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vi Abstract

Diploma Thesis

Finite element simulation of the structural behavior of elastic

cylindrical shells under external pressure for biomedical applications

Karetsa Ioanna

Abstract

Collapsible tubes from their nature are vulnerable to collapse. Veins, arteries, airways, and

other tubular structures found in living organisms can be described as collapsible tubes. In

specific circumstances, the investigation of which isn’t the objective of this thesis, these

tubular structures are susceptible to imperfections that may result in collapse and propaga-

tion under uniform external pressure. In this thesis, the aim was to simulate the behavior of

collapsible tubes when initial ovality and uniform external pressure applied. Thin and thick

walled tubes, with five different diameter-to-thickness ratios, are studied numerically utiliz-

ing finite element simulations in ABAQUS. Three-dimensional slice models and long tube

models have been conducted as base cases, in order to investigate propagation pressure ex-

tracted from their pressure-volume responses, and contact conditions of propagation obtained

from the corresponding configurations. Deformation theory was employed as non-linear elas-

tic material model. A parametric investigation has been performed to examine the effects of

material exponents, element type, and mesh density applied on the base case models. Fur-

thermore, the influence of ring geometry was investigated through analyses of 3D models.

Parametric analyses was also carried out into the relationship between the type of element

and its impact on the propagation pressure. Also, effect of initial ovality has been scrutinized

by the construction of two-dimensional models. The collapse responses of the 2D models

were examined for elastic material and the results were compared with analytical solutions.

Overall, the main conclusions drawn from the 3D analysis are that propagation pressure is

dependent of the material exponent of Deformation Theory, of tubes geometry and of ele-

ment type of modeling part. However,the value of propagation pressure is independent of the

mesh density. As the material exponent increases, the propagation pressure diminishes. Ad-

ditionally, as the tube’s cross-section becomes thinner, the extension of propagation plateau

decreases. Also, element type of the modeling part doesn’t affect the contact propagation

conditions when the material exponent remains constant. Lastly, the conclusions from the
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2D models highlight that as the initial imperfection value increases, the deviation of the col-

lapse pressure from curve of the ideal case also increases leading to the softening of the ring

and collapsing at lower pressures.



viii Περίληψη

Διπλωματική Εργασία

Προσομοίωση πεπερασμένων στοιχείων της δομικής συμπεριφοράς

ελαστικών κυλινδρικών κελυφών υπό εξωτερική πίεση για βιοϊατρικές

εφαρμογές

Καρέτσα Ιωάννα

Περίληψη

Οι πτυσσόμενοι σωλήνες λόγω της φύσης τους είναι ευάλωτοι σε κατάρρευση. Οι φλέβες, οι

αρτηρίες, οι αεραγωγοί και άλλες σωληνοειδείς δομές που βρίσκονται σε ζωντανούς οργα-

νισμούς μπορούν να περιγραφούν ως πτυσσόμενοι σωλήνες. Σε συγκεκριμένες περιπτώσεις,

η διερεύνηση των οποίων δεν είναι ο στόχος αυτής της διατριβής, αυτές οι σωληνοειδείς

κατασκευές είναι επιρρεπείς σε ατέλειες που μπορεί να οδηγήσουν σε κατάρρευση και διά-

δοση ύβωσης υπό ομοιόμορφη εξωτερική πίεση. Σε αυτή τη διατριβή, στόχος ήταν η προ-

σομοίωση της συμπεριφοράς των πτυσσόμενων σωλήνων όταν εφαρμόζεται οβαλότητα και

ομοιόμορφη εξωτερική πίεση. Σωλήνες με λεπτό και παχύ τοίχωμα, με πέντε διαφορετικές

αναλογίες διαμέτρου προς πάχος, μελετώνται αριθμητικά χρησιμοποιώντας προσομοιώσεις

πεπερασμένων στοιχείων στο ABAQUS. Τρισδιάστατα μοντέλα φέτας και μοντέλα μακριών

σωλήνων έχουν θεωρήθηκαν οι βασικές περιπτώσεις αυτής της διπλωματικής, προκειμένου

να διερευνηθεί η πίεση διάδοσης ύβωσης που εξάγεται από τις αποκρίσεις πίεσης-όγκου τους

αλλά και οι συνθήκες επαφής κατά την διάδοση ύβωσης. Το υλικό Deformation Theory χρη-

σιμοποιήθηκε ως μοντέλο μη γραμμικού ελαστικού υλικού. Μια παραμετρική διερεύνηση

διεξάχθηκε με σκοπό να εξεταστούν οι επιδράσεις των εκθετών υλικού, του τύπου στοιχείου

και της πυκνότητας πλέγματος που εφαρμόζονται στα βασικά μοντέλα. Επιπλέον, διερευ-

νήθηκε η επίδραση της γεωμετρίας του δακτυλίου μέσω αναλύσεων τρισδιάστατων μοντέ-

λων. Πραγματοποιήθηκαν επίσης παραμετρικές αναλύσεις για τη σχέση μεταξύ του τύπου

του στοιχείου και της επίδρασής του στην πίεση διάδοσης ύβωσης. Επίσης, η επίδραση της

αρχικής οβαλότητας διερευνήθηκε με την κατασκευή δισδιάστατων μοντέλων. Οι αποκρί-

σεις κατάρρευσης των μοντέλων 2D εξετάζονται για ελαστικό υλικό και τα αποτελέσματα

συγκρίνονται με αναλυτικές λύσεις. Συνολικά, τα κύρια συμπεράσματα που εξάγονται από

την τρισδιάστατη ανάλυση είναι ότι η πίεση διάδοσης ύβωσης εξαρτάται από τον εκθέτη

υλικού του Deformation Theory, από τη γεωμετρία των σωλήνων αλλά και από τον τύπο
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στοιχείου της μοντελοποίησης. Ωστόσο είναι ανεξάρτητη από την πυκνότητα του πλέγματος

που χρησιμοποιείται στη μοντελοποίηση. Καθώς ο εκθέτης υλικού αυξάνεται, η πίεση διάδο-

σης ύβωσης μειώνεται. Επιπλέον, καθώς η διατομή του σωλήνα γίνεται πιο λεπτή, η έκταση

του πλατώ, από το οποίο εξάγεται η τιμή της διάδοσης ύβωσης, μειώνεται. Επίσης, ο τύπος

στοιχείου που χρησιμοποιείται στην μοντελοποίηση δεν επηρεάζει τις συνθήκες επαφής της

διάδοσης της ύβωσης, όταν ο εκθέτης υλικού παραμένει σταθερός. Τέλος, τα συμπεράσματα

από τα δισδιάστατα μοντέλα υπογραμμίζουν ότι καθώς αυξάνεται η αρχική τιμή ατέλειας,

αυξάνεται επίσης η απόκλιση της πίεσης κατάρρευσης από την καμπύλη της ιδανικής περί-

πτωσης, οδηγώντας σε κατάρρευση υπό χαμηλότερες πιέσεις.
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Chapter 1

Introduction

1.1 Problem motivation

The analysis and modeling of collapsible tubes under external pressure constitutes an

important problem from a mechanical point of view, as it can provide valuable insight into

how these tubes behave and interact with their environment under different conditions. Such

tubes are commonly used in a variety of industries, including bio-medical devices, automo-

tive, and aerospace, among others. Understanding the mechanical behavior of collapsible

tubes is critical in designing and optimizing these systems for optimal performance, relia-

bility, and safety. By modeling these tubes under external pressure, the forces and stresses

involved could be determined along with the occurrence of collapse or failure effects. Also

potential design improvements can be identified to enhance their mechanical performance.

In particular, modeling of collapsible tubes, such as veins or respiratory tubes, can also be ap-

plied in the field of biomechanics. Understanding the mechanical behavior of these tubes can

help in developing novel medical devices and surgical procedures. For example, modeling

the collapse of the human soft palate can aid in designing more effective surgical procedures

and oral appliances for treating obstructive sleep.

Veins are one of the most common types of collapsible tubes. Developing reliable models

of venous collapse under external pressure has significant practical implications in medicine

and biomedical engineering. The collapse of veins, whether pathological or not, can have

significant implications for the body’s overall physiological function. Ιn pathological cases,

venous collapse can lead to venous insufficiency, deep vein thrombosis, and other related dis-

orders, which can cause pain, swelling, skin ulcers, and other complications that significantly

affect the patient’s quality of life [2]. Accurate modeling of venous collapse under external

1
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pressure may help in designing more effective therapeutic interventions to prevent or treat

these conditions. On the other hand, studying the collapse of veins under physiological con-

ditions can provide insights into the body’s normal functioning. For instance, the collapse of

veins in the lower limbs during exercise or standing can help regulate blood flow and main-

tain optimal oxygen delivery to the muscles [3]. Accurately modeling venous collapse under

different physiological conditions can help in understanding the underlying mechanisms that

control these processes. Studies on this topic have shown promising results and highlight the

importance of accurate modeling techniques in advancing our knowledge of venous collapse

behavior.

1.2 Literature Review

1.2.1 Airway collapse cases

The upper airway is composed of several soft tissues that are surrounded by muscles that

help keep the airway open. During sleep, the upper airway muscles are less responsive to

negative intrapharyngeal pressure within the throat, which can lead to a narrowing of the air-

way and partial or complete airway collapse [4], [5]. The negative pressure causes the soft

tissues to be pulled inward, further narrowing the airway and increasing resistance to airflow.

If the airway collapses completely, breathing stops, resulting in an episode of apnea. There-

fore, during sleep, the airway becomes more susceptible to collapsing [6]. This phenomenon

appears in patients with obstructive sleep apnea (OSA), which is a sleep disorder charac-

terized by repetitive episodes of partial or complete upper airway obstruction during sleep.

Furthermore, the pharyngeal airway in patients with OSA collapses either due to decreased

intraluminal pressure or increased external tissue pressure, or due to reduction in the longi-

tudinal tension of the tube. Obesity may increase the collapsibility of the pharyngeal airway

due to excessive fat deposition in two distinct locations [7].

In the context of airway collapse, an early review of this topic was presented by East-

wood et al. [8], who aimed to assess the relationship between upper airway collapsibility

during general anesthesia and severity of sleep-disordered breathing in awake patients. The

results showed that the propensity for upper airway collapse during anesthesia and sleep are

related, especially during REM sleep, and suggest that sleep-disordered breathing should be

considered in patients with a propensity for upper airway obstruction during anesthesia or
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recovery from it. Additionally, in the study of Xu et al. [9] a 3D finite element modeling

approach is described in order to simulate airway collapse mechanics in a rat model of ob-

structive sleep apnea. The results suggest that material properties of different tissue regions,

airway shape, and muscle activity all play important roles in airway collapse. Ibbeken et al.

[10] used a 3D printed model of the upper airway to measure the critical closing pressure,

which is a parameter that characterizes airway collapsibility in obstructive sleep apnea. The

researchers examined the effect of airway resistance on deformation behavior by changing

the inflow area size. Airway collapse can also occur animals, such as dogs and it’s a common

cause of chronic cough in middle-aged to older dogs. Lutchen and Gillis [11] studied the im-

pact of airway constriction on lung function and compared the experimental results with the

predictions of their computational model. In the same subject was the work of Maggiore [12]

who presented tracheal and airway collapse (bronchomalacia) in dogs, which results from

the softening of the tracheal cartilage, causing narrowing and impeding the passage of air. A

different case, related to airway collapse, the alveolar collapse during diving, was studied by

Fitz-Clarke [13]. The author developed a computational model of the human respiratory tract

to study airway and alveolar compression and re-expansion during deep breath-hold dives.

The model predicts that human lungs collapse beyond 200 m, and that reopening of closed

alveoli occurs on ascent beginning at a depth that depends on the maximum depth reached

and surfactant properties.

1.2.2 Collapse Cases of Elastic Tubes

Materials that exhibit the behavior of collapsible tubes are elastomers. Elastomers are

materials that have the ability to exhibit significant stretching and return to their original

shape when the stress is removed. They are often used as the material of choice for modeling

collapsible tubes, due to their ability to deform and collapse under external pressure.

An early study with elastomeric material was carried out by Flaherty et al. [14]. The au-

thors investigated the buckling and collapse behavior of an elastic tube under different levels

of pressure, determining numerically the pressures at which the tube buckles and contacts

at a single point or straight line, and the corresponding cross-sectional buckling. They also

determined the fluid flow through the buckled tube, which could have implications for the

collapse of veins and blood flow. Fabian [15] examined the collapse behavior of elastomeric

tubes under external pressure, by determining both the limit load and the possibility and sig-
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nificance of axial wrinkling of the compressed region of the shell prior to the limit load. The

study aimed at measuring the pressure-cross sectional area relation of microtubes made of

latex and compare the measured perfusion pressure-flow relation with the calculated relation

using Poiseuille’s law, finding good agreement between the two. A later study was conducted

by Bassez et al. [16] who developed a representative model of the behavior of flexible ducts,

such as elastic tubes or veins, based on a phenomenological approach of the inflation and

collapse of the tube. This model leads to a single ”universal” analytical expression of the

tube’s response that is valid for a wide range of transmural pressures and is more accurate

than previous theoretical studies. The model was applied to both experimental data using sil-

icone tubes and physiological data obtained in vivo on human leg veins, and the results were

compared. Another approach was conducted by Zhu et al. [17], who formulated and solved

a fully nonlinear partial differential equation governing the axisymmetric deformation of a

thick-walled circular cylindrical elastic tube subject to external pressure using a finite element

method. They found that the nonlinear results significantly depart from linear ones when ex-

ternal pressure and tube wall strain are large, with short tubes exhibiting ”corner bulging” and

longer tubes exhibiting multiple modes of deformation. Following their earlier study [17], a

subset of the authors pursued further research on elastic tubes and presented a numerical sim-

ulation model of three-dimensional finite deformation of a thick-walled circular elastic tube,

subjected to internal or external pressure. They derived an analytical form of the Jacobianma-

trix for fast and better numerical convergence and validated the model through comparison

with commercial software and previous works. The study’s success opened up the possibility

of applying themodel to fluid-structure interaction studies andmodeling complex physiologi-

cal systems [18]. Finally, Kozlovsky et al. [1], conducted experiments to explore the contours

of post-buckling deformation of the cross-section of thick-wall tubes. The authors presented

a general constitutive law for describing the behavior of collapsible thin and thick-wall tubes,

including their relationship between pressure and cross-sectional area, which can be used to

predict the behavior of tubes when subjected to compressive forces.

1.2.3 Collapse in Veins and Arteries

One of the most common applications of collapsible tubes is modeling the structure of

veins. Vein collapse can occur for a variety of reasons, and when it comes to a pathological

case it could cause several problems to a living organism.
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In clinical settings, vein collapse can occur in humans, and more specific in the juxtatho-

racic zone, during cardiac catheterization [19]. Collapse may also appear during insertion

of a central venous catheter into the internal jugular vein. During this procedure, the use of

real-time ultrasound-assisted guidance can cause collapse of the vein, due to the production

of transcutaneous pressure, resulting the failure of the puncture for catheter insertion [20].

Non-pathological cases of vein collapse are frequent for veins situated higher than the

heart and for those compressed by contractions of skeletal muscles, in order to transport blood

from the feet of upright mammals back to the heart [21],[22]. For giraffes, in particular, the

collapsing of veins has been demonstrated to have a positive effect on controlling the flow

rate while they raise their heads [23].

Although veins can collapse because of insufficient internal pressure, arteries typically

remain unaffected by collapse due to their thicker walls and the high blood pressure within

their lumen [24]. However, under certain circumstances, arteriesmight collapse, such as when

the intramyocardial coronary arteries collapse while the left ventricle contracts. Additionally,

It has been proposed that the collapse of arteries can occur in areas just after a narrowing

[25],[26], and this can also be caused by blood pressure cuffs [22].

1.2.4 Collapsible tube models

Models of collapsible tubes have been created utilizing the principle of elastic instabil-

ity to establish the critical pressure at which a blood vessel collapses [24], [25] Such model,

presented by Fung [24], demonstrated the equation for buckling in thin-walled cylindrical

tubes of linear elastic material with uniform wall thickness when transmural pressure is ap-

plied. Flaherty et al. [14] demonstrated the post-buckling behavior of collapsible tubes. They

employed an approach using equilibrium and curvature equations, following Fung’s method-

ology, to compute the cross-sectional shapes of long, inextensible, elastic thin-walled cir-

cular tubes subjected to various transmural pressures. Also, Kresch and Noordergraaf [27]

presented a mathematical examination of how the cross-sectional configuration of a flexible

tube alters as the internal pressure fluctuates, with the intention of quantifying the collapse

event in veins.

Furthermore, several studies have demonstrated mathematical and experimental models

of collapsible tubes, considering fluid flow inside them. In 1982, both Bitbol et al. [28] and

Bertram et al. [21] conducted research on small scale collapsible tubes. Bitbol et al. focused
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on the fluid mechanics involved in the tube’s closure motion, while Bertram et al. presented

a simple mathematical model of the unsteady flow. A later study by Rosar and Peskin [29]

offered a 3D numerical model to simulate fluid flow through a flexible, collapsible tube using

the immersed boundary method.

1.2.5 Buckle propagation

The buckling propagation of cylindrical tubes under external pressure is a very special

instability problem and a topic of significant interest in the field of offshore pipeline engineer-

ing. The phenomenon refers to the propagation of local collapse in pipelines and other tubular

structures subjected to external pressure. When a buckle starts to propagate in a pipeline, it

requires a minimum pressure that is significantly lower than the collapse pressure the pipeline

is designed for. This leads to the buckle continuing to collapse a long section of the pipeline

unless there is an appropriate arresting device or the ambient pressure does not drop below

the minimum pressure level required for propagation [30].

There are several papers that collectively provide theoretical, experimental, and numeri-

cal approaches to scrutinize buckle propagation. In more details, Mesloh et al. [31] were the

first to report on this phenomenon and in 1975 Palmer and Martin [32] developed the initial

and simplest model to estimate the propagation pressure of a pipe, leading to a closed-form

expression. According to the work of Palmer and Martin [32], the equation approximating

the buckle propagation pressure is as follows.

Ppm =
π

4
σ0

(
t

R

)2

(1.1)

where σ0 is the plastic flow stress (yield stress), t is the pipeline thickness, and R is the

pipeline radius. Another study on the propagation pressure was carried out by Kyriakides

and Babcock [33]. They conducted a quantitative experimental study on aluminum tubes and

steel alloy tubes, and presented an empirical formula that considers the influence of the strain

hardening modulus E1 of the pipe, on the buckle propagation pressure.

Pk = σ0

[
10.7 + 0.54

(
E1

σ0

)](
t

2R

)2.25

(1.2)

Kamalarasa and Calladine [34] in 1988 provided a simple improvement of the formula of

Palmer and Martin, for the investigation of the pressure required for propagation of a buckle
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in a submarine pipeline, and presented experimental data to support it. Buckle propagation

phenomenon in pipes under external pressure was further investigated by Liang et al. [35]

utilizing experimental, theoretical and numerical approaches. The results showed that exter-

nal pressure drops to a specific value called buckle propagation pressure once a buckle is

initiated and remains constant at this value until the pipe is entirely flattened into a shape

resembling a ”dog bone”. Also, the study provided insight into the phenomenon through a

series of parametric studies using authenticated shell model and finite element model.

1.3 Collapse in metal tubes

The collapse under external pressure is a phenomenon that has been examined thoroughly

in the past. In the context of collapse under external pressure, an early experimental study has

been conducted by Kennedy and Venard [36]. The authors found that the graphical solution,

incorporating the Von Karman reduced modulus, effectively predicts the inelastic behavior of

thematerial (304 stainless steel) and agrees with test results of the experiment [36].Moreover,

Bai et al [37] conducted finite element analysis on long, thick-walled metal tubes under exter-

nal pressure, considering factors such as initial ovality, residual stress, and strain-hardening,

and validated their approach using experimental data. Multiple studies [38] have revealed

that such factors (geometric imperfections, material properties, material anisotropy, residual

stresses) influence the collapse response of pipes. However, it is noted, in the study of Yeh

and Kyriakides [39], that the most important factor for the definition of the collapse pres-

sure is the initial ovality of the tube. The authors came up to this conclusion combining both

experimental and analytical approach. Their cause was to predict the collapse pressure of

relatively thick pipes D/t ≈ 12–30, for the accuracy of which, it is a necessary prerequisite

to define the geometric and material parameters of the tubes [39].

1.4 Problem Statement

In the present thesis a finite element simulation of elastic cylindrical shells under exter-

nal pressure will be presented, motivated by the applications of this problem in biomedical

engineering. In more details, in Chapter 2 theory of tube collapse, buckling propagation, ex-

amined materials and initial imperfections is presented. In Chapter 3 the Modeling part is

exhibited, including the two and three dimensional models (2D and 3D) as well as the mod-

eling of the material utilized . In Chapter 4 a parametric investigation for material exponents
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(based on deformation theory), mesh density and element type employed to the base case

models is conducted. In Chapter 5 the results from the 2D analysis are provided. Afterwords,

in Chapter 6 the outcomes of the 3D slice and long tube models are cited. Finally, the con-

clusions drawn from this Diploma Thesis alongside recommendations for future research are

noted in Chapter 7 and Chapter 8 respectively.



Chapter 2

Theory of collapse under external

pressure

2.1 Buckling of a ring
In this section the buckling phenomenon (collapse) under external pressurisation will be

discussed. Consider a long tube subjected to compressive stress with a perfect circular geom-

etry. It is highly probable that the ring wall will reach a state of structural instability, resulting

in buckling and causing substantial deformation to the ring. As the pipe undergoes elastic de-

formation, the pressure incrementally increases in direct proportion to the displacement. Si-

multaneously, the circular cross-section contracts proportionally to the circumferential stress,

denoted by σθ = PR
t
. At a critical point, that can be noticed at stage I of figure 2.1 known

as the buckling pressure (Pcr), the pipe experiences a uniform, axially elongated oval-shaped

deformation, with w = a cos 2θ which is energetically favorable. While the tube can still

sustain the buckling pressure Pcr, its stiffness is significantly diminished, nearly approaching

zero. Consequently, the buckling pressure represents a limiting condition or a critical state

for the pipe’s structural integrity [40]. It can be proved that the Pcr can be computed from the

following classical analytical solution

Pcr =

(
2E

1− ν2

)(
t

Dm

)3

(2.1)

where Dm is the mean diameter, t is the pipe wall thickness, E is the Young’s modulus

and ν is the Poisson’s ratio.In the presence of initial imperfections, such as initial ovality, the

resistance of the pipe against collapse decreases as the amplitude of imperfection increases

indicating the sensitivity of buckling pressure to initial imperfections.

9
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Figure 2.1: The variation of external pressure P with volume change dV for a thick-walled

collapsible tube (D/t = 20) of nonlinear elastic material (Chapter 6).

2.1.1 Theoretical post-buckling

Budiansky [41] conducted a study on the initial post-buckling response of perfectly elastic

rings. Below are the analytical equations derived from this study.

P = Pcr

(
1 +

27

32
∆2

)
(2.2)

P = Pcr

(
1 +

9

16A0

∆A

)
(2.3)

where Αο is the initial area enclosed by the undeformed ring, and Δ is a parameter that de-

scribes the instant cross-sectional ovalization upon continuing deformation. The ovality pa-

rameter will be presented in more detail in section 2.4. Upon reaching the critical pressure,

Pcr, the ring undergoes elastic buckling.

2.2 Buckling Propagation

This section focuses in defining the propagation phenomenon and the propagation pres-

sure. As mentioned in subsection 1.2.5 the phenomenon of buckle propagation refers to the

propagation of local collapse in tubular structures, such as tubes, subjected to external pres-

sure. In further detail, after the collapse of the pipe’s cross-section, the deformation continues

and the pressure decreases. Once the cross-section is fully collapsed, with the top and bottom
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inner surfaces in contact, the pressure stops decreasing. At this point, depicted in stage II of

Figure 2.1, a slight increase in pressure may be observed before the propagation begins and

the pressure reaches a constant value in stage III of Figure 2.1. The propagation pressure (Pp)

is the minimum pressure needed for the propagation of a buckle. In Figure 2.1, the Pp is rep-

resented by the extended horizontal section of the P − ΔV curve following the ”touchdown”

point. It serves as a measure of the cylindrical shell’s strength against the phenomenon of

progressive flattering, which is determined by the material properties (yield stress) and the

diameter-over-thickness ratio. To prevent the buckling propagation in a tube, it is crucial to

ensure that the pressure remains below the value of Pp, otherwise, appropriate buckle arrestor

devices should be used.

As mentioned in subsection 1.2.5 over the years there have been many attempts to define

propagation pressure in the best possible way. One of the earliest estimates was produced

by Palmer and Martin [32]. In their approach, they made an assumption that the material

was rigid-plastic and exhibited perfect plastic behavior, with no hardening. The dissipated

plastic work within the cylinder was determined by considering a ring collapse mechanism,

which served as a representation of a specific cross-section of the cylinder during buckle

propagation.

2.2.1 Maxwell line

A more accurate estimate of the propagation pressure can be derived using a simple

two-dimensional model. Chater and Hutchinson [42] provided a prediction based in the two-

dimensional P-ΔΑ diagram and the balance of energy, which was more accurate than the one

proposed by equation 1.1. According to the principle of energy balance, the internal work

(Wint) must be equal to the external work (Wext). Therefore, according to the authors, the

value of buckle propagation can be determined graphically by considering a horizontal line

that divides P-ΔA diagram 2.2 into two equal areas (Area1=Area2), above and below it re-

spectively. The numerical formula can be derived by equating the worksWint = Wext, leading

to:

Pp =
1

∆A

∫ ∆A

0

(P dA) (2.4)
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Figure 2.2: Pressure-change of Area response, Mawell Line.

2.3 Material Theory

2.3.1 Deformation Theory

Deformation theory, or total strain theory [43], is a nonlinear elasticity theoretical material

model, that under small-displacement conditions, the stress is defined by the total mechanical

strain and does not depend on the loading history. The material model, initially proposed by

Hencky (1924) [44], posits an unambiguous one-to-one correlation between total strain and

total stress, implying that each value of total strain corresponds uniquely to a specific total

stress. The one-dimensional model is based on Ramberg-Osgood relationship as described in

ABAQUS documentation:

Eϵ = σ + α

(
|σ|
σ0

)n−1

σ (2.5)

where σ is the stress, ϵ is the mechanical strain, E is Young’s modulus, σ0 is the “yield” offset,

and n is the hardening exponent for the “plastic” (nonlinear) term (n>1).

2.3.2 Hyperelastic Materials

In the context of hyperelastic materials, the behavior is described through a ”strain energy

potential” that characterizes the amount of strain energy stored per unit of reference volume.

This potential is a function of the strain at a given point in the material. Various forms of

strain energy potentials exist to model approximately incompressible isotropic elastomers.
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These include the Arruda-Boyce form, Marlow form, Mooney-Rivlin form, Neo-Hookean

form, Ogden form, Polynomial form, Reduced Polynomial form, Yeoh form, and Van der

Waals form.

Among these options, the reduced polynomial and Mooney-Rivlin models can be seen

as specific cases of the polynomial model. The Yeoh and neo-Hookean potentials can be

considered special cases of the reduced polynomial model. When multiple experimental tests

are available, the Ogden and Van derWaals forms tend to provide better accuracy in fitting the

experimental results. However, if limited test data are available for calibration, the Arruda-

Boyce, Van derWaals, Yeoh, or reduced polynomial forms can still yield reasonable behavior.

In cases where only one set of test data (uniaxial, equibiaxial, or planar) is available, the

Marlow form is recommended [45].

In this particular thesis, the investigation focused onmodeling the material behavior with-

out access to experimental results. To address this limitation, Ogden form for simple exten-

sion was utilized [46]:

f1 =
∑
n

µn(λ
(an−1)
1 − λ

((−an/2)−1)
1 ) (2.6)

where λ is the stretch or extension ratio which approximately relates with the engineering

strain (e) with the expression λ = e+ 1.

2.4 Initial Imperfections

As mentioned in the section 1.3 of Chapter1, there are various factors that contribute to

the collapse of a tube, with one of the most significant being the presence of initial imperfec-

tions in the form of ovality. Ovality measures the extent of a ring’s deviation from a perfectly

circular shape. This initial ovality can be mathematically represented by the following ex-

pression [47].

wo(θ) = ω cos(2θ) (2.7)

where ω is the amplitude of initial oval shape as shown in Figure 2.3. As external pressure is

applied, it is anticipated that the amplitude will be increased.
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Figure 2.3: Initially ovalized ring.

A more general form of the oval shape of the ring’s cross-section is presented in the

following form

Dθ = D + 2ω cos(2θ) (2.8)

where Dθ is the external diameter of the ellipse at polar angle θ. The value of the initial ovality

(∆o) that will be applied in the 2D and 3Dmodels is calculated from the following expression

[39]:

∆o =
Dmax −Dmin

Dmax +Dmin
(2.9)

whereDmax is the maximum outer diameter of the ring andDmin the minimum. From equation

2.8 maximum and minimum diameters can be exported as:

Dmax = D + 2ω (2.10)

Dmin = D − 2ω (2.11)

substituting 2.10 and 2.11 to 2.9 is obtained that

∆o =
2ω

D
(2.12)

where 2/D is the ring’s external radius (R), so the final expression for the initial ovality of

the ring is

∆o =
ω

R
(2.13)



Chapter 3

Modeling

The modeling part of 2D and 3D dimensional models consists of a numerical modeling

part and anABAQUSmodeling part. The construction and analysis of all models took place in

ABAQUS software while the post-processing part was conducted using MATLAB. For the

numerical part, 2D and 3D slice and 3D long tube models with initial imperfections were

created, with different ovalities and variations in wall thickness, using the finite element

method. For the two-dimensional models, three different cases ofD/t (diameter-to-thickness

ratio) were examined (10, 20 and 40) across a range of ovality from 0.2% to 10% (0.2%, 0.5%,

0.7%, 1%, 5% and 10%). For the three-dimensional base case models, three different cases

of D/t were examined as well but with values equal to 12,20 and 30 only for 0.2% ovality.

Additionally, the application of ovality in models generated elliptical cross-sections in

the form of quadrants. Due to the double symmetry of the ring’s geometry, only a quarter

of the ring is needed for analysis and that’s exactly what was considered for all models. For

all the cases the same outer diameter (Dout) of 550mm was considered. This value refers to

very large diameter compared with the extremely small ones of elastic collapsible tubes (e.g

veins). Keeping the D/t ratio of the above values the results are also valid for small diameter

cases too. Equations 2.10, 2.11 and 2.13 from Section 2.4 were used, given the outer diameter

and changing the different ovality values, in order to export the dimensions for the modeling

of the tubes. Moreover, dimensions were reduced to the mean diameter (Dm) so, for the

processing part, all the results are considered to be in the mean diameter too. In Table 3.1 the

geometric characteristics of the ”perfect” five different cases of D/t that were investigated

in this thesis, are presented.

The values of the diameter-to-thickness ratio considered in this thesis were selected based

15
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on the study conducted byMarzo et al. [48]. The authors performed 3D numerical simulations

on thick-walled collapsible tubes. They noted that one of the assumptions of the Kirchhoff–

Love thin-shell theory is that the wall thickness of the tube is approximately 20 times smaller

than its radius. However, since a significant amount of experimental work focuses on thick-

walled tubes ([49], [50]), it is important to extend the analysis beyond thin-shell theory in 3D

numerical simulations. Thus, Marzo et al. investigated various cases with different thickness-

to-inner radius ratios. Specifically, they examined cases with ratios of 1/20, 0.1/5, and a

thinner case with t/Rin = 2/20. Based on the statement of Marzo et al. the diameter-to-

thickness ratios (D/t) for this study were selected to be 10, 12, 20, 30 and 40, corresponding

to thickness-to-inner radius (t/Rin) values of 0.22, 0.18, 0.11, 0.07 and 0.05, respectively.

The selection of the last two cases (D/t = 30, D/t = 40) closer to the upper limit of thin-

shell theory validity was motivated by the desire to explore the behavior of the tubes near the

boundary of thin-shell theory. Therefore, this range range utilized allows for a comprehensive

analysis that encompasses both thin and thick walled tubes.

Table 3.1: Tube Dimensions of ”perfect” cross-section for rings with D/t = 10, D/t = 12,

D/t = 20, D/t = 30 and D/t = 40.

D/t Dout (mm) Din (mm) Dm (mm) t (mm) Rout (mm) Rin (mm) Rm (mm)

10 550 450 500 50 275 225 250

12 550 465.38 507.69 42.31 275 232.69 253.845

20 550 497.62 523.81 26.19 275 248.81 261.90

30 550 514.52 532.26 17.74 275 257.26 266.13

40 550 523.17 536.59 13.41 275 261.59 268.29

3.1 Two-dimensional models
3.1.1 Numerical modeling for 2D models

For the two-dimensional cases, three different diameter-to-thickness ratios were exam-

ined (10,20 and 40) across a range of ovality from 0.2% to 10% (0.2, 0.5, 0.7, 1, 5 and 10).

In Tables 3.2, 3.3 and 3.4 are listed the dimensions that were utilized for the modeling of the

tubes with diameter-to-thickness ratio 10, 20 and 40 respectively.
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Table 3.2: Geometric characteristics of tubes with D/t = 10 when initial ovalities of

0.2%, 0.5%, 0.7%, 1%, 5% and 10% are applied.

D/t=10

∆ (%) Rout
min (mm) Rout

max (mm) Rin
min (mm) Rin

max (mm)

0.2 274.50 275.50 224.50 225.50

0.7 273.25 276.75 223.25 226.75

5.0 262.50 287.50 212.50 237.50

0.5 273.75 276.25 223.75 226.25

1.0 272.50 277.50 222.50 227.50

10.00 250.00 300.00 200.00 250.00

Table 3.3: Geometric characteristics of tubes with D/t = 20 when initial ovalities of

0.2%, 0.5%, 0.7%, 1%, 5% and 10% are applied.

D/t=20

∆ (%) Rout
min (mm) Rout

max (mm) Rin
min (mm) Rin

max (mm)

0.2 274.48 275.52 248.29 249.33

0.7 273.17 276.83 246.98 250.64

5.0 261.90 288.10 235.71 261.90

0.5 273.69 276.31 247.50 250.12

1.0 272.38 277.62 246.19 251.43

10.0 248.81 301.19 222.62 275.00

Table 3.4: Geometric characteristics of tubes with D/t = 40 when initial ovalities of

0.2%, 0.5%, 0.7%, 1%, 5% and 10% are applied.

D/t=40

∆ (%) Rout
min (mm) Rout

max (mm) Rin
min (mm) Rin

max (mm)

0.2 274.46 275.54 261.05 262.12

0.7 273.12 276.88 259.71 263.46

5.0 261.59 288.41 248.17 275.00

0.5 273.66 276.34 260.24 262.93

1.0 272.32 277.68 258.90 264.27

10.0 248.17 301.83 234.76 288.41
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3.1.2 ABAQUS modeling for 2D models

The goal of this thesis is to simulate the behaviour of a tube under the application of exter-

nal pressure. ABAQUS Standard Software was utilized, in order to create two-dimensional

ring models with initial imperfection in the form of ovality, and MATLAB was used for the

post-processing procedure. The model consists of two parts, a two-dimensional deformable

body (part 1. in Figure 3.1) that represents the elliptical quadrant and a two-dimensional

analytical rigid body (part 2. in Figure 3.1) that is essential for the restriction of the ring’s

movement. For the modeling of the deformable part a very dense mesh was employed in all

cases. More specifically, 100 elements were applied in the circumferential direction for both

D/t = 10 and D/t = 20 cases, and 130 elements for the D/t = 40. In the direction of the

thickness, 20, 10 and 7 elements were considered for the D/t ratios 10, 20 and 40 respec-

tively. Therefore, the three models were discretized by 2000, 1000 and 910 total number of

elements.The descretization for all ring models was made with ”CPE4R” elements, which

stands for four-node, reduced-integration, plane-strain elements.

In addition the boundary conditions that were applied to the quadrant elliptic models

were ”YSYMM” at the bottom side and ”XSYMM” at the top side and ”ENCASTRE” at a

reference point ”RP” of the rigid body. Analytically, ”YSYMM” ensured the restriction of

the quadrant’s displacement in the y direction and it’s rotation about x and z axes, while the

”XSYMM” restricted the movement in x direction and the rotation about y and z axes. Ad-

ditionally, when the quadrant starts to buckle, the movement of it’s top side in the negative y

axis is limited by the two-dimensional analytical rigid surface, as mentioned in the beginning

of this paragraph. Thus, in order to restrict the displacements and the rotations of the rigid

body, it is necessary to include the ”ENCASTRE” boundary condition at an already defined

«Reference Point (RP)» of it.

Subsequently, the contact interaction between the two parts had to be defined. For that

purpose, the ”surface-to-surface” method was utilized, with the ”master surface” to stand for

the analytical rigid surface and the ”slave surface” for the inner surface of the ring. As for

the interaction properties of the contact, in order to avoid the translation of the ring through

the rigid body, ”Tangential Behavior” with ”Penalty” formulation, ”Isotropic” directionality

and friction coefficient equal to zero were applied. Also, ”Normal Behavior” was added to

the contact properties, and the pressure-overclosure was selected to be ”Hard Contact”.

Afterwards, a ”Step” needed to be included with the purpose of defining the method
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that the analysis of the ring will follow. ”Static,Ricks” method was selected so that the pre-

buckling response, the collapse pressure, and the unstable post-buckling response could be

obtained. As for the incrementation of the method, estimated total arc length was defined

equal to one and the maximum number of increments and the arc length increment depended

on each case and changed continuously in order to obtain the desirable outcome of the ring’s

collapse. Finally, the external pressure was applied on the outer surface of the quadrant, with

”Uniform” distribution and magnitude equivalent to 0.003.

Figure 3.1: The two-dimensional slice model ofD/t = 20 with 100 elements in the circum-

ferential direction and 10 elements in the direction of thickness.

3.2 Three-dimensional base case models

3.2.1 Numerical modeling for 3D slice and 3D long tube models

For the construction of three-dimensional slice and long tubemodelswithD/t = 12, D/t =

20 andD/t = 30 were considered with an imperfection of initial ovality 0.2%. For the three-

dimensional cases, the longitudinal length was deemed to be forty times the diameter of the

tube (L = 40D). The geometric characteristics of them without the application of initial

ovality are presented in Table 3.5 and without the initial ovality in Table 3.1.
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Table 3.5: Geometric characteristics of tubes withD/t = 12, D/t = 20 andD/t = 30 when

initial ovality equal to 0.2% is applied.

∆ = 0.2 % Rout
min (mm) Rout

max (mm) Rin
min (mm) Rin

max (mm)

D/t=12 274.49 275.51 232.18 233.20

D/t=20 274.48 275.52 248.29 249.33

D/t=30 274.47 275.53 256.73 257.79

3.2.2 ABAQUS modeling for 3D slice models

Similarly to the two-dimensional, three-dimensional models also consists of two parts, a

deformable body (part 1. in Figure 3.2) and an analytical rigid body (part 2. in Figure 3.2)

except that in this case they are expanding in z direction while serving the same purpose.

Commencing with the meshing aspect of ABAQUS modeling, the mesh for the 3D slice

models consisted of 25 elements in the circumferential direction, 3 elements in the thickness

direction, and 1 element in the longitudinal direction. This discretization approach resulted

in a total of 75 elements. The applied mesh can be obtained in Figure 3.2. Additionally, for

all the models, a longitudinal length of L=40mm was used as a consistent parameter. The

boundary conditions applied to the slice models were ”XSYMM” at the top side of the model

along z direction to restrict the displacements x direction and node rotations about the y and z

axes, ”YSYMM” to the boundary nodes of the bottom side to constrain the displacements in y

direction and rotations about the x and z axes. Also, ”ZSYMM” boundary condition was im-

plemented at the cross sections of planes Z=0 and Z=40mm in order to avoid displacements in

z direction and rotations about the x and y axes. Last boundary condition was ”ENCASTRE”

that was applied in a ”Reference Point” (RP) that was placed in the analytical rigid surface

in order to restrict it’s displacements and rotations. The analysis follows a similar approach

as the one explained in Section 3.1.2, utilizing a two-step incremental process. The collapse

pressure is computed incrementally using the Riks’ continuation algorithm in the second step

of the analysis.
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Figure 3.2: The three-dimensional slice model of D/t = 20 used in the finite element anal-

yses of D/t = 12 and D/t = 30 also.

3.2.3 ABAQUS modeling of 3D long tube models

ABAQUS software was utilized for the modeling of three-dimensional models, similar

to its application in two-dimensional counterparts and the results extracted were processed in

MATLAB. The three-dimensional long tube models consisted of two parts a 3D deformable

body (part 1. in Figure 3.3) and an analytical rigid body (part 2. in Figure 3.3) just like the

three-dimensional slice case. In more details, the deformable body, considering that its a very

long pipe that in a specific spot has an imperfection of elliptical shape, was modeled with

one ”perfect” cross-section in the one side and one ”imperfect” with ovality in the other. The

ovality applied was 0.2% for each model and the cases examined had diameter to thickness

ratio 12, 20 and 30. The longitudinal length chosen was L=40D for every case. Also, the

three boundary conditions of the two-dimensional models are valid for all three-dimensional

models extended in the 3-dimensional space, i.e. in the z direction. To the boundary conditions

are also considered the symmetry ”ZSYMM”, applied to the ovalized side of the pipe, and
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symmetry ”ENCASTRE” to the opposite-with ”perfect” cross section-side. In more details

the ”ZSYMM” constrained the displacements in the z axis and zero rotation about y and

z axes, while ”ENCASTRE” guaranteed that the ”perfect” side of the ring would remain

undeformed. In addition, for the meshing part of the modeling, all three-dimensional cases

of D/t consisted 25 elements in the circumferential and 3 elements in the through-thickness

direction. As for the axial direction, 250 elements were applied, so the models are descritized

by 18750 elements totally. The discretization for the models was performed using ”C3D20R”

elements, as determined through the investigation of 3D slice analysis discussed in Section

4.2.2. Also, the contact interaction, the interaction properties, the additional ”Step” and the

definition of external pressure are implemented exactly as the ones stated in subsection 3.1.2

for two-dimensional models.

Figure 3.3: The three-dimensional long tube model of length L = 40D and D/t = 20 used

in the finite element analyses of pipes with D/t = 12 and D/t = 30 also.

3.3 Material modeling

The material considered for the modeling part in ABAQUS interface was deformation

theory. Deformation theory is an idealized material model that represents nonlinear elastic

response and the stress-strain curve is given by equation 2.5. The aim of this thesis was to

develop models capable of simulating biological tubular structures found in living organisms,

such as veins, arteries, upper airways, and other similar biological tubular systems. Based on

existing literature, it was determined that collapsible tubes could be effectively represented

using hyperelastic materials like silicone rubber [1], considering the potential for significant
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displacements and strains in the tube walls. The objective was to use a material that exhibits

small deviations from the linear elastic stress-strain curve for a logarithmic strain range of

10.1−36.41.4% and stress range 128-652 kPa. These ranges were exported for the condition

of contact when the collapse occurs for 3D slice models that are presented in Chapter6. In

these ranges, both hyperelastic and deformation theory material model, for specific values

of exponent, fulfilled the requirement of small deviations. Also, deformation theory in small

stress-strain ranges can be considered as the first part of a hyper-elastic material. However,

after conducting research on Ogden hyperelastic model, it was concluded that local instabil-

ities didn’t appear, but rather resulted in uniform collapse.

So, in order to investigate the buckling propagation phenomenon, deformation theory was

adopted as theoretical nonlinear elastic material model because local instabilities occur in this

case. The values of parameters utilized in this thesis encompassed a Young’s Modulus of 3.43

MPa, a Poisson’s ratio of 0.4 [1], a proportional limit stress of 0.004, and a proportional limit

offset of 0.00631, spanning across a range of exponents (n) selected as 2, 2.4, 2.6, 2.8 and

2.9. The selection of these exponents is discussed in Section 4.1 analytically.
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Figure 3.4: Stress-Strain figure with material exponents of Deformation theory utilized for

the base case models.
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Figure 3.5: Stress-Strain figure with Ogden hyperelastic formula compared with the selected

material exponents of deformation theory model material.
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Figure 3.6: Stress-Strain figure with Ogden hyperelastic formula compared with the selected

material exponents of deformation theory model material for a wider range.
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TheOgden formula utilized for this investigationwas extracted from ” The physics of rub-

ber elasticity ” of Treloar [46] and its described in Section 2.3.2. The personalized parameters

for the Ogden formula were chosen to be for n=4 : α1 = 2 , µ1 = 1.2 , α2 = 5 , µ2 = 0.05

, α3 = 3 , µ3 = −0.1, α4 = −5 , µ4 = 0 in order the stress-strain curve to have similar

behavior with the picked material exponents of deformation theory model material for the

examined range. For a wider range it is observed that Ogden formula’s behavior changes, as

shown in Figure 3.6. The stress-strain of Ogden formula compared with deformation theory

exponents is presented in Figure 3.5.
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Parametric Investigation

This chapter demonstrates the examination that was conducted for the decision-making

process, regarding the production of the base case models that are analytically presented

in Section 3.2. Firstly, a parametric investigation on the material exponents of deformation

theory model material is exhibited. Subsequently, four element types will be examined in

order to ascertain which of is more accurate.Finally, two meshes with different densities will

be tested with the purpose of determining if the difference in density affects the propagation

pressure.

4.1 Material exponents

A parametric study has been conducted in order to investigate the effect of exponent(n) in

the parameters of deformation theory model material. In more details, utilizing the Ramberg-

Osgood relationship, described in Section 2.3.1, eight different values of exponent (2, 2.4,

2.6, 2.8, 2.9, 3, 3.1, 3.5) were tested and compared with Linear Elastic curve. The results

are presented in Figure 4.1, illustrating that as the material exponent decreases, the tangent

modulus undergoes an increase. This leads to the stress-strain response approaching the linear

elastic curve and exhibiting similar behavior.

Additionaly, the eight different values of exponent were tested for the three-dimensional

slice model with diameter-over-thickness ratio 12, the constuction of which was outlined

in section 3.2.1. The response obtained by varying the exponents, while keeping the other

parameters of deformation theory constant, is presented in the following Figures.

26
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Figure 4.1: Stress-Strain figure with the material exponents of Deformation theory that were

investigated.
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Figure 4.2: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 2.
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Figure 4.3: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 2.4.
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Figure 4.4: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 2.6.
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Figure 4.5: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 2.8.
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Figure 4.6: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 2.9.
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Figure 4.7: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 3.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

da/ao

0

0.5

1

1.5

2

2.5

3

P
 [k

P
a]

Pp = 1.34 kPa

Deformation Theory, n=3.5
Maxwell Line

Figure 4.8: Pressure-change of area response for the slice with D/t = 12, initial ovality

0.2% and material exponent n = 3.5.
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From the results of the material exponents above it is concluded that exponent with value

n = 2 is the one exhibiting smaller deviations from Linear Elastic curve. However,from ana-

lyzing the response derived from the 3D slice analysis for D/t=12 in Figure 4.2, it is observed

that the post-buckling behavior is significant enough so that the propagation pressure cannot

be predicted using the Maxwell line. Additionally, in the analysis of the same model and

same case (D/t=12, n=2) in the 3D long tube, as discussed in Chapter 6, it is noted that the

propagation pressure can be marginally derived. Therefore, for the purpose of investigating

deformation theory material exponents in this thesis and distinguish possible limit cases, val-

ues equal to 2, 2.4, 2.6, 2.8 and 2.9will be examined, while excluding the 3, 3.1 and 3.5 cases

because of their big deviation from linear-elastic case exhibited in Figure 4.1.

4.2 Element Type Investigation

In this section the examination of the element typed used in the base case models (D/t =

12, D/t = 20, D/t = 30) presented in Chapter 3, is exhibited. Specifically, four element

types were employed: C3D8, C3D8R, C3D20R, and SC8R. The C3D8 elements represent

8-node linear brick elements of full integration, C3D8R denotes 8-node linear brick elements

of reduced integration, C3D20R refers to 20-node quadratic brick elements with reduced

integration, and SC8R represents 8-node quadrilateral in-plane general-purpose continuum

shell elements with reduced integration.

4.2.1 Three-dimensional slice modeling

For the investigation an elastic three-dimensional slice ofD/t = 40 was considered with

initial ovality 0.2%. The geometric characteristics of slices without the application of ini-

tial ovality are presented in Table 4.1, and without the initial ovality in Table 3.1. Also, the

material of the models was assumed to be elastic, characterized by the following parame-

ters: Young’s Modulus (E) of 3.43 MPa and Poisson’s ratio (ν) of 0.4. The remainder of the

ABAQUSmodeling process, regarding the boundary conditions, the analysis and the creation

of the ”Steps” follows the same procedures outlined in Section 3.2.2.

Table 4.1: Geometric characteristics of three-dimensional slices withD/t = 40 when initial

ovality is applied.

∆ (%) Rout
min (mm) Rout

max (mm) Rin
min (mm) Rin

max (mm)

0.20 274.46 275.54 261.05 262.12
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4.2.2 Results of element investigation

For the discretization with eight-node biquadratic plane strain finite elements of reduced

and full integration, which are denoted in ABAQUS as C3D8 and C3D8R, the correspond-

ing pressure-change of area responses are shown in Figures 4.9 and 4.10 respectively. Fur-

thermore, the slopes of the post-buckling region for the responses of SC8R, C3D20R can

be obtained in Figures 4.11 and 4.12 respectively. The theoretical post-buckling analytical

curve 2.3 is included in figures for comparison with the plots derived from the numerical

results. For the construction of all figures numerical results were extracted from ABAQUS

and processed in MATLAB.

Based on the responses of the following figures, it can be concluded that the C3D20R

element type performs better than S3D8, C3D8R, and SC8R element types. This conclusion

is drawn from observing that the slope of the post-buckling region of the C3D20R element

type is closer to the theoretical post-buckling curve compared to the other cases. Therefore,

C3D20R element type was utilized for the construction of the base case models.
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Figure 4.9: Pressure-change of area response of C3D8 finite element type for the elastic ring

of D/t = 40 with initial ovality 0.2% compared with the theoretical post-buckling curve.
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Figure 4.10: Pressure-change of area response of C3D8R finite element type for the elastic

ring ofD/t = 40with initial ovality 0.2% compared with the theoretical post-buckling curve.
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Figure 4.11: Pressure-change of area response of SC8R finite element type for the elastic ring

of D/t = 40 with initial ovality 0.2% compared with the theoretical post-buckling curve.
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Figure 4.12: Pressure-Pressure-change of area response of C3D20R finite element type for

the elastic ring of D/t = 40 with initial ovality 0.2% compared with the theoretical post-

buckling curve.

4.3 Mesh Investigation

4.3.1 Modeling

In this section, the focus is on examining and discussing the mesh density for the base

case models. A three-dimensional slice model was chosen for this examination to obtain

quicker and more convenient results. The analysis in this section utilizes a model discussed

in Section 3.2.1 with diameter-over-thickness ratio of 30 and material as described in 3.3 with

exponent value of n = 2.6, Young Modulus of 3.43MPa, Poisson’s ratio of 0.4, yield stress

of 0.004, and yield offset of 0.00631. Based on the findings from the previous section, it was

determined that the C3D20R element type is the most suitable and accurate choice. So for

the investigation regarding the mesh density, the element type remains constant, i.e. C3D20R.

However, two different cases were studied, each with a varying number of elements in the

hoop and width directions. In more details, for the first case, 25 elements were considered

for the hoop direction and 3 for the thickness direction. For the second case, a denser mesh

was employed, consisting of 40 elements in the circumferential direction and 5 elements by

thickness.
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4.3.2 Results of mesh density investigation

The response of the two different cases of mesh density that were investigated is visu-

ally presented in the following figures. In order to perform a comparison between them, the

estimation of propagation pressure with Maxwell line, as described in Section 2.2.1, was

utilized.

From the results of the mesh density investigation in can be concluded that both cases

work correctly, with the results in the prediction of propagation pressure to be same for both

cases (Figures 4.13 and 4.14). For validation of this conclusion, Figure 4.15 which combines

the two responses has been conducted, where it can be obtained that the curves coincide.

Consequently, for the construction of the base case models, a mesh density of 25 elements

in the circumferential direction and 3 elements in the thickness direction was chosen. This

selection was made for the sake of convenience and speed in analyzing the 3D models.
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Figure 4.13: Pressure-change of area response for the slice with D/t = 30, initial ovality

0.2%, exponent n = 2.6 and mesh consisting of 40 elements in the circumferential and 5

elements in thickness direction.
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Figure 4.14: Pressure-change of area response for the slice with D/t = 30, initial ovality

0.2%, exponent n = 2.6 and mesh consisting of 25 elements in the circumferential and 3

elements in thickness direction.
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Figure 4.15: Comparison of Pressure-change of area responses for the slices withD/t = 30,

initial ovality 0.2%, exponent n = 2.6 and mesh consisting of 25,3 and 40,5 elements in the

circumferential and in thickness direction respectively.



Chapter 5

Results for 2D elastic models
In this Chapter the results for the 2D models described in section 3.1 will be presented.

The responses of every geometry examined, namelyD/t = 10, D/t = 20 andD/t = 40 are

depicted in Figures 5.1, 5.2 and 5.3 respectively. The sensitivity of each tube’s response is

examined in terms of the initial ovalities embed to the system. These imperfections encap-

sulate the geometry’s deviation from the perfect circle. For every case the plot includes the

response of the material for initial ovalities of 0.2%, 0.5%, 0.7%, 1%, 5% and 10%, alongside

the response for a perfect cylindrical tube described from Budiansky [41]. The axis have been

non dimensionalized based on the value for buckling pressure (Pcr 2.1) and the initial value

for the volume enclosed by the tube. An extensive analysis of the results is being conducted

in Chapter 7.
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Figure 5.1: Responses of ovalities 0.2%, 0.5%, 0.7%, 1%, 5% and 10% for D/t = 10 com-

pared with Theoretical Post-Buckling curve.
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Figure 5.2: Responses of ovalities 0.2%, 0.5%, 0.7%, 1%, 5% and 10% for D/t = 20 com-

pared with Theoretical Post-Buckling curve.
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Figure 5.3: Responses of ovalities 0.2%, 0.5%, 0.7%, 1%, 5% and 10% for D/t = 40 com-

pared with Theoretical Post-Buckling curve.



Chapter 6

Results for 3D Base Case Models

In this Chapter the results from the 3D slices and 3D long tube base case models that are

described in section 3.2 will be presented. In more details, the estimated propagation pressure

will be imported from the three-dimensional slices and long tube models for the three differ-

ent cases of diameter-over-thickness ratio (D/t = 12, D/t = 20, D/t = 30) when ovality of

0.2% is implemented. Subsequently, a comparative assessment will be conducted, juxtapos-

ing the propagation pressure estimates derived from 3D long tubes with those obtained from

the slice-based approach. Also, contact conditions of propagation for 3D long tube models

will be exhibited.

6.1 Three-dimensional slice results
Based on the numerical modeling of 3D slice models that was presented in section 3.2.1,

analysis with ABAQUS numerical framework (Section 3.2.2), has been conducted in order

to obtain the response and extract an estimation for propagation pressure of each case.

6.1.1 Estimation of propagation pressure for 3D slice models

For the estimation of the propagation pressure in three-dimensional slice models the the-

ory of Maxwell line, that was described analytically in section 2.2.1, was utilized. The results

for the case of diameter-over-thickness ratio equal to 12 with material exponents 2.4, 2.6, 2.8

and 2.9 have already presented in Section 4.1, were an examination on the exponents was

conducted in order to decide what values will be more suitable for utilizing for the base cases

of this thesis. Thus, in the following figures the results for the other two cases withD/t = 20

and D/t = 30 will be exhibited.
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Figure 6.1: Pressure-change of area response for slice with D/t = 20, initial ovality 0.2%

and material exponent n = 2.4.
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Figure 6.2: Pressure-change of area response for slice with D/t = 20, initial ovality 0.2%

and material exponent n = 2.6.
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Figure 6.3: Pressure-change of area response for slice with D/t = 20, initial ovality 0.2%

and material exponent n = 2.8.
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Figure 6.4: Pressure-change of area response for slice with D/t = 20, initial ovality 0.2%

and material exponent n = 2.9.
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Figure 6.5: Pressure-change of area response for slice with D/t = 30, initial ovality 0.2%

and material exponent n = 2.4.
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Figure 6.6: Pressure-change of area response for slice with D/t = 30, initial ovality 0.2%

and material exponent n = 2.6.
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Figure 6.7: Pressure-change of area response for slice with D/t = 30, initial ovality 0.2%

and material exponent n = 2.8.
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Figure 6.8: Pressure-change of area response for slice with D/t = 30, initial ovality 0.2%

and material exponent n = 2.9.
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The estimations of propagation pressure (Pp) for the base case 3D slice models, using a

constant mesh (h = 25, t = 5, l = 1) and element type C3D20R, across different material

exponents are summarized in Table 6.1. Responses for each case of D/t with different material

exponents, presented above, have been merged in Figures 6.9, 6.10 and 6.11 for casesD/t =

12, D/t = 20 and D/t = 30 respectively.

Table 6.1: Propagation Pressure Values (Pp) for DifferentD/tRatios andMaterial Exponent

values.

Pp (kPa) n = 2.4 n = 2.6 n = 2.8 n = 2.9

D/t=12 3.23 2.70 2.27 2.09

D/t=20 0.82 0.72 0.62 0.58

D/t=30 0.27 0.24 0.22 0.21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

da/ao

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

P
 [k

P
a]

2 2.4 2.6 2.8 2.9

Figure 6.9: Pressure-change of area responses for slice models with D/t = 12 and initial

ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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Figure 6.10: Pressure-change of area responses for slice models with D/t = 20 and initial

ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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Figure 6.11: Pressure-change of area responses for slice models with D/t = 30 and initial

ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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6.1.2 Mises Stresses and Logarithmic Strains

From the analyses of the base case three-dimensional slice models Mises Stress and log-

arithmic strain have also been exported for the condition of contact when the collapse occurs.

The findings of these peak values are revealed in the Table 6.2 that follows.

Table 6.2: Comparison of Mises Stress and Logarithmic Strain for DifferentD/t Ratios and

Material Exponents for the condition of collapse in 3D slice models.

Exponent
D/t=12 D/t=20 D/t=30

(n) Mises [kPa] log strain [%] Mises [kPa] log strain [%] Mises [kPa] log strain [%]

2 652 26.4 407 14.7 293 10.1

2.4 361 ↓ 32.5 ↑ 259 ↓ 17.1 ↑ 216 ↓ 12.5 ↑

2.6 276 ↓ 36.1 ↑ 206 ↓ 19.3 ↑ 177 ↓ 13.9 ↑

2.8 216 ↓ 39.5 ↑ 167 ↓ 21.6 ↑ 146 ↓ 15.6 ↑

2.9 193 ↓ 41.4 ↑ 143 ↓ 19.9 ↓ 128 ↓ 14.9 ↓

6.2 Three-dimensional long tubes results

In this section, the Pressure-Change of area responses from the base case three-dimensional

long tube models, as discussed in Section 3.2.3, will be presented. Additionally, estimations

for the propagation pressure of each case will be provided.

6.2.1 Estimation for propagation pressure of 3D long tube base case

models

For the approximation of propagation pressure in three-dimensional long tube models the

theory presented in section 2.2 was utilized. Particularly, in Figure 2.1 it can be observed that

pressure reaches a constant value in stage III which determines propagation pressure. Figures

6.12 - 6.26 present the responses for D/t = 12, D/t = 20, and D/t = 30 across a range

of material exponent values 2.4, 2.6, 2.8, and 2.9. The configuration stages from the three-

dimensional collapse (Stage I) until the propagation reaches the end where boundary condi-

tions are applied (Stage V) are extracted from the ODB file which resulted from ABAQUS

analysis. These stages, for the cases with D/t = 20, n = 2.6 and D/t = 30, n = 2 are

illustrated in Figures 6.27 and 6.28 respectively.
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Figure 6.12: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.
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Figure 6.13: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.4.
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Figure 6.14: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.6.
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Figure 6.15: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.8.
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Figure 6.16: Pressure-change of volume response for tube with D/t = 12, initial ovality

0.2% and material exponent n = 2.9.
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Figure 6.17: Pressure-change of volume response for tube with D/t = 20, initial ovality

0.2% and material exponent n = 2.
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Figure 6.18: Pressure-change of volume response for tube with D/t = 20, initial ovality

0.2% and material exponent n = 2.4.
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Figure 6.19: Pressure-change of volume response for tube with D/t = 20, initial ovality

0.2% and material exponent n = 2.6.
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Figure 6.20: Pressure-change of volume response fortube with D/t = 20, initial ovality

0.2% and material exponent n = 2.8.
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Figure 6.21: Pressure-change of volume response for tube with D/t = 20, initial ovality

0.2% and material exponent n = 2.9.
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Figure 6.22: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.
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Figure 6.23: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.4.



6.2.1 Estimation for propagation pressure of 3D long tube base case models 53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

dV/Vo

0

0.05

0.1

0.15

0.2

0.25

0.3

P
 [k

P
a]

Pp = 0.24 kPa

Deformation Theory, n=2.6

Figure 6.24: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.6 .
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Figure 6.25: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.8.
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Figure 6.26: Pressure-change of volume response for tube with D/t = 30, initial ovality

0.2% and material exponent n = 2.9.
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Figure 6.27: The numerical simulations of the sequence of buckle propagation phenomenon

for the corresponding (1)-(5) stages of pressure-change in volume response (D/t = 20, n =

2.6).
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Figure 6.28: The numerical simulations of the sequence of buckle propagation phenomenon

for the corresponding (1)-(5) stages of pressure-change in volume response (D/t = 30, n =

2).
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The estimations of propagation pressure (Pp) for the base case 3D long tube models,

using a constant mesh (h = 25, t = 5, l = 250) and element type C3D20R, across different

material exponents are summarized in Table 6.3. Responses for each case of D/t with different

material exponents, presented above, have been merged in Figures 6.29, 6.30 and 6.31 for

cases D/t = 12, D/t = 20 and D/t = 30 respectively.

Table 6.3: Propagation Pressure Values (Pp) for Different D/t Ratios and n Exponents.

Pp (kPa) n = 2 n = 2.4 n = 2.6 n = 2.8 n = 2.9

D/t=12 4.30 3.25 2.70 2.26 2.08

D/t=20 0.97 0.82 0.72 0.62 0.58

D/t=30 - 0.27 0.24 0.22 0.21
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Figure 6.29: Pressure-change of volume responses for 3D long tube models with D/t = 12

and initial ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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Figure 6.30: Pressure-change of volume responses for 3D long tube models with D/t = 20

and initial ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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Figure 6.31: Pressure-change of volume responses for 3D long tube models with D/t = 30

and initial ovality 0.2% varying in material exponent values 2.4, 2.6, 2.8 and 2.9.
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6.2.2 Comparison results of C3D20R and SC8R Element types

Chapter 3 of the thesis involved an examination of the element type utilized for the base

case models. The investigation revealed that the element types C3D20R and SC8R are the

most appropriate for the base case models in this thesis with C3D20R type the final option.

In order to facilitate comparison, a model with a diameter-to-thickness ratio of 12, similar

to the base case model, but employing the SC8R element type was created. This model was

then evaluated for material exponents of 2.4, 2.6, 2.8 and 2.9. The results of the analysis are

exhibited in the following Figures. Consequently, the estimations of propagation pressure and

contact conditions of propagation, along with the corresponding results that came up from

the analysis of the base case model (Section 6.2.1), are summarized in the Table 6.4.

Table 6.4: Comparison of Contact Conditions and Propagation Pressure (Pp) for Different

D/t Ratios and Element Types

D/t=12
C3D20R SC8R

Contact Pp [Pa] Contact Pp [Pa]

n=2.4 No 3245.98 No 2898.64

n=2.6 Yes 2701.07 Yes 2440.43

n=2.8 Yes 2262.00 Yes 2059.94

n=2.9 Yes 2080.56 Yes 1898.36

Table 6.5: Contact Conditions for Different D/t Ratios and Material Exponents

Contact D/t=12 D/t=20 D/t=30

n=2 No No No

n=2.4 No No No

n=2.6 Yes No No

n=2.8 Yes Yes No

n=2.9 Yes Yes Yes
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Figure 6.32: Pressure-change of volume response for the tube withD/t = 12, initial ovality

0.2%, SC8R elements and material exponent n = 2.4.
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Figure 6.33: Pressure-change of volume response for the tube withD/t = 12, initial ovality

0.2%, SC8R elements and material exponent n = 2.6.
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Figure 6.34: Pressure-change of volume response for the tube withD/t = 12, initial ovality

0.2%, SC8R elements and material exponent n = 2.8.
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Figure 6.35: Pressure-change of volume response for the tube withD/t = 12, initial ovality

0.2%, SC8R elements and material exponent n = 2.9.
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6.2.3 Contact conditions

For the three-dimensional long tube base case models an investigation on the contact

conditions of propagation has been performed. In particular, in some of the long tubes studied,

collapse and propagation were observed to occur without contact. The results are displayed

in Table 6.5.

6.3 Summarized results for 3D slice and long tube models

For comparison causes between the three-dimensional slicemodels and three-dimensional

long tube models Tables 6.6, 6.7 and 6.8, for D/t equal to 12, 20 and 30 respectively, were

constructed. The Tables presented in this section provide a summary of the estimated prop-

agation pressure, in Pa units, and contact conditions for each case, excluding the case with

a material exponent of 2. The reason for excluding this specific case will be discussed in

Chapter 7. Also in the following Tables a ”diff” value is being calculated which determines

a percentage of the difference between the estimated propagation pressure of 3D slice and

long tube models and its calculated from the equation:

Diff(%) =

∣∣∣∣∣P (3D)
p − P

(slice)
p

P
(slice)
p

∣∣∣∣∣× 100

Table 6.6: Comparison of 3D slices and long tubes propagation pressure values (Pp) for

D/t = 12 across a range of material exponent values.

D/t=12

Pp (Pa) n=2.4 n=2.6 n=2.8 n=2.9

slice 3226.57 2699.34 2267.54 2085.48

3D 3245.98 2701.07 2262.00 2080.56

Diff % 0.60 0.06 ↓ 0.24 ↑ 0.24

Contact No Yes Yes Yes
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Table 6.7: Comparison of 3D slices and long tubes propagation pressure values (Pp) for

D/t = 20 across a range of material exponent values.

D/t=20

Pp (Pa) n=2.4 n=2.6 n=2.8 n=2.9

slice 818.20 716.42 619.00 575.95

3D 824.85 720.29 620.65 577.34

Diff % 0.81 0.54 ↓ 0.27 ↓ 0.24 ↓

Contact No No Yes Yes

Table 6.8: Comparison of 3D slices and long tubes propagation pressure Values (Pp) for

different D/t = 30 ratio across a range of material exponent values.

D/t=30

Pp (Pa) n=2.4 n=2.6 n=2.8 n=2.9

slice 266.88 244.16 218.46 205.82

3D 269.09 245.00 218.81 206.09

Diff % 0.83 0.34 ↓ 0.16 ↓ 0.13 ↓

Contact No No No Yes



Chapter 7

Conclusions and Discussion
The focus of this thesis revolves around the investigation of collapse and buckle propaga-

tion phenomena in collapsible tubes for biomedical applications. The numerical framework of

ABAQUS was employed to analyze two-dimensional elastic models and three-dimensional

slice and long tube models as base cases, aiming to understand their behavior under external

pressure.MATLABwas used for data processing and analysis. In this section, the conclusions

derived from this study will be exhibited. Starting with the conclusions for two-dimensional

elastic models, and subsequently with the conclusions from the analysis of three-dimensional

slice models and three-dimensional long tube models. Finally, a comparison between the 3D

slice and long tube models will be presented.

7.1 Conclusions for 2D models

In Chapter 5 are presented the responses derived from the analysis of the two-dimensional

elastic models. Figures 5.1, 5.2 and 5.3 illustrate the impact of initial ovality on the pre-

buckling and post-buckling behaviors of cases with D/t = 10, D/t = 20, and D/t = 40

respectively, when various initial ovalities are applied. The plots also feature the analytical

post-buckling curve 2.3 for the ideal ring case. The conclusion that can be exported from

these figures is that, as the initial imperfection value increases, the deviation of the collapse

pressure from curve of the ideal case also increases leading to the softening of the ring and

collapsing at lower pressures.

7.2 Conclusions for 3D slice models

In Chapter 3 an analytical study on three-dimensional slice models is presented. The

study involved the construction of three slice models with different diameter-to-thickness
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ratios (12, 20, 30), and these models were subjected to analysis using various material expo-

nents (2, 2.4, 2.6, 2.8, 2.9). Moving forward, section 6.1 presents the results obtained from

the analysis of these models. The responses for all cases were monitored until the tube walls

made contact. The analysis led to the estimation of the propagation pressure for every case of

material exponent, except n = 2, andD/t, which is summarized in Table 6.1. From these re-

sults it can be obtained that for the same diameter-to-thickness ratio the propagation pressure

decreases as the material exponent increases from 2.4 to 2.9. This can also be derived from

the Figures 6.9, 6.10 and 6.11 which shows the P-da responses for the 5 different cases of

material exponents withD/t equal to 12, 20 and 30 respectively. However, in Section 4.1, it

was noted that as the material exponent decreases, the tangent modulus increases, resulting in

the stress-strain response approaching the linear elastic curve and exhibiting similar behav-

ior. So, for the case with material exponent n = 2, there is no pressure maximum observed

because the post-buckling behavior of its response is very high making the application of the

Maxwell line method infeasible, and thus the estimation of the propagation pressure impos-

sible in three-dimensional slice models. Furthermore, for the rest material exponents, it can

be observed that as the diameter-to-thickness ratio (D/t) increases, the propagation pressure

tends to decrease for the same material exponent.

7.3 Conclusions for 3D long tube models

The study of three-dimensional long tube models was presented analytically in Chapter 3

where for the three cases of diameter-to-thickness ratios (12, 20, 30) , five different material

exponents were applied (2, 2.4, 2.6, 2.8, 2.9). The results from these models analyses were

exhibited in Chapter 3 and involved estimation for the propagation pressure of each case and

contact conditions of propagation.

In the previous section, it was noted that the estimation of propagation pressure for a ma-

terial exponent of n = 2 was not feasible in the analysis of three-dimensional slice models.

Although, propagation pressure can be derived from the response of three-dimensional long

tube models as described in Section 2.2 but only for the cases withD/t = 12 andD/t = 20.

In Figures 6.29, 6.30 and 6.31 the responses of base case models with D/t equal to 12, 20

and 30 and material exponents 2, 2.4, 2.6, 2.8, followed until propagation reaches the end

where boundary condition applied, are presented. These figures reveal a similar trend to that

of the 3D slice models. Regarding the case with diameter-to-thickness ration equal to 30 and
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n=2, Figure 6.22 reveals that the pressure does not exhibit a plateau but instead follows an

increasing rate until propagation reaches the end of the tube length. This behavior indicates

the presence of uniform collapse rather than the development of propagating buckles. From

these findings it is derived that this case can be characterized as limit case. The above con-

clusions are also supported by the configuration of the model analysis displayed in Figure

6.28, which illustrates that a uniform collapse appears (Stage II) rather than the formation of

propagating buckles. In this case, the contact condition during propagation is characterized

as contactless which can be observed at ”Stage II” till ”Stage IV”. However, in ”Stage V,”

when the propagation reaches the end of the tube length, the boundary conditions start to

influence the propagation behavior. As a result, there is a sudden contact between the two

walls at this stage (Stage IV). Furthermore, it is noteworthy that for the cases withD/t = 12

and D/t = 20, the observed contactless plateau is particularly small, with the plateau for

D/t = 20 being smaller than the one for D/t = 12. This significant decrease in the size of

the plateau indicates an important finding: as the cross-section of the tube becomes thinner

(as indicated by the increase in D/t ratio), the extension of propagation plateau diminishes.

Moreover, in Table 6.3, which summarizes the results for the estimated propagation pres-

sure of each case, it can be observed that for the same diameter-to-thickness ratio, the propa-

gation pressure decreases as the material exponent increases. The same trend can be observed

in the analysis of the three-dimensional slice models as noted in previous section. Also, for

the same material exponent, the propagation pressure increases as the diameter-to-thickness

ratio also increases, which was noted for 3D slice models as well.

Finally, in Table 6.5 contact conditions of propagation for each case are showcased. The

conclusion that could be derived is that as the diameter-to-thickness ratio increases, the prop-

agation with contact occurs for bigger value of material exponent. For cases with a material

exponent below 2.6, propagation occurs without contact between the tube walls.

7.3.1 Comparison between C3D20R and SC8R Element types

Section 6.2.2 provides a comparison between the C3D20R and SC8R elements for three-

dimensional long tubes. The outcomes are presented in Table 6.4, revealing that element type

desn’t affect the contact propagation conditions whenmaterial exponent remain constant. Ad-

ditionally, the estimated propagation pressure increases as the material undergoes hardening.

Notably, for each material exponent case, the propagation pressure derived from the C3D20R

element type is significantly larger than the value obtained from the SC8R element type.
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7.4 Comparison between 3D slice and 3D long tube models

In Section 6.3 are summarized some results for the base case thee-dimensional slice and

long tube models. Specifically, Tables 6.6, 6.7 and 6.8 the estimations for the propagation

pressure, in Pa units, and contact conditions of propagation are presented for diameter-to-

thickness ratio 12, 20 and 30 respectively. For the case ofD/t equal to 12 it is observed from

the ”diff” values, varying from 0.06 to 0.6, that the the approximate propagation pressure for

the 3D slice and long tube models are particularly close. The percentage difference decreases

for n=2.6 and then increases at n = 2.8, but it stabilizes at 0.24% for n = 2.9. An unexpected

finding is that, for material exponents n = 2.8 and n = 2.9, the propagation pressure values

obtained from the long tube models are slightly higher than those obtained from the slice

models. However, for the other two cases (n = 2.4, n = 2.6), the propagation pressure of

the long tube models is somewhat greater than that of the slice models as expected. In the

remaining two Tables 6.7 and 6.8 where the conclusions align, the outcomes are as antici-

pated. Specifically, the numeric measurements of propagation pressure in both the 3D long

tube and slice models are quite similar, with slightly higher values observed in the long tube

models. Moreover, as the material exponent increases, the percentage difference between the

two propagation pressure values decreases.



Chapter 8

Future Work

This thesis examined the response of collpasible tubes, with different diameter-to-thickness

ratios, subjected to uniform external pressure when applying a non-linear elastic material

model, the Deformation Theory. Specifically, the focus of the investigation was on the be-

havior of material hardening and its impact on the estimation of propagation pressure for dif-

ferent D/t. To achieve this, three-dimensional slice and long tube models were constructed.

The collapsible models aimed to simulate the collapsible tubes that can be found in living

organisms.

However, in the analysis of this thesis there wasn’t any consideration of fluid flow inside

the tube models which could simulate the blood flow in veins or the air in airway (Figure 8.1).

Thus, in a futurework there could be flow considered inside the tubes in order to investigate its

behavior, like the study conducted by M. E. Rosar and Charles S. Peskin [51]. Additionally,

an experimental analysis could be conducted like Katz et al. did [52], where experimental

data were utilized to establish the functional relationship between cross-sectional area and

transmural pressure, as well as the correlation between the energy loss coefficient and cross-

sectional area. Another experimental study that could inspire future work is the one conducted

by Kozlovsky et al. [1] who developed an experimental method to validate the computational

results (Figure 8.1). Moreover, investigation in the structure of the tube as well as pressure

and flow measurements during static loading and during steady-state fluid flow could take

place, like the experimental studymade by Elad et al. [53] who utilized a remote setup suitable

for measurements of objects embedded in water-filled chambers such as laboratory models

of collapsible tubes. Other inspiring studies, that include fluid flow, for future work on this

thesis are : [54], [55], [56].

Another aspect of future work for the optimization of the conclusions of Deformation
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Theory, that was utilized in this thesis as a material model simulating the behavior of coll-

pasible tubes, could be the examination of more material exponents. As noted in Chapter 7

the material exponent with value equal with 2 is a limit case of exponent between uniform

collapse and propagation. Thus, for an extension of this study, material exponents with value

between 2 and 2.4 could be scrutinized.

Finally an extension of this study could be conducted by utilizing hyperelastic materials,

instead Deformation Theory material model, while investigating the existing hyperelastic

forms and their parameters available in literature and in ABAQUS documentation.

Figure 8.1: Experimental setup [1] on the left side and vein’s blood flow on the right side.
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Appendix

Matlab codes

The developed matlab codes that were created for this Diploma Thesis are presented

below. They consist of 3 different .m files and a function that should be saved separately.

1 %% 1: P l o t t h e s t r e s s − s t r a i n cu rve f o r d i f f e r e n t m a t e r i a l

e xponen t s a l o n g s i d e t h e l i n e a r e l a s t i c s t r e s s − s t r a i n cuve

2 c l e a r a l l ; c l o s e a l l ; c l c

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 % Spec i f y t h e f o l d e r p a t h

5 f o l d e r P a t h = ’C : \ Use r s \ Ioanna \ Desktop \ Ma t e r i a l _Expon en t s ’ ;

6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 % Get a l i s t o f a l l t e x t f i l e s i n t h e f o l d e r

8 f i l e L i s t = d i r ( f u l l f i l e ( f o l d e r P a t h , ’* . t x t ’ ) ) ;
9 numFi le s = numel ( f i l e L i s t ) ;

10 % I t e r a t e ove r each f i l e

11 f o r f i l e I n d e x = 1 : numFi le s

12 % Get t h e f i l e name

13 f i l eName = f i l e L i s t ( f i l e I n d e x ) . name ;

14 % Cre a t e t h e f u l l f i l e p a t h

15 f i l e P a t h = f u l l f i l e ( f o l d e r P a t h , f i l eName ) ;

16 % Read t h e d a t a from t h e t e x t f i l e

17 d a t a = dlmread ( f i l e P a t h ) ;

18 % Ex t r a c t t h e two columns

19 s t r a i n = d a t a ( : , 1 ) ;

78
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20 s t r e s s = d a t a ( : , 2 )*1e −3;
21 % P l o t t h e f i g u r e s

22 p l o t ( s t r a i n , s t r e s s )

23 x l a b e l ( ’ S t r a i n , [%] ’ )

24 y l a b e l ( ’ S t r e s s , [ kPa ] ’ )

25 ho ld on

26 end

27 l e g end ( ’ 2 . 4 ’ , ’ 2 . 8 ’ , ’ 2 . 6 ’ , ’ 2 . 9 ’ , ’ l i n e a r e l a s t i c ’ )

28 xl im ( [ 0 , 1 0 ] )

29 %% 2: P l o t t h e d im e n t i o n l e s s p r e s s u r e −volume cu r v e s f o r t h e 2

D ca s e f o r t h e 6 d i f f e r e n t o v a l i t i e s

30 c l e a r a l l ; c l o s e a l l ; c l c

31 %% F i r s t S t ep : Get a l l t h e d a t a

32 % Spec i f y t h e p a t h s t o t h e main f o l d e r s

33 ma inFo l d e rP a t h s = { ’C : \ Use r s \ Ioanna \ Desktop \ 2 D_p lo t s \ Dt_10 ’ ,

’C : \ Use r s \ Ioanna \ Desktop \ 2 D_p lo t s \ Dt_20 ’ , ’C : \ Use r s \ Ioanna

\ Desktop \ 2 D_p lo t s \ Dt_40 ’ } ;

34 c e l l A r r a y = c e l l ( 3 , 6 , 3 ) ; % 3 f o l d e r s , 6 s u b f o l d e r s , 3 r p t

f i l e s

35 % Loop t h r ough t h e main f o l d e r s

36 f o r ma inFo lde r I ndex = 1 : numel ( ma i nFo l d e rP a t h s )

37 ma inFo l d e rPa t h = ma i nFo l d e rP a t h s { ma inFo lde r I ndex } ;

38 % Get t h e l i s t o f s u b f o l d e r s w i t h i n t h e main f o l d e r

39 s u bFo l d e r P a t h s = d i r ( ma i nFo l d e rPa t h ) ;

40 s u bFo l d e r P a t h s = s u bFo l d e r P a t h s ( [ s u bFo l d e r P a t h s . i s d i r ] ) ;

41 s u bFo l d e r P a t h s = s u bFo l d e r P a t h s (~ ismember ( { s u bFo l d e r P a t h s

. name } , { ’ . ’ , ’ . . ’ } ) ) ;

42 % Loop t h r ough t h e s u b f o l d e r s

43 f o r s u bFo l d e r I n d ex = 1 : numel ( s u bFo l d e r P a t h s )

44 s u bFo l d e r P a t h = f u l l f i l e ( ma inFo lde rPa th ,

s u bFo l d e r P a t h s ( s u bFo l d e r I n d ex ) . name ) ;

45 % Get t h e l i s t o f r p t f i l e s w i t h i n t h e s u b f o l d e r
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46 r p t F i l e s = d i r ( f u l l f i l e ( s ubFo l d e rPa t h , ’* . r p t ’ ) ) ;
47 % Loop t h r ough t h e r p t f i l e s

48 % Coord1

49 r p t F i l e P a t h = f u l l f i l e ( s ubFo l d e rPa t h , r p t F i l e s ( 1 ) .

name ) ;

50 c e l l A r r a y {ma inFo lde r Index , s ubFo lde r I ndex , 1} =

impo r t d a t a ( r p t F i l e P a t h ) ;

51 % Coord2

52 r p t F i l e P a t h = f u l l f i l e ( s ubFo l d e rPa t h , r p t F i l e s ( 2 ) .

name ) ;

53 c e l l A r r a y {ma inFo lde r Index , s ubFo lde r I ndex , 2} =

impo r t d a t a ( r p t F i l e P a t h ) ;

54 % P r e s s u r e

55 r p t F i l e P a t h = f u l l f i l e ( s ubFo l d e rPa t h , r p t F i l e s ( 3 ) .

name ) ;

56 c e l l A r r a y {ma inFo lde r Index , s ubFo lde r I ndex , 3} =

impo r t d a t a ( r p t F i l e P a t h ) ;

57 end

58 end

59 %% Second S tep : P l o t s

60 E=3 . 4 ;

61 po i s s o n =0 . 4 ;

62 % Ova l i t y 02

63 %−−− Dt_10

64 t ( 1 ) = 50 ;

65 Dnom( 1 ) = t ( 1 ) *10;
66 Pcr ( 1 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 1 ) /Dnom( 1 ) ) ^3 ;

67 INRmin2 ( 1 ) = 2 2 4 . 5 ;

68 INRmax2 ( 1 ) = 2 2 5 . 5 ;

69 ao2 ( 1 ) = ( 1 / 4 )*p i *( INRmax2 ( 1 )*INRmin2 ( 1 ) ) ;
70 numel_hoop ( 1 ) = 100 ;

71 %−−− Dt_20
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72 t ( 2 ) = 26 . 1904762 ;

73 Dnom( 2 ) = t ( 2 ) *20;
74 Pcr ( 2 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 2 ) /Dnom( 2 ) ) ^3 ;

75 INRmin2 ( 2 ) = 248 . 2 9 ;

76 INRmax2 ( 2 ) = 249 . 3 3 ;

77 numel_hoop ( 2 ) = 100 ;

78 ao2 ( 2 ) = ( 1 / 4 )*p i *( INRmax2 ( 2 )*INRmin2 ( 2 ) ) ;
79 %−−− Dt_40

80 t ( 3 ) = 13 . 4146341 ;

81 Dnom( 3 ) = t ( 3 ) *40;
82 Pcr ( 3 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 3 ) /Dnom( 3 ) ) ^3 ;

83 INRmin2 ( 3 ) = 261 . 0 5 ;

84 INRmax2 ( 3 ) = 262 . 1 2 ;

85 ao2 ( 3 ) = ( 1 / 4 )*p i *( INRmax2 ( 3 )*INRmin2 ( 3 ) ) ;
86 numel_hoop ( 3 ) = 130 ;

87 f i g u r e ;

88 f o r j = 1 :3

89 %impo r t d a t a from r p t f i l e

90 x2 = c e l l A r r a y { j , 1 , 1 } ;

91 y2 = c e l l A r r a y { j , 1 , 2 } ;

92 p2 = c e l l A r r a y { j , 1 , 3 } ;

93 %i n i t i a l i z a t i o n o f a r r a y s

94 a i n c2 = z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

95 da2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

96 daao2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

97 % c a l c u l a t i o n o f t h e a r e a e n c l o s e d by t h e qu ad r a n t a t eve ry

i n c r emen t

98 f o r i =1 : s i z e ( x2 , 1 ) % moving t h r ough i n c r emen t s

99 n =1;

100 s l i c e =0;

101 f o r k=n : numel_hoop ( j )
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102 s l i c e = s l i c e +abs ( ( x2 ( i , k ) −x2 ( i , k +1) ) ) *( y2 ( i , k +1)+
y2 ( i , k ) ) / 2 ;

103 end

104 n=k +2;

105 a i n c2 ( i , 1 ) = s l i c e ;

106 da2 ( i , 1 ) =( ao2 ( j ) − a i n c2 ( i , 1 ) ) *(1 e −06) ; % da i n [m]

107 daao2 ( i , 1 ) = ( 1 / ao2 ( j ) ) *( abs ( ao2 ( j ) − a i n c2 ( i , 1 ) ) ) ;
108 end

109 p l o t ( daao2 , p2 / Pcr ( j ) )

110 ho ld on

111 end

112 x l a b e l ( ’ da / ao ’ )

113 y l a b e l ( ’P / Pcr ’ )

114 l e g end ( ’Dt=10 ’ , ’Dt=20 ’ , ’Dt=40 ’ , ’ Loc a t i o n ’ , ’ s o u t h e a s t ’ , ’

EdgeColor ’ , ’w’ , ’ Fon tS i z e ’ , 11)

115 xl im ( [ 0 0 . 8 ] )

116 yl im ( [ 0 2 ] )

117 ho ld o f f

118 % Save t h e p l o t a s PDF

119 f i l eName = s p r i n t f ( ’ o v a l i t y _ 0 2 . pdf ’ ) ;

120 s a v e a s ( gcf , f i leName , ’ pdf ’ ) ;

121 % Close t h e f i g u r e

122 c l o s e ( gc f ) ;

123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

124 % Ova l i t y 05

125 %−−− Dt_10

126 t ( 1 ) = 50 ;

127 Dnom( 1 ) = t ( 1 ) *10;
128 Pcr ( 1 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 1 ) /Dnom( 1 ) ) ^3 ;

129 INRmin2 ( 1 ) = 223 . 7 5 ;

130 INRmax2 ( 1 ) = 226 . 2 5 ;

131 ao2 ( 1 ) = ( 1 / 4 )*p i *( INRmax2 ( 1 )*INRmin2 ( 1 ) ) ;
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132 numel_hoop ( 1 ) = 100 ;

133 %−−− Dt_20

134 t ( 2 ) = 26 . 1904762 ;

135 Dnom( 2 ) = t ( 2 ) *20;
136 Pcr ( 2 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 2 ) /Dnom( 2 ) ) ^3 ;

137 INRmin2 ( 2 ) = 2 4 7 . 5 ;

138 INRmax2 ( 2 ) = 250 . 1 2 ;

139 numel_hoop ( 2 ) = 100 ;

140 ao2 ( 2 ) = ( 1 / 4 )*p i *( INRmax2 ( 2 )*INRmin2 ( 2 ) ) ;
141 %−−− Dt_40

142 t ( 3 ) = 13 . 4146341 ;

143 Dnom( 3 ) = t ( 3 ) *40;
144 Pcr ( 3 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 3 ) /Dnom( 3 ) ) ^3 ;

145 INRmin2 ( 3 ) = 260 . 2 4 ;

146 INRmax2 ( 3 ) = 262 . 9 3 ;

147 ao2 ( 3 ) = ( 1 / 4 )*p i *( INRmax2 ( 3 )*INRmin2 ( 3 ) ) ;
148 numel_hoop ( 3 ) = 130 ;

149 f i g u r e ;

150 f o r j = 1 :3

151 %impo r t d a t a from r p t f i l e

152 x2 = c e l l A r r a y { j , 2 , 1 } ;

153 y2 = c e l l A r r a y { j , 2 , 2 } ;

154 p2 = c e l l A r r a y { j , 2 , 3 } ;

155 %i n i t i a l i z a t i o n o f a r r a y s

156 a i n c2 = z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

157 da2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

158 daao2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

159 % c a l c u l a t i o n o f t h e a r e a e n c l o s e d by t h e qu ad r a n t a t eve ry

i n c r emen t

160 f o r i =1 : s i z e ( x2 , 1 ) % moving t h r ough i n c r emen t s

161 n =1;

162 s l i c e =0;
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163 f o r k=n : numel_hoop ( j )

164 s l i c e = s l i c e +abs ( ( x2 ( i , k ) −x2 ( i , k +1) ) ) *( y2 ( i , k +1)+
y2 ( i , k ) ) / 2 ;

165 end

166 n=k +2;

167 a i n c2 ( i , 1 ) = s l i c e ;

168 da2 ( i , 1 ) =( ao2 ( j ) − a i n c2 ( i , 1 ) ) *(1 e −06) ; % da i n [m]

169 daao2 ( i , 1 ) = ( 1 / ao2 ( j ) ) *( abs ( ao2 ( j ) − a i n c2 ( i , 1 ) ) ) ;
170 end

171 p l o t ( daao2 , p2 / Pcr ( j ) )

172 ho ld on

173 end

174 x l a b e l ( ’ da / ao ’ )

175 y l a b e l ( ’P / Pcr ’ )

176 l e g end ( ’Dt=10 ’ , ’Dt=20 ’ , ’Dt=40 ’ , ’ Loc a t i o n ’ , ’ s o u t h e a s t ’ , ’

EdgeColor ’ , ’w’ , ’ Fon tS i z e ’ , 11)

177 xl im ( [ 0 0 . 8 ] )

178 yl im ( [ 0 2 ] )

179 ho ld o f f

180 % Save t h e p l o t a s PDF

181 f i l eName = s p r i n t f ( ’ o v a l i t y _ 0 5 . pdf ’ ) ;

182 s a v e a s ( gcf , f i leName , ’ pdf ’ ) ;

183 % Close t h e f i g u r e

184 c l o s e ( gc f ) ;

185 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

186 % Ova l i t y 07

187 %−−− Dt_10

188 t ( 1 ) = 50 ;

189 Dnom( 1 ) = t ( 1 ) *10;
190 Pcr ( 1 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 1 ) /Dnom( 1 ) ) ^3 ;

191 INRmin2 ( 1 ) = 223 . 2 5 ;

192 INRmax2 ( 1 ) = 226 . 7 5 ;
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193 ao2 ( 1 ) = ( 1 / 4 )*p i *( INRmax2 ( 1 )*INRmin2 ( 1 ) ) ;
194 numel_hoop ( 1 ) = 100 ;

195 %−−− Dt_20

196 t ( 2 ) = 26 . 1904762 ;

197 Dnom( 2 ) = t ( 2 ) *20;
198 Pcr ( 2 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 2 ) /Dnom( 2 ) ) ^3 ;

199 INRmin2 ( 2 ) = 246 . 9 8 ;

200 INRmax2 ( 2 ) = 250 . 6 4 ;

201 numel_hoop ( 2 ) = 100 ;

202 ao2 ( 2 ) = ( 1 / 4 )*p i *( INRmax2 ( 2 )*INRmin2 ( 2 ) ) ;
203 %−−− Dt_40

204 t ( 3 ) = 13 . 4146341 ;

205 Dnom( 3 ) = t ( 3 ) *40;
206 Pcr ( 3 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 3 ) /Dnom( 3 ) ) ^3 ;

207 INRmin2 ( 3 ) = 259 . 7 1 ;

208 INRmax2 ( 3 ) = 263 . 4 6 ;

209 ao2 ( 3 ) = ( 1 / 4 )*p i *( INRmax2 ( 3 )*INRmin2 ( 3 ) ) ;
210 numel_hoop ( 3 ) = 130 ;

211 f i g u r e ;

212 f o r j = 1 :3

213 %impo r t d a t a from r p t f i l e

214 x2 = c e l l A r r a y { j , 3 , 1 } ;

215 y2 = c e l l A r r a y { j , 3 , 2 } ;

216 p2 = c e l l A r r a y { j , 3 , 3 } ;

217 %i n i t i a l i z a t i o n o f a r r a y s

218 a i n c2 = z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

219 da2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

220 daao2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

221 % c a l c u l a t i o n o f t h e a r e a e n c l o s e d by t h e qu ad r a n t a t eve ry

i n c r emen t

222 f o r i =1 : s i z e ( x2 , 1 ) % moving t h r ough i n c r emen t s

223 n =1;
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224 s l i c e =0;

225 f o r k=n : numel_hoop ( j )

226 s l i c e = s l i c e +abs ( ( x2 ( i , k ) −x2 ( i , k +1) ) ) *( y2 ( i , k +1)+
y2 ( i , k ) ) / 2 ;

227 end

228 n=k +2;

229 a i n c2 ( i , 1 ) = s l i c e ;

230 da2 ( i , 1 ) =( ao2 ( j ) − a i n c2 ( i , 1 ) ) *(1 e −06) ; % da i n [m]

231

232 daao2 ( i , 1 ) = ( 1 / ao2 ( j ) ) *( abs ( ao2 ( j ) − a i n c2 ( i , 1 ) ) ) ;
233 end

234 p l o t ( daao2 , p2 / Pcr ( j ) )

235 ho ld on

236 end

237 x l a b e l ( ’ da / ao ’ )

238 y l a b e l ( ’P / Pcr ’ )

239 l e g end ( ’Dt=10 ’ , ’Dt=20 ’ , ’Dt=40 ’ , ’ Loc a t i o n ’ , ’ s o u t h e a s t ’ , ’

EdgeColor ’ , ’w’ , ’ Fon tS i z e ’ , 11)

240 xl im ( [ 0 0 . 8 ] )

241 yl im ( [ 0 2 ] )

242 ho ld o f f

243 % Save t h e p l o t a s PDF

244 f i l eName = s p r i n t f ( ’ o v a l i t y _ 0 7 . pdf ’ ) ;

245 s a v e a s ( gcf , f i leName , ’ pdf ’ ) ;

246 % Close t h e f i g u r e

247 c l o s e ( gc f ) ;

248 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

249 % Ova l i t y 1

250 %−−− Dt_10

251 t ( 1 ) = 50 ;

252 Dnom( 1 ) = t ( 1 ) *10;
253 Pcr ( 1 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 1 ) /Dnom( 1 ) ) ^3 ;
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254 INRmin2 ( 1 ) = 2 2 2 . 5 ;

255 INRmax2 ( 1 ) = 2 2 7 . 5 ;

256 ao2 ( 1 ) = ( 1 / 4 )*p i *( INRmax2 ( 1 )*INRmin2 ( 1 ) ) ;
257 numel_hoop ( 1 ) = 100 ;

258 %−−− Dt_20

259 t ( 2 ) = 26 . 1904762 ;

260 Dnom( 2 ) = t ( 2 ) *20;
261 Pcr ( 2 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 2 ) /Dnom( 2 ) ) ^3 ;

262 INRmin2 ( 2 ) = 246 . 1 9 ;

263 INRmax2 ( 2 ) = 251 . 4 3 ;

264 numel_hoop ( 2 ) = 100 ;

265 ao2 ( 2 ) = ( 1 / 4 )*p i *( INRmax2 ( 2 )*INRmin2 ( 2 ) ) ;
266 %−−− Dt_40

267 t ( 3 ) = 13 . 4146341 ;

268 Dnom( 3 ) = t ( 3 ) *40;
269 Pcr ( 3 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 3 ) /Dnom( 3 ) ) ^3 ;

270 INRmin2 ( 3 ) = 2 5 8 . 9 ;

271 INRmax2 ( 3 ) = 264 . 2 7 ;

272 ao2 ( 3 ) = ( 1 / 4 )*p i *( INRmax2 ( 3 )*INRmin2 ( 3 ) ) ;
273 numel_hoop ( 3 ) = 130 ;

274 f i g u r e ;

275 f o r j = 1 :3

276 %impo r t d a t a from r p t f i l e

277 x2 = c e l l A r r a y { j , 4 , 1 } ;

278 y2 = c e l l A r r a y { j , 4 , 2 } ;

279 p2 = c e l l A r r a y { j , 4 , 3 } ;

280 %i n i t i a l i z a t i o n o f a r r a y s

281 a i n c2 = z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

282 da2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

283 daao2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

284 % c a l c u l a t i o n o f t h e a r e a e n c l o s e d by t h e qu ad r a n t a t eve ry

i n c r emen t
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285 f o r i =1 : s i z e ( x2 , 1 ) % moving t h r ough i n c r emen t s

286 n =1;

287 s l i c e =0;

288 f o r k=n : numel_hoop ( j )

289 s l i c e = s l i c e +abs ( ( x2 ( i , k ) −x2 ( i , k +1) ) ) *( y2 ( i , k +1)+
y2 ( i , k ) ) / 2 ;

290 end

291 n=k +2;

292

293 a i n c2 ( i , 1 ) = s l i c e ;

294

295 da2 ( i , 1 ) =( ao2 ( j ) − a i n c2 ( i , 1 ) ) *(1 e −06) ; % da i n [m]

296

297 daao2 ( i , 1 ) = ( 1 / ao2 ( j ) ) *( abs ( ao2 ( j ) − a i n c2 ( i , 1 ) ) ) ;
298 end

299 p l o t ( daao2 , p2 / Pcr ( j ) )

300 ho ld on

301 end

302 x l a b e l ( ’ da / ao ’ )

303 y l a b e l ( ’P / Pcr ’ )

304 l e g end ( ’Dt=10 ’ , ’Dt=20 ’ , ’Dt=40 ’ , ’ Loc a t i o n ’ , ’ s o u t h e a s t ’ , ’

EdgeColor ’ , ’w’ , ’ Fon tS i z e ’ , 11)

305 xl im ( [ 0 0 . 8 ] )

306 yl im ( [ 0 2 ] )

307 ho ld o f f

308 % Save t h e p l o t a s PDF

309 f i l eName = s p r i n t f ( ’ o v a l i t y _ 1 . pdf ’ ) ;

310 s a v e a s ( gcf , f i leName , ’ pdf ’ ) ;

311 % Close t h e f i g u r e

312 c l o s e ( gc f ) ;

313 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

314 % Ova l i t y 10
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315 %−−− Dt_10

316 t ( 1 ) = 50 ;

317 Dnom( 1 ) = t ( 1 ) *10;
318 Pcr ( 1 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 1 ) /Dnom( 1 ) ) ^3 ;

319 INRmin2 ( 1 ) = 200 ;

320 INRmax2 ( 1 ) = 250 ;

321 ao2 ( 1 ) = ( 1 / 4 )*p i *( INRmax2 ( 1 )*INRmin2 ( 1 ) ) ;
322 numel_hoop ( 1 ) = 100 ;

323 %−−− Dt_20

324 t ( 2 ) = 26 . 1904762 ;

325 Dnom( 2 ) = t ( 2 ) *20;
326 Pcr ( 2 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 2 ) /Dnom( 2 ) ) ^3 ;

327 INRmin2 ( 2 ) = 222 . 6 2 ;

328 INRmax2 ( 2 ) = 275 ;

329 numel_hoop ( 2 ) = 100 ;

330 ao2 ( 2 ) = ( 1 / 4 )*p i *( INRmax2 ( 2 )*INRmin2 ( 2 ) ) ;
331 %−−− Dt_40

332 t ( 3 ) = 13 . 4146341 ;

333 Dnom( 3 ) = t ( 3 ) *40;
334 Pcr ( 3 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 3 ) /Dnom( 3 ) ) ^3 ;

335 INRmin2 ( 3 ) = 234 . 7 6 ;

336 INRmax2 ( 3 ) = 288 . 4 1 ;

337 ao2 ( 3 ) = ( 1 / 4 )*p i *( INRmax2 ( 3 )*INRmin2 ( 3 ) ) ;
338 numel_hoop ( 3 ) = 130 ;

339 f i g u r e ;

340 f o r j = 1 :3

341 %impo r t d a t a from r p t f i l e

342 x2 = c e l l A r r a y { j , 5 , 1 } ;

343 y2 = c e l l A r r a y { j , 5 , 2 } ;

344 p2 = c e l l A r r a y { j , 5 , 3 } ;

345 %i n i t i a l i z a t i o n o f a r r a y s

346 a i n c2 = z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;
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347 da2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

348 daao2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

349 % c a l c u l a t i o n o f t h e a r e a e n c l o s e d by t h e qu ad r a n t a t eve ry

i n c r emen t

350 f o r i =1 : s i z e ( x2 , 1 ) % moving t h r ough i n c r emen t s

351 n =1;

352 s l i c e =0;

353 f o r k=n : numel_hoop ( j )

354 s l i c e = s l i c e +abs ( ( x2 ( i , k ) −x2 ( i , k +1) ) ) *( y2 ( i , k +1)+
y2 ( i , k ) ) / 2 ;

355 end

356 n=k +2;

357

358 a i n c2 ( i , 1 ) = s l i c e ;

359

360 da2 ( i , 1 ) =( ao2 ( j ) − a i n c2 ( i , 1 ) ) *(1 e −06) ; % da i n [m]

361

362 daao2 ( i , 1 ) = ( 1 / ao2 ( j ) ) *( abs ( ao2 ( j ) − a i n c2 ( i , 1 ) ) ) ;
363

364 end

365 p l o t ( daao2 , p2 / Pcr ( j ) )

366 ho ld on

367 end

368 x l a b e l ( ’ da / ao ’ )

369 y l a b e l ( ’P / Pcr ’ )

370 l e g end ( ’Dt=10 ’ , ’Dt=20 ’ , ’Dt=40 ’ , ’ Loc a t i o n ’ , ’ s o u t h e a s t ’ , ’

EdgeColor ’ , ’w’ , ’ Fon tS i z e ’ , 11)

371 xl im ( [ 0 0 . 8 ] )

372 yl im ( [ 0 2 ] )

373 ho ld o f f

374 % Save t h e p l o t a s PDF

375 f i l eName = s p r i n t f ( ’ o v a l i t y _ 1 0 . pdf ’ ) ;
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376 s a v e a s ( gcf , f i leName , ’ pdf ’ ) ;

377 % Close t h e f i g u r e

378 c l o s e ( gc f ) ;

379 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

380 % Ova l i t y 5

381 %−−− Dt_10

382 t ( 1 ) = 50 ;

383 Dnom( 1 ) = t ( 1 ) *10;
384 Pcr ( 1 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 1 ) /Dnom( 1 ) ) ^3 ;

385 INRmin2 ( 1 ) = 2 1 2 . 5 ;

386 INRmax2 ( 1 ) = 2 3 7 . 5 ;

387 ao2 ( 1 ) = ( 1 / 4 )*p i *( INRmax2 ( 1 )*INRmin2 ( 1 ) ) ;
388 numel_hoop ( 1 ) = 100 ;

389 %−−− Dt_20

390 t ( 2 ) = 26 . 1904762 ;

391 Dnom( 2 ) = t ( 2 ) *20;
392 Pcr ( 2 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 2 ) /Dnom( 2 ) ) ^3 ;

393 INRmin2 ( 2 ) = 235 . 7 1 ;

394 INRmax2 ( 2 ) = 261 . 9 0 ;

395 numel_hoop ( 2 ) = 100 ;

396 ao2 ( 2 ) = ( 1 / 4 )*p i *( INRmax2 ( 2 )*INRmin2 ( 2 ) ) ;
397 %−−− Dt_40

398 t ( 3 ) = 13 . 4146341 ;

399 Dnom( 3 ) = t ( 3 ) *40;
400 Pcr ( 3 ) = (2*E/ (1 − po i s s o n ^2 ) ) *( t ( 3 ) /Dnom( 3 ) ) ^3 ;

401 INRmin2 ( 3 ) = 248 . 1 7 ;

402 INRmax2 ( 3 ) = 275 ;

403 ao2 ( 3 ) = ( 1 / 4 )*p i *( INRmax2 ( 3 )*INRmin2 ( 3 ) ) ;
404 numel_hoop ( 3 ) = 130 ;

405 f i g u r e ;

406 f o r j = 1 :3

407 %impo r t d a t a from r p t f i l e
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408 x2 = c e l l A r r a y { j , 6 , 1 } ;

409 y2 = c e l l A r r a y { j , 6 , 2 } ;

410 p2 = c e l l A r r a y { j , 6 , 3 } ;

411 %i n i t i a l i z a t i o n o f a r r a y s

412 a i n c2 = z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

413 da2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

414 daao2= z e r o s ( s i z e ( x2 , 1 ) , 1 ) ;

415 % c a l c u l a t i o n o f t h e a r e a e n c l o s e d by t h e qu ad r a n t a t eve ry

i n c r emen t

416 f o r i =1 : s i z e ( x2 , 1 ) % moving t h r ough i n c r emen t s

417 n =1;

418 s l i c e =0;

419 f o r k=n : numel_hoop ( j )

420 s l i c e = s l i c e +abs ( ( x2 ( i , k ) −x2 ( i , k +1) ) ) *( y2 ( i , k +1)+
y2 ( i , k ) ) / 2 ;

421 end

422 n=k +2;

423 a i n c2 ( i , 1 ) = s l i c e ;

424 da2 ( i , 1 ) =( ao2 ( j ) − a i n c2 ( i , 1 ) ) *(1 e −06) ; % da i n [m]

425 daao2 ( i , 1 ) = ( 1 / ao2 ( j ) ) *( abs ( ao2 ( j ) − a i n c2 ( i , 1 ) ) ) ;
426 end

427 p l o t ( daao2 , p2 / Pcr ( j ) )

428 ho ld on

429 end

430 x l a b e l ( ’ da / ao ’ )

431 y l a b e l ( ’P / Pcr ’ )

432 l e g end ( ’Dt=10 ’ , ’Dt=20 ’ , ’Dt=40 ’ , ’ Loc a t i o n ’ , ’ s o u t h e a s t ’ , ’

EdgeColor ’ , ’w’ , ’ Fon tS i z e ’ , 11)

433 xl im ( [ 0 0 . 8 ] )

434 yl im ( [ 0 2 ] )

435 ho ld o f f

436 % Save t h e p l o t a s PDF
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437 f i l eName = s p r i n t f ( ’ o v a l i t y _ 5 . pdf ’ ) ;

438 s a v e a s ( gcf , f i leName , ’ pdf ’ ) ;

439 % Close t h e f i g u r e

440 c l o s e ( gc f ) ;

441 %% 3: P l o t t h e d im e n s i o n l e s s r e s pone f o r t h e d i f f e r e n t

m a t e r i a l e xponen t s used

442 c l e a r a l l ; c l o s e a l l ; c l c

443 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

444 % Spec i f y t h e d i r e c t o r y pa t h

445 d i r e c t o r y P a t h = ’C : \ Use r s \ ds3922 \ Desktop \ Ioanna \

s l i c e _ d t r 1 2 _ n ew ’ ;

446 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

447 % Read t h e d i r e c t o r y c o n t e n t s

448 c o n t e n t s = d i r ( d i r e c t o r y P a t h ) ;

449 % I n i t i a l i z e an empty c e l l a r r a y t o s t o r e f o l d e r names

450 fo lde rNames = {} ;

451 % I t e r a t e t h r ough each e n t r y i n t h e d i r e c t o r y

452 f o r i = 1 : numel ( c o n t e n t s )

453 e n t r y = c o n t e n t s ( i ) ;

454 % Check i f t h e e n t r y i s a d i r e c t o r y and no t ” . ” o r ” . . ”

455 i f e n t r y . i s d i r && ~ s t r cmp ( e n t r y . name , ’ . ’ ) && ~ s t r cmp (

e n t r y . name , ’ . . ’ )

456 % Add t h e f o l d e r name t o t h e c e l l a r r a y

457 fo lde rNames { end+1} = e n t r y . name ;

458 end

459 end

460 % Disp l ay t h e f o l d e r names

461 d i s p ( ’ Fo l d e r names i n t h e d i r e c t o r y : ’ ) ;
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462 d i s p ( fo lde rNames ) ;

463 % Get t h e c u r r e n t d i r e c t o r y

464 c u r r e n t D i r e c t o r y = pwd ;

465 % Loop t h r ough each f o l d e r name

466 f o r i = 1 : numel ( fo lde rNames )

467 fo lderName = fo lde rNames { i } ;

468 % Con s t r u c t t h e f u l l p a t h o f t h e f o l d e r

469 f o l d e r P a t h = f u l l f i l e ( c u r r e n tD i r e c t o r y , fo lderName ) ;

470 % Check i f t h e f o l d e r e x i s t s

471 i f e x i s t ( f o l d e r P a t h , ’ d i r ’ )

472 % Disp l ay t h e f o l d e r name

473 d i s p ( [ ’ P r o c e s s i n g f o l d e r : ’ fo lderName ] ) ;

474 % Get t h e l i s t o f . r p t f i l e s i n t h e f o l d e r

475 r p t F i l e s = d i r ( f u l l f i l e ( f o l d e r P a t h , ’* . r p t ’ ) ) ;
476 % Read Coord 1

477 f o l d e r P a t h = f u l l f i l e ( c u r r e n tD i r e c t o r y , folderName ,

r p t F i l e s ( 1 ) . name ) ;

478 x = impo r t d a t a ( f o l d e r P a t h ) ;

479 % Read Coord 2

480 f o l d e r P a t h = f u l l f i l e ( c u r r e n tD i r e c t o r y , folderName ,

r p t F i l e s ( 2 ) . name ) ;

481 y = impo r t d a t a ( f o l d e r P a t h ) ;

482 % Read P r e s s u r e

483 f o l d e r P a t h = f u l l f i l e ( c u r r e n tD i r e c t o r y , folderName ,

r p t F i l e s ( 3 ) . name ) ;

484 p = impo r t d a t a ( f o l d e r P a t h ) ;

485 % Ca l c u l a t e p a r ame t e r s f o r t h e p l o t

486 [ p_out , daao ,M] = P o s t p r o c e s s i n g ( x , y , p ) ;

487 p l o t ( daao , p_ou t )

488 y l i n e (M, ’−− ’ , ’ Co lo r ’ , ’ k ’ ) ;

489 ho ld on

490 e l s e
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491 d i s p ( [ ’ Fo l d e r does no t e x i s t : ’ fo lderName ] ) ;

492 end

493 end

494 l e g end ( ’ 2_4 ’ , ’Maxwell Line ’ , ’ 2_6 ’ , ’Maxwell Line ’ , ’ 2_8 ’ , ’

Maxwell Line ’ , ’ 2_9 ’ , ’Maxwell Line ’ , ’ 3 ’ , ’Maxwell Line ’ , ’ 3_1

’ , ’Maxwell Line ’ , ’ 3_5 ’ ’Maxwell Line ’ )

495 xl im ( [ 0 0 . 7 8 ] )

496 %% 3b : Func t i o n d e f i n e d f o r t h e 3 rd .m f i l e

497 f u n c t i o n [ p_out , daao ,M] = P o s t p r o c e s s i n g ( x , y , p )

498 %%%%%%%%%%%%%%%%%%%%%%%

499 % r i n g i n p u t

500 INRmin =232 . 18 ;

501 INRmax=233 . 20 ;

502 t =42 . 31 ;

503 numel_hoop =25;

504 %undeformed a r e a

505 ao = ( 1 / 4 )*p i *(INRmax*INRmin ) ;
506 %i n i t i a l i z a t i o n o f a r r a y s

507 a i n c = z e r o s ( s i z e ( x , 1 ) , 1 ) ;

508 da= z e r o s ( s i z e ( x , 1 ) , 1 ) ;

509 daao= z e r o s ( s i z e ( x , 1 ) , 1 ) ;

510 % c a l c u l a t i o n o f t h e a r e a e n c l o s e d by t h e qu ad r a n t a t eve ry

i n c r emen t

511 f o r i =1 : s i z e ( x , 1 ) % moving t h r ough i n c r emen t s

512 n =1;

513 s l i c e =0;

514 f o r k=n : numel_hoop

515 s l i c e = s l i c e +abs ( ( x ( i , k ) −x ( i , k +1) ) ) *(y ( i , k +1)+y ( i ,
k ) ) / 2 ;

516 end

517 n=k +2;

518 a i n c ( i , 1 ) = s l i c e ;
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519 da ( i , 1 ) =( ao− a i n c ( i , 1 ) ) ;

520 daao ( i , 1 ) = ( 1 / ao ) *( abs ( ao− a i n c ( i , 1 ) ) ) ;
521 end

522 %% MAXWELL LINE

523 M = p ( end ) ; % s e t i n i t i a l v a l u e o f M to t h e l a s t v a l u e o f

p r e s s u r e

524 d a _ i n t e r p = l i n s p a c e ( min ( da ) , max ( da ) , 1 e5 ) ; % Ad ju s t t h e

number o f p o i n t s a s needed

525 p _ i n t e r p = i n t e r p 1 ( da , p , d a _ i n t e r p ) ;

526 f o r dc r = numel ( p _ i n t e r p ) : −1 :1

527 Ptemp = p _ i n t e r p ( 1 : dc r ) ;

528 datem = d a _ i n t e r p ( 1 : dc r ) ;

529 A = t r a p z ( datem , Ptemp ) ;

530 Mnew = A / d a _ i n t e r p ( dc r ) ;

531 i f abs (Mnew − M) < 1e −12

532 % conve rgence c r i t e r i a

533 b r eak

534 end

535 M = Mnew;

536 end

537 Dnom= t *12
538 E=3.4

539 po i s s o n =0 .4

540 Pcr =(2*E/ (1 − po i s s o n ^2 ) ) *( t /Dnom) ^3 ;

541 %p l o t ( daao , P . / Pcr , ’ − − ’ , ’ Color ’ , ’k ’ )

542 % Conve r s i on o f p r e s s u r e from MPa t o kPa

543 p_ou t = p*1e3 ;
544 M=M*1e3 ;
545 end
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