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Abstract 

 

The integration of devices into the Internet of Things (IoT) network is experiencing 

significant growth. With the constant evolution of application demands, it is necessary 

to continuously develop new designs to accommodate these changes. To facilitate the 

integration of new features into the IoT system, the electronics of End node devices 

are comprised of two parts. The first includes the Main Board, which incorporates the 

core Microcontroller Unit (MCU), various Radio-Frequency (RF) modules, and other 

essential components. The includes the Peripheral Boards, designed specifically for 

the specific application requirements of the device. The goal is to maintain a single 

Main Board for all devices, thereby reducing logistics management effort and costs. 

However, this is not always feasible due to variations in peripheral device interfaces. 

This thesis presents the development of an FPGA device that bridges these different 

Peripheral Boards, simplifying the connection of multiple devices to the Main Board, 

accompanied by its software driver. 
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Περίληψη 

 

Ο αριθμός των συσκευών που συνδέονται στο Διαδίκτυο των Πραγμάτων (ΔτΠ) 

αυξάνεται με γρήγορο τρόπο. Οι απαιτήσεις των εφαρμογών αλλάζουν και 

διαφορετικές σχεδιάσεις απαιτούνται για να τις πληρούν. Έτσι, οι τελικοί κόμβοι σε 

ένα σύστημα ΔτΠ αποτελούνται από δύο μέρη. Την κύρια πλακέτα που περιέχει τον 

κεντρικό Μικροεπεξεργαστή, διάφορες μονάδες ράδιου και άλλα κύρια κομμάτια και 

τις περιφερειακές πλακέτες, ειδικά σχεδιασμένες για την εκάστοτε εφαρμογή. Ο 

στόχος είναι η διατήρηση της κυρίας πλακέτας ως μοναδικής και να έχει την 

δυνατότητα να εφαρμοστεί με όλες τις πιθανές περιφερειακές πλακέτες για την 

μείωση διαχείρισης επιμελητείας, με το ελάχιστο όμως κόστος. Αυτό δεν είναι πάντα 

εφικτό λόγω των πολλαπλών διεπαφών που ενδέχεται να έχουν οι περιφερειακές 

συσκευές. Σε αυτήν την διπλωματική εργασία παρουσιάζεται η ανάπτυξη μίας 

συσκευής που σκοπεύει να διευκολύνει την διασύνδεση πολλαπλών συσκευών στην 

κύρια πλακέτα. 
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Chapter 1 Introduction 
 

1.1 IoT Application Description 
 

The Internet of Things (IoT) is a well-known trend in the current era, with multiple 

architectures designed and developed for various applications. The majority of IoT 

architectures consist of three key components: a cloud application, a user interface 

application, and edge devices. The cloud application, which runs on data centers with 

unlimited resources, serves as the main logic center for the IoT application. The user 

interface application, on the other hand, runs on end-user devices such as smartphones 

or desktops and provides access to the end-users. The edge devices, which act as the 

interface between the physical world and the cloud, collect data from sensors or 

actuate based on commands received. In some cases, intermediate gateway devices 

are required as the environment of edge devices may not allow direct connection to 

the cloud. 

In applications such as agriculture, power consumption is a major concern, and to 

mitigate this, edge devices operate in a duty cyclic sleep mode. The sensors sleep for 

a specified time, sample the desired measurements, and wirelessly transmit them to 

the gateway before sleeping again. Similarly, actuators may turn on their RF module, 

wait for a command, actuate, and then sleep again. The core system of the device is 

not always on but sleeps and handles the peripheral element in a specific time slot. 

 

Figure 1.1.1: Network Duty Cyclic Sleep Operation 

An example of an IoT application in agriculture is a smart farming system for 

watering plants. The farmer can access the system through a user interface application 

on his smartphone, while the cloud application handles the core functionality. A 

wireless network is established in the farm and temperature and relative humidity 

sensors provide the environmental conditions to the system. The system controls the 
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flow of water and the environment of the plants through valves that are actuated based 

on the data received. 

 

 

Figure.1.1.2: Smart Watering IoT Architecture 

The architecture of the Edge Device comprises of a microcontroller unit (MCU), a 

Radio-Frequency (RF) module, and various peripheral devices such as sensors, relays, 

solar charger controllers, battery managers, among others. Some components, such as 

the MCU and RF module, are utilized in all products, while others are specific to 

certain products. For example, a temperature sensor may share the same MCU and RF 

module with a valve controller, but it would not require the relays that the latter would 

use and vice versa. The widely produced components are incorporated onto the Main 

Board, while the components with limited production are integrated onto Peripheral 

Boards. 

A Stock Keeping Unit (SKU) code is generated for each specific design of the 

described boards. Two boards can only have the same SKU code if their hardware 
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design is identical. Having multiple SKU codes leads to increased complexity in 

logistics operations and field support. 

1.2 Defining the Logistics Problem for multiple designs 
 

The connection between the Main Board and the Peripheral Boards might be 

established through the use of a header interface and interconnection cables. In a 

specific example of a valve device that includes the Main Board and a Peripheral 

Board with a valve and an indicator LED, the Peripheral Board is attached to the Main 

Board via a 2-pin header interface, which is connected through a 2-wire 

interconnection cable. The connection between the Main Board and the 

microcontroller unit (MCU) is finalized by the connection of two MCU pins to the 

header on the Main Board. 

 

Figure 1.2.1: Simple 2 Digital Outputs Design 

In order to accommodate a new product request for a device with two valves and an 

indicator LED, two approaches are considered. The first approach involves replacing 

the current Main Board design with an updated version that has three Digital 

Input/Output (DIO) pins. This would result in all newly produced devices, including 

those with only one valve, incorporating the more expensive 3-pin Main Board. 

However, this approach would also require updating the Main Board design with 

additional Digital Outputs as more complex designs emerge. 

The second approach entails maintaining the existing 2-pin Main Board design for 

devices with a single valve and utilizing a separate 3-pin Main Board for the new 

device with two valves. While this approach adheres to the principle of a single Main 

Board design, it will result in the creation of multiple Stock Keeping Unit (SKU) 
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codes for the Main Boards that are produced in parallel, and may complicate logistics 

and field operations. 

 

 

Figure 1.2.2: 3 Digital Outputs Design 

 

A requirement has arisen for a new product that will determine the presence or 

absence of water using water electrodes. The product will require a digital input to 

obtain its status and, as per the specified requirements, it must be powered by a solar 

panel. To effectively manage the solar panel, battery, and load output, a Solar Panel 

Management Integrated Circuit (IC) is necessary. This will provide two additional 

status messages: Charging Status and Solar Panel Connected Status. To gather this 

information, two additional digital inputs are required on the Main Board, as they are 

crucial for the calculation of the product's lifetime and error indication. Therefore, it is 

necessary to design a Main Board with a 1-pin header and a 2-pin header. 
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Figure 1.2.3: Water Existence checker powered by solar. 

  

The business has requested a new sensor device to measure the Temperature and 

Relative Humidity (RH) of the air near to the plant. The sensor element will be 

utilizing a UART interface, and the firmware designer should have designated two 

UART pins on the MCU to be connected to a 2-pin header that connects to the UART 

interface of the sensor element. The current 2-pin Main Board design can be used for 

this purpose. 

However, the product manager requires a device that can measure both the 

temperature and RH of the air and moisture near the plant, which would necessitate 

the use of two sensors connected to the Main Board. In this scenario, the UART 

interface sensors used in the previous device cannot be utilized with the same Main 

Board as two additional pins are required to instantiate two buses. 

One approach to resolve this issue is to implement a new Main Board with two 2-pin 

headers. Another option is to replace the sensors with I2C interfaces. As described in 

the Technical Background Chapter, the I2C bus consists of masters and slaves, each 

with a unique address, receiving and sending data as requested. Most of the sensors 

with I2C interface are set by factory to a specific address. However, there some whose 

last one or two bits of the address might be configured by specific pins. So, two I2C 

slave sensors might be connected on the same bus if they are included in the last 

category. 
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Figure 1.2.4: New Main Board needed to support multiple UART interface sensors. 

 

Figure 1.2.5: I2C Interface sensors for air and moisture conditions 

 

The watering system must be updated to accommodate the requirements of a new 

plant that necessitates the measurement of both air and high and low levels of 

moisture. Due to the scarcity of sensors with more than two I2C addresses that are 

readily available, it has been determined that a separate bus will be required to 

support the three sensors needed for this application. 
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Figure 1.2.6: New Main Board required to add more I2C sensors. 

 

1.3 Serialization on the same Bus 
 

What if an additional element is instantiated on the Peripheral Board to manage the 

peripheral device signals? For example, a Serial-Digital Output module could be set 

on the Peripheral Board to control the valves. The software running on the MCU 

would send a command over the serial bus to this module, which would set the output 

value through its GPIO pin. 

A first approach of the serial bus could be the UART one. The UART protocol is 

simple, a simple amount of bytes can be sent as is and translated in the converter 

module to Digital Output. So, 2 wires are needed, independently of the supported 

outputs on one Peripheral Board, removing the complexity of designing specific Main 

Board, but also reducing the wires of the interconnection cables. 

As far as the Digital Inputs, the UART could also be used. The updated value of an 

input can immediately be sent to the MCU on the UART after the signal edge. 

If a device is requires to include both the Peripheral Board with valves and the Solar 

panel, an updated Main Board with support for two UART interfaces is needed. To 

address this, the UART bus can be replaced with another bus where each Peripheral 
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Board can be individually targeted. This way, the software can determine where to 

send or receive data. 

 

Figure 1.3.1: UART to D I/O still cannot support all possible cases. 

 

A widely used bus that meets these requirements is the I2C bus. In this case, the serial 

to DI/O converter might be a I2C bus slave device, with a configured address, unique 

in the same bus. However, a disadvantage for the Digital Input interface is that the 

information about the edges is not directly communicated to the MCU software. But 

for the applications described, where the input is simply sampled to obtain a status at 

a specific time, this is not a problem. 

 

 

Figure 1.3.2: I2C to D I/O can operate for the application needs. 
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In the same way, instead of replacing the UART interface sensors with I2C ones, a 

UART to I2C converter would simplify the designer life. This is a significant benefit 

if the UART interface sensor can easily be found in the market, or it has a better 

performance. 

 

Figure 1.3.3 UART interface sensors communicating to the MCU from the same 

wires. 

 

Regarding the I2C interface sensors, the number that can be attached to the same bus 

is limited based on the available pins for address configuration. To increase the 

capacity for connected devices, an I2C-to-I2C bridge can be utilized as an 

intermediary between additional devices and the MCU. The MCU will recognize the 

bridge device and the bridge will transfer data from its sub-bus to the MCU. 

 

1.4 I2C Bridge 
 

By delegating the management of peripheral devices to the Peripheral Board, the 

logistics effort required for supporting a variety of devices has been significantly 

reduced, as only one design for the Main Board is necessary. This can be further 

reduced by integrating all I2C bridge modules into a single component. During the 

initialization process, software commands enable the I2C Bridge to identify itself as 

I2C-DO, I2C-DI, I2C-UART, or I2C-I2C. As a result, the same hardware component 

can be utilized on all Peripheral Boards. 
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Figure 1.4.1: Multiple types of Peripheral Boards communicating with Main Board 

on the same bus. 

One of the objectives is to minimize design costs, and thus, the I2C Bridge component 

should be as cost-effective as possible. Tiny FPGAs offer a potential solution, as 

some are available on the market for less than 10 euros with industrial specifications. 

These devices are capable of executing data transactions quickly, making them 

virtually invisible at the application level. 
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Chapter 2 Technical Background 
 

2.1 IC’s Communication Interfaces 
 

2.1.1 General Purpose Digital Input  / Output 

 

The Digital Signal is a binary representation of information, defined by two voltage 

levels: the "High" level, which is close to the supply voltage, and the "Low" level, 

which is close to the ground or reference value. This type of signal is used to convey 

simple information, such as a status, by representing a "true" or "1" state with a High 

voltage and a "false" or "0" state with a Low voltage. Unlike an analog signal, which 

represents a continuous range of values, a Digital Signal conveys information in a 

discrete manner. It can be used to transmit information as a single bit or as a group of 

bits in communication protocols, forming data packets. 

The General Purpose Digital Input/Output (GPIO) is an interface that controls simple 

digital input/output signals. It enables devices like microcontrollers to connect with 

other devices such as LEDs, buttons, motors, battery chargers, FPGAs, PLCs, or even 

other microcontrollers. This versatility makes GPIO pins a valuable component in a 

variety of applications, including robotics, home automation, and Internet of Things 

(IoT) projects. 

 

2.1.2 UART 

 

The Universal Asynchronous Receiver Transmitter (UART) is a hardware 

communication protocol that employs asynchronous serial communication with 

adjustable data transfer speed [1]. The UART protocol involves two signals between 

the two communicating devices: the Receiver (Rx) and the Transmitter (Tx). 
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Figure 2.1.1: UART Lines 

The absence of a clock signal to synchronize the transmission of output bits from the 

transmitting device to the receiving end is a defining characteristic of the UART 

protocol. Instead, the two devices communicate with each other at a pre-determined 

baud rate to achieve synchronization. The most commonly used baud rates are listed 

in a table. 

Baud Rate Bit Duration 

300 bits/s 3.333 ms 

1200 bits/s 833.333 us 

4800 bits/s 208.333 us 

9600 bits/s 104.167 us 

19200 bits/s 52.083 us 

38400 bits/s 26.042 us 

57600 bits/s 17.361 us 

115200 bits/s 8. 681 us 

 

The mode of transmission in UART is packet-based. Each packet consists of a Start 

Bit, a Data Frame, a Parity Bit, and a Stop Bit.

 

Figure 2.1.2: UART Protocol Packet 

The UART signal is usually at a high level during the idle state, when there is no 

transmission. When the Transmitter wishes to send a packet, it lowers the signal value 
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for a specified time period, which is recognized by the Receiver as the start bit and 

signals the Receiver to prepare to receive the packet. 

The Data Frame, which follows the Start Bit, represents the data being transferred, 

and its size can range from 5 to 8 bits, or 9 bits if a parity bit is not used. In this case, 

it is assumed that the Data Frame has a size of 8 bits. 

The Parity Bit serves as a first-level mechanism for validating the transmitted Data 

Frame bits, indicating whether the number of 1s in the Data Frame is even or odd. The 

UART Transmitter generates this information by applying an XOR function to the 

Data Frame and transmits it, along with the Parity Bit. The Receiver then generates 

this information in the same way and compares it to the received Parity Bit. If the 

received and generated parities do not match, the receive operation is considered to 

have failed. 

Finally, the Stop Bit signals the end of the transmitted packet. If the Stop Bit is 

sampled as high, the receive operation is deemed successful. 

2.1.3 I2C 

 

The Inter Integrated Circuit (I2C) is a simple bidirectional 2-wire bus for efficient 

inter-IC control. [2] It requires two bus lines: a serial data line (SDA) and a serial 

clock line (SCL).The SDA line is used for data transmission, while the SCL for 

synchronization between the 2 nodes. During the SCL high state, the SDA should 

keep its value stable, unless a START or STOP condition should be triggered. 

The Inter-Integrated Circuit (I2C) bus consists of controllers, also known as Masters, 

and targets, also referred to as Slaves. Some devices have the capability to function as 

both Master and Slave. The Master is responsible for generating the clock signals and 

for either providing or requesting data from a Slave. For the Master to target a Slave, 

the latter must have a unique 7-bit address on the bus. In the event that multiple 

Masters are present on the same bus, an arbitration procedure exists to determine 

which Master will control the bus. [2] In most IoT edge devices, the I2C bus only has 

one Master, which is typically the microcontroller. As a result, the feature of multiple 

Masters is not always necessary and is omitted to simplify the design and reduce costs 

for smaller and less expensive Field-Programmable Gate Arrays (FPGAs). 
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The I2C bus specification outlines four available speed modes: standard mode with 

rates up to 100 kbit/s, fast mode with rates up to 400 kbit/s, fast-mode plus with 

1Mbit/s, and high-speed mode with 3.4Mbit/s. 

In the idle state, the SCL and SDA signals are not driven by any node on the bus and 

are pulled up to a high voltage by pull-up resistors. When the Master wants to initiate 

communication, it pulls the SDA signal low while the SCL signal remains high, 

creating a START condition. The Master then pulls the SCL signal low to begin 

writing the first bit. The packet is divided into bytes and each byte can be transmitted 

by both the Master and Slave. Each byte starts with the most significant bit and ends 

with the least significant bit. After the byte is written, the receiver acknowledges the 

transfer by pulling the SDA signal low during the next cycle. The first byte, driven by 

the Master, contains the 7-bit address of the Slave device and the read/write operation 

in the Least Significant Bit (LSB). 

 

Figure 2.1.3: I2C Start-Stop conditions. 
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Figure 2.1.4: I2C read and write packets. 

In most cases of peripheral Integrated Circuits (ICs) for IoT applications, 

communication between the master and slave devices involves specific registers. For 

write operations, the master sends the address of the register along with the R/W bit 

set to write mode, followed by the data to be written. For read operations, two I2C 

transactions must occur. The first transaction sends the address of the desired register, 

with the R/W bit set to write mode, allowing the slave device to locate the desired 

register. In the second transaction, the master retrieves the data from the pointed 

register by sending the address along with the R/W bit set to read mode. In the event 

of multiple reads from the same register, most devices only require the first register 

pointing process. In some cases, simply pointing to a specific register can trigger an 

operation on the slave device. 

. 
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Figure 2.1.5: Write to a register of an I2C slave device. 

 

Figure 2.1.6: Read from a register of an I2C slave device. 
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Figure 2.1.7: Point a register of an I2C slave device. 

 

For the implementation of the project, the method of writing and reading data from 

the registers of a slave device through the I2C protocol will be utilized. It should be 

noted that, as of the current implementation, the capability of simply pointing to a 

register will not be supported. 

 

2.2 Digital Hardware Development 
 

2.2.1 FPGA 

 

A Field-Programmable Gate Array (FPGA) is a type of integrated circuit that can be 

reconfigured after manufacturing [3] to perform various digital functions. It comprises 

an array of Programmable Logic Blocks (PLBs) and reconfigurable interconnections, 

allowing for the implementation of complex combinatorial functions or simple logic 

gates. 

The configuration of an FPGA can be accomplished through the use of a Hardware 

Description Language (HDL), such as VHDL or Verilog. An Electronic Design 

Automation (EDA) tool takes the specified design and generates a bitstream, which is 

then loaded onto the internal volatile memories and used to control the 

interconnections. 

While FPGAs can be used to implement the same functions as an Application-

Specific Integrated Circuit (ASIC), they are generally less efficient in terms of power 

consumption and performance. However, the development cost of an FPGA is much 
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lower than that of an ASIC, making them suitable for prototyping and low-volume 

production. 

. 

2.2.2 Digital Hardware Design Flow 

 

The process of programming a digital hardware design onto a Field-Programmable 

Gate Array (FPGA) consists of several phases, including Register-Transfer Level 

(RTL) design, synthesis, implementation, and programming. Each phase must be 

subject to a Quality Assurance (QA) flow to ensure its validity. In the event of a 

failure during any phase, the designer must either revisit the design or revert to a 

previous step and recommence from that point. 

 

Figure 2.2.1: Digital H/W design flow. 

 

The RTL design phase involves the creation of an abstraction that models 

synchronous digital circuits and describes the events that drive registers and logic. 

During this phase, the behavioral logic of the modules is defined, and Functional State 

Machines (FSMs) are implemented. 

The next phase is synthesis, where the behavioral logic is transformed into a netlist. 

The netlist represents the design of a circuit as a list of interconnected elements, such 

as gates, flip-flops, adders, and multipliers. The synthesis process performs a syntax 

check, optimizes the logic, eliminates redundant logic, and converts the design into a 

netlist. Additionally, based on the target technology, some EDA tools may produce an 

initial estimate of the FPGA utilization, power analysis, and static timing analysis 

(STA). 

Physical implementation follows, where the netlist is mapped to the FPGA design. 

This process involves the placement and routing of components on the IC blocks. The 
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placer aims to fit the components within the available blocks, while the router seeks 

the optimal routes for connecting the instantiated elements. Upon completion of the 

physical implementation process, the FPGA utilization, power analysis, and STA 

should be evaluated. The utilization should ensure that the design does not consume 

more resources than available on the FPGA. The power analysis should provide an 

estimate that meets the power requirements specified in the design. The STA should 

guarantee that the timing analysis is without setup and hold time violations. 

The setup time is the minimum time before the active edge of the clock at which the 

input data line must be valid for reliable latching [4]. The hold time represents the 

minimum time that the data input must be held stable after the clock edge. In cases 

where the setup and hold times are not respected, it may result in metastability or 

other errors in the circuit. 

 

Figure 2.2.2: Setup and Hold violations. 

In transmission (a), the transfer of value from one register to the next occurs during 

the hold time, resulting in either a successful transfer of the data to the output of RegB 

in the same cycle or the potential for metastability. Conversely, case (c) has the 

potential to result in RegB entering a metastability state in the following cycle. On the 
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other hand, in case (b), both the setup and hold times are respected, avoiding any 

potential issues. 

2.2.3 iCE40UP5K and iCE40UL1K 

 

The I2C Bridge module will be instantiated on the ICE40UP5K and the ICE40UL1K, 

which are produced by Lattice Semiconductor. These FPGA families comprise an 

array of Programmable Logic Blocks, two oscillators (10 kHz and 48 MHz), 

Embedded Block RAMs, Single Port RAMs, and Programmable I/Os. [5] Each 

Programmable Logic Block contains eight Logic Cells, with each Logic Cell 

incorporating a 4-input Look-Up Table (LUT) that drives a Flip-Flop or the Logic 

Cell Output directly. The ICs can be configured for industrial operation and feature a 

power supply voltage of 1.2V, 2.5V, or 3.3V, and are capable of operating at 

temperatures ranging from -40 to 100°C. 

The ICE40UL1K is part of the iCE40 UltraLite family and includes 1248 Logic Cells 

and 36 Programmable I/Os. Its dimensions are 1.409mm x 1.409mm and it has an 

estimated cost of 3-4 euros. The ICE40UP5K is part of the iCE40 UltraPlus family 

and includes 5280 Logic Cells and 60 Programmable I/Os. Its dimensions are 2.15mm 

x 2.15mm and it has an estimated cost of 10 euros. The ICE40UL1K will be evaluated 

using an iCE40 UltraLite Breakout board, while the ICE40UP5K will be evaluated 

using an UltraPlus Breakout board. 
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Figure 2.2.3: iCE40 UltraLite Breakout board 

 

Figure 2.2.4: iCE40 UltraPlus Breakout board 

2.2.4 iCEcube2  

The iCEcube2 software tool is necessary to run the Synthesis and Physical 

Implementation flow and produce a Bitstream for the targeted FPGAs. The software 
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supports the Synplify Pro synthesis tool and the Lattice Synthesis Engine for 

synthesis. The resulting netlist and Physical Constraints File (PCF) are then fed into 

the Placer and Router process, following which the Bitstream is ready for 

programming onto the device. 

 

2.3 Software Development 
 

2.3.1 Device Driver 

 

Each peripheral device requires specific initialization operation and management. 

Each software that communicates with it has to handle it, increasing its complexity 

and making it less portable. To solve this, an intermediate layer between the target 

device and the other parts of software has been introduced, the device drivers. [6] 

They act as translators providing to the rest of the software an Application 

Programming Interface and handle the device based on its specific needs. For 

instance, to send a message via a peripheral RF module, only a send data command is 

needed, as the serial bus, gpio and other are handled by the driver. 

2.3.2 Zephyr RTOS 

 

A Real Time Operating System (RTOS) is a specialized OS designed for real-time 

applications with critical timing constraints. It is widely used in various industries, 

such as automotive and aircraft, and is particularly popular in embedded systems due 

to its light design and ability to operate with low power and minimal resources. 

One of the most well-known RTOSs is the Zephyr RTOS, which supports multiple 

boards, has multiple drivers implemented, and is licensed under Apache 2.0. The 

Zephyr RTOS is highly configurable, both at the software level (defining the code to 

be inserted and parametrizing the values) and the hardware level (by constructing the 

device tree). The system comes with its own meta-tool, called "west," to initialize a 

project, fetch desired external modules, compile and flash an MCU. 
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2.4 Testing Tools and Environments 
 

2.4.1 Verilog Simulation 

 

Icarus Verilog is an open-source tool for Verilog simulation and synthesis. It can 

compile Verilog (IEEE-1364) source code into various formats for simulation and 

generate a netlist for synthesis. [7] The resulting file can be simulated using the "vvp" 

command. The combination of iverilog and vvp is a useful tool for evaluating Verilog 

code, particularly during the pre-synthesis flow, as special libraries are not required. 

The tool is compatible with both Windows OS and popular Linux distributions (such 

as Ubuntu 18.04 and Linux Mint 20.04), making it easily integrable into automated 

testing processes. 

During simulation, desired signals can be recorded in a Value Change Dump (VCD) 

file, which can be plotted using the gtkwave tool, a waveform analyzer for digital and 

analog data. This tool is not used for production purposes (such as for stable code and 

verification tests) but rather for debugging purposes.  

2.4.2 Docker 

 

Docker is a software platform that facilitates the building, testing, and deployment of 

applications by virtualizing containers on a configured operating system. A container 

is a controlled and isolated environment that is separated from other processes on the 

host machine. [8] It is created from a Docker image, which contains the configuration 

and information necessary for generating the container. The recipe for constructing 

the Docker image is contained in a DockerFile.  

2.4.3 CI/CD 

 

Continuous Integration, Continuous Delivery (CI/CD) are automation tools used for 

testing and delivery processes. By continuously integrating code changes after 

automatic testing and verification, the risk of code conflicts and bug insertion is 

reduced. Continuous Integration manages the Quality Assurance flow by keeping logs 

and tracking changes, allowing for seamless updates to be merged into the master 

branch. Continuous Delivery takes over after the CI flow, deploying the infrastructure 

to testing or production environments. 

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134



 

 
24 

Chapter 3 Application Description 

 

3.1 Architecture 
 

The I2C Bridge module can be separated in three major parts: 

1. I2C Slave Interface (communicating with MCU). 

2. Register File 

3. Interfaces to Peripheral devices 

Four pins are provided for on board configuration of the I2C address, achieving the 

existence of 16 modules on the same bus. Those represent the Least Significant Bits 

of the module, with the three MSB to be statically defined in it (3’b010).  

 

Figure 3.1.1: Top Level Diagram 

 

The I2C Slave Interface is responsible for managing the communication with the 

MCU (Master) Device and facilitating the transfer of data to and from the Reg File. 

The Reg File serves as a repository for the configuration data that determines the 

behavior of the module and buffers the data during both transmission and reception. 
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Additionally, four interfaces have been implemented for communication with 

Peripheral Devices, with only one being activated at a time based on the configuration 

data received, allowing control over the desired Input/Outputs. 

3.2 Register Map 
 

The Master Device communicates with the I2C bus and accesses a specific register for 

transmitting and receiving data. In order to perform this operation effectively, it is 

necessary for the it to have knowledge of the register addressing, the meaning of the 

internal operations, and the read and write permissions. This information is provided 

in the Register Map Table (Table 3.2.1). 

Table 3.2.1: Register File Components. 

Address Description R/W 

Permissions 

Data 

0x0 Interface Configuration Read/Write [1:0] Interface 

• 2’b00: Digital Output 

• 2’b01: Digital Input 

• 2’b10: I2C 

• 2’b11: UART 

[4:2] Speed 

If Protocol is UART: 

• 3’b000: Baud Rate: 300 bps 

• 3’b001: Baud Rate: 1200 bps 

• 3’b010: Baud Rate: 4800 bps 

• 3’b011: Baud Rate: 9600 bps 

• 3’b100: Baud Rate: 19200 bps 

• 3’b101: Baud Rate: 38400 bps 

• 3’b110: Baud Rate: 57600 bps 

• 3’b111: Baud Rate: 1152000 bps 

If Protocol is I2C: 

• 3’b000: Standard Mode: 100 kbps 

• 3’b001: Fast Mode: 400 kbps 
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Address Description R/W 

Permissions 

Data 

• 3’b010: Fast Plus Mode: 1 Mbps 

• 3’b011: High Speed Mode: 3.4 Mbps 

0x1 Data Size 

Configuration 

Read/Write [2:0] Data Rx Size packet: 

• 3’b000: 1 byte 

• 3’b001: 2 bytes 

• 3’b010: 3 bytes 

• 3’b011: 4 bytes 

• 3’b100: 5 bytes 

• 3’b101: 6 bytes 

• 3’b110: 7 bytes 

• 3’b111: 8 bytes 

 

[5:3] Data Tx Size packet: 

• 3’b000: 1 byte 

• 3’b001: 2 bytes 

• 3’b010: 3 bytes 

• 3’b011: 4 bytes 

• 3’b100: 5 bytes 

• 3’b101: 6 bytes 

• 3’b110: 7 bytes 

• 3’b111: 8 bytes 

 

[7:6] Data Tx Size packet: 

• 2’b00: 1 byte 

• 2’b01: 2 bytes 

• 2’b10: 4 bytes 
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Address Description R/W 

Permissions 

Data 

• 2’b11: 8 bytes 

0x2 I2C Slave Address 

Configuration 

Read/Write [0] I2C Read Operation 

[7:1] I2C Slave address 

0x8 Receive Data Byte[0] Read Only  

0x9 Receive Data Byte[1] Read Only  

0xA Receive Data Byte[2] Read Only  

0xB Receive Data Byte[3] Read Only  

0xC Receive Data Byte[4] Read Only  

0xD Receive Data Byte[5] Read Only  

0xE Receive Data Byte[6] Read Only  

0xF Receive Data Byte[7] Read Only  

0x10 Transmit Data Byte[0] Read/Write  

0x11 Transmit Data Byte[1] Read/Write  

0x12 Transmit Data Byte[2] Read/Write  

0x13 Transmit Data Byte[3] Read/Write  

0x14 Transmit Data Byte[4] Read/Write  

0x15 Transmit Data Byte[5] Read/Write  

0x16 Transmit Data Byte[6] Read/Write  

0x17 Transmit Data Byte[7] Read/Write  

0x18 Slave Register Byte[0] Read/Write  

0x19 Slave Register Byte[1] Read/Write  

0x1A Slave Register Byte[2] Read/Write  

0x1B Slave Register Byte[3] Read/Write  

0x1C Slave Register Byte[4] Read/Write  

0x1D Slave Register Byte[5] Read/Write  

0x1E Slave Register Byte[6] Read/Write  

0x1F Slave Register Byte[7] Read/Write  
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Notes: 

1. The I2C Read Operation Bit (Bit 0) in the I2C Slave Address Register (Reg 

0x2) is used to initiate an I2C read from the slave device to the specified 

register (Slave Register). The bit will return to 0 once the read operation is 

completed. 

2. The configuration registers, which include the Interface Configuration, Data 

Size Configuration, and I2C Slave Address Configuration, support 1-byte read 

and write operations. When writing to the Transmit Data (0x10) or Slave 

Register (0x18), the I2C Bridge Module requires the specified number of bytes 

as defined in the Data Size Configuration. Similarly, it will provide the 

appropriate number of bytes during transmissions from Receive Data (0x8), 

Transmit Data (0x10), or Slave Register (0x18). 

 

3.3 Device Operation Flows 
 

3.3.1 Basic Flow 

 

The primary utilization of the device can be separated into three key components: 

Initialization, Writing Data, and Reading Data. During the Initialization process, 

certain parameters are written that typically do not change during operation. For 

example, the interface used is typically determined by the board design and remains 

constant. The interface is set only once during the Initialization process, thus 

eliminating the need for reconfiguration. Similarly, if the interface is UART and 

connected to a specific device, the baud rate would not be modified during operation. 

Based on the application, data may then be written or read. Some parameters may 

require reconfiguration, such as the data size or the I2C address of the slave device if 

the I2C protocol is in use. Once reconfiguration is complete, it is time to write or read 

data. 
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Figure 3.3.1: I2C Bridge Basic Operation Flow 

 

3.3.2 Digital Output Operation Flow 

 

The operation of Digital Output consists solely of writing a single byte to the output 

when necessary. It does not involve a read data component or its configuration. 

During the initialization process, the protocol is set to Digital Output and the Write 

Data Size is configured to 1 byte. Whenever the output value needs to be changed, a 

command must be sent to address 0x10 with the appropriate bitstream. The MCU can 

then verify the written value by reading from the same register. 

 

3.3.3 Digital Input Usage Flow 

 

The Digital Input process involves a straightforward initialization step and reading a 

byte that represents the input bitstream. The initialization stage entails setting the 

interface to Digital Input and specifying the Read Data Size as 1 byte. With no further 

configuration required, the external master can simply issue an I2C command 

targeting the Receive Data address (0x8) as the final step of the initialization process. 

Whenever a new input sample is required, an I2C read operation will retrieve the input 

bitstream.  
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3.3.4 UART Operation Flow 

 

To communicate with a peripheral device that has a UART interface, the interface 

must first be configured as UART. As the baud rate of most peripheral devices is 

constant, the interface configuration register can be set once during the initial setup. 

However, the Data Size may not be constant, so it should be configured prior to the 

read or write operation. To initiate a write operation, the Transmit Data Size should be 

set as desired and an I2C command should be sent to address 0x10, containing the 

desired data. The peripheral device will receive the data. In the case of a read 

operation, the Data Receive Size should be set prior to expecting data to be sent from 

the peripheral device to the bridge device. After a short delay, the MCU should access 

address 0x8 of the bridge device and retrieve the received data. 

  

3.3.5 I2C Operation Flow 

 

The initialization process for the I2C operation flow involves configuring the 

interface with the appropriate interface and speed code. To initiate a write operation, 

the Data Tx Size and the Register Address size should be set if either of these 

parameters have changed since the last operation. Then, the target register on the 

peripheral device should be specified in the "slave register" register of the bridge 

device. If the address of the peripheral device has not been set previously, it should be 

set in the 7 most significant bits (MSB) of register 0x2, with the least significant bit 

(LSB) set to 0. Finally, the bridge device can send the data to the peripheral device by 

providing it to register 0x10. 

 

For a read operation, the Data Rx Size and the Register Address size should be set. 

Then, the peripheral device register to be read from should be specified. To initiate 

the read operation, the I2C address should be provided at address 0x2, similar to the 

write operation, but with the LSB set to 1. This must be done each time a read 

operation is requested, as setting the LSB to 1 triggers it. After a brief waiting period, 

the data from the peripheral device will be stored in register 0x8 of the bridge device, 

and the microcontroller unit (MCU) can retrieve it. 
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Chapter 4 Digital Hardware Design 

4.1 RTL Implementation 
 

4.1.1 Util Modules 

 

4.1.1.1 Edge Detector module 

The Edge Detector module is designed to detect changes in the input signal and 

generate a pulse signal upon the detection of an edge. This is achieved by utilizing a 

flip flop circuit to capture the previous cycle value of the input signal and comparing 

it to the current state. If the previous cycle value is high and the current cycle value is 

low, a negative edge is detected and the "Neg Edge" output will be set to high. 

Conversely, if the current cycle value is high and the previous cycle value is low, a 

positive edge is detected, resulting in a high signal on the "Pos Edge" output. 

 

Figure 4.1.1: Edge Detector Schematic 
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4.1.1.2 Bidirectional Splitter module 

This module serves the purpose of separating a bidirectional signal into its input and 

output components. It is utilized in situations where a pin of the I2C Bridge can be 

utilized as either an input or output, while the internal logic handles the input and 

output signals differently. An example of this is the I/Os to the slave device or the 

SDA wire of the I2C interface. The INOUT wire is connected to the desired pin, 

while the "To_output" signal drives the desired output and the "From_Input" signal 

provides the input. The "Output_En" signal enables the "To_output" signal to be 

transmitted to the output. 

 

Figure 4.1.2: Bidirectional Splitter Schematic 

 

4.1.1.3 input_synchronizer module 

The input signal, originating from the external environment of the I2C Bridge module, 

may not be synchronized with its internal clock, which can result in metastability 

issues. The lack of control over the input signal may cause it to oscillate during the 

clock's sampling edge. To mitigate this, it has been recommended in [9] to pass the 

input signal through two flip-flops. The implementation of this design carries the 

tradeoff of increased signal latency due to the synchronization process, however, this 

is deemed acceptable for the needs of the project. 

 

Figure 4.1.3: Input Synchronizer Schematic 
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4.1.1.4 debouncer module 

The digital inputs that are connected to external devices may experience signal 

bounce when toggled. This is due to the presence of mechanical components in 

devices such as switches, buttons, or relays, which can introduce natural bounces. If 

left unfiltered, signal bounce can cause a range of issues in a digital design, including 

unnecessary energy consumption and multiple triggering of internal logic, rather than 

a single triggering event. For example, a button press may cause a counter to 

increment by five values instead of just one. To address these problems, it is 

necessary to implement a debouncing module for the digital inputs. 

The debouncer module consists of several key components, including an edge 

detector, a counter, a multiplexer, and a flip-flop that maintain the information being 

transmitted to the output. Before being processed by the internal logic, digital inputs 

must first pass through the debouncer module for synchronization. The input signal 

undergoes detection of any changes in its state by passing through the edge detector, 

which is achieved by passing both the positive and negative edges of the input signal 

through an OR gate. The resulting edge-detected signal is then used to reset the 

counter, which is triggered by the system clock and will stop counting and generate an 

enable signal after reaching its maximum value, which is determined proportionally to 

the clock period provided during synthesis. When the enable signal is high, the input 

drives the flip-flop, otherwise, the output signal (current output) is fed back into the 

flip-flop's input. 

 

Figure 4.1.4: Debouncer Schematic 
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With this design, two time periods are achieved. The first period is the "calm period," 

in which no signal bounces occur, and the input signal is directly transmitted to the 

output with a delay of one clock cycle. Any transition in the input signal will reset the 

internal counter, thereby initiating the "non-calm" period in which the output is 

locked to the last changed value. This period will persist until 255 ns (the debouncing 

period) have elapsed since the last bounce occurred. 

4.1.1.5 reg_to_serial module 

The "reg_to_serial" module performs serialization of a byte, utilizing a trigger signal 

as input. The inputs of this module are an 8-bit Data, a trigger signal, and an enable 

signal, while the outputs are the serialized signal (TxD) and a "Tx_busy" signal to 

inform an upper-level module. The module is implemented with a finite state machine 

(FSM), with each state representing the serialization of a bit and an IDLE state. In the 

event of the enable signal being pulled down, the state will be updated to the IDLE 

state. Conversely, a positive edge in the trigger signal will prompt the state to 

transition as specified in the FSM shown in Figure 4.1.6.  

 

Figure 4.1.5: reg_to_serial inputs and outputs 

 

Figure 4.1.6: Serialization and Deserialization FSM 
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4.1.1.7 serial_to_reg module 

The "serial_to_reg" module serves to deserialize an incoming signal. The module 

employs a finite state machine (FSM) that has the same states and transition 

conditions as the FSM used in the "reg_to_serial" module. However, rather than 

writing data at a trigger signal, the "serial_to_reg" module samples the incoming 

signal and builds the output data. When the FSM reaches its final state, the 

"data_valid" signal is activated and remains high until the module begins a new 

sampling process. 

 

Figure 4.1.7: serial_to_reg inputs and outputs 

 

4.1.1.8 i2c_read_byte module 

The I2C Read Byte module performs the task of reading a single byte of data. It 

comprises of an internal instance of the serial_to_reg module, responsible for 

executing the read operation. The module operates under the control of a FSM with 

three distinct states: IDLE, READ_BYTE, and WRITE_ACK. The inputs to the 

module include the SDA signal, scl_trig_high, scl_trig_low, should_comp, 

data_to_comp, enable, clock, and reset. The outputs of the module include the read 

data, a valid_data signal indicating the availability of the read data, a read_busy 

signal, and the allocate_sda signal for acknowledging the read operation. 
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Figure 4.1.8: i2c_read_byte flow and I2C lines. 

The "scl_trig_high" and "scl_trig_low" are signals that are to be provided by a higher-

level module. The "scl_trig_high" signal indicates that the SDA signal is high and 

should be sampled. This signal serves as the trigger input for the serial_to_reg 

module. The "scl_trig_low" signal indicates that the SDA signal is low and should be 

written. The FSM utilizes this signal to determine the completion of the I2C read 

phase (in conjunction with the "data_valid" signal of the serial_to_reg module). The 

"allocate_sda" signal is raised when the I2C read phase is completed and falls on the 

next positive edge of this signal, which indicates the completion of the acknowledge 

phase. 

While the FSM is in the "READ_BYTE" state, the serial_to_reg module is enabled 

and disabled in all other states. The "valid_data" signal, which is exposed to the 

higher-level module, informs when valid data is available for consumption, while the 

i2c_read_module continues to transition through the "WRITE_ACK" state. 

 

Figure 4.1.9: i2c read byte FSM. 
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The “should_comp” and “data_to_comp” signals are utilized by the higher-level 

module to validate if the expected data has been received before proceeding with the 

acknowledgment step. This feature is particularly useful in the I2C Slave module, 

where it is necessary to confirm the reception of a specific address before continuing. 

If the “should_comp” signal (flag) is not activated, this comparison function is 

inactive, and the FSM will proceed to the acknowledgment step regardless of the 

received data. 

 

Figure 4.1.10: i2c read byte schematic. 

 

4.1.1.9 i2c_write_byte module 

The module "i2c_write_byte" serves the purpose of data writing and acknowledging 

its successful transmission. It incorporates a "reg_to_serial" module to serialize the 

input data from the higher-level module and transmit it via the SDA signal. The 

module operates through a finite state machine (FSM) with four states: IDLE, 

WRITE_BYTE, WAIT_ACK, and POST_ACK. The inputs to the module are the data 

to be written, the signals "scl_trig_high" and "scl_trig_low", the signal 

"sda_feedback", and the enable, clock, and reset signals. The outputs of the module 

include the SDA signal, the signal "byte_transmit_done_pulse", indicating successful 

transmission, the signal "allocate_sda", and the busy signal, indicating the module's 

operational status. 
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Figure 4.1.11: i2c_write_byte flow and I2C lines. 

The scl_trig_high and scl_trig_low signals are supplied by the higher-level module to 

the i2c_write_byte module, just like in the i2c_read_byte module. However, in this 

module, the reg_to_serial serves as a write module rather than a sampling module. 

Thus, the trigger for the reg_to_serial module is derived from the positive edge pulse 

of the scl_trig_low signal. This signal is also utilized by the FSM to determine the exit 

condition during the evaluation of the acknowledgement. The scl_trig_high signal is 

used by the FSM for the purpose of sampling the acknowledge. 

 

Figure 4.1.12: i2c write byte FSM. 

While the FSM is in the WRITE_BYTE state, it enables the reg_to_serial module, 

allowing it to drive the SDA signal. In the WAIT_ACK state, the FSM waits for the 

byte transmission to be completed by the reg_to_serial module, and then samples the 

SDA signal when the scl_trig_high signal is high. If the feedback received from the 

other device is as expected, the success signal is raised. The FSM then transitions to 
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the POST_ACK state and waits for the positive edge of the scl_trig_low signal to 

return to the idle state and drive the busy signal low. 

Similar to the i2c_read_byte module, the done signal of the reg_to_serial module is 

made available to the higher-level module to assist with speeding up any operation. 

The output provided by this module is in the form of a pulse, rather than the tx_busy 

state, as an edge detector is usually attached to detect state changes and the tx_busy 

output is followed by an edge detector. 

 

Figure 4.1.13: i2c_write_module schematic 

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134



 

 
40 

4.1.1.10 i2c_start_stop_detector module 

The start_stop_detect module is responsible for detecting the edges of the SDA signal 

in conjunction with the SCL signal being high. The positive edge of the SDA signal 

represents the stop of the I2C transmission, while the negative edge represents the 

start, as depicted in Figure 4.1.14. 

 

Figure 4.1.14: I2C Start Stop conditions. 

To implement this functionality, an edge detector has been instantiated, which then 

drives two AND gates. These AND gates enable the i2c_stop and i2c_start signals 

only when the SCL signal is high. This ensures that the detection of the start or stop of 

an I2C transmission is correctly synchronized with the SCL signal.  

 

Figure 4.1.15: i2c_start_stop_detect schematic
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4.1.1.11 enable_after_priority module 

The “enable_after_priority” module provides a signal to the higher-level module to 

indicate when a trigger event has been received and another signal with higher 

priority is not currently active. In the event that the priority signal is high at the time 

the trigger is received, the module waits for the priority signal to fall before activating 

the enable signal. A delay of one cycle is introduced between the fall of the priority 

signal and the activation of the enable signal, to ensure that the higher-level module 

can detect an edge in the combined signal of the two. 

This functionality is achieved through the implementation of a finite state machine 

with three states: IDLE, WAIT, and UPDATE. If the trigger is received and the 

priority signal is low, the state changes from IDLE to UPDATE, where the enable 

signal is raised. If the priority signal is high at the time of the trigger, the state 

changes to WAIT, and the module waits for the priority signal to fall before 

transitioning to the UPDATE state.  

 

Figure 4.1.16: enable_after_priority FSM
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4.1.2 Register File Modules 

The Register File consists of four separate partitions, including the Configuration 

Register File, the Receive Data Register File, the Transmit Data Register File, and the 

Slave Registers Register File. The Configuration Register File contains information 

that pertains to the device's operation, such as the protocol, speed, data size, and the 

I2C Slave address. The Receive Data Register File holds data received from the Slave 

Module, the Transmit Data Register File holds data intended for transmission to the 

Slave Module, and the Slave Registers Register File holds the register addresses of an 

I2C Slave device (this is utilized only if the protocol is I2C). The Transmit Data 

Register File and the Slave Registers Register File are implemented using the same 

module, known as the "data_from_master" module, as they both manage data sent by 

the Master Device. On the other hand, the Receive Data Register File is implemented 

using the "data_from_slave" module. 

 

Figure 4.1.17: Register File Abstraction and Inputs/Outputs. 

 

4.1.2.1 Interfaces and Reg File data Algorithm 

The communication between the interfaces and the register file requires the 

implementation of a specific communication protocol. The communication is 

bidirectional, with data being transferred from the interfaces to the register file and 

vice versa. The main distinction between the two modules is that the interfaces must 

communicate with external modules and thus must serve the protocol in a timely 

manner, while the register file only serves the interfaces and may wait. 
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The communication from the interface to the register file involves the use of the 

"w_en" and "data_last" signals, as well as the "data" signal. The "w_en" signal 

triggers the register file module to write the provided "data" to its registers. If the 

current register address has reached its limit, the "data_last" signal is raised, signaling 

the interface to stop receiving data. 

The communication from the Register File to the interface is characterized by the 

presence of three signals: data_available, data_req, and transmit_done. Upon receipt 

of data from another module, the Register File raises the data_available signal to 

notify the interface that it has data available for transfer. The interface then initiates 

the data transmission process. When the interface has completed the transfer of a 

single byte and requires the next, it raises the data_req signal, causing the Register 

File to update the data. If the interface terminates its data transmission process, it 

raises the transmit_done signal, signaling the Register File to reset its counters. 

The data from the master module differs from the data from the slave module in that 

the former requires the consideration of an address received from the input. This is 

due to the fact that data from the master module is transmitted using the I2C protocol, 

which specifies the writing of data to specific registers. As such, the address is an 

input signal for the data from the master module, while in all other cases the addresses 

are determined by internal counters that are incremented or reset based on the signals 

described by the communication protocol. Additionally, the master device may need 

to read the value of a register, and as such, an output data signal is required to provide 

the value based on the input address, which is the same signal used for write 

operations. 

 

Figure 4.1.18: Reg File to Interface Communication Signals 
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4.1.2.2 config_regs module 

The “config_regs” module is responsible for compliance with the restrictions imposed 

by the “data_from_master” module, however it does not need to provide data to the 

slave interface. Instead, it provides signals that convey configuration values. The 

i_value is written to the appropriate register if the w_en signal and the address match 

the register. If not, the register output returns to its input. The configuration values are 

obtained directly from the registers. Additionally, the master device has the ability to 

read the written value from the I2C interface through an o_value byte that provides 

the value of the register requested by address. 

To support the feature of resetting the least significant bit of Register 0x2 (I2C Slave 

Address Configuration), additional logic has been implemented. The 

i2c_receive_done signal is passed through an enable_waiting_for_priority module to 

prevent triggering while the w_en signal is high. Then, it acts as the w_en signal, 

replacing the input address with the I2C Slave Address Configuration register address 

and the i_value with the last register value, but setting the least significant bit to 0. 

 

Figure 4.1.19: config_regs schematic 
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4.1.2.3 data from master module 

The "Data from Master" module is responsible for receiving data from the master 

device, signaling availability of the data to the slave interfaces, and providing the data 

to them. This module comprises a register file and a manager for this specific 

function. 

The register file is comprised of a simple array of eight 8-bit registers. The inputs to 

this file are a 3-bit master address (m_address), a 3-bit slave address (s_address), 8-bit 

data, and the write enable signal (w_en). The register values are updated with the 

incoming m_input value if the m_address provided matches the address of the register 

and the write enable signal is active. Otherwise, the register retains its current value. 

The 8-bit master output (m_output) and the 8-bit slave output (s_output) are obtained 

from the selected register based on the values of the m_address and s_address, 

respectively. 

 

Figure 4.1.20: data_from_master schematic. 
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The Data from Master Manager oversees the control of the Slave Address (s_address) 

and the signals utilized for communication with the interfaces. The Master Data Last 

signal (m_data_last) is set to 1 when the Master Address (m_address) is equal to the 

input data size. In the event that the Master Address reaches its maximum permissible 

value and a Write Enable (w_en) signal is received, the data is considered full, and the 

Data Full edge is the positive edge output of an Edge Detector, which is driven by the 

AND gate result of the Master Write Enable signal (m_w_en) and the Master Data 

Last signal. Unconsumed data will persist after the Data Full edge as long as the Slave 

Address has not reached the data size, and when it does, until a Slave Data Request is 

received. 

The next phase involves the consumption of the data by the Interface to Slave. The 

Slave Address starts at 0 and increases by 1 with each Slave Data Request Edge. 

When the Slave Address reaches the data size, the next Data Request will reset the 

Slave Address. If the Unconsumed Data signal is high, the Data Available output will 

be set to high. An exception to this rule occurs when the Slave Address does not equal 

the data size and a Slave Data Request is received. In this case, the Data Available 

signal will only fall in the next cycle and then rise in the subsequent cycle to provide a 

positive edge, as some modules (such as UART) receive this information as an enable 

signal. 

 

Figure 4.1.21: data from master manager 

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134



 

 
47 

4.1.2.4 data from slave module 

The Data from Slave module serves as an intermediary for the transfer of data from 

the Interface to Slave to the Interface to Master. The master is unable to write to it 

through the I2C interface, with the capability of reading the data being the only 

provided function. 

The module comprises a register file and a manager, similar to the structure of the 

Data from Master module. However, there is a difference in the way the values are 

written to the registers, as the s_address is utilized instead of the m_address. 

Additionally, only the master output is accessible, as the Interface to Slave does not 

require the ability to read the written data. 

 

Figure 4.1.22: data from slave reg file 

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134



 

 
48 

The Data from Slave Manager controls the communication between the Interface to 

Master and the Interface to Slave. It is responsible for setting the addresses, and 

controlling the write enable signal. The inputs to the manager include a 3-bit data size, 

the Slave Valid Data (s_valid_data) signal, the Master Data Request (m_data_req), 

and the Master Transmission Done (m_trans_done). 

The s_address is incremented by 1 if the s_valid_data edge signal is received and the 

s_address does not equal the data_size. In the event that the m_address reaches the 

s_address, the s_address will be reset. The write enable signal is triggered one cycle 

after the s_valid_data edge signal if the data is not full. Data is considered full if the 

s_address and data size are equal and the s_valid_data_edge signal is received. The 

write enable signal returns to low when the s_address is reset. 

The data available signal is set to 1 after the write enable signal is triggered. It will be 

reset to 0 if either a m_data_req edge or m_trans_done edge signal is received. The 

m_address is incremented when the m_data_req edge signal is received and the 

m_address does not equal the s_address. It will be reset when the m_trans_done edge 

signal is received. The data_last signal is set to high if the m_address is greater than 

or equal to the s_address. 

. 
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Figure 4.1.23: data from slave manager 
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4.1.3 Peripheral Device Interface Modules 

 

The section describes the modules responsible for driving communication interfaces 

to the slave (peripheral) device. A wrapper module, known as the 

"to_slave_interfaces," integrates all the interfaces and facilitates their connection to 

the I/O and the Register File. 

4.1.3.1 digital_output module 

The Digital Output Module is responsible for driving 8 output signals with the input 

byte upon receiving the last trigger signal. It consists of two inputs, namely the trigger 

signal and the data byte, and two outputs, the busy signal and the I/O output wires. 

The busy signal is set to a high state for one cycle immediately after the receipt of the 

trigger signal to indicate the change of the output to a higher-level module. 

 

Figure 4.1.24: Digital Output Interface schematic
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4.1.3.2 digital input module 

The Digital Input module converts the inputs received from the I/Os into a data byte. 

It has an enable signal and the I/Os inputs as its inputs, and its outputs are the data 

byte and an update_pulse signal. The module operates as follows: If the enable signal 

is set to 1, each input passes through a debouncer to eliminate any bouncing that may 

occur. If the enable signal is not activated, the debouncers are driven by a constant 

zero, to reduce energy consumption when the Digital Input module is disabled. The 

outputs of the debouncers drive the data byte and an edge detector. The outputs of the 

edge detectors, positive or negative, are combined through an OR gate and drive the 

update_pulse signal. This means that any edge of the received inputs, after bounce 

filtering, will result in a pulse of the update_pulse signal, allowing the higher-level 

module to save the data to the register file. 

 

Figure 4.1.25: Digital Input Interface schematic 
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4.1.3.3 uart_interface 

The uart_interface handles the communication of the UART bus. The module is a 

wrapper of the uart_transmitter and the uart_receiver who operate independently. 

Each module has internally instantiated a baud_rate_sample_pulse_generator for 

synchronization with the UART protocol specification rates. 

 

Figure 4.1.26: uart_interface Schematic. 

 

4.1.3.4 uart_transmitter module 

The UART Transmitter module is responsible for transmitting data through the TxD 

signal, based on the input byte. The inputs of the module include the Data Byte, the 

Baud Rate Code, and the Enable, Clock, and Reset signals. The outputs of the module 

are the TxD signal and the Tx_busy indicator. 

The module implements a Finite State Machine (FSM) consisting of eleven states that 

represent the various stages of UART transmission, including IDLE, START_BIT, 

D0, D1, D2, D3, D4, D5, D6, D7, PARITY_BIT, and STOP_BIT. 

Additionally, the module includes a Baud Rate Sample Pulse Generator, which 

provides the trigger signal at the correct time to ensure proper transmission of the 

data. During the START_BIT state, the TxD signal is in a low state. During the D0 to 

D7 states, the TxD signal takes on the value of the corresponding bit of the input data 

byte. The parity bit, which is calculated as the XOR function of the data bits, is 

transmitted during the PARITY_BIT state, and during the STOP_BIT state, the TxD 

signal is in a high state. The transition to the next state takes place with each pulse of 

the trigger signal, which is provided by the Baud Rate Sample Pulse Generator 

module. 
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4.1.3.5 uart_receiver 

The UART Receiver module is responsible for capturing the RxD signal and 

generating a data byte through the deserialization of the UART message. It comprises 

an FSM with 11 states, identical to the UART Transmitter, including IDLE, 

START_BIT, D0, D1, D2, D3, D4, D5, D6, D7, PARITY_BIT, and STOP_BIT. 

Upon detecting a negative edge in the Rx signal while in the IDLE state, the module 

transitions to the START_BIT state, where it awaits the appropriate time to begin 

sampling the data bits. During the D0-D7 states, the module samples the data bits and 

constructs the byte output, while also computing the parity bit using an XOR gate on 

the RxD value and the previous parity bit result. 

In the PARITY_BIT state, the module compares the calculated parity bit with the 

RxD value. In case of equality, the process continues normally. However, if there is 

an inequality, a parity error signal is raised and the module returns to the IDLE state. 

Finally, the module awaits the stop bit (RxD high) and raises a functional error signal 

if the expected value is not captured. 

4.1.3.6 baud_rate_sample_pulse_generator 

This module generates a pulse to make the receiver and transmitter modules to 

synchronize to the UART bus. It consists of a counter whose threshold is relative to 

the baud rate code and the defined clock period. 
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Table 4.1.1: Baud Rate Code. Sampling Period and Maximum Clock periods 

Code Baud Rate  Sampling Period Clocks per Pulse Clocks per Pulse for 

21 ns clk period) 

000 300 3333333 ns 3333333 / CLK_PERIOD 158730 

001 1200 833333 ns 833333 / CLK_PERIOD 39682 

010 4800 208333 ns 208333 / CLK_PERIOD 9920 

011 9600 104137 ns 104137 / CLK_PERIOD 4958 

100 19200 52083 ns 52083 / CLK_PERIOD 2480 

101 38400 26042 ns 26042 / CLK_PERIOD 1240 

110 57600 17361 ns 17361 / CLK_PERIOD 826 

111 115200 8681 ns 8681 / CLK_PERIOD 413 

 

4.1.3.7 i2c_master_interface 

The i2c_master_interface handles the communication with Peripheral Devices with 

I2C interface. It handles the clock line, transmits data and requests-receives from the 

slave. It cannot operate in a bus where another master device exists.  

To drive the clock line of the bus, it has a scl controller module instantiated. The scl 

controller consists of an FSM of 5 states, an idle state, a high first part, a high second 

part, a post scl high and a pre scl high part. During the IDLE state, the SCL line is not 

asserted, while in the first part and second part high it is set to 1 and in the post and 

pre scl it set to 0. When the scl controller is activated, it will jump from the idle state 

to the high second part and then it will follow the FSM described. The FSM is 

encoded in one-hot format, and each bit is exposed to the i2c master interface module. 
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Figure 4.1.27: SCL controller FSM 

The i2c_master_interface module consists of a core FSM, the scl_controller, 

i2c_read_byte and i2c_write_byte modules and a i2c start stop which triggers on the 

bus the start stop conditions. The FSM consists of 8 states: IDLE, COM_START, 

WRITE_I2C_ADDRESS, WRITE_REG, WRITE_BYTE, READ_BYTE, 

COM_STOP, RECEIVE_IDLE. 
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Figure 4.1.28: i2c master interface FSM 

The process of write operation begins upon the receipt of an enable signal with the 

read/write operation (R_W_OP) input set to 0. The I2C communication protocol then 

proceeds to the IDLE state, followed by the COM_START state. During this state, the 

i2c_start_stop module is activated, driving the I2C lines and triggering a start 

condition. 

The next stage is the WRITE_I2C_ADDRESS state, where the provided address is 

transmitted onto the bus and an acknowledgement is expected. In case no 

acknowledgement is received, it can be inferred that there is no device present with 

the specified address, and the process returns to the IDLE state. If an 

acknowledgement is received, the process continues by transmitting the register 

addresses until the last register signal is raised. It is then followed by transmitting the 

data bytes until the last data signal is set. 
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Finally, in the COM_STOP state, a stop condition is triggered on the I2C bus, 

signaling the end of the write operation. The process then returns to the IDLE state, 

ready for the next communication request. 

The process of the read operation is more complex. When the R_W_OP input is set to 

1 and the enable signal is received, the process begins. It starts with the 

COM_START state, followed by the WRITE_ADDRESS, where the r_w bit is set to 

0 in order to initiate a write operation. If an acknowledgment is received, the module 

will provide the register address of the peripheral device to receive the data. Then the  

FSM changes to the COM_STOP state to restart the communication. The module will 

wait in the RECEIVE_IDLE state for a SCL period, before returning to the IDLE 

state. The module then moves to the WRITE_ADDRESS state after the 

COM_START, with the r_w bit set to 1, and begins reading until the internal counter 

reaches the specified DATA_SIZE threshold. A counter is implemented in the 

interface to keep track of the data size, instead of relying on the last_data signal, as it 

will be enabled after the decision of reading the last byte. Once the threshold is 

reached, the module will transition to the COM_STOP state to complete the read 

operation. 

. 

4.1.3.8 peripheral_interfaces_wrapper 

The peripheral_interfaces_wrapper module encapsulates all the interfaces described. 

In addition to the interfaces, it also includes internal instantiations of I/O interfaces, 

along with bidirectional splitters and input synchronizers. Debouncing is applied 

exclusively for the Digital Input operation, and as such, this functionality is integrated 

within the relevant module. 

The I/O0 output is enabled when the interface is either a Digital Output or when the 

I2C interface requires access to the SDA line (as the I2C interface utilizes this pin for 

the SDA line). In the case of the UART interface, this pin represents the Rx signal and 

is never allocated, as for Digital Input, it represents the first bit of the 8-bit bitstream. 

The I/O1 output is enabled for the UART interface (representing the Tx line), I2C 

interface (representing the SCL line, which is not bidirectional), and Digital Output 

(representing the second bit). The remaining I/Os are utilized solely by the Digital 

Output interface and are enabled only when this interface is in use or for Digital Input. 

In addition to directing the wires to the I/Os, the slave wrapper also merges the wires 

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134



 

 
58 

to the Reg File, as the latter uses the same signals regardless of which interface is 

enabled. 

 

Figure 4.1.29: To Peripheral wrapper schematic 

 

4.1.4 MCU Communication Module 

 

The I2C Slave interface is instantiated for communication with the MCU device. It 

comprises of the following components: a start_stop_detect module, a i2c_write_byte 

module, a i2c_read_byte module, a bidirectional splitter for the SDA wire, input 

synchronizers for the I2C wires, 3 edge detectors, and its basic finite state machine 

(FSM). 

The inputs to the I2C Slave interface include the device address, the data byte from the 

register file, the last data signal, the I2C bus lines (SDA as inout) and of course, the 

clock and the reset signals. The outputs of the interface are the register address and 

data, the register write enable signal, the data from register file request, and the busy 

and transmission done signals. 
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Regarding the design, the SDA signal passes through a bidirectional splitter to 

separate the output and input. The SDA input and the SCL wires are then routed 

through input synchronizers, as these signals originate from outside the digital 

design.. The output of the input synchronizers drive the i2c_start_stop module. The 

synchronized scl signal also passes through an edge detector to obtain the scl_negedge 

and scl_posedge signals. The scl_negedge signal drives the scl_trig_low signals of the 

i2c_read_byte and i2c_write_byte modules, as the low value of SCL enables writing 

on the SDA signal. The scl_posedge signal drives the scl_trig_high signal, as the SDA 

has received its high value, and the master device should have already written the 

desired value to the SDA signal. 

The SDA out signal (input of the bidirectional splitter, which is driven to output when 

enabled) will take on the value of the i2c_write_byte SDA output if the SDA is 

allocated by the i2c_write_byte module, and will be constantly low (representing the 

SDA value when allocated by the i2c_read_byte module). The bidirectional output 

enable signal is high if either the i2c_read_byte or i2c_write_byte module allocates 

the SDA signal. 

 

Figure 4.1.30: I2C Slave Interface Schematic. 

The FSM in the I2C Slave interface is comprised of five primary states: IDLE, 

ADDRESS, REGISTER, READ, and WRITE. During the IDLE state, no operation is 

carried out. Once the start signal is triggered, the state transitions to the ADDRESS 

state after two cycles. In this state, the i2c_read_byte module is enabled with the 
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"should_comp" pin enabled. If the 7 most significant bits of the received data do not 

match the I2C address, the read operation is considered a failure, and the FSM returns 

to the IDLE state. If the received bits match the address, the least significant bit is 

checked to determine if the operation is a "write" or "read". If the bit value is 0, the 

operation is considered a "write" from the master device, and the FSM transitions to 

the REGISTER state. In this state, the desired register address is received from the 

master device. The FSM then transitions to the READ state, and data is read until the 

register file signals that the last data has been received. If the least significant bit of 

the byte received in the ADDRESS state is 1, the state transition from ADDRESS is 

to the WRITE state. The module continuously outputs the data stored in the register 

that was previously specified in a write operation, until the "last data" signal is 

activated. 

 

Figure 4.1.31: I2C Slave FSM
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4.2 4.2 RTL Verification 
The RTL Verification process is divided into two stages: module tests and functional 

tests. Both stages utilize Verilog for test writing and are managed by separate Python 

scripts. To ensure a streamlined testing process, the tests are automated and run at 

least once for each Merge Request within the GitLab environment through the use of 

CI/CD flows.  

4.2.1 Module Tests 

 

The objective of the module tests is to evaluate the functionality of individual 

modules. Each test is comprised of a directory containing a Verilog testbench and a 

corresponding YAML file. The YAML file may include the following fields.: 

• src_files: A list of the source files provided to the Verilog compiler to compile 

the test. 

• enable: A Boolean variable indicating if this test should run or not. 

• only: A Boolean variable, indicating whether or not this test (and any others 

with "only enabled") should be executed. It is not recommended to enable this 

in any tests in the stable branch, but it proves valuable during the development 

phase for debugging purposes.. 

 

Figure 4.2.1: Example of a module test yaml file 

The testbench implements various scenarios and samples signals or data. At each 

sampling interval, the testcases variable is incremented. If the sampled values do not 

match the expected values, the fails variable is incremented. To simplify the testbench 

file, Verilog tasks for development and debugging are utilized to run the different 

scenarios. Upon completion, a message displaying the score (PASS/TOTAL) is 

printed, and if the fails variable is equal to zero, the simulation is terminated with the 
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$finish command. If the fails variable is not equal to zero, the simulation exits with 

the $fatal command, allowing the simulation caller to be aware of the result. 

The testing process of the Verilog testbench is managed by a accompanying Python 

script. At the start, the script scans the directories within the 

"$I2C_BRIDGE_PRJ_ROOT/fpga/test/module_tests" folder in search of "enable" and 

"only" keys in the associated yaml files. Tests that have the "enable" key are placed in 

a "lowPriorityTests" list, while those with a "only" key set to "true" are placed in the 

"highPriorityTests" list. After the scanning process, the final tests list is determined 

based on the presence of elements in the "highPriorityTests" list; if it is not empty, the 

tests list is set to that, otherwise, it is set to the "lowPriorityTests" list. 

The script then compiles each element in the tests list using the iverilog tool along 

with the specified testbench and source files. If an error occurs during the compilation 

process, the script exits with a "testbenchFailure" exception and returns a code of 1. 

Otherwise, the simulation process is initiated by calling the "vvp" tool with the 

compiled file as an argument. If the simulation finishes successfully, indicated by a 

return value of 0 and the Verilog testbench ending with the "$finish" command, the 

script proceeds to the next element in the tests list. Otherwise, the script exits in the 

same manner as the compilation error.e 

4.2.2 Functional Tests 

 

The functional tests are designed to verify the overall functionality of the system. 

Unlike the module tests, the Design Under Test (DUT) remains constant, but the 

number of different flows and behaviors to be tested increases. To simplify the 

process, these flows are separated into distinct Verilog files containing only tasks and 

variables, and a Python script is utilized to gather the desired flows, combine them 

with a base testbench, and generate a unified testbench for the simulation. This 

approach of generating a concise testbench is to facilitate its reuse for post-synthesis 

testing. 

 

The base testbench file consists of the instantiation of the Design Under Test (DUT) 

and its associated wires, as well as an initial block containing the $finish command. 

Additionally, it includes three general-purpose tasks, namely the data test, the signal 

test, and a delay sync task which serves to synchronize with the clock. The file also 
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contains two comments, the first of which is positioned above the initial block, 

providing a location for the desired tasks to be copied. The second comment is located 

within the initial block, serving as the header of the last task of each test, acting as the 

main task of each test. 

 

Each test is instantiated in a directory and contains the Verilog file and a yaml file. 

The yaml file has the enable and only keys, with similar functionality of those in the 

module tests. In case no test has its “only” key true, those with the “enable” true will 

have their Verilog code been integrated in the generated testbench, else only those 

with the “only” true. Each test should have a task at the bottom without arguments 

which will play the role of the main task. Its header will be instantiated in the initial 

block of the generated testbench. It should reset the total_testcases and fails variables 

and let them increase accordingly during the test. Then it will call any other tasks to 

run the test. Finally, it will print the score and in case the fails variable is not 0, it will 

run the $fatal command exiting of the simulation. Else it will let the next test to run. 

 

The tests do not directly interact with the DUT's inputs and outputs, but instead create 

scenarios and assess their results. For example, when testing the read/write operation 

of registers, the focus should be on the return value of the register, rather than the I2C 

signals. The I2C signals are handled by an intermediary layer, known as the drivers, 

which are always included in the generated testbench. The test tasks call the drivers to 

facilitate communication with the DUT and to participate in the testing process. 

 

Figure 4.2.2: Functional Tests Block Diagram 
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4.2.3 RTL Verification Automation 

 

In order to maintain consistent verification of the RTL, an automated process is 

necessary. During development, tests are conducted continuously, focusing on 

specific parts by enabling the "only" key or conducting general tests to ensure that 

changes to one flow do not negatively impact others. However, this alone is not 

sufficient, as there must be a record of the verification tests to ensure that each branch 

to be merged into the master (stable) branch has been properly verified. 

 

For this purpose, GitLab CI/CD is utilized. This tool runs the tests in its environment 

and will not allow a branch to be merged into the master branch if the verification 

process fails. In Figure 4.2.3, Branch 1 passes the verification and is successfully 

merged into the master branch, while Branch 2 fails and GitLab blocks the merge 

process. Branch 2 must address the error and, upon re-testing, may be merged. This 

ensures that the RTL in the master branch is always verified. 

 

Figure 4.2.3: Code Quality Maintenance flow 

 

GitLab CI/CD utilizes a docker image to run the verification process. To 

accommodate this, a docker image is created using a DockerFile located in the 

repository. The image is based on Debian and includes additional software, such as 

python3, python3-pip, iverilog, and gtkwave. The inclusion of gtkwave allows for the 

image to also be used for development and testing from another workstation if 

necessary. 
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4.3 4.3 Physical Implementation 
 

4.3.1 Clock and Reset 

 

Both FPGAs have two on-board oscillators: one with a low frequency of 10kHz and 

another with a high frequency of 48MHz. [10] To support the high speeds of the I2C 

bus communication with the slave device, the high frequency oscillator was selected. 

The high-fanout clock signal is passed through a global buffer, along with the reset 

signal. Unfortunately, the Power-On reset takes place before the design is loaded onto 

the FPGA, so it cannot be utilized in the design. As a result, a RESET_N signal must 

be assigned to a chip pin and the user must provide their own power-on reset for the 

FPGA design. 

 

4.3.2 I/Os Assignment 

 

The requested Inputs/Outputs pins are provided with the PCF. The pinout for the 

iCE40UP5K and for the iCE40UL1K is described in the Figures 4.3.1 and 4.3.2. 

 

Figure 4.3.1: iCE40UP5K Pinout 
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Figure 4.3.2: iCE40UL1K Pinout 

 

 

4.3.3 FPGA Utilization and Floor Planner 

 

The Utilization summary after the Placer and Route operation for the iCE40UP5K is 

presented in Table 4.3.1 table. Also, the design floorplan for this FPGA is 

demonstrated in Figure 4.3.3. 

Table 4.3.1: iCE40UP5K Utilization 

Elements Used Total 

LogicCells 1065 5280 

PLBs 187 660 

BRAMs 5 30 

IOs and GBIOs 16 36 

PLLs 0 1 

DSPs 0 8 

LFOSCs 0 1 

HFOSCs 1 1 
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Figure 4.3.3: iCE40UP5K Floorplan 

 

For the iCE40UL1K FPGA, the Utilization summary is presented in Table 4.3.2 table, 

while the relative floorplan in Figure 4.3.4. 
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Table 4.3.2: : iCE40UL1K Utilization 

Elements Used Total 

LogicCells 1065 1248 

PLBs 153 156 

BRAMs 5 14 

IOs and GBIOs 16 21 

PLLs 0 1 

DSPs 0 8 

LFOSCs 0 1 

HFOSCs 1 1 

 

 

Figure 4.3.4: iCE40UL1K Floorplan 

 

4.3.4 Static Timing Analysis 

 

The design on the ICE40UP5K has a slack of 989 ps. The critical path is located in 

the counter of the SCL controller (part of the I2C Master interface). The path on the 

floorplan is provided in Figure 4.3.2. 

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134



 

 
69 

 

Figure 4.3.5: iCE40UP5K STA Log Output 

 

Figure 4.3.6: iCE40UP5K Critical path in Floorplan 

The slack of the ICE40UL1K design has a value of 1637 ps. The critical path starts 

from the transmitter busy signal in the I2C Slave interface and reaches until the data 

from slave manager in the reg file. The path on the floorplan is provided below. 

 

Figure 4.3.7: iCE40UL1K STA Log Output 
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Figure 4.3.8: iCE40UL1K Critical path in Floorplan 

4.3.5 Power Estimation 

 

The Power Estimation requires an input voltage and the operation temperature. The 

input Voltage will be 3.3V as most designs operate in this rank, while a range of -20 

to 80 Celsius feeds the Power estimation algorithm. The estimation is requested for 

both typical and worst case. The results are presented in the diagram of Figure  4.3.9 
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Figure 4.3.9: Power Estimation per Temperature value
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Chapter 5 Software Driver 

5.1 Driver Structure 
 

The I2C Bridge module has been designed with ease of integration in mind. To 

simplify its implementation in end-user systems, a software driver is provided, which 

encapsulates the operational details of the module. The driver, written in C language 

and structured using CMake, is ready to be utilized by software developers. 

The driver comprises three main components: the header file with the Application 

Programming Interface (API), the core functionality file, and the Hardware 

Application Level (HAL) layer. The API is defined in the i2c_bridge.h header file, the 

core functionality is implemented in the i2c_bridge.c source file, with the assistance 

of utility functions in the utils directory. The HAL layer is defined in the hal directory 

and serves to instantiate the I2C commands based on the platform. 

If no platform is specified, the top-level source file, i2c_bridge_hal.c, will be 

compiled and its functions will return with a "not implemented" error. The supported 

platforms are defined in the platform directory, with currently only the Zephyr 

platform supported. If the Zephyr platform is defined, the HAL commands will result 

in Zephyr I2C read and write commands being called by the core functionality. To 

add a new platform, a directory representing it should be added under the platform 

directory. 

. 
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Figure 5.1.1: Driver Filesystem structure 

5.2 Driver API 
 

The API of the driver features a user-friendly interface consisting of straightforward 

read/write procedures and interface configuration functions. Specifically, for the 

UART interface, an additional function to specify the expected size of the read data is 

included, as the peripheral device is expected to have already transmitted the data by 

the time the MCU requests it. 

5.2.1 i2c_bridge_set_interface_do 

 

Sets the interface configuration register with the value of Digital Output interface. In 

case of successful operation, it will update the internal variable “interface”. 

5.2.2 i2c_bridge_write_do 

 

The function begins by evaluating the local variable to determine if the interface is set 

to Digital Output. If it does not match, the function calls the 

i2c_bridge_set_interface_do internally to set it up. Next, the function checks if the 
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transmit data size is 1, using the local variable. If it is not, the function updates it. 

Finally, the function sends a 1-byte bitstream to the transmit data register. 

5.2.3 i2c_bridge_read_do 

 

Reads the provided output bitstream. In case the interface or data size are not 

correctly set, it will return an error value. After this evaluation, it will read 1 byte 

from the transmit data register. 

5.2.4 i2c_set_interface_di 

 

Like the i2c_set_interface_do but setting the register to Digital Input. 

5.2.5 i2c_bridge_read_di 

 

In the event that the interface is not configured as Digital Input or the receive data size 

is not set to 1, the necessary operations will be initialized. Subsequently, a 1-byte 

input bitstream will be read from the receive data register. 

5.2.6 i2c_set_interface_uart 

 

Receives the desired baud rate as an argument. The function sets the configuration 

interface to UART with the specified baud rate. If the operation is successful, the 

relevant variables will be updated accordingly. 

5.2.7 i2c_bridge_write_uart 

 

The function receives the desired bytes to be sent and the number of them as input 

arguments. It evaluates whether the currently set interface corresponds to UART. If 

so, it encodes the number of bytes into a value for the expected transmit data size. 

Then, it checks if the transmit data size stored in the corresponding variable matches 

the encoded value. If there is a discrepancy, it updates the variable. Finally, it 

transfers the data to the module. 

5.2.8 i2c_bridge_expect_uart_read_size 

 

This function sets the receive Data Size as usual. 
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5.2.9 i2c_bridge_read_uart 

 

Evaluates if the configured interface is UART and reads from the receive data register 

as the receive data size is set. 

5.2.10 i2c_bridge_set_interface_i2c 

 

The function takes the desired speed as an input argument. It sets the configuration 

interface to I2C with the specified speed code. Upon successful completion, the 

corresponding variables will be updated to reflect the change.  

5.2.11 i2c_bridge_write_i2c 

 

The function takes the peripheral device address, the address of the peripheral device's 

register and its length, the data to be written to the desired register, and the length as 

input parameters. To begin with, after checking the set I2C in the interface 

configuration register, it will set the encoded values of the transmit and peripheral 

register address size if they have not already been set. Then, the register address will 

be transmitted. Finally, the address of the peripheral device will be set if it has not 

already been set, followed by the data to be transmitted. 

5.2.12 i2c_bridge_read_i2c 

 

The function takes in the peripheral device address, the address of the peripheral 

device register and its length, the length of the expected read data, and a buffer to 

store the read data as input arguments. Initially, it evaluates the I2C interface 

configuration setting and sets the receive and peripheral register address size, if they 

have not already been set to the encoded values. Then, it sends the register address to 

the peripheral device. The address of the peripheral device is set, and the read 

operation is enabled. This is done to initiate the read operation. After a 100 ms delay, 

the driver retrieves the read data from the receive data register. 

5.2.13 i2c_bridge_init 

 

The internal variables are initialized with default values that do not reflect their 

operational state, and the HAL is also initiated. 
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5.3 Sample on the Zephyr platform 
 

5.3.1 Structure 

 

Four distinct sample applications have been developed to evaluate the functionality of 

the I2C Bridge Module, with each application being specifically designed to test a 

different supported interface. These applications are based on the Zephyr RTOS and 

the specific hardware platform is specified during the build process. Each application 

comprises a Kconfig file, a prj.conf file, and a CMakeLists.txt file, which contain the 

necessary source code and configurations. The Kconfig file initializes a 

LOOP_DELAY configuration to 10 seconds. The prj.conf file sets the global 

configurations for I2C and Logging. The CMakeLists.txt file contains the necessary 

CMake configurations for Zephyr to properly compile the source code. The main 

source code is located in a main.c file within the src directory. To maintain the 

cleanliness of the Zephyr repository, the I2C bridge driver is utilized as an external 

source code and is not included within the internal drivers. 

5.3.2 Digital Output Sample 

 

To evaluate the Digital Output a simple sample is implemented that provides the 

value of an 8-bit counter which increments per 1 value each 10 seconds. The binary 

representation of the 8 I/O should be updated respectively. 

5.3.3 Digital Input Sample 

 

An application has been developed to monitor the digital input bitstream. This 

application performs a scan of the digital input bitstream every 10 seconds and logs 

the resulting value obtained after each successful scan. 

5.3.4 UART Sample 

 

An application has been developed to use the UART interface at the software level for 

the purpose of receiving environmental variables from a UART interface sensor. The 

sensor that will be utilized is the CozIR-A manufactured by Gas Sensing Solutions 

Ltd. (GSS). To collect measurements, specific strings must be sent to the sensor. To 

retrieve the CO2 measurement, the string "Z\r\n" should be sent, to retrieve the 
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temperature measurement the string "T\r\n" should be sent, and to retrieve the 

humidity measurement the string "H\r\n" should be sent. After each sent command, a 

response will be received in the format of "Z ####\r\n" for CO2, "T ####\r\n" for 

temperature, and "H ####\r\n" for humidity [11]. The I2C Bridge is capable of 

obtaining the first 8 characters of the response, and therefore, should receive the entire 

payload. The CO2 measurement value represents the parts per million as is, while to 

get the temperature number in Celsius, the provided value should be subtracted by 

1000 and divided by 10. The humidity value should only be divided by 10. 

5.3.5 I2C Sample 

 

For the I2C to peripheral devices interface evaluation of the I2C Bridge module, also 

an environmental sensor is used, that can measure CO2, Temperature and relative 

humidity. This time, SCD4x sensor is used developed by Sensirion. First of all, we 

need to set the sensor in continues measurement mode, by pointing the 0x21B1 

register address of the sensor. Even though pointing to register of Peripheral device is 

not supported, we can do this by sending the first byte as register and the second as 

data, with register address and transmit data size set to 1. This is allowed as the 

register address size of the SCD4x sensor is 2 bytes. Then periodically the 

measurements are collected in a 10 seconds interval. Before requesting them, a get 

data ready status command is sent to validate the existence of data. After with a single 

read command, CO2, Temperature and RH are provided. The CO2 ppm comes as is, 

the Temperature is converted to Celsius by multiplying the received value with 175 

and dividing with 216 which result must be subtracted by 45. To get RH in percentage, 

the input value should be divided by 216 and multiplied by 100. 

 

 

Chapter 6 Physical Experiments 
 

6.1 Setup 
 

After developing and validating the RTL of the I2C Bridge module and generating 

bitstreams, as well as the software running on a MCU, the next step is to test the 
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whole system with a physical hardware setup. The main parts of setup includes the 

below parts: 

• A host PC 

• An STM Nucleo LR152RE as the MCU/Main Board 

• A Lattice iCE40 UltraPlus Breakout board whose FPGA operates as the I2C 

Bridge Module. 

• LEDs to evaluate Digital Output Operation 

• Jumper Wires to toggle the Digital Inputs 

• Sensirion SCD4x sensor, as a Peripheral with I2C interface 

• GSS CozIR sensors, as a Peripheral with UART interface 

• DIGILENT Digital Discovery to visualize the signals 1 or 0 state. 

 

 

Figure 6.1.1: Schematic of setup for Physical Tests 

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134



 

 
79 

 

Figure 6.1.2: Setup photo 

 

6.2 Digital Output Interface Test 
 

 

To evaluate the  Digital Output functionality,  the Digital Output sample was flashed 

on the Nucleo LR152RE board. In Figure 6.2.1, we can see from the right side firstly 

that the I2C bus (2nd and 3rd waveform)  was activated and provided the bitstream 

value 0x1 to the output (next waveforms). After a while it is triggered again and 

provides bitstream 0x2. The MCU provides its logs to the host PC which are printed 

in the middle screen. Left we can see the LEDs status after bitstream 0x2 was written. 
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Figure 6.2.1: Digital Output Test Video Print screen 

 

6.3 Digital Input Interface Test 
 

In order to evaluate the functionality of the Digital Input, the Digital Input sample was 

programmed onto the MCU. As shown in Figure 6.3.1, it can be observed that upon 

requesting data from the I2C bus (as evidenced by the brief fluctuation of the 2nd and 

3rd waveforms), the MCU successfully scans the updated value 0x7 (binary 

representation 2’b111), as demonstrated by the subsequent 8 waveforms. 
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Figure 6.3.1: Digital Input Test Video Print screen 

 

6.4 UART Interface Test 
 

The functionality of the UART interface was evaluated by flashing the CozIR-A 

sensor sample on the MCU. Figure 6.4.1 demonstrates the UART waveforms toggling 

three times per measurement. This is because the CO2 measurement is requested first, 

followed by the temperature, and finally the relative humidity. Although not all 

toggles are captured in the I2C lines due to limitations in the measuring equipment, it 

can be observed that with each measurement, a command is sent to the sensor and the 

received data is then requested. Following the first measurement, it can be seen that 

the readings increased after blowing air into the sensor. 

 

Figure 6.4.1: UART Test Video Print screen 

Institutional Repository - Library & Information Centre - University of Thessaly
27/07/2024 17:54:32 EEST - 13.58.148.134



 

 
82 

 

6.5 I2C Interface Test 
 

The performance of the I2C interface was assessed by flashing the SCD4x sensor 

sample onto the MCU. As illustrated in Figure 6.5.1, the I2C waveforms were 

observed to toggle twice during communication with the sensor, with one toggle on 

the SDA line and one toggle on the SCL line, due to limitations with the measurement 

equipment. The first toggle was to obtain the data ready status, and the second toggle 

was to retrieve all the environmental variables provided by the sensor. After the 

second measurement, a breath was directed onto the sensor, leading to an increase in 

the recorded values, as observed in the figure. 

 

Figure 6.5.1: I2C Test Video Print screen
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Chapter 7 Conclusions 

7.1 Summary 
 

The objective of this thesis was to develop a solution for streamlining the logistics 

management of PCBs attached to a Main Board. The aim was to reduce design and 

certification costs by allowing the use of a single Main Board for multiple 

applications without any modifications. 

The project approach emphasized the importance of creating and running an 

automated verification process to ensure reliable performance during each step of the 

implementation. The digital hardware design was kept as simple as possible to 

facilitate integration in other hardware platforms and maintenance, while ensuring 

100% functionality. This design is intended to be integrated into IoT architecture at 

after the MCU level, where Over-The-Air (OTA) updates can be challenging to take 

place if a bug is discovered. The author's hope is for this design to eventually be 

integrated into an ASIC, where OTA updates are not an option. 
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7.2 Future Work 
 

The project undertaken in this thesis has the potential to serve as a foundation for 

multiple future projects. These projects can be divided into two main categories: 

updates and optimizations to the digital hardware design, and integration of the I2C 

Bridge Module into existing or new software applications. 

In regards to digital hardware development, a possible avenue for further research is 

the utilization of a low frequency oscillator to reduce energy consumption and 

increase the application of the system in low power environments. However, this may 

also have limitations in terms of compatibility with high-speed buses and potential 

issues with internal delay. Another potential project is the integration of additional 

communication protocols such as SPI or even analog signals through the use of a 

Digital to Analog Converter (DAC). Furthermore, the ability for the I2C Bridge to 

support multiple protocols simultaneously would also be an area for exploration. For 

example, it would be desirable for the I2C Bridge to have the capability to 

simultaneously utilize UART on I/O 0 and 1, Digital Inputs on I/O 2 and 3, I2C on I/O 

4 and 5, and Digital Outputs on I/O 6 and 7. 

At the software level, the integration of the I2C Bridge into new Internet of Things 

(IoT) projects is a possibility. As the MCU can communicate with different types of 

peripherals, just from a simple 2-wire interface, the sky is the limit. 
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