University of Thessaly
Department of Electrical and Computer Engineering

Fall 2022/2023

Integrated Master Thesis

1°C to UART-GPIO-I*C Bridge on
FPGA with Zephyr RTOS Driver

Charalampos Patsianotakis

Supervisors: Christos Sotiriou, Dimitris
Karaberopoulos, Georgios Stamoulis

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

1°C o UART-GPIO-1C T'$pvpa
o€ XEIIIT pe Ipoypappo
Odnynong oe Aetrtovpyikd Zephyr

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Acknowledgements

| am grateful to the numerous individuals who aided me in my academic journey,
although the completion of my thesis project was a solitary endeavor. It would be
challenging to express my gratitude to everyone within the constraints of one page, so
I will highlight a few key individuals.

I would like to extend my heartfelt appreciation to Prof. Christos Sotiriou for his
unwavering guidance and mentorship throughout my time in the Circuits and Systems
lab. Also, he was instrumental in helping me launch my first job, where | was able to
gain valuable knowledge and experience. | am also grateful to Prof. D.
Karaberopoulos and Prof. George Stamoulis for their participation in the three-
member committee for my thesis. In addition to these professors, | would like to thank
all of the professors who imparted their knowledge and experience during my
academic journey, particularly Prof. N. Bellas, Prof. C. Antonopoulos, Ms. V.

Doufexi, and Prof. N. Evmorfopoulos.

I would also like to acknowledge the members of the Circuits and Systems lab, with
special thanks to Dr. Nikos Sketopoulos and Stavros Simoglou. | would like to
express my appreciation to everyone | collaborated with on academic projects and the
AgroJason Project. | would like to thank the company | work, Centaur Analytics, for
lending me the CozIR-A sensor that | used for my physical experiments. 1 would also
like to thank my current and former colleagues, including my first manager and

mentor Nikos Oikonomou, and my current teammate Antonis Sioutas.

I would not have been able to achieve my goals without the support of the people
around me. | would like to express my gratitude to my parents, grandparents,
godparents, aunts, and the rest of my family for their emotional and financial support
throughout my studies. | would like to especially thank my father for instilling in me
an interest in the field of electrical engineering through our joint electrical projects as
a teenager. | would also like to thank Thomas Marinou and Olga Tsima for their
unwavering support during the final years of my studies. Last but not least, | would
like to express my gratitude to Maria for her love, support, and patience as | worked

on my thesis project while balancing work.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Abstract

The integration of devices into the Internet of Things (10T) network is experiencing
significant growth. With the constant evolution of application demands, it is necessary
to continuously develop new designs to accommodate these changes. To facilitate the
integration of new features into the 10T system, the electronics of End node devices
are comprised of two parts. The first includes the Main Board, which incorporates the
core Microcontroller Unit (MCU), various Radio-Frequency (RF) modules, and other
essential components. The includes the Peripheral Boards, designed specifically for
the specific application requirements of the device. The goal is to maintain a single
Main Board for all devices, thereby reducing logistics management effort and costs.
However, this is not always feasible due to variations in peripheral device interfaces.
This thesis presents the development of an FPGA device that bridges these different
Peripheral Boards, simplifying the connection of multiple devices to the Main Board,

accompanied by its software driver.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Iepiinyn

O apBpdg TV cuokeL®V TOV cVVdLovTal 6To AtadikTvo TV [paypdtov (Atll)
avéavetal pe ypnyopo tpodmo. Ot amattioels TV EQupUoYOY aAAGLoVY Kot
SLPOPETIKEG GYESLAGELS OTOLTOVVTOL Y10 VO TIG TANpovV. ‘ETo1, o1 telkol koppot o
éva ovotnua Atll arotedovvtal arnd 600 puépn. Tnv kbpla TAakéta ToLv TEPLEYEL TOV
Kevpkd Mikpoemeepyaotn, d1dpopeg Hovadeg padtov Kot Gl KHpLo KOUUATIO Kot
TG TEPLPEPELKEG TAUKETES, ELOUKE GYEOOGUEVES Y10l TV EKAGTOTE £QOPLOYT. O
010)0G gtvar 1 dlatpNon ™S Kuplag TAAKETOS MG LOVAOIKNG Kot VoL EYXEL TNV
duvatdHTNTO Vo EPUPUOCTEL e OAEG TIC TIOAVEG TTEPLPEPELNKEG TAUKETES Y10 TNV
peimon dwayeiplong empeinteiog, Pe 10 EMAYLoTO OUMG KOGTOC. AVTO dev glvar ThvTa
EPIKTO AOY® TOV TOAATADY SETAPAOV TOV EVOEXETOL VO, EYOVV O TEPUPEPELOKES
OLOKEVEC. X& ALTIV TNV SWTAMUATIKN epyacia mapovstaletal n avémtuén piog
GLGKELNC TOV GKOTEVEL VAL SIEVKOAVVEL TNV S1AGVVIEST] TOAAATAMDY GUCKEVADV GTNV

KOpLO TAOKETOL.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Table of Contents

Chapter 1 Introduction

1.1 10T Application Description
1.2 Defining the Logistics Problem for multiple designs
1.3 Serialization on the same Bus
1.4 1°C Bridge
Chapter 2 Technical Background

2.1 IC’s Communication Interfaces
2.1.1 General Purpose Digital Input / Output
2.1.2 UART
2.1.31°C

2.2 Digital Hardware Development
2.2.1 FPGA
2.2.2 Digital Hardware Design Flow
2.2.3 iICE40UP5K and iCE40UL1K
2.2.4 iCEcube2

2.3 Software Development
2.3.1 Device Driver
2.3.2 Zephyr RTOS

2.4 Testing Tools and Environments
2.4.1 Verilog Simulation
2.4.2 Docker
2.4.3 Cl/ICD

Chapter 3 Application Description

3.1 Architecture

3.2 Register Map

3.3 Device Operation Flows
3.3.1 Basic Flow
3.3.2 Digital Output Operation Flow
3.3.3 Digital Input Usage Flow
3.3.4 UART Operation Flow
3.3.5 I2C Operation Flow

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

© N W -

11

11
11
11
13
17
17
18
20
21
22
22
22
23
23
23
23
24

24
25
28
28
29
29
30
30

Vi

Chapter 4 Digital Hardware Design 31

4.1 RTL Implementation 31
4.1.1 Util Modules 31
4.1.2 Register File Modules 42
4.1.3 Peripheral Device Interface Modules 50
4.1.4 MCU Communication Module 58

4.2 4.2 RTL Verification 61
4.2.1 Module Tests 61
4.2.2 Functional Tests 62
4.2.3 RTL Verification Automation 64

4.3 4.3 Physical Implementation 65
4.3.1 Clock and Reset 65
4.3.2 1/0s Assighment 65
4.3.3 FPGA Utilization and Floor Planner 66
4.3.4 Static Timing Analysis 68
4.3.5 Power Estimation 70

Chapter 5 Software Driver 72

5.1 Driver Structure 72

5.2 Driver API 73
5.2.1i2c_bridge_set_interface do 73
5.2.2 i2c_bridge_write_do 73
5.2.3i2c_bridge_read_do 74
5.2.4i2c_set_interface_di 74
5.2.51i2c_bridge _read_di 74
5.2.6 i12c_set_interface uart 74
5.2.7 i2c_bridge_write_uart 74
5.2.8 i2c_bridge_expect_uart_read_size 74
5.2.9 i12c_bridge read_uart 75
5.2.10i2c_bridge_set_interface_i2c 75
5.2.11i2c_bridge_write_i2c 75
5.2.12 i2c_bridge _read_i2c 75
5.2.13i2c_bridge_init 75

5.3 Sample on the Zephyr platform 76
5.3.1 Structure 76

vii
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

5.3.2 Digital Output Sample
5.3.3 Digital Input Sample
5.3.4 UART Sample
5.3.512C Sample

Chapter 6 Physical Experiments

6.1 Setup

6.2 Digital Output Interface Test
6.3 Digital Input Interface Test
6.4 UART Interface Test

6.5 I°C Interface Test

Chapter 7 Conclusions

7.1 Summary
7.2 Future Work
Chapter 8 Bibliography

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

76
76
76
77
77

77
79
80
81
82
83

83
84
85

viii

List of Figures

Figure 1.2.1: Simple 2 Digital Outputs Design

Figure 1.2.2: 3 Digital Outputs Design

Figure 1.2.3: Water Existence checker powered by solar.

Figure 1.2.4: New Main Board needed to support multiple UART interface sensors.
Figure 1.2.5: 1°C Interface sensors for air and moisture conditions

Figure 1.2.6: New Main Board required to add more I1°C sensors.

Figure 1.3.1: UART to D 1/O still cannot support all possible cases.

Figure 1.3.2: 1°C to D 1/O can operate for the application needs.

Figure 1.3.3 UART interface sensors communicating to the MCU from the same

wires.

O 0O N oo oo o1 b~ W

9

Figure 1.4.1: Multiple types of Peripheral Boards communicating with Main Board on

the same bus.

Figure 2.1.1: UART Lines

Figure 2.1.2: UART Protocol Packet

Figure 2.1.3: 1°C Start-Stop conditions.

Figure 2.1.4: 1°C read and write packets.

Figure 2.1.5: Write to a register of an 1°C slave device.
Figure 2.1.6: Read from a register of an 12C slave device.
Figure 2.1.7: Point a register of an 1°C slave device.
Figure 2.2.1: Digital H/W design flow.

Figure 2.2.2: Setup and Hold violations.

Figure 2.2.3: iCE40 UltraLite Breakout board

Figure 2.2.4: iCE40 UltraPlus Breakout board

Figure 3.1.1: Top Level Diagram

Figure 3.3.1: 1°C Bridge Basic Operation Flow

Figure 4.1.1: Edge Detector Schematic

Figure 4.1.2: Bidirectional Splitter Schematic

Figure 4.1.3: Input Synchronizer Schematic

Figure 4.1.4: Debouncer Schematic

Figure 4.1.5: reg_to_serial inputs and outputs

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

10
12
12
14
15
16
16
17
18
19
21
21
24
29
31
32
32
33
34

Figure 4.1.6: Serialization and Deserialization FSM
Figure 4.1.7: serial_to_reg inputs and outputs
Figure 4.1.8: i2¢c_read_byte flow and 12C lines.
Figure 4.1.9: i12c read byte FSM.

Figure 4.1.10: i2c read byte schematic.

Figure 4.1.11: i2c_write_byte flow and I°C lines.
Figure 4.1.12: i2c write byte FSM.

Figure 4.1.13: i2c_write_module schematic
Figure 4.1.14: 1°C Start Stop conditions.

Figure 4.1.15: i2c_start_stop_detect schematic
Figure 4.1.16: enable_after_priority FSM

Figure 4.1.17: Register File Abstraction and Inputs/Outputs.
Figure 4.1.18: Reg File to Interface Communication Signals
Figure 4.1.19: config_regs schematic

Figure 4.1.20: data_from_master schematic.
Figure 4.1.21: data from master manager

Figure 4.1.22: data from slave reg file

Figure 4.1.23: data from slave manager

Figure 4.1.24: Digital Output Interface schematic
Figure 4.1.25: Digital Input Interface schematic
Figure 4.1.26: uart_interface Schematic.

Figure 4.1.27: SCL controller FSM

Figure 4.1.28: i2c master interface FSM

Figure 4.1.29: To Peripheral wrapper schematic
Figure 4.1.30: 1°C Slave Interface Schematic.
Figure 4.1.31: I°C Slave FSM

Figure 4.2.1: Example of a module test yaml file
Figure 4.2.2: Functional Tests Block Diagram
Figure 4.2.3: Code Quality Maintenance flow
Figure 4.3.1: iCE40UP5K Pinout

Figure 4.3.2: iCE40UL1K Pinout

Figure 4.3.3: iCE40UP5K Floorplan

Figure 4.3.4: iCE40UL1K Floorplan

Figure 4.3.5: iCE40UP5K STA Log Output

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

34
35
36
36
37
38
38
39
40
40
41
42
43
44
45
46
47
49
50
51
52
55
56
58
59
60
61
63
64
65
66
67
68
69

Figure 4.3.6: iCE40UP5K Critical path in Floorplan
Figure 4.3.7: iCE40UL1K STA Log Output

Figure 4.3.8: iICE40UL1K Critical path in Floorplan
Figure 4.3.9: Power Estimation per Temperature value
Figure 5.1.1: Driver Filesystem structure

Figure 6.1.1: Schematic of setup for Physical Tests
Figure 6.1.2: Setup photo

Figure 6.2.1: Digital Output Test Video Print screen
Figure 6.3.1: Digital Input Test Video Print screen
Figure 6.4.1: UART Test Video Print screen

Figure 6.5.1: 1°C Test Video Print screen

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

69
69
70
71
73
78
79
80
81
81
82

Xi

List of Tables

Table 3.2.1: Register File COMPONENTS........ccccviiiiiiiiiieiieeeeee e 25
Table 4.1.1: Baud Rate Code. Sampling Period and Maximum Clock periods........... 54
Table 4.3.1: ICE4A0UPSK ULIHZAtiONcoeiiiiiiiieie e 66
Table 4.3.2: 1 ICEA0ULLK UtHHZAtION......ccoiiiiiiiiieceseseeese e 68

Xii
Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Chapter 1 Introduction

1.1 10T Application Description

The Internet of Things (IoT) is a well-known trend in the current era, with multiple
architectures designed and developed for various applications. The majority of loT
architectures consist of three key components: a cloud application, a user interface
application, and edge devices. The cloud application, which runs on data centers with
unlimited resources, serves as the main logic center for the 10T application. The user
interface application, on the other hand, runs on end-user devices such as smartphones
or desktops and provides access to the end-users. The edge devices, which act as the
interface between the physical world and the cloud, collect data from sensors or
actuate based on commands received. In some cases, intermediate gateway devices
are required as the environment of edge devices may not allow direct connection to

the cloud.

In applications such as agriculture, power consumption is a major concern, and to
mitigate this, edge devices operate in a duty cyclic sleep mode. The sensors sleep for
a specified time, sample the desired measurements, and wirelessly transmit them to
the gateway before sleeping again. Similarly, actuators may turn on their RF module,
wait for a command, actuate, and then sleep again. The core system of the device is

not always on but sleeps and handles the peripheral element in a specific time slot.

loT Gateway

Temperatura/ Measurements. Measurements”
RH Sensor ‘ SEEy FLNLL Sending | /51599‘"9 Sampling Sendng T\ Sleeping ‘

Valve

Valve turning
Controller

ON or OFF

Valve turning

Sleeping Comman d e

Sleeping Comman d

Sleeping ‘

Figure 1.1.1: Network Duty Cyclic Sleep Operation

An example of an IoT application in agriculture is a smart farming system for
watering plants. The farmer can access the system through a user interface application
on his smartphone, while the cloud application handles the core functionality. A
wireless network is established in the farm and temperature and relative humidity

sensors provide the environmental conditions to the system. The system controls the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

flow of water and the environment of the plants through valves that are actuated based

on the data received.

User Interface

loT Gateway

MCU and
RF
module

Temp & RH
1 Sensor

MCU and
RF
module

Local Network

Figure.1.1.2: Smart Watering loT Architecture

The architecture of the Edge Device comprises of a microcontroller unit (MCU), a
Radio-Frequency (RF) module, and various peripheral devices such as sensors, relays,
solar charger controllers, battery managers, among others. Some components, such as
the MCU and RF module, are utilized in all products, while others are specific to
certain products. For example, a temperature sensor may share the same MCU and RF
module with a valve controller, but it would not require the relays that the latter would
use and vice versa. The widely produced components are incorporated onto the Main
Board, while the components with limited production are integrated onto Peripheral

Boards.

A Stock Keeping Unit (SKU) code is generated for each specific design of the

described boards. Two boards can only have the same SKU code if their hardware

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

design is identical. Having multiple SKU codes leads to increased complexity in

logistics operations and field support.

1.2 Defining the Logistics Problem for multiple designs

The connection between the Main Board and the Peripheral Boards might be
established through the use of a header interface and interconnection cables. In a
specific example of a valve device that includes the Main Board and a Peripheral
Board with a valve and an indicator LED, the Peripheral Board is attached to the Main
Board via a 2-pin header interface, which is connected through a 2-wire
interconnection cable. The connection between the Main Board and the

microcontroller unit (MCU) is finalized by the connection of two MCU pins to the

header on the Main Board.

RF
Module ey |

(«

Main board

Figure 1.2.1: Simple 2 Digital Outputs Design

In order to accommodate a new product request for a device with two valves and an
indicator LED, two approaches are considered. The first approach involves replacing
the current Main Board design with an updated version that has three Digital
Input/Output (DIO) pins. This would result in all newly produced devices, including
those with only one valve, incorporating the more expensive 3-pin Main Board.
However, this approach would also require updating the Main Board design with
additional Digital Outputs as more complex designs emerge.

The second approach entails maintaining the existing 2-pin Main Board design for
devices with a single valve and utilizing a separate 3-pin Main Board for the new
device with two valves. While this approach adheres to the principle of a single Main
Board design, it will result in the creation of multiple Stock Keeping Unit (SKU)

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

codes for the Main Boards that are produced in parallel, and may complicate logistics

and field operations.

(¢

RF

Main board B

Figure 1.2.2: 3 Digital Outputs Design

A requirement has arisen for a new product that will determine the presence or
absence of water using water electrodes. The product will require a digital input to
obtain its status and, as per the specified requirements, it must be powered by a solar
panel. To effectively manage the solar panel, battery, and load output, a Solar Panel
Management Integrated Circuit (IC) is necessary. This will provide two additional
status messages: Charging Status and Solar Panel Connected Status. To gather this
information, two additional digital inputs are required on the Main Board, as they are
crucial for the calculation of the product's lifetime and error indication. Therefore, it is
necessary to design a Main Board with a 1-pin header and a 2-pin header.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

-_ -
RF
MCU ——— Solar Power
. I B B I .

Penpheral board
Main board C

Water
Elecirodes

Figure 1.2.3: Water Existence checker powered by solar.

The business has requested a new sensor device to measure the Temperature and
Relative Humidity (RH) of the air near to the plant. The sensor element will be
utilizing a UART interface, and the firmware designer should have designated two
UART pins on the MCU to be connected to a 2-pin header that connects to the UART
interface of the sensor element. The current 2-pin Main Board design can be used for

this purpose.

However, the product manager requires a device that can measure both the
temperature and RH of the air and moisture near the plant, which would necessitate
the use of two sensors connected to the Main Board. In this scenario, the UART
interface sensors used in the previous device cannot be utilized with the same Main

Board as two additional pins are required to instantiate two buses.

One approach to resolve this issue is to implement a new Main Board with two 2-pin
headers. Another option is to replace the sensors with 12C interfaces. As described in
the Technical Background Chapter, the 12C bus consists of masters and slaves, each
with a unique address, receiving and sending data as requested. Most of the sensors
with I2C interface are set by factory to a specific address. However, there some whose
last one or two bits of the address might be configured by specific pins. So, two 1°C
slave sensors might be connected on the same bus if they are included in the last

category.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

RF :
Module meu i
|

Main board D

Temp & RH
i
Peripheral board
UART2

Figure 1.2.4: New Main Board needed to support multiple UART interface sensors.

RF
l

Main board

l Temp & RH
Sensor

Peripheral board
12C2

Figure 1.2.5: 1°C Interface sensors for air and moisture conditions

The watering system must be updated to accommodate the requirements of a new
plant that necessitates the measurement of both air and high and low levels of
moisture. Due to the scarcity of sensors with more than two 12C addresses that are
readily available, it has been determined that a separate bus will be required to
support the three sensors needed for this application.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Temp & RH
'

Pernipheral board
12C2

5
Sensor
| |

Pernipheral board
12C2

Figure 1.2.6: New Main Board required to add more 1°C sensors.

1.3 Serialization on the same Bus

What if an additional element is instantiated on the Peripheral Board to manage the
peripheral device signals? For example, a Serial-Digital Output module could be set
on the Peripheral Board to control the valves. The software running on the MCU
would send a command over the serial bus to this module, which would set the output

value through its GPIO pin.

A first approach of the serial bus could be the UART one. The UART protocol is
simple, a simple amount of bytes can be sent as is and translated in the converter
module to Digital Output. So, 2 wires are needed, independently of the supported
outputs on one Peripheral Board, removing the complexity of designing specific Main
Board, but also reducing the wires of the interconnection cables.

As far as the Digital Inputs, the UART could also be used. The updated value of an
input can immediately be sent to the MCU on the UART after the signal edge.

If a device is requires to include both the Peripheral Board with valves and the Solar
panel, an updated Main Board with support for two UART interfaces is needed. To

address this, the UART bus can be replaced with another bus where each Peripheral

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Board can be individually targeted. This way, the software can determine where to

send or receive data.

(«

-
I Dl to Solar Power 7
UART Managemsnt IC

RF Peripheral board
Module MCU = UART_Di2

Main board D
UART 1o -
Wal
I i &

Peripheral board
UART_DO2

Figure 1.3.1: UART to D 1/O still cannot support all possible cases.

A widely used bus that meets these requirements is the 1°C bus. In this case, the serial
to DI/O converter might be a 12C bus slave device, with a configured address, unique
in the same bus. However, a disadvantage for the Digital Input interface is that the
information about the edges is not directly communicated to the MCU software. But
for the applications described, where the input is simply sampled to obtain a status at
a specific time, this is not a problem.

-
-
Management IC
Peripheral board
UART_DI2

l Valve :
|

Peripheral board
UART_DO2

Figure 1.3.2: 1°C to D 1/O can operate for the application needs.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

In the same way, instead of replacing the UART interface sensors with 1°C ones, a
UART to 12C converter would simplify the designer life. This is a significant benefit
if the UART interface sensor can easily be found in the market, or it has a better

performance.

o] Temp & RH
UART Sensor

Peripheral board
[2C UART A

l Temp & RH
l LUART Sensor

Peripheral board
I2C_UART B

Figure 1.3.3 UART interface sensors communicating to the MCU from the same
wires.

Regarding the I1°C interface sensors, the number that can be attached to the same bus
is limited based on the available pins for address configuration. To increase the
capacity for connected devices, an 12C-to-12C bridge can be utilized as an
intermediary between additional devices and the MCU. The MCU will recognize the
bridge device and the bridge will transfer data from its sub-bus to the MCU.

1.4 1°C Bridge

By delegating the management of peripheral devices to the Peripheral Board, the
logistics effort required for supporting a variety of devices has been significantly
reduced, as only one design for the Main Board is necessary. This can be further
reduced by integrating all 1>C bridge modules into a single component. During the
initialization process, software commands enable the I12C Bridge to identify itself as
12C-DO, I2C-DlI, I?’C-UART, or I2C-1?C. As a result, the same hardware component

can be utilized on all Peripheral Boards.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

2cEr Temp & RH
Sensor

Peripheral board
12C_UART A

[|
Solar Pow
n clar Fewer I2C Br
[—

Peripheral board
12C_DI2 1 valve B
i

Peripheral board
12C_DO2
RF Temp & RH
l l
]
Pelpl eral board
Main board 12¢1

Temp & RH
'

Peripheral board
12C2

12G Br I TemR &RH
Sensor

Peripheral board
12C_12C

Figure 1.4.1: Multiple types of Peripheral Boards communicating with Main Board
on the same bus.

One of the objectives is to minimize design costs, and thus, the I>C Bridge component
should be as cost-effective as possible. Tiny FPGAs offer a potential solution, as
some are available on the market for less than 10 euros with industrial specifications.
These devices are capable of executing data transactions quickly, making them

virtually invisible at the application level.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Chapter 2 Technical Background

2.1 IC’s Communication Interfaces

2.1.1 General Purpose Digital Input / Output

The Digital Signal is a binary representation of information, defined by two voltage
levels: the "High" level, which is close to the supply voltage, and the "Low" level,
which is close to the ground or reference value. This type of signal is used to convey
simple information, such as a status, by representing a "true" or "1" state with a High
voltage and a "false™ or "0" state with a Low voltage. Unlike an analog signal, which
represents a continuous range of values, a Digital Signal conveys information in a
discrete manner. It can be used to transmit information as a single bit or as a group of

bits in communication protocols, forming data packets.

The General Purpose Digital Input/Output (GPI1O) is an interface that controls simple
digital input/output signals. It enables devices like microcontrollers to connect with
other devices such as LEDs, buttons, motors, battery chargers, FPGAs, PLCs, or even
other microcontrollers. This versatility makes GP1O pins a valuable component in a
variety of applications, including robotics, home automation, and Internet of Things
(10T) projects.

2.1.2 UART

The Universal Asynchronous Receiver Transmitter (UART) is a hardware
communication protocol that employs asynchronous serial communication with
adjustable data transfer speed [1]. The UART protocol involves two signals between

the two communicating devices: the Receiver (Rx) and the Transmitter (TXx).

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

UART [™ UART
interface1 Tx | Rx interface?
device 1 device 2

Figure 2.1.1: UART Lines

The absence of a clock signal to synchronize the transmission of output bits from the
transmitting device to the receiving end is a defining characteristic of the UART
protocol. Instead, the two devices communicate with each other at a pre-determined

baud rate to achieve synchronization. The most commonly used baud rates are listed

in a table.
Baud Rate | Bit Duration
300 bits/s 3.333ms
1200 bits/s | 833.333 us
4800 bits/s | 208.333 us
9600 bits/s | 104.167 us
19200 bits/s | 52.083 us
38400 bits/s | 26.042 us
57600 bits/s | 17.361 us
115200 bits/s | 8. 681 us

The mode of transmission in UART is packet-based. Each packet consists of a Start
Bit, a Data Frame, a Parity Bit, and a Stop Bit.

A G C D

IDLE Start Bit Data Frame (5 to 9 Bits)

Parity Bit Stop Bit IDLE

Figure 2.1.2: UART Protocol Packet

The UART signal is usually at a high level during the idle state, when there is no

transmission. When the Transmitter wishes to send a packet, it lowers the signal value

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

for a specified time period, which is recognized by the Receiver as the start bit and

signals the Receiver to prepare to receive the packet.

The Data Frame, which follows the Start Bit, represents the data being transferred,
and its size can range from 5 to 8 bits, or 9 bits if a parity bit is not used. In this case,

it is assumed that the Data Frame has a size of 8 bhits.

The Parity Bit serves as a first-level mechanism for validating the transmitted Data
Frame bits, indicating whether the number of 1s in the Data Frame is even or odd. The
UART Transmitter generates this information by applying an XOR function to the
Data Frame and transmits it, along with the Parity Bit. The Receiver then generates
this information in the same way and compares it to the received Parity Bit. If the
received and generated parities do not match, the receive operation is considered to

have failed.

Finally, the Stop Bit signals the end of the transmitted packet. If the Stop Bit is

sampled as high, the receive operation is deemed successful.

2.131°C

The Inter Integrated Circuit (12C) is a simple bidirectional 2-wire bus for efficient
inter-1C control. [2] It requires two bus lines: a serial data line (SDA) and a serial
clock line (SCL).The SDA line is used for data transmission, while the SCL for
synchronization between the 2 nodes. During the SCL high state, the SDA should
keep its value stable, unless a START or STOP condition should be triggered.

The Inter-Integrated Circuit (12C) bus consists of controllers, also known as Masters,
and targets, also referred to as Slaves. Some devices have the capability to function as
both Master and Slave. The Master is responsible for generating the clock signals and
for either providing or requesting data from a Slave. For the Master to target a Slave,
the latter must have a unique 7-bit address on the bus. In the event that multiple
Masters are present on the same bus, an arbitration procedure exists to determine
which Master will control the bus. [2] In most loT edge devices, the 1°C bus only has
one Master, which is typically the microcontroller. As a result, the feature of multiple
Masters is not always necessary and is omitted to simplify the design and reduce costs
for smaller and less expensive Field-Programmable Gate Arrays (FPGAS).

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

The 12C bus specification outlines four available speed modes: standard mode with
rates up to 100 kbit/s, fast mode with rates up to 400 kbit/s, fast-mode plus with
1Mbit/s, and high-speed mode with 3.4Mbit/s.

In the idle state, the SCL and SDA signals are not driven by any node on the bus and
are pulled up to a high voltage by pull-up resistors. When the Master wants to initiate
communication, it pulls the SDA signal low while the SCL signal remains high,
creating a START condition. The Master then pulls the SCL signal low to begin
writing the first bit. The packet is divided into bytes and each byte can be transmitted
by both the Master and Slave. Each byte starts with the most significant bit and ends
with the least significant bit. After the byte is written, the receiver acknowledges the
transfer by pulling the SDA signal low during the next cycle. The first byte, driven by
the Master, contains the 7-bit address of the Slave device and the read/write operation
in the Least Significant Bit (LSB).

> \/ \ /T \
o [A

START VALUE VALUE STOP
COND CHANGE CHANGE COND

Figure 2.1.3: I°C Start-Stop conditions.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

14

START| AD[6] | AD[5] | AD[4] | AD[3] | AD[2] | AD[1] | AD[0] R’;*"' RACK Write Address
] and set the R/W

(WB | WB | WB | WB | WB | WB | WB | WB |,
[0][7] | [01(6] | [OO(S] | [ON[4] | [OI(3] | [OM[2] | [ON[1] | [ON(0] 2
) . Write N bytes,

ST PP T et reading an ACK
"""""" v : after each byte

(: : : write
WB | WE | WB | WB | WB | WB | WB | WB |, . [FESNS

to 0

[NI7] | [NI(6] | [NI[S] | [NIE4D | [MOE3D | ENDE2] | INICTD | [ND00]

START| AD[6] | AD[5] | AD[4] | AD[3] | AD[2] | AD[1] | AD[0]] m!'.t:k:j Write Address
and set the RW
to 1

Read N bytes,

writing an ACK

after each byte
read

.....
........
. feaamreEt
.........

N

WACK Sl e

Figure 2.1.4: I°C read and write packets.

In most cases of peripheral Integrated Circuits (ICs) for 10T applications,
communication between the master and slave devices involves specific registers. For
write operations, the master sends the address of the register along with the R/W bit
set to write mode, followed by the data to be written. For read operations, two 1°C
transactions must occur. The first transaction sends the address of the desired register,
with the R/W bit set to write mode, allowing the slave device to locate the desired
register. In the second transaction, the master retrieves the data from the pointed
register by sending the address along with the R/W bit set to read mode. In the event
of multiple reads from the same register, most devices only require the first register
pointing process. In some cases, simply pointing to a specific register can trigger an
operation on the slave device.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

15

Write Address
and set the RAW
to 0

Write M bytes to
point a register

(REG REG | REG | REG | REG | REG | REG | REG RACK

WE | WB (WB | WB | WB | WB | WB | WB

[0][7] | [ON6] | [OM5] | [ON4] | [O3] | [ON[2] | [OT(1] | [O][O] RACK :
: . . Write N bytes,

P

reading an ACK
after each byte

< : ' write
WB WB WB WB WB WB WB WB e ’d STOP

.....

fa

[NI7] [[NIB] | [MICS] | [MI4] | [ND3] | [ND(2] | [N](1D | [N]EO]

Figure 2.1.5: Write to a register of an 1°C slave device.

ISTART| AD[6] | AD[5] | AD[4] | AD[3] | AD[2] | AD[1] | AD[O] 5o RACK Write Address
0
and set the RAW
to 0
REG | REG | REG | REG | REG | REG | REG | REG |pampe
[01(71 | [01(6] | [0I(S] | [O1[41 | [O1[3] | [ON[2] | [ON[1] | [OI[O] :
.............. """""" Write M bytes to
......... [RRE point a register

CREG REG | REG | REG | REG | REG | REG | REG

[MILS] | [MI4] | IMIE3] | [MT[2] | IMDCAT | IMADEO]

Write Address
and set the R'W
to 1

WACK
) Read N bytes,

wnfing an ACK
after each byte
read

ADI6] | AD[5] | AD[4] | AD[3] AD[1]

.....
.........
.........
........

.....
.

WACK L] o

Figure 2.1.6: Read from a register of an 1°C slave device.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

RACK Write Address
and set the RAW
to 0

START| AD[6] | AD[5] | AD[4] | AD[3] | AD[2] | AD[1] | AD[O]

: i Write M bytes to
......... : . point a register

(REG REG | REG | REG | REG | REG | REG | REG BTN d STOP

[MILFT | [MIL6T | [MIEST | IMIE4] | IMIE3] | [MIE2] | [MIT1T | [MILO]

Figure 2.1.7: Point a register of an I1°C slave device.

For the implementation of the project, the method of writing and reading data from
the registers of a slave device through the 12C protocol will be utilized. It should be
noted that, as of the current implementation, the capability of simply pointing to a

register will not be supported.

2.2 Digital Hardware Development
2.2.1 FPGA

A Field-Programmable Gate Array (FPGA) is a type of integrated circuit that can be
reconfigured after manufacturing [3] to perform various digital functions. It comprises
an array of Programmable Logic Blocks (PLBs) and reconfigurable interconnections,
allowing for the implementation of complex combinatorial functions or simple logic

gates.

The configuration of an FPGA can be accomplished through the use of a Hardware
Description Language (HDL), such as VHDL or Verilog. An Electronic Design
Automation (EDA) tool takes the specified design and generates a bitstream, which is
then loaded onto the internal volatile memories and used to control the

interconnections.

While FPGAs can be used to implement the same functions as an Application-
Specific Integrated Circuit (ASIC), they are generally less efficient in terms of power

consumption and performance. However, the development cost of an FPGA is much

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

lower than that of an ASIC, making them suitable for prototyping and low-volume

production.

2.2.2 Digital Hardware Design Flow

The process of programming a digital hardware design onto a Field-Programmable
Gate Array (FPGA) consists of several phases, including Register-Transfer Level
(RTL) design, synthesis, implementation, and programming. Each phase must be
subject to a Quality Assurance (QA) flow to ensure its validity. In the event of a
failure during any phase, the designer must either revisit the design or revert to a

previous step and recommence from that point.

RTL Design RTL Verification
On hardware FPGA
Verification programming

Figure 2.2.1: Digital H/W design flow.

Post Synthesis
Verification

Implementation

Post
Implementation
Verification

The RTL design phase involves the creation of an abstraction that models
synchronous digital circuits and describes the events that drive registers and logic.
During this phase, the behavioral logic of the modules is defined, and Functional State

Machines (FSMs) are implemented.

The next phase is synthesis, where the behavioral logic is transformed into a netlist.
The netlist represents the design of a circuit as a list of interconnected elements, such
as gates, flip-flops, adders, and multipliers. The synthesis process performs a syntax
check, optimizes the logic, eliminates redundant logic, and converts the design into a
netlist. Additionally, based on the target technology, some EDA tools may produce an
initial estimate of the FPGA utilization, power analysis, and static timing analysis
(STA).

Physical implementation follows, where the netlist is mapped to the FPGA design.

This process involves the placement and routing of components on the IC blocks. The

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

placer aims to fit the components within the available blocks, while the router seeks
the optimal routes for connecting the instantiated elements. Upon completion of the
physical implementation process, the FPGA utilization, power analysis, and STA
should be evaluated. The utilization should ensure that the design does not consume
more resources than available on the FPGA. The power analysis should provide an
estimate that meets the power requirements specified in the design. The STA should

guarantee that the timing analysis is without setup and hold time violations.

The setup time is the minimum time before the active edge of the clock at which the
input data line must be valid for reliable latching [4]. The hold time represents the
minimum time that the data input must be held stable after the clock edge. In cases
where the setup and hold times are not respected, it may result in metastability or

other errors in the circuit.

Rega RegB

CLK
sampled at
Regh

CLK
sampled at
RegB

tEE'..F t—-3L3 tEE'..F t—-3L3

Figure 2.2.2: Setup and Hold violations.

In transmission (a), the transfer of value from one register to the next occurs during
the hold time, resulting in either a successful transfer of the data to the output of RegB
in the same cycle or the potential for metastability. Conversely, case (c) has the
potential to result in RegB entering a metastability state in the following cycle. On the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

19

other hand, in case (b), both the setup and hold times are respected, avoiding any

potential issues.

2.2.3 iCE40UP5K and iCE40UL1K

The 12C Bridge module will be instantiated on the ICE40UP5K and the ICE40UL1K,
which are produced by Lattice Semiconductor. These FPGA families comprise an
array of Programmable Logic Blocks, two oscillators (10 kHz and 48 MHz),
Embedded Block RAMs, Single Port RAMs, and Programmable 1/Os. [5] Each
Programmable Logic Block contains eight Logic Cells, with each Logic Cell
incorporating a 4-input Look-Up Table (LUT) that drives a Flip-Flop or the Logic
Cell Output directly. The ICs can be configured for industrial operation and feature a
power supply voltage of 1.2V, 2.5V, or 3.3V, and are capable of operating at

temperatures ranging from -40 to 100°C.

The ICE40UL1K is part of the iCE40 UltraLite family and includes 1248 Logic Cells
and 36 Programmable 1/Os. Its dimensions are 1.409mm x 1.409mm and it has an
estimated cost of 3-4 euros. The ICE40UP5K is part of the iCE40 UltraPlus family
and includes 5280 Logic Cells and 60 Programmable 1/Os. Its dimensions are 2.15mm
x 2.15mm and it has an estimated cost of 10 euros. The ICE40UL1K will be evaluated
using an iCE40 UltraLite Breakout board, while the ICE40UP5K will be evaluated

using an UltraPlus Breakout board.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

20

SW1

SI8. RS{ O
i ,'rf[7
3 L TTI

GND

i = ﬂ)é f . o] | A2 csn
MIHMIII\IIIIIHHIIIH\MIUN e e
o s e B1 SCK

v10 N0 2 e | GND SO
LT o = M2
S [g ::x.xxx:::::::x=4 J9 [HP3V GND
A6 | NC

A5 |NC

HEADER A o

=

J6

PROG FLASH
ROG ICE TP4

VCC_PLL

Oh

ICEAD UitroPlus Breckout Boerd
Y. A

ICEA0UPSN -B.EWN
Copyright © 2018

\g‘s 32

wi(e
+) .hrk

,
PR
-

f1l

PROTO TYPE AREA
SRR

-~
o9
-
cn "

»

Figure 2.2.4: iCE40 UltraPlus Breakout board

2.2.4 iCEcube2
The iCEcube?2 software tool is necessary to run the Synthesis and Physical

Implementation flow and produce a Bitstream for the targeted FPGAs. The software

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

supports the Synplify Pro synthesis tool and the Lattice Synthesis Engine for
synthesis. The resulting netlist and Physical Constraints File (PCF) are then fed into
the Placer and Router process, following which the Bitstream is ready for

programming onto the device.

2.3 Software Development
2.3.1 Device Driver

Each peripheral device requires specific initialization operation and management.
Each software that communicates with it has to handle it, increasing its complexity
and making it less portable. To solve this, an intermediate layer between the target
device and the other parts of software has been introduced, the device drivers. [6]
They act as translators providing to the rest of the software an Application
Programming Interface and handle the device based on its specific needs. For
instance, to send a message via a peripheral RF module, only a send data command is

needed, as the serial bus, gpio and other are handled by the driver.

2.3.2 Zephyr RTOS

A Real Time Operating System (RTOS) is a specialized OS designed for real-time
applications with critical timing constraints. It is widely used in various industries,
such as automotive and aircraft, and is particularly popular in embedded systems due

to its light design and ability to operate with low power and minimal resources.

One of the most well-known RTOSs is the Zephyr RTOS, which supports multiple
boards, has multiple drivers implemented, and is licensed under Apache 2.0. The
Zephyr RTOS is highly configurable, both at the software level (defining the code to
be inserted and parametrizing the values) and the hardware level (by constructing the
device tree). The system comes with its own meta-tool, called "west,"” to initialize a

project, fetch desired external modules, compile and flash an MCU.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

2.4 Testing Tools and Environments

2.4.1 Verilog Simulation

Icarus Verilog is an open-source tool for Verilog simulation and synthesis. It can
compile Verilog (IEEE-1364) source code into various formats for simulation and
generate a netlist for synthesis. [7] The resulting file can be simulated using the "vvp"
command. The combination of iverilog and vvp is a useful tool for evaluating Verilog
code, particularly during the pre-synthesis flow, as special libraries are not required.
The tool is compatible with both Windows OS and popular Linux distributions (such
as Ubuntu 18.04 and Linux Mint 20.04), making it easily integrable into automated

testing processes.

During simulation, desired signals can be recorded in a Value Change Dump (VCD)
file, which can be plotted using the gtkwave tool, a waveform analyzer for digital and
analog data. This tool is not used for production purposes (such as for stable code and

verification tests) but rather for debugging purposes.

2.4.2 Docker

Docker is a software platform that facilitates the building, testing, and deployment of
applications by virtualizing containers on a configured operating system. A container
is a controlled and isolated environment that is separated from other processes on the
host machine. [8] It is created from a Docker image, which contains the configuration
and information necessary for generating the container. The recipe for constructing

the Docker image is contained in a DockerFile.

2.43 Cl/ICD

Continuous Integration, Continuous Delivery (CI/CD) are automation tools used for
testing and delivery processes. By continuously integrating code changes after
automatic testing and verification, the risk of code conflicts and bug insertion is
reduced. Continuous Integration manages the Quality Assurance flow by keeping logs
and tracking changes, allowing for seamless updates to be merged into the master
branch. Continuous Delivery takes over after the CI flow, deploying the infrastructure

to testing or production environments.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Chapter 3 Application Description

3.1 Architecture

The 12C Bridge module can be separated in three major parts:

1. 1°C Slave Interface (communicating with MCU).

2. Register File
3. Interfaces to Peripheral devices

Four pins are provided for on board configuration of the 12C address, achieving the
existence of 16 modules on the same bus. Those represent the Least Significant Bits

of the module, with the three MSB to be statically defined in it (3’b010).

T W EHEN
sEE|E
2 |2 = |= 100
| Digital
Output 101
102
— Digital Input
SCL 103
I2C Slave Reg
S Interface File 104
| UART
<
- Data Available e 105
106
| | I2C Master
Interface 107
To Peripheral Devices
Interfaces
I2C Bridge Module

Figure 3.1.1: Top Level Diagram

The 1C Slave Interface is responsible for managing the communication with the
MCU (Master) Device and facilitating the transfer of data to and from the Reg File.
The Reg File serves as a repository for the configuration data that determines the

behavior of the module and buffers the data during both transmission and reception.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Additionally, four interfaces have been implemented for communication with

Peripheral Devices, with only one being activated at a time based on the configuration

data received, allowing control over the desired Input/Outputs.

3.2 Register Map

The Master Device communicates with the 1°C bus and accesses a specific register for

transmitting and receiving data. In order to perform this operation effectively, it is

necessary for the it to have knowledge of the register addressing, the meaning of the

internal operations, and the read and write permissions. This information is provided
in the Register Map Table (Table 3.2.1).

0x0

Interface Configuration

Table 3.2.1: Register File Components.

Read/Write [1:0] Interface

Baud Rate:
Baud Rate:
Baud Rate:
Baud Rate:
Baud Rate:
Baud Rate:
Baud Rate:
Baud Rate:
If Protocol is I°C:

e 3’b000: Standard Mode: 100 kbps

e 3°b001: Fast Mode: 400 kbps

[4:2] Speed
If Protocol is UART:
e 3’b000:
e 3’b001:
e 3’b010:
e 3’bO11:
e 3°b100:
e 3°b101:
e 3°bl110:
e 3’blll:

e 2°b00: Digital Output
e 2’b01: Digital Input

e 2°b10: I°C

e 2°bl1: UART

300 bps
1200 bps
4800 bps
9600 bps
19200 bps
38400 bps
57600 bps
1152000 bps

Institutional Repository - Library & Information Centre - University of Thessaly

27/07/2024 17:54:32 EEST - 13.58.148.134

25

e 3°b010: Fast Plus Mode: 1 Mbps
e 3°b011: High Speed Mode: 3.4 Mbps

Ox1 Data Size
Configuration

Read/Write

[2:0] Data Rx Size packet:

e 3°b000: 1 byte

e 3°b001: 2 bytes
e 3°b010: 3 bytes
e 3°b011: 4 bytes
e 3°b100: 5 bytes
e 3°b101: 6 bytes
e 3°b110: 7 bytes
e 3°bll11: 8 bytes

[5:3] Data Tx Size packet:

e 3°b000: 1 byte

e 3°b001: 2 bytes
e 3°b010: 3 bytes
e 3°b011: 4 bytes
e 3°b100: 5 bytes
e 3°b101: 6 bytes
e 3°b110: 7 bytes
e 3’bll11: 8 bytes

[7:6] Data Tx Size packet:
e 2°b00: 1 byte
e 2°b01: 2 bytes
e 2°b10: 4 bytes

Institutional Repository - Library & Information Centre - University of Thessaly

27/07/2024 17:54:32 EEST - 13.58.148.134

26

e 2°bll: 8 bytes
0x2 12C Slave Address Read/Write [0] I°C Read Operation
Configuration [7:1] I2C Slave address
0x8 Receive Data Byte[0] Read Only
0x9 Receive Data Byte[1] Read Only
O0xA Receive Data Byte[2] Read Only
0xB Receive Data Byte[3] Read Only
0xC Receive Data Byte[4] Read Only
0xD Receive Data Byte[5] Read Only
OxE Receive Data Byte[6] Read Only
OxF Receive Data Byte[7] Read Only
0x10 Transmit Data Byte[0] | Read/Write
0x11 Transmit Data Byte[1] | Read/Write
0x12 Transmit Data Byte[2] | Read/Write
0x13 Transmit Data Byte[3] | Read/Write
0x14 Transmit Data Byte[4] | Read/Write
0x15 Transmit Data Byte[5] | Read/Write
0x16 Transmit Data Byte[6] | Read/Write
0x17 Transmit Data Byte[7] | Read/Write
0x18 Slave Register Byte[0] | Read/Write
0x19 Slave Register Byte[1] | Read/Write
Ox1A Slave Register Byte[2] | Read/Write
0x1B Slave Register Byte[3] | Read/Write
0x1C Slave Register Byte[4] | Read/Write
0x1D Slave Register Byte[5] | Read/Write
Ox1E Slave Register Byte[6] | Read/Write
Ox1F Slave Register Byte[7] | Read/Write

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

27

Notes:

1. The I12C Read Operation Bit (Bit 0) in the 12C Slave Address Register (Reg
0x2) is used to initiate an 12C read from the slave device to the specified
register (Slave Register). The bit will return to 0 once the read operation is

completed.

2. The configuration registers, which include the Interface Configuration, Data
Size Configuration, and I1°C Slave Address Configuration, support 1-byte read
and write operations. When writing to the Transmit Data (0x10) or Slave
Register (0x18), the 12C Bridge Module requires the specified number of bytes
as defined in the Data Size Configuration. Similarly, it will provide the
appropriate number of bytes during transmissions from Receive Data (0x8),
Transmit Data (0x10), or Slave Register (0x18).

3.3 Device Operation Flows

3.3.1 Basic Flow

The primary utilization of the device can be separated into three key components:
Initialization, Writing Data, and Reading Data. During the Initialization process,
certain parameters are written that typically do not change during operation. For
example, the interface used is typically determined by the board design and remains
constant. The interface is set only once during the Initialization process, thus
eliminating the need for reconfiguration. Similarly, if the interface is UART and
connected to a specific device, the baud rate would not be modified during operation.
Based on the application, data may then be written or read. Some parameters may
require reconfiguration, such as the data size or the 1°C address of the slave device if
the 12C protocol is in use. Once reconfiguration is complete, it is time to write or read
data.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Initialization

reconfiguration
to read if needed

Figure 3.3.1: I°C Bridge Basic Operation Flow

reconfiguration
o write if needed

write data

3.3.2 Digital Output Operation Flow

The operation of Digital Output consists solely of writing a single byte to the output
when necessary. It does not involve a read data component or its configuration.
During the initialization process, the protocol is set to Digital Output and the Write
Data Size is configured to 1 byte. Whenever the output value needs to be changed, a
command must be sent to address 0x10 with the appropriate bitstream. The MCU can
then verify the written value by reading from the same register.

3.3.3 Digital Input Usage Flow

The Digital Input process involves a straightforward initialization step and reading a
byte that represents the input bitstream. The initialization stage entails setting the
interface to Digital Input and specifying the Read Data Size as 1 byte. With no further
configuration required, the external master can simply issue an 1°C command
targeting the Receive Data address (0x8) as the final step of the initialization process.
Whenever a new input sample is required, an 1°C read operation will retrieve the input

bitstream.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

29

3.3.4 UART Operation Flow

To communicate with a peripheral device that has a UART interface, the interface
must first be configured as UART. As the baud rate of most peripheral devices is
constant, the interface configuration register can be set once during the initial setup.
However, the Data Size may not be constant, so it should be configured prior to the
read or write operation. To initiate a write operation, the Transmit Data Size should be
set as desired and an 12C command should be sent to address 0x10, containing the
desired data. The peripheral device will receive the data. In the case of a read
operation, the Data Receive Size should be set prior to expecting data to be sent from
the peripheral device to the bridge device. After a short delay, the MCU should access
address 0x8 of the bridge device and retrieve the received data.

3.3.5 I2C Operation Flow

The initialization process for the 12C operation flow involves configuring the
interface with the appropriate interface and speed code. To initiate a write operation,
the Data Tx Size and the Register Address size should be set if either of these
parameters have changed since the last operation. Then, the target register on the
peripheral device should be specified in the "slave register" register of the bridge
device. If the address of the peripheral device has not been set previously, it should be
set in the 7 most significant bits (MSB) of register 0x2, with the least significant bit
(LSB) set to 0. Finally, the bridge device can send the data to the peripheral device by
providing it to register 0x10.

For a read operation, the Data Rx Size and the Register Address size should be set.
Then, the peripheral device register to be read from should be specified. To initiate
the read operation, the 12C address should be provided at address 0x2, similar to the
write operation, but with the LSB set to 1. This must be done each time a read
operation is requested, as setting the LSB to 1 triggers it. After a brief waiting period,
the data from the peripheral device will be stored in register 0x8 of the bridge device,

and the microcontroller unit (MCU) can retrieve it.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Chapter 4 Digital Hardware Design

4.1 RTL Implementation

4.1.1 Util Modules

4.1.1.1 Edge Detector module
The Edge Detector module is designed to detect changes in the input signal and

generate a pulse signal upon the detection of an edge. This is achieved by utilizing a
flip flop circuit to capture the previous cycle value of the input signal and comparing
it to the current state. If the previous cycle value is high and the current cycle value is
low, a negative edge is detected and the "Neg Edge™ output will be set to high.
Conversely, if the current cycle value is high and the previous cycle value is low, a
positive edge is detected, resulting in a high signal on the "Pos Edge" output.

Signal mT om— Neg Edge

W RST

}
=D

CLK

Figure 4.1.1: Edge Detector Schematic

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

31

4.1.1.2 Bidirectional Splitter module
This module serves the purpose of separating a bidirectional signal into its input and

output components. It is utilized in situations where a pin of the 12C Bridge can be
utilized as either an input or output, while the internal logic handles the input and
output signals differently. An example of this is the I/Os to the slave device or the
SDA wire of the 12C interface. The INOUT wire is connected to the desired pin,
while the "To_output™ signal drives the desired output and the "From_Input" signal
provides the input. The "Output_En" signal enables the "To_output™ signal to be
transmitted to the output.

To Qutput
INOUT

— 1bz

From Input

Qutput En

Figure 4.1.2: Bidirectional Splitter Schematic

4.1.1.3 input_synchronizer module
The input signal, originating from the external environment of the 12C Bridge module,

may not be synchronized with its internal clock, which can result in metastability
issues. The lack of control over the input signal may cause it to oscillate during the
clock's sampling edge. To mitigate this, it has been recommended in [9] to pass the
input signal through two flip-flops. The implementation of this design carries the
tradeoff of increased signal latency due to the synchronization process, however, this

is deemed acceptable for the needs of the project.

Imput —— T of——W\ CGl——Input Stable

H RST H RST

2 &

CLK

Figure 4.1.3: Input Synchronizer Schematic

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.1.1.4 debouncer module
The digital inputs that are connected to external devices may experience signal

bounce when toggled. This is due to the presence of mechanical components in
devices such as switches, buttons, or relays, which can introduce natural bounces. If
left unfiltered, signal bounce can cause a range of issues in a digital design, including
unnecessary energy consumption and multiple triggering of internal logic, rather than
a single triggering event. For example, a button press may cause a counter to
increment by five values instead of just one. To address these problems, it is
necessary to implement a debouncing module for the digital inputs.

The debouncer module consists of several key components, including an edge
detector, a counter, a multiplexer, and a flip-flop that maintain the information being
transmitted to the output. Before being processed by the internal logic, digital inputs
must first pass through the debouncer module for synchronization. The input signal
undergoes detection of any changes in its state by passing through the edge detector,
which is achieved by passing both the positive and negative edges of the input signal
through an OR gate. The resulting edge-detected signal is then used to reset the
counter, which is triggered by the system clock and will stop counting and generate an
enable signal after reaching its maximum value, which is determined proportionally to
the clock period provided during synthesis. When the enable signal is high, the input
drives the flip-flop, otherwise, the output signal (current output) is fed back into the
flip-flop's input.

Input

T om Input_Debounced

pos_edge
or

edge neg_edge RST—— RST

detector Lil
RST VAL IS MAX CLK

COUNTER

|:TRIG %

CLK

Figure 4.1.4: Debouncer Schematic

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

With this design, two time periods are achieved. The first period is the "calm period,"
in which no signal bounces occur, and the input signal is directly transmitted to the
output with a delay of one clock cycle. Any transition in the input signal will reset the
internal counter, thereby initiating the "non-calm" period in which the output is
locked to the last changed value. This period will persist until 255 ns (the debouncing
period) have elapsed since the last bounce occurred.

4.1.1.5 reg_to_serial module

The "reg_to_serial™ module performs serialization of a byte, utilizing a trigger signal
as input. The inputs of this module are an 8-bit Data, a trigger signal, and an enable
signal, while the outputs are the serialized signal (TxD) and a "Tx_busy" signal to
inform an upper-level module. The module is implemented with a finite state machine
(FSM), with each state representing the serialization of a bit and an IDLE state. In the
event of the enable signal being pulled down, the state will be updated to the IDLE
state. Conversely, a positive edge in the trigger signal will prompt the state to

transition as specified in the FSM shown in Figure 4.1.6.

Data =

—= TuD
Trigger —m|

—» Tx_Busy
Enable —m
CLE —m
RST —

Figure 4.1.5: reg_to_serial inputs and outputs

enable and trigger enable and trigger

enable and trigger

not(enable)

not{enable)

not{enable)
not{enable)
not(enable)
enable and trlgge

enable and trigger

enable and trigger

enable and trigger.

enable and trigger

Figure 4.1.6: Serialization and Deserialization FSM

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

34

4.1.1.7 serial_to_reg module
The "serial_to_reg" module serves to deserialize an incoming signal. The module

employs a finite state machine (FSM) that has the same states and transition
conditions as the FSM used in the "reg_to_serial" module. However, rather than
writing data at a trigger signal, the "serial_to_reg" module samples the incoming
signal and builds the output data. When the FSM reaches its final state, the
"data_valid" signal is activated and remains high until the module begins a new

sampling process.

Rzl —=

—p» Daia
Trigger —m

—»Data_Valid
Enable —m
CLE —m
RET —»

Figure 4.1.7: serial_to_reg inputs and outputs

4.1.1.8i2c_read_byte module
The 1°C Read Byte module performs the task of reading a single byte of data. It

comprises of an internal instance of the serial_to_reg module, responsible for
executing the read operation. The module operates under the control of a FSM with
three distinct states: IDLE, READ_BYTE, and WRITE_ACK. The inputs to the
module include the SDA signal, scl_trig_high, scl_trig_low, should _comp,
data_to_comp, enable, clock, and reset. The outputs of the module include the read
data, a valid_data signal indicating the availability of the read data, a read_busy

signal, and the allocate_sda signal for acknowledging the read operation.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

35

[READ_BYTE)

S R o

:;: WRITE_ACK :;

Figure 4.1.8: i2c_read_byte flow and I1°C lines.

The "scl_trig_high" and "scl_trig_low" are signals that are to be provided by a higher-
level module. The "scl_trig_high™ signal indicates that the SDA signal is high and
should be sampled. This signal serves as the trigger input for the serial_to_reg
module. The "scl_trig_low" signal indicates that the SDA signal is low and should be
written. The FSM utilizes this signal to determine the completion of the 12C read
phase (in conjunction with the "data_valid" signal of the serial_to_reg module). The
"allocate_sda" signal is raised when the 12C read phase is completed and falls on the
next positive edge of this signal, which indicates the completion of the acknowledge

phase.

While the FSM is in the "READ_BYTE" state, the serial_to_reg module is enabled
and disabled in all other states. The "valid_data" signal, which is exposed to the
higher-level module, informs when valid data is available for consumption, while the

i2c_read_module continues to transition through the "WRITE_ACK" state.

4 ™
state_c

STATE_IDLE

'should_comp & data_comp_bool
r_data_valid & scl_trig_low_posedge

STATE_R_BUSY

| g —>not (r_data_valid & scl_trig_low_posedge) iscl_trig_low_posedge

not (should_comp & data_comp_bool)
r_data_valid & scl_trig_low_posedge

STATE_WRITE_ACK [g=not (scl_trig_low_posedge)

Figure 4.1.9: i2c read byte FSM.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

The “should comp” and “data to comp” signals are utilized by the higher-level
module to validate if the expected data has been received before proceeding with the
acknowledgment step. This feature is particularly useful in the 12C Slave module,
where it is necessary to confirm the reception of a specific address before continuing.
If the “should comp” signal (flag) is not activated, this comparison function is
inactive, and the FSM will proceed to the acknowledgment step regardless of the

received data.

Data

Trigger TxD: : SDA
egedge
t_busy edge gedg byte_transmit_done_pulse

Enable detector
Reqg to Serial

edge Fosedge

scltrig_lov [l oo

byte_transmit_done_pulse

scl_trig_low_edge ,, rite_enable

sda_feedback sda_feedback success SuCCess
scl_trig_high scl_trig_high allocate_sda allocate_sda
enable edge Posedge enable_edge busy busy
detector
FSM
i2c_read_byte

Figure 4.1.10: i2c read byte schematic.

4.1.1.9 i2c_write_byte module
The module "i2c_write_byte" serves the purpose of data writing and acknowledging

its successful transmission. It incorporates a "reg_to_serial” module to serialize the
input data from the higher-level module and transmit it via the SDA signal. The
module operates through a finite state machine (FSM) with four states: IDLE,
WRITE_BYTE, WAIT_ACK, and POST_ACK. The inputs to the module are the data
to be written, the signals "scl_trig_high" and "scl_trig_low", the signal
"sda_feedback™, and the enable, clock, and reset signals. The outputs of the module
include the SDA signal, the signal "byte_transmit_done_pulse", indicating successful
transmission, the signal "allocate_sda", and the busy signal, indicating the module's

operational status.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

N VA VAV VIAVAVAA VARV
(WAIT_ACK)

POST_ACK

)

Figure 4.1.11: i2c_write_byte flow and I°C lines.

The scl_trig_high and scl_trig_low signals are supplied by the higher-level module to
the i2c_write_byte module, just like in the i2c_read_byte module. However, in this
module, the reg_to_serial serves as a write module rather than a sampling module.
Thus, the trigger for the reg_to_serial module is derived from the positive edge pulse
of the scl_trig_low signal. This signal is also utilized by the FSM to determine the exit
condition during the evaluation of the acknowledgement. The scl_trig_high signal is

used by the FSM for the purpose of sampling the acknowledge.

janable_posadge
STATE_W_BUSY

yie_transmit_done_oulze
(e
lscl_trig_high

Figure 4.1.12: i2c write byte FSM.

While the FSM is in the WRITE_BYTE state, it enables the reg_to_serial module,
allowing it to drive the SDA signal. In the WAIT_ACK state, the FSM waits for the
byte transmission to be completed by the reg_to_serial module, and then samples the
SDA signal when the scl_trig_high signal is high. If the feedback received from the

other device is as expected, the success signal is raised. The FSM then transitions to

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

38

the POST_ACK state and waits for the positive edge of the scl_trig_low signal to

return to the idle state and drive the busy signal low.

Similar to the i2c_read_byte module, the done signal of the reg_to_serial module is
made available to the higher-level module to assist with speeding up any operation.
The output provided by this module is in the form of a pulse, rather than the tx_busy
state, as an edge detector is usually attached to detect state changes and the tx_busy

output is followed by an edge detector.

Data

Trigger TxD 1 SDA
egedge
t_busy Iz d=Cy byte_transmit_done_pulse

Enable detector
Reg to Serial

edge [Posedge

scl_trig_low [l— delactor

byte_transmit_done_pulse

scl_trig_low_edge ,;rie anaple

sda_feedback sda_feedback SUCCESS SUCCESS
scl_trig_high scl_trig_high allocate_sda allocate_sda
enable Bdge Posedge enable_edge busy busy
detector
FSM
i2c_write_byte

Figure 4.1.13: i2c_write_module schematic

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.1.1.10 i2c_start_stop_detector module
The start_stop_detect module is responsible for detecting the edges of the SDA signal

in conjunction with the SCL signal being high. The positive edge of the SDA signal
represents the stop of the 12C transmission, while the negative edge represents the
start, as depicted in Figure 4.1.14,

SCL

SDA

1HYLS DE
Cdolsot—— |}

FONYHD IWA VLVa
FONYHD IWA VLVa

Figure 4.1.14: I1>C Start Stop conditions.

To implement this functionality, an edge detector has been instantiated, which then
drives two AND gates. These AND gates enable the i2c_stop and i2c_start signals
only when the SCL signal is high. This ensures that the detection of the start or stop of

an 12C transmission is correctly synchronized with the SCL signal.

pos_edge
sda Jl——M edge_detector i2c_stop
neg_edge
i2c_start
=zl i

i2c_start_stop_detect

Figure 4.1.15: i2c_start_stop_detect schematic

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.1.1.11 enable_after_priority module
The “enable after priority”” module provides a signal to the higher-level module to

indicate when a trigger event has been received and another signal with higher
priority is not currently active. In the event that the priority signal is high at the time
the trigger is received, the module waits for the priority signal to fall before activating
the enable signal. A delay of one cycle is introduced between the fall of the priority
signal and the activation of the enable signal, to ensure that the higher-level module

can detect an edge in the combined signal of the two.

This functionality is achieved through the implementation of a finite state machine
with three states: IDLE, WAIT, and UPDATE. If the trigger is received and the
priority signal is low, the state changes from IDLE to UPDATE, where the enable
signal is raised. If the priority signal is high at the time of the trigger, the state
changes to WAIT, and the module waits for the priority signal to fall before
transitioning to the UPDATE state.

\
(state ¢

STATE_IDLE |[g=not (frigger_posedge)

priority
trigger_posedge

not (priority)
rigger_posedge

STATE_WAIT not (Ipriority)

STATE_UPDATE

Figure 4.1.16: enable_after_priority FSM

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

41

4.1.2 Register File Modules
The Register File consists of four separate partitions, including the Configuration

Register File, the Receive Data Register File, the Transmit Data Register File, and the
Slave Registers Register File. The Configuration Register File contains information
that pertains to the device's operation, such as the protocol, speed, data size, and the
I2C Slave address. The Receive Data Register File holds data received from the Slave
Module, the Transmit Data Register File holds data intended for transmission to the
Slave Module, and the Slave Registers Register File holds the register addresses of an
I2C Slave device (this is utilized only if the protocol is 12C). The Transmit Data
Register File and the Slave Registers Register File are implemented using the same
module, known as the "data_from_master" module, as they both manage data sent by
the Master Device. On the other hand, the Receive Data Register File is implemented

using the "data_from_slave™ module.

00_000
Config Regs
address 00_111
data_in
01_000
data_in . Data from Master valid_data_in
o111 data_out
data_out
10_000 valid_data_out
Slave Register reg_out
w_en/valid_data .
1011 valid_reg_out
data_last 11_000
- - data_last
Data from Slave -
1M reg_last

Figure 4.1.17: Register File Abstraction and Inputs/Outputs.

4.1.2.1 Interfaces and Reg File data Algorithm
The communication between the interfaces and the register file requires the

implementation of a specific communication protocol. The communication is
bidirectional, with data being transferred from the interfaces to the register file and
vice versa. The main distinction between the two modules is that the interfaces must
communicate with external modules and thus must serve the protocol in a timely

manner, while the register file only serves the interfaces and may wait.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

The communication from the interface to the register file involves the use of the
"w_en" and "data_last" signals, as well as the "data" signal. The "w_en" signal
triggers the register file module to write the provided "data" to its registers. If the
current register address has reached its limit, the "data_last" signal is raised, signaling

the interface to stop receiving data.

The communication from the Register File to the interface is characterized by the
presence of three signals: data_available, data_req, and transmit_done. Upon receipt
of data from another module, the Register File raises the data_available signal to
notify the interface that it has data available for transfer. The interface then initiates
the data transmission process. When the interface has completed the transfer of a
single byte and requires the next, it raises the data_req signal, causing the Register
File to update the data. If the interface terminates its data transmission process, it

raises the transmit_done signal, signaling the Register File to reset its counters.

The data from the master module differs from the data from the slave module in that
the former requires the consideration of an address received from the input. This is
due to the fact that data from the master module is transmitted using the 1C protocol,
which specifies the writing of data to specific registers. As such, the address is an
input signal for the data from the master module, while in all other cases the addresses
are determined by internal counters that are incremented or reset based on the signals
described by the communication protocol. Additionally, the master device may need
to read the value of a register, and as such, an output data signal is required to provide
the value based on the input address, which is the same signal used for write

operations.

. data_last

Interface Reqg File

Reg File to Interface

Figure 4.1.18: Reg File to Interface Communication Signals

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.1.2.2 config_regs module
The “config_regs” module is responsible for compliance with the restrictions imposed

by the “data_from_master” module, however it does not need to provide data to the
slave interface. Instead, it provides signals that convey configuration values. The
i_value is written to the appropriate register if the w_en signal and the address match
the register. If not, the register output returns to its input. The configuration values are
obtained directly from the registers. Additionally, the master device has the ability to
read the written value from the 12C interface through an o_value byte that provides
the value of the register requested by address.

To support the feature of resetting the least significant bit of Register 0x2 (12C Slave
Address Configuration), additional logic has been implemented. The
i2c_receive_done signal is passed through an enable_waiting_for_priority module to
prevent triggering while the w_en signal is high. Then, it acts as the w_en signal,
replacing the input address with the 12C Slave Address Configuration register address

and the i_value with the last register value, but setting the least significant bit to 0.

Ijii protocol
rog_fle_0_ 142

speed

data_rx_size

AT O P = data_tx_size

i_value[7:0] 0

RST e LI slave_reg_size

Ii"z i2c_r_w_opfi2c_req_data

= i2c_address

address ==2

o_value[7:0]

i2c_receive_done trigger
enabie_
waiting_for

priority Ty enable

address

Figure 4.1.19: config_regs schematic

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.1.2.3 data from master module
The "Data from Master” module is responsible for receiving data from the master

device, signaling availability of the data to the slave interfaces, and providing the data
to them. This module comprises a register file and a manager for this specific

function.

The register file is comprised of a simple array of eight 8-bit registers. The inputs to
this file are a 3-bit master address (m_address), a 3-bit slave address (s_address), 8-bit
data, and the write enable signal (w_en). The register values are updated with the
incoming m_input value if the m_address provided matches the address of the register
and the write enable signal is active. Otherwise, the register retains its current value.
The 8-bit master output (m_output) and the 8-bit slave output (s_output) are obtained
from the selected register based on the values of the m_address and s_address,

respectively.

Figure 4.1.20: data_from_master schematic.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

45

The Data from Master Manager oversees the control of the Slave Address (s_address)
and the signals utilized for communication with the interfaces. The Master Data Last
signal (m_data_last) is set to 1 when the Master Address (m_address) is equal to the
input data size. In the event that the Master Address reaches its maximum permissible
value and a Write Enable (w_en) signal is received, the data is considered full, and the
Data Full edge is the positive edge output of an Edge Detector, which is driven by the
AND gate result of the Master Write Enable signal (m_w_en) and the Master Data
Last signal. Unconsumed data will persist after the Data Full edge as long as the Slave
Address has not reached the data size, and when it does, until a Slave Data Request is

received.

The next phase involves the consumption of the data by the Interface to Slave. The
Slave Address starts at 0 and increases by 1 with each Slave Data Request Edge.
When the Slave Address reaches the data size, the next Data Request will reset the
Slave Address. If the Unconsumed Data signal is high, the Data Available output will
be set to high. An exception to this rule occurs when the Slave Address does not equal
the data size and a Slave Data Request is received. In this case, the Data Available
signal will only fall in the next cycle and then rise in the subsequent cycle to provide a
positive edge, as some modules (such as UART) receive this information as an enable

signal.

Figure 4.1.21: data from master manager

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.1.2.4 data from slave module
The Data from Slave module serves as an intermediary for the transfer of data from

the Interface to Slave to the Interface to Master. The master is unable to write to it
through the 12C interface, with the capability of reading the data being the only
provided function.

The module comprises a register file and a manager, similar to the structure of the
Data from Master module. However, there is a difference in the way the values are
written to the registers, as the s_address is utilized instead of the m_address.
Additionally, only the master output is accessible, as the Interface to Slave does not

require the ability to read the written data.

Figure 4.1.22: data from slave reg file

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

47

The Data from Slave Manager controls the communication between the Interface to
Master and the Interface to Slave. It is responsible for setting the addresses, and
controlling the write enable signal. The inputs to the manager include a 3-bit data size,
the Slave Valid Data (s_valid_data) signal, the Master Data Request (m_data_req),

and the Master Transmission Done (m_trans_done).

The s_address is incremented by 1 if the s_valid_data edge signal is received and the
s_address does not equal the data_size. In the event that the m_address reaches the
s_address, the s_address will be reset. The write enable signal is triggered one cycle
after the s_valid_data edge signal if the data is not full. Data is considered full if the
s_address and data size are equal and the s_valid_data_edge signal is received. The

write enable signal returns to low when the s_address is reset.

The data available signal is set to 1 after the write enable signal is triggered. It will be
reset to O if either a m_data_req edge or m_trans_done edge signal is received. The
m_address is incremented when the m_data_req edge signal is received and the
m_address does not equal the s_address. It will be reset when the m_trans_done edge
signal is received. The data_last signal is set to high if the m_address is greater than
or equal to the s_address.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

data_sze[2:0]

s_valid_data

m_data_req

m_trans_d

edge
detector

edge
detector

adge
detector

data_last

s_address[2.0]

m_address[2.0]

Figure 4.1.23: data from slave manager

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

ata_available

49

4.1.3 Peripheral Device Interface Modules

The section describes the modules responsible for driving communication interfaces
to the slave (peripheral) device. A wrapper module, known as the
"to_slave_interfaces," integrates all the interfaces and facilitates their connection to
the 1/0 and the Register File.

4.1.3.1 digital_output module

The Digital Output Module is responsible for driving 8 output signals with the input
byte upon receiving the last trigger signal. It consists of two inputs, namely the trigger
signal and the data byte, and two outputs, the busy signal and the 1/0 output wires.
The busy signal is set to a high state for one cycle immediately after the receipt of the

trigger signal to indicate the change of the output to a higher-level module.

om—— Busy

Figure 4.1.24: Digital Output Interface schematic

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

50

4.1.3.2 digital input module
The Digital Input module converts the inputs received from the 1/0s into a data byte.

It has an enable signal and the I/Os inputs as its inputs, and its outputs are the data
byte and an update_pulse signal. The module operates as follows: If the enable signal
is set to 1, each input passes through a debouncer to eliminate any bouncing that may
occur. If the enable signal is not activated, the debouncers are driven by a constant
zero, to reduce energy consumption when the Digital Input module is disabled. The
outputs of the debouncers drive the data byte and an edge detector. The outputs of the
edge detectors, positive or negative, are combined through an OR gate and drive the
update_pulse signal. This means that any edge of the received inputs, after bounce
filtering, will result in a pulse of the update_pulse signal, allowing the higher-level

module to save the data to the register file.

Enable

input_0

data[0] edge debouncer
detector

input_1

data[1] edge debouncer
datactor

input_2
data[2] — edge debouncer
detector

input_3

dataf3] —— sdge debouncer
detector

input_4

data[d] +—xud edge debouncer ——
detector

input_5

data[5] e edge debouncer
detector

input_8
data[6] — edge debouncer
detector

input_7
edge

datalr) detector

debouncer

update_pulse

Figure 4.1.25: Digital Input Interface schematic

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.1.3.3 uart_interface
The uart_interface handles the communication of the UART bus. The module is a

wrapper of the uart_transmitter and the uart_receiver who operate independently.
Each module has internally instantiated a baud_rate_sample_pulse_generator for
synchronization with the UART protocol specification rates.

tx_data[7-0 data
te_busy busy UART
s TRANSMITTER
baud_rate_code
enable |
baud_rate_code(2.0]
) L] baud_rate_code
enable
x_data[7:0 s UART
o RECEIVER ReD ReD
= bus)
= valid_d:

Figure 4.1.26: uart_interface Schematic.

4.1.3.4 vart_transmitter module
The UART Transmitter module is responsible for transmitting data through the TxD

signal, based on the input byte. The inputs of the module include the Data Byte, the
Baud Rate Code, and the Enable, Clock, and Reset signals. The outputs of the module

are the TxD signal and the Tx_busy indicator.

The module implements a Finite State Machine (FSM) consisting of eleven states that
represent the various stages of UART transmission, including IDLE, START_BIT,
DO, D1, D2, D3, D4, D5, D6, D7, PARITY_BIT, and STOP_BIT.

Additionally, the module includes a Baud Rate Sample Pulse Generator, which
provides the trigger signal at the correct time to ensure proper transmission of the
data. During the START _BIT state, the TxD signal is in a low state. During the DO to
D7 states, the TxD signal takes on the value of the corresponding bit of the input data
byte. The parity bit, which is calculated as the XOR function of the data bits, is
transmitted during the PARITY _BIT state, and during the STOP_BIT state, the TxD
signal is in a high state. The transition to the next state takes place with each pulse of
the trigger signal, which is provided by the Baud Rate Sample Pulse Generator

module.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.1.3.5 uart_receiver
The UART Receiver module is responsible for capturing the RxD signal and

generating a data byte through the deserialization of the UART message. It comprises
an FSM with 11 states, identical to the UART Transmitter, including IDLE,
START BIT, DO, D1, D2, D3, D4, D5, D6, D7, PARITY_BIT, and STOP_BIT.

Upon detecting a negative edge in the Rx signal while in the IDLE state, the module
transitions to the START_BIT state, where it awaits the appropriate time to begin
sampling the data bits. During the DO-D7 states, the module samples the data bits and
constructs the byte output, while also computing the parity bit using an XOR gate on

the RxD value and the previous parity bit result.

In the PARITY_BIT state, the module compares the calculated parity bit with the
RxD value. In case of equality, the process continues normally. However, if there is
an inequality, a parity error signal is raised and the module returns to the IDLE state.
Finally, the module awaits the stop bit (RxD high) and raises a functional error signal
if the expected value is not captured.

4.1.3.6 baud_rate_sample_pulse_generator

This module generates a pulse to make the receiver and transmitter modules to
synchronize to the UART bus. It consists of a counter whose threshold is relative to
the baud rate code and the defined clock period.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Table 4.1.1: Baud Rate Code. Sampling Period and Maximum Clock periods

Code | Baud Rate | Sampling Period Clocks per Pulse Clocks per Pulse for
21 ns clk period)

000 300 3333333 ns 3333333/ CLK_PERIOD 158730

001 1200 833333 ns 833333/ CLK_PERIOD 39682

010 4800 208333 ns 208333/ CLK_PERIOD 9920

011 9600 104137 ns 104137 / CLK_PERIOD 4958

100 19200 52083 ns 52083 / CLK_PERIOD 2480

101 38400 26042 ns 26042 / CLK_PERIOD 1240

110 57600 17361 ns 17361 / CLK_PERIOD 826

111 115200 8681 ns 8681/ CLK_PERIOD 413

4.1.3.7 i2c_master_interface
The i2c_master_interface handles the communication with Peripheral Devices with

I2C interface. It handles the clock line, transmits data and requests-receives from the

slave. It cannot operate in a bus where another master device exists.

To drive the clock line of the bus, it has a scl controller module instantiated. The scl

controller consists of an FSM of 5 states, an idle state, a high first part, a high second

part, a post scl high and a pre scl high part. During the IDLE state, the SCL line is not

asserted, while in the first part and second part high it is set to 1 and in the post and

pre scl it set to 0. When the scl controller is activated, it will jump from the idle state
to the high second part and then it will follow the FSM described. The FSM is

encoded in one-hot format, and each bit is exposed to the i2c master interface module.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

54

lenable

enable & enable &
lenable 1 {(SCL_PERIOD * | (SCL_PERIOD *

0.7*0.7 elapsed) 0.7%0.3 elapsed]

SCL
enable & FIRST_PART_HIGH
(SCL_PERIOCD *

0.7*0.3 elapsed)

enable &
(SCL_PERIOD *
0.370.7 elapsed)

enable &
SCL_PERIOD *
0.7*0.7 elapsed)

lenable
I~ POST SCL
TSCL_PERIOD *
0.3*0.3 elapsed)
enable & enable &
I(SCL_PERIOD * (SCL_PERIOD *
lenable 0.3%0.3 elapsed) 0.3*0.7 elapsed)

Figure 4.1.27: SCL controller FSM

The i2c_master_interface module consists of a core FSM, the scl_controller,
i2c_read_byte and i2c_write_byte modules and a i2c start stop which triggers on the
bus the start stop conditions. The FSM consists of 8 states: IDLE, COM_START,
WRITE_12C_ADDRESS, WRITE_REG, WRITE_BYTE, READ BYTE,
COM_STOP, RECEIVE_IDLE.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

SET \
\ RWRBTO
e /

ACK FAILURE

/" Sends the 7-bit ™\
| Address and the |
N\ RweaeT

WRITE_I2C_ADDRESS

WRITTEM ADDRESS SUCCESFULLY

J

R_W_BIT R_W_BIT

ILAST_REG
b

LASTREG &
'RW op LASTREGS&
- R_W_OP

COUNTER == DATA SIZE
LAST_DATA WRITE_BYTE
LAST_DATA

I R_W_OP | R_W_BIT

READ_BYTE COUNTER = DATA SIZE

e
RWOP&IR WEIT SET .'|
\ R_W_BIT1 J
N A

Figure 4.1.28: i2c master interface FSM

The process of write operation begins upon the receipt of an enable signal with the
read/write operation (R_W_OP) input set to 0. The 12C communication protocol then
proceeds to the IDLE state, followed by the COM_START state. During this state, the
i2c_start_stop module is activated, driving the 12C lines and triggering a start

condition.

The next stage is the WRITE_12C_ADDRESS state, where the provided address is
transmitted onto the bus and an acknowledgement is expected. In case no
acknowledgement is received, it can be inferred that there is no device present with
the specified address, and the process returns to the IDLE state. If an
acknowledgement is received, the process continues by transmitting the register
addresses until the last register signal is raised. It is then followed by transmitting the
data bytes until the last data signal is set.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

56

Finally, in the COM_STORP state, a stop condition is triggered on the 12C bus,
signaling the end of the write operation. The process then returns to the IDLE state,

ready for the next communication request.

The process of the read operation is more complex. When the R_W_OP input is set to
1 and the enable signal is received, the process begins. It starts with the
COM_START state, followed by the WRITE_ADDRESS, where the r_w bit is set to
0 in order to initiate a write operation. If an acknowledgment is received, the module
will provide the register address of the peripheral device to receive the data. Then the
FSM changes to the COM_STORP state to restart the communication. The module will
wait in the RECEIVE_IDLE state for a SCL period, before returning to the IDLE
state. The module then moves to the WRITE_ADDRESS state after the
COM_START, with the r_w bit set to 1, and begins reading until the internal counter
reaches the specified DATA_SIZE threshold. A counter is implemented in the
interface to keep track of the data size, instead of relying on the last_data signal, as it
will be enabled after the decision of reading the last byte. Once the threshold is
reached, the module will transition to the COM_STOP state to complete the read

operation.

4.1.3.8 peripheral_interfaces_wrapper
The peripheral_interfaces_wrapper module encapsulates all the interfaces described.

In addition to the interfaces, it also includes internal instantiations of I/O interfaces,
along with bidirectional splitters and input synchronizers. Debouncing is applied
exclusively for the Digital Input operation, and as such, this functionality is integrated

within the relevant module.

The 1/00 output is enabled when the interface is either a Digital Output or when the
I2C interface requires access to the SDA line (as the 1C interface utilizes this pin for
the SDA line). In the case of the UART interface, this pin represents the Rx signal and
is never allocated, as for Digital Input, it represents the first bit of the 8-bit bitstream.
The 1/01 output is enabled for the UART interface (representing the Tx line), 1°C
interface (representing the SCL line, which is not bidirectional), and Digital Output
(representing the second bit). The remaining 1/Os are utilized solely by the Digital
Output interface and are enabled only when this interface is in use or for Digital Input.
In addition to directing the wires to the 1/Os, the slave wrapper also merges the wires

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

to the Reg File, as the latter uses the same signals regardless of which interface is

enabled.

iface

Figure 4.1.29: To Peripheral wrapper schematic

4.1.4 MCU Communication Module

The I1°C Slave interface is instantiated for communication with the MCU device. It
comprises of the following components: a start_stop_detect module, a i2c_write_byte
module, a i2c_read_byte module, a bidirectional splitter for the SDA wire, input
synchronizers for the 12C wires, 3 edge detectors, and its basic finite state machine
(FSM).

The inputs to the 1°C Slave interface include the device address, the data byte from the
register file, the last data signal, the I12C bus lines (SDA as inout) and of course, the
clock and the reset signals. The outputs of the interface are the register address and
data, the register write enable signal, the data from register file request, and the busy

and transmission done signals.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Regarding the design, the SDA signal passes through a bidirectional splitter to
separate the output and input. The SDA input and the SCL wires are then routed
through input synchronizers, as these signals originate from outside the digital

design.. The output of the input synchronizers drive the i2c_start_stop module. The
synchronized scl signal also passes through an edge detector to obtain the scl_negedge
and scl_posedge signals. The scl_negedge signal drives the scl_trig_low signals of the
i2c_read_byte and i2c_write_byte modules, as the low value of SCL enables writing
on the SDA signal. The scl_posedge signal drives the scl_trig_high signal, as the SDA
has received its high value, and the master device should have already written the

desired value to the SDA signal.

The SDA out signal (input of the bidirectional splitter, which is driven to output when
enabled) will take on the value of the i2c_write_byte SDA output if the SDA is
allocated by the i2c_write_byte module, and will be constantly low (representing the
SDA value when allocated by the i2c_read byte module). The bidirectional output
enable signal is high if either the i2c_read byte or i2c_write_byte module allocates

the SDA signal.
f D,EH
2¢_address i _2¢_ad0tess /7_ pa R
bidirecs = ._,_\ S
42 I Wl vd_on m_ncutlit Q_0ata.

negedge|
e e ——— L T L T edoe_delscior

S 2o S —————
s " t2c_stop)

S
— =
. —
o=
—a
—a

i2c_slave_interface

Figure 4.1.30: I°C Slave Interface Schematic.
The FSM in the 12C Slave interface is comprised of five primary states: IDLE,
ADDRESS, REGISTER, READ, and WRITE. During the IDLE state, no operation is
carried out. Once the start signal is triggered, the state transitions to the ADDRESS
state after two cycles. In this state, the i2c_read_byte module is enabled with the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

"should_comp" pin enabled. If the 7 most significant bits of the received data do not
match the 12C address, the read operation is considered a failure, and the FSM returns
to the IDLE state. If the received bits match the address, the least significant bit is
checked to determine if the operation is a "write" or "read". If the bit value is 0, the
operation is considered a "write" from the master device, and the FSM transitions to
the REGISTER state. In this state, the desired register address is received from the
master device. The FSM then transitions to the READ state, and data is read until the
register file signals that the last data has been received. If the least significant bit of
the byte received in the ADDRESS state is 1, the state transition from ADDRESS is
to the WRITE state. The module continuously outputs the data stored in the register
that was previously specified in a write operation, until the "last data" signal is

activated.

FALSE_ADDRESS
READ_I2C_ADDRESS

READ ADDRESS SUCCESFULLY

READ_REG

R

LAST_DATA =1 LAST_DATA =1

WRITE_BYTE

LAST_DATA==1

EAD_BYTE

LAST_DATA==1

Figure 4.1.31: I1°C Slave FSM

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.2 4.2 RTL Verification
The RTL Verification process is divided into two stages: module tests and functional

tests. Both stages utilize Verilog for test writing and are managed by separate Python
scripts. To ensure a streamlined testing process, the tests are automated and run at
least once for each Merge Request within the GitLab environment through the use of
CI/CD flows.

4.2.1 Module Tests

The objective of the module tests is to evaluate the functionality of individual
modules. Each test is comprised of a directory containing a Verilog testbench and a
corresponding YAML file. The YAML file may include the following fields.:

e src_files: A list of the source files provided to the Verilog compiler to compile
the test.

e enable: A Boolean variable indicating if this test should run or not.

e only: A Boolean variable, indicating whether or not this test (and any others
with "only enabled") should be executed. It is not recommended to enable this
in any tests in the stable branch, but it proves valuable during the development

phase for debugging purposes..

fpga > test > module_tests > interfa i2c_master > simulation_src.yml

Figure 4.2.1: Example of a module test yaml file

The testbench implements various scenarios and samples signals or data. At each
sampling interval, the testcases variable is incremented. If the sampled values do not
match the expected values, the fails variable is incremented. To simplify the testbench
file, Verilog tasks for development and debugging are utilized to run the different
scenarios. Upon completion, a message displaying the score (PASS/TOTAL) is

printed, and if the fails variable is equal to zero, the simulation is terminated with the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

61

$finish command. If the fails variable is not equal to zero, the simulation exits with

the $fatal command, allowing the simulation caller to be aware of the result.

The testing process of the Verilog testbench is managed by a accompanying Python
script. At the start, the script scans the directories within the
"$12C_BRIDGE_PRJ_ROOT/fpga/test/module_tests" folder in search of "enable™ and
"only" keys in the associated yaml files. Tests that have the "enable" key are placed in
a "lowPriorityTests" list, while those with a "only" key set to "true" are placed in the
"highPriorityTests" list. After the scanning process, the final tests list is determined
based on the presence of elements in the "highPriorityTests" list; if it is not empty, the
tests list is set to that, otherwise, it is set to the "lowPriorityTests" list.

The script then compiles each element in the tests list using the iverilog tool along
with the specified testbench and source files. If an error occurs during the compilation
process, the script exits with a "testbenchFailure™ exception and returns a code of 1.
Otherwise, the simulation process is initiated by calling the "vvp" tool with the
compiled file as an argument. If the simulation finishes successfully, indicated by a
return value of 0 and the Verilog testbench ending with the "$finish" command, the
script proceeds to the next element in the tests list. Otherwise, the script exits in the

same manner as the compilation error.e

4.2.2 Functional Tests

The functional tests are designed to verify the overall functionality of the system.
Unlike the module tests, the Design Under Test (DUT) remains constant, but the
number of different flows and behaviors to be tested increases. To simplify the
process, these flows are separated into distinct Verilog files containing only tasks and
variables, and a Python script is utilized to gather the desired flows, combine them
with a base testbench, and generate a unified testbench for the simulation. This
approach of generating a concise testbench is to facilitate its reuse for post-synthesis

testing.

The base testbench file consists of the instantiation of the Design Under Test (DUT)
and its associated wires, as well as an initial block containing the $finish command.
Additionally, it includes three general-purpose tasks, namely the data test, the signal
test, and a delay sync task which serves to synchronize with the clock. The file also

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

62

contains two comments, the first of which is positioned above the initial block,
providing a location for the desired tasks to be copied. The second comment is located
within the initial block, serving as the header of the last task of each test, acting as the
main task of each test.

Each test is instantiated in a directory and contains the Verilog file and a yaml file.
The yaml file has the enable and only keys, with similar functionality of those in the
module tests. In case no test has its “only” key true, those with the “enable” true will
have their Verilog code been integrated in the generated testbench, else only those
with the “only” true. Each test should have a task at the bottom without arguments
which will play the role of the main task. Its header will be instantiated in the initial
block of the generated testbench. It should reset the total_testcases and fails variables
and let them increase accordingly during the test. Then it will call any other tasks to
run the test. Finally, it will print the score and in case the fails variable is not 0, it will

run the $fatal command exiting of the simulation. Else it will let the next test to run.

The tests do not directly interact with the DUT's inputs and outputs, but instead create
scenarios and assess their results. For example, when testing the read/write operation
of registers, the focus should be on the return value of the register, rather than the 12C
signals. The I2C signals are handled by an intermediary layer, known as the drivers,
which are always included in the generated testbench. The test tasks call the drivers to

facilitate communication with the DUT and to participate in the testing process.

Digital Input Configuration
Interface Drivers
Digital Output
J ? Digital Inputs
Interface
12C Interface Digital Outputs
g <«—> i2c_bridge dut
UART 12C from
Interface Master
12C from
Registers RIW
Slave
Test
s UART

Drivers

Figure 4.2.2: Functional Tests Block Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

4.2.3 RTL Verification Automation

In order to maintain consistent verification of the RTL, an automated process is
necessary. During development, tests are conducted continuously, focusing on
specific parts by enabling the "only" key or conducting general tests to ensure that
changes to one flow do not negatively impact others. However, this alone is not
sufficient, as there must be a record of the verification tests to ensure that each branch

to be merged into the master (stable) branch has been properly verified.

For this purpose, GitLab CI/CD is utilized. This tool runs the tests in its environment
and will not allow a branch to be merged into the master branch if the verification
process fails. In Figure 4.2.3, Branch 1 passes the verification and is successfully
merged into the master branch, while Branch 2 fails and GitLab blocks the merge
process. Branch 2 must address the error and, upon re-testing, may be merged. This
ensures that the RTL in the master branch is always verified.

Branch Master »

Verification
Process:
PASS

Alerification™,
Brancn 1 —{ Commit11 j— Commiti2 j--------- [Process: |
_ FaL /

Figure 4.2.3: Code Quality Maintenance flow

GitLab CI/CD utilizes a docker image to run the verification process. To
accommodate this, a docker image is created using a DockerFile located in the
repository. The image is based on Debian and includes additional software, such as
python3, python3-pip, iverilog, and gtkwave. The inclusion of gtkwave allows for the
image to also be used for development and testing from another workstation if

necessary.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

64

4.3 4.3 Physical Implementation

4.3.1 Clock and Reset

Both FPGAs have two on-board oscillators: one with a low frequency of 10kHz and
another with a high frequency of 48MHz. [10] To support the high speeds of the 12C
bus communication with the slave device, the high frequency oscillator was selected.
The high-fanout clock signal is passed through a global buffer, along with the reset
signal. Unfortunately, the Power-On reset takes place before the design is loaded onto
the FPGA, so it cannot be utilized in the design. As a result, a RESET N signal must
be assigned to a chip pin and the user must provide their own power-on reset for the
FPGA design.

4.3.2 1/0s Assignment

The requested Inputs/Outputs pins are provided with the PCF. The pinout for the
ICE40UP5K and for the iCE40UL1K is described in the Figures 4.3.1 and 4.3.2.

28 (41A4)| RESET_N 100 |47 (2A
23 (3TA)| ADDRO 101 | 458 (4A
26 (394)| ADDR1 102 | 4(3A

32 (43A)| ADDR2 102 |9 (16A

ICE40UPSK

43 (494)) ADDR3 104 (10 (184)
2 (BA) | SDA 105 | 11(204)
46 (0A) | SCL 106 (18 (31B)
42 (51A)| DATA_AV 107 |19 (29E)

Figure 4.3.1: iCE40UP5K Pinout

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

C1| RESET_N 100 |E1
A3 ADDRO 101 |F&
C2|ADDR1 102 |ES
EZ2| ADDR2 103 |E&
ICE40UL1TK
E2| ADDR3 104 |F5
Ca6| SDA 105 |BS
D1| SCL 106 |A4
D& | DATA_AV 107 |BG

Figure 4.3.2: iCE40UL1K Pinout

4.3.3 FPGA Utilization and Floor Planner

The Utilization summary after the Placer and Route operation for the iCE40UP5K is
presented in Table 4.3.1 table. Also, the design floorplan for this FPGA is

demonstrated in Figure 4.3.3.

Table 4.3.1: iCE40UP5K Utilization

LogicCells 1065 5280

PLBs 187 660
BRAMs 5 30
I0s and GBIOs 16 36
PLLs 0 1
DSPs 0 8
LFOSCs 0 1
HFOSCs 1 1

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

EEEEEEREEEERE
EEEHEEEEEEEEE
EEEREEEEEEERE
EEEHEEEEEEEEE
EEEREEEEEEERE
EEEHEEEEEEEEE
EEE EEEEEEEEE

EEPEEEEEEER
EEEREEEEEEERE
FEEPEEEEEEEEEEEEREEEEER
EEEREEEEEEEREEEEREEEEED
EEEHEEEEEEEEEEEE EEEEED
EEEREEEEEEEEEEEEREEEEED
EEEPEEEEEEEEEEEEPEEEEE
EEEREEENEEEEEREENEEEEE
ARFEREEEEEEEEEEPEER
ENLEEEHEEEEEEEEREER
AFSAEEEEEEEEEEREEE
AEEEEEHEEEEEEREEE
EREEREEHEEEEREEE
NERNEEEEEEEEREEE
AENERREEEEEEREEE
NENANEEEEEEE EEE

F

i

i

E

E

E
H
i
i
i
H
F
E
i

Jamnifinnn finmn: finnnsfannsfann funnfinnn:] |
[anmubinnn finumifinnnsfannnfanns funinfinnas] |
Jamnuifinnn finmn finnnsfananfannn funnfinnns] |

EEE
EEE
EEE
EEE
EEE
EEE
EEE
EEE
EEE

[annufinnnfinnnifinnnsfananfannn funnfinnn:] |
I N N .

REEEERENEEEEREE
ARNANREEEEEEREE

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

ENENEEEEEEPEEE
EIEIEEEEEE EEEE

EE
BEE
EE
EE
EE
HE
EE
EE
EE
HE
HE
EE
EE
EE
E
EE
EE
il
ik
Nk
1
L]
L]
RE
]
L]
L]
ER
[
L]
kE
‘NN EENCENBNEEERRE

| i
L] il
KR H
RE i
RE i
L] i
L] El
ER H
[i
ER i
] i
] il
RE El
L] El
k& El
EE EE

Figure 4.3.3: iCE40UP5K Floorplan

For the ICE40UL1K FPGA, the Utilization summary is presented in Table 4.3.2 table,
while the relative floorplan in Figure 4.3.4.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Table 4.3.2: :

iCE40UL1K Utilization

LogicCells 1065 1248
PLBs 153 156
BRAMs 5 14
IOs and GBIOs 16 21
PLLs 0 1
DSPs 0 8
LFOSCs 0 1
HFOSCs 1 1
EENGERER
HIIIIIIH
EREREEREREL
EREERRREPLE

Figure 4.3.4: iCE40UL1K Floorplan

4.3.4 Static Timing Analysis

The design on the ICE40UP5K has a slack of 989 ps. The critical path is located in
the counter of the SCL controller (part of the 12C Master interface). The path on the
floorplan is provided in Figure 4.3.2.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Start

Reference ©SCInst0/CLEHF
Setup Constraint 20833 (p)
Path Slack S84 (p)

Figure 4.3.5: iCE40UP5K STA Log Output

RERRENNERREE
ERERNQENNERCE
HREEANNNNEREER
ARNNEPEREREN!E

REEERRERRES§
-EEEENEENREEREENNNEEERREES

Figure 4.3.6: iCE40UP5K Critical path in Floorplan

The slack of the ICE40UL1K design has a value of 1637 ps. The critical path starts
from the transmitter busy signal in the 1°C Slave interface and reaches until the data
from slave manager in the reg file. The path on the floorplan is provided below.

Startc
iZc_bridge_inst.iZc_slave_interface_m.edge_detector_transmitter_busy.prev_state_LC_S_lZ_?!lcout

End
iZc_bridge_inst.reg_file_mﬂreceive_data_reg_file_m.data_from_slave_manager_m.data_last_L£L5_11_3fin3
Reference CSCInst0/CLEHF

Setup Constraint 20833 (p)

Path Slack 1637 (p)

Figure 4.3.7: iCE40UL1K STA Log Output

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

llllln
HEREERNAALAL
NERRNRRAPEE

AP LLLTE]
BEEQERERRLPEER
AL L LLEEE)
RERQRNERERPANE
AL LA (L
BEEQARRRRARNRE
Ly LLLEEEEE]
: IIIIIII 1L

ERRESRENNER
EEDE!IIIE Il
FEREERALNLEE
-EEENEERENEND

Figure 4.3.8: iCE40UL1K Ciritical path in Floorplan

4.3.5 Power Estimation

The Power Estimation requires an input voltage and the operation temperature. The
input VVoltage will be 3.3V as most designs operate in this rank, while a range of -20
to 80 Celsius feeds the Power estimation algorithm. The estimation is requested for
both typical and worst case. The results are presented in the diagram of Figure 4.3.9

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

70

—— CE40UP5K Typical
16.01 . iCE40ULIK Typical
—— ICE4OUP5K Worst
—— ICE40UL1K Worst
15.5 1
5 1501
E
£
5 145
B
=
2
2 140
o
(]
@
S
&£ 1354
13.0 1
125 1

T T T T T
-20 0 20 40 60 80
Temperature (in Celcius)

Figure 4.3.9: Power Estimation per Temperature value

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

71

Chapter 5 Software Driver

5.1 Driver Structure

The 12C Bridge module has been designed with ease of integration in mind. To
simplify its implementation in end-user systems, a software driver is provided, which
encapsulates the operational details of the module. The driver, written in C language

and structured using CMake, is ready to be utilized by software developers.

The driver comprises three main components: the header file with the Application
Programming Interface (API), the core functionality file, and the Hardware
Application Level (HAL) layer. The API is defined in the i2c_bridge.h header file, the
core functionality is implemented in the i2c_bridge.c source file, with the assistance
of utility functions in the utils directory. The HAL layer is defined in the hal directory
and serves to instantiate the 12C commands based on the platform.

If no platform is specified, the top-level source file, i2c_bridge hal.c, will be
compiled and its functions will return with a "not implemented" error. The supported
platforms are defined in the platform directory, with currently only the Zephyr
platform supported. If the Zephyr platform is defined, the HAL commands will result
in Zephyr 12C read and write commands being called by the core functionality. To
add a new platform, a directory representing it should be added under the platform

directory.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

i2c_bridge.h

i2c_bridge.c

i2c_bridge_types.h

——i2c_bridge_utils.c

L i2c_bridge_utilsh

—— i2c_bridge_log.c

L i2c_bridge_log.h

i2c_bridge_hal.c

i2c_bridge_halh

|
L

| i2c_bridge_hal.c
|

Figure 5.1.1: Driver Filesystem structure

5.2 Driver API

The API of the driver features a user-friendly interface consisting of straightforward
read/write procedures and interface configuration functions. Specifically, for the
UART interface, an additional function to specify the expected size of the read data is
included, as the peripheral device is expected to have already transmitted the data by
the time the MCU requests it.

5.2.1i2c_bridge_set_interface_do

Sets the interface configuration register with the value of Digital Output interface. In
case of successful operation, it will update the internal variable “interface”.

5.2.2 i2c_bridge_write_do
The function begins by evaluating the local variable to determine if the interface is set

to Digital Output. If it does not match, the function calls the

i2c_bridge_set_interface_do internally to set it up. Next, the function checks if the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

transmit data size is 1, using the local variable. If it is not, the function updates it.

Finally, the function sends a 1-byte bitstream to the transmit data register.
5.2.3 i2c_bridge_read_do
Reads the provided output bitstream. In case the interface or data size are not

correctly set, it will return an error value. After this evaluation, it will read 1 byte

from the transmit data register.

5.2.4 i2c_set_interface _di

Like the i2c_set_interface_do but setting the register to Digital Input.

5.2.5i2c_bridge_read_di

In the event that the interface is not configured as Digital Input or the receive data size
is not set to 1, the necessary operations will be initialized. Subsequently, a 1-byte

input bitstream will be read from the receive data register.

5.2.6 i2c_set_interface_uart

Receives the desired baud rate as an argument. The function sets the configuration
interface to UART with the specified baud rate. If the operation is successful, the

relevant variables will be updated accordingly.

5.2.7 i2c_bridge_write_uart

The function receives the desired bytes to be sent and the number of them as input
arguments. It evaluates whether the currently set interface corresponds to UART. If
so, it encodes the number of bytes into a value for the expected transmit data size.
Then, it checks if the transmit data size stored in the corresponding variable matches
the encoded value. If there is a discrepancy, it updates the variable. Finally, it
transfers the data to the module.

5.2.8 i2c_bridge_expect_uart_read_size

This function sets the receive Data Size as usual.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

5.2.9 i2c_bridge_read_uart

Evaluates if the configured interface is UART and reads from the receive data register

as the receive data size is set.

5.2.10 i2c_bridge_set_interface_i2c

The function takes the desired speed as an input argument. It sets the configuration
interface to 12C with the specified speed code. Upon successful completion, the

corresponding variables will be updated to reflect the change.

5.2.11 i2c_bridge_write_i2c

The function takes the peripheral device address, the address of the peripheral device's
register and its length, the data to be written to the desired register, and the length as
input parameters. To begin with, after checking the set I°C in the interface
configuration register, it will set the encoded values of the transmit and peripheral
register address size if they have not already been set. Then, the register address will
be transmitted. Finally, the address of the peripheral device will be set if it has not
already been set, followed by the data to be transmitted.

5.2.12 i2c_bridge _read_i2c

The function takes in the peripheral device address, the address of the peripheral
device register and its length, the length of the expected read data, and a buffer to
store the read data as input arguments. Initially, it evaluates the 12C interface
configuration setting and sets the receive and peripheral register address size, if they
have not already been set to the encoded values. Then, it sends the register address to
the peripheral device. The address of the peripheral device is set, and the read
operation is enabled. This is done to initiate the read operation. After a 100 ms delay,
the driver retrieves the read data from the receive data register.

5.2.13 i2c_bridge_init

The internal variables are initialized with default values that do not reflect their

operational state, and the HAL is also initiated.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

5.3 Sample on the Zephyr platform
5.3.1 Structure

Four distinct sample applications have been developed to evaluate the functionality of
the 12C Bridge Module, with each application being specifically designed to test a
different supported interface. These applications are based on the Zephyr RTOS and
the specific hardware platform is specified during the build process. Each application
comprises a Kconfig file, a prj.conf file, and a CMakeLists.txt file, which contain the
necessary source code and configurations. The Kconfig file initializes a
LOOP_DELAY configuration to 10 seconds. The prj.conf file sets the global
configurations for 12C and Logging. The CMakeL.sts.txt file contains the necessary
CMake configurations for Zephyr to properly compile the source code. The main
source code is located in a main.c file within the src directory. To maintain the
cleanliness of the Zephyr repository, the 12C bridge driver is utilized as an external

source code and is not included within the internal drivers.

5.3.2 Digital Output Sample

To evaluate the Digital Output a simple sample is implemented that provides the
value of an 8-bit counter which increments per 1 value each 10 seconds. The binary

representation of the 8 1/0 should be updated respectively.

5.3.3 Digital Input Sample

An application has been developed to monitor the digital input bitstream. This
application performs a scan of the digital input bitstream every 10 seconds and logs
the resulting value obtained after each successful scan.

5.3.4 UART Sample

An application has been developed to use the UART interface at the software level for
the purpose of receiving environmental variables from a UART interface sensor. The
sensor that will be utilized is the CozIR-A manufactured by Gas Sensing Solutions
Ltd. (GSS). To collect measurements, specific strings must be sent to the sensor. To

retrieve the CO2 measurement, the string "Z\r\n" should be sent, to retrieve the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

temperature measurement the string "T\r\n" should be sent, and to retrieve the
humidity measurement the string "H\r\n" should be sent. After each sent command, a
response will be received in the format of "Z ####\r\n" for CO2, "T ####\r\n" for
temperature, and "H ##H#\r\n" for humidity [11]. The 1°C Bridge is capable of
obtaining the first 8 characters of the response, and therefore, should receive the entire
payload. The CO2 measurement value represents the parts per million as is, while to
get the temperature number in Celsius, the provided value should be subtracted by
1000 and divided by 10. The humidity value should only be divided by 10.

5.3.5 12C Sample

For the I2C to peripheral devices interface evaluation of the 12C Bridge module, also
an environmental sensor is used, that can measure CO2, Temperature and relative
humidity. This time, SCD4x sensor is used developed by Sensirion. First of all, we
need to set the sensor in continues measurement mode, by pointing the 0x21B1
register address of the sensor. Even though pointing to register of Peripheral device is
not supported, we can do this by sending the first byte as register and the second as
data, with register address and transmit data size set to 1. This is allowed as the
register address size of the SCD4x sensor is 2 bytes. Then periodically the
measurements are collected in a 10 seconds interval. Before requesting them, a get
data ready status command is sent to validate the existence of data. After with a single
read command, CO2, Temperature and RH are provided. The CO2 ppm comes as is,
the Temperature is converted to Celsius by multiplying the received value with 175
and dividing with 2® which result must be subtracted by 45. To get RH in percentage,
the input value should be divided by 2'¢ and multiplied by 100.

Chapter 6 Physical Experiments

6.1 Setup

After developing and validating the RTL of the 1°C Bridge module and generating
bitstreams, as well as the software running on a MCU, the next step is to test the

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

whole system with a physical hardware setup. The main parts of setup includes the

below parts:

e AhostPC

e An STM Nucleo LR152RE as the MCU/Main Board

e A Lattice iCE40 UltraPlus Breakout board whose FPGA operates as the 12C
Bridge Module.

e LEDs to evaluate Digital Output Operation

e Jumper Wires to toggle the Digital Inputs

e Sensirion SCD4x sensor, as a Peripheral with 12C interface

e GSS CozIR sensors, as a Peripheral with UART interface

e DIGILENT Digital Discovery to visualize the signals 1 or O state.

| m
! i
! i
' iCE40 UliraPius ~ E"g
Breakout board [

L} Mucleo L152RE
Figure 6.1.1: Schematic of setup for Physical Tests

LED's

h 4

Jumper Wires
on Breadhoard

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

78

Digital

Discovery’s
Waveforms
Multimeter
for debugging \ iCE40 UltraPlus
L Breakout Board
Digital = [N
Discovery
Peripheral Device <>
nucleol152re & I’C Bridge Wires
MCU < o
I°C Bridge Wires A
i LEDs to
CozIR (UART) Sensor see DO

Jumper wires to

Scd4x (I2C) Sensor
control DI

Figure 6.1.2: Setup photo

6.2 Digital Output Interface Test

To evaluate the Digital Output functionality, the Digital Output sample was flashed
on the Nucleo LR152RE board. In Figure 6.2.1, we can see from the right side firstly
that the 12C bus (2" and 3™ waveform) was activated and provided the bitstream
value 0x1 to the output (next waveforms). After a while it is triggered again and
provides bitstream 0x2. The MCU provides its logs to the host PC which are printed
in the middle screen. Left we can see the LEDs status after bitstream 0x2 was written.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

79

30000 crvples 2 15 k9| 2T 0005 102200 90

- e v Bege P Pl A9
» U g < UM DI - NG 25

T

Figure 6.2.1: Digital Output Test Video Print screen

6.3 Digital Input Interface Test

In order to evaluate the functionality of the Digital Input, the Digital Input sample was
programmed onto the MCU. As shown in Figure 6.3.1, it can be observed that upon
requesting data from the 12C bus (as evidenced by the brief fluctuation of the 2nd and
3rd waveforms), the MCU successfully scans the updated value 0x7 (binary

representation 2°b111), as demonstrated by the subsequent 8 waveforms.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

=

80

- Normal v smple Puse | Protocol 5935 + Defack
~ U ogtal 0 j00M - bk - DN < 25w - 15k

30000 samples o 1.5 ke | 20234245 144812127

Figure 6.3.1: Digital Input Test Video Print screen

6.4 UART Interface Test

The functionality of the UART interface was evaluated by flashing the CozIR-A
sensor sample on the MCU. Figure 6.4.1 demonstrates the UART waveforms toggling
three times per measurement. This is because the CO2 measurement is requested first,
followed by the temperature, and finally the relative humidity. Although not all
toggles are captured in the 1°C lines due to limitations in the measuring equipment, it
can be observed that with each measurement, a command is sent to the sensor and the
received data is then requested. Following the first measurement, it can be seen that

the readings increased after blowing air into the sensor.

_!r Control Settings Window e

Weome # Hep @ Logc1 X »e
e Control Yew Window

Mode @it v Normal * | Smple Puse | Protocel, 593465 * Default
*Sﬂqk Oxm
y Oghal
$.= R.r.

+ 100K < 3200 + DN~ 25/ - 15k
T

Name o T| San |30000samples t 15kiz| 2023208 1201404 2 L4}
e J——
e [EX || T
o2 onoX m T
@07 o031 X
@08 bo h
@105 X
@04 o0 X
@01 oozt X
@0 !X
Ll X il 1

@0 oon X I M

Figure 6.4.1: UART Test Video Print screen

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

6.5 1°C Interface Test

The performance of the I1°C interface was assessed by flashing the SCD4x sensor
sample onto the MCU. As illustrated in Figure 6.5.1, the 1°C waveforms were
observed to toggle twice during communication with the sensor, with one toggle on
the SDA line and one toggle on the SCL line, due to limitations with the measurement
equipment. The first toggle was to obtain the data ready status, and the second toggle
was to retrieve all the environmental variables provided by the sensor. After the
second measurement, a breath was directed onto the sensor, leading to an increase in

the recorded values, as observed in the figure.

kspie Conurl Settings window e

lone + el @logc X (Y H
+ Gontrl Yiew indow
Mode Oshit | Normal * Smple Puse | Protocol, 153695 - Defaukt
mr
¢ a UDgal /) oo 2bis o ONO2 + 1 -3k

- N.%.

Nane P T Sam | 3000samplesat]kz 20034296 172858741 ALE
Rc ||]
o EEX Tl
Data owoX [T
o7 oo X
@05 X
08 bo25p8

) ooa X
103 ooz X
w0 X
P01 X |
P00 DoM X |

Figure 6.5.1: I°C Test Video Print screen

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

82

Chapter 7 Conclusions

7.1 Summary

The objective of this thesis was to develop a solution for streamlining the logistics
management of PCBs attached to a Main Board. The aim was to reduce design and
certification costs by allowing the use of a single Main Board for multiple

applications without any modifications.

The project approach emphasized the importance of creating and running an
automated verification process to ensure reliable performance during each step of the
implementation. The digital hardware design was kept as simple as possible to
facilitate integration in other hardware platforms and maintenance, while ensuring
100% functionality. This design is intended to be integrated into loT architecture at
after the MCU level, where Over-The-Air (OTA) updates can be challenging to take
place if a bug is discovered. The author's hope is for this design to eventually be

integrated into an ASIC, where OTA updates are not an option.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

7.2 Future Work

The project undertaken in this thesis has the potential to serve as a foundation for
multiple future projects. These projects can be divided into two main categories:
updates and optimizations to the digital hardware design, and integration of the 1°C

Bridge Module into existing or new software applications.

In regards to digital hardware development, a possible avenue for further research is
the utilization of a low frequency oscillator to reduce energy consumption and
increase the application of the system in low power environments. However, this may
also have limitations in terms of compatibility with high-speed buses and potential
issues with internal delay. Another potential project is the integration of additional
communication protocols such as SPI or even analog signals through the use of a
Digital to Analog Converter (DAC). Furthermore, the ability for the 1°C Bridge to
support multiple protocols simultaneously would also be an area for exploration. For
example, it would be desirable for the I°C Bridge to have the capability to
simultaneously utilize UART on 1/0 0 and 1, Digital Inputs on I/O 2 and 3, 1°C on 1/0
4 and 5, and Digital Outputs on I/0O 6 and 7.

At the software level, the integration of the 1°C Bridge into new Internet of Things
(1oT) projects is a possibility. As the MCU can communicate with different types of

peripherals, just from a simple 2-wire interface, the sky is the limit.

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

Chapter 8 Bibliography

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

M. G. L. E. Pena, "UART: A Hardware Communication Protocol Understanding Universal
Asynchronous Receiver/Transmitter," AnalogDialogue, vol. 54, no. 4, December 2020.

NXP Semiconductors, I2C-bus specification and user manual, 7.0 ed., 1 October 2021.

"Wikipedia," 3 January 2023. [Online]. Available: https://en.wikipedia.org/wiki/Field-
programmable_gate_array. [Accessed 23 January 2023].

S. H. H. A. M. Pedram, Statistical timing analysis of flip-flops considering codependent
setup and hold times, Orlando, Florida, 2008.

LATTICE Semiconductor, iCE40 UltraPlus Family Data Sheet, 1.4 ed., 2017.

Wikipedia, "Wikipedia," 20 January 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Device_driver. [Accessed 24 January 2023].

S. Williams, "Icarus Verilog," [Online]. Available: http://iverilog.icarus.com/. [Accessed
24 January 2023].

Docker Inc., "Docker Get started," [Online]. Available: https://docs.docker.com/get-
started/. [Accessed 24 January 2023].

R. Ginosar, "Metastability and Synchronizers: A Tutorial," IEEE Design & Test of
Computers, vol. 28, no. 5, pp. 23-35, September/October 2011.

[10] LATTICE Semiconductor, iCE40 Oscillator Usage Guide, 1.4 ed., 2017.

[11] Gas Sensing Solutions Ltd., CozIR®-A Production Data, 4.2 ed., 2020.

[12] BOSCH, "BME280 — Data sheet," September 2018. [Online]. Available:

https://www.mouser.com/datasheet/2/783/BST-BME280-DS002-1509607.pdf.
[Accessed 18 01 2023].

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134

85

