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vi Abstract

Diploma Thesis

Finite element simulation of the structural behavior of elastic

cylindrical shells under external pressure for biomedical applications

Karetsa Ioanna

Abstract

Collapsible tubes from their nature are vulnerable to collapse. Veins, arteries, airways, and
other tubular structures found in living organisms can be described as collapsible tubes. In
specific circumstances, the investigation of which isn’t the objective of this thesis, these
tubular structures are susceptible to imperfections that may result in collapse and propaga-
tion under uniform external pressure. In this thesis, the aim was to simulate the behavior of
collapsible tubes when initial ovality and uniform external pressure applied. Thin and thick
walled tubes, with five different diameter-to-thickness ratios, are studied numerically utiliz-
ing finite element simulations in ABAQUS. Three-dimensional slice models and long tube
models have been conducted as base cases, in order to investigate propagation pressure ex-
tracted from their pressure-volume responses, and contact conditions of propagation obtained
from the corresponding configurations. Deformation theory was employed as non-linear elas-
tic material model. A parametric investigation has been performed to examine the effects of
material exponents, element type, and mesh density applied on the base case models. Fur-
thermore, the influence of ring geometry was investigated through analyses of 3D models.
Parametric analyses was also carried out into the relationship between the type of element
and its impact on the propagation pressure. Also, effect of initial ovality has been scrutinized
by the construction of two-dimensional models. The collapse responses of the 2D models
were examined for elastic material and the results were compared with analytical solutions.
Overall, the main conclusions drawn from the 3D analysis are that propagation pressure is
dependent of the material exponent of Deformation Theory, of tubes geometry and of ele-
ment type of modeling part. However,the value of propagation pressure is independent of the
mesh density. As the material exponent increases, the propagation pressure diminishes. Ad-
ditionally, as the tube’s cross-section becomes thinner, the extension of propagation plateau
decreases. Also, element type of the modeling part doesn’t affect the contact propagation

conditions when the material exponent remains constant. Lastly, the conclusions from the
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2D models highlight that as the initial imperfection value increases, the deviation of the col-

lapse pressure from curve of the ideal case also increases leading to the softening of the ring

and collapsing at lower pressures.



viii Lepiinyn

Authopoatikny Epyacio
IIpocopoimon TETEPAGUEVOV GTOLYELMV TNG OOUIKNG CVUTEPLPOPAS
ELMIOTIKOV KUAIVOPLKOV KEAVQAOV VIO EmTEPIKT Tigon Yo Protatpikég
EQappoyEg

Kopétoa Ioavva

Iepiinyn

O tTVGGOEVOL GOANVEG AOY® TNG PVONG TOVG £ivat EDAA®MTOL G€ KaTtdppevon. Ot pAEPReg, ot
aptnpieg, ol agpaywyol Kol GAAEG COANVOEDELG doUEC TTOV Ppickovtal o€ {OVTOVOVG 0pYoL-
VIGHLOVG UTOPOVV VOL TEPLYPOUPOVV MG TTUGGOUEVOL GOAVES. L€ GUYKEKPLUEVES TEPUTTMGELS,
N dlepevvnon TV omoiwv dev givat 0 6TOYOG AVTAG TG STPIPNG, AVTEG Ol COANVOELDELG
KATOOKEVEG €lval EMPPETEIC 0€ ATEAELEG TOV UTTOPEL VAL 001 YIGOVY GE KOTAPPELGT Kot O1di-
d001 VPOOoNE VIO OUOOLOPPT EEMTEPIKN TiEOT). Xe avT TN dTPPT, 6TdYOG NTAV 1 TPO-
OOUOIMGT TNG CLUTEPLPOPAS TWV TTVGGOUEVOV COANVOV OTav epapudletal ofaidtnTa Kot
opowopopen e€mTEPIKY Tigon. TwANVEG Pe AemTd Ko oL TOTYWUO, LE TEVTE OLOPOPETIKES
avaLoyieg OLOUETPOV TPOG TTAXOC, LEAETMOVTOL OPLOUNTIKA YPTCLUOTOIDOVTAG TPOGOUOIDGELS
nenepacpévev otoryeinv cto ABAQUS. Tpiodidotata LOVTEAN QETOC KL LOVTELD LOKPLDV
ocOMV®V £r0vv BempnOnKav o1 fUCIKES TEPMTMOGELS OVTHG TNG SUTAMUATIKNG, TPOKEUEVOD
va diepevvnBei ) wieon dadoong VP®oNG oL eEdyeTan Amd TIC ATOKPIGELS TIEGNC-OYKOV TOVG
aAAG Ko 01 GUVONKEG PTG KOTA TNV dtddoon VPwong. To vikd Deformation Theory ypn-
OLHOTOMONKE MG LOVTELD UM YPOUUIKOD EANGTIKOD VAKOV. Mo mopapeTpikn depehivnon
deEdyOnke pe oxomod va £€TAGTOVV 01 EMOPACELS TV EKOETMV VAIKOV, TOV TOTTOL GTOLYEIOV
Kol TNG TukvOTNTaG TAEYUATOC oL epappolovtal ota Pacikd poviéda. EmmAéov, diepev-
viOnke M enidpaocn G YEOUETPIOG TOL SAKTLAIOL HEG® OVOADGE®MY TPIGIUCTUTOV LOVTE-
Aov. TpaypatoromOnkoy eniong TopapeTpIkég oVOADGELS Yo TN oyéon peta&d Tov THIToV
ToV GToLYElOL KOl TNG EMIOPACNC TOL GTNV Tigon diddoong VPwong. Eriong, 1 enidpaon g
apYIKNG oPardTNTOG OlEpELVIONKE e TNV KATACKEVT d160100TaT™V HoVTEA®Y. Ot amokpi-
o€1g Katdppevong Twv poviéhov 2D eEetdlovtat Yo EAacTIKO DAIKO Kol To AmOTEAECLLOTO,
oLYKPIVOVTOL LE OVOALTIKEG AVCELG. LVUVOMKA, TO KUPLOL CLUTEPAGHOTO TTOV £EAYOVTaL Omd
NV TPIOACTATN avAAVoT ivan 0Tt 1 mwieon dtddoong VPwong eéaptdtor omd Tov ekBETN

vAkoV tov Deformation Theory, amd ™ yeoperpia tov coMvov aAld Kol amd tov THTo
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otolyeiov ™¢ povreromoinong. 2otdOc0 eivar aveEapTNTn OO TNV TUKVOTNTO TOL TAEYUATOS
7OV ypNoHonolEiTan ot povieAomoinor. Kabdg o exfétng vikot avédvetat, n tieon otddo-
ong VPwong petwvetat. EmmAéov, kabmg 1 dtotopn Tov GoAva YIvEToL o AENTH, 1] EKTOOT
TOV TAOT®, Ao To omoio e€dyeton 1 T TG 01ddoomng VRwong, petwvetor. Emxiong, o tomog
OTOLEIOL TOV YPNGUYLOTOIEITOL GTNV LOVTEAOTOINGOT 0V EMNPEALEL TIG CLVONKES EMAPNG TNG
dtadoonc g VPwong, 6tav 0 ekBETNG LAKOD Ttapapével otabepoc. TéELoG, Ta cuumepdoUOTL
amd ta dedidotata povtéda vroypapupilovy 6Tt kabdg avidvetarl | apyIKn T ATEAELWNG,
av&avetor emiong n omdKAon TG TEONG KATAPPELONG OO TNV KOUTOAN TNG WOAVIKNG TEPT-

TTMOOMNG, 00NYDVTAG GE KOTAPPELGT VIO YOUUNAOTEPES TECELG.
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Chapter 1

Introduction

1.1 Problem motivation

The analysis and modeling of collapsible tubes under external pressure constitutes an
important problem from a mechanical point of view, as it can provide valuable insight into
how these tubes behave and interact with their environment under different conditions. Such
tubes are commonly used in a variety of industries, including bio-medical devices, automo-
tive, and aerospace, among others. Understanding the mechanical behavior of collapsible
tubes is critical in designing and optimizing these systems for optimal performance, relia-
bility, and safety. By modeling these tubes under external pressure, the forces and stresses
involved could be determined along with the occurrence of collapse or failure effects. Also
potential design improvements can be identified to enhance their mechanical performance.
In particular, modeling of collapsible tubes, such as veins or respiratory tubes, can also be ap-
plied in the field of biomechanics. Understanding the mechanical behavior of these tubes can
help in developing novel medical devices and surgical procedures. For example, modeling
the collapse of the human soft palate can aid in designing more effective surgical procedures

and oral appliances for treating obstructive sleep.

Veins are one of the most common types of collapsible tubes. Developing reliable models
of venous collapse under external pressure has significant practical implications in medicine
and biomedical engineering. The collapse of veins, whether pathological or not, can have
significant implications for the body’s overall physiological function. In pathological cases,
venous collapse can lead to venous insufficiency, deep vein thrombosis, and other related dis-
orders, which can cause pain, swelling, skin ulcers, and other complications that significantly

affect the patient’s quality of life [2]. Accurate modeling of venous collapse under external

1
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pressure may help in designing more effective therapeutic interventions to prevent or treat
these conditions. On the other hand, studying the collapse of veins under physiological con-
ditions can provide insights into the body’s normal functioning. For instance, the collapse of
veins in the lower limbs during exercise or standing can help regulate blood flow and main-
tain optimal oxygen delivery to the muscles [3]. Accurately modeling venous collapse under
different physiological conditions can help in understanding the underlying mechanisms that
control these processes. Studies on this topic have shown promising results and highlight the
importance of accurate modeling techniques in advancing our knowledge of venous collapse

behavior.

1.2 Literature Review

1.2.1 Airway collapse cases

The upper airway is composed of several soft tissues that are surrounded by muscles that
help keep the airway open. During sleep, the upper airway muscles are less responsive to
negative intrapharyngeal pressure within the throat, which can lead to a narrowing of the air-
way and partial or complete airway collapse [4], [S]. The negative pressure causes the soft
tissues to be pulled inward, further narrowing the airway and increasing resistance to airflow.
If the airway collapses completely, breathing stops, resulting in an episode of apnea. There-
fore, during sleep, the airway becomes more susceptible to collapsing [6]. This phenomenon
appears in patients with obstructive sleep apnea (OSA), which is a sleep disorder charac-
terized by repetitive episodes of partial or complete upper airway obstruction during sleep.
Furthermore, the pharyngeal airway in patients with OSA collapses either due to decreased
intraluminal pressure or increased external tissue pressure, or due to reduction in the longi-
tudinal tension of the tube. Obesity may increase the collapsibility of the pharyngeal airway
due to excessive fat deposition in two distinct locations [7].

In the context of airway collapse, an early review of this topic was presented by East-
wood et al. [§], who aimed to assess the relationship between upper airway collapsibility
during general anesthesia and severity of sleep-disordered breathing in awake patients. The
results showed that the propensity for upper airway collapse during anesthesia and sleep are
related, especially during REM sleep, and suggest that sleep-disordered breathing should be

considered in patients with a propensity for upper airway obstruction during anesthesia or
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recovery from it. Additionally, in the study of Xu et al. [9] a 3D finite element modeling
approach is described in order to simulate airway collapse mechanics in a rat model of ob-
structive sleep apnea. The results suggest that material properties of different tissue regions,
airway shape, and muscle activity all play important roles in airway collapse. Ibbeken et al.
[10] used a 3D printed model of the upper airway to measure the critical closing pressure,
which is a parameter that characterizes airway collapsibility in obstructive sleep apnea. The
researchers examined the effect of airway resistance on deformation behavior by changing
the inflow area size. Airway collapse can also occur animals, such as dogs and it’s a common
cause of chronic cough in middle-aged to older dogs. Lutchen and Gillis [[1 1] studied the im-
pact of airway constriction on lung function and compared the experimental results with the
predictions of their computational model. In the same subject was the work of Maggiore [|12]
who presented tracheal and airway collapse (bronchomalacia) in dogs, which results from
the softening of the tracheal cartilage, causing narrowing and impeding the passage of air. A
different case, related to airway collapse, the alveolar collapse during diving, was studied by
Fitz-Clarke []13]. The author developed a computational model of the human respiratory tract
to study airway and alveolar compression and re-expansion during deep breath-hold dives.
The model predicts that human lungs collapse beyond 200 m, and that reopening of closed
alveoli occurs on ascent beginning at a depth that depends on the maximum depth reached

and surfactant properties.

1.2.2 Collapse Cases of Elastic Tubes

Materials that exhibit the behavior of collapsible tubes are elastomers. Elastomers are
materials that have the ability to exhibit significant stretching and return to their original
shape when the stress is removed. They are often used as the material of choice for modeling
collapsible tubes, due to their ability to deform and collapse under external pressure.

An early study with elastomeric material was carried out by Flaherty et al. [[14]. The au-
thors investigated the buckling and collapse behavior of an elastic tube under different levels
of pressure, determining numerically the pressures at which the tube buckles and contacts
at a single point or straight line, and the corresponding cross-sectional buckling. They also
determined the fluid flow through the buckled tube, which could have implications for the
collapse of veins and blood flow. Fabian [[15] examined the collapse behavior of elastomeric

tubes under external pressure, by determining both the limit load and the possibility and sig-
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nificance of axial wrinkling of the compressed region of the shell prior to the limit load. The
study aimed at measuring the pressure-cross sectional area relation of microtubes made of
latex and compare the measured perfusion pressure-flow relation with the calculated relation
using Poiseuille’s law, finding good agreement between the two. A later study was conducted
by Bassez et al. [16] who developed a representative model of the behavior of flexible ducts,
such as elastic tubes or veins, based on a phenomenological approach of the inflation and
collapse of the tube. This model leads to a single “universal” analytical expression of the
tube’s response that is valid for a wide range of transmural pressures and is more accurate
than previous theoretical studies. The model was applied to both experimental data using sil-
icone tubes and physiological data obtained in vivo on human leg veins, and the results were
compared. Another approach was conducted by Zhu et al. [[17], who formulated and solved
a fully nonlinear partial differential equation governing the axisymmetric deformation of a
thick-walled circular cylindrical elastic tube subject to external pressure using a finite element
method. They found that the nonlinear results significantly depart from linear ones when ex-
ternal pressure and tube wall strain are large, with short tubes exhibiting ”corner bulging” and
longer tubes exhibiting multiple modes of deformation. Following their earlier study [[17], a
subset of the authors pursued further research on elastic tubes and presented a numerical sim-
ulation model of three-dimensional finite deformation of a thick-walled circular elastic tube,
subjected to internal or external pressure. They derived an analytical form of the Jacobian ma-
trix for fast and better numerical convergence and validated the model through comparison
with commercial software and previous works. The study’s success opened up the possibility
of applying the model to fluid-structure interaction studies and modeling complex physiologi-
cal systems [|18]. Finally, Kozlovsky et al. [[I]], conducted experiments to explore the contours
of post-buckling deformation of the cross-section of thick-wall tubes. The authors presented
a general constitutive law for describing the behavior of collapsible thin and thick-wall tubes,
including their relationship between pressure and cross-sectional area, which can be used to

predict the behavior of tubes when subjected to compressive forces.

1.2.3 Collapse in Veins and Arteries

One of the most common applications of collapsible tubes is modeling the structure of
veins. Vein collapse can occur for a variety of reasons, and when it comes to a pathological

case it could cause several problems to a living organism.
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In clinical settings, vein collapse can occur in humans, and more specific in the juxtatho-
racic zone, during cardiac catheterization [[19]. Collapse may also appear during insertion
of a central venous catheter into the internal jugular vein. During this procedure, the use of
real-time ultrasound-assisted guidance can cause collapse of the vein, due to the production
of transcutaneous pressure, resulting the failure of the puncture for catheter insertion [20].

Non-pathological cases of vein collapse are frequent for veins situated higher than the
heart and for those compressed by contractions of skeletal muscles, in order to transport blood
from the feet of upright mammals back to the heart [21]],[22]. For giraffes, in particular, the
collapsing of veins has been demonstrated to have a positive effect on controlling the flow
rate while they raise their heads [23].

Although veins can collapse because of insufficient internal pressure, arteries typically
remain unaffected by collapse due to their thicker walls and the high blood pressure within
their lumen [24]. However, under certain circumstances, arteries might collapse, such as when
the intramyocardial coronary arteries collapse while the left ventricle contracts. Additionally,
It has been proposed that the collapse of arteries can occur in areas just after a narrowing

[25],[24], and this can also be caused by blood pressure cuffs [22].

1.2.4 Collapsible tube models

Models of collapsible tubes have been created utilizing the principle of elastic instabil-
ity to establish the critical pressure at which a blood vessel collapses [24], [25] Such model,
presented by Fung [24]], demonstrated the equation for buckling in thin-walled cylindrical
tubes of linear elastic material with uniform wall thickness when transmural pressure is ap-
plied. Flaherty et al. [[14] demonstrated the post-buckling behavior of collapsible tubes. They
employed an approach using equilibrium and curvature equations, following Fung’s method-
ology, to compute the cross-sectional shapes of long, inextensible, elastic thin-walled cir-
cular tubes subjected to various transmural pressures. Also, Kresch and Noordergraaf [27]
presented a mathematical examination of how the cross-sectional configuration of a flexible
tube alters as the internal pressure fluctuates, with the intention of quantifying the collapse
event in veins.

Furthermore, several studies have demonstrated mathematical and experimental models
of collapsible tubes, considering fluid flow inside them. In 1982, both Bitbol et al. [28] and

Bertram et al. [21]] conducted research on small scale collapsible tubes. Bitbol et al. focused
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on the fluid mechanics involved in the tube’s closure motion, while Bertram et al. presented
a simple mathematical model of the unsteady flow. A later study by Rosar and Peskin [29]
offered a 3D numerical model to simulate fluid flow through a flexible, collapsible tube using

the immersed boundary method.

1.2.5 Buckle propagation

The buckling propagation of cylindrical tubes under external pressure is a very special
instability problem and a topic of significant interest in the field of offshore pipeline engineer-
ing. The phenomenon refers to the propagation of local collapse in pipelines and other tubular
structures subjected to external pressure. When a buckle starts to propagate in a pipeline, it
requires a minimum pressure that is significantly lower than the collapse pressure the pipeline
is designed for. This leads to the buckle continuing to collapse a long section of the pipeline
unless there is an appropriate arresting device or the ambient pressure does not drop below
the minimum pressure level required for propagation [30].

There are several papers that collectively provide theoretical, experimental, and numeri-
cal approaches to scrutinize buckle propagation. In more details, Mesloh et al. [31] were the
first to report on this phenomenon and in 1975 Palmer and Martin [32] developed the initial
and simplest model to estimate the propagation pressure of a pipe, leading to a closed-form
expression. According to the work of Palmer and Martin [32], the equation approximating

the buckle propagation pressure is as follows.

T £\
Pom = 00 (E) (1.1)

where o is the plastic flow stress (yield stress), t is the pipeline thickness, and R is the
pipeline radius. Another study on the propagation pressure was carried out by Kyriakides
and Babcock [33]. They conducted a quantitative experimental study on aluminum tubes and
steel alloy tubes, and presented an empirical formula that considers the influence of the strain

hardening modulus £ of the pipe, on the buckle propagation pressure.

2.25
P, = oy [10.7 +0.54 <f—;)1 (i) (1.2)

Kamalarasa and Calladine [34] in 1988 provided a simple improvement of the formula of

Palmer and Martin, for the investigation of the pressure required for propagation of a buckle
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in a submarine pipeline, and presented experimental data to support it. Buckle propagation
phenomenon in pipes under external pressure was further investigated by Liang et al. [35]
utilizing experimental, theoretical and numerical approaches. The results showed that exter-
nal pressure drops to a specific value called buckle propagation pressure once a buckle is
initiated and remains constant at this value until the pipe is entirely flattened into a shape
resembling a “dog bone”. Also, the study provided insight into the phenomenon through a

series of parametric studies using authenticated shell model and finite element model.

1.3 Collapse in metal tubes

The collapse under external pressure is a phenomenon that has been examined thoroughly
in the past. In the context of collapse under external pressure, an early experimental study has
been conducted by Kennedy and Venard [36]. The authors found that the graphical solution,
incorporating the Von Karman reduced modulus, effectively predicts the inelastic behavior of
the material (304 stainless steel) and agrees with test results of the experiment [36]. Moreover,
Bai et al [37] conducted finite element analysis on long, thick-walled metal tubes under exter-
nal pressure, considering factors such as initial ovality, residual stress, and strain-hardening,
and validated their approach using experimental data. Multiple studies [38] have revealed
that such factors (geometric imperfections, material properties, material anisotropy, residual
stresses) influence the collapse response of pipes. However, it is noted, in the study of Yeh
and Kyriakides [39], that the most important factor for the definition of the collapse pres-
sure is the initial ovality of the tube. The authors came up to this conclusion combining both
experimental and analytical approach. Their cause was to predict the collapse pressure of
relatively thick pipes D/t ~ 12-30, for the accuracy of which, it is a necessary prerequisite

to define the geometric and material parameters of the tubes [39].

1.4 Problem Statement

In the present thesis a finite element simulation of elastic cylindrical shells under exter-
nal pressure will be presented, motivated by the applications of this problem in biomedical
engineering. In more details, in Chapter 2 theory of tube collapse, buckling propagation, ex-
amined materials and initial imperfections is presented. In Chapter 3 the Modeling part is
exhibited, including the two and three dimensional models (2D and 3D) as well as the mod-

eling of the material utilized . In Chapter [ a parametric investigation for material exponents
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(based on deformation theory), mesh density and element type employed to the base case
models is conducted. In Chapter [ the results from the 2D analysis are provided. Afterwords,
in Chapter [ the outcomes of the 3D slice and long tube models are cited. Finally, the con-
clusions drawn from this Diploma Thesis alongside recommendations for future research are

noted in Chapter [ and Chapter § respectively.



Chapter 2

Theory of collapse under external
pressure

2.1 Buckling of a ring

In this section the buckling phenomenon (collapse) under external pressurisation will be
discussed. Consider a long tube subjected to compressive stress with a perfect circular geom-
etry. It is highly probable that the ring wall will reach a state of structural instability, resulting
in buckling and causing substantial deformation to the ring. As the pipe undergoes elastic de-
formation, the pressure incrementally increases in direct proportion to the displacement. Si-
multaneously, the circular cross-section contracts proportionally to the circumferential stress,
denoted by gy = %. At a critical point, that can be noticed at stage I of figure known
as the buckling pressure (P,,), the pipe experiences a uniform, axially elongated oval-shaped
deformation, with w = a cos 26 which is energetically favorable. While the tube can still
sustain the buckling pressure P, its stiffness is significantly diminished, nearly approaching
zero. Consequently, the buckling pressure represents a limiting condition or a critical state

for the pipe’s structural integrity [40]. It can be proved that the P, can be computed from the

following classical analytical solution

3

where D, is the mean diameter, ¢ is the pipe wall thickness, E is the Young’s modulus

and v is the Poisson’s ratio.In the presence of initial imperfections, such as initial ovality, the
resistance of the pipe against collapse decreases as the amplitude of imperfection increases

indicating the sensitivity of buckling pressure to initial imperfections.

9
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Figure 2.1: The variation of external pressure P with volume change dV" for a thick-walled

collapsible tube (D/t = 20) of nonlinear elastic material (Chapter 6).

2.1.1 Theoretical post-buckling

Budiansky [41] conducted a study on the initial post-buckling response of perfectly elastic

rings. Below are the analytical equations derived from this study.

P=P, (1 + EA ) (2.2)
P=P,(1+ 0 AA (2.3)
- 164, ’

where Ao is the initial area enclosed by the undeformed ring, and A is a parameter that de-
scribes the instant cross-sectional ovalization upon continuing deformation. The ovality pa-
rameter will be presented in more detail in section 2.4. Upon reaching the critical pressure,

Pcr, the ring undergoes elastic buckling.

2.2 Buckling Propagation

This section focuses in defining the propagation phenomenon and the propagation pres-
sure. As mentioned in subsection the phenomenon of buckle propagation refers to the
propagation of local collapse in tubular structures, such as tubes, subjected to external pres-
sure. In further detail, after the collapse of the pipe’s cross-section, the deformation continues

and the pressure decreases. Once the cross-section is fully collapsed, with the top and bottom
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inner surfaces in contact, the pressure stops decreasing. At this point, depicted in stage 11 of
Figure 2.1, a slight increase in pressure may be observed before the propagation begins and
the pressure reaches a constant value in stage I1I of Figure 2.1. The propagation pressure ()
is the minimum pressure needed for the propagation of a buckle. In Figure .1], the P, is rep-
resented by the extended horizontal section of the P — AV curve following the “touchdown”
point. It serves as a measure of the cylindrical shell’s strength against the phenomenon of
progressive flattering, which is determined by the material properties (yield stress) and the
diameter-over-thickness ratio. To prevent the buckling propagation in a tube, it is crucial to
ensure that the pressure remains below the value of P, otherwise, appropriate buckle arrestor

devices should be used.

As mentioned in subsection over the years there have been many attempts to define
propagation pressure in the best possible way. One of the earliest estimates was produced
by Palmer and Martin [32]. In their approach, they made an assumption that the material
was rigid-plastic and exhibited perfect plastic behavior, with no hardening. The dissipated
plastic work within the cylinder was determined by considering a ring collapse mechanism,
which served as a representation of a specific cross-section of the cylinder during buckle

propagation.

2.2.1 Maxwell line

A more accurate estimate of the propagation pressure can be derived using a simple
two-dimensional model. Chater and Hutchinson [42] provided a prediction based in the two-
dimensional P-AA diagram and the balance of energy, which was more accurate than the one
proposed by equation [1.1. According to the principle of energy balance, the internal work
(Win) must be equal to the external work (Wy). Therefore, according to the authors, the
value of buckle propagation can be determined graphically by considering a horizontal line
that divides P-AA diagram into two equal areas (Areal=Area2), above and below it re-
spectively. The numerical formula can be derived by equating the works Wi, = Wiy, leading

to:

Py=-— [ (PdA) 2.4)
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Figure 2.2: Pressure-change of Area response, Mawell Line.

2.3 Material Theory

2.3.1 Deformation Theory

Deformation theory, or total strain theory [43], is a nonlinear elasticity theoretical material
model, that under small-displacement conditions, the stress is defined by the total mechanical
strain and does not depend on the loading history. The material model, initially proposed by
Hencky (1924) [44], posits an unambiguous one-to-one correlation between total strain and
total stress, implying that each value of total strain corresponds uniquely to a specific total
stress. The one-dimensional model is based on Ramberg-Osgood relationship as described in

ABAQUS documentation:

n—1
Fe=o0+a« (M> o (2.5)

0o
where o is the stress, € is the mechanical strain, E is Young’s modulus, o is the “yield” offset,

and n is the hardening exponent for the “plastic” (nonlinear) term (n>1).

2.3.2 Hyperelastic Materials

In the context of hyperelastic materials, the behavior is described through a “’strain energy
potential” that characterizes the amount of strain energy stored per unit of reference volume.
This potential is a function of the strain at a given point in the material. Various forms of

strain energy potentials exist to model approximately incompressible isotropic elastomers.



2.4 Initial Imperfections 13

These include the Arruda-Boyce form, Marlow form, Mooney-Rivlin form, Neo-Hookean
form, Ogden form, Polynomial form, Reduced Polynomial form, Yeoh form, and Van der
Waals form.

Among these options, the reduced polynomial and Mooney-Rivlin models can be seen
as specific cases of the polynomial model. The Yeoh and neo-Hookean potentials can be
considered special cases of the reduced polynomial model. When multiple experimental tests
are available, the Ogden and Van der Waals forms tend to provide better accuracy in fitting the
experimental results. However, if limited test data are available for calibration, the Arruda-
Boyce, Van der Waals, Yeoh, or reduced polynomial forms can still yield reasonable behavior.
In cases where only one set of test data (uniaxial, equibiaxial, or planar) is available, the
Marlow form is recommended [45].

In this particular thesis, the investigation focused on modeling the material behavior with-
out access to experimental results. To address this limitation, Ogden form for simple exten-

sion was utilized [46]:

fu=D 0 ua (T = AT (2.6)

where A is the stretch or extension ratio which approximately relates with the engineering

strain (e) with the expression A = e + 1.

2.4 [Initial Imperfections

As mentioned in the section of Chapterll], there are various factors that contribute to
the collapse of a tube, with one of the most significant being the presence of initial imperfec-
tions in the form of ovality. Ovality measures the extent of a ring’s deviation from a perfectly
circular shape. This initial ovality can be mathematically represented by the following ex-

pression [47].

w,(0) = wcos(20) (2.7

where o is the amplitude of initial oval shape as shown in Figure R.3. As external pressure is

applied, it is anticipated that the amplitude will be increased.
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Figure 2.3: Initially ovalized ring.

A more general form of the oval shape of the ring’s cross-section is presented in the

following form

Dy = D + 2w cos(20) (2.8)

where Dy is the external diameter of the ellipse at polar angle 6. The value of the initial ovality
(A,) that will be applied in the 2D and 3D models is calculated from the following expression
[39]:

Dmax - Dmin

A, = Zmax — Zmin 2.
Dmax + Dmin ( 9)

where D« 1s the maximum outer diameter of the ring and D,y;, the minimum. From equation

P.8 maximum and minimum diameters can be exported as:

Dpax = D + 2w (2.10)
Dpin =D — 2w (2.11)
substituting and to .9 is obtained that
2w
A, = — 2.12
= 2.12)

where 2/D is the ring’s external radius (R), so the final expression for the initial ovality of
the ring is

(2.13)



Chapter 3

Modeling

The modeling part of 2D and 3D dimensional models consists of a numerical modeling
partand an ABAQUS modeling part. The construction and analysis of all models took place in
ABAQUS software while the post-processing part was conducted using MATLAB. For the
numerical part, 2D and 3D slice and 3D long tube models with initial imperfections were
created, with different ovalities and variations in wall thickness, using the finite element
method. For the two-dimensional models, three different cases of D /t (diameter-to-thickness
ratio) were examined (10, 20 and 40) across a range of ovality from 0.2% to 10% (0.2%, 0.5%,
0.7%, 1%, 5% and 10%). For the three-dimensional base case models, three different cases

of D/t were examined as well but with values equal to 12,20 and 30 only for 0.2% ovality.

Additionally, the application of ovality in models generated elliptical cross-sections in
the form of quadrants. Due to the double symmetry of the ring’s geometry, only a quarter
of the ring is needed for analysis and that’s exactly what was considered for all models. For
all the cases the same outer diameter (Dout) of 550mm was considered. This value refers to
very large diameter compared with the extremely small ones of elastic collapsible tubes (e.g

veins). Keeping the D/t ratio of the above values the results are also valid for small diameter

cases too. Equations .10, 2.11] and R.13| from Section .4 were used, given the outer diameter

and changing the different ovality values, in order to export the dimensions for the modeling
of the tubes. Moreover, dimensions were reduced to the mean diameter (Dm) so, for the
processing part, all the results are considered to be in the mean diameter too. In Table 3.1 the
geometric characteristics of the "perfect” five different cases of D/t that were investigated

in this thesis, are presented.

The values of the diameter-to-thickness ratio considered in this thesis were selected based

15
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on the study conducted by Marzo et al. [48]. The authors performed 3D numerical simulations
on thick-walled collapsible tubes. They noted that one of the assumptions of the Kirchhoff—
Love thin-shell theory is that the wall thickness of the tube is approximately 20 times smaller
than its radius. However, since a significant amount of experimental work focuses on thick-
walled tubes ([49], [50]), it is important to extend the analysis beyond thin-shell theory in 3D
numerical simulations. Thus, Marzo et al. investigated various cases with different thickness-
to-inner radius ratios. Specifically, they examined cases with ratios of 1/20,0.1/5, and a
thinner case with ¢/Rin = 2/20. Based on the statement of Marzo et al. the diameter-to-
thickness ratios (D /t) for this study were selected to be 10, 12, 20, 30 and 40, corresponding
to thickness-to-inner radius (¢/ Rin) values of 0.22, 0.18, 0.11, 0.07 and 0.05, respectively.
The selection of the last two cases (D /t = 30, D/t = 40) closer to the upper limit of thin-
shell theory validity was motivated by the desire to explore the behavior of the tubes near the
boundary of thin-shell theory. Therefore, this range range utilized allows for a comprehensive

analysis that encompasses both thin and thick walled tubes.

Table 3.1: Tube Dimensions of “perfect” cross-section for rings with D/t = 10, D/t = 12,
D/t =20, D/t = 30 and D/t = 40.

D/t Dout (mm) Din (mm) Dm (mm) t (mm) Rout (mm) Rin (mm) Rm (mm)

10 550 450 500 50 275 225 250

12 550 465.38 507.69 42.31 275 232.69 253.845
20 550 497.62 523.81 26.19 275 248.81 261.90
30 550 514.52 532.26 17.74 275 257.26 266.13
40 550 523.17 536.59 13.41 275 261.59 268.29

3.1 Two-dimensional models

3.1.1 Numerical modeling for 2D models

For the two-dimensional cases, three different diameter-to-thickness ratios were exam-
ined (10,20 and 40) across a range of ovality from 0.2% to 10% (0.2, 0.5, 0.7, 1, 5 and 10).
In Tables B.2, B.3 and B.4 are listed the dimensions that were utilized for the modeling of the

tubes with diameter-to-thickness ratio 10, 20 and 40 respectively.
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Table 3.2: Geometric characteristics of tubes with D/t = 10 when initial ovalities of

0.2%, 0.5%, 0.7%, 1%, 5% and 10% are applied.

D/t=10

A (%) R (mm) R (mm) R™ (mm) R (mm)

'min ‘max 'min 'max

0.2 274.50 275.50 224.50 225.50

0.7 273.25 276.75 223.25 226.75
5.0 262.50 287.50 212.50 237.50
0.5 273.75 276.25 223.75 226.25
1.0 272.50 277.50 222.50 227.50
10.00 250.00 300.00 200.00 250.00
Table 3.3: Geometric characteristics of tubes with D/t = 20 when initial ovalities of

0.2%,0.5%, 0.7%, 1%, 5% and 10% are applied.

D/t=20

A (%) R (mm) R (mm) R

'min ‘max 'min

(mm) R (mm)

max

0.2 274.48 275.52 248.29 249.33

0.7 273.17 276.83 246.98 250.64
5.0 261.90 288.10 235.71 261.90
0.5 273.69 276.31 247.50 250.12
1.0 272.38 277.62 246.19 251.43
10.0 248.81 301.19 222.62 275.00
Table 3.4: Geometric characteristics of tubes with D/t = 40 when initial ovalities of

0.2%, 0.5%, 0.7%, 1%, 5% and 10% are applied.

D/t=40

A (%) R (mm) R (mm) R

'min ‘max ‘min (mm) Rin (mm)

max

0.2 274.46 275.54 261.05 262.12
0.7 273.12 276.88 259.71 263.46
5.0 261.59 288.41 248.17 275.00
0.5 273.66 276.34 260.24 262.93

1.0 272.32 277.68 258.90 264.27
10.0 248.17 301.83 234.76 288.41
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3.1.2 ABAQUS modeling for 2D models

The goal of this thesis is to simulate the behaviour of a tube under the application of exter-
nal pressure. ABAQUS Standard Software was utilized, in order to create two-dimensional
ring models with initial imperfection in the form of ovality, and MATLAB was used for the
post-processing procedure. The model consists of two parts, a two-dimensional deformable
body (part 1. in Figure B.I]) that represents the elliptical quadrant and a two-dimensional
analytical rigid body (part 2. in Figure B.1)) that is essential for the restriction of the ring’s
movement. For the modeling of the deformable part a very dense mesh was employed in all
cases. More specifically, 100 elements were applied in the circumferential direction for both
D/t = 10 and D/t = 20 cases, and 130 elements for the D/t = 40. In the direction of the
thickness, 20, 10 and 7 elements were considered for the D /¢ ratios 10, 20 and 40 respec-
tively. Therefore, the three models were discretized by 2000, 1000 and 910 total number of
elements.The descretization for all ring models was made with "CPE4R” elements, which
stands for four-node, reduced-integration, plane-strain elements.

In addition the boundary conditions that were applied to the quadrant elliptic models
were "YSYMM?” at the bottom side and ”XSYMM” at the top side and ’JENCASTRE” at a
reference point "RP” of the rigid body. Analytically, ”YSYMM” ensured the restriction of
the quadrant’s displacement in the y direction and it’s rotation about x and z axes, while the
”XSYMM?” restricted the movement in x direction and the rotation about y and z axes. Ad-
ditionally, when the quadrant starts to buckle, the movement of it’s top side in the negative y
axis is limited by the two-dimensional analytical rigid surface, as mentioned in the beginning
of this paragraph. Thus, in order to restrict the displacements and the rotations of the rigid
body, it is necessary to include the "ENCASTRE” boundary condition at an already defined
«Reference Point (RP)» of it.

Subsequently, the contact interaction between the two parts had to be defined. For that
purpose, the “’surface-to-surface” method was utilized, with the master surface” to stand for
the analytical rigid surface and the ”slave surface” for the inner surface of the ring. As for
the interaction properties of the contact, in order to avoid the translation of the ring through
the rigid body, "Tangential Behavior” with Penalty” formulation, "Isotropic” directionality
and friction coefficient equal to zero were applied. Also, "Normal Behavior” was added to

the contact properties, and the pressure-overclosure was selected to be ”Hard Contact”.

Afterwards, a ”Step” needed to be included with the purpose of defining the method
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that the analysis of the ring will follow. Static,Ricks” method was selected so that the pre-
buckling response, the collapse pressure, and the unstable post-buckling response could be
obtained. As for the incrementation of the method, estimated total arc length was defined
equal to one and the maximum number of increments and the arc length increment depended
on each case and changed continuously in order to obtain the desirable outcome of the ring’s
collapse. Finally, the external pressure was applied on the outer surface of the quadrant, with

”Uniform” distribution and magnitude equivalent to 0.003.

Figure 3.1: The two-dimensional slice model of D/t = 20 with 100 elements in the circum-

ferential direction and 10 elements in the direction of thickness.

3.2 Three-dimensional base case models

3.2.1 Numerical modeling for 3D slice and 3D long tube models

For the construction of three-dimensional slice and long tube models with D/t = 12, D/t =
20 and D/t = 30 were considered with an imperfection of initial ovality 0.2%. For the three-
dimensional cases, the longitudinal length was deemed to be forty times the diameter of the
tube (L = 40D). The geometric characteristics of them without the application of initial

ovality are presented in Table B.3 and without the initial ovality in Table B.1].
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Table 3.5: Geometric characteristics of tubes with D/t = 12, D/t = 20 and D/t = 30 when

initial ovality equal to 0.2% is applied.

A=02% | R (mm) R (mm) RD (mm) R (mm)
D/t=12 274.49 275.51 232.18 233.20
D/t=20 274.48 275.52 248.29 249.33
D/t=30 274.47 275.53 256.73 257.79

3.2.2 ABAQUS modeling for 3D slice models

Similarly to the two-dimensional, three-dimensional models also consists of two parts, a
deformable body (part 1. in Figure B.2) and an analytical rigid body (part 2. in Figure 3.2)
except that in this case they are expanding in z direction while serving the same purpose.
Commencing with the meshing aspect of ABAQUS modeling, the mesh for the 3D slice
models consisted of 25 elements in the circumferential direction, 3 elements in the thickness
direction, and 1 element in the longitudinal direction. This discretization approach resulted
in a total of 75 elements. The applied mesh can be obtained in Figure B.2. Additionally, for
all the models, a longitudinal length of L=40mm was used as a consistent parameter. The
boundary conditions applied to the slice models were "XSYMM?” at the top side of the model
along z direction to restrict the displacements x direction and node rotations about the y and z
axes, ’YSYMM” to the boundary nodes of the bottom side to constrain the displacements in y
direction and rotations about the x and z axes. Also, ”ZZSYMM” boundary condition was im-
plemented at the cross sections of planes Z=0 and Z=40mm in order to avoid displacements in
z direction and rotations about the x and y axes. Last boundary condition was "ENCASTRE”
that was applied in a ”Reference Point” (RP) that was placed in the analytical rigid surface
in order to restrict it’s displacements and rotations. The analysis follows a similar approach
as the one explained in Section 3.1.2, utilizing a two-step incremental process. The collapse
pressure is computed incrementally using the Riks’ continuation algorithm in the second step

of the analysis.
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Figure 3.2: The three-dimensional slice model of D/t = 20 used in the finite element anal-

yses of D/t = 12 and D/t = 30 also.

3.2.3 ABAQUS modeling of 3D long tube models

ABAQUS software was utilized for the modeling of three-dimensional models, similar
to its application in two-dimensional counterparts and the results extracted were processed in
MATLAB. The three-dimensional long tube models consisted of two parts a 3D deformable
body (part 1. in Figure B.3)) and an analytical rigid body (part 2. in Figure B.3)) just like the
three-dimensional slice case. In more details, the deformable body, considering that its a very
long pipe that in a specific spot has an imperfection of elliptical shape, was modeled with
one “’perfect” cross-section in the one side and one “imperfect” with ovality in the other. The
ovality applied was 0.2% for each model and the cases examined had diameter to thickness
ratio 12,20 and 30. The longitudinal length chosen was L=40D for every case. Also, the
three boundary conditions of the two-dimensional models are valid for all three-dimensional
models extended in the 3-dimensional space, i.¢. in the z direction. To the boundary conditions

are also considered the symmetry ”ZSYMM?”, applied to the ovalized side of the pipe, and
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symmetry "ENCASTRE” to the opposite-with “’perfect” cross section-side. In more details
the ”ZSYMM?” constrained the displacements in the z axis and zero rotation about y and
z axes, while ’ENCASTRE” guaranteed that the “perfect” side of the ring would remain
undeformed. In addition, for the meshing part of the modeling, all three-dimensional cases
of D/t consisted 25 elements in the circumferential and 3 elements in the through-thickness
direction. As for the axial direction, 250 elements were applied, so the models are descritized
by 18750 elements totally. The discretization for the models was performed using "C3D20R”
elements, as determined through the investigation of 3D slice analysis discussed in Section
K.2.2. Also, the contact interaction, the interaction properties, the additional Step” and the
definition of external pressure are implemented exactly as the ones stated in subsection

for two-dimensional models.

Figure 3.3: The three-dimensional long tube model of length L = 40D and D/t = 20 used
in the finite element analyses of pipes with D/t = 12 and D/t = 30 also.

3.3 Material modeling

The material considered for the modeling part in ABAQUS interface was deformation
theory. Deformation theory is an idealized material model that represents nonlinear elastic
response and the stress-strain curve is given by equation R.5. The aim of this thesis was to
develop models capable of simulating biological tubular structures found in living organisms,
such as veins, arteries, upper airways, and other similar biological tubular systems. Based on
existing literature, it was determined that collapsible tubes could be effectively represented

using hyperelastic materials like silicone rubber [[l], considering the potential for significant
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displacements and strains in the tube walls. The objective was to use a material that exhibits
small deviations from the linear elastic stress-strain curve for a logarithmic strain range of
10.1 — 36.41.4% and stress range 128-652 kPa. These ranges were exported for the condition
of contact when the collapse occurs for 3D slice models that are presented in Chapterd. In
these ranges, both hyperelastic and deformation theory material model, for specific values
of exponent, fulfilled the requirement of small deviations. Also, deformation theory in small
stress-strain ranges can be considered as the first part of a hyper-elastic material. However,
after conducting research on Ogden hyperelastic model, it was concluded that local instabil-

ities didn’t appear, but rather resulted in uniform collapse.

So, in order to investigate the buckling propagation phenomenon, deformation theory was
adopted as theoretical nonlinear elastic material model because local instabilities occur in this
case. The values of parameters utilized in this thesis encompassed a Young’s Modulus of 3.43
MPa, a Poisson’s ratio of 0.4 [|1], a proportional limit stress of 0.004, and a proportional limit
offset of 0.00631, spanning across a range of exponents (n) selected as 2, 2.4, 2.6, 2.8 and

2.9. The selection of these exponents is discussed in Section @.1| analytically.
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Figure 3.4: Stress-Strain figure with material exponents of Deformation theory utilized for

the base case models.
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The Ogden formula utilized for this investigation was extracted from ” The physics of rub-
ber elasticity ”” of Treloar [46] and its described in Section 2.3.2. The personalized parameters
for the Ogden formula were chosen to be forn=4 : a; =2,y = 1.2, a0 =5, o = 0.05
,a3 = 3, uzs = —0.1, ay = =5, puy = 0 in order the stress-strain curve to have similar
behavior with the picked material exponents of deformation theory model material for the
examined range. For a wider range it is observed that Ogden formula’s behavior changes, as
shown in Figure B.6. The stress-strain of Ogden formula compared with deformation theory

exponents is presented in Figure B.5.



Chapter 4

Parametric Investigation

This chapter demonstrates the examination that was conducted for the decision-making
process, regarding the production of the base case models that are analytically presented
in Section B.2. Firstly, a parametric investigation on the material exponents of deformation
theory model material is exhibited. Subsequently, four element types will be examined in
order to ascertain which of is more accurate.Finally, two meshes with different densities will
be tested with the purpose of determining if the difference in density affects the propagation

pressure.

4.1 Material exponents

A parametric study has been conducted in order to investigate the effect of exponent(n) in
the parameters of deformation theory model material. In more details, utilizing the Ramberg-
Osgood relationship, described in Section .3.1], eight different values of exponent (2, 2.4,
2.6, 2.8, 2.9, 3, 3.1, 3.5) were tested and compared with Linear Elastic curve. The results
are presented in Figure {41, illustrating that as the material exponent decreases, the tangent
modulus undergoes an increase. This leads to the stress-strain response approaching the linear

elastic curve and exhibiting similar behavior.

Additionaly, the eight different values of exponent were tested for the three-dimensional
slice model with diameter-over-thickness ratio 12, the constuction of which was outlined
in section B.2.1|. The response obtained by varying the exponents, while keeping the other

parameters of deformation theory constant, is presented in the following Figures.

26
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Figure 4.1: Stress-Strain figure with the material exponents of Deformation theory that were

investigated.
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0.2% and material exponent n = 2.
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Figure 4.3: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 2.4.
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Figure 4.4: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 2.6.
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Figure 4.5: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 2.8.
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0.2% and material exponent n = 2.9.
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Figure 4.7: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 3.1.
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From the results of the material exponents above it is concluded that exponent with value
n = 2 is the one exhibiting smaller deviations from Linear Elastic curve. However,from ana-
lyzing the response derived from the 3D slice analysis for D/t=12 in Figure §.2, it is observed
that the post-buckling behavior is significant enough so that the propagation pressure cannot
be predicted using the Maxwell line. Additionally, in the analysis of the same model and
same case (D/t=12, n=2) in the 3D long tube, as discussed in Chapter [, it is noted that the
propagation pressure can be marginally derived. Therefore, for the purpose of investigating
deformation theory material exponents in this thesis and distinguish possible limit cases, val-
ues equal to 2, 2.4, 2.6, 2.8 and 2.9 will be examined, while excluding the 3, 3.1 and 3.5 cases

because of their big deviation from linear-elastic case exhibited in Figure [.1].

4.2 Element Type Investigation

In this section the examination of the element typed used in the base case models (D /t =
12, D/t = 20, D/t = 30) presented in Chapter Bl is exhibited. Specifically, four element
types were employed: C3D8, C3D8R, C3D20R, and SC8R. The C3D8 elements represent
8-node linear brick elements of full integration, C3D8R denotes 8-node linear brick elements
of reduced integration, C3D20R refers to 20-node quadratic brick elements with reduced
integration, and SC8R represents 8-node quadrilateral in-plane general-purpose continuum

shell elements with reduced integration.
4.2.1 Three-dimensional slice modeling

For the investigation an elastic three-dimensional slice of D/t = 40 was considered with
initial ovality 0.2%. The geometric characteristics of slices without the application of ini-
tial ovality are presented in Table [.1|, and without the initial ovality in Table B.1|. Also, the
material of the models was assumed to be elastic, characterized by the following parame-
ters: Young’s Modulus (E) of 3.43 MPa and Poisson’s ratio (v) of 0.4. The remainder of the
ABAQUS modeling process, regarding the boundary conditions, the analysis and the creation
of the ”Steps™ follows the same procedures outlined in Section 3.2.2.

Table 4.1: Geometric characteristics of three-dimensional slices with D/t = 40 when initial

ovality is applied.

A (%) R (mm) R (mm) RI™ (mm) RP (mm)

'min 'max 'min 'max

0.20 274.46 275.54 261.05 262.12
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4.2.2 Results of element investigation

For the discretization with eight-node biquadratic plane strain finite elements of reduced
and full integration, which are denoted in ABAQUS as C3D8 and C3D8R, the correspond-
ing pressure-change of area responses are shown in Figures §.9 and respectively. Fur-
thermore, the slopes of the post-buckling region for the responses of SC8R, C3D20R can
be obtained in Figures and respectively. The theoretical post-buckling analytical
curve 2.3 is included in figures for comparison with the plots derived from the numerical
results. For the construction of all figures numerical results were extracted from ABAQUS

and processed in MATLAB.

Based on the responses of the following figures, it can be concluded that the C3D20R
element type performs better than S3D§, C3D8R, and SC8R element types. This conclusion
is drawn from observing that the slope of the post-buckling region of the C3D20R element
type is closer to the theoretical post-buckling curve compared to the other cases. Therefore,

C3D20R element type was utilized for the construction of the base case models.
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Figure 4.9: Pressure-change of area response of C3DS8 finite element type for the elastic ring

of D/t = 40 with initial ovality 0.2% compared with the theoretical post-buckling curve.
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Figure 4.10: Pressure-change of area response of C3D8R finite element type for the elastic

ring of D/t = 40 with initial ovality 0.2% compared with the theoretical post-buckling curve.
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Figure 4.11: Pressure-change of area response of SC8R finite element type for the elastic ring

of D/t = 40 with initial ovality 0.2% compared with the theoretical post-buckling curve.
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Figure 4.12: Pressure-Pressure-change of area response of C3D20R finite element type for
the elastic ring of D/t = 40 with initial ovality 0.2% compared with the theoretical post-

buckling curve.

4.3 Mesh Investigation
4.3.1 Modeling

In this section, the focus is on examining and discussing the mesh density for the base
case models. A three-dimensional slice model was chosen for this examination to obtain
quicker and more convenient results. The analysis in this section utilizes a model discussed
in Section with diameter-over-thickness ratio of 30 and material as described in .3 with
exponent value of n = 2.6, Young Modulus of 3.43 MPa, Poisson’s ratio of 0.4, yield stress
of 0.004, and yield offset of 0.00631. Based on the findings from the previous section, it was
determined that the C3D20R element type is the most suitable and accurate choice. So for
the investigation regarding the mesh density, the element type remains constant, i.e. C3D20R.
However, two different cases were studied, each with a varying number of elements in the
hoop and width directions. In more details, for the first case, 25 elements were considered
for the hoop direction and 3 for the thickness direction. For the second case, a denser mesh

was employed, consisting of 40 elements in the circumferential direction and 5 elements by

thickness.
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4.3.2 Results of mesh density investigation

The response of the two different cases of mesh density that were investigated is visu-
ally presented in the following figures. In order to perform a comparison between them, the
estimation of propagation pressure with Maxwell line, as described in Section R.2.1], was

utilized.

From the results of the mesh density investigation in can be concluded that both cases
work correctly, with the results in the prediction of propagation pressure to be same for both
cases (Figures and §.14). For validation of this conclusion, Figure which combines
the two responses has been conducted, where it can be obtained that the curves coincide.
Consequently, for the construction of the base case models, a mesh density of 25 elements
in the circumferential direction and 3 elements in the thickness direction was chosen. This

selection was made for the sake of convenience and speed in analyzing the 3D models.
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Figure 4.13: Pressure-change of area response for the slice with D/t = 30, initial ovality
0.2%, exponent n = 2.6 and mesh consisting of 40 elements in the circumferential and 5

elements in thickness direction.
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Figure 4.14: Pressure-change of area response for the slice with D/t = 30, initial ovality
0.2%, exponent n = 2.6 and mesh consisting of 25 elements in the circumferential and 3

elements in thickness direction.
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Chapter 5

Results for 2D elastic models

In this Chapter the results for the 2D models described in section will be presented.
The responses of every geometry examined, namely D/t = 10, D/t = 20 and D/t = 40 are
depicted in Figures B.1], and B.3 respectively. The sensitivity of each tube’s response is
examined in terms of the initial ovalities embed to the system. These imperfections encap-
sulate the geometry’s deviation from the perfect circle. For every case the plot includes the
response of the material for initial ovalities of 0.2%, 0.5%, 0.7%, 1%, 5% and 10%, alongside
the response for a perfect cylindrical tube described from Budiansky [41]. The axis have been
non dimensionalized based on the value for buckling pressure (P, R.1)) and the initial value

for the volume enclosed by the tube. An extensive analysis of the results is being conducted

in Chapter .
1.2
1 —
0.8
[3)
Q06
o
ovality 0.2%
0.4 ovality 0.5% |
ovality 0.7%
ovality 1%
ovality 5%
02r ovality 10% |
___ Theoretical
Post-Buckling
O 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

da/ao

Figure 5.1: Responses of ovalities 0.2%, 0.5%, 0.7%, 1%, 5% and 10% for D/t = 10 com-

pared with Theoretical Post-Buckling curve.
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Figure 5.2: Responses of ovalities 0.2%, 0.5%, 0.7%, 1%, 5% and 10% for D/t = 20 com-

pared with Theoretical Post-Buckling curve.
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Figure 5.3: Responses of ovalities 0.2%, 0.5%, 0.7%, 1%, 5% and 10% for D/t = 40 com-

pared with Theoretical Post-Buckling curve.



Chapter 6

Results for 3D Base Case Models

In this Chapter the results from the 3D slices and 3D long tube base case models that are
described in section 3.2 will be presented. In more details, the estimated propagation pressure
will be imported from the three-dimensional slices and long tube models for the three differ-
ent cases of diameter-over-thickness ratio (D /t = 12, D/t = 20, D/t = 30) when ovality of
0.2% 1s implemented. Subsequently, a comparative assessment will be conducted, juxtapos-
ing the propagation pressure estimates derived from 3D long tubes with those obtained from
the slice-based approach. Also, contact conditions of propagation for 3D long tube models

will be exhibited.

6.1 Three-dimensional slice results

Based on the numerical modeling of 3D slice models that was presented in section 3.2.1],
analysis with ABAQUS numerical framework (Section B.2.2), has been conducted in order

to obtain the response and extract an estimation for propagation pressure of each case.

6.1.1 Estimation of propagation pressure for 3D slice models

For the estimation of the propagation pressure in three-dimensional slice models the the-
ory of Maxwell line, that was described analytically in section .2.1], was utilized. The results
for the case of diameter-over-thickness ratio equal to 12 with material exponents 2.4, 2.6, 2.8
and 2.9 have already presented in Section [4.1, were an examination on the exponents was
conducted in order to decide what values will be more suitable for utilizing for the base cases
of this thesis. Thus, in the following figures the results for the other two cases with D/t = 20
and D/t = 30 will be exhibited.
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Figure 6.1: Pressure-change of area response for slice with D/t = 20, initial ovality 0.2%

and material exponent n = 2.4.
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Figure 6.2: Pressure-change of area response for slice with D/t = 20, initial ovality 0.2%

and material exponent n = 2.6.
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Figure 6.3: Pressure-change of area response for slice with D/t = 20, initial ovality 0.2%

and material exponent n = 2.8.
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Figure 6.4: Pressure-change of area response for slice with D/t = 20, initial ovality 0.2%

and material exponent n = 2.9.
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Figure 6.5: Pressure-change of area response for slice with D/t = 30, initial ovality 0.2%

and material exponent n = 2.4.
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Figure 6.6: Pressure-change of area response for slice with D/t = 30, initial ovality 0.2%

and material exponent n = 2.6.
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Figure 6.7: Pressure-change of area response for slice with D/t = 30, initial ovality 0.2%

and material exponent n = 2.8.
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Figure 6.8: Pressure-change of area response for slice with D/t = 30, initial ovality 0.2%

and material exponent n = 2.9.
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The estimations of propagation pressure (Pp) for the base case 3D slice models, using a
constant mesh (h = 25,¢ = 5,1 = 1) and element type C3D20R, across different material
exponents are summarized in Table 6.1|. Responses for each case of D/t with different material
exponents, presented above, have been merged in Figures .9, and for cases D/t =
12, D/t = 20 and D/t = 30 respectively.

Table 6.1: Propagation Pressure Values (Pp) for Different D/t Ratios and Material Exponent

values.
PpkPa) n=24 n=26 n=28 n=29
D/t=12 3.23 2.70 2.27 2.09
D/t=20 0.82 0.72 0.62 0.58
D/t=30 0.27 0.24 0.22 0.21
2 2.4 2.6 2.8 2.9

0 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

da/ao

Figure 6.9: Pressure-change of area responses for slice models with D/t = 12 and initial

ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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Figure 6.10: Pressure-change of area responses for slice models with D/t = 20 and initial

ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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Figure 6.11: Pressure-change of area responses for slice models with D/t = 30 and initial

ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.



46 Chapter 6. Results for 3D Base Case Models

6.1.2 Mises Stresses and Logarithmic Strains

From the analyses of the base case three-dimensional slice models Mises Stress and log-
arithmic strain have also been exported for the condition of contact when the collapse occurs.

The findings of these peak values are revealed in the Table 6.2 that follows.

Table 6.2: Comparison of Mises Stress and Logarithmic Strain for Different D /¢ Ratios and

Material Exponents for the condition of collapse in 3D slice models.

D/t=12 D/t=20 D/t=30
Exponent

(n) Mises [kPa] log strain [%] | Mises [kPa] log strain [%] | Mises [kPa] log strain [%]
2 652 26.4 407 14.7 293 10.1

2.4 361 ] 32.57 259 | 17.11 216 | 12.51

2.6 276 | 36.11 206 | 19.31 177 | 1391

2.8 216 | 3951 167 | 21.6 1 146 | 1561
2.9 193 | 4141 143 | 199 | 128 | 149 |

6.2 Three-dimensional long tubes results

In this section, the Pressure-Change of area responses from the base case three-dimensional
long tube models, as discussed in Section 3.2.3, will be presented. Additionally, estimations

for the propagation pressure of each case will be provided.

6.2.1 Estimation for propagation pressure of 3D long tube base case

models

For the approximation of propagation pressure in three-dimensional long tube models the
theory presented in section 2.2 was utilized. Particularly, in Figure 2.1 it can be observed that
pressure reaches a constant value in stage III which determines propagation pressure. Figures
- present the responses for D/t = 12, D/t = 20, and D/t = 30 across a range
of material exponent values 2.4,2.6,2.8, and 2.9. The configuration stages from the three-
dimensional collapse (Stage I) until the propagation reaches the end where boundary condi-
tions are applied (Stage V) are extracted from the ODB file which resulted from ABAQUS
analysis. These stages, for the cases with D/t = 20,n = 2.6 and D/t = 30,n = 2 are

illustrated in Figures and respectively.
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Figure 6.12: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.
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Figure 6.13: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.4,
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Figure 6.14: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.6.
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Figure 6.15: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.8,
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Figure 6.16: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.9.
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Figure 6.17: Pressure-change of volume response for tube with D/t = 20, initial ovality

0.2% and material exponent n = 2.
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Figure 6.18: Pressure-change of volume response for tube with D/t = 20, initial ovality

0.2% and material exponent n = 2.4.
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Figure 6.19: Pressure-change of volume response for tube with D/t = 20, initial ovality

0.2% and material exponent n = 2.6.
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Figure 6.20: Pressure-change of volume response fortube with D/t = 20, initial ovality

0.2% and material exponent n = 2.8.
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Figure 6.21: Pressure-change of volume response for tube with D/t = 20, initial ovality

0.2% and material exponent n = 2.9.
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Figure 6.22: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.
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Figure 6.23: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.4,
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Figure 6.24: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.6 .
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Figure 6.25: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.8,
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Figure 6.26: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.9.



6.2.1 Estimation for propagation pressure of 3D long tube base case models 55

11

111

IV

Figure 6.27: The numerical simulations of the sequence of buckle propagation phenomenon
for the corresponding (1)-(5) stages of pressure-change in volume response (D /t = 20,n =

2.6).
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Figure 6.28: The numerical simulations of the sequence of buckle propagation phenomenon
for the corresponding (1)-(5) stages of pressure-change in volume response (D /t = 30,n =

2).
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The estimations of propagation pressure (Pp) for the base case 3D long tube models,
using a constant mesh (h = 25, = 5,1 = 250) and element type C3D20R, across different

material exponents are summarized in Table .3. Responses for each case of D/t with different

material exponents, presented above, have been merged in Figures .29, 6.3( and .31 for

cases D/t =12, D/t = 20 and D/t = 30 respectively.

Table 6.3: Propagation Pressure Values (Pp) for Different D/t Ratios and n Exponents.

PpkPa) n=2 n=24 n=26 n=28 n=2.9
D/t=12 4.30 3.25 2.70 2.26 2.08
D/t=20 0.97 0.82 0.72 0.62 0.58
D/t=30 - 0.27 0.24 0.22 0.21

2 2.4 2.6 2.8 2.9

0 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

dVv/Vo

Figure 6.29: Pressure-change of volume responses for 3D long tube models with D/t = 12

and initial ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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Figure 6.30: Pressure-change of volume responses for 3D long tube models with D/t = 20

and initial ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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Figure 6.31: Pressure-change of volume responses for 3D long tube models with D/t = 30

and initial ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.



6.2.2 Comparison results of C3D20R and SCSR Element types 59

6.2.2 Comparison results of C3D20R and SC8R Element types

Chapter B of the thesis involved an examination of the element type utilized for the base
case models. The investigation revealed that the element types C3D20R and SC8R are the
most appropriate for the base case models in this thesis with C3D20R type the final option.
In order to facilitate comparison, a model with a diameter-to-thickness ratio of 12, similar
to the base case model, but employing the SC8R element type was created. This model was
then evaluated for material exponents of 2.4, 2.6, 2.8 and 2.9. The results of the analysis are
exhibited in the following Figures. Consequently, the estimations of propagation pressure and
contact conditions of propagation, along with the corresponding results that came up from

the analysis of the base case model (Section [6.2.1)), are summarized in the Table [5.4.

Table 6.4: Comparison of Contact Conditions and Propagation Pressure (Pp) for Different

D/t Ratios and Element Types

C3D20R SC8R
D/t=12

Contact Pp [Pa] | Contact Pp [Pa]

n=2.4 No 3245.98 No 2898.64
n=2.6 Yes 2701.07 Yes 2440.43
n=2.8 Yes 2262.00 Yes 2059.94
n=2.9 Yes 2080.56 Yes 1898.36

Table 6.5: Contact Conditions for Different D/t Ratios and Material Exponents

Contact | D/t=12 D/t=20 D/t=30

n=2 No No No
n=2.4 No No No
n=2.6 Yes No No

n=2.8 Yes Yes No
n=2.9 Yes Yes Yes
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Figure 6.32: Pressure-change of volume response for the tube with D/t = 12, initial ovality

0.2%, SC8R elements and material exponent n = 2.4.
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Figure 6.33: Pressure-change of volume response for the tube with D/t = 12, initial ovality

0.2%, SC8R elements and material exponent n = 2.6.
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Figure 6.34: Pressure-change of volume response for the tube with D/t = 12, initial ovality

0.2%, SC8R elements and material exponent n = 2.8.
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Figure 6.35: Pressure-change of volume response for the tube with D/t = 12, initial ovality

0.2%, SC8R elements and material exponent n = 2.9.
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6.2.3 Contact conditions

For the three-dimensional long tube base case models an investigation on the contact
conditions of propagation has been performed. In particular, in some of the long tubes studied,
collapse and propagation were observed to occur without contact. The results are displayed

in Table b.3.

6.3 Summarized results for 3D slice and long tube models

For comparison causes between the three-dimensional slice models and three-dimensional
long tube models Tables 6.6, 6.7 and 6.8, for D/t equal to 12,20 and 30 respectively, were
constructed. The Tables presented in this section provide a summary of the estimated prop-
agation pressure, in Pa units, and contact conditions for each case, excluding the case with
a material exponent of 2. The reason for excluding this specific case will be discussed in
Chapter []. Also in the following Tables a ”diff” value is being calculated which determines
a percentage of the difference between the estimated propagation pressure of 3D slice and
long tube models and its calculated from the equation:

PZSBD) B Igslice)

P]ESHCG)

Diff(%) = x 100

Table 6.6: Comparison of 3D slices and long tubes propagation pressure values (Pp) for

D/t = 12 across a range of material exponent values.

D/t=12

Pp (Pa) n=2.4 n=2.6 n=2.8 n=2.9

slice 3226.57 2699.34 2267.54 2085.48

3D 324598 2701.07 2262.00 2080.56
Diff % 0.60 0.06 | 0.24 1 0.24
Contact No Yes Yes Yes
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Table 6.7: Comparison of 3D slices and long tubes propagation pressure values (Pp) for

D/t = 20 across a range of material exponent values.

D/t=20
Pp (Pa) n=2.4 n=2.6 n=2.8 n=29
slice 818.20 716.42 619.00 575.95
3D 824.85 720.29 620.65 577.34
Diff % 0.81 054 027] 024]
Contact No No Yes Yes

Table 6.8: Comparison of 3D slices and long tubes propagation pressure Values (Pp) for

different D/t = 30 ratio across a range of material exponent values.

D/t=30

Pp (Pa)

n=2.4

n=2.6

n=2.8

n=2.9

slice
3D
Diff %

Contact

269.09 245.00 218.81
0.16 |
No

0.34 |
No

0.83
No

266.88 244.16 218.46 205.82

206.09
0.13 |
Yes




Chapter 7

Conclusions and Discussion

The focus of this thesis revolves around the investigation of collapse and buckle propaga-
tion phenomena in collapsible tubes for biomedical applications. The numerical framework of
ABAQUS was employed to analyze two-dimensional elastic models and three-dimensional
slice and long tube models as base cases, aiming to understand their behavior under external
pressure. MATLAB was used for data processing and analysis. In this section, the conclusions
derived from this study will be exhibited. Starting with the conclusions for two-dimensional
elastic models, and subsequently with the conclusions from the analysis of three-dimensional
slice models and three-dimensional long tube models. Finally, a comparison between the 3D

slice and long tube models will be presented.

7.1 Conclusions for 2D models

In Chapter [ are presented the responses derived from the analysis of the two-dimensional
elastic models. Figures f.1], and B.3 illustrate the impact of initial ovality on the pre-
buckling and post-buckling behaviors of cases with D/t = 10, D/t = 20, and D/t = 40
respectively, when various initial ovalities are applied. The plots also feature the analytical
post-buckling curve R.3 for the ideal ring case. The conclusion that can be exported from
these figures is that, as the initial imperfection value increases, the deviation of the collapse
pressure from curve of the ideal case also increases leading to the softening of the ring and

collapsing at lower pressures.

7.2 Conclusions for 3D slice models

In Chapter [ an analytical study on three-dimensional slice models is presented. The

study involved the construction of three slice models with different diameter-to-thickness

64
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ratios (12, 20, 30), and these models were subjected to analysis using various material expo-
nents (2,2.4,2.6,2.8,2.9). Moving forward, section presents the results obtained from
the analysis of these models. The responses for all cases were monitored until the tube walls
made contact. The analysis led to the estimation of the propagation pressure for every case of
material exponent, except n = 2, and D /t, which is summarized in Table p.1|. From these re-
sults it can be obtained that for the same diameter-to-thickness ratio the propagation pressure
decreases as the material exponent increases from 2.4 to 2.9. This can also be derived from
the Figures 6.9, and which shows the P-da responses for the 5 different cases of
material exponents with D /¢ equal to 12, 20 and 30 respectively. However, in Section .1, it
was noted that as the material exponent decreases, the tangent modulus increases, resulting in
the stress-strain response approaching the linear elastic curve and exhibiting similar behav-
ior. So, for the case with material exponent n = 2, there is no pressure maximum observed
because the post-buckling behavior of its response is very high making the application of the
Maxwell line method infeasible, and thus the estimation of the propagation pressure impos-
sible in three-dimensional slice models. Furthermore, for the rest material exponents, it can
be observed that as the diameter-to-thickness ratio (D /t) increases, the propagation pressure

tends to decrease for the same material exponent.

7.3 Conclusions for 3D long tube models

The study of three-dimensional long tube models was presented analytically in Chapter J§
where for the three cases of diameter-to-thickness ratios (12, 20, 30) , five different material
exponents were applied (2,2.4,2.6,2.8,2.9). The results from these models analyses were
exhibited in Chapter 3 and involved estimation for the propagation pressure of each case and

contact conditions of propagation.

In the previous section, it was noted that the estimation of propagation pressure for a ma-
terial exponent of n = 2 was not feasible in the analysis of three-dimensional slice models.
Although, propagation pressure can be derived from the response of three-dimensional long

tube models as described in Section 2.2 but only for the cases with D/t = 12 and D/t = 20.

In Figures 6.29, 6.30 and 6.3 1] the responses of base case models with D/t equal to 12, 20

and 30 and material exponents 2, 2.4, 2.6, 2.8, followed until propagation reaches the end
where boundary condition applied, are presented. These figures reveal a similar trend to that

of the 3D slice models. Regarding the case with diameter-to-thickness ration equal to 30 and
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n=2, Figure reveals that the pressure does not exhibit a plateau but instead follows an
increasing rate until propagation reaches the end of the tube length. This behavior indicates
the presence of uniform collapse rather than the development of propagating buckles. From
these findings it is derived that this case can be characterized as limit case. The above con-
clusions are also supported by the configuration of the model analysis displayed in Figure
6.28, which illustrates that a uniform collapse appears (Stage II) rather than the formation of
propagating buckles. In this case, the contact condition during propagation is characterized
as contactless which can be observed at ”Stage I1” till ”Stage IV”. However, in ”Stage V,”
when the propagation reaches the end of the tube length, the boundary conditions start to
influence the propagation behavior. As a result, there is a sudden contact between the two
walls at this stage (Stage IV). Furthermore, it is noteworthy that for the cases with D/t = 12
and D/t = 20, the observed contactless plateau is particularly small, with the plateau for
D/t = 20 being smaller than the one for D/t = 12. This significant decrease in the size of
the plateau indicates an important finding: as the cross-section of the tube becomes thinner
(as indicated by the increase in D/t ratio), the extension of propagation plateau diminishes.

Moreover, in Table 6.3, which summarizes the results for the estimated propagation pres-
sure of each case, it can be observed that for the same diameter-to-thickness ratio, the propa-
gation pressure decreases as the material exponent increases. The same trend can be observed
in the analysis of the three-dimensional slice models as noted in previous section. Also, for
the same material exponent, the propagation pressure increases as the diameter-to-thickness
ratio also increases, which was noted for 3D slice models as well.

Finally, in Table contact conditions of propagation for each case are showcased. The
conclusion that could be derived is that as the diameter-to-thickness ratio increases, the prop-
agation with contact occurs for bigger value of material exponent. For cases with a material

exponent below 2.6, propagation occurs without contact between the tube walls.

7.3.1 Comparison between C3D20R and SC8R Element types

Section provides a comparison between the C3D20R and SC8R elements for three-
dimensional long tubes. The outcomes are presented in Table 6.4, revealing that element type
desn’t affect the contact propagation conditions when material exponent remain constant. Ad-
ditionally, the estimated propagation pressure increases as the material undergoes hardening.
Notably, for each material exponent case, the propagation pressure derived from the C3D20R

element type is significantly larger than the value obtained from the SC8R element type.
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7.4 Comparison between 3D slice and 3D long tube models

In Section are summarized some results for the base case thee-dimensional slice and
long tube models. Specifically, Tables .6, [6.7 and .8 the estimations for the propagation
pressure, in Pa units, and contact conditions of propagation are presented for diameter-to-
thickness ratio 12, 20 and 30 respectively. For the case of D/t equal to 12 it is observed from
the diff” values, varying from 0.06 to 0.6, that the the approximate propagation pressure for
the 3D slice and long tube models are particularly close. The percentage difference decreases
for n=2.6 and then increases at n = 2.8, but it stabilizes at 0.24% for n = 2.9. An unexpected
finding is that, for material exponents n = 2.8 and n = 2.9, the propagation pressure values
obtained from the long tube models are slightly higher than those obtained from the slice
models. However, for the other two cases (n = 2.4,n = 2.6), the propagation pressure of
the long tube models is somewhat greater than that of the slice models as expected. In the
remaining two Tables [6.7 and [.§ where the conclusions align, the outcomes are as antici-
pated. Specifically, the numeric measurements of propagation pressure in both the 3D long
tube and slice models are quite similar, with slightly higher values observed in the long tube
models. Moreover, as the material exponent increases, the percentage difference between the

two propagation pressure values decreases.



Chapter 8

Future Work

This thesis examined the response of collpasible tubes, with different diameter-to-thickness
ratios, subjected to uniform external pressure when applying a non-linear elastic material
model, the Deformation Theory. Specifically, the focus of the investigation was on the be-
havior of material hardening and its impact on the estimation of propagation pressure for dif-
ferent D/t. To achieve this, three-dimensional slice and long tube models were constructed.
The collapsible models aimed to simulate the collapsible tubes that can be found in living

organisms.

However, in the analysis of this thesis there wasn’t any consideration of fluid flow inside
the tube models which could simulate the blood flow in veins or the air in airway (Figure 8.1)).
Thus, in a future work there could be flow considered inside the tubes in order to investigate its
behavior, like the study conducted by M. E. Rosar and Charles S. Peskin [51]]. Additionally,
an experimental analysis could be conducted like Katz et al. did [52], where experimental
data were utilized to establish the functional relationship between cross-sectional area and
transmural pressure, as well as the correlation between the energy loss coefficient and cross-
sectional area. Another experimental study that could inspire future work is the one conducted
by Kozlovsky et al. [[I]] who developed an experimental method to validate the computational
results (Figure B.1]). Moreover, investigation in the structure of the tube as well as pressure
and flow measurements during static loading and during steady-state fluid flow could take
place, like the experimental study made by Elad et al. [53] who utilized a remote setup suitable
for measurements of objects embedded in water-filled chambers such as laboratory models
of collapsible tubes. Other inspiring studies, that include fluid flow, for future work on this
thesis are : [54], [55], [56].

Another aspect of future work for the optimization of the conclusions of Deformation

68
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Theory, that was utilized in this thesis as a material model simulating the behavior of coll-
pasible tubes, could be the examination of more material exponents. As noted in Chapter 7
the material exponent with value equal with 2 is a limit case of exponent between uniform
collapse and propagation. Thus, for an extension of this study, material exponents with value
between 2 and 2.4 could be scrutinized.

Finally an extension of this study could be conducted by utilizing hyperelastic materials,
instead Deformation Theory material model, while investigating the existing hyperelastic

forms and their parameters available in literature and in ABAQUS documentation.
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Figure 8.1: Experimental setup [[I]] on the left side and vein’s blood flow on the right side.
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Appendix
Matlab codes

The developed matlab codes that were created for this Diploma Thesis are presented

below. They consist of 3 different .m files and a function that should be saved separately.

%% 1: Plot the stress—strain curve for different material
exponents alongside the linear elastic stress —strain cuve
clear all;close all;clc

%o

% Specify the folder path
folderPath = ’C:\Users\lIoanna\Desktop\Material Exponents’;
%o

% Get a list of all text files 1in the folder
fileList dir( fullfile (folderPath , “=x.txt’));

numFiles = numel( fileList);
% Iterate over each file
for fileIndex = Il:numFiles
% Get the file name
fileName = fileList(filelndex).name;
% Create the full file path
filePath = fullfile (folderPath , fileName);
% Read the data from the text file
data = dlmread(filePath);
% Extract the two columns

strain = data(:, 1);
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2 stress = data(:, 2)xle—3;
21 % Plot the figures

2 plot(strain ,stress)

23 xlabel (*Strain , [%]")

2 ylabel (" Stress , [kPa]’)
25 hold on

% end

]
2

legend(’2.4°,72.87,°72.6°,°2.9",  linear elastic’)
xlim ([0,10])

&)
0

9 %9 2: Plot the dimentionless pressure —volume curves for the 2

)

D case for the 6 different ovalities
o clear all;close all;clc

n %% First Step: Get all the data

w

% Specify the paths to the main folders

w
¢

; mainFolderPaths = {’C:\Users\loanna\Desktop\2D plots\Dt 10",
"C:\ Users\Ioanna\Desktop\2D plots\Dt 20°, °C:\Users\lIoanna
\Desktop\2D plots\Dt 40’ };

s cellArray = cell (3, 6, 3); % 3 folders, 6 subfolders, 3 rpt

files

w

% Loop through the main folders

w
Q

s for mainFolderIndex = 1:numel(mainFolderPaths)

3 mainFolderPath = mainFolderPaths {mainFolderIndex };

38 % Get the list of subfolders within the main folder

£ subFolderPaths = dir(mainFolderPath);

40 subFolderPaths = subFolderPaths ([ subFolderPaths.isdir]);

a subFolderPaths = subFolderPaths(~ismember({subFolderPaths
.name}, {7.7, T..7}1));

2 % Loop through the subfolders

5 for subFolderIndex = l:numel(subFolderPaths)

44 subFolderPath = fullfile (mainFolderPath ,

subFolderPaths (subFolderIndex).name);
45 % Get the list of rpt files within the subfolder
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54
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56
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59
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62
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64
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67

68

69
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rptFiles = dir(fullfile (subFolderPath, “x.rpt’));

% Loop through the rpt files
% Coordl

rptFilePath = fullfile (subFolderPath, rptFiles(1).

name) ;

cellArray {mainFolderIndex , subFolderIndex ,
importdata(rptFilePath);

% Coord2

1} =

rptFilePath = fullfile (subFolderPath, rptFiles (2).

name) ;
cellArray {mainFolderIndex , subFolderIndex ,
importdata(rptFilePath);

% Pressure

2} =

rptFilePath = fullfile (subFolderPath, rptFiles (3).

name) ;
cellArray {mainFolderIndex , subFolderIndex ,
importdata(rptFilePath);
end
end
%0 Second Step: Plots
E=3.4;
poisson=0.4;
% Ovality 02
%——— Dt _10
t(l) = 50;
Dnom(1) = t(1)=*10;
Pcr(1) = (2%E/(1—poisson”2))*(t(1l)/Dnom(1))"3;
INRmin2 (1) = 224.5;
INRmax2 (1) = 225.5;
ao2(l) = (1/4)xpix(INRmax2(1)*INRmin2(1));
numel hoop(l) = 100;
%—— Dt _20

3 =
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£(2

)

= 26.1904762;

Dnom(2)
Pcr(2) = (2%E/(1—poisson”2))%(t(2)/Dnom(2))"3;
INRmin2(2) = 248.29;
INRmax2(2) = 249.33;
numel hoop(2) = 100;

402 (2) = (1/4)%pi*(INRmax2(2)*INRmin2(2));

= t(2) %20;

%-—— Dt_40
t(3) = 13.4146341;

Dnom (3)
Pcr(3) = (2%E/(1—poisson”2))*(t(3)/Dnom(3))"3;
INRmin2(3) = 261.05;
INRmax2(3) = 262.12;

202 (3) = (1/4)%pi*(INRmax2(3)*INRmin2(3));

= t(3)%40;

numel hoop(3) = 130;

figure ;

for j =

1:3

%import data from rpt file

x2
y2
p2

cel
cel

cel

lArray {j,1,1};
lArray {j,1,2};
lArray{j,1,3};

%initialization of arrays

ainc2=zeros(size(x2,1),1);

da2=zeros(size(x2,1),1);

daao2=zeros(size(x2,1),1);

% calculation of the area enclosed by the

for

increment

i=1:

n=1;

size(x2,1) % moving through

slice =0;

for k=n:numel hoop(j)

quadrant at every

increments



102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

82 Appendix . Matlab codes

slice=slice+abs ((x2(1,k)—x2(i,k+1)))*(y2(i,k+1)+
y2(i k) /2;
end
n=k+2;
ainc2 (i,1)=slice;
da2(i,l)=(ao2(j)—ainc2(i,l))x(le—06); % da in [m]
daao2(1,1)=(1/a02(j))*(abs(ao2(j)—ainc2(i,l)));
end
plot(daao2 ,p2/Pcr(j))
hold on
end
xlabel(’da/ao’)
ylabel ("P/Pcr )
legend (°Dt=10",°’Dt=20",’Dt=40",  Location’, ’southeast’, ~’
EdgeColor’, 'w’, *FontSize’, 11)
xlim ([0 0.8])
ylim ([0 2])
hold off
% Save the plot as PDF
fileName = sprintf( ovality 02 .pdf’);
saveas (gcf, fileName, “pdf’);
% Close the figure
close(gcf);
WSS S S8 o
% Ovality 05
%—— Dt _10
t(l) = 50;
Dnom(1) = t(1)=%10;
Pcr(1) = (2%E/(1—poisson”2))*(t(1l)/Dnom(1))"3;
INRmin2 (1) 223.75;
INRmax2 (1) 226.25;
ao2 (1) = (1/4)xpix(INRmax2(1)*INRmin2(1));



132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

83

numel hoop (1) = 100;

%-—— Dt_20
= 26.1904762;

t(2)
Dnom (2)
Pcr(2) = (2%E/(1—poisson”2))%(t(2)/Dnom(2))"3;
INRmin2(2) = 247.5;

INRmax2(2)
numel hoop(2) = 100;
a02(2) = (1/4)xpix(INRmax2(2)*INRmin2(2));

= t(2)%20;

250.12;

%——— Dt _40

t(3) = 13.4146341;
Dnom (3)
Per(3) = (2%E/(1-poisson”2))#(t(3)/Dnom(3))"3;
INRmin2(3) = 260.24;
INRmax2(3) = 262.93;

a02(3) = (1/4)xpix(INRmax2(3)*INRmin2(3));
numel hoop(3) = 130;

figure;

for j =

%import data from rpt
cellArray {j,2,1};
cellArray {j,2,2};
cellArray {j,2,3};

x2
y2
p2

= t(3)%40;

1:3

file

%initialization of arrays

ainc2=zeros(size(x2,1),1);

da2=zeros(size(x2,1),1);

daao2=zeros(size(x2,1),1);

% calculation of the area enclosed by the

for

increment

i=1:

n=1;

size (x2,1)

slice=0;

% moving through

quadrant at every

increments
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for k=n:numel hoop(j)
slice=slice+abs ((x2(1,k)—x2(i,k+1)))*(y2(i,k+1)+
y2(i,k))/2;
end
n=k+2;
ainc2 (i,1)=slice;
da2(i,l)=(ao2(j)—ainc2(i,1))*x(le—06); % da in [m]
daao2(i,l)=(1/a02(j))=*(abs(ao2(j)—ainc2(i,l)));
end
plot(daao2 ,p2/Pcr(j))
hold on
end
xlabel(’da/ao ")
ylabel ("P/Pcr )
legend (’Dt=10",°Dt=20",’Dt=40",’ Location’, ’southeast’, ~’
EdgeColor’, ’w’, ’FontSize’, 11)
xlim ([0 0.8])
ylim ([0 2])
hold off
% Save the plot as PDF
fileName = sprintf( ovality 05.pdf’);
saveas (gcf, fileName, “pdf’);
% Close the figure
close(gct);
WSS S S S S Y SSo
% Ovality 07
%——— Dt _10
t(l) = 50;
Dnom(1) = t(1)=%10;
Pcr(l1) = (2%E/(1—poisson”2))%(t(1l)/Dnom(1))"3;
INRmin2 (1) = 223.25;
INRmax2 (1) = 226.75;
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ao2 (1) = (1/4)xpix(INRmax2(1)*INRmin2(1));

numel hoop (1) = 100;
%——— Dt _20
= 26.1904762;

£(2

)

Dnom (2)

402 (2) = (1/4)%pi*(INRmax2(2)*INRmin2(2));

= t(2)%20;
Pcr(2) = (2%E/(1—poisson”2))*(t(2)/Dnom(2))"3;
INRmin2 (2)
INRmax2 (2)
numel _hoop(2) = 100;

%—— Dt 40
t(3) = 13.4146341;

Dnom(3)

a02(3) = (1/4)=xpi*x(INRmax2(3)*INRmin2(3));
numel hoop(3) = 130;

figure ;

for j =

%import data from rpt
cellArray {j,3,1};
cellArray {j,3,2};
cellArray {j,3,3};

x2
y2
p2

246.98;
250.64;

= t(3)%40;
Pcr(3) = (2%E/(1—poisson”2))*(t(3)/Dnom(3))"3;
INRmin2 (3)
INRmax2(3)

1:3

259.71;
263.46;

file

%initialization of arrays

ainc2=zeros(size(x2,1),1);

da2=zeros(size(x2,1),1);

daao2=zeros(size(x2,1),1);

% calculation of the area enclosed by the quadrant at

for

increment

1=1:size(x2,1)

n=1;

% moving through

increments

every
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slice=0;
for k=n:numel hoop(j)
slice=slice+abs ((x2(i,k)—x2(i,k+1)))x(y2(i,k+1)+
y2(i.k))/2;
end
n=k+2;
ainc2 (i,1)=slice;

da2(i,l)=(ao2(j)—ainc2(i,l))x(le—06); % da in [m]

daao2(1,1)=(1/a02(j))*(abs(ao2(j)—ainc2(i,1)));
end
plot(daao2 ,p2/Pcr(j))
hold on
end
xlabel(’da/ao”)
ylabel ("P/Pcr )
legend (’Dt=10",’Dt=20",’Dt=40",  Location’, ’southeast’, ~’
EdgeColor’, 'w’, “FontSize’, 11)
xlim ([0 0.8])
ylim ([0 27)
hold off
% Save the plot as PDF
fileName = sprintf( ovality 07 .pdf’);
saveas (gcf, fileName, “pdf’);
% Close the figure
close(gcf);
WSS S o
% Ovality 1
%—— Dt _10
t(l) = 50;
Dnom(1) = t(1)=%10;
Pcr(1) = (2%E/(1—poisson”2))*(t(1l)/Dnom(1))"3;
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INRmin2 (1) = 222.5;

INRmax2 (1) = 227.5;

ao2(1l) = (1/4)%pi*x(INRmax2(1)*INRmin2(1));
numel hoop (1) = 100;

%——— Dt 20

t(2) = 26.1904762;

Dnom(2) = t(2)%20;

Pcr(2) = (2%E/(1—poisson”2))%(t(2)/Dnom(2))"3;
INRmin2 (2) 246.19;

INRmax2 (2) 251.43;

numel hoop(2) = 100;

a02(2) = (1/4)xpix(INRmax2(2)*INRmin2(2));
%——— Dt _40

t(3) = 13.4146341;

Dnom(3) = t(3) %40;

Pcr(3) = (2%E/(1—poisson”2))%(t(3)/Dnom(3))"3;
INRmin2(3) = 258.9;

INRmax2 (3) 264.27,

a02(3) = (1/4)xpix(INRmax2(3)*INRmin2(3));
numel hoop(3) = 130;

figure;

for j = 1:3

%import data from rpt file
x2 = cellArray{j,4,1};

y2 = cellArray{j,4,2};

p2 = cellArray{j,4.3};
%initialization of arrays
ainc2=zeros(size(x2,1),1);
da2=zeros(size(x2,1),1);

daao2=zeros(size(x2,1),1);

% calculation of the area enclosed by the quadrant

increment

at

every
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for 1=1:size(x2,1) % moving through increments
n=1;
slice =0;

for k=n:numel hoop(j)

slice=slice+abs ((x2(i1,k)—x2(i,k+1)))*(y2(i,k+1)+

y2(i,k))/2;
end

n=k+2;

ainc2 (i1,1)=slice;

da2(i,l)=(ao2(j)—ainc2(i,1))x(le—06); % da in [m]

daao2(i,l)=(1/a02(j))=*(abs(ao2(j)—ainc2(i,l)));
end
plot(daao2 ,p2/Pcr(j))
hold on
end
xlabel(’da/ao’)
ylabel ("P/Pcr”)
legend (°Dt=10",°’Dt=20",’Dt=40",  Location’, ’southeast’, ’
EdgeColor’, ’w’, ’FontSize’, 11)
xlim ([0 0.8])
ylim ([0 21)
hold off
% Save the plot as PDF
fileName = sprintf( ovality 1.pdf’);
saveas (gcf, fileName, “pdf’);
% Close the figure
close(gcf);
WSS S S S0
% Ovality 10
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%—— Dt 10

t(l) = 50;

Dnom(1) = t(1)=%10;

Pcr(1) = (2%E/(1—poisson”2))*(t(1l)/Dnom(1))"3;
INRmin2 (1) 200;

INRmax2 (1) 250;

ao2(1l) = (1/4)%pi*x(INRmax2(1)*INRmin2(1));
numel hoop(1) = 100;

%——— Dt _20

t(2) = 26.1904762;

Dnom(2) = t(2)%20;

Pcr(2) = (2%E/(1—poisson”2))%(t(2)/Dnom(2))"3;
INRmin2(2) = 222.62;

INRmax2(2) = 275;

numel hoop(2) = 100;

a02(2) = (1/4)xpix(INRmax2(2)*INRmin2(2));
%——— Dt _40

t(3) = 13.4146341;

Dnom(3) = t(3) %40;

Pcr(3) = (2%E/(1—poisson”2))%(t(3)/Dnom(3))"3;
INRmin2 (3) = 234.76;

INRmax2(3) = 288.41;

a02(3) = (1/4)xpix(INRmax2(3)*INRmin2(3));
numel hoop(3) = 130;

figure;

for j = 1:3

%import data from rpt file
cellArray {j ,5,1};

y2 = cellArray{j,5,2};

p2 = cellArray{j,5,3};

x2

%initialization of arrays

ainc2=zeros(size(x2,1),1);
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da2=zeros(size(x2,1),1);
daao2=zeros(size(x2,1),1);

% calculation of the area enclosed by the quadrant at every

increment
for i=1l:size(x2,1) % moving through increments
n=1;
slice=0;

for k=n:numel hoop(j)
slice=slice+abs ((x2(1,k)—x2(i,k+1)))*(y2(i,k+1)+
y2(i,k))/2;
end

n=k+2;

ainc2 (i,1)=slice;

da2(i,l)=(ao2(j)—ainc2(i,l))x(le—06); % da in [m]

daao2(i,l)=(1/a02(j))=*(abs(ao2(j)—ainc2(i,l)));

end

plot(daao2 ,p2/Pcr(j))

hold on

end

xlabel(’da/ao”)

ylabel ("P/Pcr”)

legend (°Dt=10",’Dt=20",’Dt=40",  Location’, ’southeast’, ’
EdgeColor’, °w’, ’FontSize’, 11)

xlim ([0 0.8])

ylim ([0 2])

hold off

% Save the plot as PDF

fileName = sprintf( ovality 10.pdf");
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saveas (gcf, fileName, “pdf’);

% Close the figure

close(gct);
WSS o

% Ovality 5

%——— Dt _10

t(l) = 50;

Dnom(1) = t(1)=*10;

Pcr(l1) = (2%E/(1—poisson”2))*(t(1l)/Dnom(1))"3;
INRmin2 (1) 212.5;

INRmax2 (1) 237.5;

ao2 (1) = (1/4)xpix(INRmax2(1)*INRmin2(1));
numel _hoop (1) = 100;

%——— Dt _20

t(2) = 26.1904762;

Dnom(2) = t(2)*20;

Pcr(2) = (2%E/(1—poisson”2))%(t(2)/Dnom(2))"3;
INRmin2 (2) 235.71;

INRmax2(2) 261.90;

numel _hoop(2) = 100;

a02(2) = (1/4)xpix(INRmax2(2)*INRmin2(2));
%—— Dt _40

t(3) = 13.4146341;

Dnom(3) = t(3) %40;

Pcr(3) = (2%E/(1—poisson”2))*(t(3)/Dnom(3))"3;
INRmin2 (3) 248.17;

INRmax2(3) 275;

a02(3) = (1/4)xpix(INRmax2(3)«INRmin2(3));
numel hoop(3) = 130;

figure ;
for j = 1:3

%import data from rpt file
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>
)
Il

cellArray {j.,6,1};
w y2 = cellArray{j,6,2};
a0 p2 = cellArray{j,6,3};

408

am %initialization of arrays
a2 ainc2=zeros(size(x2,1),1);
a5 da2=zeros(size(x2,1),1);

a4 daao2=zeros(size(x2,1),1);

as % calculation of the area enclosed by the quadrant at every

increment
s for 1=1:size(x2,1) % moving through increments
a17 n=1;
418 slice=0;
419 for k=n:numel hoop(j)
420 slice=slice+abs ((x2(1i,k)—x2(1,k+1)))*(y2(i,k+1)+
y2(i,k))/2;
1 end
a n=k+2;
a3 ainc2 (i,l)=slice;
o da2(i,l)=(ao2(j)—ainc2(i,l))x(le—06); % da in [m]
5 daao2(i,l)=(1/a02(j))*(abs(ao2(j)—ainc2(i,l)));
xs end

27 plot(daao2 ,p2/Pcr(j))

»s hold on

a9 end

s Xlabel(’da/ao”)

s ylabel ("P/Pcr”)

m legend(’Dt=10",’Dt=20",’Dt=40",  Location’, ’southeast’, ~’
EdgeColor’, 'w’, ’FontSize’, 11)

3 x1lim ([0 0.8])

s ylim ([0 2])

ss hold off

s % Save the plot as PDF
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fileName = sprintf( ovality 5.pdf’");

saveas (gcf, fileName, “pdf’);

% Close the figure

close (gcf);

%% 3: Plot the dimensionless respone for the different
material exponents used

clear all;close all;clc

%

% Specify the directory path
directoryPath = "C:\Users\ds3922\Desktop\loanna\
slice_dtrl2 new’;

%

% Read the directory contents

contents = dir(directoryPath);

% Initialize an empty cell array to store folder names
folderNames = {};

% Iterate through each entry in the directory

for 1 = l:numel(contents)
entry = contents (1);
% Check i1f the entry is a directory and not 7.” or ”
if entry.isdir && ~strcmp(entry.name, . ) && ~strcmp (
entry .name, .. )

% Add the folder name to the cell array
folderNames {end+1} = entry.name;
end
end
% Display the folder names

disp(’Folder names in the directory:’);

2
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> disp (folderNames) ;

4

N

w3 % Get the current directory

o

ws currentDirectory = pwd;

=

4

=N
by

% Loop through each folder name

ws for 1 = l:numel(folderNames)

467 folderName = folderNames{i };

468 % Construct the full path of the folder

469 folderPath = fullfile (currentDirectory , folderName);
470 % Check i1f the folder exists

an if exist(folderPath, “dir’)

an % Display the folder name

a73 disp ([ "Processing folder: ° folderName]) ;

474 % Get the list of .rpt files in the folder

475 rptFiles = dir(fullfile (folderPath, “x.rpt’));
476 % Read Coord 1

a7 folderPath = fullfile (currentDirectory , folderName,

rptFiles (1) .name);

478 x = importdata(folderPath);
479 % Read Coord 2
480 folderPath = fullfile (currentDirectory , folderName,

rptFiles (2) .name) ;

481 y = importdata(folderPath);
482 % Read Pressure
483 folderPath = fullfile (currentDirectory , folderName,

rptFiles (3) .name);

484 p = importdata(folderPath);

48 % Calculate parameters for the plot

486 [p_out,daao ,M] = Postprocessing(x,y,p);
487 plot(daao, p out)

488 yline (M, '—’, “Color’, "k’);

489 hold on

490 else
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disp ([ "Folder does not exist: ~ folderName]);
end
end
legend(’2 4’ , Maxwell Line’,’2 6, Maxwell Line’,’2 8’ ,°
Maxwell Line’,’2 9°,’Maxwell Line’,’3’, Maxwell Line’,’3 1
>, ’Maxwell Line’,’3 5’ ’Maxwell Line’)
xlim ([0 0.78])
%% 3b: Function defined for the 3rd .m file
function [p_out,daao ,M] = Postprocessing(x,y,p)
WSS/ 88888888/ 8o
% ring input
INRmin=232.18;
INRmax=233.20;
t=42.31;
numel hoop=25;
%undeformed area
ao=(1/4)xpix(INRmaxxINRmin) ;
%initialization of arrays
ainc=zeros (size(x,1),1);
da=zeros(size(x,1),1);
daao=zeros(size(x,1),1);

% calculation of the area enclosed by the quadrant at every

increment
for 1=1:size(x,1) % moving through increments
n=1;
slice=0;

for k=n:numel hoop
slice=slice+abs ((x(1,k)—x(1,k+1)))*(y(1,k+1)+y(1,
k))/2;
end
n=k+2;

ainc(i,l)=slice;
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519 da(i,l)=(ao—ainc(i,l));
520 daao(i,l)=(1/ao0)=x(abs(ao—ainc(i,l)));
s21 end

s2 %06 MAXWELL LINE

M = p(end); % set initial value of M to the last value of

5

]
[N

pressure
s« da_interp = linspace(min(da), max(da), 1e5); % Adjust the
number of points as needed

p_interp = interpl (da, p, da_interp);

5.

]
G

s for der = numel(p_interp):—1:1
527 Ptemp = p _interp(1l:dcr);
528 datem = da_interp (l:dcr);
529 A = trapz(datem, Ptemp);
530 Mnew = A / da_interp (dcr);
531 if abs(Mnew — M) < le—12
532 % convergence criteria
533 break

534 end

535 M = Mnew;

5. end

557 Dnom=t %12

s E=3.4

s poisson=0.4

ss0 Per=(2%E/(1—poisson”2))s%(t/Dnom)"3;

i1 %plot(daao, P./Pcr, *—=", *Color’, ’k’)

5

B

s2 % Conversion of pressure from MPa to kPa
ss p_out = pxle3;
sae MEMk1e3 ;

ses end



	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Introduction
	Problem motivation
	Literature Review
	Airway collapse cases
	Collapse Cases of Elastic Tubes
	Collapse in Veins and Arteries
	Collapsible tube models
	Buckle propagation

	Collapse in metal tubes
	Problem Statement

	Theory of collapse under external pressure
	Buckling of a ring
	Theoretical post-buckling

	Buckling Propagation
	Maxwell line

	Material Theory
	Deformation Theory
	Hyperelastic Materials

	Initial Imperfections

	Modeling
	Two-dimensional models
	Numerical modeling for 2D models
	ABAQUS modeling for 2D models

	Three-dimensional base case models
	Numerical modeling for 3D slice and 3D long tube models
	ABAQUS modeling for 3D slice models
	ABAQUS modeling of 3D long tube models

	Material modeling

	Parametric Investigation
	Material exponents
	Element Type Investigation
	Three-dimensional slice modeling
	Results of element investigation

	Mesh Investigation
	Modeling
	Results of mesh density investigation


	Results for 2D elastic models
	Results for 3D Base Case Models
	Three-dimensional slice results
	Estimation of propagation pressure for 3D slice models
	Mises Stresses and Logarithmic Strains

	Three-dimensional long tubes results
	Estimation for propagation pressure of 3D long tube base case models
	Comparison results of C3D20R and SC8R Element types
	Contact conditions

	Summarized results for 3D slice and long tube models

	Conclusions and Discussion
	Conclusions for 2D models
	Conclusions for 3D slice models
	Conclusions for 3D long tube models
	Comparison between C3D20R and SC8R Element types

	Comparison between 3D slice and 3D long tube models

	Future Work
	Bibliography
	APPENDIX
	Matlab codes

