

2.10Rise and Fall Propagation Delay . 17

2.11Rise and Fall Slew Measurement . 17

3.1 Deterministic Library Corner Based Flow [15] 21

3.2 Monte-Carlo Based Synthesis and Optimisation Flow [15] 22

3.3 Circuit behaviour analysed in blocks [16] 23

3.4 Block Performance Distribution Generation [16] 23

4.1 Automated Spectre Monte-Carlo Flow 27

4.2 FinFET Channel Length [20] . 28

4.3 The Normal Distribution used . 29

4.4 Buffer Chain . 30

4.5 Single Inverter Input and Output . 31

4.6 Inverter Chain . 31

4.7 Inverter Chain with Even Number of Inverters 32

5.1 4 BUFx2 Rise Results . 40

5.2 4 BUFx2 Fall Results . 41

3

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

5.3 20 BUFx2 Rise Results . 41

5.4 20 BUFx2 Fall Results . 42

5.5 4 BUFx10 Rise Results . 42

5.6 4 BUFx10 Fall Results . 43

5.7 20 BUFx10 Rise Results . 43

5.8 20 BUFx10 Fall Results . 44

5.9 4 BUFx24 Rise Results . 44

5.104 BUFx24 Fall Results . 45

5.1120 BUFx24 Rise Results . 45

5.1220 BUFx24 Fall Results . 46

5.134 INVx2 Rise Results . 47

5.144 INVx2 Fall Results . 48

5.1520 INVx2 Rise Results . 48

5.1620 INVx2 Fall Results . 49

5.1721 INVx2 Rise Results . 49

5.1821 INVx2 Fall Results . 50

5.194 INVx8 Rise Results . 50

5.204 INVx8 Fall Results . 51

5.2120 INVx8 Rise Results . 51

5.2220 INVx8 Fall Results . 52

5.2321 INVx8 Rise Results . 52

5.2421 INVx8 Fall Results . 53

5.254 INVx13 Rise Results . 53

5.264 INVx13 Fall Results . 54

5.2720 INVx13 Rise Results . 54

5.2820 INVx13 Fall Results . 55

5.2921 INVx13 Rise Results . 55

5.3021 INVx13 Fall Results . 56

4

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

List of Tables

4.1 Derate Factor Generation . 28

4.2 Chain Component Declaration in Python Script 33

4.3 Rise Delay and Rise Slew Measurements For Every Buffer 34

4.4 Rise Delay and Rise Slew Measurements For Every Inverter 35

4.5 Spectre Language Monte-Carlo Runs Declaration 35

4.6 Last Component Measurement Cases for Inverter Chains 38

5

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Chapter 1

Introduction

Variations in VLSI digital circuits is one of the most relevant matters in the mod-

ern semiconductor industry. The ability to calculate the behaviour of the chip before

the fabrication concerns both foundries and academic research groups. Depending

on the type of each variation, a different approach is applied and a different group

of experts is advised. For example, the resistor tolerance variation is different than

a timing variation in a digital circuit. As such, it is difficult to determine all the

causes of random variations at once, since an extensive research of each factor is

required.

In the following thesis, we will discuss the basic process variations in VLSI digi-

tal circuits and examine how their timing is affected in multiple random situations,

using the Monte-Carlo computational algorithm. This chapter contains the introduc-

tion and the main goal of this work. In chapter 2 we will describe the background

knowledge needed in order to understand our work and in chapter 3 we will mention

relevant works in the literature or industry, as well as the industrial tools used for

this thesis. Chapters 4 and 5 describe our proposed work and the experimental

results respectively. Finally, in chapter 6, we summarise our final conclusions and

briefly describe possible future work on this topic.

1.1 Aim of this Work

The main purpose of this work is to investigate the effects of process variation

in the timing of simple digital circuits. In the field of Static Timing Analysis (STA),

the most common method to evaluate whether timing violations are present in the

design is the corner-based analysis, in which the worst, best and typical cases are

examined. However, the possibility of occurrence for each one of these cases is

not calculated by this method and in most cases, the worst case scenario is rare.

Due to this rarity, if we constrain the design according to the worst case in order

to avoid timing violations, it will most likely end up over-constrained and will work

much slower than intended. In order to avoid this scenario, the necessity to examine

multiple iterations to have a more well-rounded view of the timing variations of the

design has arisen.

In the industry, there are many different variations experts, which investigate

6

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

these phenomena in both lower and higher levels of chip design. For this work,

we will only focus on the variations occurring in the transistor level digital circuits,

using SPICE compatible tools. After the theoretical background information, we will

present our own investigation, along with our experimental results and observations

and conclude with our possible future expansions of this work.

1.2 Main Flow of this Work

To examine different outcomes of variation in transistor level circuits, we created

a bash flow which generates automated SPICE decks of buffer and inverter chains,

calls the circuit simulator to perform Monte-Carlo simulations and illustrates the

delay and slew variations of the simulations in graphical histograms. The genera-

tion of the SPICE decks and the results presentation is made using Python scripts

directly executed from the main bash script.

To apply timing variations in the designs under investigation, we generated a set

of pseudo-random numbers from a specified probability distribution, to be used as

derate factors of specific transistor parameters.

7

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Chapter 2

Background

In this chapter, we will present the necessary background knowledge for our

work. We will cover the basic terms of numerical analysis and the Monte-Carlo

method, a simple introduction to the field of Static Timing Analysis (STA) in VLSI

digital circuits and a fundamental review of the SPICE language and how process

variations affects the semiconductor industry.

2.1 Mathematical Background

We will begin by explaining and presenting the essential mathematical back-

ground used for the purpose of this thesis. The main study covered is numerical

analysis and, more specifically, the Monte-Carlo method, which is the main algo-

rithm for our research work.

2.1.1 Numerical Analysis

Numerical analysis is a field of mathematics that relies on numerical approxima-

tion, instead of symbolic expressions, to solve continuous problems. These numeri-

cal methods are useful in many cases and problems, where the exact result is either

impossible or extremely difficult to calculate using traditional equations [1]. More-

over, numerical analysis, not only gives approximate but accurate solutions, but also

provides general characteristics of each method, such as result accuracy, conver-

gence and computational complexity. Thus, numerical analysis is widely recognised

and used in many different scientific fields, including engineering and economics.

The most common tool associated with applying numerical analysis in various prob-

lems is MATLAB by MathWorks, along with its open-source counterpart Octave and

many application specific tools, such as the one used in this work, which we will

describe in 3.2.

To further understand the concept of approximation, we will briefly describe one

of the most common category of numerical analysis methods, which are the iterative

equation solving algorithms, e.g. the Newton’s method. The main characteristic of

these methods is that, in contrast to direct equation solving methods, they are not

expected to terminate after a finite number of steps and the result of each iteration,

8

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

starting from an initial guess, further converges to the actual result, but without

precisely reaching it [2].

To summarise, the field of numerical analysis is one of the most widely-used

sections of mathematics, due to its large amount of applications in the majority of

the sciences with many numerical methods having different uses in complex problem

solving. The Monte-Carlo method is one of these algorithms, which is the one we

used for the purpose of this work and we will explain in the next subsection.

2.1.2 Monte-Carlo Method

In the field of numerical analysis, a Monte-Carlo method is a computational

algorithm that relies on repeated random samples to obtain numerical results [3]. It

is mostly used for solving problems which contain randomness, e.g. the tolerance

of a resistor, and as a result, they are difficult to produce a stable solution. In

microelectronics engineering, Monte-Carlo methods are used to examine and anal-

yse the variations present in analog and digital circuits. As such, many industrial

tools in this field support Monte-Carlo simulations, including the tool used for this

work.

While many different variations of Monte-Carlo methods exist, the general pat-

tern follows these simple steps [3]:

1. From a specified domain of inputs, generate them randomly from a probability

distribution.

2. Run the desired experiment using each of these random inputs, e.g. in this

case the circuit simulations.

3. Aggregate the results.

A probability distribution is a mathematical function that presents the range of

all the different values, along with their frequency of occurrence, a random variable

can have. Within this range, the appearance likelihood of each value is determined

by a number of factors, such as the mean value and the standard deviation [4].

Each probability distribution is defined by a unique Probability Density Function

(PDF), which graphically depicts the likelihood of an outcome for a specific random

variable [5]. PDFs can be used for both discrete and continuous data, however, in

this work, we will focus on the latter. For further understanding of these terms,

we will describe three of the most common probability distributions along with their

PDFs below.

Note: All the graphs were designed using StatDist online tool [6].

Uniform Distribution

The term uniform distribution refers to a probability distribution, in which all

the possible outcomes of a given range have an equal chance to occur. The range

of the distribution is defined by two parameters a and b, which define the lower

and upper bounds of the range respectively, while the interval can be either open or

9

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

closed. The uniform distribution can be described by the following PDF:

f (x) =

 1

b−a a ≤ x ≤ b

0 x ≤ a or x ≥ b
(2.1)

Assuming a = 2 and b = 6, figure 2.1 shows the graphical representation of the

uniform distribution probability density function.

Figure 2.1: Uniform Distribution PDF with a = 2 and b = 6

By generating 5000 random samples, we can confirm the PDF, as shown in the

following figure, where all the variables have an approximate equal occurrence fre-

quency:

Figure 2.2: Uniform Distribution Samples with a = 2 and b = 6

10

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Normal Distribution

A normal or Gaussian distribution is one of the most common type of distri-

bution assumed in statistical analyses [7]. The main characteristic of the normal

distribution is its symmetry around the specified mean value, which describes

that, unlike the uniform distribution where all the data have an equal frequency of

occurrence, the variables close to the mean value have a higher probability to occur

than the ones further from the mean. In other words, the more we deviate from the

mean, the less likely the respective data will occur.

In order to present the properties of the normal distribution, which are essential

to the presentation of this work, we must first explain the key average values used

in statistics. These are the mean, median and mode values.

The mean value (symbolised as µ) of a specified data set is the arithmetic average,

i.e. the result of the the sum of all the values of the data set divided by the number of

values present in the set. A general formula of the mean value is shown in 2.2:

µ =

∑N
i=1

xi

N
(2.2)

where N is the number of values present in the data set. To further clarify this,

assume the following data set A:

A = 1, 2, 3, 5, 6, 8, 11

By using the formula from equation 2.2, with N = 7, we calculate the mean value

from data set A as:

µ =

∑N
i=1

xi

N

=
1 + 2 + 3 + 5 + 6 + 8 + 11

7

= 5.14

(2.3)

As a result, the mean value of data set A is 5.14.

The median value of a data set is the middle value of the set if we sort it in

ascending order. In data set A above, which is already sorted, the median value

is 5. Note that, if the number of the set elements is even, there are two middle

numbers. In this case, the median value is the mean of the two middle numbers [8].

Finally, the mode value is the number that appears most times in the set. In set A
no number appears more than once, so there is no mode.

These three parameters are very important in statistics and probability analyses

and are also key properties of the normal, as well as the lognormal distribution,

which we will describe later in this work.

11

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

The main properties of the normal distribution are:

• The mean value µ.

• The standard deviation σ.

Since the normal distribution is symmetrical around the mean value, it is worth

noting that mean of a normal distribution is equal to its median and mode values.

As such, only the mean parameter is used as a main feature of this distribution. The

standard deviation defines the width of the distribution, i.e. the dispersion around

the mean value.

The normal distribution PDF can be described by equation 2.4 below:

f (x) =
1

σ
√

2π
e−

1

2
(x−µ

σ)2

(2.4)

where x the value of the examined variable, µ the mean value and σ the standard

deviation. If we assume µ = 0 and σ = 1, an indicative graphical representation of

the normal distribution is shown below, creating the well-known "bell-curve":

Figure 2.3: Normal Distribution PDF with µ = 0 and σ = 1

To further test this, in figure 2.4 we generate 5000 random samples, like we did for

the uniform distribution above. As expected, the values close to the mean value 0

have a higher frequency of occurrence and the more we deviate from the mean the

less probable a value will occur.

Lognormal Distribution

Finally, we proceed to the description of the lognormal (or log-normal) distri-

bution. A random variable x is lognormally distributed when its natural logarithm

y = ln(x) is normally distributed. As such, a lognormal distribution can be trans-

formed into a normal using logarithmic calculations and vice versa. Apart from the

distribution parameters mentioned above, for the lognormal distribution we have

12

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Figure 2.4: Normal Distribution Samples with µ = 0 and σ = 1

to take into account the skewness as well, which describes the degree of symme-

try in a distribution. This parameter exists for the normal distribution as well,

however, since the normal distribution is always symmetric, its value equals zero.

Furthermore, another difference is that, unlike the normal distribution, the mean,

median and mode values are not equal in the lognormal distribution. As such,

these distributions could be summarised into 3 sub-categories depending on their

skewness:

• The positively or right skewed distribution, in which the tail is on the right

side.

• The symmetrical distribution.

• The negatively or left skewed distribution, in which the tail is on the left side.

Figure 2.5 shows these 3 sub-categories mentioned above, along with the mean-

median-mode relationship for each case:

Figure 2.5: Distribution Skewness [9]

The lognormal distribution plays a very important role in engineering, because

negative values of specific phenomena are physically impossible [10]. The PDF of the

13

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

lognormal distribution can be summarised as:

f (x) =
1

xσ
√

2π
e−

1

2
(ln x−µ

σ)2

(2.5)

where:

• µ the location parameter.

• σ the scale parameter.

It is worth noting that these µ and σ values in equation 2.5 are the mean and

standard deviation of the converted normal distribution of the variable y = ln(x),
not for the lognormal distribution of the variable x. In other words, they define the

mean value and standard deviation of the natural logarithm of x. Since it is possible

to convert a lognormal distribution to its respective normal and vice versa, we can

generate a lognormal distribution by either defining the parameters (µ, σ) of x or ln x.

This can be done with the following calculations:

Assume µx and σx the desired mean and standard deviation of the lognormal

distribution of x and µy and σy the mean and sigma of the normal distribution

y = ln(x). These can be calculated using the following equations [11]:

µy = ln

 µ2

x√
µ2

x + σ2
x

 (2.6)

σy =

√
ln

(
1 +

σ2
x

µ2
x

)
(2.7)

Otherwise, if we would rather avoid more complex calculations, µy could be calcu-

lated after σy with the following equation [10]:

µy = ln(µx) −
1

2
σ2

y (2.8)

Finally, similar to the previous examples, we present the graphical representation of

the lognormal distribution PDF, assuming µ = 0 and σ = 1, in figure 2.6 and validate

it with the generation of 5000 random samples in figure 2.7.

As we can observe, the generated lognormal distribution converges to zero quickly,

leaving multiple data points that rarely occur. In most cases, we assume these sam-

ples as the distribution outliers, which may affect the quality of the desired result.

As such, for the purpose of this work, we use the interquartile range (IQR) method,

which trims the outliers of the data set, keeping only the data from the 25th to the

75th percentile (50% of the total data) to improve the quality and accuracy of the

produced results.

14

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Figure 2.6: Lognormal Distribution PDF with µ = 0 and σ = 1

Figure 2.7: Lognormal Distribution Samples with µ = 0 and σ = 1

2.2 Introduction to STA in Digital Circuits

2.2.1 Static Timing Analysis

Static Timing Analysis (STA) is a technique used to verify the timing of a digital

design. Along with timing simulation, they are the two most common approaches

for timing verification. However, in contrast to timing simulation, STA computes

the expected timing of a design without applying input data values to observe the

result. As such, by defining the external environment of the design, including the

input clocks, STA can determine whether the design can function at the desired

clock frequency [12]. Figure 2.8 shows a basic flowchart of STA.

Static timing analysis is widely recognised and usually preferred over timing

simulations in the semiconductor industry for the timing verification of digital de-

signs, due to its primary benefit of quickly checking all the different timing paths

of a design. Timing simulation produces timing reports only from the circuit paths

15

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Figure 2.8: Static Timing Analysis [12]

directly affected by the specific data values given as inputs. While STA as a field

contains many different concepts, for the purpose of this work we will discuss and

present two of the most important ones, which are the delay and slew values of a

digital circuit.

2.2.2 Delay and Slew Propagation

To accurately describe the delay and slew of a circuit, we will consider a simple

CMOS inverter circuit as an example (figure 2.9).

Figure 2.9: The CMOS Inverter

We call propagation delay the time between the point where the input signal

reaches 50% of its final value and the point where the output signal reaches 50%

of its final value. In other words, the propagation delay of a circuit describes the

time needed in order for an input change to be evident to the output. As such, it

is an essential part of digital circuit design, since inconsistent propagation delays

in a design with millions and billions of gates may result in poor functionality [13].

Propagation delay is not a constant value and is determined by the transition time at

the input (which can be modified by changing the clock frequency of the design) and

the output load of the logic gate, since higher capacity loads require more time to

be fully charged. In chapter 5 of this work, we will also examine cells with different

loads and compare how the propagation delay is affected.

16

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

There are two types of propagation delay, depending on the input and output

signal:

• Fall Delay

• Rise Delay

As their name suggests, fall delay describes the time from 50% of the input rise signal

to 50% of the output fall signal, while rise delay describes the opposite. Figure 2.10

shows the rise and fall delays of the CMOS inverter using an approximate input and

output waveform:

Figure 2.10: Rise and Fall Propagation Delay

For the rest of this thesis, for simplicity, we will refer to propagation delay simply

as ’delay’. We will now present the second value needed for the purpose of this work,

which is the waveform slew or slew rate of an output signal.

We define slew rate as the rate of change of the voltage (or current) of an output

signal to determine how fast the transition between two levels is. As such, the slew

rate is measured as voltage per unit of time and the larger the transition time, the

slower the slew and vice versa [12]. Similar to the delay between two signals, the

slew rate is also categorised into rise and fall slew, depending on the signal. Since

it is difficult to determine the exact starting and ending points of a signal transition,

we choose specific threshold levels as percent of Vdd to define the slew rate. For

example, a rise slew could be the difference from the time the rising edge reaches

20% of Vdd to the time it reaches 80% of Vdd. In this work, we measure the slew

rates as the time between the 10% and the 90% of the signal.

Figure 2.11 presents the measurement of the rise and fall slew rates of a signal

waveform:

Figure 2.11: Rise and Fall Slew Measurement

17

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

The delay and slew measurements of a circuit have a very important role in

electronics and digital design, since they, among others, determine the timing and

functionality of a design. As such, they are the main terms we examine and exper-

iment with in this work to determine how process variation affects the design. We

will briefly review these terms in chapter 4 where we will present our work.

2.3 Introduction to SPICE

SPICE, which stands for Simulation Program with Integrated Circuit Empha-

sis, is an open-source electronic circuit simulator, used for both analog and digital

circuits. Its main purpose is to verify the timing and integrity of the circuits and ap-

proximately predict their behaviour. Since it is open-source, there are many different

versions of SPICE, such as PSPICE, LTSPICE, NGSPICE etc. Some of the SPICE ver-

sions use a Graphical User Interface (GUI), while others are terminal based. The

main code used to describe and simulate a circuit with SPICE is called a SPICE

deck or SPICE netlist. We will briefly present the basic features of a SPICE deck

used for the purpose of this work, in order to understand how SPICE simulation

works.

To add a circuit instance in a SPICE deck, the following must be defined in a

single line in that order:

1. Instance name (usually descriptive of its function, e.g. Cout, Cin for a capacitor

at the output or input respectively).

2. Circuit nodes to wich the element is connected.

3. The values of the electrical characteristics of the component.

We will go in more detail on the SPICE instances in chapter 4 where we will present

the flow of our work. The other most important feature of SPICE is the analy-

sis method of the simulation. The most basic types of SPICE simulation analysis

are:

• DC Analysis, which is used to analyse all the static characteristics of the

circuit, i.e. all the DC characteristics.

• AC Analysis, which is used to analyse all the frequency-based properties, such

as capacitance.

• Transient Analysis, which is the time response analysis, i.e. the complete

function of the circuit during a given time interval.

To simulate and measure the effects of process variation in our circuits, we use

transient analysis, since we need to generate the waveforms of each circuit in

relation to time.

2.4 Process Variation in Digital Circuits

In semiconductor engineering, we define process variation as the variation in

the attributes of transistors, e.g. length, thickness, that are present during the

18

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

fabrication of the design. These variations not only affect the timing and functionality

of the design, but they may also cause malfunctions or even complete failure of the

chip. We can separate process variations into two different categories, depending on

the number of transistors they affect:

• Global variations, which affect all transistors of a design, e.g. temperature

variations.

• Local variations, which only affect one or a small group of transistors.

The main topic of research on this work is timing and delay variations, which,

apart from the process variations mentioned above, could also be caused by the

following reasons [14]:

1. Computing errors in timing analysis, due to either inaccuracies of the device

models, either interconnect parasitics which affect the overall timing.

2. Environmental conditions during device operation. These kinds of variation

are present after the complete manufacturing of the device during its operation.

Such are the operating mode, e.g. low power or high performance mode, the

temperature and the natural degradation.

While these two factors might play an important role in timing variations , for the

purpose of this work, we will focus solely on process timing variations, which occur

during the design and fabrication process in transistor-level. To investigate this

topic, we applied the technique of derating, which we will briefly explain in the final

subsection of this chapter.

2.4.1 Derating

In general, the term derating in electronics refers to the concept of a device

operating at less than its mentioned maximum capabilities. It could be applied in

different parameters of a device, such as voltage or power and its main purpose is to

prolong the life of the device. By operating at less than its rated maximum power, the

device becomes more resistant to the various environmental stresses, thus reducing

its degradation rate and increasing its durability.

Out of the many types of derating, in transistor-level we apply derating at the

transistor parameters, e.g. length and height, to alter the timing between the

circuit components and the design timing in general. The numbers which represent

the amount of derating applied to a parameter are called derate factors. In our

investigation, we generate random derate factors using Monte-Carlo method, apply

them to the desired transistor parameters and examine the output timing variations

produced by the different outcomes.

19

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Chapter 3

Existing Works

Before we move on to the main presentation of our work, let us examine some

of the existing research on the topic of Statistical Static Timing Analysis (SSTA),

in which Monte-Carlo simulation in VLSI circuits belongs to. While SSTA has been

an area of interest of both academic and industrial research, we will present three

academic works which use SSTA to model and investigate circuit power and perfor-

mance.

3.1 Statistical Static Timing Analysis (SSTA) in the

Literature

Statistical Static Timing Analysis (SSTA) refers to the sub-field of STA in

which, instead of the conventional deterministic STA algorithms, the timing of the

circuits is calculated using probability distributions. As such, the output of this

analysis is also a probability distribution of many different outcomes, instead of a

single one.

Monte-Carlo simulations are very common in SSTA investigations, with ran-

domly generated distributions to be used as inputs, in order to examine a variety

of outcomes. In this subsection, we will briefly present three different academic

researches in the field of SSTA, before we move on to the presentation of our inves-

tigation flow.

3.1.1 Investigation on Performance, Power & Area using Deter-

ministic and Monte-Carlo Synthesis Flows

To deal with process variation, the industry tries to calibrate the ASIC flow using

specific golden silicon data obtained from multiple test chip runs. However, these are

mostly applied at the ASIC Back-End flow, i.e. Place & Route, Clock Tree Synthesis,

In-Place Optimisation, Sign-Off. As such, to provide further insight into inter-wafer

and intra-die process variation as well as improved initial data at the Back-End

flow, this first work proposes a deterministic and a Monte-Carlo flow applied at the

post-synthesis gate-level [15].

20

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Since the worst-case scenario is extremely rare for most cases, the deterministic

flow of this work proposes synthesis at the typical corner accompanied by specific

extra actions to close timing in the worst case as well. These extra actions include

the worst case (slow corner) timing analysis of the netlist synthesised at the typical

process corner and the use of derate factors at the critical paths per endpoint, in

order for the optimiser to put more effort in these portions of the design to achieve

timing closure in the worst case, while also preserving the area benefit of the typical

corner synthesis for non-critical paths. The derate factor for each worst case violated

path is calculated as the delay ratio between slow and typical corner, as seen in the

following equation:

Derate =
Dslow

Dtypical
(3.1)

After the derate factor generation, incremental synthesis is performed. Note that

timing closure in the worst case may not be achieved after a single run, so multiple

iterations might be necessary. As such, the typical netlist attains the current worst

case timing conditions and new derate factors are generated. The process is repeated

until all worst case timing conditions are met. Figure 3.1 shows a flowchart of this

iterative deterministic flow.

Figure 3.1: Deterministic Library Corner Based Flow [15]

The Monte-Carlo based flow this work also proposes (figure 3.2), uses as ba-

sis the derate factors calculated from the previous deterministic flow and, using

the Maximum Likelihood Estimation (MLE) method, estimates the parameters

21

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

of a possible numerical distribution, whose random samples could generate these

factors as a result. From the estimated distribution, random derate factors are

generated and applied at each component. Then, synthesis at the typical process

corner is performed and PPA (Power, Performance and Area) results are produced.

The process is repeated by regenerating another set of random derate factors from

the same distribution, until the maximum specified number of successful iterations

is reached.

Figure 3.2: Monte-Carlo Based Synthesis and Optimisation Flow [15]

Both of these flows were tested using four open-source designs and produce an

average 9.74% improvement in area and 22.14% improvement in leakage power in

comparison to netlists synthesised at the worst case, while also meeting worst case

timing.

3.1.2 A Statistical Performance Simulation Methodology for VLSI

Circuits

This second work present a statistical performance simulation (SPS) methodol-

ogy for VLSI circuits by analysing each smaller circuit block separately and generat-

ing the performance distribution for the entire circuit. The main flow consists of the

following steps in general [16]:

1. Generate a statistically significant number of SPICE parameters directly from

Electrical-Test data.

22

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

2. Divide the design into smaller blocks and identify statistically similar and dis-

tinct blocks.

3. Construct a model of the full circuit using the response surface methodology

(RSM).

4. Generate performance distribution of the full model circuit.

Figure 3.3: Circuit behaviour analysed in blocks [16]

The main idea behind this methodology is to greatly reduce the analysis effort by

separating the circuit into statistically distinct sub-blocks. If a block has a statis-

tically similar behaviour to another, then it is excluded from the analysis reducing

the necessary simulations to be performed. After all the distinct block performance

distributions are generated, as shown in figure 3.4, a full circuit model is created

using RSM, which calculates a function relating the block performances to a full

circuit performance. This methodology, while less accurate than Monte-Carlo, is

computationally more efficient, since identical statistical operations are excluded,

saving time [16].

Figure 3.4: Block Performance Distribution Generation [16]

The paper provides more information on RSM and related algorithms used, as

well as experimental results and observations.

23

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

3.1.3 Modelling Circuit Performance Variations due to Statisti-

cal Variability: Monte Carlo Static Timing Analysis

The final work, which we will present here, investigates the impact of random

intra-die statistical variations on digital circuit timing and power consumption. It

compares traditional corner-based STA with Monte-Carlo SPICE simulations and

their proposed method of Monte-Carlo Static Timing Analysis (MCSTA), all tested

on a one bit full adder [17].

Monte-Carlo SPICE Simulations

For this method, RandomSpice was used, a tool which acts as a circuit simulator,

while also providing statistical analysis support. RandomSpice replaces all MOSFET

model instances within a SPICE netlist with randomly picked BSIM instances from

a specific statistical library [17]. The threshold voltages of each transistor was ran-

domly generated from a Gaussian distribution, thus injecting variations into the de-

sign. The investigation was performed on seven levels of threshold voltage variation

(which is represented by the standard deviation σVT of the Gaussian distribution),

from 10% to 50% and 10000 SPICE netlists were generated.

Process Corner Analysis

As mentioned above, corner analysis refers to applying STA while setting pro-

cess and environmental parameters at extreme cases, e.g. worst case scenario (slow

corner), typical corner etc. To apply statistical variations, multiple standard cell li-

braries were generated at ±3σVT , where σVT is the standard deviation of the threshold

voltage Gaussian distribution, calculated from the Monte-Carlo SPICE simulations,

while also applying the same simulation input. Since these extreme cases have a

significantly low possibility to occur, corner based STA usually produces a relatively

pessimistic result [17].

Monte Carlo Static Timing Analysis

This proposed method combines the accuracy of Monte-Carlo SPICE simula-

tions with the simplicity and quickness of STA. RandomSpice generates multiple

randomised netlists of each standard cell in order to create an equivalent standard

cell library which includes the statistical differences between transistors [17]. Then,

STA is applied to all of these different randomised netlists in order to produce a tim-

ing and power consumption distribution. Like the two previous methodologies, the

same input was used and at the end of the work, comparison of all three methods

was presented.

3.2 Thesis’ Used Tools

3.2.1 Cadence Spectre Circuit Simulator

For the experiments of our work, we used Cadence Spectre Circuit Simulator.

Spectre is owned and distributed by Cadence Design Systems and provides all the

basic SPICE features and analyses, as well as SPICE language support. However,

24

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Spectre also includes many improvements over other SPICE tools, such as improved

capacity, accuracy and speed [18]. Apart from the SPICE language support, Spectre

has its own language as well. In this work, we use SPICE netlists for circuit de-

scriptions and measurements, while including Spectre language blocks to perform

the Monte-Carlo simulations. The target language can be changed any time inside

a netlist with the simulator lang command. We will provide further information re-

garding the used Spectre code blocks in the next chapter, where we present our

transistor level Monte-Carlo flow.

25

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Chapter 4

Monte-Carlo Simulations in Digital

Circuits

After presenting the necessary background knowledge, in this chapter, we pro-

ceed to the presentation of our work. To start with, a sample flowchart of the

transistor level Monte-Carlo flow is shown, describing in detail each of the steps in

the process. Each subsection contains either the description of the input files used,

or the actions to be executed by the user.

The Transistor Level Monte-Carlo Flow is executed by a simple bash script, which

will be described below, while Python was used for the SPICE deck generation, as

well as the collection and visualisation of the results using the matplotlib library.

Though other programming languages could also be used for this project, Python

was selected, due to its simplicity and direct interactivity with the user.

4.1 Transistor Level Monte-Carlo Flow

In 4.1 the basic flowchart of the Transistor Level Monte-Carlo Flow is presented.

The purple block corresponds to the main bash script to be used directly by the

user. All the other steps are executed automatically from the script using the input

parameters given by the user. The Python scripts used are shown in green colour,

while the Spectre execution is shown in red colour.

The flow takes as inputs the following parameters in this specific order:

1. "Source" command and the name of the script, i.e. source run_flow.sh.

2. The number of Monte-Carlo iterations performed.

3. The number of chain components, i.e. buffers or inverters.

4. Input signal type, i.e. rise or fall.

5. Buffer or inverter chain declaration, i.e. buf of inv.

6. The specific libcell or libcells to be used from the library, ex. BUFx12_ASAP7_75t_R.

26

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Figure 4.1: Automated Spectre Monte-Carlo Flow

4.1.1 Models Used

For the purpose of this work, a modified version of the ASAP7 7-nm finFET pre-

dictive process design kit was selected, with a maximum voltage threshold of 0.7 V.

This specific library was developed by Arizona State University (ASU) in collabora-

tion with ARM and is open-source, so it is easy to use and modify according to one’s

objective. The PDK, cell libraries and SPICE models are available for download on

GitHub and are regularly updated [19].

4.1.2 Parameters Under Variation

Normally, the transistor length would be an ideal parameter for variation. In

this case however, as shown in 4.2, the transistor length is much shorter than the

transistor width, so process variations in the length are negligible. Thus, the main

parameter under testing is the width. Note that in the transistor models file, the

width (wfin in 4.2) is not a standalone parameter, but a combination of transistor

height and thickness, i.e. hfin and tfin respectively. In order to perform the neces-

sary Monte-Carlo simulations, derate factors must be applied to the aforementioned

parameters, as explained previously in section 2.4.1.

So, to apply these derate factors, two spectre language Monte-Carlo blocks were

added to the models file, one for the NMOS transistor and one for the PMOS. Assum-

ing x derate factor for hfin and y derate factor for tfin, we generate each one of them

randomly from a specific distribution and the total number of samples equals the

number of Monte-Carlo iterations to be performed. Finally, we multiply the default

parameters for height and thickness with the generated derate factors.

Below, we present the Spectre code block for the derate factor generation. Note

that the following code is not used to perform the simulations. This part is included

27

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Figure 4.2: FinFET Channel Length [20]

in the SPICE deck of each design and will be explained in the next subsections.

simulator lang=spectre
parameters x = 1
statistics {

process {
vary x dist=gauss std=0.2 percent=no

}
truncate tr=5

}

Vxparam (Vxnode 0) bsource v=x

parameters y = 1
statistics {

process {
vary y dist=gauss std=0.2 percent=no

}
truncate tr=5

}

Vyparam (Vynode 0) bsource v=y
simulator lang=spice

Table 4.1: Derate Factor Generation

Before each statistics block, the default values of the derate factors are set, which

also act as the mean values of each numerical distribution from which the numbers

are randomly generated. In this case, as presented in each statistics block and in

figure 4.3, the normal (gaussian) distribution is used, with a mean value of 1 and a

standard deviation of 0.2. Finally, a truncate factor is used to set the range of valid

generated values. Each result which is not within the appropriate range, is rejected

and regenerated until a valid value is given.

So, assuming truncate factor tr, the range limits are calculated as:

limits = mean ± (tr · std) (4.1)

From equation 4.1, we can determine the range of accepted factors. In this

case, the truncate factor is 5, so the range limits are 0 and 2 respectively. As such,

any value lower than 0 or higher than 2 will be considered invalid and regenerated

28

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

immidiately until a valid one appears. Constraining the results and truncating

invalid values is obligatory, since there cannot be negative derate factors and the

simulations will result in failure.

Figure 4.3: The Normal Distribution used

Finally, the Vxsource and Vysource commands in the code are solely used for

the visualisation of the generated derate factors to ensure their validity. They do not

impact the functionality of the flow in any way.

4.1.3 Designs Under Investigation

For the purposes of this work, the designs we used are buffer and inverter

chains, using the library cells presented above. As mentioned at the beginning of

the chapter, the user executes the bash script and sets the appropriate parameters

as input from the command line. The flow executes the Python script for the SPICE

deck generation, so it is not required for the user to write it manually. Then, Cadence

Spectre Simulator is executed using the generated SPICE deck. For each step of the

chain, delay and slew are measured, as shown in 4.4, 4.6 and 4.7. After Spectre

completes its execution, the next Python script is executed, which takes the delay

and slew measurements of the last buffer or inverter of the chain and plots them in

a histogram, in order to determine how the results are distributed. The two Python

scripts will be described in more detail in the sections 4.1.4 and 4.1.5 below.

The following figures present the designs that we tested along with the measured

values, depending on the input signal.

To start with, we will present the buffer chain, which is also the simplest one. As

we can see in 4.4, if the input signal is rise, we measure and store the following

values:

• Rise Delay as the time interval between the 50% of the input signal and the

50% of the output signal.

• Rise Slew as the time interval from 10% to 90% of the output signal.

29

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

U1 U2 U3 U4 U5

IN OUT

Rise Input

Fall Input

50% 50%
Rise Delay

10%

90%

Rise Slew

50% 50%
Fall Delay

10%

90%

Fall Slew

Figure 4.4: Buffer Chain

Likewise, if the input signal is fall, we measure the following values:

• Fall Delay as the time interval between the 50% of the input signal and the

50% of the output signal.

• Fall Slew as the time interval from 90% to 10% of the output signal.

Note that in the buffer chain, since the input signal edge does not change from

low to high or vice versa, we can easily determine the last delay and slew values -for

plotting purposes- from the number of chain components given as input. However,

things are more complicated when it comes to inverter chains.

As the name suggests, an inverter shifts the input signal. So, for example, if

the input signal is rise, the output produced will be fall, as shown in 4.5, where the

behaviour of an inverter with a changing input is presented. When the input (red

waveform) is low, the output (yellow waveform) becomes high and vice versa. This

affects the measurements of the delay and slew as well, since the final output varies

depending on both the input signal and the number of the chain components.

To be more specific, the inverter chains are separated into two categories, pre-

sented in figures 4.6 and 4.7 respectively. As such, we take the following measure-

ments for each case:

1. If the inverter chain contains odd number of inverters (figure 4.6):

(a) If input signal is rise:

• Propagation High-to-Low (PHL) Delay as the time interval between

50% of the rise input signal and 50% of the fall output signal.

• Fall Slew as the time interval from 90% to 10% of the fall output

signal.

(b) If input signal is fall:

• Propagation Low-to-High (PLH) Delay as the time interval between

30

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Figure 4.5: Single Inverter Input and Output

50% of the fall input signal and 50% of the rise output signal.

• Rise Slew as the time interval from 10% to 90% of the rise output

signal.

U1 U2 U3 U4 U5

IN OUT

Rise Input

Fall Input 50% 50%

PLH Delay

10%

90%

Rise Slew

50% 50%

PHL Delay

10%

90%

Fall Slew

Fall Output

Rise Output

Figure 4.6: Inverter Chain

2. If the inverter chain contains even number of inverters (figure 4.7):

(a) If input signal is rise:

• Propagation Low-to-High (PLH) Delay as the time interval between

50% of the fall input signal and 50% of the rise output signal.

• Rise Slew as the time interval from 10% to 90% of the rise output

31

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

signal.

(b) If input signal is fall:

• Propagation High-to-Low (PHL) Delay as the time interval between

50% of the rise input signal and 50% of the fall output signal.

• Fall Slew as the time interval from 90% to 10% of the fall output

signal.

U1 U2 U3 U4

IN
OUT

Rise Input

Fall Input

50% 50%

PLH Delay

10%

90%

Rise Slew

50% 50%

PHL Delay

10%

90%

Fall Slew

Fall Output

Rise Output

Figure 4.7: Inverter Chain with Even Number of Inverters

So, to summarise, the above measurements are performed in every component

of the chain for each Monte-Carlo run. At the end of the simulation, Spectre saves

all the values in the design.measure file and shows the minimum and maximum

values, as well as the mean value at the terminal. Out of these results, only the

last delay and slew values are presented in histogram form. More details about the

results of the experiments will be described in chapter 5 below.

4.1.4 SPICE Deck Generation

The first out of the two Python scripts that the flow utilises is responsible for

the automated generation of the component chain SPICE deck. This is mostly done

by a string that stores all the necessary information and it is printed as an output

and redirected to a new file at the end of the script. The inputs of the script are

the number of Monte-Carlo iterations, the number of chain components and the

target libcell or libcells. The script function is almost identical for all design cases

presented in 4.1.3, with some slight differences concerning the measurements of

the inverters. The rise input buffer chain case will be used as the main reference

point for explaining the script, while noting any necessary alterations for the other

cases.

We will now move on to the basic description of the script. Firstly, a string

constant named INITIALBLOCK is set to write the basic SPICE information needed,

i.e. the inclusion of the transistor model files to be used, the ground and power

supply (GND and VDD respectively), the initial diver buffer or inverter with the input

32

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

signal and the initial conditions. In the SPICE language each component is written

in this format:

[NAME] [VSS] [VDD] [IN] [OUT] [LIBCELL]

So for example, by using this format, the first component is declared as:

XU1 VSS VDD U1:A U1:Q BUFx2_ASAP7_75t_R

The rest of the process is automated in a for loop and varies depending on the

number of chain components. Since the circuit is a simple chain, the output of

the previous component is the input of the next, so we use the loop index (named

uindex) to determine each component name, input and output wire. The loop code

can be seen explicitly in table 4.2 below:

for uindex in range(2, lastcomponent):
fullgatename = "XU" + str(uindex)
inputnet = "U" + str(uindex - 1) + ":Q"
outputnet = "U" + str(uindex) + ":Q"

instanceline = fullgatename + " VSS" + " VDD " + inputnet
+ " " + outputnet + " " + gates[uindex%gateslen] + "\n"

add each instance line to the final spice deck
spicedeck += instanceline

Table 4.2: Chain Component Declaration in Python Script

It is worth mentioning that the last parameter gates of the instanceline, which

is the name of the libcell or libcells to be used in the chain, is an array of strings

containing the different libcell names. In case of multiple libcells, a round robin

policy is used, so the libcells are used consecutively depending on their order stored

in the array. As such, the modulo calculated by divining the current chain uindex by

the total count of libcells given (gates array length) is the index pointing at the libcell

for each iteration, which creates a round robin order and returns to the first array

slot after the last one is used. For the purpose of this work, only a single libcell type

was used for each different experiment, however, it was necessary to mention this

feature, since it might be useful for future work and experiments.

After adding all the components instances in the output SPICE deck string, we

proceed to the delay and slew measurements. Similar to the INITIALBLOCK section,

the first buffer or inverter measurement is declared with a constant string which is

added to the string output. As mentioned in 2.3, to calculate the appropriate values,

the SPICE ".MEAS" command is used. In the case of the rise input buffer chain, the

delay and slew calculations of the first buffer are written as:

• .MEAS TRAN U1:Q:RISE_SLEW trig V(U1:Q) VAL=0.070000 RISE=1 targ V(U1:Q)

VAL=0.630000 RISE=1

• .MEAS TRAN U1:Q:RISE_DELAY trig V(U1:A) VAL=0.350000 RISE=1 targ V(U1:Q)

VAL=0.350000 RISE=1

In other words, for the rise slew, the starting point, i.e. trigger, for the measurement

is the first time the rise signal of U1:Q reaches a voltage of 0.07 V (10% of VDD) and

33

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

the ending point, i.e. target, is the first time the same signal reaches a voltage of 0.63

V (90% of VDD). Likewise, the rise delay is measured from the point where the input

U1:A reaches 0.35 V (50% of VDD) until the point where the output U1:Q reaches the

same voltage value. For the fall input buffer chain, the delay and slew are calculated

using the same logic, but with reversed trigger and target values for the slew (from

90% to 10%) and with FALL=1 indication, meaning that the measurements are to

be performed on the falling slope of the signal instead of the rising.

After the first measurement, the others are automated in a for loop presented

below, which functions in a similar way with the loop for the component declaration

above (table 4.2). After each line is generated, it is added to the output string.

for uindex in range(2, lastcomponent):
inputnet = "U" + str(uindex - 1) + ":Q"
outputnet = "U" + str(uindex) + ":Q"

measureslew=".MEAS TRAN "+outputnet+":RISE_SLEW trig V("+outputnet+")
VAL=0.070000 RISE=1 targ V("+outputnet+") VAL=0.630000 RISE=1"

spicedeck += measureslew + "\n"

if uindex == chaincomponents:
measuredelay=".MEAS TRAN "+outputnet+":RISE_DELAY trig V("+inputnet+")

VAL=0.350000 RISE=1 targ V("+outputnet+") VAL=0.350000 RISE=1\n"

spicedeck += measuredelay + "\n"

Table 4.3: Rise Delay and Rise Slew Measurements For Every Buffer

The fall input buffer chain values are measured in the same way. However,

there is an important difference to the measurements when it comes to inverter

chains. Like we described in section 4.1.3 above, the inverter chains are separated

into two categories, depending on whether we have even or odd number of invert-

ers and these two categories are also separated into two different subcategories,

according to the input signal. Since the input slope is reversed after each inverter

instance, the quantities to be calculated are different after each component. For

example, assuming we have a rise input signal, the first inverter measurements

will be PHL_DELAY and FALL_SLEW, the second inverter measurements will be

PLH_DELAY and RISE_SLEW etc. In general, this pattern could be implemented as

(for rise input):

• We measure PLH_DELAY and RISE_SLEW for even numbered inverters.

• We measure PHL_DELAY and FALL_SLEW for odd numbered inverters.

Because of this, the above loop is different for the inverter chains. In 4.4 the mea-

surement code block for the inverter chains with rise input is presented. For the

chains with fall input, the pattern is the opposite, i.e. for even numbered invert-

ers we measure PHL_DELAY and FALL_SLEW and for odd numbered inverter we

measure PLH_DELAY and RISE_SLEW. Since the code block for this case is almost

identical, it will be omitted for simplicity reasons. Also note that, in this part of the

flow, the number of inverters (even or odd) does not affect the implementation. This

difference only concerns the results collection.

34

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

for even numbered inverters, measure low-high delay and rise slew
for odd numbered inverters, measure high-low delay and fall slew
for uindex in range(2, lastcomponent):
inputnet = "U" + str(uindex - 1) + ":Q"
outputnet = "U" + str(uindex) + ":Q"

if (uindex % 2 == 0):
measureslew = ".MEAS TRAN "+outputnet+":RISE_SLEW trig V("+outputnet+")
VAL=0.070000 RISE=1 targ V(" + outputnet + ") VAL=0.630000 RISE=1"

spicedeck += measureslew + "\n"

measuredelay = ".MEAS TRAN "+outputnet+":PLH_DELAY trig V("+inputnet+")
VAL=0.350000 FALL=1 targ V(" + outputnet + ") VAL=0.350000 RISE=1\n"

spicedeck += measuredelay + "\n"
else:
measureslew = ".MEAS TRAN "+outputnet+":FALL_SLEW trig V("+outputnet+")
VAL=0.630000 FALL=1 targ V(" + outputnet + ") VAL=0.070000 FALL=1"

spicedeck += measureslew + "\n"

measuredelay = ".MEAS TRAN "+outputnet+":PHL_DELAY trig V("+inputnet+")
VAL=0.350000 RISE=1 targ V(" + outputnet + ") VAL=0.350000 FALL=1\n"

spicedeck += measuredelay + "\n"

Table 4.4: Rise Delay and Rise Slew Measurements For Every Inverter

Following this loop, we proceed to the Monte-Carlo simulation section of the

deck. Since we use Spectre as the simulator, we switch the language to the native

Spectre language, as we mentioned in 3.2, for this part. This is mandatory, due to the

fact that each circuit simulator program has its own unique Monte-Carlo simulation

and while Spectre is compatible with the SPICE language, it cannot recognise all

the different functions that are unique to different tools. In the Spectre language, a

Monte-Carlo simulation is declared as follows:

simulator lang=spectre

mc1 montecarlo variations=all seed=1234 numruns=[no. of runs] {
sw1 sweep param=temp values=[27] {

tran1 tran start=0 stop=5n step=0.001p
}

}

simulatorOptions options save=none

simulator lang=spice

Table 4.5: Spectre Language Monte-Carlo Runs Declaration

By observing the Spectre code in table 4.5, in order for the tool to run Monte-

Carlo simulations correctly, the following conditions must apply:

1. A montecarlo block, named mc1 in this case, must be declared, along with the

35

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

appropriate parameters:

(a) variations to specify which type of variations to apply: process, mismatch

or both. While mostly process variations concern us in this work, for these

specific experiments, there is no important difference, so the parameter is

set to all.

(b) seed to determine the seed value of the pseudo-random derate factor

generation. In this case, the default 1234 value is set.

(c) numruns for the number of Monte-Carlo runs to be executed. In this

flow, this number is taken as an input from the command line, so it is

left to the user’s discretion. However, for the purpose of this work, all the

experiments performed 2000 runs.

2. Inside the montecarlo block, a sweep block is obligatory, mostly to set the

different temperatures for the experiments. However, since sweep analyses

go beyond the scope of this thesis, all the values remain unchanged at their

default values, including the temperature at 27°C.

3. Finally, inside the sweep block, there is a tran command, which is similar to

SPICE transient analysis. As seen in the code above, the paremeters set are

the starting and ending points and the step, which is the time interval between

measurement repetitions. The values set in the code sample are the same for

all the experiments.

Important Note: For the Monte-Carlo simulations to take effect, one or more statis-
tics blocks, which are responsible for the component variations, must be declared

in the file containing the parameters to be varied, as presented in section 4.1.2.

The simulator will read those blocks and generate the random derate factors for

each run. In any other case, the Monte-Carlo block will not have any parameters to

variate and the simulator will produce a warning.

Finally, after the Spectre Monte-Carlo block is inserted into the output string,

the SPICE deck is complete and is written using the Python print command to a

newly created ".sp" file. Then, the bash flow executes Spectre simulator using the

following command:

spectre -64 generated_spice_deck.sp

Spectre performs all the necessary simulations and produces the requested mea-

surements after each run. At the end of last Monte-Carlo run, the minimum, max-

imum and mean values of each result is presented. More about the results will be

presented in chapter 5.

4.1.5 Results Collection

At last, we have the second Python script, which is also the final step of the

Spectre Monte-Carlo flow and is used for the collection and visualisation of the

results. After Spectre finishes all the simulations, it produces a .measure file which

contains all the results from each run. For example, in this case, since we want

to measure the delay and slew of each buffer or inverter, the file will contain all

these values for each Monte-Carlo iteration. This file will be used as input for the

36

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

script and, by using Python libraries matplotlib and numpy we will visualise in a

histogram the desired results, which in this case are the delay and slew of the last

buffer or inverter. Although with the following explanation of the script, it would

be simple to plot the delay and slew values of all the components, we omit them

since the results would not be that different and thus the more output files are

redundant.

The main purpose of the result visualisation is to investigate how the desired

output values are distributed for the different iterations by taking into consideration

the normally distributed derate factors from the input. To be more specific, in

the VLSI field, this is useful to determine in which values the delay and slew of a

circuit converge, so that the designer will constrain the chip accordingly. This result

examination is done by counting how many times an output is repeated between

Monte-Carlo iterations and by plotting these repetitions for each different number.

So, in detail, the designated results are presented in a Cartesian coordinate system

like this:

• X-axis contains all the different output values produced from the .measure file,

i.e. all the delay and slew values of the last component.

• Y-axis contains how many times each respective value of the x-axis is gener-

ated.

As a result, the generated graph will take the form of a numerical distribution,

which is a logical conclusion, since the input derate factors are normally distributed.

Also, in order to generate the results correctly, a simplification of the delay and slew

numbers must be done: Spectre produces each output with high accuracy, thus

containing many decimal point digits. If we take all the numbers unmodified as

Spectre generates them, the plot or histogram will be unreadable, since, if we take

into account all the digits, no number is repeated more than once. However, if we

round all the numbers to the same amount of significant digits, we could create the

histogram and determine its distribution, without affecting the quality of the results,

since the latter digits in a floating point number do not make much of a difference in

cases like this. For the experiments of this work, the parameter SIGNIFICANTDIGITS
for the buffer chains was set to 13 and for the inverter chains to 14, except where

noted otherwise.

With that in mind, we proceed to the explanation of the script. Its functionality

could be summarised in the following steps:

1. Two integer arrays are set, for delays and slews respectively.

2. Two string for the names of the last component measurements are set.

3. The .measure file is opened in read mode.

4. In a loop, the file is read line by line and two checks are performed:

• If a component delay name is found, the next line is read using the readline
command and the number is rounded and appended to the delay array.

• Same process, but for slew.

5. Using the unique function of the numpy library, the frequency of occurrence

37

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

of each unique delay and slew value is calculated, i.e. how many times a

number is repeated in the iterations. Each of these frequencies is stored in the

unique array, the length of which will be used as the total count of bins in the

histogram.

6. Finally, using the hist function of the matplotlib library, the histograms pre-

senting the distribution for the delay and slew are created and stored.

While the process is almost the same for the inverter chains, there is a slight dif-

ference. As we mentioned in 4.1.3, the last component measurements are different

depending on the total count of inverters (even or odd) and the input. So, according

to these cases presented above, we set a flag variable mode to determine which values

to look for in the Spectre output file. In the code, all the cases can be summarised

like this:

get last component delay and slew, depending on the input signal
and the number of chain components
if ((inputsignal == "rise" and inverters % 2 != 0) or

(inputsignal == "fall" and inverters % 2 == 0)):

lastcomponentdelay = "u" + chaincomponents + ":q:phl_delay"
lastcomponentslew = "u" + chaincomponents + ":q:fall_slew"
mode = 1

elif ((inputsignal == "rise" and inverters % 2 == 0) or
(inputsignal == "fall" and inverters % 2 != 0)):

lastcomponentdelay = "u" + chaincomponents + ":q:plh_delay"
lastcomponentslew = "u" + chaincomponents + ":q:rise_slew"
mode = 2

Table 4.6: Last Component Measurement Cases for Inverter Chains

After the collection and rounding of the numbers in the arrays, a mode check

is performed, in order to create the correct histograms. Apart from these slight

alterations, the rest of the results collection process stays the same. The script

then stores the histograms locally in png format and the execution of the flow is

terminated.

This concludes the explanation of the Transistor-level Monte-Carlo flow. In the

next chapter, the results of our experiments with the flow will be presented and

explained.

38

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Chapter 5

Experimental Results

As mentioned in the previous chapter, when Spectre finishes all the Monte-Carlo

runs, the terminal shows a summary of the results stored in the .measure file. At

the end of each Spectre run, we can see the minimum, maximum and mean values

of every variable measured. The sknewness of the distribution of each value is also

shown. It is important to observe this summary of the results before moving on to

the histogram examination, since from these values we can determine if an error in

the calculations has occurred. If all these values (min, max, mean, skewness) are

the same for each different entry, then each random derate factor generated was the

same. This indicates that the derate factor generation was not successful, because

by applying the same factor in every run, there is no process variation. In any other

case, we can assume that the flow was completed successfully and examine the

results produced by the last step of the flow.

The .measure file contains all the calculated delay and slew values from the

Spectre runs. As explained in section 4.1.5, only the last chain component delay

and slew results are presented graphically for simplicity reasons and to avoid redun-

duncy. The two key factors of the experiments are the number of components and

the load drive of the selected libcell, i.e. BUFx2, BUFx4 etc, with the BUFx4 driving

higher load than the BUFx2. By experimenting with these two design properties, we

can examine the behaviour of the delay and slew in many different situations. For

the buffer chains, we used chains of 4 and 20 components respectively and for the

inverter chains, the same count was used along with the inclusion of 21-inverter

chains, to examine the odd-numbered chains as well.

As for the load drive of the libcells, the concept was to try three different cases:

low, middle and high. So, the following libcells were selected:

• Buffers:

– BUFx2 (lowest)

– BUFx10

– BUFx24 (highest)

• Inverters:

– INVx2 (lowest)

39

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

– INVx8

– INVx13 (highest)

In the chapter sections, all the results histograms will be presented and com-

pared. Section 5.1 contains the buffer chain experimental results, while section 5.2

contains the inverter chain experimental results. After the explanations of all the

graphs, a conclusive summary of all the results will be included for possible further

expansion of this research work.

5.1 Buffer Chains

Like we mentioned above, for each different libcell, we present the experimental

results in each subsection and cover both rise and fall input cases. After all the

histograms are shown, there will be a comparison of the results within each subsec-

tion. Finally, at the end of this subsection, the differences between the three libcells

tested will be explained.

For each subsection, buffer chains with 4 and 20 components are included.

5.1.1 BUFx2 Chain

4 BUFx2 - Rise Input

Figures 5.1a and 5.1b show the rise delay and slew of the last buffer in a 4

component buffer chain:

(a) 4 BUFx2 Rise Delay (b) 4 BUFx2 Rise Slew

Figure 5.1: 4 BUFx2 Rise Results

4 BUFx2 - Fall Input

Figures 5.2a and 5.2b show the fall delay and slew of the last buffer in a 4

component buffer chain:

From a first glance at the result histograms, the output delay measurements

create a normal distribution (with the exclusion of the outliers) and the slew mea-

surements from the multiple iterations create a slight lognormal distribution, which

40

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 4 BUFx2 Fall Delay (b) 4 BUFx2 Fall Slew

Figure 5.2: 4 BUFx2 Fall Results

is often expected, as noted by variation experts, since the input derate factors are

generated randomly from a normal distribution. Also, it is worth noting that the fall

delay is slightly higher than the rise one.

Note that these observations are present in all the following experiments, so they

will not be mentioned again.

20 BUFx2 - Rise Input

We will now move on to the longer BUFx2 chains, containing a total of 20 com-

ponents each. Figures 5.3a and 5.3b contain the rise delay and rise slew result

histograms respectively:

(a) 20 BUFx2 Rise Delay (b) 20 BUFx2 Rise Slew

Figure 5.3: 20 BUFx2 Rise Results

20 BUFx2 - Fall Input

Similarly, we present the corresponding histograms for fall input (figures 5.4a

and 5.4b):

41

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 20 BUFx2 Fall Delay (b) 20 BUFx2 Fall Slew

Figure 5.4: 20 BUFx2 Fall Results

As we can observe, the results are almost identical to the smaller 4 BUFx2

chains. So, for the BUFx2 chains, we can assume that the number of components

does not affect the overall distribution and behaviour of the results.

5.1.2 BUFx10 Chain

In this subsection, the same buffer chains will be examined, but with a different

buffer libcell. Instead of BUFx2, a higher drive cell BUFx10 is used.

4 BUFx10 - Rise Input

Figures 5.5a and 5.5b contain the output result histograms for the BUFx10 rise

input chains:

(a) 4 BUFx10 Rise Delay (b) 4 BUFx10 Rise Slew

Figure 5.5: 4 BUFx10 Rise Results

4 BUFx10 - Fall Input

Likewise for fall input (figures 5.6a and 5.6b):

42

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 4 BUFx10 Fall Delay (b) 4 BUFx10 Fall Slew

Figure 5.6: 4 BUFx10 Fall Results

The same observations concerning the normal distribution of the delay results

and the lognormal distribution of the slew results can be seen here as well, we can

see that the mean and median values of each histogram in order, are higher than

their respective ones in the BUFx2 chains. Again the fall delay is slightly higher on

average, than the rise delay. However, while we expected both the delay and slew

distributions to be a bit higher than the BUFx2 ones, due to the higher load, we can

see that does not happen here. So, in this case, the difference in the load does not

make much of an impact.

20 BUFx10 - Rise Input

In a similar manner, below we present the same results for the longer 20 BUFx10

chains. For rise input, the results are shown here in figures 5.7a and 5.7b respec-

tively:

(a) 20 BUFx10 Rise Delay (b) 20 BUFx10 Rise Slew

Figure 5.7: 20 BUFx10 Rise Results

20 BUFx10 - Fall Input

Likewise for fall input (figures 5.8a and 5.8b):

43

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 20 BUFx10 Fall Delay (b) 20 BUFx10 Fall Slew

Figure 5.8: 20 BUFx10 Fall Results

As we can determine from these results in figures 5.8a and 5.8b, the number of

components in the chain does not alter the distribution of the results greatly, like

we mentioned in the BUFx2 experiments. Other than that, the conclusions we came

to in the smaller BUFx10 chains apply here as well.

5.1.3 BUFx24 Chain

Finally, we present the experimental results using the BUFx24 libcell.

4 BUFx24 - Rise Input

Figures 5.9a and 5.9b show the results for the 4 BUFx24 rise input chains:

(a) 4 BUFx24 Rise Delay (b) 4 BUFx24 Rise Slew

Figure 5.9: 4 BUFx24 Rise Results

4 BUFx24 - Fall Input

Likewise for fall input (figures 5.10a and 5.10b):

44

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 4 BUFx24 Fall Delay (b) 4 BUFx24 Fall Slew

Figure 5.10: 4 BUFx24 Fall Results

As expected due to the much higher load, the distributions are shifted to the

right of the x-axis, meaning that both delay and slew values are higher. Now that we

have tested all the three different libcells, it is worth mentioning that the higher the

drive cell, the more lognormally skewed the distributions become, especially when

it comes to the slew distributions. Now, let us examine whether in this final case

for the buffer chains, the number of buffers affects the output delay and slew or

not.

20 BUFx24 - Rise Input

The result histograms for the 20 BUFx24 rise input chains are shown in figures

5.11a and 5.11b:

(a) 20 BUFx24 Rise Delay (b) 20 BUFx24 Rise Slew

Figure 5.11: 20 BUFx24 Rise Results

20 BUFx24 - Fall Input

And finally, we present the 20 BUFx24 fall input chains (figures 5.12a and

5.12b):

45

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 20 BUFx24 Fall Delay (b) 20 BUFx24 Fall Slew

Figure 5.12: 20 BUFx24 Fall Results

As we can observe by comparing the histograms in figures 5.11 and 5.4 with

their respective ones in 5.9 and 5.10, we conclude that the number of buffers does

not greatly affect the output results in any case.

5.1.4 Result Summary for Buffer Chains

From the above Monte-Carlo simulations, we examined the basic timing be-

haviour of different buffer chains. As such, we now have a general idea of the

process variation of the delay and slew values by generating pseudo-random derate

factors at the input of each circuit. Considering that the input derate factors are

calculated from a normal distribution, as explained in chapter 4.1.2, from the ex-

perimental results presented, we come to the following conclusions about the timing

of the circuits while simultaneously taking into account this simple process variation

case created from the derate factors:

• The slew values measured at the output of the chain are distributed lognor-

mally and right-skewed.

• Fall delay is slightly higher than rise delay.

• The number of components in the chain, does not greatly affect the output

delay and slew values.

• The higher the buffer drive cell, the higher the delay and slew values and the

more skewed the output distributions become.

These results can be further investigated, by testing more different components

and circuits, in order for a designer to constrain the chip accordingly. In the next

section, the experimental results of our second design type, the inverter chains, will

be presented and analysed.

46

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

5.2 Inverter Chains

While the inverter chains are created from the same flow as the buffer chains,

their output measurements are dependent on the number of components and the

input signal. As such, we’ve also included chains with 21 inverters as well for the

following experiments, to examine the case where the output signal is opposite of

the input signal as well. Below we present all the results extracted from the inverter

chains and analyse the output delay and slew values, as we explained them in

4.1.3.

5.2.1 INVx2 Chain

4 INVx2 - Rise Input

Figures 5.13a and 5.13b present the output distribution for the delay and slew

values for the 4 INVx2 chains with rise input:

(a) 4 INVx2 PLH Delay (b) 4 INVx2 Rise Slew

Figure 5.13: 4 INVx2 Rise Results

At first glance, we can observe that both graphs lean towards a slight lognormal

distribution, while their average values are also lower than their respective buffer

chains. It is worth mentioning that only for 4 INVx2 chains, the SIGNIFICANTDIGITS
parameter for the results collection was reduced from 14 to 13, which is the same

number set in the buffer chains. This was done in order to provide a more clear

presentation of the results, due to higher variation.

4 INVx2 - Fall Input

Below we present the same chains for fall input signal (figures 5.14a and 5.14b).

While both distributions have a similar shape with the rise input ones, we can

observe that their average delay and slew values are lower. This is especially visible

in the slew graph.

20 INVx2 - Rise Input

Now let us try increasing the number of inverters to 20. In figures 5.15a and

5.15b the output delay and slew results of INVx2 chains consisting of 20 components

47

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 4 INVx2 PHL Delay (b) 4 INVx2 Fall Slew

Figure 5.14: 4 INVx2 Fall Results

and rise input signal are presented. The SIGNIFICANTDIGITS parameter was set

back to 14, since the observations are clearer now. Average values remain the

same compared to the 4-component INVx2 rise chains. However, since we had to

reduce the number of SIGNIFICANTDIGITS for the above case, we can assume that

the variation here is slightly lower, albeit much higher than their respective buffer

chains. The skewness of the distributions is also a bit lower, leaning towards a

normal distribution.

(a) 20 INVx2 PLH Delay (b) 20 INVx2 Rise Slew

Figure 5.15: 20 INVx2 Rise Results

20 INVx2 - Fall Input

Let us present now the above values for the fall input 20-component INVx2

chains, as shown in figures 5.16a and 5.16b. As observed by the following graphs,

the results are similar to the above cases: the average delay and slew values are

lower than the rise chains -as seen in the 4-component chains as well- but the

distributions lean more towards a normal distribution, similar to the 20-component

rise chains.

48

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 20 INVx2 PHL Delay (b) 20 INVx2 Fall Slew

Figure 5.16: 20 INVx2 Fall Results

21 INVx2 - Rise Input

In figures 5.17a and 5.17b we present the output delay and slew values of the

21-component inverter chain with rise input. Note that the output values are the

opposite of the previous rise input inverter chains, since there is one more inverter

present.

(a) 21 INVx2 PHL Delay (b) 21 INVx2 Fall Slew

Figure 5.17: 21 INVx2 Rise Results

From the above graphs, we determine that the average delay and slew values are

also dependent on the output signal, since the distribution are more similar to the

previous fall input chains instead of the rise input ones.

21 INVx2 - Fall Input

Similar case with fall input, producing again the opposite values compared to

the input (figures 5.18a and 5.18b. As observed in the exact above case, the results

here follow the same pattern, as they are more similar to the rise input chains with

even number of components.

49

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 21 INVx2 PLH Delay (b) 21 INVx2 Rise Slew

Figure 5.18: 21 INVx2 Fall Results

5.2.2 INVx8 Chain

4 INVx8 - Rise Input

The smallest of the INVx8 chains with rise input, produces these distributions

as results (figures 5.19a and 5.19b):

(a) 4 INVx8 PLH Delay (b) 4 INVx8 Rise Slew

Figure 5.19: 4 INVx8 Rise Results

The distributions are slightly more skewed and lean more towards a lognormal

distribution. However, both delay and slew values are relatively lower than the INVx2

chains, which is the opposite phenomenon we observed in the buffer chains, where

the higher the input load, the higher the output delay and slew values as well.

4 INVx8 - Fall Input

In figures 5.20a and 5.20b we present the same chain with fall input. Similar to

the INVx2 chains, average delay and slew values are lower than the ones in the rise

input chains. The delay distribution is a little less skewed for this case.

50

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 4 INVx8 PHL Delay (b) 4 INVx8 Fall Slew

Figure 5.20: 4 INVx8 Fall Results

20 INVx8 - Rise Input

We will now present the larger INVx8 chains, starting from the 20-inverter rise

input chain, as shown in figures 5.21a and 5.21b:

(a) 20 INVx8 PLH Delay (b) 20 INVx8 Rise Slew

Figure 5.21: 20 INVx8 Rise Results

While in the INVx2 chains, we observed that the 20-component chains produced

slightly less variation than the 4-component ones, that does not seem to be the case

here, where the variation looks similar to the 4-component rise input INVx8 chains,

with the average delay and slew values being almost the same as well.

20 INVx8 - Fall Input

In the equivalent fall input chains (figures 5.22a and 5.22b), we come at the

same conclusions regarding the fall delay and slew values, which are relatively lower

than the rise ones. Most of the distribution characteristics remain the same as the 4-

component fall input inverter chain, with a slight exception in the delay distribution

wich is a bit more skewed. So, the number of components does not affect the overall

variation in this case either.

51

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 20 INVx8 PHL Delay (b) 20 INVx8 Fall Slew

Figure 5.22: 20 INVx8 Fall Results

21 INVx8 - Rise Input

With the inclusion of an extra inverter in the rise input chain we have (figures

5.23a and 5.23b):

(a) 21 INVx8 PHL Delay (b) 21 INVx8 Fall Slew

Figure 5.23: 21 INVx8 Rise Results

Similar to the 21-component rise input chain, the output values produced are

the opposite ones (i.e. fall delay and slew) and the results are more similar to the fall

even numbered INVx8 chains.

21 INVx8 - Fall Input

The same conclusion could also be drawn from the equivalent fall input chain,

as seen in figures 5.24a and 5.24b:

52

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 21 INVx8 PLH Delay (b) 21 INVx8 Rise Slew

Figure 5.24: 21 INVx8 Fall Results

5.2.3 INVx13 Chain

4 INVx13 - Rise Input

We will now move on to the highest inverter libcells. Below we present the

4-component INVx13 rise input chain results (5.25a and 5.25b):

(a) 4 INVx13 PLH Delay (b) 4 INVx13 Rise Slew

Figure 5.25: 4 INVx13 Rise Results

While the average values are closer to the INVx2 chains, the skewness of the

distribution is higher, clearly leaninng towards a lognormal distribution.

4 INVx13 - Fall Input

The same findings can be observed in the fall input chain as well, i.e. distribution

skewness is larger and the average delay and slew values are realtively lower than

the rise ones (figures 5.26a and 5.26b).

53

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 4 INVx13 PHL Delay (b) 4 INVx13 Fall Slew

Figure 5.26: 4 INVx13 Fall Results

20 INVx13 - Rise Input

In figures 5.27a and 5.27b we present the results of the rise input INVx13 chains

when increasing the number of components to 20:

(a) 20 INVx13 PLH Delay (b) 20 INVx13 Rise Slew

Figure 5.27: 20 INVx13 Rise Results

The distributions are almost identical to the 4-component rise input INVx13

chains, so the number of component does not greatly affect the variation.

20 INVx13 - Fall Input

The same observations are present in the fall input 20-component INVx13 chains

(figures 5.28a and 5.29b), which produce similar results to the 4-component equiv-

alent chains.

21 INVx13 - Rise Input

By adding one more inverter and setting the input signal to rise, the following

results are produced, as shown in figures 5.29a and 5.29b. The same conclusions

54

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 20 INVx13 PHL Delay (b) 20 INVx13 Fall Slew

Figure 5.28: 20 INVx13 Fall Results

we reached by examining the previous 21-inverter chains, are present here as well,

meaning that, not only the distributions are more skewed, but also the results are

more dependent on the output signal.

(a) 21 INVx13 PHL Delay (b) 21 INVx13 Fall Slew

Figure 5.29: 21 INVx13 Rise Results

21 INVx13 - Fall Input

Finally, the 21-inverter fall input chain results (figures 5.30a and 5.30b), where

we draw the same conclusions as before. Likewise, since the output signal is the

opposite of the input, the results here are closer to the rise input even numbered

inverter chains.

55

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

(a) 21 INVx13 PLH Delay (b) 21 INVx13 Rise Slew

Figure 5.30: 21 INVx13 Fall Results

5.2.4 Result Summary for Inverter Chains

To summarise, by generating the same input derate factors, we performed the

same simulation for different inverter chains and investigated their basic timing

behaviour. As such, although there were some unique observations present in some

cases, we have come to the following general conclusions for the inverter chain

experiments:

• The output timing variations of higher libcells, while keeping a similar range of

values, generate a more lognormal distribution than the lower ones.

• In most of the cases, similar to the buffer chains, the number of inverters

present in the chain, does not greatly affect the output delay and slew values.

• The output values are also dependent on the type of the output signal, while

fall (PHL) delays and slews are relatively lower than the rise ones. This could

imply that a fall output of an inverter is slightly faster than a rise one.

• Inverter chains generally produced more variations than buffer chains.

• Higher inverter libcells produced slightly less variations than the lower ones.

Similar to the buffer chains, these results can be further investigated by testing more

complex inverter circuits.

56

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Chapter 6

Conclusion and Future Work

In this work, we created and presented an investigation-oriented transistor level

Monte-Carlo flow to research process variation in simple digital circuits its effect on

their timing analysis. By generating a distribution-based variation in the form of

derate factors, we performed multiple simulations with this flow and presented the

experimental delay and slew results in numerical distributions as well. While this

flow currently only support simple basic circuits like the ones tested, it could be

used as the basis to create more automated Monte-Carlo flows for more complex

circuits, thus providing a more well-rounded approach in the field of SSTA. As such,

this study could be expanded upon to integrate more and more statistical methods

of timing analysis in the industry and thus, reducing the amount of pessimism of

traditional STA and leading to the ovrall performance and functionality improvement

of ASICs in the long run.

As part of our future work, the expansion of this flow to support circuits with

a fanout-of-4 is intended, as well as the implementation of a Gate-Level Monte-

Carlo flow, which, instead of transistor level, applies derating in gate level of a

specific component or library cell type. Gate-level Monte-Carlo, while less accurate,

is much more computationally efficient, since the amount of SPICE simulations is

greatly reduced. As such, a combinational method of transistor and gate level Monte-

Carlo could be used, in order to easily apply derating and multiple simulations in

much larger circuits, while also retaining the transistor level SPICE simulations for

specified critical parts of the design, that require higher accuracy.

57

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

Bibliography

[1] “What Is Numerical Analysis?” [Online]. Available: https://www.mathworks.

com/discovery/numerical-analysis.html

[2] “Direct and Iterative Methods.” [Online]. Available: https://en.wikipedia.org/

wiki/Numerical_analysis#Direct_and_iterative_methods

[3] “Monte Carlo Method Definition.” [Online]. Available: https://en.wikipedia.

org/wiki/Monte_Carlo_method

[4] “Probability Distribution.” [Online]. Available: https://www.investopedia.com/

terms/p/probabilitydistribution.asp

[5] “Probability Density Function (PDF).” [Online]. Available: https://www.

investopedia.com/terms/p/pdf.asp

[6] “StatDist - Plot Distributions Online.” [Online]. Available: https://statdist.com/

[7] “Normal Distribution.” [Online]. Available: https://www.investopedia.com/

terms/n/normaldistribution.asp

[8] “Mean, Median and Mode.” [Online]. Available: https://medium.com/@nhan.

tran/mean-median-an-mode-in-statistics-3359d3774b0b

[9] “Skewness.” [Online]. Available: https://en.wikipedia.org/wiki/Skewness

[10] K.-H. Chang, e-Design. Boston: Academic Press, 2015. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/B9780123820389000107

[11] “Log-normal Distribution.” [Online]. Available: https://en.wikipedia.org/wiki/

Log-normal_distribution

[12] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs A
Pratical Approach. Springer, 2009.

[13] “Propagation Delay.” [Online]. Available: https://chipedge.com/

analysis-of-propagation-delay-in-vlsi-cmos-design/

[14] P. Das and S. K. Gupta, “Efficient post silicon validation via segmentation of

the process variation envelope: Global vs. local variations.”

[15] N. Blias, I. Lilitsis, S. Simoglou, E. Bakas, and C. Sotiriou, “Investigation on per-

formance, power, area trade-offs using deterministic and monte-carlo process

variation aware synthesis flows.”

[16] M. Orshansky, J. C. Chen, and C. Hu, “A statistical performance simulation

methodology for vlsi circuits.”

58

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

https://www.mathworks.com/discovery/numerical-analysis.html
https://www.mathworks.com/discovery/numerical-analysis.html
https://en.wikipedia.org/wiki/Numerical_analysis#Direct_and_iterative_methods
https://en.wikipedia.org/wiki/Numerical_analysis#Direct_and_iterative_methods
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://www.investopedia.com/terms/p/probabilitydistribution.asp
https://www.investopedia.com/terms/p/probabilitydistribution.asp
https://www.investopedia.com/terms/p/pdf.asp
https://www.investopedia.com/terms/p/pdf.asp
https://statdist.com/
https://www.investopedia.com/terms/n/normaldistribution.asp
https://www.investopedia.com/terms/n/normaldistribution.asp
https://medium.com/@nhan.tran/mean-median-an-mode-in-statistics-3359d3774b0b
https://medium.com/@nhan.tran/mean-median-an-mode-in-statistics-3359d3774b0b
https://en.wikipedia.org/wiki/Skewness
https://www.sciencedirect.com/science/article/pii/B9780123820389000107
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Log-normal_distribution
https://chipedge.com/analysis-of-propagation-delay-in-vlsi-cmos-design/
https://chipedge.com/analysis-of-propagation-delay-in-vlsi-cmos-design/

[17] M. Merrett, P. Asenov, Y. Wang, M. Zwolinski, D. Reid, C. Millar, S. Roy, Z. Liu,

S. Furber, and A. Asenov, “Modelling circuit performance variations due to

statistical variability: Monte carlo static timing analysis.”

[18] “Spectre Circuit Simulator User Guide.”

[19] “The-OpenROAD-Project: ASAP7.” [Online]. Available: https://github.com/

The-OpenROAD-Project/asap7

[20] “SAMSUNG 14nm FinFET Process.” [Online]. Avail-

able: https://semiconductor.samsung.com/us/support/tools-resources/

dictionary/semiconductor-glossary-fin-field-effect-transistor-finfet-process/

59

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 23:20:09 EEST - 3.141.35.227

https://github.com/The-OpenROAD-Project/asap7
https://github.com/The-OpenROAD-Project/asap7
https://semiconductor.samsung.com/us/support/tools-resources/dictionary/semiconductor-glossary-fin-field-effect-transistor-finfet-process/
https://semiconductor.samsung.com/us/support/tools-resources/dictionary/semiconductor-glossary-fin-field-effect-transistor-finfet-process/

	Introduction
	Aim of this Work
	Main Flow of this Work

	Background
	Mathematical Background
	Numerical Analysis
	Monte-Carlo Method

	Introduction to STA in Digital Circuits
	Static Timing Analysis
	Delay and Slew Propagation

	Introduction to SPICE
	Process Variation in Digital Circuits
	Derating

	Existing Works
	Statistical Static Timing Analysis (SSTA) in the Literature
	Investigation on Performance, Power & Area using Deterministic and Monte-Carlo Synthesis Flows
	A Statistical Performance Simulation Methodology for VLSI Circuits
	Modelling Circuit Performance Variations due to Statistical Variability: Monte Carlo Static Timing Analysis

	Thesis' Used Tools
	Cadence Spectre Circuit Simulator

	Monte-Carlo Simulations in Digital Circuits
	Transistor Level Monte-Carlo Flow
	Models Used
	Parameters Under Variation
	Designs Under Investigation
	SPICE Deck Generation
	Results Collection

	Experimental Results
	Buffer Chains
	BUFx2 Chain
	BUFx10 Chain
	BUFx24 Chain
	Result Summary for Buffer Chains

	Inverter Chains
	INVx2 Chain
	INVx8 Chain
	INVx13 Chain
	Result Summary for Inverter Chains

	Conclusion and Future Work

