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Forecasting in the Energy Sector 

Kontogiannis Dimitrios  

 

Abstract 

Short-term forecasting processes constitute an integral part of data analysis in the energy 

sector since their integration in demand response programs, energy management systems, 

smart grid and energy market applications is valuable towards the examination of complex 

and volatile time series variables such as load and electricity price. Short-term load 

forecasting models offer valuable insight towards consumption patterns through the 

inspection of influential factors and introduce intelligent ways of monitoring electricity 

demand as well as the occurrence of irregular events in order to improve the decision-

making processes of electric utilities and reinforce grid stability respectively. Short-term 

electricity price forecasting models address the challenge of price volatility and contribute 

towards the development of robust strategies towards efficient resource management and 

optimal energy transactions for all types of energy market participants and consumers. It 

is evident that methods focusing on load and electricity price time series follow a similar 

structure including preprocessing, forecasting and output modules for the estimation of 

the target variables after data collection. Therefore, this dissertation acknowledges the 

shared and overlapping structure of those forecasting processes and addresses prominent 

challenges and research gaps associated with each component through the development 

of optimal design strategies that improve the overall model performance. The study of the 

preprocessing module led to the assessment of robust feature selection and highlighted 

the role of rule generation for efficient examination of the studied environments. Since 

prominent challenges in data preprocessing are connected to dataset dimensionality and 

feature interpretability, a method towards the generation of a compact and interpretable 

set of rules through hybrid feature selection was proposed. Furthermore, the study of the 

main forecasting framework denoted challenges with regards to standalone, combinatorial 
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and meta-modeling design philosophies. In standalone modeling, the uncertainty 

surrounding estimator selection due to the insufficient exploration of edge cases often 

hinders research progress and leads to confusion with regards to training behavior. 

Consequently, a comparative study examining the baseline performance of neural network 

methodologies for high resolution predictions addresses one of the edge cases where the 

brevity of the training process and time constraints could provoke this uncertainty. 

Regarding combinatorial modeling, the uncertainty of estimation member selection in 

ensemble methods coupled with the challenges of concept and data drift could lead to 

arbitrary design decisions and suboptimal model combinations. As a result, a novel design 

strategy focusing on the deterministic selection of estimator members based on the 

structural characteristics of peak and non-peak indices was proposed in order to generate 

performant ensemble learning models. Moreover, the examination of meta-modeling 

approaches highlighted the performance benefits of additional forecasting layers and led 

to the introduction of a forecasting approach that estimated load consumption through the 

inspection of similarity and causality for the derivation of alternative time series 

representations. This approach improved the error metrics compared to the base LSTM 

ensemble model, denoting the impact of community factors when the quality of the input 

dataset is far from ideal. Lastly, following this a posteriori design method, the study of the 

output module identified the need for performance refinement through additional 

structures that estimate and minimize error values towards increased model stability and 

improved accuracy. In this scope, an error compensation module was developed towards 

the performance improvement of a deep learning structure for the task of short-term 

electricity price forecasting. This approach introduced an autoregressive model for the 

estimation of residual training error, resulting in more consistent predictions and overall 

lower error metrics when tested in different training scenarios. Additionally, this method 

discussed the potential addition of hyperparameters that configure the error 

compensation module for future applications and benchmarks. The extension of the 

strategies presented in this dissertation could enable the development of more flexible and 

adaptive forecasting pipelines that could enhance the capabilities of future energy 

applications. 
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Περίληψη 

Οι διεργασίες βραχυπρόθεσμης πρόβλεψης αποτελούν αναπόσπαστο κομμάτι της 

ανάλυσης δεδομένων στον τομέα της ενέργειας καθώς η ενσωμάτωσή τους σε 

προγράμματα ανταπόκρισης ζήτησης, συστήματα διαχείρισης ενέργειας, ευφυή δίκτυα 

ενέργειας και σε εφαρμογές ενεργειακών αγορών είναι πολύτιμη για την εξέταση 

πολύπλοκων και ευμετάβλητων χρονοσειρών  όπως των μεταβλητών φορτίου και της 

τιμής ηλεκτρικής ενέργειας. Τα βραχυπρόθεσμα μοντέλα πρόβλεψης φορτίου 

προσφέρουν πολύτιμες πληροφορίες σχετικά με τα πρότυπα κατανάλωσης μέσω του 

ελέγχου παραγόντων επιρροής και εισάγουν ευφυείς τρόπους παρακολούθησης της 

ζήτησης ηλεκτρικής ενέργειας καθώς και της εμφάνισης ακανόνιστων γεγονότων, 

προκειμένου να βελτιώσουν τις διαδικασίες λήψης αποφάσεων των υπηρεσιών 

ηλεκτρισμού κοινής ωφέλειας και να ενισχύσουν τη σταθερότητα του δικτύου 

αντιστοίχως. Τα βραχυπρόθεσμα μοντέλα πρόβλεψης τιμών ηλεκτρικής ενέργειας 

αντιμετωπίζουν την πρόκληση της αστάθειας των τιμών και συμβάλλουν στην ανάπτυξη 

ισχυρών στρατηγικών για την αποτελεσματική διαχείριση των ενεργειακών πόρων και τη 

βελτιστοποίηση ενεργειακών συναλλαγών για όλα τα μέλη των ενεργειακών αγορών και 

για τους καταναλωτές. Είναι προφανές ότι οι μέθοδοι που εστιάζουν στις χρονοσειρές 

φορτίου και τιμών ηλεκτρικής ενέργειας ακολουθούν παρόμοια δομή, 

συμπεριλαμβάνοντας στοιχεία προεπεξεργασίας, πρόβλεψης και εξόδου για την εκτίμηση 

των μεταβλητών-στόχων μετά τη συλλογή δεδομένων. Επομένως, αυτή η διατριβή 

αναγνωρίζει την κοινή και επικαλυπτόμενη δομή αυτών των διεργασιών πρόβλεψης και 

απευθύνεται στην αντιμετώπιση εμφανών προκλήσεων και ερευνητικών κενών που 

σχετίζονται με κάθε δομικό στοιχείο μέσω της ανάπτυξης βέλτιστων στρατηγικών 

σχεδιασμού που βελτιώνουν τη συνολική απόδοση των μοντέλων. Η μελέτη του δομικού 
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στοιχείου προεπεξεργασίας οδήγησε στην αξιολόγηση της ισχυρής επιλογής 

χαρακτηριστικών και ανέδειξε το ρόλο της παραγωγής κανόνων για την αποτελεσματική 

εξέταση των υπό μελέτη περιβαλλόντων. Καθώς εξέχουσες προκλήσεις στην 

προεπεξεργασία δεδομένων συνδέονται με τις διαστάσεις των συνόλων δεδομένων και 

την ερμηνευσιμότητα των χαρακτηριστικών, προτάθηκε μία μέθοδος για τη δημιουργία 

ενός συμπαγούς και ερμηνεύσιμου συνόλου κανόνων μέσω υβριδικής επιλογής 

χαρακτηριστικών. Επιπροσθέτως, η μελέτη του δομικού στοιχείου που αποτελεί το κύριο 

πλαίσιο πρόβλεψης εμφάνισε προκλήσεις που σχετίζονται με τις αυτόνομες, 

συνδυαστικές και μετα-μοντελοποιητικές φιλοσοφίες σχεδιασμού. Στην αυτόνομη 

μοντελοποίηση, η αβεβαιότητα που περιβάλλει την επιλογή εκτιμητών λόγω της 

ανεπαρκούς εξερεύνησης ακραίων περιπτώσεων συχνά παρεμποδίζει την πρόοδο της 

έρευνας και οδηγεί σε σύγχυση που σχετίζεται με τη συμπεριφορά εκπαίδευσης. Συνεπώς, 

μία συγκριτική μελέτη που εξετάζει την απόδοση αναφοράς των μεθοδολογιών 

νευρωνικών δικτύων για προβλέψεις υψηλής ανάλυσης αναφέρεται σε μία από τις 

ακραίες περιπτώσεις όπου η συνοπτικότητα της διαδικασίας εκπαίδευσης και οι χρονικοί 

περιορισμοί θα μπορούσαν να προκαλέσουν αυτή την αβεβαιότητα. Στη συνδυαστική 

μοντελοποίηση, η αβεβαιότητα της επιλογής των εκτιμητών-μελών για μεθόδους συνόλου 

σε συνδυασμό με τις προκλήσεις αποκλίνουσας αντίληψης μοντέλου και απόκλισης 

δεδομένων θα μπορούσαν να οδηγήσουν σε αυθαίρετες σχεδιαστικές αποφάσεις και 

ανεπαρκείς συνδυασμούς μοντέλων. Κατά συνέπεια, προτάθηκε μία νέα στρατηγική 

σχεδιασμού που επικεντρώνεται στην ντετερμινιστική επιλογή των μελών του εκτιμητή με 

βάση τα δομικά χαρακτηριστικά των δεικτών κορύφωσης και μη-κορύφωσης ώστε να 

δημιουργηθούν αποδοτικά μοντέλα μάθησης συνόλου. Επίσης, η εξέταση των 

προσεγγίσεων μετα-μοντελοποίησης ανέδειξε τα οφέλη απόδοσης που προκύπτουν από 

τη χρήση περισσότερων επιπέδων πρόβλεψης και οδήγησε στην εισαγωγή μίας 

προσέγγισης πρόβλεψης που υπολόγιζε την κατανάλωση φορτίου μέσω της επισκόπησης 

της ομοιότητας και της αιτιότητας για τη δημιουργία εναλλακτικών αναπαραστάσεων 

χρονοσειρών. Αυτή η προσέγγιση βελτίωσε τις μετρήσεις σφάλματος σε σύγκριση με το 

βασικό μοντέλο συνόλου LSTM, υποδηλώνοντας την επίδραση των παραγόντων 

κοινότητας όταν η ποιότητα του συνόλου δεδομένων εισόδου απέχει αρκετά από την 

ιδανική. Τέλος, ακολουθώντας αυτή τη μέθοδο της εκ των υστέρων σχεδίασης, κατά τη 

μελέτη του δομικού στοιχείου εξόδου εντοπίστηκε η ανάγκη για βελτίωση απόδοσης μέσω 
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πρόσθετων δομών που εκτιμούν και ελαχιστοποιούν τις τιμές σφάλματος για την 

αυξημένη σταθερότητα και βελτιωμένη ακρίβεια του μοντέλου. Σε αυτό το πεδίο, 

αναπτύχθηκε ένα δομικό στοιχείο αντιστάθμισης σφαλμάτων για τη βελτίωση της 

απόδοσης μίας δομής βαθιάς μάθησης για τη βραχυπρόθεσμη πρόβλεψη τιμών 

ηλεκτρικής ενέργειας. Αυτή η προσέγγιση εισήγαγε ένα αυτοπαλινδρομικό μοντέλο για 

την εκτίμηση του υπολειπόμενου σφάλματος εκπαίδευσης, οδηγώντας σε πιο συνεπείς 

προβλέψεις και σε συνολικά χαμηλότερες μετρήσεις σφάλματος μετά από δοκιμές σε 

διαφορετικά σενάρια εκπαίδευσης. Επιπροσθέτως, αυτή η μέθοδος εξέτασε την πιθανή 

προσθήκη υπερπαραμέτρων για τη διαμόρφωση του στοιχείου αντιστάθμισης 

σφαλμάτων σε μελλοντικές εφαρμογές και μοντέλα αναφοράς. Η επέκταση των 

στρατηγικών που παρουσιάζονται σε αυτή τη διατριβή θα μπορούσε να επιτρέψει την 

ανάπτυξη πιο ευέλικτων και ευπροσάρμοστων διεργασιών πρόβλεψης που θα ενίσχυαν 

τις δυνατότητες μελλοντικών ενεργειακών εφαρμογών. 
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 Introduction 

1.1 Motivation 

The evolution of power systems coupled with the growth and the increased complexity of 

electricity markets introduce a plethora of challenges as well as interesting research 

questions often connected to the study and processing of time series data such as load and 

electricity price. Modern power grid design focuses on the development of robust data-

driven strategies that could control the bidirectional flow of information between 

electricity providers and consumers since the penetration of renewable energy sources and 

the increase in energy demand could lead to unstable operation, poor resource 

management and inefficient scheduling, resulting in imbalanced demand response and 

consumer dissatisfaction [1]. Additionally, modern electricity markets often adopt 

sophisticated data-driven methods for the design of smart energy policies due to the 

phenomenon of price volatility in order to perform efficient electricity trading [2]. Short-

term forecasting tasks involving load and electricity price time series add immense value to 

those data-driven approaches since the ability to predict these values accurately over a 

prediction horizon of several minutes or hours provides the necessary knowledge for 

optimal decision-making. Accurate short-term load forecasting contributes towards the 

effective planning and reliable operation of modern power grids since irregular events 

could be avoided and demand response flexibility could be improved. On a consumer level, 

short-term load forecasting could indirectly influence the rescheduling of daily tasks 

through intelligent analytics for the optimization of electricity consumption and the 

optimal response to financial incentives. Moreover, load forecasting enables the 

development of cost-effective consumption strategies that could assist in flattening the 

demand curve [3]. Accurate short-term price forecasting contributes to the efficiency of 

energy transactions due to the minimization of uncertainty, giving market participants the 

opportunity to react to changes in price appropriately and follow price trends [4]. Both 

categories of energy forecasting tasks are valuable to the development of real-time 

applications and energy management systems.  
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Short-term forecasting tasks for the prediction of load or electricity price typically follow a 

regression analysis in order to interpret the relationships between the dependent time 

series which expresses the target variable and several independent influencing factors such 

as temperature, fuel cost or historical load and price values derived from previous 

timesteps. Recent research on the field shows that prominent methods for those 

regression tasks stem from a statistical and artificial intelligence background. Statistical 

methods follow a more traditional path towards the discovery of linear and nonlinear 

relationships between the data based on assumptions that lead to the construction of a 

mathematical model which best fits the dataset. These forecasting approaches often follow 

a simple and easily interpretable structure, requiring less computing power for data 

processing. However, the resulting models are often limited due to those initial 

assumptions about the dataset that could impact the discoverability of patterns and trends 

negatively. Furthermore, this simplicity of structure could hinder the predictive potency of 

statistical methods since the resulting mathematical models may not be capable of 

explaining all data dependencies equally well as the dataset becomes larger and the 

relationships between features become increasingly complex. Methods such as linear 

regression and autoregressive moving average are commonly utilized in those time series 

forecasting tasks in order to predict future values of load and price through the 

interpretation of trends and the examination of influencing factors [5].   

On the other side of the spectrum, artificial intelligence methods approach function 

approximation in a more flexible way, through the development of free-form models that 

adapt to the input and iteratively learn the relationships between the variables. This 

category of models often has a more complex structure with computations becoming 

increasingly difficult to follow and interpret as the scale and the complexity of the 

forecasting problems increase, essentially rendering them as black-box approaches. A 

major set of artificial intelligence methods in this research space consists of machine 

learning models. Machine learning approaches featuring prominent supervised learning 

algorithms such as random forest and gradient boosted decision trees offer scalable and 

performant solutions to regression tasks in the energy sector. Moreover, neural network 

models such as multi-layer perceptron (MLP) and long short-term memory network (LSTM) 

greatly contribute towards the development of dynamic and adaptive forecasting 
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structures that process time dependencies efficiently and are capable of identifying all 

possible interactions between independent variables as they follow an implicit detection 

process for complex nonlinear relationships. The main disadvantages of machine learning 

methods that could be encountered more frequently in neural network models are the lack 

of interpretability, the increased computational burden and the proneness to overfitting. 

These disadvantages could result in suboptimal prediction accuracy and generalization 

issues as these models are integrated in real world applications. Complementary to 

machine learning methods, fuzzy logic approaches aim to reinforce the interpretability of 

forecasting models by introducing a set of rules that expresses the relationships between 

features, rendering feature selection a manageable task for most artificial intelligence 

algorithms [6].  

Lastly, it is worth mentioning that while the categorization of the most prominent 

forecasting methods highlights the contributions of linear and nonlinear statistical models 

as well as machine learning algorithms and fuzzy systems, these approaches are not 

necessarily utilized as standalone estimators for every load or price forecasting task. 

Therefore, we have to acknowledge the broad set of design philosophies that lead to hybrid 

modeling [7]. Hybrid modeling focuses on the combination of multiple estimators from the 

previously discussed categories in order to develop robust structures that process the input 

simultaneously or sequentially. As an example, fuzzy neural networks merge elements from 

fuzzy inference systems and neural network design in order to utilize those principles 

cooperatively or as a fully fused entity in time series forecasting. In addition to those 

combinatorial approaches, hybrid modeling includes the plethora of ad hoc methods that 

focus on the transformation or decomposition of the output for the purposes of a new 

model which may function as an additional processing layer. This subcategory of hybrid 

forecasting models form the set of meta-modeling approaches and offer significant value 

to short-term forecasting research as they represent the extra step in combinatorial design 

that could further improve prediction accuracy [8]. Figure 1.1 shows this categorization in 

short-term load and price forecasting, denoting the most prominent types of methods in 

this research space that substantially influenced the content of this dissertation. 
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1.2 Overview of Challenges and Research Gaps 

This section outlines several prominent challenges and research gaps in the design and 

implementation of short-term forecasting models in the energy sector, denoting the core 

research directions followed in this dissertation. First, it is evident that since load and price 

are influenced by a plethora of factors, the number of relevant features included in 

datasets is large, forming a high-dimensional space where the sparsity and dissimilarity of 

some feature groups could hinder the accurate generalization of the model and increase 

the overall complexity of the forecasting structure. Consequently, the emergence of the 

dimensionality challenge could contribute towards the emergence of interpretability issues 

since a large amount of training data would be required for efficient learning and the 

relationships between the studied variables could become too difficult to follow. The 

challenges of dimensionality and interpretability show a degree of codependence and 

could affect the performance of statistical as well as artificial intelligence methods [9]. In 

statistical methods, interpretability issues are often strongly connected to dimensionality 

since the initial set of assumptions for the dataset and the mathematical models utilized 

are relatively simple. In artificial intelligence methods, the challenge of interpretability 

could affect models utilizing low-dimensional feature spaces independently, when the 

forecasting method follows a black-box approach for parameter tuning as it is commonly 

Figure 1.1: Categorization of prominent short-term load and price forecasting 

methods and modeling methodologies. 
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observed in neural network structures. It is evident that fuzzy inference systems could 

reinforce the interpretability of a model since the decomposition of variables in linguistic 

terms and the extraction of an accurate set of rules could clearly explain the complete 

relationships between features. However, the algorithmic discovery of minimal rule sets 

that maintain high levels of accuracy remains an open research question since most rule 

bases on high-dimensional spaces either consider all possible rules, resulting in inefficient 

inference systems that ignore the challenge of dimensionality, or utilize expert knowledge 

which inherently does not define a deterministic and easily interpretable process. 

Second, some research gaps related to the participation of estimators in forecasting 

frameworks could be identified. In standalone modeling, research works often present 

state of the art models as parts of a novel forecasting pipeline but there are not enough 

research projects aimed at a comprehensive performance overview of a specific state of 

the art approach in fundamental supervised learning tasks that utilize load or price time 

series. Additionally, studies do not sufficiently cover forecasting tasks that could be 

considered as edge cases in terms of training and convergence time. Consequently, 

uncertainty often surrounds the selection of a specific model configuration when the most 

prominent models such as the long short-term memory network have several performant 

structures that could be applied on the same forecasting tasks. Therefore, without the 

guidance of research works exploring this space, extensive and repeated testing could 

delay the development of useful forecasting approaches. In combinatorial modeling and 

especially in the development of ensemble forecasting methods, uncertainty surrounds the 

selection of the estimator members as these are often included arbitrarily due to their 

relevance or due to their prominence in recent research work. As a result, load and price 

forecasting models that utilize diverse feature sets which follow different distributions 

often fail to adapt to the input. The research space of deterministic strategies that generate 

optimal estimator sets is not sufficiently explored and there are still several steps that need 

to be taken towards the development of more modular, adaptive and generative 

processes. Moreover, meta-modeling in short-term forecasting is an active and evolving 

research topic since the intricacies of the data collection process reinforce the need for 

models that generate and process different interpretations of the target variables in order 

to efficiently capture patterns in non-ideal data structures.    
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Third, the value of prediction refinement in combinatorial modeling should be 

acknowledged since recent reviews and benchmarks do not often include post-processing 

techniques in the forecasting pipeline. It is important to note that feedback systems 

capable of processing residual error values could introduce several useful hyperparameters 

for model selection as well as improved prediction accuracy. The inclusion of those systems 

in enhanced and modular forecasting pipelines could reinforce prediction stability within 

the specified prediction horizon, providing an additional tool against noisy forecasts. 

Furthermore, the study or error compensation systems could address the inconsistencies 

in the performance evaluation of estimators as error fluctuations in hourly or minutely 

predictions could be reduced. 

1.3 Dissertation Outline and Contributions 

This dissertation aims to address the previously discussed challenges and research gaps in 

the design and development of short-term load and price forecasting methodologies 

through the analytical presentation of research projects that contribute towards the 

enhancement of widely used forecasting processes in the energy sector. Therefore, this 

dissertation is structured as follows: 

In Chapter 2, a thorough examination of the short-term forecasting structure for time series 

in the energy sector is presented and the main modules and processes utilized in most 

recent research efforts conducting regression analysis for the prediction of load and 

electricity price are discussed. The individual inspection of the processes that form 

forecasting models in this research space enables the analysis of the challenges that could 

potentially hinder the performance of each module and denote specific areas where our 

research contributions could be applicable. This chapter highlights the roles of the data 

collection module, the preprocessing module, the forecasting framework and the output 

module, forming the baseline forecasting structure. Through the study of each process, 

suitable approaches from the literature are highlighted for several prominent short-term 

forecasting scenarios where the intricacies of each task are detailed. Furthermore, the 

most prominent prediction evaluation techniques are outlined through the definition of 

widely used error metrics. Lastly, an enhanced version of the forecasting process pipeline 

is presented, suggesting proposed adjustments that could benefit the initial structure and 
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improve the forecasting performance of several forecasting tasks when one or more of 

those adjustments are applied. This enhanced version of the forecasting pipeline is directly 

connected to the research works presented in the following chapters. 

In Chapter 3, the enhancement of the preprocessing module is studied through the design 

and implementation of a fuzzy system that features a hybrid feature selector towards the 

reinforcement of interpretability and the reduction of the initial fuzzy dataset. This system 

follows the forward chaining Mamdani approach and utilizes an improved decision tree 

linearization for the generation of a small and accurate rule base. Additionally, the hybrid 

feature selector combines metrics from extreme gradient boosting and decision tree 

structures in order to derive a concise set of important features. Since several machine 

learning methods utilize neural networks and neuro-fuzzy systems for consumer load 

predictions and recommendations in energy management systems, the efficient processing 

of additional fuzzy parameters such as weather data is an important step towards the 

complete and accurate discovery of relationships between independent and dependent 

variables. This discovery boosts the overall transparency of the model as the fuzzy rules 

that connect the remaining features could clearly explain the values of neural network 

parameters without the need to retrace every step of the computation process. 

Additionally, an algorithmic approach for rule base generation often speeds up data 

processing methods in this scope as expert knowledge and brute-force approaches could 

no longer be viable for high-dimensional fuzzy datasets. Furthermore, robust feature 

selection strategies are valuable tools towards dimensionality reduction, finding wide 

application in most short-term load and price forecasting tasks. In this study, the 

fuzzification of weather parameters enables the usage of the hybrid feature selector for 

the discovery of the most impactful feature states that are strongly connected to consumer 

load values. As a result, the performance evaluation of this fuzzy system showed that a 

drastically smaller and slightly more accurate rule base could be generated at a lower time 

frame when compared to the baseline decision tree linearization due to the integration of 

the hybrid feature selector. 

In Chapters 4, 5 and 6, an in-depth study of the forecasting layer addresses challenges and 

research gaps in standalone, combinatorial and meta-modeling approaches through the 

analysis of several research works. First, in Chapter 4, a study presenting a comprehensive 
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performance comparison between multi-layer perceptron, convolutional neural network 

and several long short-term network structures on the task of minutely active power 

forecasting aims to present the behavior of widely used neural network models on a 

fundamental short-term forecasting approach. This research work attempts to guide and 

motivate research on similar tasks in the energy sector through the presentation of 

prominent methods and the examination of error metrics as well as training time. This 

project shows that while the forecasting performance of neural network structures on a 

baseline configuration does not exhibit drastic differences in terms of error metrics, the 

training time and the complexity of each architecture play an important role in model 

selection since load and price predictions in the short-term horizon need to be derived 

within strict intervals of minutes or hours as the models get recalibrated in order to include 

newly recorded samples. Therefore, this study denotes that several important decisions 

that need to be taken in standalone modeling when model complexity, prediction horizon 

and computing resource availability are considered.  

Second, in Chapter 5, a research project presenting a novel estimator selection strategy for 

ensemble learning models addresses the overall uncertain and often arbitrary inclusion of 

base estimators in combinatorial modeling. Since accurate short-term electricity demand 

forecasting is vital to the evolution of smart grids and the development of robust demand 

side management strategies, the selection of estimators that are most compatible to the 

given input is an important task. Moreover, it is evident that as the scale of the forecasting 

problem increases and time series from a diverse set of consumers are utilized, the need 

to transition from static and centralized standalone predictors to more adaptive and 

generative approaches that could manage the intricacies of those diverse data distributions 

becomes accrescent. Therefore, this research project is motivated by the cluster-based 

aggregate framework and introduces a flexible structural ensemble approach where the 

base estimators are selected through the cross-examination of error metrics from the 

evaluation of peak and non-peak indices. The use case presented in this study shows the 

intended behavior of this strategy since this implementation enables the generation of 

ensemble models that achieve the expected performance boost in a deterministic way. 

Third, in Chapter 6, the impact of meta-modeling techniques towards the reduction of error 

metrics is explored through a research project that introduces a short-term forecasting 
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model utilizing the combined effects of similarity and causality for the robust estimation of 

load. Data abnormalities stemming from a non-ideal data collection process could hinder 

the accuracy of estimators and the inherent diversity of client time series could complicate 

the interpretation of relationships throughout the training process. Therefore, this novel 

approach shows that the utilization of different input datasets for the estimation of 

additional load time series components through long short-term memory ensembles could 

derive similar and causal data representations. These components are passed to a multi-

layer perceptron which functions as a meta-processing estimation layer that derives the 

target output. Our experiments indicated that the inclusion of this meta-modeling 

structure in the forecasting pipeline and the combined processing of similarity and causality 

features resulted in more performant models when compared to neural network 

ensembles utilizing only one output data representation. 

In Chapter 7, a research work presenting a novel a posteriori processing methodology for 

short-term electricity price forecasting based on residual error estimation addresses the 

research gaps derived from the underutilization of error compensation systems in 

combinatorial modeling and the lack of related hyperparameters in recent reviews and 

benchmarks. The improvement of the output time series is the decisive final step towards 

robust estimation in the energy sector since it enables the derivation of more stable error 

profiles and the emergence of useful evaluation parameters that could be used in 

optimization processes. The proposed methodology utilizes a benchmark deep neural 

network structure for the prediction of day-ahead electricity prices and enhances the 

output module with the development of an autoregressive process tuned by several 

information criteria for the reduction of the error component in the final price prediction. 

Our experiments indicated that this approach yields improved error metrics when 

compared to the baseline deep learning structure in several training scenarios and the 

refined predictions shared increased stability throughout the forecasting horizon. 

In Chapter 8, a comprehensive summary of the contributions is presented with additional 

comments based on the results of our experiments that highlight the advantages and 

disadvantages of the proposed methodologies. The integration of those methods in future 

energy applications and benchmarks is discussed and the overall enhancement of the 

forecasting pipeline with the inclusion of one or more of those methods is addressed. 
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Furthermore, the motivation for future research work is included in this chapter and future 

directions towards the expansion and the combination of the proposed methods are 

analyzed with examples and use cases relevant to the research areas of short-term 

forecasting and demand response in the energy sector. 
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 Short-term Time Series Forecasting Structure in the Energy 

Sector 

Short-term forecasting tasks in the energy sector focus on the processing of time series 

data for the derivation of estimated values for the prediction of load and electricity price. 

This forecasting horizon covers predictions for up to one week ahead with more prominent 

tasks targeting minutely, hourly and daily predictions. The predicted values for load and 

price could reflect the expected value in that timeframe or the probability that summarizes 

future events, expressed as a set of different outcomes. The estimation of the expected 

values of load and price is commonly derived from tasks involving the approximation of a 

mapping function which aims to interpret the relationships between input and output 

variables. This forecasting approach is known as regression predictive modeling [10]. On 

the other side of the spectrum, models predicting the occurrence of specific outcomes and 

categorizing time series in groups are typically designed as classification and clustering 

tasks respectively. Classification tasks take advantage of labeled time series features in 

order to assign a label to a new and unlabeled time series based on common patterns. 

These tasks could contribute towards the efficient association of consumer time series to 

specific categories, formed by load and price policies, through the examination of historical 

data and customer characteristics [11]. Clustering time series tasks focus on the separation 

of unlabeled time series and the discovery of distinct groups based on patterns, distance 

and similarity metrics. Load and price forecasting models often utilize clustering in order to 

discover groups of similar consumers. Additionally, time series clustering approaches are 

utilized for anomaly detection in power grids as well as energy markets [12]. In this 

dissertation, we focus on the study and interpretation of relationships between the core 

energy time series variables of load and price and the independent influencing factors that 

affect them for the accurate prediction of target values. Therefore, we select regression 

predictive modeling as the base design philosophy for the presentation and examination of 

the time series forecasting structure. Classification and clustering methodologies support 

this structure indirectly as optional processing tasks or supplementary forecasting tasks 

when the time series data represent the consumption of a diverse consumer base. 
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2.1 Pipeline Overview 

A high-level examination of the processes that contribute towards the development of 

predictive regression models for load and electricity price time series leads to the 

distinction of several modules that form the path from the construction of the input to the 

prediction of the output. The data collection module utilizes a set of methodologies for the 

collection of raw data and organization of values into time series features. The output of 

this module is the initial dataset made available for regression research and development. 

This initial dataset consists of data points indexed in time order and includes the target 

variables as well as a plethora of influencing factors. The values of those factors could either 

be connected to the target time series based on specific timestamps or they could 

independently characterize the entire time series. The features obtained from the data 

collection module typically include most time series characteristics such as trends, seasonal 

and nonseasonal cycles, pulses, steps and outliers [13]. Additionally, depending on the 

quality of the data collection process, the initial dataset could have missing values, noisy 

data and features that may not be strongly connected to the variables of load or price [14].  

Some time series characteristics such as trends and seasonal patterns are valuable for the 

development of robust estimators as their detection is an integral part of most models. 

Sudden temporary or permanent shifts in the series level resulting in pulses and steps 

respectively could lead to uncertainty and poor model fitting when the underlying events 

are not properly explained. Furthermore, it is evident that the existence of missing values 

as well as noisy and insignificant features could increase forecasting error, resulting in poor 

load and price estimation. It is also worth mentioning that the initial dataset may not meet 

several compatibility criteria that satisfy the fundamental assumptions of a model such as 

data distribution, sample size and dataset dimensions, resulting in poor training 

performance. Additionally, the scope of application for short-term forecasting tasks in the 

energy sector is closely connected to the studied data structure. For example, models that 

predict load values from a diverse set of consumers follow a different data structure when 

compared to individual consumption predictions. Models aimed at larger groups of 

consumers typically include load features for each consumer, increasing the dimensions of 

the dataset and often requiring the application of clustering and classification methods for 

optimal feature division. Therefore, the initial dataset is passed to the preprocessing 
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module where a set of data transformations, decompositions and feature engineering 

techniques could be applied in order to finalize the dataset structure and provide a 

compatible data representation for each forecasting task. The output of the preprocessing 

module contains the input and output features of the model. Time series splitting strategies 

are utilized before any data transformation and feature engineering task is executed in 

order to split the input and output features into training, validation and test sets given a 

specified ratio. The training set typically contains the larger percentage of samples and is 

used for the discovery of patterns and relationships between features during the learning 

process. The validation set includes a smaller percentage of samples and is often utilized 

for parameter tuning during training and for the prevention of overfitting. Lastly, the test 

set often contains a percentage of samples comparable to the validation set and is used to 

evaluate the performance of the forecasting models on unknown data after training. This 

performance evaluation aims to derive unbiased metrics that denote the generalization 

capabilities of the model as well as the magnitude of error. Data processing methodologies 

are typically applied based on the data available in the training samples in order to ensure 

that information from the sets used for model evaluation do not influence feature 

engineering decisions, hence eliminating the bias of involving samples that are supposed 

to remain unknown [15]. 

Following the data preprocessing, the resulting training and validation sets for input and 

output features are passed to the forecasting framework. The forecasting framework 

includes the estimation models as well as the supporting heuristics and algorithms that 

could reinforce model selection, hyperparameter tuning and model fitting. Several 

forecasting frameworks in short-term load and electricity price forecasting utilize a single 

estimator due to recalibration and computation power constraints. It is evident that newly 

proposed models in this research space are rarely compared in terms of their 

computational requirements and their deployment in real world applications could be 

uncertain due to the tradeoff between computation time and cost [16]. It is worth 

considering that complex standalone estimator structures and robust combinatorial 

approaches may offer marginally better forecasts but the overall benefits from this 

application may be lower than the execution cost of the model on more powerful systems 

when appropriate computational power is available. Additionally, recalibration constraints 
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may have an impact on model selection in this forecasting horizon since new data could be 

sampled within short time intervals. Therefore, models need to be executed fast in order 

to reflect the changes in the output based on newly received batches of samples. On the 

other side of the spectrum, combinatorial modeling typically utilizes copies of the same 

estimator structure or several different estimators in order to provide more accurate 

forecasts. Combinatorial modeling is a core component of short-term load and price 

forecasting approaches as novel approaches in this space could adapt better to a wider 

range of scenarios and appropriately answer more complex research questions as the 

learning process becomes more intricate. Given the previously discussed constraints and 

challenges, combinatorial approaches offer performant alternatives that reinforce 

prediction accuracy through the simultaneous processing of the same dataset or the partial 

processing of different data segments [17].  

The output of the forecasting framework could denote the estimated values of load or price 

time series which are then visualized and compared to the actual values in terms of several 

error metrics. However, recent load and price forecasting research does not strictly utilize 

the output of the forecasting model as the final estimate since the performance of 

estimators could be improved a posteriori with the implementation of meta-modeling 

techniques and error refinement algorithms. In this scope, the meta-modeling module 

often receives the outputs of the forecasting framework and generates a subsequent 

forecasting task on the same problem formulation. When the meta-modeling technique 

shares the same structure as the forecasting framework, meta-modeling approaches 

function as an additional processing layer for prediction refinement. However, the 

integration of meta-modeling techniques is usually coupled with several changes to the 

forecasting framework. In this scenario, the main forecasting model may utilize different 

versions of the given dataset in order to derive intermediate predictions of time series 

features, enabling the creation of the meta-modeling input dataset. This new input dataset 

may not reflect the estimated values of load or price directly, but it may contain time series 

features that express clear patterns that are strongly connected to the target output 

variable. Therefore, the goal of the meta-modeling approach becomes the approximation 

of the target output based on the features extracted from the intermediate forecasting 

stage [18].  
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Lastly, the output module includes the visualization and prediction evaluation tasks that 

measure the overall performance and accuracy of the model. Researchers, examine those 

results in order to make insightful comments towards the enhancement of future 

forecasting approaches in the energy sector [19]. Furthermore, this module could be 

considered as the second stage of a posteriori processing as subsequent models could 

utilize the estimated time series to extract and analyze the error component through 

feedback mechanisms. After the completion of the above processes the model could be 

deployed on real world applications and integrated into energy management systems. 

Figure 2.1 presents the diagram of the short-term forecasting pipeline in the energy sector 

after the distinction of the main modules and tasks presented in this section. The following 

sections analyze each module one by one and provide a thorough presentation of the 

prominent methods as well as a direct association of several challenges that could have an 

impact on the performance of each process. 

 

 

 

 

 

 

 

Figure 2.1: Process pipeline for short-term time series forecasting in the energy sector. 

Solid arrow lines denote the typical flow of information from the data collection 

module to the predicted output and dashed arror lines denote the meta-modeling 

direction often followed in novel research projects. 
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2.2 Data Collection 

The emergence of new and digital technologies has enabled the development of several 

energy data collection strategies for the registration and management of essential 

forecasting variables such as load and price as well as several influencing factors such as 

weather and geospatial data. Recent short-term forecasting models typically utilize energy 

end-use time series data obtained from administrative sources, surveys, metering 

techniques and generative models. These strategies could provide large amounts of data 

to researchers for the study and development of effective energy policies as well as the 

optimal control of energy demand. Consequently, the data collection module is an integral 

part of short-term forecasting methodologies in the energy sector since the quality of the 

available dataset often determines the level of processing that will follow and the level of 

accuracy that is expected from a model. Therefore, it is important to highlight the most 

prominent sources and processes involved in energy end-use data collection for research 

purposes, denote the main advantages and disadvantages for each one and evaluate the 

impact of these approaches on the output datasets. Figure 2.2 presents the categorization 

of data collection approaches and the following subsections analyze each strategy, 

providing an overview of widely used practices [20]. 

 

 

2.2.1 Administrative Sources 

Time series features collected from administrative sources are often provided by 

governmental entities, agencies operating at a national, state and local level, energy 

utilities and energy market participants. These datasets often include detailed statistics for 

Figure 2.2: Data Collection Methods 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



51 

energy consumption, price and several macroeconomic parameters at high volumes and 

flexible sampling rates. The data is typically stored in databases and made available through 

websites and published reports. Therefore, the datasets utilized in forecasting 

methodologies are often obtained through direct access, data mining techniques and web 

crawling approaches. 

It is evident that there are several significant advantages in the collection of energy data 

through administrative sources. First, the storage of data in databases and the inclusion of 

a wide range of parameters for each record enables fast and cost-effective retrieval while 

ensuring higher quality standards. Time series samples are protected against duplicates 

and the overall higher data granularity enables more complex querying, hence boosting the 

interpretability of features. Second, time series collected from administrative sources could 

provide better population coverage since the participating entities have the resources to 

monitor the energy activity of a wide range of consumers and the usage of several building 

types. The advanced monitoring capabilities of those organizational units coupled with the 

potential for real-time simultaneous data collection from multiple sources through the use 

of modern web crawling tools often result in the extraction of feature-rich datasets that 

capture complex relationships within the client bases. These datasets are suitable for a 

wide range of forecasting tasks depending on the sampling rate and could be utilized by 

several different studies for the examination of a plethora of events in the energy sector. 

Moreover, since that data is provided by established sources in the energy domain, the 

validity and integrity of the data is reinforced when compared to other open access 

alternatives and synthetic datasets. 

On the other side of the spectrum, several disadvantages and challenges could be 

associated with data collection based on administrative sources. It is made clear that the 

resulting datasets may not always satisfy the needs of a specific research question directly 

as the features and the records may be defined differently in order to meet the needs of 

the providers. Therefore, several processing steps may be necessary for the data to be 

rendered suitable for forecasting models. This process may slow down research output 

significantly as a thorough data exploration is needed. Client and building identification as 

well as feature association could be difficult challenges since the diversity of registration 

formats leads to inconsistencies in data linking. Furthermore, access to those datasets 
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could be difficult and more time-consuming since bureaucratic procedures may be involved 

for the approval to utilize and modify the data for research purposes. Additionally, third 

party data providers may consent to the use of datasets but the presentation and access of 

that data through published work may still be limited or restricted. Consequently, research 

utilizing those datasets could lead to irreproducible results and conclusions that may not 

be easily traceable, hence imposing more restrictions on future research efforts due to that 

lack of transparency [21]. 

2.2.2 Surveys 

Surveys could be conducted for the collection of energy data in order to capture consumer 

behaviors and patterns valuable to energy demand management. Survey-based 

methodologies could be divided into two commonly used types, the production and 

consumption surveys. Production surveys primarily focus on energy supply and gather 

information about fuel receipt, generation, production and shipment. Consumption 

surveys gather end-use energy consumption data from different types of clients and 

buildings in order to cover several use cases, such as the examination of residential or 

industrial load patterns throughout the year. Survey design focuses on the designation of 

the optimal type and frequency of data as well as the selection of an appropriate target 

group in order to extract unique and unbiased samples for each use case. Additionally, the 

selection of an effective sampling method coupled with a robust validation and 

dissemination strategy could be considered for the development of an insightful survey in 

the energy sector. Surveys could be conducted through the traditional paper-based 

questionnaires and interviews or through more modern methods such as website forms 

and smart phone applications. 

The utilization of surveys could be beneficial towards the collection of energy-related 

features and the organization of robust short-term forecasting datasets since there are 

several arguments that denote the positive impact of surveys in this research space. The 

flexibility of structure and the increased availability of survey methods result in cost-

effective data collection processes that could target specific research questions and follow 

the research scope closely. Since the overall scope of surveys tends to be relatively narrow, 

data selection becomes more efficient. Moreover, the types of questions answered in 

surveys lead to a more natural interpretation of energy data that could boost the predictive 
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performance of forecasting tasks after additional processing. Features extracted in the 

form of linguistic variables or numerical values that could be mapped to different feature 

states enable the utilization of fuzzy logic approaches for the interpretation of relationships 

through the derivation of fuzzy rules. Therefore, survey features could be used directly as 

the input of certain forecasting approaches or serve as complementary data that boosts 

the interpretability of more complex models. 

Surveys add significant value to the data collection module but there are several drawbacks 

that need to be outlined in order to fully understand the role of these methods. First, 

surveys could require a higher amount of available resources and well-trained staff in order 

to guarantee high quality data. Since those prerequisites are not always disclosed in the 

final endpoint where survey data becomes available to researchers, this uncertainty could 

impact the overall interpretability of research efforts. Second, there is uncertainty 

surrounding the content of survey responses as some survey questions may remain 

unanswered or receive incomplete and biased responses from the population. This results 

in datasets that may contain missing values and sometimes noisy data, requiring further 

processing in order to extract suitable features. Furthermore, sampling errors such as 

duplicate records are more likely to occur in survey data since the first layer of record 

registration and storage may not be as robust as the one utilized by administrative sources. 

Lastly, survey data may have access restrictions based on data policies regarding data 

protection, hence resulting in limited data availability for future research tasks [22]. 

2.2.3 Metering 

Metering methodologies are becoming increasingly popular approaches for data collection 

in the energy sector as technological advances enable the use of sophisticated 

infrastructures that are capable of measuring large volumes of energy data. Metering 

approaches rely primarily on smart devices such as smart meters, sensors, lighting and 

plugs in order to extract features related to electricity consumption, consumer patterns as 

well as several influencing factors such as environmental and weather data. Metering data 

is utilized in a plethora of forecasting studies since the integration of these types of 

equipment results in granular measurements that are suitable for direct use in short-term 

and very short-term forecasting tasks. These methodologies could contribute towards the 
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enrichment of survey and modeling datasets, providing a detailed view of dynamic and 

evolving environments through the extraction of time series. 

The contribution of metering methodologies and their role in energy end-use data 

collection processes vary depending on the type of metering equipment. The integration 

of smart devices such as smart appliances, reinforces the concept of the Internet of Things 

and leads to the extraction of real time information, contributing towards the thorough 

understanding of consumer patterns. Smart devices provide direct feedback to energy 

applications and management systems as well as indirect feedback for the development of 

billing strategies and energy audits. Furthermore, smart meters enable the measurement 

of electricity and gas related features, resulting in the efficient aggregated tracking of 

energy demand. It is evident that smart meters record large volumes of data and often 

expose user characteristics that could be exploited by certain models. Therefore, storage, 

security and privacy risks need to be addressed for optimal smart meter data collection. 

Moreover, wireless sensor networks, smart thermostats and smart lighting contribute 

towards direct metering methodologies that collect environmental features and track 

heating and cooling parameters. The examination of influential variables such as 

temperature, humidity and light intensity is crucial for the development of robust 

forecasting models since they support the estimation of load and contribute towards 

improved decision-making. Lastly, smart plugs provide a simple data collection pipeline 

that involves consumption and voltage measurement through hardware and data 

organization through a management platform. 

Moreover, it is worth mentioning that there are several challenges and drawbacks in 

metering data collection methods. First, the high cost of equipment and maintenance often 

limits the implementation of large-scale infrastructures. Consequently, the resulting 

datasets often target the consumption patterns of smaller groups of clients and monitor a 

limited set of buildings. Additionally, the datasets produced by sensors and smart meters 

often have high storage and processing requirements, rendering some short-term data 

analysis tasks infeasible due to the lack of computing power and the difficulty of deriving 

results within short time intervals. However, technological advances in the energy sector 

should lead to more cost-effective solutions for infrastructures that utilize metering 

devices, resulting in the large-scale utilization of smart meters and the availability of 
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resources for big data processing. Furthermore, advances in distributed computing could 

address the computational burden of sensor data through the development of 

decentralized models. Second, the quality of the resulting dataset is not guaranteed as 

there is a possibility to encounter missing values and noisy features due to data 

interruption, corruption and interception risks. Therefore, quality assurance criteria need 

to be examined before the datasets are made available for research and energy 

applications in order to reinforce reliability [23]. 

2.2.4 Generative Data Collection 

Short-term forecasting tasks in the energy sector often require large amounts of data in 

order to study specific use cases and analyze the complex dynamics of energy systems and 

energy markets. Since the required features that address a specific research question need 

to be strictly defined within the research scope, the data provided by most well-known data 

collection methodologies needs to be suitable for the formulation of the research problem 

and contain a sufficient number of samples for the development and validation of robust 

forecasting models. However, several third-party data collection processes follow policies 

that may limit or restrict data access, contributing towards the scarcity of suitable datasets. 

Additionally, the available data provided to researchers in the energy sector may not 

always follow ideal data collection processes, resulting in poorly structured datasets that 

contain a low number of samples. It is also worth noting that when smaller datasets are 

considered for specific forecasting tasks due to their high compatibility with the research 

scope, the need to perform larger scale tests for the examination of scalability often 

requires dataset expansion. Therefore, generative data collection methodologies are 

utilized in order to address the challenges surrounding the overall difficulty of obtaining 

high volumes of suitable high-quality data.  

Generative approaches mainly rely on models and simulations in order to increase the 

number of samples from an existing dataset, combine smaller datasets cohesively and 

generate data approximations for a given research task when no data points are provided. 

Modeling methodologies typically receive an input dataset and based on a set of 

assumptions; multiple processing cycles generate output samples. This type of generative 

data collection is often utilized for the expansion or combination of smaller datasets since 

the required set of assumptions associated with the data distribution and time series 
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characteristics could be easily derived from the smaller sets of samples [24]. Simulation 

processes typically generate datasets based on a set of parameters that denote the initial 

state of the environment under study as well as its evolution over a specified period of time 

[25]. It is evident that simulations add significant value to data collection since they could 

produce high volumes of data without the need of an initial input dataset and offer more 

flexibility in energy research. Researchers could explore a plethora of scenarios through 

simulations given the deterministic process that sets the parameter values, resulting in 

faster and more robust experiments. Moreover, hybrid approaches combining modeling 

and simulation structures could provide increased flexibility in the selection of input and 

the finalization of environmental parameters.  

A hierarchical categorization of generative approaches based on the type of input data 

utilized in these data collection processes distinguishes two types of methodologies, the 

top-down and bottom-up methods. The top-down methods utilize aggregate features in 

order to produce more samples through the estimation of energy variables such as the 

energy demand, whereas bottom-up methods utilize disaggregated input [26]. Since 

aggregate input features may not express the behavior of the individual components of a 

system accurately and disaggregated input data may not always comply to all general 

restrictions of the system simultaneously, the generated output samples may contain 

inconsistencies as the target generated feature values may be overestimated or 

underestimated. 

The generation of samples for the creation, extension and combination of datasets involves 

several risks that could have an impact on the performance and integrity of forecasting 

models. First, it is clear that modeling and simulation approaches operate through the 

execution of several processing stages in order to provide readily available data that could 

easily be integrated in relevant research tasks. Therefore, the quality of the data is directly 

dependent on the accuracy of the processing tasks. Additionally, the availability of the 

generated samples is dependent on the complexity and the response time of the models. 

These dependencies indicate that suboptimal and poorly designed processing tasks could 

negatively impact the generated samples, compromising the quality of the output dataset. 

Furthermore, it is worth noting that the development and implementation of a robust 

processing pipeline is a time-consuming task that could delay research output. Second, the 
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dependency of the modeling approaches on data assumptions and the dependency of 

simulations on environmental parameters require expert knowledge and a thorough 

examination of edge cases in order to reinforce reliability. These dependencies introduce a 

level of uncertainty since the studied environments in the energy sector are dynamic and 

rapidly evolving. Lastly, transparency and traceability risks could emerge and have an 

impact on the integrity and reproducibility of research projects due to the intricacies of 

processing tasks. Therefore, research on the field should include a comprehensive overview 

of the processing tasks utilized for data generation in order to reinforce the clarity of the 

presented work. 

2.3 Processing 

The processing module is one of the most important components of short-term time series 

forecasting approaches in the energy sector since the dataset needs to be appropriately 

prepared for model training. The dataset derived from data collection methodologies 

needs to be compatible with the data format of a studied model in terms of structure and 

address all model requirements for optimal performance. Additionally, the dataset needs 

to include useful features that are relevant to the studied research questions and could 

boost forecasting accuracy. Therefore, in this section we examine the primary tasks 

involved in time series processing for forecasting tasks and discuss about their impact on 

the research pipeline and the respective challenges that may arise. The following 

subsections present an overview of data cleaning, feature representation, data splitting, 

transformations and feature engineering approaches since these are the prominent tasks 

executed in this module. 

2.3.1 Data Cleaning and Feature Representation 

The datasets derived from data collection methodologies may include missing values, 

duplicate data points and errors depending on the quality standards of the data collection 

process. It is often observed that the datasets made available for research in the energy 

sector have undergone a data cleaning process at the source in order to boost data quality 

and reduce the effects of erroneous samples, however this process could also be executed 

by the researchers if the dataset is still poorly structured. 
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 2.3.1.1 Missing Values 

Missing data and missing components of aggregate features could be detected and omitted 

from the initial dataset for simplicity or could be replaced with more useful samples 

through data imputation. When the missing rate is low, typically below 5%, the deletion of 

missing data may not have a significant impact on dataset quality [27]. On the other side of 

the spectrum, data imputation is preferred when the missing rate is high since the datasets 

would be incomplete and the task of learning consumption or electricity price patterns 

would not be possible. Therefore, several data imputation methods were developed and 

used frequently towards the improvement of energy time series datasets. One of the 

simplest categories of data imputation methods attempts to replace the missing samples 

based on information available in neighboring samples. These approaches could utilize 

simple duplication strategies in order to carry the last observation forward or the next 

observation backward. Alternatively, when ranges of past and future neighboring data 

regions are considered, interpolation techniques based on linear and nonlinear structures 

could be utilized to impute missing values. Furthermore, robust neighbor-based imputation 

methods take into consideration the aspect of local similarity and based on extensive 

examination of similar data points through well-known clustering approaches such as K-

nearest neighbors and DBSCAN they update missing values with the mean value of similar 

neighbors. Moreover, constraint-based imputation methods attempt to discover 

dependencies and rules between samples in order to form a set of constraints that could 

regulate sample replacement. These constraints could be derived from similarity and 

distance metrics as well as graph structures and networks. This category of methods could 

be accurate and time-efficient but could also be restrictive at a larger scale since the 

constraints may not reflect the entirety of dynamics found in real world consumption and 

energy market datasets [28].  

Efficient data imputation could also be achieved through learning-based methods since 

several subcategories could be identified featuring robust models. First, the subcategory of 

statistical methods often utilizes traditional data fitting approaches as well as rolling 

statistics and the use of mean value in order to derive suitable data points considering 

historical and future data regions. Second, regression models utilize historical data and 

neighboring data points in order to formulate forecasting models for the prediction of 
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missing values. More recent learning-based approaches utilize neural networks for the 

development of more sophisticated data imputation models. The most prominent neural 

network structures used for this task are the multi-layer perceptron, generative adversarial 

networks and several recurrent neural network architectures coupled with the gated 

recurrent unit model (GRU) for the processing of long-term data dependencies [29].   

Alternatively, methodologies utilizing collaborative filtering could also be useful for data 

imputation since matrix decomposition models could extract features from the original 

dataset and based on correlation metrics reconstruct the original data matrix by 

completing the missing values [30]. Furthermore, expectation-maximization methods 

could be applicable to data imputation tasks since new data samples that fit the original 

data distribution could be derived from the iterative tuning of model parameters at the 

maximization step [31]. It could easily be observed that more powerful data imputation 

processes could lead to the development of time-consuming strategies that may include 

the formulation of subsequent forecasting tasks. Therefore, execution time should be an 

additional concern for short-term and very short-term forecasting pipelines as model 

recalibration could become slower when new samples that include missing values pass 

through more complex data imputation structures such as deep recurrent neural networks. 

2.3.1.2 Erroneous Data 

Apart from missing values, data cleaning methods address the challenge of erroneous time 

series data through several types of error correction algorithms in order to derive less noisy 

series with fewer outliers. The selection of error correction method depends on the type 

of erroneous data and it is possible that multiple methods could be utilized simultaneously 

towards the improvement of the dataset. Time series datasets typically include continuous, 

single point and translational errors. Continuous errors refer to abnormal values in multiple 

consecutive data points. This type of error typically occurs due to noise or malfunction of 

metering equipment. Additionally, supporting features such as geospatial data could 

exhibit continuous errors due to interruptions in data transmission or partial data 

corruption. Single point errors refer to isolated data points that have a small or large 

distance from the true value. These errored samples could be identified as outliers since 

they may not follow the patterns in the time series. The existence of continuous and single 

point errors is common in energy time series surrounding the study of load and electricity 
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price since the study of consumption reflects the potential instabilities of the smart grid as 

well as the dynamic client habits and the study of electricity price reflects the volatile 

nature of energy pricing due to several phenomena such as renewable energy penetration 

and energy market dynamics. Lastly, translational errors could occur due to the poor 

alignment of timestamps, resulting in a suboptimal arrangement of features since sample 

values within the same row may not correspond to the same timestep for every feature. 

There is a significant overlap between missing value data imputation methods and 

erroneous data processing approaches since the improvement of the time series data 

depends on the optimal replacement of samples. Therefore, prominent error value 

cleaning methods could be classified as smoothing-based, constraint-based, statistics-

based or in the wide category of anomaly detection algorithms. Smoothing-based methods 

attempt to reduce noise through low frequency filtering, moving average and 

autoregressive processes. However, the application of these methods is not extensive since 

the risk of data distortion after smoothing could lead to increased confusion and 

uncertainty in model formulation. Constraint-based methods focus on the detection of 

several types of dependencies in order to derive rules that could refine the values of 

samples. These dependencies are typically detected from the order of samples, the value 

difference in consecutive data samples, the speed of value changes and the temporal 

structure denoting causative and dependent behaviors. Furthermore, statistical 

approaches often include maximum likelihood estimation, Markov models, binomial 

sampling and probabilistic models for the discovery and examination of patterns in 

historical data, resulting in the estimation of values that could optimally replace specific 

samples. Moreover, anomaly detection algorithms utilize a plethora of learning structures 

such as long short-term memory networks, generative adversarial networks and 

autoregressive moving average models in order to identify and repair data abnormalities 

of sequences as well as standalone samples. Lastly, dynamic programming and distance-

based clustering approaches are utilized towards the mitigation of translational errors and 

the optimal alignment of features [28]. 

2.3.1.3 Feature Representation 

The structure of features and the way they are presented within a dataset could provide 

significant benefits to data exploration, research problem formulation and forecasting 
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model design since the clear representation of time series variables and the detailed 

description of influencing factors reinforce interpretability and could contribute towards 

the efficient discovery of patterns. Optimal feature representation techniques shift the 

complexity from the forecasting framework and the individual model to the examination 

of features. In the energy sector, this is an important task for most forecasting models due 

to the complex dynamics that exist in smart grids and energy markets as well as the wide 

set of influencing factors that affect client consumption. Consequently, two main 

categories of feature representation methods could be identified. The first category refers 

to contextual representation methods that attempt to alter existing features and introduce 

new ones in order to enrich or compress the contents of a dataset, following the 

specifications of the research task closely. The second category refers to structural 

representation methods that mainly alter existing features in order to accommodate the 

assumptions and the computational path of specific forecasting models. Both categories 

are valuable for data processing and it is evident that a combination of techniques from 

those representation method sets is typically utilized before further feature processing 

tasks are executed. 

Contextual feature representation methods operate as preliminary feature engineering 

and selection layers in order to expand or shrink the available feature space in ways that 

increase the compatibility of features with the scope and goals of the research task. Feature 

representation methods focusing on feature space expansion typically include 

disaggregation, fuzzification, statistical and temporal enrichment. Disaggregation 

techniques are primarily utilized for the decomposition of existing features into more 

detailed components. These methods commonly apply unsupervised learning methods as 

well as edge detection to general consumption data in order to isolate appliance features 

and denote events in the studied environment. Additionally, fuzzification techniques could 

be applied in order to generate a new set of linguistic variables from an existing feature. 

Fuzzification is suitable for features that describe nondeterministic quantities with 

uncertainty such as influential weather variables. The resulting fuzzified features describe 

the degree of membership that maps the original value to the linguistic variables, boosting 

the overall interpretability of the dataset [32]. Furthermore, statistical and temporal 

enrichment describes the process of feature space expansion through the inclusion of 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



62 

additional statistical and temporal variables extracted from the original dataset. This simple 

process typically involves the calculation of rolling statistics such as rolling mean and the 

inclusion of lagged variables that could describe load or price historical data at different 

time steps. It is worth noting that temporal enrichment could also refer to the inclusion of 

simple time variables extracted from timestamps such as the hour or the day [33]. 

On the other side of the spectrum, feature space shrinkage may be necessary in some 

forecasting tasks since low dimensional datasets containing fewer features that summarize 

the factors affecting the target variables concisely may result in simpler and easily 

interpretable models. Contextual feature space shrinkage typically includes aggregation 

tasks. Aggregation approaches utilize simple mathematical models, statistical methods and 

unsupervised learning algorithms in order to summarize features given a specific research 

direction [34]. For example, total demand and price forecasting tasks as well as client group 

consumption analysis often require the summation of load or price features from multiple 

sources and the organization of clients into distinct groups based on their common 

characteristics.  

Structural feature representation methods focus on alternative dataset organization 

approaches such as time series encoding and some dimensionality reduction techniques in 

order to derive an equivalent dataset structure that describes existing variables differently 

based on assumptions and observations. These methods attempt to increase the 

compatibility of the available dataset to the studied forecasting structure without 

significant compromises in data quality. Encoding techniques exploit existing structural 

characteristics of some feature types in order to derive more detailed representations that 

express a more accurate mapping of those features to time series data. Prominent 

approaches in time series encoding are one-hot, cyclical and radial basis function encoding. 

One-hot encoding typically targets categorical influencing factors and time-related 

information for the introduction of dummy variables that have specific values only in the 

rows where the mapping of the sample to the variable is valid. Consequently, the 

introduction of those sparse features may lead to reinforced interpretability and 

robustness when compared to the original non-sparse representation [35]. Cyclical 

encoding methods acknowledge the continuity of some variables and transform them 

utilizing trigonometric functions such as sine and cosine. This transformation could clearly 
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expose periodic patterns in an easily interpretable way that could simplify the training of 

some forecasting models [36]. Radial basis function encoding methods utilize distance 

metrics in order to derive curves that denote the closeness of each sample to a specific 

value, providing the model with clear relationships of the features to crucial reference 

points [37]. The role of dimensionality reduction techniques in the feature representation 

stage remains simplistic since complex transformations that reduce the shape of features 

typically need to be applied after data splitting in order to use only the training data as 

reference. Therefore, dimensionality reduction methods in this scope extend the main 

principles of aggregation tasks through the inclusion of compression and vectorization 

strategies that could boost pattern visibility [38]. 

2.3.2 Data Splitting 

An important step in dataset processing is the implementation of data splitting strategies 

since there are several benefits contributing towards forecasting model robustness and 

evaluation fairness. Two main data splitting directions can be identified in forecasting tasks 

in the energy sector. The first direction refers to data splitting for the purposes of model 

training and evaluation given general design guidelines for optimal forecasting. The second 

direction refers to problem-specific data splitting in order to derive several datasets that 

could be processed separately from the same forecasting framework. 

Training and evaluation oriented data splitting approaches are mandatory in most 

forecasting tasks in the energy sector since they express the general learning procedure 

where a model receives a specific set of samples that are considered as known data in order 

to tune its parameters in a way that when new samples considered as unknown data are 

given as input, the predicted output of the model is close to the actual values in that 

unknown data segment. Therefore, data is typically split in a training set, a validation set 

and a test set. The training set represents the known data segment given to the forecasting 

model for pattern discovery and initial parameter learning. The validation set represents 

the unknown data segment used for the optimization of estimator parameters. Lastly, the 

test set represents the unknown data segment utilized for estimator performance 

evaluation. This data splitting process is often executed before any data transformations 

and feature engineering techniques are applied. Consequently, feature processing 

methods that aim to alter the properties of a dataset are applied based on training data 
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samples in order to eliminate bias. Short-term time series forecasting tasks in the energy 

sector often require several years of historical data for model training and utilize the most 

recent years of data samples as unknown data for parameter tuning and performance 

evaluation. The dataset is split based on a specified splitting ratio. The most commonly 

used ratios in the literature split the data 80%-10%-10%, 70%-15%-15% or 60%-20%-20% 

for training validation and test sets respectively. It is worth mentioning that many 

methodologies in this research space unify the validation and test sets. This unification 

leads to the identification of distinct model evaluation strategies such as holdout validation 

and cross-validation that will be analyzed further in the examination of the forecasting 

framework and the output module since the processing module focuses on the role and 

structure of the training module [39]. 

Problem-specific data splitting approaches are applied on the training, validation and test 

set equivalently in order to derive several smaller datasets of explicitly specified 

dimensions. Data splitting approaches in this scope often address research tasks that utilize 

load data from different types of clients and electricity prices from different sources. The 

main goals of those methods are to create well-separated datasets that could be passed to 

the same model or to several different models within a forecasting framework in order to 

estimate the values of target variables partially or to provide different output 

representations depending on the structure of the input. Consequently, clustering 

algorithms such as k-means are utilized for the segmentation of the dataset based on 

distance metrics. This data segmentation could enable diverse and localized data 

processing and feature enrichment techniques as the unique characteristics of each data 

segment could be exploited for performance improvement [40]. 

2.3.3 Data Transformations 

The separation of data into a known training segment and unknown validation and test 

segments enables a series of impactful transformations that optimize and rescale the input 

based on the manipulation of time series properties for efficient processing in the 

forecasting framework. These transformations are applied to the training data segment 

and the unknown data segments are subsequently transformed based on the 

transformation principles of the training set in order to avoid bias and data leakage. 

However, transformed input data samples lead to the derivation of transformed predicted 
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output samples that need to be reverted back through the application of the inverse 

transformation for performance analysis. Additionally, it is evident that some research 

efforts may utilize only a small number of data transformations based on model 

requirements or no transformations in order to minimize the impact of processing 

performance benefits while isolating the forecasting structure for performance evaluation. 

Therefore, while there is a large set of data transformations for time series data that could 

be suitable for forecasting tasks in the energy sector, there are only a few prominent 

methods that are utilized situationally. The most widely used methods discussed in this 

section include power transformations, differencing techniques, standardization and 

normalization. 

It can be observed that due to the complexity of consumption patterns and the occurrence 

of seasonal trends in load and electricity price observations, energy datasets may include 

non-stationary features as the mean and variance shift over time. Consequently, the 

available data may not follow a normal distribution and the overall instability caused by the 

increased variance values could affect the performance of some statistical and machine 

learning forecasting models. As a result, power transformations could be utilized in order 

to stabilize variance and reinforce clarity in feature correlation analysis [41]. These 

transformations apply a set of power functions that attempt to nullify the effects of the 

trend based on the function that best explains the shift in variance. For example, the effects 

of quadratic trends could be stabilized through a square root transformation and 

exponential trends could be reduced or removed through a logarithmic transformation. In 

this scope, it is worth mentioning that the box-cox power transformation utilizes the 

exponent lambda (𝜆) as a decision variable in order to detect the appropriate power 

transformation for a given time series 𝑦, resulting in an optimal approximation of a normal 

data distribution through the formula: 

𝑦(𝜆) = {
𝑦𝜆 − 1

𝜆
    𝑖𝑓 𝜆 ≠ 0

log(𝑦)      𝑖𝑓 𝜆 = 0

 

(2.1) 

 

The impact of trends and seasonality that render time series data non-stationary could also 

be addressed through the utilization of differencing transformations that help stabilize the 
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mean values. Differencing methods calculate the differenced time series by subtracting an 

observation at a past time step 𝑡 − 𝑛 from the current observation at timestep 𝑡. Since the 

timestep denoting the previous sampling interval is typically utilized for the calculation of 

the differenced series, 𝑛 usually takes the value of 1. However, the value of 𝑛 depends on 

the temporal structure as well as the problem formulation. Furthermore, differencing could 

be applied multiple times when the trends are nonlinear in order to eliminate any 

instabilities that may still persist. The inverse operation involving the addition of the 

previous observation is applied when the predicted series needs to be converted to the 

original scale for performance evaluation [42]. Given the observed value of the time series 

at time 𝑡 denoted as 𝑦(𝑡) and a previous observation 𝑦(𝑡 − 𝑛), the differencing term at 

time 𝑡 denoted as 𝑑𝑖𝑓𝑓(𝑡) can be defined by the formula: 

𝑑𝑖𝑓𝑓(𝑡) = 𝑦(𝑡) − 𝑦(𝑡 − 𝑛) (2.2) 

 

Energy datasets usually contain time series features of different units with values at 

different scales. Therefore, these independent variables may not contribute equally to 

regression analysis tasks and could lead to biased predictions as they may follow different 

distributions. As a result, the performance of models that assume a normal feature 

distribution such as linear regression and support vector machines could be affected 

negatively. Standardization is the suitable data transformation method that could provide 

a solution to this problem since the time series features are modified to have a mean value 

of 0 and a standard deviation of 1, following the behavior of a standard normal distribution 

[43]. Given the mean value 𝜇 and standard deviation value 𝜎 of time series features with 

values denoted as 𝑥(𝑡) at timestep 𝑡, the standardized time series values denoted as 𝑠𝑡𝑥(𝑡) 

could be calculated through the formula: 

𝑠𝑡𝑥(𝑡) =
𝑥(𝑡) − 𝜇

𝜎
 

(2.3) 

 

Moreover, in scenarios where the data distribution may not be known and the contribution 

of features is affected by their value range, the scale of time series could be adjusted in 

order to accommodate the assumptions of some machine learning methodologies such as 

neural networks that require an appropriate data scaling strategy for the effective usage of 
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activation functions. Consequently, the normalization task is applied in order to transform 

the data and bring all samples within a common value range. Typically, the preferred range 

for data scaling is between 0 and 1. This process is applied to the training set and based on 

that scaler, the remaining validation and test sets are transformed accordingly [44]. Given 

the values of time series observations denoted as 𝑥(𝑡) at timestep 𝑡 as well as the minimum 

and maximum values of the features denoted as 𝑚𝑖𝑛(𝑥) and 𝑚𝑎𝑥(𝑥) respectively the 

normalized values 𝑛𝑟𝑥(𝑡) could be calculated through the formula: 

𝑛𝑟𝑥(𝑡) =
𝑥(𝑡) − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 

(2.4) 

 

2.3.4 Feature Engineering 

Feature engineering tasks expand on the principles of feature representation and feature 

transformation processes in order to derive new features, select the most appropriate ones 

for a given model or modify existing ones in an attempt at finalizing the input dataset based 

on the properties of the training data. These tasks focus more on the improvement of 

prediction accuracy and convergence time of the forecasting model and could be utilized 

for the development of a research project based on the low-level inspection of the 

forecasting framework. Three categories of prominent feature engineering tasks are 

presented in this section. The first category refers to feature decomposition approaches 

since the component-wise analysis may benefit the forecasting performance of some 

models. The second category refers to feature projection techniques since the mapping of 

the feature set could expose specific characteristics that may be valuable for training or 

provide solutions towards dimensionality reduction, resulting in faster convergence times. 

Lastly, the third category refers to feature selection tasks that evaluate the significance of 

features and derive a set of the most important ones for the prediction of the target 

variable. 

2.3.4.1 Feature Decomposition 

Feature decomposition approaches focus on the extraction of recurrent and non-recurrent 

time series components. Recurrent time series components in the energy sector mainly 

consist of the average value of load and price, increasing and decreasing trends as well as 

short-term cycles repeating throughout the year that denote a seasonal pattern in 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



68 

consumption, electricity transactions or other influencing factors such as weather data. The 

primary non-recurrent component considered in this decomposition refers to noise that 

could be present due to irregular events and poor data quality. Alternatively, the average 

value of the time series including any random fluctuations that could occur due to the effect 

of noise could be treated as the residual component which denotes the values that remain 

after the extraction of the trend and seasonal components. These components could be 

processed individually for robust estimation or utilized for parameter tuning and model 

selection. Decomposition approaches mainly consider an additive or multiplicative 

relationship between the components. Additive decomposition is suitable for datasets 

where a change in the average value of the series for a specific time period is not 

proportional to the variation exhibited in the trend and seasonal components. When the 

variation of trend and cycle are proportional to the time series level, a multiplicative 

decomposition is preferred. The formulation of a purely additive or multiplicative time 

series decomposition method is usually preferred for simplicity. Given a specific time 

period 𝑡, a time series 𝑦𝑡, a seasonal component 𝑆𝑡, a trend component 𝑇𝑡 and the residual 

series 𝑅𝑡, classical additive and multiplicative decomposition could be formulated through 

the respective equations: 

𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡  (2.5) 

 

𝑦𝑡 = 𝑆𝑡 × 𝑇𝑡 × 𝑅𝑡 (2.6) 

 

However, additive and multiplicative relationships between components could coexist. This 

phenomenon coupled with the need to control how fast each component changes and 

handle outliers efficiently lead to more decomposition methods that extend the knowledge 

of the classical additive and multiplicative approaches such as the Seasonal Extraction in 

ARIMA Time Series (SEATS), the X11 and the Seasonal and Trend decomposition using Loess 

(STL) methods [45]. 

2.3.4.2 Feature Projection 

Feature projection techniques focus on the derivation of alternative time series 

representations that contribute towards dimensionality reduction and efficient context-

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



69 

dependent decomposition while improving the efficiency of time series clustering 

approaches and enabling the application of sophisticated feature selection methods at a 

subsequent step. One of the most prominent methods in this research space is principal 

component analysis (PCA) which is utilized for the extraction of low-dimensional dataset of 

uncorrelated components that maintain a high percentage of the variance found in the 

original data. This method utilizes an orthogonal transformation in order to map a high-

dimensional dataset to a smaller set of components through the examination of the 

variance-covariance matrix. The algorithm of PCA was modified to accommodate several 

time series forecasting tasks in this research field and several other alternative methods 

focusing on different aspects of feature engineering were subsequently developed [46]. 

Piecewise Vector Quantized Approximation is an equally important technique in time series 

dimensionality reduction as it provides a symbolic representation of time series through 

the mapping of sequence segments based on distance metrics. This method could also 

enhance similarity analysis and clustering tasks for robust feature selection [47]. 

Furthermore, methods such as the t-stochastic neighbor embedding (t-SNE) are adapted to 

time series in order to visualize datasets containing consumption or price data from 

multiple customers at a low dimensional space and validate the efficiency of time series 

clustering before the data is passed to the forecasting model [48]. Time series clustering 

results could also be enhanced through the Uniform Manifold Approximation and 

Projection method (UMAP) by providing a topological data representation strategy [49]. 

Moreover, Singular Value Decomposition (SVD) could be utilized for dimensionality 

reduction as well as separation of random effects that could cause noise for further 

examination [50]. 

2.3.4.3 Feature Selection 

Feature selection methods utilize importance metrics and visualization techniques in order 

to reduce the total number of features and derive the set of the most significant ones. 

These techniques reduce the dimensions of the dataset and could lead to improved 

forecasting performance as features that could have a negative impact on the training 

process and the generalization capabilities of a model are not included. For example, short-

term load predictions could benefit from the detection of important environmental 

features such as temperature and electricity price predictions could be improved if the 
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exogenous variables directly connected to price volatility such as fuel costs and system load 

are included in the input dataset. 

It is evident that several dimensionality reduction techniques discussed in the previous 

section as well as clustering methodologies contribute towards the selection of impactful 

features. Methods that focus on the mapping of features to a low dimensional space such 

as PCA could provide insightful information towards the identification of important 

features through the examination of coefficients used to combine the dataset columns. 

Higher coefficient values denote increased importance of the candidate features. 

Additionally, clustering methodologies reinforce feature similarity through distance 

metrics and focus on the inclusion of features that match a set of criteria while removing 

less relevant columns. These methods provide an indirect quantification of feature 

importance that depends heavily on data structure. 

On the other side of the spectrum, modeling methodologies and importance scores provide 

a more direct quantification of feature significance and result in the straightforward and 

simplified understanding of the data that could subsequently lead to a better 

understanding of the forecasting model. Importance thresholds are defined based on 

research assumptions and performance expectations. The features that are connected to 

weights or importance scores below the specified thresholds are eliminated. Since short-

term forecasting tasks in the energy sector utilize supervised machine learning regression 

techniques, the coefficients of those models could be used as direct indicators of feature 

importance. Therefore, widely used feature selection strategies involve fitting a simple 

model such as linear regression on training time series samples in order to derive the 

weights that denote the significance of each feature. Additionally, decision tree-based tasks 

adapted to regression methodologies could be utilized for importance evaluation and 

feature selection since importance scores could be extracted based on the reduction of the 

criterion that evaluates the quality of decision rules leading to splits in the structure. 

Consequently, simple decision trees, random forest models or more sophisticated 

stochastic gradient boosting algorithms such as XGBoost could retrieve feature importance 

scores. Generalizing the process of deriving importance scores leads to the implementation 

of permutation techniques that could utilize any model as the base structure and given a 

variable combination of features, the importance scores are derived from the iterative 
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performance evaluation of the model. Permutation approaches enable the development 

of highly complex model structures but the size of the feature set and the training time of 

the model impose restrictions in terms of time complexity that could render these 

approaches infeasible for short-term forecasting pipelines. More robust feature 

importance methods typically utilize a combination of simple models and derive the 

optimal set of features based on the cross-examination of importance scores [51].  

Furthermore, influential features could be selected through the examination of causality. 

Statistical hypothesis tests such as the Granger causality test take into consideration the 

evolution of time series variables and attempt to express a causal relationship between 

features under the principles that a causal series happens before the feature that expresses 

the effect and the causal series contains unique and useful information about the effect 

series. The examination of causality as a feature selection technique is valuable to short-

term forecasting methodologies in the energy sector since the interpretation of events that 

could cause fluctuations in the target variables of load and price could be clearly identified 

through a smaller set of features [52]. Additionally, an equally important criterion that 

contributes to optimal feature selection is the quantification of similarity. Since the 

regression tasks that are based on data extracted from diverse customer sets and different 

building types is often clustered before forecasting, distance metrics could support the 

identification of the features that are more closely connected to the target variable [53]. 

Time series datasets in the energy sector may contain influential factors that are not 

derived from the target series as well as features that represent the target series at a 

previous time step, known as lags. The previously discussed feature selection tools could 

have general applications on all types of features. However, the examination of correlation 

is often considered as one of the most prominent processes for time series feature 

selection when lagged series are included in the dataset. Correlation denotes the type of 

association between two variables as positive, neutral or negative, depending on how the 

values of those variables change. Positive correlation denotes a change in the same 

direction for both features, neutral correlation denotes the absence of relationship as the 

values of the variables change and negative correlation indicates that the values of the 

variables change in the opposite direction. The detection of significant correlation between 

an influential feature and the target variable could be valuable for the improvement of 
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model performance as the inclusion of this feature could strengthen the expression of 

patterns and relationships in the data. However, correlation between independent 

influential factors could be an indicator of multicollinearity, leading to unreliable 

forecasting performance. Consequently, some features may need to be eliminated in order 

to avoid this risk. Correlation could be used to study linear relationships in time series 

features under the assumption of a normal distribution and the absence of outliers through 

the calculation of Pearson correlation coefficients. These coefficients could be calculated 

based on the covariance 𝑐𝑜𝑣 and the standard deviation 𝜎 of the features [54]. Therefore, 

given variables 𝑋 and 𝑌, the Pearson coefficient 𝑝𝑐𝑜𝑒𝑓𝑓 is calculated as follows: 

𝑝𝑐𝑜𝑒𝑓𝑓 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋 × 𝜎𝑌
 

(2.7) 

 

Moreover, the study of nonlinear relationships based on data that may not follow a normal 

distribution could be conducted through the calculation of the Spearman correlation 

coefficient 𝑠𝑐𝑜𝑒𝑓𝑓 that considers the covariance and standard deviation of the rank 𝑟 of 

values in each feature [55]. This alternative correlation coefficient is calculated based on 

the formula: 

𝑠𝑐𝑜𝑒𝑓𝑓 =
𝑐𝑜𝑣(𝑟𝑋, 𝑟𝑌)

𝜎𝑟𝑋
× 𝜎𝑟𝑌

 
(2.8) 

 

The values of the coefficients range from −1 to 1 with −1 denoting perfect negative 

correlation and 1 denoting perfect positive correlation. The study of correlation could 

provide significant insights in the examination of lagged time series features. The 

autocorrelation plot is utilized in order to present the correlation values for the time series 

at different time steps and a confidence interval is specified, denoting that correlation 

values outside of its boundaries are statistically significant. The autocorrelation denoting 

the relationship between a time series feature and a shifted version of this series at a prior 

time step contains the direct correlation between them as well as the indirect correlations 

that could occur due to intermediate time steps. This information could be complex and 

for the purposes of feature selection the isolated correlation between the series and the 

lagged version may be needed in order to form the decision to keep or eliminate the lagged 
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series from the feature set. Therefore, the partial correlation could be calculated and 

plotted in order to examine this relationship [56]. These computations and visualization 

techniques contribute towards more robust statistical and machine learning models since 

regression tasks in the energy sector typically include lagged series for the target variables 

of load and price in the feature set. 

2.4 Forecasting Framework 

The forecasting framework is the core module of every forecasting process since it is the 

main component for model design and development. This module includes the selection 

and implementation of forecasting algorithms as well as several processes for the tuning of 

hyperparameters and the optimal training of the models based on known observations. 

The estimated target variables are provided as the output of this module for interpretation, 

performance evaluation and subsequent processing. The forecasting framework structure 

depends primarily on the decision regarding the forecasting philosophy followed for the 

resolution of a specific research task. This decision influences the model selection as well 

as the tuning and the training process. In the energy sector, several approaches utilize a 

single forecasting algorithm in order to derive short-term predictions of load and price and 

continually attempt to explore different “what if” scenarios. Through this exploration, 

researchers seek to improve the performance of this standalone structure through several 

modifications that are connected to parameter values and changes in modeling 

assumptions. Alternatively, research efforts could utilize a combination of forecasting 

methodologies in order to derive more reliable and highly performant models at an 

increased structural complexity. As a result, a plethora of standalone and combinatorial 

models that have a statistical and artificial intelligence background are applied to a wide 

variety of research tasks contributing towards the evolution of this research area and 

providing efficient solutions for the prediction of important energy related variables. 

Therefore, in this section an analytical discussion of standalone and combinatorial 

modeling approaches presents the prominent statistical and artificial intelligence methods, 

the main goals of each structure as well as their respective challenges and limitations. 

Additionally, an overview of prominent hyperparameter tuning techniques follows this 

analysis since it is necessary to present the methodologies that could optimally handle the 
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parameters of a forecasting structure towards the exploration of alternative scenarios and 

subsequent error reduction.  

2.4.1 Standalone Modeling 

Standalone modeling approaches focus on the design and implementation of a centralized 

forecasting structure that features a single estimator which processes the input dataset. 

This structure could include a set of parameters that may be tuned in order to optimize the 

performance of the forecasting structure globally and the output typically describes the 

estimated target variable since there is a direct flow of information that connects the 

training and evaluation process to the estimated values. Short-term forecasting in the 

energy sector utilizes standalone modeling in order to derive baseline models for 

benchmarking or optimized models for applications that involve more versatile and 

modular feature processing methods. Since standalone models follow a single forecasting 

algorithm, they are more reliable in terms of training time, rendering them suitable for 

applications with strict time constraints. Additionally, standalone models often follow a 

simple structure that could reinforce the interpretability of a forecasting task as well as the 

reproducibility of research results since implementations and comprehensive experiments 

could be easily available through several research efforts. Standalone forecasting models 

could be organized into the two main categories of statistical and artificial intelligence 

models which could be further analyzed in the following subsections. 

2.4.1.1 Statistical Forecasting Models 

Statistical forecasting models refer to traditional parametric and non-parametric 

methodologies that attempt to capture and interpret linear and nonlinear relationships 

through averaging techniques, time series decomposition and regression analysis. These 

approaches were developed based on simple yet powerful mathematical concepts that 

could lead to satisfactory short-term time series predictions without requiring a restrictive 

amount of computing resources. The most prominent sets of methods utilized in short-

term energy forecasting are exponential smoothing, moving average and regression 

estimators. 

Exponential smoothing methods primarily rely on the formulation of weighted averaging 

techniques that utilize an exponential decay mechanism in order to convey the decreased 

impact of time series lags as the time window between the studied series increases. This 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



75 

category of methods often explores core time series components such as trend and 

seasonality in order to derive a suitable smoothing technique. When trend and seasonal 

components cannot be easily detected, a naïve approach is usually adopted where future 

observations at timesteps 𝑡 + 𝑛 have the same value as the current observation at timestep 

𝑡 and the model focuses on the most recent observation as past observations do not 

provide any information about the future. Therefore, any forecasted future observation 

could be expressed as an average of the current observation where every term has equal 

weights. This is an edge case that sets the basis for exponential smoothing approaches. 

Expanding on this concept, the smoothing parameter 𝑎 could be defined within the range 

of 0 and 1, denoting the level of smoothing increase when the value of the parameter is 

small and smoothing reduction when the value is large. [57] Following this step, the 

exponential decrease of the weights that could express the decreased impact of past 

observations for the point forecast of the next observation �̂�𝑡+1|𝑇, given the smoothing 

parameter, the total number or observations 𝑇 as well as the first fitted value 𝑙0 could be 

calculated through the formula: 

�̂�𝑡+1|𝑇 = ∑ 𝑎(1 − 𝑎)𝑗𝑦𝑇−𝑗 + (1 − 𝑎)𝑇𝑙0

𝑇−1

𝑗=0

 

(2.9) 

 

While simple exponential smoothing could be effective when no clear trend or seasonal 

patterns are detected, several extensions of this model cover different scenarios where a 

specific type of trend or seasonal component could be detected. Consequently, the Holt 

linear trend method could be utilized when only an additive trend could be detected and 

the additive as well as the multiplicative variants of the Holt-Winters methods could be 

utilized when an additive or multiplicative seasonality is present given the detection of an 

additive trend [58]. These methods introduced trend and seasonality equations featuring 

additional smoothing parameters 𝛽, 𝛾 in order to regulate the level of smoothing for those 

components. Additionally, damped versions of those methods were developed in order to 

stop the indefinite increase or decrease of the trend for future observations. In the energy 

sector, an exponential smoothing approach utilized for load or electricity price forecasting 

is typically modelled as a linear or quadratic curve. The values of the smoothing parameters 

as well as the initial fitted observation could be tuned for performance optimization in 
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order to derive lower error metrics. Exponential smoothing methods perform well for point 

forecasts but depending on the forecasting task, these algorithms could be extended in 

order to output estimated intervals. Therefore, state space models could be developed 

from the smoothing equations after the definition of a measurement equation that 

represents each observation as the addition of the previous smoothing level with an error 

term, the formulation of a state equation that represents the adjustment to the smoothing 

level and the derivation of the probability distribution associated with the error. The 

performance optimization of those state space models could be achieved through error 

metric minimization as well as likelihood maximization techniques. Since the state space 

models are configured differently based on the type of trend and seasonality exhibited in 

the time series, information criteria such as the Akaike information criterion (AIC) and the 

Bayesian information criterion (BIC) could be utilized for the selection of a suitable 

configuration [59]. 

An equally important set of statistical methodologies refers to statistical regression 

approaches where the target variables could be expressed as a linear or nonlinear 

combination of features. Linear models constitute the simplest regression approaches that 

attempt to find the line of best fit given training data points through the derivation of 

optimal coefficients that describe this feature combination. The method that sets the basis 

for those approaches is linear regression [60]. According to this method, the predicted 

value �̂�(𝑤, 𝑥) could be expressed through 𝑝 + 1 coefficients 𝑤𝑖 and 𝑝 number of features 

𝑥𝑖  with the formula: 

�̂�(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑝𝑥𝑝 (2.10) 

 

The coefficients are calculated with the goal to minimize the residual sum of squares 

between the actual and predicted values, solving an ordinary least squares (OLS) task that 

has the following objective function: 

min
𝑤

‖𝑋𝑤 − 𝑦‖2
2 (2.11) 

 

It is evident that feature independence is crucial for linear regression forecasting since 

feature dependences could result in higher error sensitivity due to the effect of 
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multicollinearity. Several variations of the baseline linear regression model were developed 

in order to address a wide spectrum of challenges towards optimal forecasting. Ridge 

regression attempts to provide a more resilient solution towards the challenge of 

multicollinearity through the introduction of the penalty term 𝑎‖𝑤‖2
2 on the size of the 

coefficients adjusted by a positive complexity parameter 𝑎 that regulates the level of 

shrinkage. This penalty term is added to the main objective function and reinforces the 

robustness of the algorithm. As a result, the value space of the coefficients is restricted and 

extreme values occur less frequently. Furthermore, lasso regression attempts to derive 

more sparse solutions through the derivation of fewer non-zero coefficients. This approach 

reduces the number of influential features utilized in the derivation of estimated values. A 

penalty factor based on a constant 𝑎 denoting the degree of sparsity and the 𝑙1-norm of 

the coefficient vector ‖𝑤‖1 transforms the main objective function as follows: 

min
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

‖𝑋𝑤 − 𝑦‖2
2 + 𝑎‖𝑤‖1 

(2.12) 

 

Moreover, Elastic Net regression is an equally important linear regression method that 

shares the coefficient sparsity of lasso as well as the regularization properties of ridge 

regression. This method applies 𝑙1 and 𝑙2-norm regularization for the calculation of 

coefficients in order to derive a more stable model that could select multiple correlated 

features for the estimation of the output values. Consequently, given the degree of sparsity 

parameter 𝑎 as well as the ratio parameter 𝜌 that controls the convex combination of 𝑙1 

and 𝑙2-norm regularization, the objective function is transformed as follows: 

min
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

‖𝑋𝑤 − 𝑦‖2
2 + 𝑎𝜌‖𝑤‖1 +

𝑎(1 − 𝜌)

2
‖𝑤‖2

2 
(2.13) 

 

Since short-term forecasting in the energy sector often utilizes high-dimensional data, Least 

Angle regression could be utilized in order to provide robust estimations through the 

iterative refitting of residual values, producing a piecewise linear solution path. This 

method follows the intuitive approach of adjusting the coefficients in order to reflect 

correlation equality between influential factors when it occurs and performs similar to 

forward selection regression methods [61]. However, noisy output could occur as the 
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residual values are fit due to carrying an error term at each iteration. It is worth noting that 

probabilistic methods such as Bayesian regression could contribute significantly to the 

development of statistical forecasting techniques since more adaptive models that 

consider the distribution of the data and the effect of regularization parameters could lead 

to robust predictions [62]. Consequently, variations of previously discussed models such as 

ridge regression could adopt the Bayesian framework in an attempt at improving prediction 

accuracy. 

From the formulation of linear regression, it could be observed that the features 𝑥𝑖  could 

represent independent influential factors as well as past values of the target variable. 

Therefore, the subcategory of regression models utilizing the shifted load or electricity 

price time series as input features refers to autoregressive methods. These models could 

set constraints on the values of coefficients in order to perform well with stationary data.  

Replacing the general feature notation with the given lagged time series and including a 

white noise term 𝜀𝑡, autoregressive models of order 𝑝 could be expressed as: 

𝑦𝑡 = 𝑤0 + 𝑤1𝑦𝑡−1 + ⋯ + 𝑤𝑝𝑦𝑡−𝑝 + 𝜀𝑡 (2.14) 

 

Alternatively, some regression models could utilize past forecast errors as input features in 

order to predict future values of energy related variables. These models are described in 

the literature as moving average models and the formula denoting the structure of a 

moving average model of order 𝑞 could be easily derived from the replacement of the 

lagged time series features from the previous equation with error features 𝜀𝑖 as follows: 

𝑦𝑡 = 𝑤0 + 𝑤1𝜀𝑡−1 + ⋯ + 𝑤𝑞𝜀𝑡−𝑞 + 𝜀𝑡 (2.15) 

 

Depending on the processing and feature selection techniques utilized, the regression 

model could combine differenced past forecast features 𝑦𝑡−𝑖
′  and error features 𝜀𝑡−𝑖 in 

order to derive an autoregressive integrated moving average structure (ARIMA) that 

predicts the differenced time series for the target variable. The formulation of the ARIMA 

model could be derived from the separation of coefficients into the autoregressive weights 

𝜑𝑖 and the moving average weights 𝜃𝑖. Since the resulting model integrates the concepts 

of differencing, autoregression and moving average, the definition of the model depends 
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on the parameters denoting the autoregressive order 𝑝, the degree of differencing 𝑑 and 

the moving average order 𝑞. As a result, the 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model is defined by the 

formula: 

𝑦𝑡
′ = 𝑤0 + 𝜑1𝑦𝑡−1

′ + ⋯ + 𝜑𝑝𝑦𝑡−𝑝
′ + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 (2.16) 

 

Since time series data in the energy sector exhibit seasonal patterns, ARIMA models could 

be extended to include seasonal terms involving lagged time series for the seasonal period. 

The seasonal terms are typically multiplied by the non-seasonal terms. The definition of a 

seasonal ARIMA model extends the previous notation by adding a set of autoregression, 

differencing, and moving average parameters for the seasonal terms with capital letters as 

well as a parameter 𝑚 denoting the number of observations per year. Therefore, a seasonal 

ARIMA model is defined as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚 [63]. 

2.4.1.2 Artificial Intelligence Models 

It is evident that statistical approaches may become limited in terms of scope as the 

datasets become richer and the patterns within a studied environment become more 

complex. Additionally, the performance of more traditional estimation processes is often 

limited by initial assumptions and constraints on the behavior of the data. Therefore, more 

intuitive and flexible approaches for short-term forecasting in the energy sector could 

result in the thorough understanding of patterns as well as higher prediction accuracy. 

These models stem from the field of artificial intelligence and belong to the classes of 

machine learning and deep learning. Machine learning estimators introduce an algorithmic 

computational structure for the prediction of core energy time series and deep learning 

estimators expand on that structure through the integration of multiple additional 

computation layers that could process larger datasets more efficiently. Machine learning 

and deep learning estimators utilize sophisticated learning processes that focus on the 

efficient calibration of a model to the input and the approximation of functions that define 

relationships between the input features and the target variables. These types of models 

focus on the evolution of regression tasks and typically belong to the supervised learning 

subcategory since labeled datasets are processed for the estimation of load or electricity 

price. It is worth mentioning that the supervised learning subcategory includes some 
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structures suitable for classification tasks such as decision trees and support vector 

machines that could also be adapted to regression problems. 

A simple and efficient approach for regression tasks utilizes the stochastic gradient descent 

(SGD) algorithm that attempts to learn the linear regression function through the 

minimization of the regularized training error, given a loss function 𝐿, a regularization term 

𝑅 that functions as a penalty factor with regards to model complexity and a positive 

hyperparameter 𝑎 that denotes the strength of regularization [64]. This is a versatile 

estimation method since the parameters utilized in the calculation of the regularized 

training error could be changed in order to express different mathematical structures. 

Consequently, depending on the regression task, there are different options for the loss 

function that are connected to other regression methodologies such as squared error for 

linear regression, epsilon-insensitive for support vector machines and modified Huber. 

Additionally, several options for the regularization parameter are available including the 𝑙1 

and 𝑙2 norm as well as the elastic net regularization. The SGD regression algorithm is 

iterative and often utilizes an inverse scaling schedule determined by a learning rate 

parameter 𝜂(𝑡) that could be calculated given the initial learning rate 𝑒𝑡𝑎0 and the 

exponent 𝑝𝑜𝑤𝑒𝑟_𝑡 as follows: 

𝜂(𝑡) =
𝑒𝑡𝑎0

𝑡𝑝𝑜𝑤𝑒𝑟_𝑡
 

(2.17) 

 

Alternatively, the algorithm could utilize a constant learning schedule considering only the 

initial learning rate or an adaptive schedule that gradually decreases the learning rate when 

the stopping criterion is reached, until it becomes lower than a specified threshold value. 

Support vector machines (SVM) are prominent short-term load and price forecasting 

methods since they enable efficient high dimensional data processing and provide a flexible 

nonparametric structure. Models utilizing the SVM algorithm attempt to map data points 

to a high-dimensional space through the use of kernel functions in order to search for the 

hyperplanes that separate them optimally. The data points or vectors closest to those 

hyperplanes are known as support vectors. Therefore, the main goal of this approach is to 

maximize the distance between the support vectors and the hyperplane. It is evident that 

this objective is mostly suitable for classification tasks. However, SVM could be adapted to 
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predict continuous output through the search for the line of best fit within the threshold 

set by the distance between the data boundary line and the hyperplane. The optimization 

problem of SVM methodologies could become simpler through the Lagrange dual 

formulation, providing a lower bound to the initial problem. Given 𝑁 input observations 𝑥𝑛 

as well as the nonnegative Lagrange multipliers 𝑎𝑛 and 𝑎𝑛
∗ , the function 𝑓(𝑥) utilized for 

predictions in the linear SVR regression approach could be defined through the formula: 

𝑓(𝑥) = ∑(𝑎𝑛 − 𝑎𝑛
∗ )

𝑁

𝑛=1

(𝑥𝑛 ∙ 𝑥) + 𝑏 

(2.18) 

 

The nonlinear version of the SVR regressor considers the nonlinear kernel function 𝐺(𝑥𝑛, 𝑥) 

that defines the transformation which maps observations to a high-dimensional space [65]. 

The prediction formula for nonlinear SVR regression is the following: 

𝑓(𝑥) = ∑(𝑎𝑛 − 𝑎𝑛
∗ )

𝑁

𝑛=1

𝐺(𝑥𝑛, 𝑥) + 𝑏 

(2.19) 

 

Moreover, an equally important set of classification methodologies adapted to regression 

tasks utilize decision trees as the main forecasting structure. The tree structure contains 

the root node that denotes the best predictor variable, decision nodes that correspond to 

each feature and leaf nodes. Decision nodes could contain several branches that represent 

the values of the feature. Leaf nodes represent the decision output. The decision tree 

algorithm considers the entire set of observations at the root node and attempts to split 

the datasets into smaller segments through a top-down greedy search approach that 

focuses on standard deviation reduction. The goal of this approach is to find the features 

that return the highest standard deviation reduction, resulting in the most homogeneous 

branches. The first step of this algorithm calculates the standard deviation of the target 

variable. Following this step, the initial dataset is split on different features and the 

standard deviation for each branch is calculated and subtracted from the standard 

deviation before the split to derive the reduction value. The feature with the highest 

standard deviation reduction value is chosen for the decision node and a segmentation of 

the dataset occurs based on the values of this feature. This process continues recursively 
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for all branches until the leaf nodes are formed. It is evident that loss functions such as 

squared error and mean absolute error could be utilized for the evaluation of split quality 

[66]. Additionally, it is worth mentioning that the performance of this method depends on 

several structural parameters such as the maximum depth of the tree, the minimum 

number of observations for node splitting, the minimum number of observations at a leaf 

node and the maximum number of leaf nodes. Depending on the dataset dimensions and 

the complexity of feature relationships, the resulting size of the decision tree could include 

longer computation paths, resulting in longer total execution time. Several robust 

estimation approaches utilize a number of decision trees in a unified model in order to 

improve forecasting accuracy. One of the most prominent decision tree-based algorithms 

in short-term load and price forecasting is the extreme gradient boosting method 

(XGBoost). This algorithm utilizes several regression trees, following an iterative training 

process where new trees are predicting the residual errors of previous ones. The combined 

output of those structures forms a standalone differentiable loss function that could be 

minimized through the gradient descent algorithm [67]. 

Lastly, neural network models form one of the most flexible and robust categories of 

standalone artificial intelligence estimators since they follow parametric approaches in 

order to execute complex computations for function approximation. This class of 

estimators perform a series of computations on the input features in order to determine 

core learning parameters such as weights and biases. The computation path is typically split 

into several stages where the transition from the output of one stage to the input of the 

next one is controlled by activation functions. Neural network approaches follow several 

adaptive structure types and contribute in different ways when short-term forecasting 

tasks in the energy sector are considered.  

The first type of neural network structure features computation paths that utilize sets of 

neurons organized in layers while forming directed acyclic graphs. Each neuron receives a 

set of inputs and translates them into the output through a series of computations and 

passing the resulting data through the activation function. These computations typically 

describe the output as a weighted sum of the inputs. The class of feedforward neural 

networks utilizes this structure in order to process linearly and non-linearly separable data 

and detect useful patterns for robust estimation. One of the most prominent methods in 
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this neural network class is the multilayer perceptron (MLP). This fully connected neural 

network structure is a powerful estimator that utilizes an input layer, several hidden 

computation layers and an output layer. Multilayer perceptron could be utilized as a 

standalone machine learning estimator for smaller datasets when only a small number of 

hidden layers is selected or as a deep learning model for larger datasets when more hidden 

layers are included. This approach is flexible since the vectorized input of MLP does not 

have restrictive requirements with regards to data representation. Therefore, data 

representation and computation flow are problem specific and highly customizable, 

rendering the MLP as the template model for many forecasting tasks in the energy sector. 

However, the fully connected structure of MLP could result in training issues such as 

overfitting and the lack of explicit methods for pattern simplification could result in 

structures that are difficult to interpret as the complexity of the studied environment 

increases. Short-term time series forecasting tasks in the energy sector could study 

dynamic and evolving environments where a wide set of parameters may be needed for 

effective modeling. As a result, the global examination of the environment through the MLP 

structure would consider the full set of parameters, forming a shallow network that is 

generally difficult to interpret [68]. 

Convolutional neural networks (CNN) are often applied to short-term load and price 

forecasting in order to address some of those challenges and provide simpler pattern 

interpretations through a hierarchical processing approach. This category of feed forward 

neural networks was primarily utilized for image processing tasks, but the potential of 

processing data sequences as one-dimensional arrays led to the adaptation of the CNN 

structure for time series forecasting. The structure of CNN focuses on the local examination 

of data regions since each neuron is connected to an input segment. The receptive field of 

each neuron denotes the spatial extent of this connection that is expressed through 

convolution.  It is evident that CNNs could be considered as the regularized version of MLPs 

since they introduce more compact methods towards pattern simplification that are 

directly connected to a hierarchical data representation. The structure of CNNs introduces 

several layers and concepts that contribute towards the efficient regularization and 

processing of time series data. First, the utilization of convolution layers as the main 

computational approach enables more flexible management of influential data points. 
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These layers could be dilated, resulting in a sparsely populated receptive field that could 

allow the processing of more historical time series samples. Additionally, CNN models could 

utilize filters in order to discard time series properties that could hinder forecasting 

performance such as noise and create meaningful a data mapping strategy that maintains 

important patterns while reducing data dimensions. Moreover, the CNN structure includes 

some mechanisms that could prevent overfitting such as weight decay and dropout [69]. 

The second type of neural network structure features computation paths that form loops 

in order to process data sequences based on information stored in previous states. These 

approaches utilize feedback mechanisms and their internal memory in order to exhibit a 

temporal dynamic behavior. The class of recurrent neural networks (RNN) utilizes this 

structure in order to make decisions based on the current input as well as information from 

previous training steps. One of the most prominent methods in the RNN class is the long 

short-term memory network (LSTM). This model extends the concepts introduced in the 

RNN structure in order to describe long-term time dependencies and address training 

challenges such as the problem of vanishing gradient that could prevent the weights of the 

network from changing values. LSTM architectures follow a block structure that represents 

the computational units used to derive each state of the network. Each block includes a set 

of gates that control the information that enters a computation block, denoting the data 

that will be omitted, the necessary data updates to the current state and the data that will 

be passed to the output and subsequently used as the input of the next block. This gated 

block structure improves upon the base RNN principles since it introduces explicit and 

robust ways of data control. LSTM networks add value to short-term load and forecasting 

since the target interval may often be influenced by time series lags that describe long-

term dependencies [70].  

Moreover, the wide application of the LSTM architecture in sequence prediction led to the 

development of several variants that highlighted different aspects of this neural network 

approach and reinforced the flexibility of those models in time series forecasting. The gated 

recurrent unit (GRU) is an alternative gated block structure that operates similarly to the 

LSTM. However, GRU models feature fewer gates since the processing tasks only consider 

the information that needs to be transferred to the next state and the information that 

needs to be neglected based on the importance of the previous block. Consequently, GRU 
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models could result in faster computation when compared to LSTM due to the simpler 

gated structures, but they do not include an internal memory and may be less effective as 

longer sequences are processed. Furthermore, alternative structures could emerge from 

the adoption of different information flow strategies and the implementation of structural 

modifications that address more complex forecasting tasks. Therefore, the implementation 

of a forward and a backward processing layer that leads to the development of a 

bidirectional LSTM estimator could contribute towards the thorough understanding of 

complex seasonal patterns. Additionally, the inclusion of several layers of LSTM blocks 

results in deeper stacked LSTM estimators that could derive improved forecasting accuracy 

when deep learning tasks in the energy sector are considered. The LSTM and GRU 

architectures are suitable for the design of deep learning estimators since the 

hyperparameters that determine the amount of processing blocks and the types of 

activation functions for each gate could be configured in order to develop deeper neural 

network models [71].  

2.4.2 Combinatorial Modeling 

Standalone estimation approaches usually offer fast and satisfactorily accurate load and 

price predictions within short forecasting intervals, rendering them as suitable components 

for benchmarking and baseline formulation. However, model assumptions, structural 

limitations and irregular parameter behavior could impact the processing of complex 

energy datasets negatively, resulting in unstable, suboptimal and less interpretable 

predictions in several short-term forecasting scenarios. Therefore, more robust estimators 

need to be introduced as the evolution of the research area focuses on the development 

of sophisticated approaches that could result in improved accuracy, flexibility and 

modularity. These approaches typically combine standalone estimators as building blocks 

and often enhance the forecasting structure with the inclusion of traditional machine 

learning concepts such as fuzzy logic and more recent methodologies such as the attention 

mechanism while maintaining the same goal of predicting the values of the target variable 

in the output. Therefore, this section details the role of the most prominent categories of 

combinatorial modeling in the energy sector through an overview of ensemble learning 

methodologies, fuzzy-supported regression approaches and encoder decoder structures. 
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2.4.2.1 Ensemble Learning 

The class of ensemble learning algorithms contributes towards the development of robust 

estimators that combine several standalone statistical and artificial intelligence learners in 

order to derive lower error metrics and improved prediction stability. The development 

process of an ensemble learning method includes the model selection and model 

integration subprocesses. In the model selection subprocess, a set of estimators is 

generated or selected based on arbitrary or deterministic strategies. These estimators are 

members of the ensemble that are utilized in order to predict the target variables from the 

given energy data. At this stage, an optional model elimination subprocess could be applied 

in order to reduce the estimator set and include the most impactful models for the 

forecasting task. In the model integration process, the set of base estimators follows a 

combination strategy in order to optimally derive improved forecasts. The set of estimator 

members could be diverse, utilizing different types of estimators or homogeneous, utilizing 

similar models or the same estimator structure. Diverse ensemble sets focus on the 

performance improvement achieved through the complete discovery and interpretation of 

patterns and relationships, while homogeneous ensemble sets focus on performance 

benefits derived from the correction of erroneous predictions through the utilization of 

input, output, parameter and induction manipulation techniques.  

The most prominent ensemble methodologies utilized in short-term time series forecasting 

in the energy sector refer to stacking, bagging and boosting models. Stacking estimators 

pass the output of ensemble members to a subsequent regression model in order to learn 

the optimal combination of forecasts. This approach evaluates the impact of each 

participating estimator and derives a prediction that reflects the joint contribution of the 

ensemble set, resulting in robust generalization [72]. Bagging and boosting ensembles find 

wide application in research tasks where the standalone models such as neural networks 

and decision tress would yield unstable performance due to irregular events or structural 

intricacies in the dataset. Bagging methodologies fit ensemble members on random data 

subsets that encapsulate all the characteristics of the original series and subsequently 

aggregate the results through voting or averaging strategies. These methods focus on the 

reduction of variance and could be easily parallelizable for efficient computation [73]. 

Lastly, boosting methods build an ensemble model incrementally through the sequential 
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training of estimator members in order to reduce the bias of the participating models [74]. 

As a result, the focus of boosting methods is shifted towards the iterative performance 

improvement in the prediction of observations that exhibited higher error in previous 

instances. Ensemble learning sets the foundation for meta-modeling approaches since it 

introduces the concept of multi-stage regression. 

2.4.2.2 Fuzzy-Supported Regression 

Fuzzy logic principles and, by extension, fuzzy inference systems could be integrated in 

short-term load and price estimation models in order to reinforce interpretability and 

improve training performance in terms of convergence time and accuracy. The most 

prominent contributions of fuzzy logic in this forecasting framework are the analysis of 

influential features that exhibit a degree of uncertainty in linguistic terms, the extraction 

of a rule base that thoroughly describes feature relationship within the studied 

environment and the fuzzification of model parameters. Feature fuzzification and the 

development of fuzzy rules offer enriched a priori knowledge to forecasting models for 

more informed decisions. Additionally, the fuzzification of model parameters could address 

the uncertainty that occurs during the training process when fewer historical observations 

are available or when the datasets contain missing values. Therefore, the preliminary task 

of feature fuzzification in the forecasting pipeline is often coupled with a rule base 

generator in order to form a combinatorial fuzzy regression structure. 

Combinatorial fuzzy regression structures could integrate statistical as well as neural 

network models for the development of robust estimators. Statistical approaches such as 

ARIMA, typically utilize fuzzy logic principles in order to fuzzify the estimated coefficients 

that describe the contribution of features [75]. Neural network models often adopt several 

fuzzy system characteristics in order to enhance the learning process and utilize the 

knowledge provided by the rule base. It is evident that since neural networks often follow 

a black-box approach that is difficult to interpret, the fuzzification of influential features as 

well as the utilization of a compact set of rules before, during and after the learning process 

could simplify function approximation. This complementary role of fuzzy rules supports the 

relationships of historical observations and serves as a prototype training template. Neuro-

fuzzy systems typically follow a fully connected layered structure that includes three types 

of layers. The first layer receives the input features, the second layer proceeds with the 
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extraction of fuzzy rules and the third layer focuses on the representation of the estimated 

values for the target variables. 

Two categories of fuzzy neural network structures are usually utilized for regression tasks 

in the energy sector. First, the cooperative fuzzy neural network includes a neural network 

structure and a fuzzy system that operate independently [76]. In this architecture, the 

neural network learns the necessary parameters from the fuzzy system through an offline 

or online learning process depending on the methods utilized for fuzzy set definition and 

fuzzy rule integration. Prominent learning processes based on fuzzy rules utilize clustering 

on self-organizing maps and weight strategies for rule importance. Second, hybrid neuro-

fuzzy networks utilize a homogeneous structure involving a neural network and a fuzzy 

system where the units of the network represent the fuzzy rules and the weights in the 

learning process are modeled as fuzzy sets. This structure operates under the principles of 

fuzzy controllers since the resulting neural network is regarded as a fuzzy knowledge base. 

Additionally, several hybrid approaches utilize the previously described systems to form 

more complex forecasting pipelines where the cooperative or concurrent operation of this 

structure is determined based on heuristics [77]. The main point of focus in fuzzy regression 

modeling is the construction of an optimal rule base. Since the models are deployed for 

short-term load and price forecasting tasks, the rule base needs to be accurate in order to 

address the intricacies of the studied environment and relatively small in order to ensure 

faster training and model recalibration. 

2.4.2.3 Encoder-Decoder Estimation 

The class of recurrent neural network models offers some robust standalone LSTM and 

GRU estimators that predict data sequences efficiently through the processing of time 

dependencies. An extension of this class introduces the combinatorial encoder-decoder 

structure for performant time series predictions in deep learning tasks. This model consists 

of three main components, the encoder, the context vector and the decoder. The encoder 

could be represented as a recurrent neural network that receives the input sequences in 

order to learn a mapping that converts the sequence to the context vector. The context 

vector contains encoded time series information derived from the final hidden state of the 

encoder. This information could also represent the initial hidden state of the decoder for 

accurate decision making. The decoder could be represented as another recurrent neural 
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network that derives the final forecast from the analysis of the context vector. This model 

could be a useful tool in the processing of series that have variable length and alignment. 

Consequently, the consumption features of several types of clients could be studied more 

efficiently as the client base evolves through time [78]. 

Furthermore, it is evident that the target variables of load and electricity price are often 

described by long input sequences containing influence factors and lagged values from 

several previous time steps. The processing of long input sequences could be resource 

intensive for most neural network architectures and could result in slow convergence time 

depending on the complexity of the network structure. The encoder-decoder structure 

addresses those issues through the integration of attention mechanisms that enable the 

decoder to utilize encoder information selectively, based on a weight strategy. This is 

achieved through the assignment of importance weights to different input sequence values 

and the subsequent derivation of context vectors for every time step of the decoding 

process. These context vectors reflect this weighted importance mechanism since they are 

calculated based on all the hidden states of the encoder. 

There are several attention mechanisms that could be applied to encoder-decoder 

modeling depending on the importance evaluation strategy followed by the model. The 

generalized attention mechanism forms a query between each element of the input 

sequence, comparing it to the output. This comparison leads to the calculation of scores 

that reflect the relative importance of each input element and is utilized in order to derive 

the attention weights and scale the input values accordingly. The self-attention mechanism 

selects different parts of the input sequence and compares them with each other in order 

to modify the output sequence. Multi-head attention considers the parallel layered 

structure of attention heads formed by the iterative computation of attention weights. 

Each layer processes the input and output sequence elements and derive a combinatorial 

score. It is worth mentioning that powerful deep learning architectures such as the 

Temporal Fusion Transformer (TFT) utilize multi-head attention in a structure consisting of 

an LSTM encoder-decoder layer, a variable selection network and a gated residual network 

for robust multi-horizon forecasting of heterogeneous time series [79]. Furthermore, 

Bandanau attention generates a set of annotations for the input sequence at the encoder 

and passes them to an additive alignment model with the previous hidden decoder state 
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for the calculation scores which are subsequently normalized into attention weights. The 

annotations and the weights form the context vector that could help the decision-making 

process at the decoder when coupled with the previous hidden decoder state. Lastly, Luong 

attention considers a multiplicative model where all the hidden states of the encoder are 

considered in order to derive the context vector [80]. 

2.4.3 Meta-Modeling 

Meta-modeling approaches focus on the improvement of generalization, stability and 

accuracy through the integration of a subsequent model that processes the output of the 

main standalone or combinatorial structure for the derivation of the estimated target 

variables. These methodologies could utilize ensemble learning principles in order to 

combine multiple output sequences through an additional forecasting strategy or 

introduce feedback mechanisms aimed at prediction refinement. The main requirements 

in the development of meta-modeling methods involve the shift in the scope of the core 

forecasting structure and the extraction of additional information that could expose 

additional properties of the output series. Consequently, the main estimator could utilize 

the base feature set or different variations of the base dataset in order to derive different 

representations of the output. These representations could be influenced by several 

metrics and concepts such as similarity and causality. Alternatively, the main estimator 

could provide a preliminary forecast that is split into different components. The 

components extracted from the estimated series such as the error, often exhibit a degree 

of volatility that could negatively impact the performance of the model over time. This 

phenomenon could be easily visible in long-term forecasting horizons since the prediction 

error is often larger but the impact of unstable estimated components should be 

considered as equally important for short-term horizons since real time energy applications 

that present irregular changes in consumption or price could result in uncertainty, leading 

to poor decision making and lack of reliability. The estimated values of those components 

are passed to a meta-estimator in order to form a feedback mechanism that derives more 

stable isolated component predictions and adds them back to the original series [81]. 

It is evident that the research area of meta-modeling approaches is vast and evolving since 

most prominent estimators could be repurposed through experimentation in order to 

operate under different research assumptions and the same structures could be utilized in 
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the development of the surrogate model. However, there are several challenges and 

restrictions associated with the formulation of efficient meta-modeling approaches in 

short-term forecasting. First, the overall complexity of model structure should be 

considered since a sophisticated meta-modeling layer that shares a similar number of 

parameters with the main estimator could result in slower convergence times and render 

model recalibration infeasible for shorter time intervals. Therefore, simpler statistical 

models such as autoregressive processes and fundamental neural network models such as 

the multilayer perceptron are usually preferred. Additionally, meta-modeling design is a 

balancing act that exposes the tradeoffs with regards to model selection for the main and 

meta-processing layer. Research in this area should evaluate the performance impact of 

each individual estimation layer and determine the need for a more complex architecture 

when it is appropriate. It is commonly observed that techniques aiming at prediction 

refinement utilize comparatively simpler meta-processing models since the core estimation 

structure needs to have the appropriate complexity in order to learn from environment 

dynamics. However, this standard practice may not always be effective as the dimensions 

of the initial dataset increase. In this scenario, there is the possibility that a robust model 

operating on a smaller set of estimated series derived from a simpler core model may yield 

satisfactory performance metrics. Second, the total number of model parameters could 

increase, rendering tuning and model selection strategies more computationally expensive. 

2.4.4 Model Tuning 

Most models utilized in short-term time series forecasting tasks introduce a set of 

parameters that could be adjusted in order to derive optimal performance. Several 

research approaches and proof of concept applications could perform a baseline model 

analysis utilizing parameter values that follow the default configuration provided by the 

application programming interface or a set of values derived from trial and error. However, 

when more robust combinatorial and meta-modeling approaches are considered, 

hyperparameter optimization ensures that the components of this structure do not exhibit 

a divergent behavior on the given dataset. 

Prominent hyperparameter optimization methods form search strategies that examine the 

parameter space and algorithmically denote the best candidate solutions based on a set of 

rules. Grid Search is one of the most common optimization strategies that exhaustively 
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searches value subsets based on the performance metrics provided by time series cross 

validation or holdout validation methods. Since this approach tests all the combinations 

within those subsets, there could be performance issues associated with the high 

dimensionality of the search space. Alternatively, Random Search could be utilized in order 

to examine a random sample of parameter values derived from specified distributions [82]. 

This search strategy could outperform Grid Search since it operates on the reduced 

dimensions of the sampled values and could be easily parallelized. Furthermore, the global 

search algorithm of Simulated Annealing could be utilized as an iterative stochastic 

approach for the selection of optimal parameter values since it introduces customizable 

criteria and functions that could control the convergence process of machine learning 

estimators [83]. Equivalently, Bayesian optimization could be considered as another 

impactful global search algorithm that iteratively evaluates different model configurations 

based on the probabilistic mapping that determines the transition from one candidate 

configuration to the next, resulting in fewer evaluations when compared to other search 

methods [84]. Moreover, evolutionary algorithms contribute towards the global 

optimization of neural network models through fitness ranking and the iterative 

replacement of suboptimal hyperparameters generated through the genetic operators 

denoting crossover and mutation [85]. Lastly, gradient-based optimization methods could 

be utilized for the selection of optimal parameters in neural network structures through 

the application of the gradient descent algorithm and the definition of a hypernetwork that 

generates weights for the main neural network estimator and learns the configuration that 

yield optimal output [86]. 

2.5 Output and Performance Evaluation 

The output of the forecasting structure contains estimated values for the target energy 

variables examined in short-term prediction horizons. The evaluation of those values is 

typically executed in three stages. At the first stage input training samples are utilized in 

order to derive the output at each instance of the learning process based on known data. 

At the second stage, the framework derives the estimated output from the input values of 

the validation set for the purposes of parameter refinement as an internal procedure. 

Lastly, at the third stage, the input values of the test set derive the test output samples for 

generalization to unknown data and performance evaluation. The main strategies applied 
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to those three stages may differ due to the roles of the input datasets in the forecasting 

framework for training and validation as well as the output module for testing. However, a 

shared set of performance metrics is usually utilized in order to denote the divergence of 

the estimated from the actual values. Therefore, in this section the prominent 

methodologies involved in the evaluation of the output for all stages of the learning process 

are examined as well as the associated performance metrics utilized in this research area. 

Furthermore, the processes involved in the training of the models are examined and 

significant risks such as overfitting, underfitting and the concept of drift are outlined. 

2.5.1 Performance Metrics 

Functions that express the comparison between the actual time series values to the 

estimated output could be considered useful tools towards the monitoring of the training 

process, parameter optimization, result interpretation and performance quantification of 

short-term forecasting models in the energy sector. These functions are mainly statistical 

measures that describe the magnitude of error, presented as a numerical value or as a 

percentage. Error direction, scale dependence and interpretability are some of the most 

crucial factors that influence the categorization and selection of those performance 

metrics. Research efforts utilizing energy data for short-term load and price predictions 

typically attempt to minimize those metrics at the forecasting framework and the output 

module since lower error metric values denote more accurate forecasts. Additionally, these 

metrics are widely used for model comparisons given a specific input dataset. It is worth 

noting that since the quality of the data influences those metrics, the comparison of models 

needs to be conducted on the same input in order to ensure fairness. The most prominent 

error functions utilized in this research space are the mean absolute error (MAE), mean 

absolute percentage error (MAPE), mean squared error (MSE), and root mean squared 

error (RMSE). 

Mean absolute error provides an easily interpretable and natural error metric that is 

indifferent to the direction of errors [87]. This metric is commonly used as a loss function 

for the training of machine learning models and as a simple performance evaluation 

indicator for the output. The numerical values of this metric follow the original units of the 

estimated variables. This function does not interpret the impact of the relative error size as 

there is a difficulty in the differentiation of error magnitude. Since optimal forecasts require 
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the minimization of error, a value of 0 MAE denotes that the forecast is perfect and exhibits 

no error. Given the predicted values 𝑦𝑖 and real values 𝑥𝑖  in a set of 𝑛 samples, the mean 

absolute error is computed by the formula: 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1

𝑛
 

(2.20) 

 

Furthermore, mean absolute percentage error [88] is mainly used as a scale independent 

performance metric since it expresses the percentage of the average of absolute 

differences between estimated and actual values. This metric could provide a generalized 

percentage score for forecasting models. Given the same parameters for the calculation of 

MAE, MAPE is computed by the formula: 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖 − 𝑥𝑖
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|

𝑛
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(2.21) 

 

Similar to MAE, this error metric does not emphasize on the impact of large errors exhibited 

due to value spikes. Additionally, since the denominator in this formula contains the actual 

time series value, this metric is suitable for datasets where the values of the target variables 

are nonzero. It is easily observed that extreme actual values may impact the consistency of 

this metric. 

Moreover, the error metrics of mean squared error [89] and root mean squared error [90] 

provide quadratic loss functions that measure the forecasting uncertainty while focusing 

on the impact of large errors. The values of MSE could express the sum of the variance and 

square value of bias, further contributing to the performance analysis of a model while 

penalizing large errors more than small errors. Additionally, the values of RMSE increase 

with the variance of the frequency distribution of error magnitudes, resulting in larger 

values when large error values are present. Similar to MAE, RMSE values could be easily 

interpretable since they share the same unit as the estimated variables. Furthermore, the 

simultaneous inspection of MAE and RMSE could provide a thorough examination of error 

variance. When there is a great difference between the values of MAE and RMSE, variance 

in the magnitude of errors could be detected, denoting the occurrence of large errors in 
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the forecast. Given the same parameters used for the computation of the previously 

described error functions, the formulae for MSE and RMSE are the following: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 
(2.22) 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑛

𝑖=1

 

(2.23) 

 

For the purposes of this dissertation, the previously discussed performance metrics will be 

utilized in the training and evaluation of the strategies proposed towards the improvement 

of the short-term forecasting pipeline in the energy sector given specific scenarios where 

regression is applicable. As a result, training, validation and test loss will be calculated 

through those metrics for the three output stages. However, it is worth noting that while 

these are the most prominent metrics, weighted variations of those functions could be 

utilized in order to cover the edge case where significantly smaller datasets are selected. 

Additionally, problem specific metrics could be defined in order to enhance the knowledge 

extracted from the data based on the associated field, such as econometric functions and 

directional performance metrics for energy price forecasts. 

2.5.2 Output Evaluation Stages 

2.5.2.1 Model Training 

The training process at the forecasting framework could be considered as the first stage in 

the forecasting pipeline where estimated output samples are generated based on known 

data points. These observations are derived iteratively based on training algorithms such 

as gradient descent for simple linear regression or backpropagation for neural network 

structures. Since these processes are iterative, at every iteration the loss function 

expressed as one of the previously discussed performance metrics is calculated. A naïve 

approach considers a large number of iterations for the training process with the 

expectation that the loss function will converge to a small value close to zero. However, 

there are several challenges associated with the training process that could have a 
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considerable impact on future output evaluation stages. First, the resulting model after the 

completion of the training process may not be able to capture the patterns in the data 

adequately due to small training dataset size, poor data quality or low model complexity. 

In this case, the model is underfitting and could be characterized by high bias and low 

variance. In order to mitigate this challenge, an increase in the number of training 

iterations, an increase in the number of features or an increase of the overall model 

complexity could be applied. Second, the resulting model could overfit as it may learn 

details and patterns associated to noise that could limit its generalization capabilities. This 

behavior often occurs due to high model complexity, an increased number of training 

iterations or due to the small size of the training dataset. In this scenario, high variance and 

low bias are exhibited. The challenge of overfitting could be mitigated through the 

reduction of model complexity, the increase in training observations and the application of 

regularization strategies [91]. Additionally, early stopping mechanisms could be considered 

in order to track the progress of the loss functions and stop the training process as the error 

starts to increase [92]. 

2.5.2.2 Model Validation 

The calculation of performance metrics with regards to the estimated output generated 

from the validation set could be considered as the second stage of output evaluation in the 

forecasting pipeline. Validation loss plays a significant role in hyperparameter optimization 

since there are several strategies that influence model selection based on the repeated 

calculation of this metric. The most prominent approaches in this research area include 

holdout validation and time series cross-validation. Holdout validation is a simple approach 

primarily used for the development of baseline models for performance comparisons or for 

the evaluation of models that utilize large datasets [93]. This method is often utilized in 

order to derive an unknown data segment that could be considered as the validation and 

the test set simultaneously, resulting in the same value for validation and test loss. 

Alternatively, this segment could be separate from the test set and contribute towards 

model selection through the minimization of validation loss. Time series cross validation 

considers the temporal data structure and the autocorrelation of observations by 

iteratively splitting the dataset into 𝑛 segments, where the first 𝑛 − 1 segments belong to 
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the training set and the last, most recent set, in terms of temporal order, belongs to the 

validation set [94]. 

The combined inspection of validation and training loss could provide insight towards the 

detection of irregular training behaviors such as overfitting and underfitting. When the 

value of the validation loss increases and greatly surpasses the training loss, model 

overfitting could be assumed. Additionally, underfitting could be observed when the values 

of validation and training loss remain high, and their respective curves denote irregular 

peaks and valleys. An optimal fit could be observed when validation and training loss 

remain low, sharing similar values. In this scenario, validation loss could be slightly higher 

than the training loss as the number of training epochs increase as the updates to model 

weights become less significant. Alternatively, validation loss could be slightly lower than 

the training loss when regularization and dropout mechanisms are integrated. The same 

effect could be observed when the training process considers a small number of epochs 

and the training algorithms perform significant updates to model weights during those first 

steps. When validation loss is drastically lower than the training loss or fluctuates above 

and below the training curve, representativeness issues in the validation set could be 

detected [95].  

2.5.2.3 Output Module 

The final stage of output and performance evaluation is performed at the output module 

of the forecasting pipeline where the test set is examined and test loss is calculated through 

the previously discussed performance metrics. At this stage, test loss provides an indicator 

for the generalization capabilities of the model on unknown data. Additionally, if a meta-

modelling strategy is applied for prediction refinement, the final output of the feedback 

mechanism that improves the error is evaluated and examined in this module. Data 

visualization techniques that plot the actual and predicted data points within specific time 

intervals complement the error metrics and reinforce interpretability since the errors could 

be directly connected to the observed differences between the two curves. 

Test loss is expected to share a similar error profile to validation loss since both validation 

and test sets refer to observations of future values collected after the timestamps of the 

training set. Since short-term forecasting in the energy sector processes diverse time series 

that may correspond to different types of clients and buildings or may express different 
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price fluctuations in studies that examine combined energy market dynamics, the test loss 

could increase as the model receives new data samples for prediction, leading to unstable 

and suboptimal performance. This phenomenon occurs due to the challenges of data and 

concept drift. These challenges denote the gradual performance degradation of forecasting 

models as the distributions of the input datasets and the statistical properties of the target 

variables change over time. It is evident that issues related to drift could be easily detected 

when new samples are added for the recalibration of the model since the evolution of the 

historical dataset could be continuously monitored through the calculation of error metrics 

[96]. The detection of those challenges becomes more difficult in more complex 

combinatorial models when several different datasets need to be processed by a central 

estimation structure. In both scenarios, these issues could be mitigated through lagged 

drift detection. The most prominent methodologies for lagged drift detection utilize 

hypothesis testing, distribution comparisons, machine learning models and sliding window 

approaches. Nonparametric tests such as the Kolmogorov-Smirnov test compare the 

cumulative distributions of datasets and evaluate the null hypothesis denoting that the 

distributions are the same. Furthermore, the population stability index (PSI) could be used 

for distribution comparison as a single value indicator that denotes a small drift when PSI 

is lower than 0.1, a moderate drift when PSI values are between 0.1 and 0.25 and significant 

drift when PSI values are greater than 0.25. Alternatively, the repeated training of machine 

learning models for the prediction of the target variable could monitor data drift through 

accuracy fluctuations in the output. Adaptive windowing (ADWIN) could detect concept 

drift through the definition of a fixed-size sliding window. This algorithm computes 

statistically significant values for the time series such as the mean in the regions of the 

sliding window and compares their difference to a specified threshold value in order to 

examine potential changes in the statistical properties of the series. Lastly, drift detection 

methods could calculate statistical metrics as new data is made available to the model in 

order to provide a real-time drift monitoring strategy. The Page-Hinkley method follows 

this approach by calculating the mean of the observed values and comparing them to a 

threshold [97]. 
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 Integration of Fuzzy Logic and Hybrid Feature Importance on 

the Preprocessing Module 

3.1 Motivation 

The design and development of the preprocessing module in short-term forecasting tasks 

involves the implementation of methods that efficiently process and transform the input 

dataset in order to derive the most significant features in an interpretable form. Research 

in this area contributed to the introduction of methods that reduce the dimensions of the 

initial dataset, focusing on the selection of the most influential factors. Additionally, feature 

representation methods such as feature fuzzification and rule base construction were 

outlined for the reinforcement of the decision-making capabilities in the forecasting 

framework since the extraction of a set of rules could enable more intuitive time series 

forecasting strategies. However, several challenges and research gaps were detected in the 

development of feature selection strategies and the construction of performant rule bases. 

First, it could be observed that while several hybrid feature selection approaches were 

developed for the reduction of energy datasets, the space that defines combinatorial 

feature selectors remains insufficiently explored since more novel strategies that perform 

the cross-examination of feature importance metrics from classification and regression 

algorithms could be proposed. Consequently, the introduction of more hybrid feature 

selection strategies could reinforce the flexibility of the preprocessing module as the 

examination of more combinations contributes towards the design and application of 

preprocessing tools that could be readily available for further research and real-world 

forecasting applications. Second, fuzzy rule bases may provide enhanced interpretability 

and decision-making to the forecasting models but this is done at the cost of scalability, 

since the dimensionality of the fuzzified features could render the extraction of rules 

infeasible for short-term tasks that examine complex environments. Short-term horizons 

set strict training and recalibration time requirements and the increased complexity of the 

environment often results in an extended space of fuzzified influential factors where 

feature processing becomes computationally expensive. Naive approaches neglect the 

challenge of dimensionality and attempt to include all possible rule combinations 

generated from the fuzzified features. More robust approaches propose the simplification 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



100 

of the rule base through expert knowledge, model assumptions and rule filtering, implying 

that the initial set of rules will be generated and subsequent methods will be applied for 

rule elimination or reevaluation. Therefore, recent research efforts do not sufficiently cover 

the need for a deterministic approach that focuses on the most important influential 

factors within the scope of a short-term forecasting task in the energy sector in order to 

build a small and interpretable rule base that maintains the accuracy of the expanded 

space. 

These observations could be combined in order to highlight the need for substantial 

contributions in the design of neurofuzzy systems and forecasting models that utilize a 

fuzzy controller for information extraction through a rule base in order to further 

understand environment dynamics. It is evident that fuzzification expands the feature set, 

introducing dimensionality issues in complex environments, while robust feature selectors 

shrink the feature set, mitigating performance hinderances and preserving the most 

important features. Therefore, strategies that evaluate the importance of the fuzzy 

antecedents with regards to the target variables could assist in the derivation of compact 

rule sets, providing feasible solutions for energy applications in short-term horizons. In this 

chapter, the design strategy for the development of a fuzzy controller with regards to the 

electricity consumption of a residential building is presented. This research project focuses 

on the improvement of the rule generation process through the integration of a hybrid 

feature selector, resulting in a smaller set of rules that accurately define the studied 

environment. The following sections correspond to the introduction, methodology, results 

and discussion of this published work. 

3.2 Introduction to Fuzzy Control System for Smart Energy Management in Residential 

Buildings Based on Environmental Data 

Modern energy applications often use load profiles resulting from time-series data of 

electricity usage to monitor and manage the power consumption of customers efficiently 

and reliably [98]. In an attempt to maintain the balance between power supply and 

demand, energy consumption patterns are further processed and as a result, a plethora of 

models aiming at the adjustment of customer behavior are developed. The insights 

extracted from the energy data convey more interpretable trends and patterns, which can 
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be used by the energy provider as a management tool for the control of distribution and 

pricing. Additionally, the output of such models can be useful to customers as a 

recommendation engine, helping them make more informed decisions and reschedule 

their daily tasks when opportunities arise for them to participate in more dynamic pricing 

plans [99]. In the past, simpler prediction and recommendation models were linear and 

faced many challenges such as data dimensionality, trend detection, and uncertainty. Since 

the study of residential and industrial environments requires a more detailed definition of 

all the variables that contribute toward energy consumption, the energy datasets used in 

modern applications often contain many important measurements ranging from appliance 

consumption values to weather parameters. Consequently, the dimensions of the inputs 

and outputs grow, and this could hinder the computational performance of more 

traditional models, rendering the resulting energy applications less efficient [100]. 

Furthermore, linear models sometimes fail to capture the trends that can be observed from 

the data, and the mathematical models used to describe them do not express the dynamic 

and complex nature of those environments as they evolve over time. Hence, linear 

forecasting models and decision-making applications yield less accurate and suboptimal 

results, respectively [101]. Moreover, many input parameters used to define those 

environments often have a more imprecise and uncertain meaning that is often associated 

with human perception and expert knowledge. Therefore, it is difficult to fit those crisp 

values in a strict mathematical model without further interpretation and achieve decent 

performance [102]. 

Solutions to some of the challenges mentioned above can be found in the fields of machine 

learning and fuzzy logic. Traditional machine learning methods, such as decision tree 

classification, are capable of achieving highly accurate and interpretable results, while 

more advanced techniques such as artificial neural networks preserve the complex and 

dynamic nature of those environments and assist in constructing more adaptive models 

with impressive performance. Fuzzy logic methods tackle the challenges of uncertainty and 

partial truth in decision-making systems, since the environments are processed in a more 

interpretable way with the introduction of linguistic terms that express the vagueness of 

human perception for input and output parameters. Since fuzzy systems are defined by 

sets of rules that are close to real world expert rules, decision-making models based on 
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fuzzy logic are popular due to their computational efficiency and overall simplicity [103]. 

The main practical advantages of using fuzzy theory can be observed from several 

successful Enterprise Resource Planning (ERP) and power system control applications. 

Fuzzy logic can handle the ambiguities and vagueness of qualitative factors covered by ERP 

software [104]. Additionally, the stability problems of multi-area interconnected power 

systems caused by nonlinearities can be resolved through fuzzy logic approaches by 

approximating nonlinear models into linear sub-models [105]. Hybrid techniques utilizing 

concepts from both fields such as fuzzy neural networks are proven valuable in the 

development of robust energy applications due to their adaptability and their black-box 

behavior [106]. 

However, it is worth mentioning that there are still questions, challenges, and research 

gaps that arise with the evolution of those fields. Firstly, the challenge of dimensionality is 

a recurring threat to the performance and interpretability of those applications and design 

philosophies around feature engineering should be applied in order to isolate the features 

that are more relevant and important in a particular environment. In general, modern 

energy applications based on those models need to yield results within specific time 

intervals with the upper limit being the time that new data would normally be measured 

by smart meters in order to be considered relevant and acceptable. Therefore, systems 

using highly dimensional input data could yield slower performance outside of the 

acceptable time intervals. Secondly, there is a level of ambiguity that surrounds the design 

process of each energy application, which is mostly related to the available knowledge and 

information about the environment as well as the intended behavior of the finalized model. 

For example, residential environments could be clustered together, and available expert 

knowledge could extract a more generalized set of rules that is applicable to that group but 

on an individual basis, expert knowledge could not always be readily available, and the 

historical data as well as the behavior of each occupant could be more important in the 

extraction of meaningful rules. Additionally, fuzzy logic models and machine learning 

models often need to be retrained to reflect major changes in some vital parameters such 

as occupancy and number of appliances. Since the environments evolve over time, 

respective models need to adapt to the new data easily, because decisions and 

recommendations based on outdated rules could hinder customer satisfaction. 
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A thorough examination of the literature shows that there exists relevant research work 

highlighting aspects of fuzzy logic and machine learning in the development of systems that 

offer optimizations, management solutions, and forecasting potential in the energy sector. 

In 2008, Azadeh et al. [107] presented a framework that combines fuzzy logic and a data 

mining approach in order to predict electricity demand. In their work, they briefly outline 

different methods of rule extraction from decision trees and offer other meaningful 

comparisons of their work with modern machine learning methods such as artificial neural 

networks. The same year, Lau et al. [108] presented a case study of a fuzzy logic forecasting 

system in a clothing manufacturing plant, drawing optimal strategies for efficient energy 

consumption forecasts in that environment. In 2015, Suganthi et al. [109] published a 

useful review of fuzzy logic applications in renewable energy systems and concluded that 

these models provide realistic estimates. In 2017, Emagbetere et al. [110] developed a 

fuzzy prediction system for power consumption forecasts following the Mamdani 

approach. Their system utilized a small set of predefined rules, and their work offered a 

concise error comparison between different membership functions. Javaid et al. [111] used 

Mamdani and Sugeno fuzzy systems in order to evaluate their adaptive thermostat. In their 

work, the simplicity and flexibility of fuzzy inference systems is highlighted. Zhang et al. 

[112] presented a fuzzy forecasting method utilizing historical data found in time series 

through link prediction. Furthermore, Bissey et al. [113] developed a fuzzy logic method for 

the optimization of electricity consumption in an individual residential environment, thus 

allowing for the better management of appliances and for the flexibility to reshape the load 

profile should that be desirable. This work is particularly important for our project, since it 

shares a similar scope. In 2018, Krishna et al. [114] proposed a smart home energy 

management system based on fuzzy logic with a hardware implementation that renders it 

ready for installation and deployment. The impact of fuzzy reasoning on energy 

applications developed for residential environments can be clearly seen in the work of 

Nebot and Mugica [115], published in 2020, where a side-by-side comparison of two fuzzy 

logic methodologies shows the importance of feature selection and correct identification 

of the most relevant building parameters.  

Machine learning and fuzzy logic methods are strongly interrelated, and relevant research 

on the field reinforces the notion that one approach can benefit from the integration of the 
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other. Sophisticated machine learning methods such as neural networks follow a data-

driven modeling approach that utilizes a numerical representation in order to prepare the 

data for relationship induction and model inference. Since relationships between data 

points are often presented as complex computational graphs, the interpretability and 

flexibility of those models is poor due to the lack of a human–machine interface. Therefore, 

it is easy to understand that machine learning succeeds in the statistical induction of 

models from observations and data, but there are considerable difficulties when 

attempting to derive conclusions from premises, models, and assumptions. Fuzzy logic 

extends existing machine learning models through concepts, tools, and techniques that 

introduce knowledge-based design elements and a symbolic representation of data that is 

more interpretable. As a result, the logical deduction of conclusions is a significant 

contribution of fuzzy logic to machine learning methods. Additionally, fuzzy systems can be 

significantly improved with the integration of data-driven approaches. The development 

and implementation of machine learning methods in state-of-the-art fuzzy systems could 

address the potential sparsity of expert knowledge. Furthermore, the insights and data 

processing techniques used in machine learning models could lead to the generation of 

smaller and more accurate sets of rules while enabling future changes as the data evolves 

without the continuous supervision of an expert [116]. 

In this study, we focus on fuzzy control systems for individual residential environments 

without the contribution of expert knowledge. We believe that many interesting design 

approaches can be discussed in an attempt to tackle the challenges mentioned in order to 

develop intelligent systems that merge aspects of fuzzy logic and machine learning 

effectively. The main purpose of this work is to present the design and implementation 

process of a fuzzy energy system for an individual residential environment; the system 

discovers and generates rules based on a decision tree model that integrates a hybrid 

feature selection method for the choice of the most important linguistic variables. The 

proposed system should be viewed as a contribution to the development of intelligent 

decision-making, recommendation, and management tools in the energy sector, since the 

expected output denotes the optimal energy consumption value based on environmental 

parameters such as weather data. This system could be integrated into client-side 

applications in order to derive recommendations that could help reschedule the daily tasks 
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of consumers and minimize energy consumption within short intervals. Additionally, 

electricity providers could utilize this system as a secondary management and control tool 

for regulation and electricity pricing in more customizable and dynamic models that apply 

to individual customers indirectly. Classification methods and load profile monitoring could 

be powerful tools that contribute toward the creation of electricity plans, but the 

realization that these plans are usually formed from generalized consumer patterns greatly 

reinforces the need of having localized models that could help the adjustment of those 

existing plans at a greater detail in an attempt to increase customer satisfaction and plan 

flexibility. To the best of our knowledge, the combination of machine learning methods and 

feature engineering techniques explored in this paper has not been discussed before in the 

context of individual energy consumption recommendations without the availability of 

expert knowledge. Therefore, we believe that our project presents a novel and intuitive 

fuzzy system structure that addresses the challenges and the complexity of the residential 

environment while maintaining simplicity. Section 3.3 presents a concise overview of the 

design process used in the development of a fuzzy control system, and the core structure 

is expanded by outlining the components of the proposed model. Section 3.4 presents the 

results by providing a sample response of the fuzzy system and listing the most important 

improvements when compared to a simpler variant that does not utilize a hybrid feature 

selector. Finally, Section 3.5 offers a discussion of the results obtained from the design and 

implementation process and identifies directions for the utilization of the system and 

future work. 

3.3 Materials and Methods 

3.3.1 Fuzzy Control System Design 

3.3.1.1 Core Structure 

According to the Mamdani inference method [117] and fuzzy logic principles [118], the 

fuzzy control system includes several components that form a pipeline that is used to derive 

crisp output values from a given set of crisp inputs. Uncertainty and imprecision are present 

and often impact on the decision-making process considerably, since people use non-

numerical information to evaluate and interpret real world scenarios. To understand the 

entire design process, we explain each component of our proposed model in turn and 

present the resulting algorithm of the base Mamdani system. 
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In the first step of the fuzzy control system design process, the input and output variables 

are selected, and fuzzy sets need to be constructed. Intuitively, fuzzy sets are regions of 

data points that, to some degree, belong to a certain linguistic interpretation of a variable 

given a range of values. For example, if we selected the temperature of a room as our input 

variable and decided to recognize the linguistic terms “cold”, “warm”, and “hot”, a 

trapezoid-shaped curve could be defined to describe the fuzzy set that corresponds to the 

linguistic term “warm”. Hence, there is the need to map each crisp input value to the fuzzy 

sets and receive the corresponding degrees of membership. Continuing the example above, 

a specific room temperature value could yield the set of membership degrees [0.8, 0.2, 0] 

denoting the real world equivalent of asking 100 people about their perception of the room 

temperature and 80% of them responding with “cold” while 20% would respond with 

warm. This assignment of values to membership degrees is achieved through the 

membership function defined for each linguistic term, and this process is executed by the 

fuzzification module of the control system. The number and types of the various 

membership functions used in the system structure are chosen by the designer based on 

experimentation, expert knowledge, or clustering. It is important to note that fuzzy systems 

that are designed to manage complex environments focus on having a low execution time, 

and consequently, the choice of three or five membership functions for a given variable is 

very common [119]. 

The second component of fuzzy control systems is the decision-making unit, which uses a 

set of fuzzy rules in order to map the input truth values to the desired output truth values. 

Fuzzy rules are IF–THEN statements between antecedents and are consequently expressed 

in linguistic terms. These rules utilize fuzzy operators [120] and are evaluated in parallel 

using fuzzy reasoning. The evaluation of each fuzzy rule entails the assignment of rule 

weights denoting their importance and the application of an implication method such as 

the minimum and product, which scale the output fuzzy set accordingly. The number of 

rules for a particular system heavily relies on the selection methods used, the intended 

usage of the fuzzy system, and the complexity of the environment. Since the rules 

constitute the basis for pattern identification, the number of rules should cover every 

possible result in the output. Fuzzy systems designed to produce predictions often use a 

larger set of rules to maintain high accuracy, whereas systems that focus on the regulation 
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of a specific behavior or the extraction of recommendations and insights focus on the most 

important subset of rules that will be applicable in each case. Furthermore, rules can be 

manually constructed or generated based on the availability of expert knowledge, the 

variable dimensions, and the dependencies within a system. Simpler systems that remain 

static and explore a smaller input–output space usually work well with rules created by the 

designers in cooperation with experts on the field. On the other hand, dynamic systems 

that change and evolve over time as well as systems that handle highly dimensional 

datasets use rule discovery and generation techniques. Modern fuzzy systems use a variety 

of methods from the fields of artificial intelligence and machine learning such as grid 

partitioning, genetic algorithms, decision trees, and fuzzy neural networks in order to 

generate interpretable sets of rules [121–124]. 

The third and final component of fuzzy control systems using the Mamdani approach is the 

defuzzification unit, where the results of the rules are combined and distilled. The 

aggregate output fuzzy set of the rule evaluation step is now mapped back to a crisp set. 

There are a wide variety of methods used in the defuzzification process, which can be 

organized in distinct groups based on their properties. Maxima methods such as the mean 

of maxima are often used in fuzzy reasoning systems in order to calculate the most 

plausible result, whereas distribution methods and area methods such as the center of 

gravity are increasingly popular in fuzzy controllers due to the property of continuity [125]. 

The simulation and calculation of the crisp output using those methods is made easy due 

to various programming interfaces and libraries in Matlab (R2020b, The Mathworks, Natick, 

MA, USA) and Scikit-Fuzzy that carry out these operations efficiently. Figure 3.1 presents 

the core structure of a fuzzy system that contains the components analyzed above and 

serves as the basis upon which we shall expand for our proposed model. 

These components form the standard Mamdani fuzzy system, which will be structurally 

modified to address the challenges of the use case examined in this work. The algorithm of 

the standard Mamdani system used to compute the crisp output 𝑦 from the crisp numerical 

input 𝑋 = 𝑥 given a rule base of statements in the form of “IF 𝑋 is 𝐴𝑘 THEN 𝑌 is 𝐵𝑘” where 

𝐴𝑘 and 𝐵𝑘 are fuzzy sets appearing in the antecedent and consequent respectively that 

consist of four steps. In the first step, the degree of membership of input 𝑥 in the fuzzy set 

𝐴 is computed as 𝜇𝐴𝑘
(𝑥) and the corresponding rules with positive degrees of membership 
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are activated. In the second step, the fuzzy set in the consequent of each rule is truncated 

at the level of the previously calculated degree of membership, forming the output fuzzy 

set 𝜇𝑜𝑢𝑡𝑝𝑢𝑡 𝑘|𝑥, which follows the equation: 

𝜇𝑜𝑢𝑡𝑝𝑢𝑡 𝑘|𝑥(𝑦) = min (𝜇𝐵𝑘
(𝑦), 𝜇𝐴𝑘

(𝑥)) (3.1) 

 

In the third step of the algorithm, all the truncated fuzzy sets are aggregated to provide a 

single set 𝜇𝑀𝑎𝑚𝑑𝑎𝑛𝑖|𝑥, which can be defined by the membership function: 

𝜇𝑀𝑎𝑚𝑑𝑎𝑛𝑖|𝑥(𝑦) = max
𝑘

[min (𝜇𝐵𝑘
(𝑦), 𝜇𝐴𝑘

(𝑥))] (3.2) 

 

Lastly, the crisp output is calculated from the defuzzification of the fuzzy set using the 

horizontal axis projection of the center of gravity of the region under the membership 

function 𝜇𝑀𝑎𝑚𝑑𝑎𝑛𝑖|𝑥 in the final step. 

 

3.3.1.2 Proposed Model 

Following the base fuzzy system design of the previous subsection, the design of our 

system, which features a decision-making unit that is enhanced by machine learning 

methods, is presented. Since the target environments of our system lie within the energy 

sector, and specifically the automatic regulation and management of electricity 

consumption at an individual level, certain aspects of the decision-making process need to 

be explored further in order to suggest fast and easily interpretable solutions. Energy data 

and environmental parameters such as weather variables form time series with complex 

patterns that create complex datasets that cannot be easily expressed by expert rules. It is 

easy to see that different consumers living in separate buildings have different needs and 

Figure 3.1: Base Fuzzy System 
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therefore generate different load profiles based on their individual schedules and their 

perception of the environment. Moreover, for the construction of the optimal 

recommended consumption response to a set of weather parameters, rules need to be 

discovered by a method that could easily be retrained on new datasets when drastic 

changes occur in the load profiles due to schedule or major appliance changes. The 

increased complexity and dynamic nature of these environments often result in larger sets 

of rules due to the high number of input features. Consequently, one of the main appeals 

of fuzzy logic methods, namely computational efficiency, could be hindered if no extra 

processing is performed on the input features. 

In order to tackle the challenges mentioned above, we divided the decision-making unit 

into a feature engineering and a rule generation process, which proceed to organize rules 

and feed them to the inference engine of the Scikit–Fuzzy application programming 

interface (API) for evaluation. The feature engineering process focuses on reducing the 

number of distinct inputs while maintaining the most important linguistic terms associated 

with each input variable. One-hot encoding [126] is used in order to denote the presence 

or absence of a specific linguistic term based on the most dominant fuzzy labels produced 

by the membership function evaluation. The resulting state-based features are ranked 

based on their importance in a hybrid feature selection system including XGBoost (1.2.1, 

The XGBoost Contributors, Seattle, WA, USA) and decision tree metrics. The linguistic terms 

with scores above certain thresholds are appended to a list and passed down to the rule 

generation process as inputs. In this process, a decision tree classifier is constructed, and 

each branch of the resulting tree is linearized recursively into a relatively small set of IF–

THEN rules. The crisp output is derived after the rule evaluation and defuzzification of 

results following the Mamdani approach. In Figure 3.2, we present a diagram of our 

proposed model outlining each step used to construct the rule base, and in Figure 3.3, we 

include a diagram of the main use cases that could take advantage of this fuzzy system as 

it was discussed in a previous section. In the following subsections, we apply this model 

design on a real-world energy dataset of a building and analyze each step in more detail 

while explaining all the decisions formed in order to handle that data efficiently. For the 

following case study, Pandas 0.25.3 and Numpy 1.17.3 were used for data manipulation, 

Matplotlib was used for visualization, and XGBoost 1.2.1 and Scikit-learn 0.24 were used 
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for the rule generation and the hybrid feature selection. Scikit-Fuzzy 0.4.2 was used for the 

construction of the fuzzy system. The project was written in Python 3.7.5, and the 

simulation was executed on a desktop computer with an AMD Ryzen 1700X processor, 8 

gigabytes of RAM, and an Nvidia 1080Ti graphics processor. The code of this project is 

available on Github [127]. 

 

 

3.3.2 Dataset Overview 

In order to construct a complete simulation of the proposed system using Scikit-Fuzzy, we 

utilized the energy data found in [128]. This dataset contains a time series of energy 

consumption and weather data of a low-energy house designed according to the passive 

house certification [129] in Stambruges with a total floor area of 280 m2 and a total heated 

Figure 3.2: Fuzzy system design for optimal consumption recommendations based on 

the load profile and weather data. 

 

Figure 3.3: Potential integration of the fuzzy system as a minimum energy 

consumption recommendation tool for consumer applications or as a secondary 

analysis tool for provider-side adjustments complementing the load curve. 
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area of 220 m2. The house has four occupants: two teenagers and two adults. The data 

variables collected in this dataset consist of the appliance and lighting energy consumption, 

temperature and humidity values of nine different areas inside and outside the residence, 

wind speed, pressure, visibility, two random variables introduced in the original paper for 

the study of regression tasks as well as date and time-related features such as number of 

seconds from midnight, week status, day of the week, and a date timestamp. The energy 

consumption values as well as the values for humidity and temperature were recorded by 

sensors at ten-minute intervals and transmitted via Xbee radio. Weather parameters such 

as wind speed, pressure, and visibility were collected from the weather station in Chièvres 

at an hourly sampling rate and were interpolated to produce 10-min measurements. The 

dataset contains records of a 137-day time span and further exploratory analysis of trends, 

feature correlation, and importance were carried out in the original paper. 

For the purpose of our project, we selected the appliance energy consumption as the 

output variable, since the desired behavior of our fuzzy system was the generation of 

optimal energy consumption recommendations for the occupants based on environmental 

parameters. As for input, we selected the local temperature and humidity measurements 

for the nine areas as well as the weather variables of wind speed, visibility, and pressure, 

since the perception of each feature could vary between occupants, therefore making such 

features suitable for fuzzification. Since the input consists of a total of 21 columns, we can 

already observe that in the ensuing step of fuzzification, the feature space expands, and 

refinements are needed in order to deal with its size efficiently. 

3.3.3 Fuzzification 

In this subsection, we analyze the fuzzification process in which the crisp values of input 

and output variables are converted into fuzzy sets. In order to achieve that, we generate 

box plots, as presented in Figure 3.4, and further inspect the exploratory data analysis of 

the original paper. As a result, we infer the ranges and the universe of discourse for each 

variable, and we are able to define sets of linguistic terms as well as membership functions. 

In order to maintain the computational simplicity and interpretability of the system, we 

select to assign 3 linguistic terms and the associated membership functions for pressure, 

visibility, wind speed, and humidity while appliance consumption and area temperature are 

assigned 4 and 5 linguistic terms, respectively. A range of 3 to 5 terms and functions is very 
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common in the literature and could adequately capture the human perception of a fuzzy 

variable. Furthermore, common membership function shapes are selected such as the 

triangular, trapezoidal, and sigmoid through the generators of Scikit-Fuzzy in order to 

contribute to the overall simplicity of the system. In Table 3.1, we list the linguistic terms 

assigned to each variable, and in Figure 3.5, we present the graphs of the associated 

membership functions. Since the human perception of temperature and humidity in any 

given area is universal and the different upper and lower bounds for each area individually 

would not alter the human decision in the characterization of those parameters, all nine 

temperature and humidity features share the same membership functions for temperature 

and humidity, respectively. However, the temperature and humidity of each area is defined 

as a different fuzzy input variable on the system in order to match the complexity of the 

environment we study. Intuitively, a human would make nine different decisions for each 

area of the building and aggregate those in order to make a deduction. It is worth noting 

that since the ranges for each variable are derived from dataset analysis, the input and 

output of our system can easily be parameterized to fit the load profiles of other buildings 

given a history dataset. Finally, the degrees of membership for each crisp record are 

calculated with the interp_membership method of Scikit-Fuzzy, forming fuzzy sets for each 

input and output value. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

 

Table 3.1: Linguistic terms for input and output fuzzy variables. 

Variable Linguistic Terms 

Temperature Very Cold, Cold, Cool, Warm, Hot 

Humidity Dry, Comfortable, Humid 

Wind Speed Low, Medium, High 

Visibility Low, Medium, High 

Pressure Low, Medium, High 

Consumption Low, Medium, High, Very High 

 

Figure 3.4: Box plots of dataset features showing the ranges of values for each variable 

in order to define membership functions. The features used in this fuzzy system case 

study are: (a) Appliance Consumption in Wh; (b) Temperature of nine rooms in °C; (c) 

Humidity percentage of nine rooms; (d) Wind speed in m/s; (e) Visibility in km; (f) 

Pressure in mm Hg. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

3.3.4 Decision-Making Unit 

In this subsection, we follow the results of the fuzzification process and analyze the feature 

engineering and rule generation processes needed to construct the decision-making unit 

for our fuzzy system. Since the environment we study is based on a historical energy 

dataset of a building and there are many different parameters involved in the induction of 

Figure 3.5: Membership functions for each input and output variable with different 

color coding for each linguistic term: (a) Temperature; (b) Humidity; (c) Wind speed; 

(d) Visibility; (e) Pressure; (f) Appliance Consumption. 
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the recommended appliance consumption values, we need to be able to extract rules that 

are general enough to address the most dominant states of each parameter and at the 

same time specific enough to include the most important states of each parameter that 

contribute the most to the construction of a rule. Furthermore, as the environment 

changes and evolves, we need to ensure that an easily interpretable model is in place that 

can be conveniently retrained to reflect the updated set of rules in case there are major 

changes in the occupancy, the appliance setup, and the general operation of the building. 

The fuzzification process yielded membership scores for a crisp value on the corresponding 

set of linguistic terms. In order to derive the most dominant linguistic term that will be 

useful for rule extraction, we select the maximum membership score for each crisp value 

and construct a new dataset that consists of the dominant label for each input and output 

variable. For example, if the value for visibility yielded the highest membership value for 

the linguistic term “Medium”, we set that as the dominant state of that record on the new 

dataset. Additionally, due to its simplicity, versatility, and interpretability, we selected the 

decision tree classifier as our base model for rule extraction. Since the new dataset of 

dominant terms contains categorical input and output variables, we apply one-hot 

encoding on the input and use the output terms as classes in order to enable the decision 

tree to process the data effectively. Therefore, the original entry of the above example is 

replaced with the appropriate three columns for low, medium, and high visibility while 

having the value 1 for medium visibility and 0 for all other terms. This data transformation 

introduces the challenge of dimensionality, since the combined total of 22 input and output 

feature columns is now increased to 85. One-hot encoding contributes to the desired 

behavior of the model, because all possible decision paths are represented in the branches 

of the decision tree. However, a large amount of decision paths could lead to a substantially 

large set of rules that not only hinders the interpretability of the decision-making model 

but also the computational performance of the fuzzy system. 

In order to tackle the challenge mentioned above, we shift the focus to the pursuit of the 

most important terms that influence appliance consumption through the process of feature 

engineering. Since we now have state-based features for each variable, we no longer need 

to ask the question, “Does the temperature in the kitchen area have a significant impact 

on appliance energy consumption?” but rather ask, “How important is the state of feeling 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



116 

hot in the kitchen area for appliance energy consumption?” The difference between the 

above questions reflects the quality difference between feature engineering approaches in 

a fuzzified input space. Choosing to answer the second question is equivalent to examining 

the possible antecedents of a rule one by one without significant information loss. On the 

other hand, the first question could eliminate the entire feature of temperature, thus 

rendering the rules more general and sometimes less applicable to input sequences where 

an antecedent related to temperature would activate a specific rule for computation. 

Therefore, for our fuzzy system, we select to apply a hybrid feature selector, inspired by 

the feature selection method proposed in [130] and based on the feature importance 

values derived from an XGBoost classifier and a decision tree classification model on their 

default configuration. The one-hot encoded dataset was split into a training and validation 

set with 70% of the data allocated to the former and 30% of the data reserved for the latter. 

These models were constructed with the expectation of retraining the decision-making unit 

in the future; thus, choosing the simple hold-out validation would be less computationally 

expensive than the other methods. The importance scores are extracted using the built-in 

methods of the Scikit-learn and XGBoost packages, and they are presented in Figure 3.6. 
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(a) 

 
(b) 

 

It can be easily observed that since each feature was split into several linguistic terms, the 

individual importance score of each term as a rule antecedent yields relatively low values 

in both cases. The feature selector uses a threshold for each classifier to append the most 

important state-based features into a list followed by duplicate elimination. The following 

formulas clarify the process of appending a feature to the list: 

Figure 3.6: Importance scores of state-based features. (a) XGBoost feature 

importance, showing the importance of a feature on the performance of a trained 

model using this algorithm; (b) Decision Tree Classifier feature importance, showing 

the normalized total reduction of the criterion brought by that feature. More 

important features receive higher scores. 
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𝑓(𝑠) = {
𝑎𝑝𝑝𝑒𝑛𝑑𝑖𝑓, 𝐼𝑋𝐺[𝑓] ≥ 𝑡1  

𝑑𝑟𝑜𝑝𝑖𝑓, 𝐼𝑋𝐺[𝑓] < 𝑡1
 

(3.3) 

𝑔(𝑠) = {
𝑎𝑝𝑝𝑒𝑛𝑑𝑖𝑓, 𝐼𝐷𝑇[𝑔] ≥ 𝑡2  

𝑑𝑟𝑜𝑝𝑖𝑓, 𝐼𝐷𝑇[𝑔] < 𝑡2
 

(3.4) 

 

Symbols 𝑓 and 𝑔 denote the candidate feature groups to be appended to the list, and the 

variables 𝐼𝑋𝐺[𝑖] and 𝐼𝐷𝑇[𝑖] refer to the feature importance values derived from the 

XGBoost and Decision Tree classifiers, respectively. The symbols 𝑡1 and 𝑡2 represent the 

selection threshold of each method and are set to 0.035 and 0.045, respectively. Each 

threshold was selected after the inspection of each individual feature score. The values 

represent the middle points of each scale, shifted by 0.005 considering the rounded 

maximum and minimum importance of the variables. 

The resulting list of features is used as the input of a new decision tree classifier, where the 

output classes are the linguistic labels that characterize consumption. Decision trees are 

suitable for rule extraction, since they can be linearized to if–then statements [131]. 

Consequently, we inspect every path of the decision tree recursively and parse the 

corresponding rule based on the features appearing in that path. Each non-leaf tree node 

contains a state-based feature, which is selected as an antecedent for the rule. If the 

feature follows the left branch of a decision path, it is used with the negation operator, 

since the value for that term is 0. Alternatively, if the feature follows the right branch, it is 

included in the antecedent as is. The antecedents in each rule are connected in logical 

conjunction. Leaf nodes denote the consequents of each rule, since they are the linguistic 

terms that characterize appliance consumption. The rules are written in a text file, which is 

then processed and parsed to generate an executable Python code that can be used by the 

Scikit-Fuzzy API to perform simulations of the fuzzy logic system. 

3.4 Results 

In this section, we demonstrate the output response of the fuzzy logic system after the 

simulation of an input sample. We outline the performance and interpretability features of 

the system by highlighting the effectiveness of the changes made in the decision-making 

unit. Such changes affect the way input and input is handled during rule generation and 
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shorten the response time of the computation process. Since the crisp output results from 

the aggregation of rules that get activated (that is, their antecedents are satisfied), using a 

reduced rule base consisting of the most important antecedents leads to fewer antecedent 

checks. Moreover, due to the nature of some defuzzification methods and the disjunctive 

effect of multiple rules as seen in [117], the output may not satisfy the consequent of any 

rule to any extent, because it would be the result of a compromise between different 

extreme regions on the consequent. Using a decision tree structure combined with a 

feature refinement technique should decrease the likelihood of those compromises, since 

the resulting branches are expected to be smaller and distinctly different on the variables 

that represent the antecedents. Therefore, rules that could point to different extreme 

regions, causing a compromise in the aggregation, are expected to include a higher number 

of different antecedents that need to be activated. The effect could still be present, but 

this expectation sets the requirement of having different antecedents and contributes to 

the interpretability of the system. 

For our example, we assign as input values the crisp values of the first dataset record. Since 

this system does not predict energy consumption but is aimed at giving advice on the 

desired minimum consumption based on past operation, the selection of dataset records 

for demonstration purposes is a fast and convenient way of providing a realistic set of input 

values. Arbitrary input values for each dataset feature could still yield a response from the 

system, but the process of determining the probability of their occurrence for this building 

would be time consuming and lies outside the scope of this work. The fuzzy system was 

initialized with the integration of 281 rules derived by our decision-making unit. Since the 

record passed in the input may contain data fields that are not present as antecedents in 

that set of rules, we implemented conditions to check for their occurrence in the rule base 

and exclude the columns when those antecedents are not present. In this example, we 

observed that 11 out of the 21 input variables were not present in the final set of rules, 

hence excluding five temperature values, five humidity values, and the pressure value. 

After 1.27 s of computation time, the system yielded a response of 209.89 Wh for appliance 

consumption, which can be interpreted as the optimally typical consumption value based 

on the given environmental data and the history of operation of the building. In Figure 3.7, 

we present the resulting area that is used to calculate the crisp output value based on the 
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Mamdani approach. Additionally, in Figure 3.8, we present the response of the fuzzy 

system for 500 10-min intervals, denoting the minimum energy consumption for 500 

dataset records. While the inspection of an individual data point in Figure 3.7 provides 

significant details on the two fuzzy sets involved in the computation as well as their 

membership, the simulation in Figure 3.8 shows that the minimum energy consumption of 

the building could be characterized as mostly “Medium” for those timesteps. However, the 

crisp output values vary, showing the potential influence of fuzzy sets related to different 

linguistic terms. For example, for timesteps where the minimum energy consumption is 

below 140 Wh, we can assume that there could be a significant past contribution of several 

instances where “Low” consumption could occur given the environmental data in the input. 

 

Figure 3.7: Sample response of the fuzzy control system for the computation of energy 

consumption. The resulting fuzzy sets are derived from the highlighted blue and 

orange surface areas and the bold black line denotes the optimally typical energy 

consumption value after the defuzzification process. 
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This control system features several improvements over the base ID3 model for this 

environment due to the implementation of the decision-making unit. Table 3.2 presents 

the accuracy scores and the number of resulting rules after the linearization. Through our 

experiments, we observed that the feature engineering process contributed to a slightly 

higher classification accuracy while considerably decreasing the number of input features 

and the number of the resulting set of rules. Consequently, the fuzzy system was capable 

of computing crisp values fast, despite the complexity and initial number of the linguistic 

variables. Moreover, it is important to mention that since the time interval of the 

measurements in the dataset is 10 min, we set that time as the upper limit for a fuzzy 

system response; this should be the maximum amount of time so that the computed 

optimal typical value would be the most valuable for applications. The base decision-

making unit produced a significantly larger set of rules, and the fuzzy system did not yield 

a response during that time. 

Table 3.2: Linguistic terms for input and output fuzzy variables. 

Model Features Accuracy (%) Rules 

Base Decision Tree 85 88.8 802 

Refined Decision Tree 14 89.2 281 

 

Figure 3.8: Minimum energy consumption response values for 500 timesteps. Each 

timestep is a 10-min interval corresponding to a dataset measurement. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



122 

3.5 Discussion 

This research work explored a fuzzy system design approach for a residential building based 

on weather parameters in order to derive recommendations for the minimum energy 

consumption values based on environmental data. Since the rules of the system are 

unknown and the nonlinearity of the recorded time series data increases the overall 

complexity of the environment, a machine learning model was constructed and the 

decision-making unit of the fuzzy system was modified in an effort to generate accurate 

rules based on the past operation of the building. Compared to the more traditional 

decision tree rule generation model, our structure managed to shrink the set of rules by 

65% while achieving slightly better classification accuracy. Dimensionality proved to be 

another challenge for this system, since a total of 85 features would result in a large 

decision tree that would be hard to interpret, and the generated set of rules would slow 

down computation time. Therefore, the decision to implement a hybrid feature selector in 

an attempt to find the most important linguistic terms led to a significant structural 

optimization [132], since the remaining set of features was 84% smaller than the initial one, 

and crisp input values were essentially filtered against the rule base to eliminate redundant 

features—i.e., features that do not contribute to the conditions of any rule. Consequently, 

the computational performance is acceptable, since the response of the system is within 

the time interval of recording an energy consumption measurement through smart meters. 

The base linearized decision tree structure featuring all available variables resulted in a 

larger and less accurate set of rules. Therefore, there was no output for the base system 

within the 10-min intervals. For the purposes of this work, we are satisfied with an 

acceptable computation time within the measurement interval because the fuzzy rationale 

is not constantly exact, and the output of fuzzy systems may not be generally acknowledged 

[133]. Shifting the focus toward faster computation times could be detrimental to the 

stability of the system due to refinements that could be more impactful than feature 

importance, resulting in an insufficient amount of rule checks. Thus, we focused on the 

structure and the quality of the features in order to ensure proper knowledge 

representation. 

Additionally, the decision-making module could be easily retrained to accommodate future 

changes in occupancy and appliance operation. The resulting energy consumption values 
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represent the optimal consumption under the specified weather conditions and could be 

used by applications in order to inform the consumers, encouraging them to maintain or 

change their consumption habits, thus introducing fewer irregular patterns in their load 

profiles. Alternatively, the response of this fuzzy system could be utilized in demand 

response applications on the provider side in order to drive indirect adjustments to 

consumer behavior through varying pricing schemes. Since we believe that a direct 

adjustment targeting the load profile curve could lead to consumer dissatisfaction, an 

indirect adjustment based on the recommended consumption could provide an incentive 

to consumers to manage and plan their activities voluntarily. The integration of the 

proposed structure in consumer or provider applications could be overall user-friendly, 

since environmental measurements and smart metering information could be provided 

automatically, without the contribution of an expert for the extraction of knowledge in a 

particular residential building. Moreover, depending on the parameterization used in the 

configuration of membership functions for each use case, this system could be suitable for 

any residential building. Since we use fuzzy logic to map input and output to linguistic terms 

through an application programming interface, it could be convenient for developers to 

use those linguistic terms as an additional tag when referring to the output response, thus 

characterizing the minimum energy consumption in a more interpretable way. 

However, it is worth noting that maintaining the transparency of the system and the 

simplicity in our approach could be regarded as an adaptability and performance hurdle 

under specific circumstances. The decision tree structure used in the rule generation 

process can be sensitive to changes in the data. Since the input and output are tied to 

linguistic terms, there is a level of protection tied to the range of values that corresponds 

to the same linguistic term but more extreme data variations that could result from 

significant changes in the appliances, the activities of the occupants, or extreme weather 

conditions; the model may need to be trained again to reflect the changes on the rules 

appropriately. Fortunately, in the localized residential environment, retraining the model 

would not be detrimental to the real-world performance of the system considering 

measurements recorded at 10-min intervals, but we can expect that a rule generation 

module based on a neural network and evolutionary algorithms would be more efficient 

under those extreme conditions while sacrificing interpretability. 
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In the future, comparisons between this decision-making model and other modern rule 

generation approaches such as fuzzy neural networks and genetic algorithms would be 

beneficial to the overall exploration of interpretable and computationally efficient 

solutions for similar datasets under the same assumptions. Additionally, the integration of 

similar fuzzy system designs featuring comparable feature engineering approaches would 

be an interesting area to explore, as automation solutions and demand response 

applications evolve with the help of machine learning. Finally, the extension of the existing 

system with the inclusion of a feedback module capable of regulating the desired behavior 

of the residential buildings based on specific thresholds set by the electricity providers 

would enhance the proposed structure. 
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 Neural Network Modeling Towards Granular Standalone Load 

Estimation 

4.1 Motivation 

Standalone estimation models add significant value to short-term forecasting in the energy 

sector since they provide performant solutions through a single centralized structure for 

the prediction of load and electricity price. A plethora of methods ranging from traditional 

statistical models to more robust machine learning approaches could be applied to those 

tasks, enabling the development of flexible demand response applications and energy 

management systems. The complexity of those models could be easily determined through 

the analysis of relatively small sets of hyperparameters and satisfactory predictions could 

be derived within short time intervals. Therefore, the performance evaluation of those 

models could provide insight towards the individual behavior of estimators in short-term 

horizons and the greater role of each structure as a building block in combinatorial 

methods.  

Recent research efforts focus on machine learning estimators and the class of neural 

network models since these structures could adapt to more complex time series patterns 

through more robust and highly customizable training processes. Additionally, since these 

methods typically operate as black box approaches for function approximation, the 

resulting models are difficult to interpret and a more thorough examination of the output 

is often required. Lastly, it is evident that most standalone statistical models follow a 

simpler structure based on dataset assumptions. As a result, generalization issues could 

occur and the standalone statistical models may not be able to offer scalable solutions as 

the dimensions of the studied dataset increase and the time series include more diverse 

patterns. Therefore, this observation renders the study of standalone neural network 

structures increasingly interesting as energy research and applications focus more on the 

design of flexible real-time automation systems. 

Standalone neural network structures such as MLP, CNN and LSTM offer a wide range of 

powerful tools for short-term load and price estimation since complex patterns could be 

identified within a small amount of training epochs. These models are widely used in the 
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design of robust forecasting frameworks coupled with novel preprocessing or optimization 

techniques and often could be combined to form more sophisticated models. However, the 

selection process for the utilization of a specific neural network structure is not always clear 

since the baseline performance evaluation of those structure does not sufficiently cover all 

short-term and very short-term forecasting scenarios. Consequently, there is confusion 

surrounding the integration of those methods that typically leads to arbitrary decisions and 

extensive trial and error experimentation. As the forecasting horizon becomes shorter, it is 

observed that fewer studies consider the performance comparison of those models and 

tasks involving highly granular load and price measurements are insufficiently covered. 

In response to those observations and the overall uncertainty surrounding high resolution 

energy forecasting through neural network design, our contribution focuses on the 

comprehensive comparison of baseline neural network performance for the forecasting 

task of minutely active power predictions. This study highlights the performance of MLP, 

CNN and LSTM variants in their default configuration through the simple and interpretable 

metric of MAE and examines the training behavior of those structures through graphs that 

monitor the training process. Additionally, the average training time per epoch was 

measured for each baseline configuration in order to denote the most efficient architecture 

in terms of convergence.  

This contribution covers several perspectives of the minutely sampled point forecasting 

tasks, resulting in the thorough understanding of this edge case for future research. First, 

the examination of error metrics allows researchers to observe the performance 

characteristics of the studied structures as the deployment of those powerful architectures 

is expected to yield low error values in high resolution point forecasting processes. Second, 

the examination of the loss curves provides useful information with regards to the training 

process in this edge case. It is evident that high resolution data could present patterns at a 

higher level of detail and neural network structures could learn those patterns easily 

through a smaller number of iterations when compared to other forecasting horizons. Since 

impactful changes to weights and parameter values typically occur during the early training 

stages it would be interesting to monitor the effect of those changes in a use case where 

the first training iterations could represent the majority of training steps. Third, the 

evaluation of training time in this research scope is a crucial factor towards model selection 
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since higher training time could render the deployment and recalibration of a model in this 

forecasting horizon infeasible. Alternatively, these measurements could also highlight the 

need for more computing power, denoting that some neural network structures could be 

more computationally expensive. As a result, future research works focusing on energy 

applications could consider those three perspectives and based on the results of this study, 

they could establish a base for more informed model selection, speeding up experimental 

throughput in short-term and very short-term tasks. The following sections correspond to 

the introduction, methodology, results and discussion of this published work. 

4.2 Introduction to Minutely Active Power Forecasting Models using Neural Networks 

The evolution of the smart grid and smart metering technology has enabled electricity 

providers to develop more sophisticated Demand Response (DR) programs in order to 

influence the consumption patterns of their customers by adjusting pricing signals. In the 

modern grid, Demand Response programs exploit the dependencies of the information 

streams that flow between customers and suppliers. Customers allow for their load profiles 

to be created and scrutinized, by providing smart meter data that reflect their consumption 

patterns; the data are derived simply from the daily operation of their devices. Suppliers 

are then able to interpret that data, and after identifying the demand trends, they can 

reflect them on supply expectations via price signal alterations that, in turn, can shift or 

change consumption patterns. In this way, electricity demand may be handled in a dynamic 

environment. In search of greater Demand Response flexibility and optimization as well as 

better third-party support through automation there is a lot of ongoing research in the field 

that is focused on the development of more precise load forecasting techniques, in order 

to obtain even more dynamic price signal adjustments. Hence, there is a considerable 

contribution from the areas of artificial intelligence and machine learning to the energy 

sector by way of various models and techniques aimed at managing and predicting real-

time price and load fluctuations [134]. 

Since the data extracted from smart meters is in the form of time series, many statistical 

methods and classical machine learning models have relatively difficult implementations 

due to the temporal difference of the data points and the limitations concerning missing 

values, data dependencies, and dimensionality. The problem of missing values refers to the 
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complete absence of some samples or the existence of non-interpretable data entries in a 

dataset [135]. Missing values introduce a level of uncertainty and bias which degrades the 

performance of classical models. Therefore, the reasons behind the existence of missing 

data need to be identified and imputation techniques in the preprocessing of the data have 

to be considered in order to create more robust classical models. On the other side of the 

spectrum, neural network models often omit missing values without a significant loss of 

quality in the results. Furthermore, data dependencies refer to the hidden relationships 

and patterns, such as trends, which could provide useful insights about the time series 

[136]. Traditional autoregressive integrated moving average (ARIMA) models are based on 

linear relationships and not on the joint distribution of random variables. Hence, nonlinear 

trends are not fully explored. Additionally, the limitation of dimensionality refers to the 

ability of the model to process a large number of input variables derived from different 

time series efficiently, while yielding meaningful results [100]. Traditional models focus 

primarily on univariate input data, considerably limiting the potential insights derived from 

richer time series datasets [137]. Neural networks are more suitable for handling complex 

relationships within the data and for developing robust forecasting models that are 

tolerant to noise: long short-term memory (LSTM) networks [138] are capable of identifying 

the long-term dependencies between data points and convolutional neural networks 

(CNNs) [139] can extract features from the raw input sequence and encode them in a low-

dimensional space. The multi-layer perceptron (MLP) [140] can model non-linear trends 

and is able to handle missing values in the datasets well. 

In 2015, Alamaniotis and Tsoukalas [141] presented a data-driven method for minutely 

active power forecasting based on Gaussian processes. This research project highlighted 

the importance of minute predictions in the residential setting due to the volatile nature 

of household consumption and examined machine learning models that outperformed the 

more traditional autoregressive moving average approach. In 2017, Singh et al. [142] 

trained an artificial neural network comprising 20 neurons in order to conduct short-term 

load forecasting of the NEPOOL region of ISO New England and yielded a decent Mean 

Absolute Percentage Error (M.A.P.E) performance while training on weekday data points. 

In 2018, Kuo and Huang [143] proposed the Deep Energy neural network structure, which 

consisted of an input layer, a feature extraction module, and a forecasting module. The 
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tuning of the parameters in the convolution layers of the feature extraction module and 

the data flattening layer in the forecasting module resulted in relatively high precision 

short-term load predictions. Hossen et al. [144] examined deep neural network 

architectures in order to accurately forecast residential load consumption for a single user 

with one-minute resolution based on one year of historical datasets. Zhang et al. [145] 

reviewed machine learning methods in smart grids and outlined state-of-the-art 

approaches in the field of load forecasting. Kampelis et al. [146] used the genetic algorithms 

and neural networks to evaluate day-ahead load shifting techniques. Koponen et al. [147] 

presented physical- and data-driven models for Demand Response. Their work presented 

a very useful comparison of a support vector machine and a multi-layer perceptron for 

power forecasting. In a more recent work, Ahmad et al. [148] proposed a modular neural 

network model for load forecasting which consisted of a pre-processing module for the 

input time series, a forecast module where the artificial neural networks were trained, and 

an optimization module which helped minimize the forecast error. Walther et al. [149] 

utilized machine learning processing techniques such as feature engineering and 

hyperparameter tuning in order to optimize a Gradient Boosting Regression Trees (GBRT) 

algorithm which performs very short-term load forecasts with a 15-minute horizon based 

on minutely sampled data. Zhu et al. [150] presented a comparative study of deep learning 

techniques using minute-level real-world data of a plug-in electric vehicle charging station 

in order to evaluate the performance of those approaches on a variety of timesteps. The 

results of this study are valuable to machine learning researchers in the energy sector due 

to the examination of many different configurations in the deep learning space. Gasparin 

et al. [151] assessed the performance of deep recurrent neural networks on minutely 

sampled datasets of individual household electric power consumption in order to pave the 

way for standardized evaluation of the most optimal forecasting solutions in the field. 

Susan Li [152], in an article about time series prediction using LSTM, highlighted the 

minutely sampled data of a residential dataset provided by the University of California at 

Irvine (UCI). Cheekoty [153] presented the main advantages of neural network techniques 

over classical machine learning in time series forecasting, and, finally, Orac [154] 

constructed an LSTM model in order to predict trading data. 
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In this study, we focus on the minutely active power forecasting for residential electricity 

consumption, since we believe that, despite their overall complexity, accurate high 

granularity models can lead to fine-grained price signal adjustments. In the development 

of those models we use the types of neural networks mentioned above on the individual 

household electric power consumption dataset found in the UCI machine learning 

repository [155]. The main purpose of this work is to compare the baseline performance of 

each network on the same dataset and provide useful remarks on the training process of 

each model. There is little work in the area of minute power forecasting and our study is 

the first concise comparison of the core neural network types on this prediction horizon 

with experiments conducted on residential active power data. In Section 4.3, we explain 

the methodology and the concepts that were followed to conduct the experiments. In 

Section 4.4 we present the results of our experiments through evaluation metrics relevant 

to the training process and the prediction quality of each network. Finally, in Section 4.5 

we discuss the results obtained and suggest some directions for future work. 

4.3 Materials and Methods 

4.3.1 Neural Networks and Performance Metrics 

In this subsection it is important to provide a concise introduction to the neural networks 

and the performance metrics we used for our experiments in order to outline their primary 

behavior prior to presenting the configurations of our machine learning models. 

4.3.1.1 Multi-Layer Perceptron 

The multi-layer perceptron extends the perceptron learning algorithm [156] and uses 

neurons arranged in layers in order to form a feedforward artificial neural network that 

approximates a function. This type of neural network uses a non-linear transformation on 

the input, which is learnt through the adjustment of weights and biases in the intermediate 

layers of the network. For simplicity, we considered a multi-layer perceptron with one 

hidden layer. This MLP approximated a function 𝑓: 𝑅𝐷 → 𝑅𝐿, where 𝐷 is the size of the 

input vector 𝑥 and 𝐿 is the size of the output vector 𝑓(𝑥). Following the matrix notation, 

the MLP, which consisted of an input layer, a hidden layer, and an output layer, can be 

expressed by the following formula: 
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𝑓(𝑥) = 𝐺 (𝑏(2) + 𝑊(2) (𝑠(𝑏(1) + 𝑊(1)𝑥))) 
(4.1) 

 

In this formula, 𝑏(1) and 𝑊(1) are the bias vector and weight matrix from the input vector 

to the hidden layer, 𝑏(2) and 𝑊(2) constitute the bias vector and weight matrix from the 

hidden layer to the output. Activation functions 𝑠 and 𝐺 define the output of the hidden 

layer and the output layer, respectively, given a set of inputs. The MLP was trained through 

backpropagation in order to minimize the error in the output, while approaching the 

expected result. The change in each weight was calculated with gradient descent [157]. 

4.3.1.2 Convolutional Neural Network 

Convolutional neural networks share the same principles as other artificial neural 

networks, such as MLP, since they also consist of neurons arranged in layers and utilize 

iterative weight and bias updates to learn a function. The main differences with other types 

of neural networks lie in the operations performed, the architecture, and the areas of 

application. Convolutional neural networks perform kernel convolution by passing matrices 

of numbers, the kernels or filters, over the input in order to detect features. The base 

architecture of a CNN consists of the convolutional layer, the pooling layer, and the fully 

connected layer. The convolutional layer performs the kernel operation described above in 

order to produce a feature map. Pooling layers use the sliding window method in order to 

downsample the feature map, reducing its dimensions. The inclusion of pooling layers helps 

the networks train faster and provides an extra layer of safety against overfitting. Since 

convolution and pooling layers follow a 3D arrangement of neurons, data need to be 

flattened in order to produce 1D vectors in the output. Furthermore, fully connected layers 

are used on flattened input in order to produce the output of the CNN model. Figure 4.1 

illustrates the structure of a convolutional neural network. The training process of CNNs 

shares the same concepts as MLPs but the formulas used throughout this process are 

modified to accommodate the differences in neuron arrangement and the usage of 

convolution. This type of neural network is particularly popular in image recognition, since 

image data can be segmented appropriately [158]. For the purposes of our study, we 

conducted some experiments on the 1D CNN, since this variant handles data with low 

dimensionality and is suitable for time series and sensor data analysis. 
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4.3.1.3 Long Short-Term Memory Network 

Long short-term memory networks constitute a variation of recurrent neural networks 

(RNN) [160] primarily designed to handle long-term data dependencies. Similar to RNN, the 

LSTM follows a structure consisting of blocks, the LSTM cells. Each cell has its own state 𝐶𝑡, 

which is passed down to all the blocks in the network. Since the cell state passes through 

all the LSTM cells, each cell can adjust the state by removing or adding information. 

Information flowing through the cell state can be regulated with the forget, input, and 

output gates of every cell. The forget gate of a cell at the timestamp 𝑡 helps with 

information removal and can be expressed with the following formula: 

𝑓𝑡 = (𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4.2) 

 

where 𝑥𝑡 is the information at the current timestamp, ℎ𝑡−1 is the output of the previous 

LSTM block, 𝑤𝑓 is the weight of the gate, 𝑏𝑓 is the bias, and 𝜎 is the sigmoid function. 

Similarly, in Equations (4.3) and (4.4) the input and output gate are expressed with 𝑏𝑖 and 

𝑏𝑜 being the respective biases and 𝑤𝑖 and 𝑤𝑜 the respective weights. 

Figure 4.1: Convolutional neural network architecture illustration created using the 

NN-SVG online schematics tool found in [159]. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



133 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4.3) 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4.4) 

 

The input gate indicates which values will be updated and stored in the cell state. 

Furthermore, the output gate indicates the parts of the cell state that will be moved to the 

output. The information that could possibly be stored to the cell state at the timestamp 𝑡 

is expressed as the candidate 𝑑𝑡 and is formulated as:  

𝑑𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4.5) 

 

where 𝑤𝑐 and 𝑏𝑐 are the respective weights and biases. The current cell state that reflects 

the adjustments made at timestamp 𝑡 can be expressed as: 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑑𝑡  (4.6) 

 

where 𝑐𝑡−1 denotes the cell state at the previous timestamp. Lastly, the output of the cell 

ℎ𝑡 is expressed as: 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (4.7) 

 

LSTM networks have been used extensively in the field of load forecasting since the ability 

to capture long temporal dependencies efficiently is an important characteristic for time 

series analysis. In this study we decided to test the base LSTM and two more variants, the 

stacked LSTM and the bidirectional LSTM, in order to make the comparison more complete. 

The stacked LSTM variant contained more than one hidden layer of cells and the 

bidirectional LSTM duplicated the first recurrent layer in order to process an input 

sequence in both time directions simultaneously. Lastly, the LSTM networks were trained 

with backpropagation through time and gradient descent [161]. 

4.3.1.4 Performance Metrics 

Since our machine learning task was the prediction of residential active power, regression 

metrics were considered in order to capture the error in our predictions. Throughout the 
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literature, popular regression metrics such as RMSE, MAE, and MAPE are commonly used 

to denote the loss in the predicted results of neural networks [162]. In this work we 

selected MAE as our loss function since it is a linear scoring function of equally weighted 

differences, rendering this metric easy to understand and interpret. 

Our definition of baseline performance for each neural network model examined in this 

study was the set of MAE scores on the train and test set as well as the average training 

time per epoch under the assumptions that the configuration parameters were the same 

and the networks were tested on the same dataset with the same preprocessing 

adjustments. Seasonal dependencies and special days would certainly improve the 

performance of our models, but in order to maintain simplicity we examined the univariate 

case of active power prediction in this work. 

4.3.2 Tools and specifications 

In order to conduct this comparative study, we used Python 3.7.5, Pandas 0.25.3, and 

Numpy 1.17.3 for data manipulation, SkLearn 0.21.3 for preprocessing, and Matplotlib for 

visualization. Furthermore, we used Keras 2.2.4 with the Tensorflow 1.15.0 backend in 

order to build our neural networks and train our models. The forecasting models were 

compiled and executed on a desktop with an AMD Ryzen 1700X processor, 8 gigabytes of 

RAM, and an Nvidia 1080Ti graphics processor. Finally, the code of this study is available 

on Github [163]. 

4.3.3 Dataset and Configuration 

For this study we used the individual household electrical power consumption dataset from 

the UCI machine learning repository, which contains 2,075,259 measurements gathered 

from a house located in the French commune of Sceaux between December 2006 and 

November 2010. The dataset contains minutely sampled time series for global active 

power, global reactive power, voltage, global household current intensity, and sub-

metering measurements for certain rooms and devices. This dataset was selected as the 

core input of our models primarily due to the sampling frequency of the data points. 

Minutely sampled time series matched the prediction horizon that we wanted to target, in 

order to produce an output at the same level of detail. It is important to note that a lower 

sampling frequency, for the targeted prediction horizon, would make the input less useful 

due to the loss of meaningful information. On the other side of the spectrum, an even 
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higher sampling frequency would yield more accurate predictions, but since a sampling 

frequency of 1Hz would be considered fast for a smart meter and impractical for most 

applications [164], we opted for minutely sampled data. Furthermore, we conducted all 

our experiments on the same dataset in order to preserve consistency. After inspecting the 

data, we deduced that the time series associated with power, voltage, and current intensity 

was representative of the typical residential behavior and similar datasets would only differ 

in the data preparation process. 

Since we wanted to predict the global active power, we used this time series as our main 

feature variable, and we examine additional possible useful feature variables in the “Data 

Exploration” section below. In order to make the data more readable and the records more 

concise we concatenated date and time information in a single field per record and 

replaced any missing values marked as “?” with NaN, denoting that these values are not 

numbers. 

4.3.4 Data Exploration 

In order to understand the data better, we used line plots for each feature (Figure 4.2) 

variable of the dataset and we consulted the augmented Dickey–Fuller test of [152] to 

deduce that the global active power is a stationary time series and therefore is not affected 

by seasonality. Afterwards, we examined the frequency distributions of the feature 

variables (Figure 4.3) by plotting histograms and concluded that global active power follows 

a bimodal distribution. It is interesting to note that the yearly distribution of global active 

power shows that active power is consistently bimodal (Figure 4.4) each year and as a 

result, a validation split based on that information would yield a test set that adequately 

represents the entirety of the data. Finally, we used the Pearson correlation metric (Figure 

4.5) in order to check for the property of synchrony between the time series and we 

observed that global active power is synchronous with global intensity. As a result, we were 

able to test the impact of global intensity as an extra input variable in our neural networks. 
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(g) 

 

 

(h) 

 

 

 

 

(a) 

 

(b) 

Figure 4.2: Line plots of dataset features. Since each feature is a time series, the y-axis 

represents the unit of each feature, and x-axis represents the date. (a) Global 

household active power. (b) Global household reactive power. (c) Household voltage. 

(d) Global household current intensity. (e) Kitchen energy consumption. (f) Laundry 

room energy consumption. (g) Consumption of electric water-heater and air-

conditioner. (h) Remaining energy consumption measurements not covered by the 

sub-metering information. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



138 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



139 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.4: Yearly distribution of global active power. The y-axis represents the 

number of occurrences and the x-axis represents the unit of global active power (kW). 

(a) Global active power distribution in 2007 (b) Global active power distribution in 

2008 (c) Global active power distribution in 2009 (d) Global active power distribution 

in 2010. 

 

Figure 4.3: Histogram of feature distributions (100 bins). The y-axis represents the 

number of occurrences and the x-axis represents the unit of each feature. (a) Global 

household active power. (b) Global household reactive power. (c) Household voltage. 

(d) Global household current intensity. (e) Kitchen energy consumption. (f) Laundry 

room energy consumption. (g) Consumption of electric water-heater and air-

conditioner. (h) Remaining energy consumption measurements not covered by the 

sub-metering information. 
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4.3.5 Problem Formulation and Preprocessing 

The first step in this comparative study was to define our research problem and make some 

initial hypotheses in order to frame the problem space properly. We selected to predict the 

next minute in the future from the minutely sampled data of the residential UCI dataset. 

We decided to frame this problem as a supervised learning task by implementing the sliding 

window method, as proposed by [165], so that our neural networks would be trained to 

learn a function that maps the input data points to an output. As an initial hypothesis, we 

considered this formulation in a real world setting where our trained models would be able 

to benefit an application which could take advantage of minutely predictions. In this 

scenario, we needed to select a window of lagged observations small enough so as not be 

affected by cold-start discrepancies. Moreover, the selection of a small window would also 

cover the main issue of high frequency predictions, which is the interpretation of 

relationships between data during the training phase of a neural network model. Since data 

Figure 4.5: Pearson correlation between dataset features. The labels of this 2D array 

are the names of the dataset features. A positive correlation of 1 is represented by 

yellow and a negative correlation of −1 is represented by blue. 
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points were sampled at a high rate, we needed to choose critical subsets of data points that 

clearly depict an upcoming peak, a valley or a more stable active power behavior on the 

next time step. A big set of data points at the input could lead to a wrong interpretation, 

since some of them could be interdependent or irrelevant to the predicted output. 

Intuitively, we needed to select the smallest window of meaningful data points that would 

maximize temporal relevance. Since the selection of a single data point in the input may 

not provide valuable information about the behavior of the time series in the future, a set 

of two data points could help the neural networks identify patterns from the slope of the 

line that connects the data or from the level of fluctuations that occur between individual 

values. Therefore, we decided to set a window of two data points prior to the one that was 

about to be predicted as our input, on the assumption that these should be the most 

relevant data points giving us a clear connection to the output. It is certainly possible to 

conduct the same experiments with a larger input window. Consequently, the input of our 

neural network models consisted of two columns, the global active power at time 𝑡 − 1 

and 𝑡 − 2. Since the global current intensity had high Pearson correlation with global active 

power, we added the global intensity at time 𝑡 − 1 and 𝑡 − 2 as input features on the base 

LSTM model in order to test the impact of synchrony as an additional experiment. The 

predicted output was the global active power at time 𝑡. 

Before configuring the neural networks and building our models, we applied the following 

preprocessing transformations to the data: 

• Values of input features were scaled between [0,1]. Min-max normalization was 

used in that interval through the MinMaxScaler class of SkLearn since neural 

networks handle input features well when they are on the same scale and the 

interval remains small; 

• Two input columns were created based on the sliding window method. 

• The dataset was split by allocating the first three years of observations to the 

training set and the last year to the test set. Since the distribution of global active 

power remains consistently bimodal, we believe that this is a proper holdout 

validation split; 
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• The training and test sets were split in input and output columns reshaped as the 

3D format (samples, timesteps, features) for CNN and LSTM and (samples, features) 

for MLP, since it expects a 2D format. 

4.3.6 Neural Network Configurations 

In this study we configured the most prominent neural networks in time series forecasting 

and kept the activation and loss functions the same, as well as the compilation and training 

parameters, in order to derive a baseline performance. Therefore, we examined the 

behavior of the base LSTM network as well as the stacked and bidirectional variants. 

Furthermore, we compiled models for a 1D CNN and an MLP in order to compare more 

neural network architectures. As proposed in [152], neurons on the input layer of every 

model followed the dimensions of the feature columns and were equal to the window size 

we selected above. Every model had one hidden layer of 100 neurons and 1 neuron on the 

output layer. We selected 100 neurons as the hidden layer size because we wanted every 

network to have sufficient processing capacity. The size of the output layer was determined 

by the expected result. Therefore, one neuron in the output layer would predict the global 

active power at time 𝑡. Since the stacked LSTM architecture should contain more hidden 

layers, we decided to use one extra hidden layer with 100 neurons for our stacked LSTM 

model. Additional experiments were conducted on the stacked LSTM architectures where 

neurons would be dropped out randomly with a probability of 0.2 in order to test the 

impact of regularization on more complex neural network structures. 

The 1D convolutional network model contained a convolutional layer with 64 filters, a 

kernel size of 2, and the input was padded accordingly in order to obtain an output of the 

same length. Additionally, in our CNN architecture we added a pooling layer with a pool 

size of two in order to downsample the detected features. The pooling layer shared the 

same padding configuration as the convolutional layer. We proceeded to flatten the output 

of the pooling layer and use it as the input to a fully connected layer of 100 neurons. The 

predictions derived from the CNN model were obtained in the output layer. Finally, the 

MLP model had a simple structure of one input layer, one hidden layer, and one output 

layer, following the general configuration mentioned above. 

The activation function used between the layers of every model was the rectified linear 

unit (ReLU). Moreover, we used the Mean Absolute Error (MAE) function to measure the 
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loss, since this is a simple metric which denotes the absolute difference between the data 

and the model predictions. In addition, the Adam optimizer was used for adaptive learning 

rate optimization [166]. The training parameters for every model were considered with 

regard to optimal MAE values on the test set. Hence, we used holdout validation in order 

to use the first three years of data as the training set and the last year of data as the test 

set. This split was selected because we did not intend to tune the parameters of each model 

after training. In addition, more sophisticated validation techniques applicable to time 

series, such as nested cross-validation, would add unnecessary complexity to the 

comparison we attempted to examine. We acknowledge that the increased processing 

capacity of the hidden layers could cause increased total training times and a possible risk 

of overfitting. Therefore, in order to avoid overfitting, we stopped the training process and 

saved the models when the validation loss scores could not improve further, while their 

metrics were observed simultaneously in the notion of logical conjunction on the same 

epoch interval. After the eighth epoch the validation loss of any individual model was at 

least slightly worse than the best loss observed in that eight-epoch interval for that same 

model. As a result, the neural network models were trained after eight epochs with a batch 

size of 72 training samples. 

4.4 Results 

As a result of the above configurations we evaluated the performance of our models from 

the values of the loss function on the training and test set. In Figure 4.6, we present the 

graphs containing a sample of 150 global active power data points from the test set and 

150 predicted data points generated by each neural network model, in order to visualize 

the robustness of our predictions on each time step. Moreover, in Figure 4.7, we present 

the graph panel containing the loss function values throughout the training process of each 

neural network model. The examined models performed well when trying to predict the 

global active power from the unknown data in the test set since the data points at the same 

time step neither diverged drastically nor did they follow an unusual pattern. However, we 

can observe that when a peak or a valley occurred in the test data, the models made a less 

accurate prediction, resulting in greater deviation from the actual active power data points 

in the same time interval. A distinct example of this phenomenon can be detected in the 

region between the 45th and 55th data points, where the predicted value for the power 
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peak was lower than the actual test value. Through this example, we are also able to notice 

the difference in the quality of predictions among our neural network models. The stacked 

LSTM model made the least accurate peak prediction in that region, while other models, 

such as the 1D CNN and MLP, were able to achieve approximations closer to the actual 

peak value. These observations can be generalized to the entirety of the dataset, since it is 

indeed difficult to anticipate peaks and valleys in such a short prediction horizon when only 

the most recent and most relevant data points of the same feature are considered. 

Furthermore, the graphs of the training and test loss show that we avoided overfitting and 

underfitting with that configuration, since the curve of validation loss was always below 

the curve of training loss. The curves of the training loss function in each graph show that 

there was a steady improvement of the prediction quality throughout the training process, 

whereas the validation loss curves show that after a small number of epochs no further 

improvement could be achieved when testing the models on unknown data, given those 

configuration parameters. It is interesting to note that models with inferior training loss 

results, such as the 1D CNN, had a decent performance on unknown data and were able to 

fit the data reasonably well in regions where peaks and valleys occurred. 

 

 

(a) 

 

(b) 
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Figure 4.6: Prediction evaluation on 150 data points for (a) Long Short-Term Memory 

(LSTM) network, (b) Stacked LSTM, (c) Bidirectional LSTM, (d) 1-Dimensional 

Convolutional Neural Network (1D CNN), (e) Multilayer Perceptron (MLP). The red line 

represents the data points of the test set and the blue line represents the data points 

predicted by each model on the same time step. On the y-axis we set the unit of global 

active power (kW) and on the x-axis we enumerated the data points. 
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(a) 
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Figure 4.7: Loss function on train and test set for eight epochs of training on (a) LSTM, 

(b) Stacked LSTM, (c) Bidirectional LSTM, (d) 1D CNN, (e) MLP. The blue line represents 

the loss function during training and the orange line represents the loss function 

during validation. On the y-axis we set the values of the loss function and on the x-

axis, we enumerated the epochs. 
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Table 4.1 presents the evaluation metrics for every neural network type on the training and 

test sets. After examining the overall error loss function scores of each model, we deduced 

that the top performing ones were the MLP and the Baseline LSTM. Since the LSTM network 

is more suitable for handling temporal relationships, we re-ran the experiment by adding 

the extra feature of global current intensity in order to test the impact of synchrony and 

we observed a decrease in training time. Furthermore, we ran tests by adding dropout to 

the stacked LSTM variant, since its initial performance on unknown data was the worst 

when compared to other LSTM models, but that change did not yield better results. Finally, 

Table 4.2 shows the average training time of each model and we observed that MLP was 

able to converge to an acceptable mapping of the input to the output faster than the other 

network models. It is, therefore, interesting to note that some of the more complex LSTM 

variants went through a distinctly slower training process. 

Table 4.1: Training and testing scores of neural network models. 

Scores MLP 1D CNN 
Baseline 

LSTM 

Baseline 
LSTM 

(Synchrony) 

Stacked 
LSTM 
(No 

Dropout) 

Stacked 
LSTM 

(Dropout 
0.2) 

Bidirectional 
LSTM 

Train 
Score 
(Loss) 

0.00797 0.00846 0.00798 0.00826 0.00824 0.00839 0.00808 

Test 
Score 
(Loss) 

0.00670 0.00716 0.00672 0.00701 0.00689 0.00711 0.00677 

 

Table 4.2: Average training time per epoch for each neural network configuration. 

Neural Network Type 
Average Training Time per Epoch 

(seconds) 

MLP 20 

1D CNN 42 

Baseline LSTM (Synchrony) 98 

Baseline LSTM 120.25 

Stacked LSTM 165.25 

Bidirectional LSTM 269.5 
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4.5 Discussion 

This work presented the baseline performance comparison of neural network models for 

minutely active power forecasts derived from residential data. In our supervised learning 

formulation of this high frequency forecasting problem we observed that the multi-layer 

perceptron performed best in terms of loss and average training time. Since MLP follows a 

simpler structure and recognizes a 2D data format we can deduce that due to the selection 

of a small and relevant set of input data points, the network was able to converge fast, 

producing fairly accurate predictions in the output. The long short-term memory network 

and its variants converged slower, possibly due to their computational complexity, since 

the data relationships that we wanted to identify did not refer to data points far into the 

past. We expect changes to the training and test scores when the window size and the 

number of input variables increase and anticipate that LSTMs will be able to produce 

accurate predictions at a higher complexity. 

Our study could be useful in approaching high granularity forecasts with machine learning 

methods. Since the baseline performance of neural networks was evaluated and minutely 

sampled energy data was explored, we now have a starting point for further parameter 

tuning and experimentation. Future work could apply grid search techniques [167] for 

hyperparameter optimization in order to improve our baseline models. It would also be 

useful to explore the potential of modular solutions combining the neural networks we 

studied here in a pipeline-like structure, in order to investigate whether other important 

aspects of the highly granular time series forecasting in the energy sector emerge. For 

example, more complex neural network architectures could utilize these models in order 

to enrich a dataset at the input module or in order to derive partial predictions based on 

different criteria in parallelly working modules. 
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 Structural Forecasting Framework Towards Generative 

Combinatorial Modeling 

5.1 Motivation 

Combinatorial modeling is at the forefront of short-term energy data forecasting research 

since most recent research efforts present more complex unified estimator structures 

consisting of multiple models. The value of combinatorial approaches is immense since the 

integration of multiple estimators could provide several improvements to the forecasting 

framework. First, combinatorial estimators address the assumptions, challenges and 

limitations of standalone models and develop architectures that are more resilient to the 

individual weaknesses that could hinder the performance of each structure. As a result, 

combinatorial approaches typically yield lower error metrics due to the discovery of more 

complex time series patterns and handle outliers more efficiently. Second, these models 

address energy time series diversity since different estimators could be utilized for the 

interpretation of data gathered from different types of clients, buildings or energy markets. 

Consequently, combinatorial estimators are more flexible and have the potential to adapt 

to more demanding forecasting tasks. These observations highlight the appeal of 

combinatorial modeling and are a primary source of motivation towards the introduction 

of novel and performant combinatorial estimators. 

On the other side of the spectrum, motivation towards the enhancement of the forecasting 

framework with regards to combinatorial estimation methodologies stems from the risks 

and performance challenges in the design process of those models. First, it is evident that 

this research area is vast and contains a plethora of standalone models, resulting in an 

expansive set of estimator combinations. Therefore, extensive experimentation and testing 

need to be conducted since more performant structures could still be discovered. Following 

this observation, combinatorial model design becomes an increasingly intricate task since 

the selection of estimator members could be a difficult process. This difficulty could be 

directly connected to the uncertainty that surrounds the inclusion of estimator members 

in the combinatorial structure since the search for optimal estimators that fit a specific 

forecasting task does not commonly follow a deterministic and structured approach. The 

selection process is typically conducted based on expert knowledge through the 
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performance evaluation of the methodologies on similar tasks or presented arbitrarily. As 

a result, the focus is shifted towards time consuming experimentation for the validation of 

model structure. Performance risks are prevalent in this design approach and the resulting 

models lack interpretability as the basis of those experiments remains vague. Second, the 

data volume and the degree of diversity present in energy time series could be linked to 

the challenges of dimensionality and drift respectively. Consequently, combinatorial design 

approaches need to respect the restrictions imposed by those challenges and derive 

resilient solutions that preserve adequate performance. 

The previously discussed combinatorial design benefits coupled with the challenges, risks 

and research gaps surrounding the estimator selection process led to the examination of 

an interesting combinatorial modeling scenario and the introduction of a novel 

deterministic strategy for estimator selection. This scenario considers the task of total 

demand forecasting in the cluster-based aggregate forecasting framework given the 

consumption data of a diverse client base and highlights most of the challenging aspects in 

combinatorial design. Since this task processes data from several types of clients 

anonymously through this framework it is clear that a static standalone estimator would 

not be able to capture all consumption patterns sufficiently. Additionally, the construction 

of a combinatorial structure would not benefit from a non-deterministic or arbitrary 

approach since trial-and-error experimentation as well as efficient model recalibration 

would be infeasible as the client base evolves. Therefore, a structured approach for the 

generation of estimator sets that could adapt to the data optimally would be beneficial in 

this case.  

For the purposes of this study, ensemble learning methods were utilized as the main 

combinatorial methodologies since forecasting performance is more predictable and easier 

to monitor in this framework. Since the optimal combination of estimators in ensemble 

learning methods typically ensures a small performance improvement when compared to 

standalone approaches, the evaluation of the generated estimator sets could be easily 

tracked and interpreted. The deterministic selection strategy presented in this study is 

influenced by the relative performance examination of the training process on peak and 

non-peak indices, forming an algorithm that respects the shape of each input time series. 

The proposed methodology leads to the automatic selection of optimal estimator 
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combinations given an initial estimator superset and the testing of the ensemble models 

on different client groups validated that this approach could achieve the expected lower 

error metrics of optimal ensembles as the partial aggregate demand is predicted more 

accurately for each consumer group. The following sections correspond to the introduction, 

methodology, results and discussion of this published work. 

5.2 Introduction to Structural Ensemble Regression for Cluster-Based Aggregate 

Electricity Demand Forecasting 

Smart grid technologies and applications are at the forefront of modern electricity network 

research and development due to the increasing number of challenges that hinder the 

performance of the traditional power grid as well as the accrescent need to transition 

towards a digital ecosystem where the bidirectional flow of information between the 

electricity provider and consumers is simplified. Since the penetration of renewable energy 

sources introduces additional volatility that could compromise the reliability of the grid and 

the increasing electricity demand from a growing number of consumers could lead to the 

occurrence of irregular events such as blackouts, the centralized structure of the traditional 

grid has limited control over these phenomena [168,169]. Therefore, the development of 

smart grids that rely on the wide deployment of smart meters is necessary for the efficient, 

adaptive and autonomous management of consumer loads in a distributed framework. 

Consequently, a large volume of high dimensional sensor data are extracted from smart 

meters and the efficient processing as well as prediction of electricity load are crucial tasks 

that reinforce advanced transmission, distribution, monitoring and billing strategies [170]. 

Load forecasting tasks could be developed for different time horizons depending on the 

focus of each smart grid application. In the context of real-time load monitoring, demand 

response and smart energy pricing, accurate short-term predictions and point forecasts 

could support energy management systems as well as decision-making models in shaping 

load allocation and pricing strategies for consumer groups that share similar load profile 

characteristics. Additionally, high-resolution predictions of total electricity demand could 

assist in the stability of the grid through the real-time detection of irregular events, 

enabling online scheduling at a higher level while preserving consumer privacy. It is equally 

important to note that high-frequency demand forecasts could result in the optimization 

of energy resources through the examination of total load fluctuations at a higher 
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granularity as well as the optimization of bidding strategies when utility companies 

purchase electricity from energy markets, enabling short-term flexibility and more efficient 

market balancing [171]. 

Artificial intelligence and machine learning contributed significantly towards the accurate 

estimation of total demand through the supervised learning task of regression analysis. 

Firstly, simple linear models such as ordinary least squares linear regression [172], ridge 

[173], lasso [174], stochastic gradient descent (SGD) [175] and Huber [176] estimators 

search for the line of best fit that optimally describes the relationship between the 

dependent and independent variables. Linear models are commonly used in large-scale 

forecasting tasks due to their low computational cost and interpretability. However, these 

models do not interpret complex nonlinear relationships and the impact of outliers within 

the data could hinder the forecasting accuracy. Therefore, more robust methods were 

developed such as the generalized median Theil-Sen estimator [177], gradient boosting 

models based on decision trees such as XGBoost [178], the least angle regressor (LARS) 

[179] and efficient unsupervised learning models were adapted such as k-nearest neighbor 

(KNN) [180] and support vector machine models for regression (SVR) [181] in order to 

achieve higher accuracy in high dimensional spaces and ensure resilience against 

multivariate outliers. Secondly, neural network models such as the multilayer perceptron 

[182–184] and long short-term memory network [185] could be applied to this forecasting 

task in order to capture nonlinear relationships as well as time dependencies adaptively, 

operating as function approximators in a black-box approach. It is important to mention 

that while the standalone performance of these models could result in predictions with low 

error metrics, combinatorial and hybrid approaches such as ensemble learning could be 

considered for further performance improvement when a suitable combination of models 

is discovered through arbitrary selection, informed selection based on expert knowledge 

and experimentation or criteria examination. Time series estimator output could be 

combined in a meta-modeling framework for stacked generalization, averaged in a voting 

framework or used to improve another set of estimators sequentially through boosting 

[186,187]. 

It is evident that since consumer load profiles are organized in high dimensional time series, 

forecasting total electricity demand through the direct use of regression analysis would be 
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computationally expensive and the resulting estimators would exhibit diminishing accuracy 

as more load data from different types of consumers is collected. Consequently, in order 

to provide solutions to the challenges of dimensionality and scalability, load forecasting 

approaches in this sector utilize clustering and aggregation strategies as a preprocessing 

step, altering the shape of the data before it is used for the training of estimators. Cluster-

based approaches mainly focus on the segmentation of the consumers into groups based 

on similar characteristics or by utilizing heuristic algorithms. Predictions for each cluster 

are extracted and summed to derive the total demand forecast. This approach may become 

computationally expensive when the consumer base is large and the optimal number of 

clusters remains small. However, clustering approaches are valuable to demand forecasting 

since they preserve load patterns within each consumer group. Furthermore, advances in 

distributed computing attempt to develop more efficient parallelizable models to offset 

that computational cost [188]. Aggregation approaches attempt to develop a single 

prediction model where the time series dataset is typically derived from the summation of 

all consumer load profiles. This approach offers substantial benefits in terms of data 

compression at the cost of prediction accuracy since the impact of the patterns found in 

individual consumer time series as well as the behaviors exhibited in different clusters 

could be reduced greatly in the resulting time series [189]. Combining the clustering and 

aggregation methods led to the development of the cluster-based aggregate framework 

where the time series for each consumer group can be aggregated before the prediction in 

order to derive the estimated partial sum of total demand. This approach attempts to 

balance accuracy and computational cost and presents a scalable alternative that improves 

the performance of estimators as the size of the customer base increases. 

In the modern power grid, the evolution of the increasingly diverse customer base coupled 

with the overall complexity of the data collection process often result in datasets that 

include missing values, outliers and typically exhibit structural issues due to variations in 

monitoring periods and differences in the quality of the available equipment. Therefore, 

the performance of load estimators depends on the dataset structure as well as the ability 

of data-driven models to adapt to the given input. Consequently, a static load estimation 

model may not maintain optimal performance across multiple forecasting tasks since some 

components may underperform due to the unique characteristics of the input. This 
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phenomenon could be easily observed in the processing of clustered time series for the 

prediction of total electricity demand. The utilization of clustered time series results in 

several structurally different datasets derived from different consumer groups. When the 

datasets pass through a single type of estimator or a static combinatorial structure, 

divergent performance metrics between partial demand predictions could be observed, 

resulting in suboptimal overall performance when the values are aggregated for the 

estimation of total demand. The potential failure to adapt to an individual dataset could be 

more impactful in short-term and very short-term forecasting tasks since lagged features 

at higher resolutions would require a higher volume of information in order to properly 

capture meaningful temporal dependencies between samples. These load forecasting 

issues could be connected to the challenges of data drift and concept drift in machine 

learning modeling. The challenge of data drift indicates the deterioration of model 

performance as the distribution of input data changes and the challenge of concept drift 

denotes the difficulty of the model to adapt to the data as the mapping between the input 

and the target variable changes [190,191]. These challenges could arise when load time 

series are considered for the prediction of total demand since data distributions could vary 

between different client types and the relationship between input and output could change 

as the size of the customer base and the complexity of observed patterns increase. 

Furthermore, the impact of those challenges could affect the performance of combinatorial 

approaches such as ensemble learning significantly, since potential concept or data drift 

across multiple datasets could result in inefficient estimator combinations that may yield 

suboptimal performance when compared to standalone models due to underperforming 

components. As a result, the focus should be shifted towards modular estimator structures 

that utilize well-defined, criteria-based strategies in order to select estimation components 

that would not underperform given a specific input, thereby reinforcing consistency. 

Moreover, the implementation of estimator selection strategies would lead to less 

arbitrary and less ambiguous combinatorial structures since estimator members would be 

directly connected to the input data. 

Several recent research projects presented interesting demand forecasting approaches 

utilizing a plethora of regression estimators for centralized analysis as well as distributed 

modeling in clustering and aggregation frameworks. Ceperic et al. [192] proposed a model 
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input selection strategy for SVR-based load forecasting, outperforming state of the art 

short-term forecasting approaches in terms of accuracy. Wijaya et al. [193] examined the 

performance of linear regression, multilayer perceptron and support vector regression on 

several clustering strategies for short-term load forecasting, highlighting the dependence 

of the cluster-based aggregate forecasting approach on the number of clusters as well as 

the size of the customer base for optimal performance. Karthika et al. [194] proposed a 

hybrid model based on the autoregressive moving average and support vector machine 

algorithms for hourly demand forecasting, showing reduced error metrics and increased 

convergence speed through the efficient merging of those machine learning methods. 

Laurinec and Lucká [195] studied the impact of unsupervised ensemble learning models on 

clustered and aggregated load forecasting tasks and deduced that the adaptation of those 

methods could lead to improved performance. Fu et al. [196] developed an adaptive 

cluster-based method for residential load forecasting through the utilization of self-

organizing fuzzy neural networks, harnessing the unique characteristics of each cluster. Li 

et al. [197] utilized subsampled SVR ensembles coupled with a swarm optimization 

strategy, resulting in a deterministic and interpretable forecasting model that efficiently 

combines the output of multiple predictors. Bian et al. [198] proposed a similarity-based 

approach and implemented K-means clustering and fuzzy C-mean clustering for the 

derivation of features based on locally similar consumer data for the training of a back-

propagation neural network. Sarajcev et al. [199] presented a stacking regressor that 

combined gradient boosting, support vector machine and random forest learners for 

clustered total load forecasting, signifying that the robust estimation of electricity 

consumption can be achieved when a suitable model combination is discovered. Cini et al. 

[200] examined the performance of the cluster-based aggregate framework on deep neural 

network architectures and highlighted the suitability of this clustering approach for short-

term load forecasting. Additionally, this project raises awareness about the complex and 

challenging nature of implementations involving multiple predictors in this framework for 

future research. Kontogiannis et al. [201] presented a meta-modeling technique combining 

long short-term memory network ensembles and a multilayer perceptron to forecast 

power consumption and examine the impact of causality and similarity information 

extracted from client load profiles. This project presented a novel strategy for the 

decomposition of load data into causal and similar components, resulting in a 
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combinatorial structure that outperformed the standalone load representation. 

Stratigakos et al. [202] proposed a hybrid model combining time series decomposition and 

artificial neural networks for efficient short-term net load forecasting. The approach 

presented in this work reduced the error metrics of multi-layer perceptron and long-short 

term memory network and highlighted the impact of trend, seasonal and noise time series 

components. Zafeiropoulou et al. [203] proposed a pilot project that addressed the 

challenges of congestion and balancing management in energy systems and provided 

robust solutions that could improve resource flexibility and power system stability. Phyo et 

al. [204] developed a voting regression model including decision tree, gradient boosting 

and nearest neighbor estimators, resulting in improved performance when compared to 

the baseline standalone predictors. This symmetrical forecasting approach achieved the 

expected performance boost that is often observed in optimal ensemble models and when 

compared to the autoregressive moving average model, the proposed estimator yielded 

lower error metrics due to the highly performant components included in this ensemble 

structure. 

In this study, we focused on the high-frequency point prediction of total electricity demand 

on the cluster-based aggregate framework for the development and evaluation of adaptive 

and structurally flexible stacking and voting ensemble models. This very short-term 

forecasting approach addresses the challenges in combinatorial forecasting models 

through the processing of diverse clustered time series and the introduction of a well-

defined member selection strategy. The ensemble estimator considers several peak 

detection perspectives for member selection. The membership of base learners is 

determined based on the performance examination from a set of 11 candidate estimators 

on subsets of training observations from the actual as well as the predicted clustered time 

series, detected as peaks and non-peaks. The proposed ensemble regressors were 

evaluated in a case study utilizing smart meter data from a dataset of 370 Portuguese 

electricity consumers for a period of 4 years. The goal of this project is to examine the 

impact of this criteria-influenced member selection strategy on the cluster-based 

aggregate framework and propose alternative adaptive ensemble models that combine 

knowledge extracted from different estimators based on core time series characteristics. 

Since recent research efforts have deployed training performance indicators and feature-
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based criteria for member selection on centralized ensemble models, our contribution aims 

to expand on this approach through the implementation of flexible ensemble estimators 

constructed from different base learners on each consumer cluster. Additionally, several 

adaptive hybrid modeling and meta-modeling approaches on clustered and aggregated 

frameworks typically include the most prominent estimators for model fusion based on 

expert knowledge or arbitrary selection. Consequently, the effect of criteria-based 

ensemble structures for cluster-based aggregate load forecasting is not thoroughly 

explored. Our study aims to provide meaningful insights while addressing this research gap. 

Case studies and model comparisons in the literature show that a static ensemble structure 

or a standalone estimator may not always yield the same level of performance stability on 

all types of consumer load time series. This observation holds true in the examination of 

clustered time series since each cluster needs to be processed differently in order to 

capture the patterns of a specific client group efficiently. Therefore, our project considers 

the fundamental characteristic of peak and non-peak detection in time series and attempts 

to adjust the ensemble structure for each cluster locally, reinforcing the idea that more 

modular and dynamic estimation strategies should be developed for those distributed 

frameworks. The deployment of our proposed approach in real-world applications could 

support advanced energy management systems and contribute towards the development 

of more robust bidding strategies through the extraction of more precise total demand 

analytics in short time intervals. 

In Section 5.3, we present the main methodologies involved in the implementation of our 

proposed models, including the ensemble learning structure for stacking and voting 

regression, an overview of the cluster-based aggregate framework for total demand 

forecasting, an inspection of well-known clustering evaluation methodologies and the 

structure of our proposed ensemble regressors. Additionally, information about the 

dataset and the definitions of error metrics are provided in this section for completeness. 

In Section 5.4, we analyze the results of our experiments and evaluate the performance of 

our models, comparing them to baseline standalone estimators. In Section 5.5, we discuss 

the impact of the experimental results and outline the advantages and the potential 

challenges of the proposed models. Furthermore, we provide insights on future research 

directions that could expand on our forecasting approach and possibly enhance model 
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performance for similar applications in the energy sector. Finally, in Section 5.6, we present 

the conclusions derived from the experiments and the analysis of the results. 

5.3 Materials and Methods 

5.3.1 Stacking and Voting Ensemble Regression 

Time series forecasting estimators attempt to capture linear and non-linear patterns from 

the training data in order to fit a model that is able to generalize well when new 

observations are tested. However, due to the coexistence of those two types of patterns, 

a single estimator may not be able to achieve both good interpretation and optimal 

forecasting performance. The suboptimal accuracy could be attributed to high bias, 

resulting in limited approximation flexibility, or high variance, leading to larger fluctuations 

in the estimated time series when value changes occur in the training data. Therefore, 

models with a high bias could be prone to underfitting, resulting in poor performance on 

the training and test set. Additionally, models with high variance are prone to overfitting, 

resulting in optimal performance on the training set and suboptimal accuracy on the test 

set. Ensemble learning methods acknowledge those potential model instabilities and 

contribute to the implementation of more robust estimators that are more resilient to 

noise through the combination of multiple regression models [205]. In this project, we 

develop the forecasting model structure and investigate the impact of stacking and voting 

ensembles on clustered aggregate load time series. 

The stacking ensemble regression approach combines multiple estimators in order to 

construct a meta-model that consists of multiple layers responsible for processing 

estimated time series as features for the training of a new estimator. For this study, we 

consider the simple two-layer stacking ensemble structure for time series regression tasks. 

Layer 0 trains several diverse estimators commonly known as base learners and produces 

a feature set of estimated time series, denoting different representations of the target 

variable, forming the stacked dataset. Layer 1 usually consists of a simple model such as 

linear regression that is trained on the stacked dataset in order to derive the final 

predictions. Figure 5.1 presents this two-layer structure for 𝑁 base learners. Multilayer 

stacking extends this structure through the derivation of multiple meta-model time series 
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that are utilized for the training of a subsequent estimator, following the process of the 

first two layers [206,207]. 

 

Voting ensemble models attempt to correct highly divergent estimated time series values 

through the averaging of multiple estimators. Firstly, a set of similarly performant models 

is selected for the prediction of the target variable. The members of voting regression 

typically share similar error metrics during training in order to preserve stable performance 

after the averaging process. Secondly, a weighting strategy is applied in order to denote 

the significance of each estimated time series in the final prediction. Uniform weights are 

commonly considered as the default averaging strategy but more sophisticated strategies 

based on the process of member selection could be explored for performance evaluation. 

Figure 5.2 presents the structure of a voting regression model of 𝑁 members [208,209]. 

 

Stacking and voting ensembles could result in improved performance when compared to 

standalone estimators since the simultaneous reduction in bias and variance could derive 

Figure 5.1: Stacked ensemble regressor structure with two layers and 𝑁 base 

estimators. 

 

Figure 5.2: Voting regressor structure for the averaging of 𝑁 estimators. 
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estimated values that are closer to the actual values of the target variable. Additionally, the 

combination of ensemble members that are able to independently interpret linear or non-

linear patterns leads to more robust estimators that could process more complex high-

dimensional time series data efficiently. However, the performance benefits stemming 

from the implementation of an ensemble model are not guaranteed and it is commonly 

observed that the wrong or arbitrary selection of ensemble members leads to suboptimal 

performance. Therefore, studies that propose ensemble models based on arbitrary 

membership usually undergo extensive experimentation in order to verify the results. This 

work proposes a deterministic approach for member selection based on fundamental time 

series components, aiming to outperform the standalone base estimators on both 

ensemble approaches for clustered aggregate forecasting. 

5.3.2 Cluster-Based Aggregate Forecasting Framework 

Smart meter data processing is a challenging task in the development of load forecasting 

models since the dimensionality of the datasets and the plethora of different consumer 

types increase model complexity, resulting in a suboptimal prediction accuracy and 

convergence time for several centralized approaches relying on a single estimator 

structure. Therefore, cluster-based approaches attempt to divide the consumer base into 

groups based on distinct time series characteristics or geographical features in order to 

leverage trends within similar sets of consumers and reduce the noise by processing 

consumers with different load patterns separately. This work considers the cluster-based 

aggregate forecasting framework outlined in [193,200] since this method attempts to 

balance the effects of data compression from aggregation models and the fine-grained 

distributed prediction of clustered time series, resulting in a scalable strategy that could 

lower the forecasting error as the size of the consumer base increases. Firstly, load profile 

time series are clustered into 𝑘 groups based on similarity distance metrics. It is important 

to note that the number of clusters affects the forecasting performance of the model since 

a suboptimal division of consumers could result in noisy and unbalanced datasets that 

could overfit or underfit the estimators. Therefore, cluster evaluation strategies such as the 

elbow method [210] and silhouette analysis [211] are often applied in this step, in order to 

determine the optimal value of 𝑘 and ensure that the clusters are well-separated. Secondly, 

the load consumption time series in each cluster are aggregated in a single time series, 
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resulting in drastically reduced dimensions and increased pattern regularity. The 

aggregated time series train 𝑘 estimators that output aggregate load predictions for each 

cluster. Lastly, the summation of clustered predictions derives the total demand forecast 

and error metrics for model evaluation are calculated based on this time series. Figure 5.3 

presents the cluster-based aggregate forecasting strategy. 

 

5.3.3 Cluster Evaluation Methods 

Clustering approaches in load forecasting such as the cluster-based aggregate framework 

utilize several evaluation methods in order to determine optimal data segmentation, 

resulting in groups of similar time series. The increased homogeneity of time series 

reinforces the presence of patterns in the aggregate data, reducing the noise that could be 

observed when load profiles of consumers exhibiting drastically different behaviors would 

be aggregated for the prediction of total demand. Additionally, energy applications based 

on the processing of load features as well as projects that utilize anonymous consumer data 

often face the challenge of separating the consumer set into distinct groups, since this 

would help the predictive performance of forecasting models, leading to meaningful 

deductions. Therefore, it is important to include some of the commonly used clustering 

evaluation methods in this project such as the elbow method and the silhouette method in 

Figure 5.3: Cluster-based aggregate forecasting approach separating the consumer 

base into 𝑘 clusters of variable sizes for the prediction of total electricity consumption. 
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order to properly divide the client base into clusters and potentially avoid irregularities in 

performance that could result in unstable error metrics. 

The elbow method is an iterative process used for the selection of the optimal number of 

clusters through the search for the point where an increase in the number of clusters would 

not yield substantial data modeling benefits. This point is considered a threshold for 

clustering algorithms since the diminishing returns from the inclusion of additional clusters 

may not improve model performance. The commonly used metric in the elbow method is 

the sum of squared distances between the samples in each cluster and the cluster center. 

The value of this metric is calculated as the number of clusters increases and it is usually 

found that the sum of squared distances decreases in every iteration. The curve formed by 

those values is examined for the selection of the point after which the metric decreases 

slowly, exhibiting a linear pattern [212]. 

The silhouette method aims to quantify the cohesion as well as separation of samples by 

measuring the similarity of data points within the same cluster and the degree of 

dissociation of samples from other data points found in neighboring clusters. The silhouette 

coefficient is the metric calculated for the selection of the optimal number of clusters. 

Given the average distance of sample 𝑖 to all other samples in the same cluster denoted as 

𝑎(𝑖) and the average distance of sample 𝑖 to all the points in the closest neighboring 

clusters, denoted as 𝑏(𝑖) the silhouette coefficient is computed with the following formula: 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥(𝑏(𝑖), 𝑎(𝑖))
 

(5.1) 

 

The silhouette score derived from the averaging of the silhouette coefficient for each data 

point is utilized for the iterative analysis of each number of clusters. The computation and 

visualization of the silhouette score provide a robust cluster assessment, summarized in 

values ranging from −1 to 1. Positive silhouette scores closer to 1 indicate sufficient 

separation of samples into distinct and well-defined clusters. When the silhouette score is 

close to 0, the examined samples are usually close to the decision boundary between two 

neighboring clusters, denoting the ambiguity of the resulting data segmentation. 

Furthermore, negative silhouette scores closer to −1 often denote incorrect cluster 

assignment or the presence of outliers. Consequently, the optimal number of clusters 
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corresponds to the number that resulted in the highest silhouette score [213]. However, it 

is worth noting that a thorough examination of model performance should consider both 

evaluation metrics and investigate the edge case of the minimum number of clusters when 

the silhouette score is positive since execution time and parallelization availability could be 

important factors in the deployment of forecasting applications. 

5.3.4 Proposed Forecasting Model 

This study examines a combinatorial forecasting approach utilizing the cluster-based 

aggregate framework as the main structure for customer base segmentation and a model 

selection method for the development of flexible ensemble estimators that are able to 

efficiently derive total demand predictions. At the first step, the dataset containing client 

load profiles is clustered using the K-means algorithm [214] based on the dynamic time 

warping metric [215] in order to reinforce optimal time series similarity when client data 

are collected from different start periods. A silhouette analysis and the inertia-based elbow 

method were applied in order to determine the optimal number of clusters. Following the 

cluster-based aggregate framework, client time series within each cluster were aggregated 

to form the input dataset for the ensemble model. At the second step, ensemble 

membership is determined using peak and non-peak performance evaluation. A peak 

detection algorithm [216] is applied to the training set in order to detect local maxima by 

the comparison of neighboring values. A subdivision of the training set is used to train a set 

of estimators and evaluate their predictive potency on peak and non-peak indices. 

The evaluation of peaks and non-peaks is quantified based on an error metric following the 

examination of three sets of indices denoting three different perspectives where peak and 

non-peak values are observed. The first set examines the performance of peak and non-

peak indices as they were detected by the estimated time series for each candidate 

ensemble member, the second set examines the performance of peak and non-peak 

indices observed in the actual time series and the third set considers the performance of 

peaks and non-peaks detected exclusively in the actual time series. These sets of indices 

were selected based on the intuitive assumption that peaks and non-peaks should be 

detected from a relatively large and well-defined set of observations in order to derive 

robust performance metrics. Therefore, in the extreme case of poor time series estimation, 

the common index set for the actual and estimated load could result in a small sample that 
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would provide insignificant insight towards the overall peak and non-peak performance of 

the candidate ensemble members. Additionally, when this extreme scenario is considered, 

the candidate estimator could be automatically eliminated since the potential inclusion of 

a prediction model that yields exceedingly poor performance in the ensemble model does 

not benefit the combinatorial approach. Similarly, uncertainty surrounds the consideration 

of peak and non-peak values detected exclusively for each estimator since this set may not 

share a strong connection to the actual time series and result in unreliable deductions. 

However, in the edge case where the candidate estimators perform extremely well and 

there is a great overlap of peak and non-peak positions between the actual and estimated 

time series due to the optimal match of the data points, the evaluation of the remaining 

indices exclusively detected in the actual time series is significant for the extraction of 

additional insights that could support informed decisions for model selection since the 

examination of this small region could be the deciding factor when multiple models are 

highly performant. The estimator scoring the lowest error metric for each perspective set 

is added to a list. consequently, lists of peak and non-peak influenced estimators are 

formed, including the most performant estimators for each case. Figure 5.4 presents the 

total observation space and highlights the sets of indices selected for this strategy. 

Furthermore, Figure 5.5 presents the derivation of the membership lists. 

  

(a) (b) 
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(c) (d) 

 

Figure 5.4: Set representation for the peak and non-peak model selection strategy 

based on training performance. (a) Total index space of peak and non-peak 

observations. The blue circle in the background denotes the total set of indices of peak 

and non-peak values for the actual load time series. The red circle in the foreground 

denotes the total set of indices of peak and non-peak values for the predicted load 

time series. (b) The highlighted red circle denotes the first evaluation set of peaks and 

non-peaks detected in each estimated time series. (c) Denotes the second evaluation 

set of peaks and non-peaks detected in the actual time series. (d) Evaluation set 

denoting the peaks and non-peaks exclusively detected in the actual time series. 
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At the final step of this approach, ensemble regression structures adapted to each cluster 

due to the membership selection strategy, derive the predicted cluster load. The ensemble 

estimators could utilize the stacking or the voting paradigm in order to combine the output 

of the selected ensemble members. When a stacking ensemble is utilized, the lists derived 

from the member selection strategy could determine the base learners of the first level. 

Therefore, three models featuring the most performant estimators from sets of peaks, non-

peaks and the joint set of indices can be evaluated. Figure 5.6 presents the structure of the 

stacking ensemble when the information from the sets of indices is available. Alternatively, 

the consideration of a voting ensemble could result in the development of more models 

since the member selection strategy could affect the base predictors as well as the weight 

strategy for the averaging of the estimated output. Consequently, six models could be 

examined in this case, since each of the previously mentioned sets of indices could follow 

a uniform or occurrence-based weight strategy. Figure 5.7 presents the structure of the 

voting ensemble models. Lastly, Figure 5.8 presents the process pipeline of this 

combinatorial forecasting approach. 

Figure 5.5: Ensemble membership selection process. 
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Figure 5.6: Stacking ensemble structure based on the peak and non-peak member 

selection strategy. 

Figure 5.7: Voting ensemble structure based on the peak and non-peak member 

selection strategy. 
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5.3.5 Case Study 

5.3.5.1 Data Overview 

The proposed model was evaluated on a publicly available dataset [217] containing load 

measurements for 370 Portuguese clients extracted from smart meters in 15 min intervals 

for 4 years from January 2011 to December 2014, including a total of 140,256 observations. 

Since some clients were monitored after 2011, load measurements were considered as 

zeros. The dataset did not contain any missing values and client measurements were 

converted from kW to kWh for the purposes of this study. Additionally, the time labels 

follow the Portuguese time zone and at the start of daylight saving in March values 

between 1:00 a.m. and 2:00 a.m. are zeros. At the end of daylight saving in October, values 

between 1:00 a.m. and 2:00 a.m. aggregate the consumption of two hours. The load 

profiles included in this dataset belong to different types of clients such as industrial and 

residential, exhibiting different consumption patterns that could lead to the fine-grained 

classification of several subcategories. Since the dataset focuses solely on load features, 

the anonymity of clients is preserved. Consequently, the segmentation of the client base 

through clustering is important to the efficiency of the aggregate forecasting model since 

the processing of clients exhibiting similar consumption patterns could reduce the potential 

noise and contribute towards faster convergence during training. 

The inspection of total demand in Figure 5.9 as well as the yearly boxplot presented in 

Figure 5.10 show that the aggregation of different consumer types coupled with the 

difference in monitoring periods result in peaks and valleys that could be difficult to 

interpret in short-term and very short-term prediction horizons. These effects become less 

Figure 5.8: Process pipeline for structural ensemble regression on the cluster-based 

aggregate framework. 
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impactful as the number of actively monitored consumers remains the same and the 

forecasting horizon is extended since seasonal patterns can be easily discovered. However, 

the requirement of a static consumer set in the modern power grid would be unrealistic 

due to the continuous expansion of the client base as well as the increased diversity in 

client behavior. Therefore, the examination of very short-term forecasting tasks for the 

prediction of aggregate load through frameworks that aim to address these challenges 

could lead to the implementation of more robust design strategies. 

 

 

 

 

Figure 5.9: Total electricity demand in kWh for 370 clients. 
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The examination of the histogram and the inspection of the density plot for the aggregate 

load in Figure 5.11 indicate a bimodal distribution that could be interpreted as the broader 

classification of clients into residential and industrial groups. Alternatively, this distribution 

could denote the sinusoidal shape of observations as the number of actively monitored 

clients becomes more stable. The presence of several peaks in the density plot and the 

general imbalance of samples in the bins of the histogram could confirm that this is a 

challenging task for some linear forecasting models that assume a Gaussian distribution. 

The implementation of a clustering algorithm could lead to more easily interpretable data 

distributions, resulting in the accurate prediction of partial aggregate load. However, the 

selection of estimators for the prediction of the partial aggregate load should not be 

arbitrary due to irregular data distributions that might persist after the clustering step. 

Therefore, the adoption of membership strategies is important for the development of 

combinatorial forecasting approaches; additionally, the utilization of fundamental methods 

tied to the data distribution such as peak detection could be useful in the refinement of 

error metrics. 

Figure 5.10: Boxplot of total yearly electricity demand. 
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(a) (b) 

Lastly, the observation of the first order lag plot denotes relatively high autocorrelation due 

to the high concentration of samples on the diagonal. Figure 5.12 suggests a positive 

correlation between the time series 𝑦(𝑡 + 1) and the lag 𝑦(𝑡) due to the positive slope of 

the line formed in the graph. Therefore, autoregressive approaches could be suitable for 

the prediction of total electricity demand in a very short-term time horizon since most data 

points are densely concentrated in this linear shape. This could be useful information in 

research projects that primarily include load features as proof of concept or due to data 

availability issues. 

 

 

Figure 5.11: Non-temporal representation of total electricity demand samples. (a) 

Total electricity demand histogram. (b) Density plot denoting bimodal distribution. 

Figure 5.12: First order lag plot comparing total electricity demand time series 

𝑦(𝑡 + 1) to the lagged total demand 𝑦(𝑡). 
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5.3.5.2 Implementation and Experiments 

The forecasting problem examined in this study can be formulated as the point prediction 

of total demand for the next 15 min interval based on 4 lagged observations for the 

previous hour in order to define a simple and interpretable supervised learning task. This 

task minimizes the impact of feature engineering and data preprocessing on the overall 

performance of estimators and could allow us to focus on the performance of the cluster-

based structure through the dedicated usage of load features as the membership of 

estimators changes for each cluster. The training set contained 80% of observations and 

the test set 20%, following common practice for similar forecasting tasks. Since the model 

focuses on very short-term predictions, the execution time for clustering needs to be fast 

in order to reserve time for the tuning and recalibration of the ensemble predictors at later 

steps. Consequently, monthly down-sampled load profiles were considered for the 

assignment of clients into clusters. As a result, the clustering procedure could be executed 

in seconds instead of several minutes when compared to weekly and daily down-sampling. 

Furthermore, the utilization of K-means clustering based on dynamic time warping was 

beneficial to the optimal alignment of the time series since some clients were monitored 

after 2011 and prior data entries were zeros. Following this step, silhouette and elbow 

methods were utilized for the selection of the optimal number of clusters. The silhouette 

score is the main metric examined in the silhouette method and ranges from −1 to 1, 

denoting poor cluster assignment when the clustering method achieves a negative 

silhouette score and satisfactory data separation when the value of that score is positive. 

The silhouette analysis showed that the assignment of clients into clusters ranging from 2 

to 10 resulted in acceptable data separation since the silhouette scores were above 0.6, 

verifying the consensus of selecting an optimal number of clusters that falls within this 

range and reaching a global maximum at 𝑘 = 2. The elbow method based on the sum of 

squared distances of the samples to their closest cluster center denotes that the selection 

of a number of clusters higher than 7 for the assignment of clients would not yield 

significant data modeling benefits since after that point, inertia decreases linearly at a slow 

rate. We observed that clustering derived from other candidate elbow points such as 𝑘 =

6 and 𝑘 = 8 did not yield a significant difference in terms of error metrics in this forecasting 

task when compared to 𝑘 = 7. However, the significantly lower silhouette score of 𝑘 = 8 

could indicate data separation issues, discouraging the selection of this value for the elbow 
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method and reinforcing the selection of 𝑘 = 7 since this is a pivotal point after which a 

significant decrease in the silhouette score occurs when this region of the inertia curve is 

examined. Therefore, the performance of the ensemble learning models was examined in 

the representative points of each method for 2 and 7 clusters, respectively. Figures 5.13 

and 5.14 present the clustering evaluation of the silhouette and elbow methods, 

respectively. 

 

 

The next process of this forecasting model considers a set of 11 base regression estimators 

as candidate members of the ensemble structure for each clustered aggregated load. The 

Figure 5.13: Silhouette method for clusters ranging from 2 to 20 using K-means 

clustering of client load profiles based on dynamic time warping. 

Figure 5.14: Inertia-based elbow method for clusters ranging from 2 to 20 using K-

means clustering of client load profiles based on dynamic time warping. 
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estimators were tuned based on cross-validated random search [218] on the training data, 

utilizing a 5-fold time series split that returns the first 𝑓 − 1 folds as the training set and 

the last fold 𝑓 as the evaluation set, maintaining the temporal order of observations. 

Consequently, the models were configured in a way that reflects the average performance 

of the best selected hyperparameters. Table 5.1 presents the methods utilized for our 

experiments as well as their respective parameters based on the implementations found 

on scikit-learn and xgboost packages [219,220]. 

 

Table 5.1: Base estimators and hyperparameters. 

Model Hyperparameters 

XGBoost 

learning rate, maximum depth, minimum 

child weight, number of estimators, 

columns sampled by tree 

Linear Regression - 

Linear SVR tolerance, regularization parameter C 

SGD 

learning rate, initial learning rate, alpha 

regularization strength, maximum 

iterations, loss, tolerance, penalty 

parameter for regularizer selection 

Huber Regression 

maximum iterations, alpha regularization 

parameter, epsilon outlier resilience, 

tolerance 

LARS non-zero coefficients 

Lasso 
maximum iterations, alpha regularization 

parameter, tolerance 

Ridge alpha regularization parameter 

Theil-Sen Regression - 

Bayesian Ridge 
lambda weight precision, alpha noise 

precision 
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K-Neighbors Regression 
leaf size, number of neighbors, power 

parameter of Minkowski metric 

 

The training set was segmented for the peak and non-peak detection and evaluation 

following the previously mentioned time series split and mean absolute error was selected 

as the error metric for the quantification of predictive potency since the dataset contains 

zeros for the time periods where some clients were not monitored. After the examination 

of three different perspectives corresponding to three different sets of indices as described 

in the previous subsection, three lists of estimators were formed for each cluster. The first 

list contained the three most performant estimators on the sets of observations related to 

peak indices, the second list included the most performant estimators on the sets of 

observations associated with non-peak indices and the third list was the concatenated list 

of the previous two after the removal of duplicate estimator entries. Three stacking 

ensemble models were developed based on the estimators of each list with linear 

regression being the second level estimator. Additionally, six voting regression models 

were developed, featuring uniform and occurrence-based weighting strategies based on 

the concatenated membership list. All models featuring the tuned ensemble members 

were trained on the full training set of observations and evaluated on the holdout test set. 

This project was developed in Python 3.8.8 using the packages pandas 1.2.3, numpy 1.21.5 

and scipy 1.7.3 for data processing, tslearn 0.5.2 for clustering, scikit-learn 1.0.2 and 

xgboost 1.3.3 for predictive modeling and matplotlib 3.5.1 for visualization. The model 

implementation and the experiments were executed on a desktop computer with an AMD 

Ryzen 1700X processor, 8 gigabytes of RAM, and an NVIDIA 1080Ti graphics processor. 

Additionally, the code of this forecasting approach and case study is publicly available on 

GitHub [221]. 

5.3.6 Performance Metrics 

In this section, we outline the main performance metrics utilized for the evaluation of all 

nine ensemble estimators in the cluster-based aggregate framework. Firstly, MAE [87] is 

utilized for the peak and non-peak influenced member selection as well as the final 

ensemble evaluation since it is a common and simple loss function that measures the 

average error of continuous variables without considering error direction. 
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Furthermore, MAPE [88] is included for the generalized measurement of relative error 

since it is an interpretable scale-independent metric. The usage of MAPE is restricted to the 

evaluation of the total demand for the final ensemble models due to the existence of zeros 

in some of the clustered time series. Secondly, MSE [222] and RMSE [223] are included as 

quadratic scale-dependent loss functions that could denote the impact of large errors since 

errors are squared before they are averaged. Additionally, the simultaneous examination 

of MAE and RMSE could determine the variation of errors for the ensemble models since a 

large difference between the values of those metrics could denote great variance in the 

individual errors of the test sample, indicating the occurrence of large errors. 

5.4 Results 

In this section, we analyze the performance of the ensemble models by providing an 

overview of the error metrics based on the data available in this case study. Since this 

project focuses on the implementation of a deterministic membership selection technique 

on stacking and voting ensembles, all nine ensemble estimators discussed in the 

experiments presented earlier are compared to the standalone estimators in the cluster-

based aggregate framework in order to distinguish the most efficient ensemble structures 

and outline the potential performance benefits of this approach. The main motivation for 

the development and subsequent comparison of those models stems from the uncertainty 

that some values could introduce during the training of estimators, resulting in regions 

where suboptimal fitting could occur. Intuitively, unstable estimator performance could be 

observed in regions where local maxima could be detected due to the sudden change in 

the value of electricity consumption or due to the irregularity of the consumption pattern, 

resulting in large errors. Therefore, the prioritization of points or regions where peaks are 

not observed would be considered as a safer starting point for the fair performance 

comparison of base learners and the examination of optimization benefits through the 

combination of multiple estimated time series. Since the discovery of base learner 

combinations that reduce the forecasting error in a given machine learning task is a 

challenging process and a given ensemble structure does not guarantee improved 

performance when applied to different datasets, adaptive ensembles could result in more 

robust estimation and the examination of fundamental time series characteristics such as 

peak and non-peak points could lead to flexible ensemble structures that yield 
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performance benefits when diverse time series are processed, such as the clustered load 

of different client types. The performance comparison includes the computation of MAPE, 

MAE, MSE and RMSE for all models. The stacking ensembles utilizing the list of best peak 

estimators, the list of best non-peak estimators and the merged list containing a single 

instance of all members from both lists, are labeled as SRP, SRNP and SRA, respectively. 

Similarly, the voting ensemble structures featuring a uniform weight strategy are labeled 

as VRUP, VRUNP and VRUA. Lastly, the voting ensemble models featuring an occurrence-

based weight strategy derived from the frequencies of estimators in the merged list before 

duplicate removal are labeled as VROWP, VROWNP and VROWA, respectively. 

Figure 5.15 presents the error metrics of the standalone models as well as the ensemble 

structures on the optimal assignment of clients into two clusters based on the silhouette 

analysis. The examination of MAPE and MSE shows that the ensemble methods following 

this membership selection strategy yielded improved forecasting performance when 

compared to the standalone estimators. Additionally, the simultaneous examination of 

MAE and RMSE indicates that there is a small variation in the magnitude of the errors in 

standalone models and each ensemble structure but the occurrence of large errors is 

unlikely. The stacking and voting regressors utilizing the membership list derived from 

performant non-peak estimators yielded the most distinct improvement and relatively 

smaller benefits can be observed from the ensembles based on peak membership. 

Furthermore, the implementation of a uniform and occurrence-based weight strategy 

resulted in similar forecasting performances for voting ensembles that utilized the peak as 

well as the merged membership lists. However, a more substantial difference in error 

metrics can be observed in the comparison of the voting estimators utilizing the non-peak 

membership list, where uniform weights resulted in lower metrics. 

  
(a) (b) 
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(c) (d) 

Figure 5.16 provides an overview of the error metrics derived from the inertia-based elbow 

method for optimal clustering. Similar to the examination of the silhouette optimal cluster 

selection, it is evident that the stacking and voting ensembles based on the non-peak 

membership list yield improved performance in this forecasting task, resulting in lower 

MAPE values. The values of MAE, MSE and RMSE for those models remain close to the 

lowest value of the KNN regressor, denoting the overall stability of the ensemble models. 

However, this observation does not hold true for all ensemble models since voting 

ensembles following an occurrence-based weight strategy yielded MAE, MSE and RMSE 

values closer to the average standalone predictors while yielding a smaller improvement 

of MAPE, denoting fewer substantial benefits derived from the model fusion in this case. 

  

(a) (b) 

Figure 5.15: Error metric comparison for standalone estimators and structural 

ensemble models given the optimal clustering denoted by the silhouette method. The 

panels present the following metrics: (a) Mean absolute percentage error. (b) Mean 

absolute error. (c) Mean squared error. (d) Root mean squared error. 
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(c) (d) 

Consequently, the inspection of both optimal clustering strategies shows that the 

implementation of flexible ensemble models in the cluster-based framework could improve 

the overall load forecasting performance when considering ensemble members that 

performed well on the prediction of non-peak observations during training. This deduction 

partly verifies the intuitive assumption that regions with sudden peaks in the clustered data 

may introduce a level of uncertainty which could result in unstable estimator behavior, 

leading to the unfair performance evaluation of base learners for membership selection. 

The uniformly weighted voting regressor based on non-peak influenced membership 

achieved, approximately, a 16.5% improvement over the average MAPE value of 

standalone estimators while utilizing the silhouette analysis for optimal clustering. 

Similarly, the stacking non-peak influenced regressor achieved a 17.2% improvement in the 

experiment. Furthermore, the experiment utilizing the elbow method for the selection of 

the optimal number of clusters showed that the previously examined models yielded a 

10.4% and 13.8% MAPE improvement over the average of the standalone values, 

respectively. It is worth noting that in this second experiment the stacking regressor 

considering the merged list of peak and non-peak influenced membership yielded an 11.9% 

MAPE improvement, showing slightly better performance when compared to the VRUNP 

model. The examination of those metrics denotes an overall reduction in MAPE, 

comparable to the average reduction observed in the implementation of ensemble learning 

for short-term forecasting over different sets of estimators in recent research results 

Figure 5.16: Error metric comparison for standalone estimators and structural 

ensemble models given the optimal clustering denoted by the elbow method. The 

panels present the following metrics: (a) Mean absolute percentage error; (b) Mean 

absolute error; (c) Mean squared error; (d) Root mean squared error. 
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presented in [186] as well as [224,225]. Since the successful implementation of an 

ensemble model typically yields a small improvement when compared to the best base 

estimator, a similar behavior can be observed in our study, achieving approximately the 

same level of error metric reduction when compared to relevant studies. The main 

difference highlighted in our approach is related to the discovery and examination of 

optimal base estimator sets from a wider estimator space in an attempt at eliminating the 

uncertainty of the initial ensemble member selection process. Therefore, our work aims to 

shift the focus from the individual proposal of specific ensemble structures to member 

selection strategies that generate appropriate sets of estimators for the training of a given 

time series. 

5.5 Discussion 

This research project examined the performance of structurally flexible ensemble 

estimators on the cluster-based aggregate framework for the improvement of short-term 

total demand predictions. The proposed approach implemented a membership selection 

strategy focusing on the evaluation of peak and non-peak data points given different 

perspectives that consider sets of observations on the actual as well as the estimated time 

series derived from segments of the training set. This process resulted in the development 

of nine ensemble models consisting of three stacking and six voting regression structures 

that covered several ensemble member combinations. Consequently, a case study was 

carried out for the evaluation of those models on a dataset including the load profiles of 

370 clients. The research findings indicated that the ensemble models were able to improve 

the forecasting accuracy for clustered load estimation, resulting in more robust 

combinatorial structures. The experiments showed that voting and stacking ensembles 

influenced by the membership set of non-peak performant base learners could provide 

more significant forecasting improvements, yielding MAPE scores of 3.68 and 3.65, 

respectively, when silhouette analysis is used for optimal clustering. Similarly, those models 

achieved MAPE scores of 3.76 and 3.62, respectively, when an inertia-based elbow method 

was utilized for optimal clustering and the stacking ensemble including peak as well as non-

peak performant base learners resulted in adequate performance, achieving a MAPE value 

of 3.7. 
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Since the discovery of efficient base learner combinations is not a straightforward process 

and one specific ensemble structure may not guarantee the reduction in error in a given 

forecasting task, we believe that this adaptive approach contributes towards the 

deterministic member selection through the inspection of fundamental time series 

characteristics. Additionally, it is evident that a standalone estimator may not perform well 

when processing time series that exhibit different patterns, resulting in unstable overall 

metrics for the aggregate values. The average performance of some robust and optimally 

tuned standalone estimators could be drastically affected by the input data as well as the 

data collection process. Different electricity consumer types and various data collection 

characteristics such as the start of the load monitoring period could impact the prediction 

accuracy and the recalibration process of the forecasting models. Consequently, it could be 

observed that some estimators may outperform others with minimal context related to the 

justification of the difference in performance, leading to less interpretable 

implementations that follow arbitrary model selection processes. Therefore, the main 

advantage of this proposed approach is the efficient combination of base learners through 

a simple and well-defined process that could be seamlessly integrated in ensemble 

regression tasks for the energy sector. The performance hinderances introduced by the 

extreme cases where the response of a standalone estimator yields irregularly high error 

metrics on certain data points are diminished through the consideration of multiple 

estimated time series. Moreover, the focus is shifted towards the inspection of data points 

where the estimators are expected to perform optimally, reinforcing the fairness of 

comparison and setting additional criteria towards member selection in ensemble learning. 

On the other side of the spectrum, there are a few disadvantages in the application of this 

method that should be mentioned for completeness. Since cluster-based frameworks often 

lead to computationally expensive models, the integration of flexible ensemble learners in 

this paradigm could increase the computational cost due to the training and processing of 

multiple estimators. Therefore, the complexity of each candidate base learner could be 

restricted since the tuning, training and processing of several deep neural network 

architectures and hybrid structures would increase the execution time substantially due to 

the increased number of hyperparameters as well as the overall latency encountered when 

loading and storing data during training, rendering them inefficient for short-term 
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forecasting tasks and real time applications. However, advances in distributed computing 

could remedy this issue through the parallelization of data processing tasks. It is evident 

that the proposed approach could be implemented in multi-threaded distributed systems 

since there is a clear distinction between standalone and aggregate tasks. Consequently, 

the inspection of each base learner and the membership evaluation process for each cluster 

could be easily parallelized, resulting in a scalable hybrid structure. 

Future research projects could explore different time series characteristics and combine 

them in order to extend the current membership evaluation strategy, resulting in the 

discovery of additional ensemble structures. Since this study primarily focused on load 

features, isolating their impact for the inspection of base learners in an environment 

containing only the load profiles from different types of customers anonymously, the 

inspection of time series elements derived from different types of features could provide 

significant insights towards the development of more robust ensemble estimators, 

depending on data availability. Furthermore, the proposed strategy could be applied to 

multiple unclustered time series or load profiles processed in different clustering or 

aggregation frameworks in order to examine the performance of adaptive peak and non-

peak ensemble learning through more diverse experiments. Lastly, the impact of several 

vital parameters to the definition of the forecasting tasks could be studied, such as the 

forecasting horizon, and the customer base size could be studied in an attempt at 

quantifying the scalability of this approach in different client groups as well as the versatility 

of the method. 

5.6 Concluding Remarks 

The intricacies of very short-term total electricity demand forecasting tasks add a layer of 

ambiguity to combinatorial modeling since the challenges derived from increasingly diverse 

and rapidly growing client groups could hinder the efficiency of robust estimators. 

Additionally, the inclusion of estimators in hybrid and combinatorial approaches is often 

influenced by expert knowledge and general performance indicators in similar forecasting 

tasks. Therefore, the criteria for the selection of base estimators are not explicitly linked to 

the shape and the individual characteristics of a given dataset, resulting in a seemingly 

arbitrary estimator selection process. This phenomenon could be easily observed in the 
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implementation of ensemble learning models where small refinements to the error metrics 

are expected when several estimators are optimally combined. Since this optimal 

combination differs depending on the available data and the problem formulation, this 

performance boost is not guaranteed and is often derived from extensive experimentation. 

In this project, we presented an estimator selection strategy that generates base estimator 

sets capable of achieving this performance boost through the examination of peak and non-

peak observations from multiple evaluation perspectives during training. This membership 

strategy aims to adapt to different shapes of time series and output estimator groups that 

outperform the standalone estimators when combined in a stacking or voting ensemble 

structure. The case study presented in this work focused on the effect of load features and 

utilized the cluster-based aggregate framework since the clustered time series derived 

from a diverse set of clients monitored from different starting points would introduce a 

degree of unpredictability between consecutive samples that would intuitively cause 

certain models to underperform as the shape of the time series could be drastically 

different between clusters. As a result, three stacking models and six voting models were 

evaluated on a group of clustered time series for the prediction of total demand based on 

the most important numbers of clusters derived from the silhouette and elbow methods. 

Through our experiments, we observed that base estimator sets generated from the 

proposed strategy led to consistently more performant ensemble models when the criteria 

influencing the selection of estimators involved the examination of non-peak observations. 

It is worth noting that in some ensemble structures the merged set of estimators selected 

from the examination of peak and non-peak observations performed adequately well. In 

conclusion, this work attempts to reinforce the basis of ensemble and hybrid modeling 

through a well-defined and easily interpretable criteria-based approach which is tuned 

based on the input time series in order to boost predictive performance. 
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 Development and Application of a Meta-Modeling Architecture 

Towards Estimation Stability and Generalization 

6.1 Motivation 

The extension of the forecasting framework through the inclusion of meta-modeling 

processes adds significant value to short-term forecasting in the energy sector since it 

enables the development of more robust estimators that could drastically improve the 

generalization capabilities and the stability of predictions within the studied horizon. The 

main appeal of meta-modeling approaches stems from the enhanced flexibility in the 

development of the primary forecasting module. Since the role of the meta-modeling 

approaches is to combine and process output data from the main forecasting module for 

the derivation of the estimated target variables, the forecasting module could be 

restructured and repurposed in order to capture and analyze different aspects of the time 

series features. Consequently, several meta-features or alternative interpretations of the 

target variables could be derived in order to form more compact datasets that 

comprehensively explain the patterns of the target series. 

The application of meta-modeling approaches could be useful in more complex 

environments where the efficient feature dynamics could improve performance and the 

omission of influential factors could introduce performance hinderances. One of the most 

prominent scenarios where meta-modeling techniques could be impactful is the research 

of short-term consumer load forecasts. It is evident that the prediction of consumer load 

curves could be sufficiently accurate when enough influential factors are examined and 

when the input dataset is derived from a high-quality data collection process. However, in 

real-world applications, these requirements may not always be fulfilled, resulting in 

erroneous and unreliable predictions. Therefore, the forecasting model could benefit from 

additional learning stages that expose more characteristics of the time series during 

training. Meta-modeling techniques could be applied in this scenario, in order to introduce 

a multi-stage pipeline that initially shifts the focus towards the discovery of compact data 

representations. In this scenario, data representations that address community dynamics 

are not sufficiently covered through research efforts focusing on meta-modeling. The 

impact of time series similarity is typically helpful in the early stages of the forecasting 
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pipeline for the purposes of feature selection. Similar consumption patterns from different 

clients could reinforce the generalization of the model and explain irregular time series 

alignment issues that may occur during data collection. Furthermore, the examination of 

causality could be used to further explore the influence that other time series might have 

in the prediction of the target, denoting a more general measure of the degree of predictive 

potency that is not severely penalizing data abnormalities. Both influential factors are not 

sufficiently examined within the scope of meta-modeling design for the exploration of 

community dynamics that may affect individual load forecasts. This research gap leads to 

the underutilization of available knowledge, since the role of a consumer within a 

community and data that could indirectly be related to a specific load curve may have 

significant value to the overall performance of the forecasting pipeline. 

The contribution analyzed in this chapter attempts to address this research gap through 

the design and development of a novel meta-modeling approach that considers the factors 

of similarity and causality in order to derive alternative target time series components that 

could be combined in order to boost accuracy and stability of the target prediction within 

short time intervals. This case study considers real-world consumer data where poor data 

collection quality could result in higher error metrics, rendering the convergence of 

regression models more difficult. The following sections correspond to the introduction, 

methodology, results and discussion of this meta-modeling approach. 

6.2 Introduction to a Meta-Modeling Power Consumption Forecasting Approach 

Combining Client Similarity and Causality 

Data analysis and forecasting models are the cornerstones of research in the energy sector 

since they enable the development of sophisticated applications and strategies that 

optimize the flow of energy on the grid and improve the quality of life of electricity 

consumers. Modern data-driven approaches rely on the collection and processing of client 

information regarding their power consumption, socio-demographic features, and various 

external factors, such as weather variables, in order to examine consumption patterns and 

make accurate predictions. Forecasting models focused on the prediction of power 

consumption provide meaningful insights that can be utilized by electricity providers in 

order to monitor and control the demand efficiently, while being able to detect and avoid 
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irregular events. On a larger scale, power forecasting models allow the providers to 

construct load profiles of buildings for months in advance and, based on that estimate, to 

validate energy meter readings and cluster buildings into groups, contributing towards 

more intelligent regional planning approaches. Additionally, smart pricing strategies can be 

implemented in an attempt to adjust electricity tariffs dynamically, based on client 

behavior. Price forecasting techniques complement electricity consumption models in that 

spectrum, with significant contributions towards the efficient execution of regression tasks 

[226–228]. Furthermore, electricity forecasts can benefit each consumer individually due 

to the development of applications that allow clients to monitor and reschedule their daily 

tasks flexibly in order to gain additional control over the billing process. Consequently, 

there is a growing interest for the development of accurate and robust power forecasting 

models that are able to extract useful information from the underlying patterns and 

relationships of the collected energy data [229–231]. 

Energy data used in the design of forecasting models is commonly structured in the form 

of time series, where records consist of relevant features indexed in time order. Classical 

time series forecasting methods such as autoregression (AR) [232], moving-average (MA) 

[233], and autoregressive moving average (ARMA) are often used to predict the next time 

step in a univariate sequence modeled as a linear function of information extracted from 

previous time steps. Moreover, the autoregressive integrated moving average (ARIMA) 

method and its extensions [234] utilize differencing in the observations of previous time 

steps. Vector autoregression (VAR) models constitute a generalization of AR models since 

they support multivariate time series. A similar generalization is observed in vector 

autoregression moving-average models (VARMA) [235]. Additionally, simple exponential 

smoothing (SES) [236] and Holt Winter’s exponential smoothing (HWES) [58] model the 

next time step as an exponentially weighted linear function of past observations. 

Traditional methods, such as AR, MA, ARMA, VAR, VARMA, and SES, usually do not utilize 

the trends and seasonal patterns of the input sequence and, while their extensions and 

variants can integrate those elements to construct more sophisticated models, there are 

more limitations associated with those methods. The limitations of those statistical 

methods mainly revolve around the structure of the available data, the relationship 

between input and output variables, and the ability to support highly dimensional time 
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series [237,238]. Since classical forecasting models do not support missing values, data 

imputation techniques need to be implemented, thus altering the original dataset. 

Furthermore, traditional models often generate predictions based on the assumption of a 

linear relationship between the input and output variables, thereby omitting the more 

complex non-linear patterns and trends. Lastly, these classical methods are observed to be 

more suitable on univariate sequences in terms of performance, rendering the design and 

generalization process for more complex environments more difficult. It is clear that due 

to the complexity, availability, and structure of many energy datasets, most traditional 

approaches would not suffice for the derivation of accurate predictions. 

On the other side of the spectrum, advances in artificial intelligence and machine learning 

led to the development of more robust models, which are capable of discovering complex 

relationships between input and output features. Many different architectures involving 

neural networks, such as the multilayer perceptron (MLP) [140] and long short-term 

memory (LSTM) network [239], were used successfully in many time series forecasting 

tasks, achieving impressive performance [185]. These neural network models follow a 

black-box approach in the approximation of nonlinear functions. The multilayer perceptron 

finds frequent application in regression, classification, and fitness approximation tasks with 

an emphasis on learning to map the set of inputs to the set of outputs. Long short-term 

memory networks take advantage of the temporal data characteristics in order to extract 

insights from the order dependencies that could be present in a sequence. The suitability 

of machine learning methods for energy data processing is evident since these models are 

able to capture more complex patterns from highly dimensional data without the 

requirement of having an optimally structured dataset. However, there are still many 

challenges that limit the performance of these models, and ongoing research attempts to 

address them. The lack of data needed to train a model successfully in combination with 

potentially missing values could hinder the performance of neural networks due to 

overfitting [240], since the model would not have an adequate number of training 

examples in order to perform well when new data is tested. Additionally, feature 

engineering is crucial in the design of a machine learning model, since the inclusion or 

exclusion of certain variables and data transformations can have a great impact in the 

learning process. Therefore, some forecasting tasks in the energy sector can have poor 
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performance due to a suboptimal data collection process or limited data availability given 

the forecasting horizon and the expected output. Ongoing research in the field focuses on 

the introduction of novel methods and hybrid models that utilize a combination of feature 

engineering techniques, architectural changes, and mechanisms that optimize the training 

process, thus rendering neural network models more resilient to data abnormalities. 

Additionally, there is an ongoing effort towards creating more well-structured datasets, 

while minimizing data distortion and noise for energy forecasts [241,242]. 

There are several recent projects addressing forecasting and classification tasks with the 

use of data-driven methods that often utilize neural networks and feature engineering 

techniques. Choi and Lee [243] proposed a framework based on an LSTM ensemble and a 

weighted combination of predictions for time series forecasting, showing that 

combinatorial approaches that utilize the output of multiple neural networks can achieve 

better performance compared to other popular forecasting methods. Tian et al. [244] 

presented a hybrid architecture based on the combination of a LSTM and a convolutional 

neural network (CNN) for short term load forecasting, improving prediction stability for 

that forecasting horizon. Mujeeb et al. [245] used a deep LSTM network to create a new 

load forecasting scheme for big data in smart cities, showing the capabilities of deep neural 

networks on highly dimensional historic load and price data. Markovič et al. [246] 

reinforced the importance of optimal data aggregation by presenting a data-driven method 

for the classification of energy consumption patterns based on functional connectivity 

networks. Jin et al. [247] proposed an encoder-decoder model utilizing an attention 

mechanism in order to learn long data dependencies from the input sequence efficiently. 

Tian et al. [248] developed a forecasting model based on transfer learning, using the 

outputs of already trained models for the estimation of building consumption according to 

similarity measures. This project provided substantial motivation towards research on 

meta-modeling techniques that could improve the accuracy of the predicted smart meter 

readings. Chen et al. [249] proposed a time series forecasting model that explored the 

impact of Granger causality for stock index predictions. This work presented interesting 

ideas on the use of causality in prediction models and could be extended to the field of 

energy forecasts. Boersma [250] studied the correlation and impact of internal and external 

factors on the prediction of household consumption using an MLP network. This project 
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highlighted the importance of feature engineering as well as time resolution in the 

derivation of accurate predictions. Emamian et al. [251] implemented a solar power 

forecasting model using an LSTM ensemble to aggregate the predicted output of each 

network, demonstrating that ensemble models can achieve higher accuracy and more 

reliable results than single neural network models. Guo et al. [252] combined energy 

consumption and environmental data in the development of an LSTM forecasting model. 

Their study suggested that decent forecasting performance can be achieved when a good 

quality dataset is available. Lastly, Tao et al. [253] proposed a hybrid short-term forecasting 

model using an LSTM network for photovoltaic power predictions in conjunction with a bias 

compensation LSTM in an attempt to improve the predictions based on the residual error. 

This project highlighted the more positive effects of meta-modeling in neural network 

design and showed that there is more useful information to be extracted from the 

predicted output. 

In this study, we focused on the prediction of power consumption extracted from monthly 

energy meter readings for electricity clients. Since the energy meter data is often collected 

monthly for each household or building, and the data collection process is dependent on 

the policies of the electricity provider, it is common for the resulting dataset structure to 

be problematic for most modern forecasting models. Insights and predictions are 

commonly based on patterns and trends extracted from recent years of consumption. 

Therefore, it is expected that a dataset containing monthly measurements might not have 

sufficient records for the training process of neural networks. Furthermore, due to different 

provider policies and the possibility of having a manual registration of the meter readings, 

the resulting datasets often contain missing or estimated values for clients that do not have 

any electric energy meters installed. Consequently, machine learning models trained on 

such data would probably overfit or exhibit poor performance on both training and test 

sets. The main goals of this study were: to develop a combinatorial neural network model 

that manages to outperform the standard single network forecasting approach, while 

avoiding overfitting; and to demonstrate the impact of feature engineering in the 

implementation of a meta-modeling technique. The proposed model examined the impact 

of similarity and causality among clients in an LSTM ensemble architecture in order to 

derive the base, similar, and causal representations of the predicted output based on 
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changes of the input feature set. Following this step, a multilayer perceptron was used to 

aggregate the predicted results, in order to discover the optimal combination of those 

representations that could be used to predict the actual power consumption more 

accurately, by formulating a meta-model for stacked generalization. This project aimed to 

stimulate further research in the design of models that do not rely on well-structured 

datasets, but rather explore the inclusion of potentially helpful features that express 

relationships between client time series, in order to improve the base performance of 

models that would otherwise be considered suboptimal. Our work contributes towards the 

study of influential features and the discovery of patterns within the communities of 

electricity clients. Additionally, the examination of combinatorial forecasting approaches, 

similar to the ones presented in this paper, help in the presentation of more complex ideas 

and greatly expand research knowledge through the investigation of alternative models. 

In Section 6.3, we analyze the main methods utilized in the implementation of the proposed 

model and proceed to provide the forecasting problem framing, with appropriate 

references to the dataset and performance metrics used as a case study in order to test the 

performance of this approach. In Section 6.4, we discuss the results of our experiments and 

evaluate the performance of our model. Finally, in Section 6.5, we highlight the impact of 

the experimental results and address the advantages as well as the challenges of this 

approach. Additionally, we outline some ideas for further testing and improvement of this 

method for future research projects. 

6.3 Materials and Methods 

6.3.1 Structural Presentation of Long Short-Term Memory Networks 

Long short-term memory networks [161] are a class of recurrent neural networks (RNN) 

that can identify long-term dependencies among the input features. LSTM networks are 

valuable tools for time series forecasting tasks, since they can perform well, when the 

duration between time lags of a given sequence is unknown. Additionally, LSTMs manage 

to preserve gradients throughout the computation, solving one of the main issues of RNNs, 

where the gradients would vanish during the training process. The structure of an LSTM 

consists of units known as the LSTM cells. Each cell contains a set of gates that can adjust 

the current cell state by adding or removing information at a given time step. The cell state 
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is transferred from one unit to the next, where further adjustments occur. The input gate 

at time step 𝑡 determines which values will be updated and stored in the cell state. 

Additionally, the output gate determines which parts of the current cell state will be 

transferred to the output of the cell, leading to the next unit. An overview of the LSTM cell 

is presented in Figure 6.1 where each symbol corresponds to the respective symbols 

explained in the formulae of section 4.3.1.3 and the multiplication as well as the addition 

blocks connect the terms of each formula in this diagram. LSTM networks are trained with 

back propagation through time and gradient descent [254]. 

 

In the literature, several experiments were conducted with different LSTM variants, 

including a variable number of units and hidden layers as well as custom training loops for 

sequence forecasting. However, it is evident that, while changes in the structural 

parameters of an LSTM can boost model performance and achieve faster training time 

through faster convergence, stable and reliable results are derived from the aggregation of 

multiple LSTMs and the construction of ensemble models [255]. Therefore, for the 

purposes of this study, an LSTM ensemble was considered for the forecasting experiments 

and the weighted average of the ensemble members was used for each representation of 

the predicted output. It is worth mentioning that ensemble models can also yield small 

performance boosts compared to the standalone LSTM, but in this project, we focused 

more on the stability and reproducibility that ensembles can ensure. Figure 6.2 presents 

the general ensemble LSTM structure. 

Figure 6.1: LSTM Cell Structure 
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6.3.2 Structural Presentation of Multi-Layer Perceptron 

The multi-layer perceptron is a neural network structure that follows the principles 

presented in section 4.3.1.1. Time series models and applications that handle energy data 

often utilize MLPs for univariate and multivariate regression tasks. Alternatively, MLP 

networks can classify load profiles as well as other variables that could group clients into 

distinct categories. For the purposes of this study, multi-layer perceptron was used as a 

meta-modeling prediction approximator that aggregates the results of LSTM ensembles 

and learns to predict the expected output through stacked generalization, in the spirit of 

[206]. Figure 6.3 presents the simple MLP structure featuring an input layer, one hidden 

layer and an output layer designed for univariate predictions [256]. 

 

 

Figure 6.2: General LSTM Ensemble Structure 
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6.3.3 Influential Community Factors 

Feature engineering techniques [257] are useful because they contribute to the discovery 

of relationships and patterns between input features. Additionally, those methods assist 

towards an insightful ranking of features derived from the results of metrics and 

algorithms, leading to the inclusion of the most impactful features or exclusion of the least 

beneficial data records. Consequently, it is evident that the role of feature engineering 

techniques is crucial in the design of performant models for most machine learning tasks. 

In this study, we focused on the development of a forecasting model that utilizes the power 

consumption data of clients. In the literature, studies involving external variables, such as 

temperature and price, are common in this class of forecasting models and the focus is 

shifted towards the impact of additional data on a specific load profile through time. While 

the inspection of external variables is beneficial in the development of accurate forecasting 

models, we should also consider the discovery of interrelationships among the load profiles 

of clients and the overall community impact when selecting features that are extracted 

from a wider pool of consumers. The exploration of this approach could lead to the design 

of performant models after the investigation of features that discover associations 

between the power consumption of buildings. These associations can be useful when the 

data collection process is not ideal and external variables are not available. Additionally, 

models based on influential community features show the relative evolution of power 

consumption patterns, which is worth monitoring when electricity providers, as well as 

customers, want to estimate electricity tariffs and ensure that energy meters function 

Figure 6.3: MLP with a single hidden layer. 
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properly. For the purposes of this study, we explored the effect of two influential 

community elements, namely similarity and statistical causality. 

6.3.3.1 Similarity 

Similarity metrics [258] quantify the structural closeness of features and rank them in order 

to find the ones most similar to the given input. In power forecasting tasks, where the 

similarity between the power consumption time series of clients is considered, the main 

goal is to create client associations by finding the most similar power consumption time 

series within the community, given the time series of one client. Since power consumption 

time series can vary in length or have missing values due to irregularities that occur during 

the data collection process, we can easily observe that conventional distance metrics that 

assume optimal time series alignment, such as Euclidian distance, could produce a 

pessimistic dissimilarity measure due to the absence of a symmetrical point-by-point match 

of the time series or, in some cases, misinterpret the similarity of some time series. 

Therefore, we chose to examine the soft dynamic time warping (soft-DTW) algorithm [259] 

for this project. Soft-DTW is a differentiable loss function for time series and constitutes an 

extension of the dynamic time warping algorithm [260] for the computation of the best 

time series alignment through a dynamic programming approach. As a similarity measure, 

soft-DTW considers all alignment matrices of two time series and produces a score that 

encapsulates the soft-minimum of the distribution of all costs spanned by all possible 

alignments. This method yields decent performance in classification and regression tasks 

involving time series and is considered a useful metric that can serve different purposes in 

the design and training of a neural network model. In detail, for the comparison of two 

time series 𝑥 and 𝑦 with respective lengths 𝑛 and 𝑚, given the cost matrix Δ(𝑥, 𝑦), the inner 

product of Δ, with an alignment matrix 𝐴 as ⟨𝐴, Δ(𝑥, 𝑦)⟩, and the proposed generalized 

operator 𝑚𝑖𝑛𝛾 with the non-negative smoothing parameter 𝛾, soft-DTW is computed with 

the formula: 

𝑠𝑜𝑓𝑡𝐷𝑇𝑊(𝑥, 𝑦) ∶= 𝑚𝑖𝑛𝛾{⟨𝐴, 𝛥(𝑥, 𝑦)⟩, 𝛢𝛢𝑛,𝑚} (6.1) 

 

6.3.3.2 Statistical Causality 

Causality [261] usually refers to the abstract concept that defines a relationship between 

two variables, where the influence of one can partially justify the value of the other. 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



195 

Typically, when causality is present there are covert dependencies between those variables 

and discovering them can be useful in the construction of forecasting models. When 

variables have a simple structure and include descriptive labels, it can be easy to distinguish 

the causality between them through intuition and logical reasoning, but this is not the case 

for more complex data. Time series data are usually collected from complex and dynamic 

systems and due to their structure, the detection, quantification, and interpretation of 

causality are challenging tasks. The relationship of cause and effect in time series could 

describe partial dependencies of values on the same time step as well as changes caused 

to the values of one sequence due to the effect of past observations of another. 

Statistical causality methods, such as Granger causality [262], attempt to determine the 

forecasting potency of one series with regards to another. The derivation of this predictive 

causality is a useful tool that could complement similarity measures and feature 

correlations when data analysis is performed. In the scenario of power consumption 

forecasting the role of statistical causality is twofold. First, models that rely on lagged 

observations of consumption can distinguish the most influential lags for prediction by 

eliminating the observations that fail the statistical causality tests. Second, in the scope of 

a wider client pool, the forecasting potency of a lagged observation that belongs to one 

client with regards to future consumption of a different client can enable data 

augmentation due to the significance of the underlying patterns that led to this causal 

relationship. 

In this project, we utilized the Granger causality test to infer the predictive potency of 

power consumption time series. The Granger causality test is a bottom-up process, where 

the null hypothesis states that lagged values of a variable 𝑥 do not explain the variation in 

variable 𝑦, hence 𝑥 does not Granger-cause 𝑦. The 𝑝 values of the chi-square and 𝐹 

distributions are compared to the desired statistical significance and the results can be 

interpreted with the following formula: 

𝑟𝑒𝑠𝑢𝑙𝑡 = {
𝑅𝑒𝑗𝑒𝑐𝑡 𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝑝 < 0.05
𝐴𝑐𝑐𝑒𝑝𝑡 𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝑝 ≥ 0.05

 
(6.2) 
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6.3.4 Problem Framing and Proposed Design 

This study focused on the design and implementation of a power consumption forecasting 

model for monthly consumption predictions based on the collection of energy meter 

readings from a set of clients. This model attempted to integrate neural network 

architectures, feature engineering techniques, and a meta-modeling process in order to 

address the main challenges of this prediction horizon, as well as the difficulties that could 

arise due to a non-ideal data collection process. 

Neural network models processing monthly client data with the common sliding window 

approach [263] often have insufficient observations for training, resulting in models that 

either overfit or have poor performance. Additionally, difficulties in the data collection 

process can result in unbalanced datasets with missing values that can affect model 

performance. It is also worth noting that changes in the original dataset addressing these 

problems could lead to the introduction of unnecessary noise, resulting in the 

misinterpretation of certain data patterns. Despite all the challenges mentioned above, 

research should not be limited to good quality datasets because data availability cannot be 

guaranteed for all machine learning tasks. Furthermore, the investigation of alternative 

approaches that could boost model performance in a non-ideal setting is interesting since 

those contributions shift the emphasis towards more robust structures that overcome data 

limitations. Our proposed approach maintained the original dataset following the common 

sliding window approach for predictions, while it introduced a revised model structure that 

can improve model performance under non-ideal conditions. 

Following the sliding window approach using an LSTM network, the client dataset 

underwent the preprocessing phase, where the consumption dataset was clustered by 

client and the data of the client whose consumption was to be predicted was selected. The 

consumption of the client was organized into different columns representing lagged 

observations of the consumption at time 𝑡 − 1, 𝑡 − 2, … , 𝑡 − 𝑛 derived from the original 

time series shifted in time. The prediction of the next month was denoted as the next 

column at time 𝑡, which is the target output variable. The preprocessed dataset was split 

into a training and validation set, and the data was scaled appropriately based on the 

distribution of each feature, using standardization when the distribution was normal or 

using normalization otherwise. The scaled features were reshaped in the form of 
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[𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠] and passed to the LSTM network for training. Once the 

model was trained, the performance of the model was evaluated on new data from the 

test set and an error metric was used to determine the divergence of predictions from the 

actual consumption values. Figure 6.4 presents the standard design for a forecasting model 

utilizing an LSTM network and this common sliding window method that usually 

underperforms due to the challenges mentioned above. 

 

We extended the previously described method by introducing several modifications and 

new components aiming at a performance boost: instead of a standalone LSTM network, 

an LSTM network ensemble of 𝑛 members was considered in order to derive more reliable 

predictions. Each member of the LSTM ensemble features an early stopping mechanism 

[264] that effectively stops the training process when the validation loss of the model stops 

decreasing. This mechanism prevents overfitting and selects the epoch where the model 

would achieve the best predictive performance on unseen data. The prediction of the LSTM 

ensemble is the aggregate prediction of the members derived from their weighted average, 

where the weights are determined using grid search [265]. This process was used on the 

original feature set of lagged observations to derive the base representation of the 

predicted consumption. Following this step, two different feature sets were constructed 

based on the influential community factors of similarity and causality. The first feature set 

contained the original lagged observations, as well as lagged observations of other clients 

at the same time steps, determined by their similarity ranking based on the previously 

Figure 6.4: Standard design of power forecasting model using an LSTM network. 
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described soft-DTW method. The second feature set contained the original lagged 

observations and lagged observations of other clients at the same time steps based on their 

predictive potency as determined by a Granger causality test when the targeted effect was 

the monthly consumption at time 𝑡 of the original client in the training set. Those two 

feature sets passed through the LSTM ensemble and produced the similar and causal 

representations of the predicted consumption, respectively. Since the effects of causality 

and similarity are not strictly predetermined to be positive, we implement a meta-modeling 

technique that aimed to aggregate the three representations in order to create a model 

that discovered a weighted combination of those representations. Intuitively, this 

combinatorial model used an MLP as a meta-learner used for stacked generalization [266], 

thus creating an ensemble of ensembles that was expected to yield improved performance 

when compared to single layer LSTM ensembles. Figure 6.5 presents the design of the 

proposed approach. 

 

6.3.5 Case Study and Experiments 

In this section, we present a case study used to test our proposed approach. The dataset 

used for our experiments contained monthly power consumption data of clients located in 

seven municipalities of Nariño, Colombia from December 2010 to May 2016, and it is freely 

Figure 6.5: Proposed model design utilizing three LSTM ensemble sub-models in the 

development of a meta-model based on an MLP network. 
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and publicly available [267]. The data was collected and registered by workers of the 

company Centrales Eléctricas de Nariño (CEDENAR) after manual inspection of electric 

energy meters installed at the building of each individual client. The consumption 

measurements were obtained from the monthly readings of those meters in kWh. The only 

exception to this manual procedure happened in the case where a client did not have an 

energy meter installed. In this situation, the estimated consumption derived from the 

installed electric load of the connected appliances was used. Additionally, the dataset 

contains socio-demographic features such as area, municipality, use, and stratum that 

further describe each client. The key index that uniquely identified each client is a code that 

includes a concatenation of the socio-demographic characteristics. According to the 

authors of the paper that introduces the dataset, the data was processed and ready for 

direct use in the implementation and testing of forecasting models. Furthermore, time 

series data for each client can be extracted when the observations are clustered by the 

unique code identifier. After further inspection, we deduced that this dataset was suitable 

for testing since the pool of clients is sufficiently diverse, containing clients that live in rural 

and urban areas, while using electricity in different environments ranging from residential 

to industrial and special. Furthermore, the feature of power consumption values is equally 

diverse, ranging from 1.009 to 305,687.4 kWh. Therefore, the exploration of influential 

community factors, such as similarity and causality, for the individual power consumption 

forecasts could be interesting as the dataset includes clients that satisfy a wider spectrum 

of consumption scenarios. 

Firstly, further inspection of the dataset was conducted and additional preprocessing was 

necessary for the extraction of the consumption time series for each client. Clients were 

clustered by code with the requirement that each date index contains one consumption 

measurement for that month. Consequently, 90 clients were detected and formed a new 

time series dataset. The resulting dataset fit the non-ideal scenario we wished to explore 

in this project, since it contains several missing values, possibly due to the manual 

registration process. Additionally, in terms of data shape, each user does not have more 

than 65 consumption observations associated to the corresponding months of data 

collection. Therefore, the possibility of having poor performance when training neural 

network models on this dataset was high. Initial testing was conducted on single layer LSTM 
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networks containing 100 units and using the Adam optimizer in the prediction of the next 

monthly consumption value based on three previous months as input. The training set 

consisted of the first four years of data and the test set contained the remaining months. 

The result of the initial simple model, previously presented in Figure 6.4, exhibited 

overfitting, thus confirming our intuition to implement the extensions that we proposed in 

order to stabilize the model and improve its performance. 

The problem formulation using lagged observations remained the same in order to have a 

fair comparison of the modified models. The first modification was the implementation of 

an early stopping mechanism that attempted to stop training the network when the error 

metrics derived from the evaluation of the model on validation data after each epoch stop 

decreasing. The initial number of epochs was set to 4000 and after continuous monitoring 

of the error metrics from consecutive executions the patience interval, which determines 

the number of epochs after no improvement to the loss function was detected, was set at 

170 epochs, preventing overfitting. This patience interval remained proportionately small 

when compared to the total training epochs and provided a sufficient window that allowed 

the improvement of the model. However, due to the decreased training epochs, the model 

yielded suboptimal performance. Therefore, the replacement of the single LSTM network 

with an LSTM ensemble of 𝑛 members yielded more stable and reproducible training 

results and minor performance improvements. For the purposes of this study, the 

ensemble contained two members in order to balance execution time and stability benefit. 

The iterative increase of ensemble members only increased the execution time of our 

experiments, hence the choice of two ensemble members was appropriate for this dataset. 

Since the number of ensemble members was a parameter that depended on the dataset 

and the model structure, future research is encouraged to perform similar experimentation 

in order to establish the benefit of a larger ensemble before finalizing the model. The 

output prediction of the ensemble LSTM was the weighted average prediction of the 

members using grid search. 

Taking this approach one step further, we explored the effects of similarity and causality 

among clients by forming two additional models utilizing the same LSTM ensemble 

structure as the base model. The first model focused on similarity and contained a modified 

feature set, where lagged observations from the most similar clients were included 
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alongside the base client. A soft-DTW ranking was used to determine the top three closest 

clients that had the lowest distance scores. Intuitively, the number of the most similar 

clients should remain small when compared to the total number of clients in order to 

strengthen the similarity between the features used in the model. Our experiments 

indicated that three clients were sufficient in the construction of a feature set that includes 

power consumption values with a high likelihood of corresponding to the same electricity 

usage type. Generally, the number of the most similar clients is selected based on the 

dataset, with an emphasis on creating a small set of similar clients, reinforcing cohesion 

between the members of the set. The second model extended the base feature set by 

including lagged observations of power consumption after inspecting all other clients and 

selecting the columns of lags that satisfied the previously discussed predictive efficacy 

criterion, by rejecting the null hypothesis of a Granger causality test when that column was 

tested against the targeted output consumption of the training set for the main client. Each 

feature in every model was normalized or standardized based on the Shapiro-Wilk 

statistical test [268] before training. 

Since all three LSTM ensemble models share those performance hurdles due to data 

limitations and the implementation of early stopping, the investigation of a combinatorial 

approach was interesting due to the variety of feature sets. Therefore, a meta-learner was 

developed, utilizing a single hidden layer MLP network with 100 neurons. The activation 

function was the rectified linear unit (ReLU) and the optimizer was Adam. Moreover, 4000 

was the selected number of epochs for training and the same early stopping mechanism 

was utilized in order to prevent overfitting. The meta-learner used the output predictions 

of the three LSTM ensemble models in order to discover the best weighted combination 

and predict power consumption more accurately. Experiments for the comparison of those 

models focused on the prediction of the power consumption of a client for the next 14 

months. The comparison considered the performance of each standalone LSTM ensemble 

using the base, causal, and similar feature set, respectively, as well as combinatorial models 

utilizing the meta-learner for the pairwise stacked generalization of the ensembles. Finally, 

the combinatorial model that utilized all three LSTM ensembles was examined and the 

results are presented in the following section. 
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The experiments presented in this study were implemented in Python 3.8.8, using the 

packages pandas 1.2.3, numpy 1.19.2, scikit-learn 0.24.1, tensorflow 2.3.0, keras 2.4.3, 

statsmodels 0.12.2 and matplotlib 3.3.4. It is worth mentioning that any model parameters 

not mentioned in this section follow the default values of those packages. The models and 

experiments were executed on a desktop computer with an AMD Ryzen 1700X processor, 

8 gigabytes of RAM, and a NVIDIA 1080Ti graphics processor. The code of this study, 

containing the implementation of this power consumption forecasting approach, is publicly 

available on GitHub [269]. 

6.3.6 Performance Metrics 

In this section, we present an overview of the performance metrics used in the evaluation 

of the neural network models in order to explain their intended usage in our experiments. 

The metric of MAE was utilized as the loss function for the training of our neural network 

models since it is a simple measure that we can use to monitor how the divergence of 

predicted values from the real values decreased after every epoch [87]. Additionally, this 

metric was utilized in the final performance evaluation of the estimated time series 

components in order to capture a natural measure of average error. Furthermore, MAPE 

and RMSE were utilized in the performance evaluation of this meta-modeling approach in 

order to examine different aspects of error in the predicted time series. The metric of MAPE 

was utilized in order to provide a scale independent measurement of relative error and the 

metric of RMSE was used as a secondary scale dependent indicator with attention given 

only to the relative decrease of the value denoting the improved performance of the model 

[88,90]. 

6.4 Results 

In this section, we present an overview of the experimental results through figures and 

error metrics that are based on the findings of the case study in order to evaluate the 

combinatorial model described in this project. The experiments consisted of the random 

selection of clients and the construction of individual forecasting models utilizing the base 

feature set of lagged consumption observations, all pairwise combinations of the base 

feature set, and the additional columns from the exploration of similarity and causality, as 

well as the final combinatorial model, which utilizes all three sub-models for stacked 
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generalization. Furthermore, for the clear and concise demonstration of the results, we 

provide the representative comparison of those models for the predictions of 14 months 

of power comparison for an individual client. It is worth mentioning that the relative boost 

in performance following this method was maintained when different clients were selected 

from the dataset, following the same behavior for standalone models, sub-model pairs, as 

well as the combinatorial model. Additionally, the error metrics were derived as averages 

from 10 consecutive executions. Since the changes in the error metric values were 

miniscule, we found that 10 iterative executions were sufficient in the consolidation of 

measurements. 

First, in Table 6.1 we list the values of MAPE and RMSE for all the models considered in this 

comparison. We can observe from the values of MAPE that, while the standalone models 

exhibited fair, but not optimal results given the dataset structure and the implementation 

of early stopping, the sub-model pairs contributed towards a more accurate meta-model. 

Moreover, the meta-model that utilized the base, similar, and causal sub-models 

performed better than all other models in this comparison, showing that the combination 

of many different models based on varying feature sets can result in a performance boost. 

The secondary performance metric values of RMSE showed a considerable decreasing 

trend when we transitioned from the standalone models to pairs of sub-models and, finally, 

to the three-component meta-model. The values of RMSE were justified due to the range 

of power consumption values in the dataset and we mainly focused on the decreasing trend 

in order to determine the improvement. Table 6.1 labels the standalone LSTM ensemble 

models as base, causal, and similar depending on the feature sets used. The meta-models 

utilizing pairs of LSTM ensembles are labeled as base-causal, base-similar, and causal-

similar. The final combinatorial model using all sub-model ensembles is labeled as base-

causal-similar. 

Table 6.1: Performance comparison of standalone models, sub-model pairs, and 

combinatorial meta-model. 

Model MAPE RMSE MAE 

Base 15.62 8485.73 5865.11 

Causal 20.37 9749.18 7465.28 
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Similar 18.06 8984.84 6595.78 

Base-Causal 6.36 6333.37 2739.73 

Base-Similar 6.28 3635.15 1915.17 

Causal-Similar 8.62 4595.11 2747.87 

Base-Causal-Similar 3.49 1697.14 1122.30 

 

Second, Figure 6.6 presents a direct comparison of the actual and predicted values of 

power consumption for the targeted output of 14 months between the standalone LSTM 

ensemble models and the final combinatorial meta-model utilizing an MLP. Through this 

comparison it is clear that no standalone model could get accurate predictions when 

consumption values show sudden valleys and peaks, such as the areas between data points 

3 and 5, as well as data points 8 and 12. The standalone models managed to capture the 

decreasing and increasing patterns later in time, producing an outcome that seems to be 

shifted, distorting the result. Additionally, Figure 6.7 presents a direct comparison between 

the meta-models created by the combination of LSTM ensemble pairs and the meta-model 

that utilized all three LSTM ensembles. The inspection of this figure could lead to some 

interesting assumptions since the involvement of the base LSTM ensemble resulted in 

meta-models that could adapt better to sudden decrease in consumption. Similarly, the 

involvement of the component of similarity led to models that could capture the sudden 

increase in consumption. While this behavior could be situational to each model for each 

individual client, it shows that the combination of sub-models utilizing influential 

community characteristics could lead to a better fit in the regions where simpler standalone 

models would not be able to adapt that well. It is evident that the involvement of all three 

sub-models led to the development of the most accurate meta-model. 
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Finally, for completeness, we present the graph that shows the training history of the final 

meta-model in Figure 6.8. In this graph, we observe that the loss function MAE kept 

decreasing for the training and validation set. The initial training epochs were set to 4000, 

but the model stopped training after 3500 epochs due to an early-stopping mechanism that 

prevented overfitting. 

Figure 6.6: Comparison of the predicted values between the standalone models 

featuring one component and the final meta-model. 

Figure 6.7: Comparison of the predicted values between the sub-model pairs and the 

final meta-model. 
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6.5 Discussion 

This work explored the impact of similarity and causality in the development of a 

combinatorial power consumption forecasting model for electricity clients based on neural 

networks. Since the proposed model focused on a more realistic approach that addressed 

the main challenges in neural network model design, a case study was carried out using a 

dataset that was derived from a non-ideal data collection process. The research findings 

showed that, while the standard LSTM network, which only utilized lagged observations of 

the main client, could overfit and exhibit suboptimal performance, the development of 

meta-models based on combinations of feature sets that were influenced by the similarity 

and causality could achieve a better and more stable performance. In detail, the LSTM 

ensemble model utilizing only the lagged observations of the client had a MAPE of 15.62 

and was outperformed by the meta-models, which utilized pairs of LSTM ensemble sub-

models. In those experiments, the meta-model that utilized the output of the LSTM 

ensembles with the base and similar feature sets yielded the highest pairwise performance 

with a MAPE value of 6.28. In conclusion, the final meta-model that utilized the outputs of 

LSTM ensembles, which included the base feature sets as well as feature sets influenced by 

similarity and causality, yielded the highest performance when compared to all other 

models, achieving a MAPE of 3.49. 

Figure 6.8: Training history showing the loss function of MAE for the final meta-model 

utilizing similarity and causality. 
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The process of designing this meta-model, as well as the results of this study, contribute 

greatly towards the introduction and development of more robust and complex 

combinatorial models that address the current challenges of forecasting model design and 

are more resilient towards the available dataset structure. This novel forecasting approach 

presents ideas that mitigate important hindrances in the performance of LSTM models and 

investigate the potential benefits of influential community factors, assisting in the 

implementation of performant models when the available data and the prediction horizon 

are far from ideal. Our project hopes to encourage further work in this field since it was 

observed that the consideration of many different feature sets can achieve better 

aggregated results. It is important to note that related work in this field shows that the 

standalone concepts of similarity and causality can be effective in the prediction of energy 

data in various horizons [270,271], but to the best of our knowledge, there are not many 

available experiments that consider the combination of the two on either short-term or 

long-term predictions given a group of electricity clients regardless of data structure. 

Therefore, this work attempted to fill this research gap by providing useful insights given 

the scenario described in the case study. Future work on this class of meta-models could 

explore many different aspects, which were not available in the current dataset; for 

instance, it would be interesting to study the inclusion of more detailed features, such as 

occupancy and appliance information, in order to reinforce the results of similarity and 

causality tests. It would also be interesting to explore the performance of the model in a 

more ideal setting, where the available dataset contains consumption data from a much 

wider pool of clients, without missing values, in order to inspect how the model behaves 

with big data in a more ideal configuration. Finally, from the perspective of training 

performance and execution time, future work could parallelize this model and execute it 

on multiple graphics processors in order to inspect the improvements of the multithreaded 

implementation. 

  

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



208 

 Implementation of an Error Compensation Approach Towards 

Prediction Improvement 

7.1 Motivation 

Complementing the concepts presented in the introduction of the meta-modeling 

technique, a posteriori processing could be beneficial for short-term forecasting tasks in 

the energy sector without the need to shift the focus of the main forecasting module. The 

implementation of additional processing and estimation layers could be applied to the 

output module towards the direct adjustment of estimated target time series values. This 

approach could be impactful in the refinement of error and the stabilization of predictions 

when the target variables are strongly affected by the seasonal patterns of the influential 

features and exhibit a degree of volatility since the error component responsible for 

suboptimal performance could be isolated and examined at the later stages of the 

forecasting process. The a posteriori examination and subsequent estimation of error could 

lead to the discovery of patterns that could manipulate the degree of randomness from 

predicted residuals, resulting in more consistent error values. Additionally, these models 

could derive approximation functions that generate smoother error samples, resulting in 

residual error time series that are more resilient to error spikes and outliers. Therefore, 

load and price time series could be predicted more accurately and consistently within the 

studied forecasting horizons. It is evident that while this method has the potential to 

substantially improve error metrics and resolve the performance hinderances that could 

occur from the emergence of large errors, recent research projects, reviews and 

benchmarks focus on standalone and hybrid structures that do not utilize this processing 

step. This omission is critical as it highlights several research gaps with regards to 

forecasting design and hyperparameter optimization.  

Forecasting methods designed based on a priori processing principles face inevitable model 

behaviors stemming from the relationship between output performance and dataset 

quality. Sophisticated model structures could drastically underperform when the input 

dataset does not match the assumptions of the forecasting technique or when abnormal 

behaviors are exhibited in certain data regions, requiring more transformations that could 

impact interpretability and convergence time negatively. Furthermore, the resulting 
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models could perform differently based on the choice of different learning parameters. 

These parameters need to be recalibrated when new input data is handled. It is clear that 

as the standalone or hybrid estimator becomes more complex, the input data volume 

increases and the studied forecasting horizon becomes shorter, recalibration is restricted 

and parameter tuning becomes more difficult. As a result, highly granular predictions may 

not be derived within the expected time intervals and the optimal parameter set may not 

be successfully determined. The implementation of a posteriori processing techniques such 

as error estimation operate at the end of the forecasting process and could be input or 

model structure agnostic. These processes could derive deterministic strategies for error 

minimization where the benefit yielded is dependent solely on the shape of the error 

component. Consequently, when time and resource constraints are considered, the 

derivation of satisfactorily accurate predictions could be derived through less 

computationally expensive error refinement processes instead of the expansive search for 

additional data transformations and model parameters. Alternatively, these methods could 

be utilized as a feedback mechanism in order to monitor model performance through the 

examination of error shape, signaling for more parameter adjustments. Since the 

effectiveness of these methods depends on the structure of the error component, this 

examination could highlight certain aspects that need to be altered during recalibration. 

Moreover, the insufficient examination of those methods could be detrimental to the 

evolution of novel hyperparameter parameter optimization strategies as the set of 

hyperparameters would only be partially explored. A posteriori processing methods 

estimating the error component often introduce a separate forecasting pipeline combined 

with heuristics and statistical tests that consolidate the strategies involved. Therefore, the 

decision parameters and the criteria that validate those methods could be included in the 

search for optimal solutions for the entirety of the forecasting structure, forming a more 

robust expanded set of hyperparameters. This perspective could be challenging as more 

hyperparameters could increase the overall complexity and computation time of the 

forecasting structure. However, through the integration of this additional forecasting layer 

and the potential introduction of new hyperparameters, the boundaries and tradeoffs of 

model complexity could be examined further since the path towards a balanced structure 
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featuring a performant forecasting module and an adequately efficient error compensation 

module at the output could be highlighted. 

Considering the previous observations and research gaps, in this chapter a novel hybrid 

neural network structure featuring an error compensation autoregression module is 

developed for a posteriori processing towards the reinforcement of error stability and 

improvement of forecasting accuracy. The case study presented in this work utilized Nord 

Pool power market data for the formulation of a day-ahead electricity price forecasting 

task. The proposed method contributes towards the development of more flexible hybrid 

neural network models and the potential integration of the error estimation module in 

future benchmarks, given a small and interpretable set of hyperparameters. The following 

sections correspond to the introduction, methodology, results and discussion of this hybrid 

forecasting approach. 

7.2 Introduction to Error Enhanced Day-Ahead Electricity Price Forecasting 

Modern energy markets follow increasingly complex processes in order to perform efficient 

electricity trading that balances supply and demand while reacting to the dynamics derived 

from the unique characteristics and challenges of each energy system. One of the main 

challenges that urge the development of more sophisticated techniques for the 

coordinated production and supply of electricity is price volatility [272]. The price of 

electricity can fluctuate due to several factors and the sudden peaks and valleys in the price 

curves could lead to suboptimal energy market agent behavior, hindering the ability of 

those entities to execute economic transactions in the electricity market to the best of their 

envisaged capacity. Some of the most notable factors that could cause price fluctuations to 

include seasonal trends [273], weather conditions [274], penetration of renewable energy 

sources [275], challenges involving economic growth and changes in fuel cost [276], supply 

availability [277] and neighboring market dynamics [278]. It can be easily observed that 

load and generation dependencies on the time of day or year as well as seasonal trends 

coupled with extreme hot or cold temperatures and extreme conditions, such as hurricanes 

could have a noticeable impact on the electricity price. Furthermore, the infrastructural 

development of growing economies often leads to increased energy demand and electricity 

costs. Additionally, electricity price fluctuations could depend on the availability of fossil 
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fuels for sufficient generation. Price spikes could occur if more expensive forms of 

electricity generation are used due to fossil fuel shortages. Since renewable energy sources 

constitute enticing alternatives for electricity generation, the stability of each energy 

source is related to the stability of electricity prices and the price fluctuation patterns vary 

for each region. Lastly, the impact of neighboring markets on price volatility could be 

attributed to the increased player participation and decentralization that increases the 

complexity of price formation. 

Real-time energy markets could be negatively affected by price volatility since market 

participants could be unable to react proactively when price fluctuations and energy 

transactions occur throughout the operating day. However, price volatility can be 

tempered with the development of day-ahead energy markets that allow buyers and sellers 

to determine and secure energy prices before the operating day [279]. Therefore, short-

term forecasting models that predict day-ahead prices are valuable for the successful 

monitoring of price trends and coordination of supply and demand. Price data and 

influential features are typically collected in the form of time series, following an hourly 

sampling rate. Statistical methods and machine learning models contribute greatly towards 

the development of accurate and robust day-ahead electricity price forecasting models 

that are capable of processing time series data efficiently and handling the complexity of 

those energy markets [280,281]. Forecasting models derived from statistical methods often 

utilize linear regression [282] in order to model the target variable as the linear 

combination of independent features. Additionally, autoregressive models [283–285] 

expanded on this concept by highlighting the importance of autocorrelation between 

values of the same variable from previous time steps. Machine learning models for day-

ahead forecasting often rely on the development of neural networks that operate as 

function approximators and aim to detect the linear and nonlinear relationships between 

the input and output features. The primary neural network types utilized for this 

forecasting task include the multi-layer perceptron (MLP) [286] and the feed-forward deep 

neural network (DNN) [287], long short-term memory networks (LSTM) [288] and 

convolutional neural networks (CNN) [289]. The appeal of methods involving the MLP and 

DNN [290] can be justified due to the ease of use and the simplicity of structure since MLPs 

include fully connected layers of neurons that form a computation path from the input to 
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the output, resulting in a network that is acyclic in nature. On the other hand, LSTMs are 

recurrent neural networks (RNN) [291] that follow a block structure consisting of gates that 

interact with the previous and next state of the network. Long short-term memory 

networks are more complex when compared to fully connected feed-forward network 

types, but their structure could handle temporal dependencies between time series lags of 

unknown length more efficiently. Lastly, CNN networks [292] use one-dimensional 

convolution to learn patterns within specific time windows and can inspect the data from 

a broader perspective through data shuffling. Neural networks constitute impactful short-

term forecasting tools in the energy sector and a plethora of different standalone and 

combinatorial structures are studied for fast and accurate predictions [185]. 

Models derived from the aggregation of previously mentioned networks form the category 

of ensemble learning [293] and have substantial forecasting performance benefits. The 

combination of different types of models belonging either in the statistical method or the 

machine learning class with the integration of modules that contribute towards data 

decomposition, feature selection, clustering, or heuristic optimization, form the class of 

hybrid forecasting methods [294–296] that often succeed in the analysis of more complex 

dynamics and patterns. Benchmarks in the field of day-ahead price forecasting mainly 

utilize autoregressive and deep neural network models since these structures offer state-

of-the-art performance and simplicity of implementation. The evaluation of new 

approaches and the process of model selection through those benchmarks rely primarily 

on hyperparameter optimization, feature selection and regularization techniques [297]. 

Recent research projects and reviews highlighted interesting short-term electricity price 

forecasting approaches that utilize elements from statistical and machine learning 

methods. Alamaniotis et al. [226] proposed a multiple regression model based on relevance 

vector machines for day-ahead electricity price forecasting, contributing towards the 

development of optimal bidding strategies in electricity markets. Moreover, Alamaniotis et 

al. [227] developed a hybrid forecasting model featuring relevance vector machines in a 

linear regression ensemble method for efficient short-term price forecasting. Zhang et al. 

[298] presented a forecasting method that aggregates the combined predictions from CNN 

and RNN structures in a gradient boosting regressor yielding improved performance. 

Additionally, this study highlighted the importance of elastic net regularization for the 
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stability and reliability of this combinatorial method. Alamaniotis et al. [299] developed a 

combinatorial approach that couples load and price forecasting and modifies forecasted 

load demand through the implementation of smart scheduling algorithms. Chinnathambi 

et al. [300] developed a multi-stage day-ahead forecasting model based on the 

autoregressive integrated moving average (ARIMA) statistical approach and the 

consequent residual error forecast that improves the performance of the initial predictions 

for different time periods. This research project provides some useful insights on the 

utilization of post-processing factors, such as the error for the improvement of statistical 

methods. Chang et al. [301] proposed a forecasting model that utilizes wavelet transform 

and an LSTM network featuring the stochastic gradient optimizer Adam, demonstrating 

that a well-optimized recurrent neural network could capture and process the nonlinear 

patterns in this task efficiently. Su et al. [302] utilized the least squares regression boosting 

algorithm to predict natural gas spot prices, outperforming existing approaches, such as 

linear regression. Atef and Eltawil [303] conducted a comparison between support vector 

regression (SVR) and LSTM electricity price forecasting models, concluding that while both 

methods could be suitable for this predictive task, the deep learning approach outperforms 

the regression model in terms of error metrics. Bissing et al. [304] investigated the different 

combinations of regression, namely the ARIMA and Holt-Winters models, for day-ahead 

forecasting and provided some interesting results regarding the performance benefits of 

hybrid implementations. Xu and Baldick [305] compared different neural network 

architectures and some state-of-the-art statistical methods, concluding that neural 

network models could perform better for price forecasting while yielding lower mean 

absolute error. Zhang et al. [306] studied the performance of deep recurrent neural 

networks for electricity price forecasts in a deregulated market, providing useful insights 

on the suitability of this neural network type as a multivariate time series model. Lago et 

al. [307] presented a review of state-of-the-art price forecasting models covering statistical, 

machine learning and hybrid approaches. Furthermore, this research work provided a 

useful open-access benchmark including a regression and a deep neural network model 

that utilize hyperparameter optimization for future model comparisons. Tao et al. [253] 

proposed a bias compensation LSTM network utilizing the LightBGM algorithm for feature 

selection. This work contributed significantly towards the development of hybrid short-

term forecasting models since the introduction of residual error analysis for recurrent 
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neural networks is a novel approach that could refine time series predictions. Vega-

Márquez et al. [308] approached the electricity price forecasting task from a univariate time 

series perspective and tested well-known deep learning and statistical methods through 

hyperparameter optimization, distinguishing LSTM, CNN and regression tree methods as 

the most performant. Jiang et al. [309] utilized a decomposition-selection-ensemble 

forecasting system that adapts to different data characteristics and focuses on accurate 

and stable price predictions. Li et al. [310] presented a price forecasting model based on 

variational mode decomposition and sparse Bayesian learning of time series, showing that 

aggregate predictions derived from components featuring simple characteristics could 

outperform state-of-the-art models. Pourdaryaei et al. [311] investigated the impact of 

different optimization methods for day-ahead price forecasting. This research work focuses 

mostly on the pre-processing and learning steps, while the impact of post-processing 

optimization techniques remains unexplored. 

After a thorough overview of the literature, it is important to note that while a plethora of 

forecasting models exist and deep neural networks have been some of the most frequently 

used models, the effect of error compensation for the state-of-the-art feed-forward DNN 

is not sufficiently covered. We can observe that benchmarks and relevant studies utilize 

hyperparameter optimization as well as feature selection to tune the models and achieve 

lower error metrics, but fewer studies have applied post-processing techniques in order to 

refine and improve the predictions. Therefore, while there are recent studies that utilize 

error residuals for this short-term forecasting task, the application of this technique on the 

simple yet highly performant DNN is not thoroughly explored. As a result, the potential 

utilization of an error estimation module for benchmarks utilizing the DNN model as an 

additional tuning tool remains an open question. In this study, we identified these research 

gaps and developed a hybrid error compensation deep neural network model, the ERC–

DNN, which utilizes a feed-forward deep neural network for day-ahead electricity price 

predictions, as well as an autoregression module, which operates on the hourly residual 

error sequences and performs a step-by-step error estimation to refine the predicted 

prices. The main goals of this research project are: (i) to showcase the improvement of 

price predictions in terms of error metrics; (ii) to investigate the stability of hourly predicted 

sequences after the error refinement; and (iii) to provide insights into the suitability of error 
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estimation modules in modern benchmarks for future integration, when the appropriate 

parameters are defined. This hybrid approach was evaluated on the dataset of the Nord 

Pool market following the guidelines of the benchmark presented in [307], and through 

different training scenarios that highlight the positive impact of error refinement. 

Moreover, the resulting error metrics of this approach are compared to a baseline DNN 

structure developed using well-known configuration and training practices in order to 

achieve a similar score to the DNN benchmark with a static set of hyperparameters that 

does not alter the tests and produces consistent results during recalibration. Additionally, 

the error metrics of ERC–DNN are compared to the benchmark scores despite the 

differences in training epochs and hyperparameter optimization in order to highlight the 

overall effect of the error estimation module. 

Section 7.3 presents the main methods utilized in the implementation of the proposed 

forecasting approach with references to the core components of the network, as well as 

information regarding the dataset and the configuration of the experiments. Furthermore, 

this section defines the error metrics used to evaluate the performance of ERC–DNN. 

Section 7.4 discusses the results of the experiments and compares performance metrics to 

the baseline and benchmark models. Finally, in Section 7.5, the advantages, as well as the 

challenges of this hybrid model, are outlined. Additionally, comments regarding the impact 

of this model as a standalone project, the potential expansion of the proposed architecture, 

and the integration of this model to more complex forecasting structures and open-access 

benchmarks in the future are included, in the hope that they contribute to the intelligence 

gathered in this area of research. 

7.3 Materials and Methods 

7.3.1 Feedforward Deep Neural Network 

The feedforward deep neural network is an acyclic artificial neural network [312] that 

follows a simple layer structure and extends the MLP architecture for the purposes of 

function approximation. The base unit of the feedforward DNN is the neuron which is a 

node designed to receive a specified number of inputs, perform computations and pass the 

output to connected nodes found deeper in the network. The value of the output at each 

node is determined by activation functions, such as the rectified linear unit and hyperbolic 
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tangent [313]. The neurons of the DNN are organized into layers and the connections of 

those layers denote the computation path from the input to the output. The simplest and 

most frequently used DNN structure contains the input layer, where input features are 

passed to the first set of neurons, several hidden layers that perform additional 

computations and tune the learnable parameters of the network, and the output layer 

where one or more output values are generated at each node. For the purposes of this 

study, we consider the role of the feedforward DNN for the supervised learning task of 

regression [314] since we focus on the prediction of the electricity price for the next day. 

Based on this task, the goal of the DNN is to learn the mapping function that describes the 

complex relationship between the input variables and the output variables. As a general 

example, we consider the fully connected DNN presented in Figure 7.1. The DNN features 

an input layer 𝑖 containing 𝑘 inputs, a variable number 𝑓 of hidden layers ℎ, where each 

one contains a variable number of neurons 𝑧 and, finally, an output layer 𝑜 containing 𝑗 

neurons for the predictions of 𝑗 outputs. 

 

The main learnable parameters of the DNN are the weights and biases [315]. Those 

parameters are initially randomized and iteratively refined through the training process 

since the network will be able to predict the output after several passes of the training 

Figure 7.1: General structure of the fully connected feedforward deep neural network. 
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dataset, called epochs. Weights quantify the influential strength that a change in the input 

could have on the output and biases denote the difference between the generated output 

and the desired output, essentially quantifying the extent to which the network assumes 

that the output should have specific values. The training process of the DNN mainly follows 

the back-propagation algorithm [316] where the generated output values are compared to 

the desired output and the value of error, which is calculated by a plethora of pre-specified 

loss functions [317], is fed back to the network, in order to adjust the weights. Since the 

goal of this training process is to minimize the error function and consequently discover 

the best weights, optimization methods, such as gradient descent need to be specified for 

the training process. 

The DNN architecture shows an impressive performance in time series forecasting tasks 

and it is widely used in the energy sector as a standalone network or as a member of hybrid 

and ensemble learning methods. However, the default configuration of this structure may 

not always be sufficient for the generation of accurate predictions due to several training 

scenarios that need to be avoided, such as the existence of local minima [318] of the error 

function that could hinder the convergence of the network and the occurrence of 

overfitting or underfitting that are connected to the relative complexity of the model and 

the dataset structure. Most deep learning models achieve optimal performance either by 

following a set of best practices or by exhaustively searching for the best training 

configuration through hyperparameter optimization [319]. Some of the most important 

hyperparameters include the number of neurons and layers, the choice of activation 

function, the choice of optimizer and the associated learning rate [320], the number of 

training epochs, regularization [321] and the application of early stopping [322]. The search 

space of those hyperparameters could be large and the total training time needed for the 

derivation of the best set of hyperparameters could be restrictive for models aimed at 

short-term and real time forecasts. Therefore, while we often see meticulous and time 

consuming hyperparameter optimization approaches being suitable for benchmarks, many 

deep learning approaches rely on the results of experiments with different combinations 

of best practices complemented by feature selection techniques, in order to derive their 

baseline models and conduct comparisons. The interpretation of those results, given a 

specified set of parameters, requires considerable effort towards the practical evaluation 
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of a network and the overall demystification of the black-box structure that provides added 

value to research work.  

7.3.2 Autoregressive Forecasting Model and Model Selection 

Autoregressive models constitute a class of simple time series models used to forecast 

future values of the target variable based on previous observations of the same variable, 

called lags [323]. The target variable is linearly dependent on the lags and this relationship 

occurs due to some degree of correlation between lags of adjacent time steps. The number 

of lags utilized in the construction of an autoregressive model determines the order of the 

model and it is usually derived from the inspection of partial autocorrelations. The 

maximum lag at time step 𝑡 − 𝑛 beyond which all other partial autocorrelations are close 

to zero is often used as an indicator of the order, and the model is expected to perform 

adequately when including lags up to that time step. The definition of the autoregressive 

model is made complete by the estimation of the coefficients 𝜑𝑖 that are multiplied by each 

lag, the constant term 𝑐 as well as the error term 𝜀𝑡. The estimation of those parameters is 

usually achieved with the use of the ordinary least squares method [324]. In order to 

present a general example, we consider the autoregressive model of order 𝑝 for the 

prediction of the value 𝑦𝑡 on the next time step of the sequence formed by the variable 𝑦 

with time lags ranging from 𝑦𝑡−1 to 𝑦𝑡−𝑝. The formula that defines this autoregressive 

model given the previously mentioned parameters is the following: 

𝑦𝑡 = 𝑐 +  ∑ 𝜑𝑖

𝑝

𝑖=1

∗ 𝑦𝑡−𝑖  +  𝜀𝑡 

(7.1) 

 

Since autoregressive models are widely used forecasting tools with several applications in 

the energy sector, a few core elements need to be explored for optimal performance and 

the fairness of the model selection process. First, the stationarity of the data needs to be 

investigated since statistical models often perform better when no trend or seasonality is 

present. Different implementations of the autoregressive model take into consideration 

constant and time-dependent trends but the potential inaccurate detection of the trends 

and their effects on the time series forecast could sometimes lead to larger error terms. In 

this situation, the augmented Dickey–Fuller test [325] is utilized to determine the 
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stationarity of a time series. According to this method, the null hypothesis assumes that a 

unit root exists in a time series sample and the alternate hypothesis rejects the previous 

assumption and considers that the time series is stationary. The 𝑝-value of the statistic 

results in the rejection of the null hypothesis when it is lower than 0.05. Alternatively, the 

comparison is between the values of the statistic and the critical values of the Dickey–Fuller 

𝑡-distribution, where the value of the statistic must be more negative than the critical 

values to confirm stationarity. The stationarity criterion imposes restrictions to the 

autoregressive model that could often be seen as necessary countermeasures towards the 

overall reduction of uncertainty. 

Second, the selection of the best autoregressive model plays a crucial role towards the 

minimization of forecasting error and several information criteria could be considered for 

the statistical evaluation of fitness to the data, such as the Akaike information criterion 

(AIC) [326], the Bayesian information criterion (BIC) [327] and the Hannan–Quinn 

information criterion (HQIC) [328]. The Akaike information criterion provides an estimation 

of information loss given the number of estimated model parameters 𝑘 and the maximum 

value �̂� of the likelihood function for the model with the following formula: 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(�̂�) (7.2) 

 

Furthermore, the Bayesian information criterion follows a similar formula with a slightly 

altered first term that features the sample size 𝑛 of the observed data: 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(�̂�) (7.3) 

 

Lastly, the Hannan–Quinn information criterion utilizes the previously mentioned 

parameters in order to derive a more consistent fitness evaluation metric when compared 

to the AIC and follows the formula: 

𝐻𝑄𝐼𝐶 =  2𝑘 ln(ln(𝑛))  − 2 ln(�̂�) (7.4) 
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The selection of models with the lowest values of information criteria and the search for 

lags that have high autocorrelation values could result in a more accurate estimation of the 

target variable. 

7.3.3 Proposed Model Structure 

This research project focused on the design and implementation of a hybrid day-ahead 

electricity price forecasting model based on the well-known feedforward deep neural 

network architecture, with an additional error compensation module that estimates the 

prediction error and contributes towards the refinement of the final prediction. At the first 

step, the dataset of the model is constructed, and market data is processed in order to 

derive the input features, consisting of electricity price lags and exogenous variables 

relevant to the price time series, as well as the output features of the targeted electricity 

price sequences for the next day. The dataset is split into training and validation sets, 

undergoes normalization and is fed to the input layer of the feedforward deep neural 

network. At the second step, the deep neural network is trained for 𝑚 epochs featuring an 

early-stopping mechanism that monitors the decrease of the loss function for the 

avoidance of overfitting with a specified patience interval, proportional to the number of 

epochs. Consequently, after 𝑚 epochs or after the loss function stops decreasing in that 

patience interval, 24 sequences are generated at the output layer, each one denoting the 

electricity price prediction for the 𝑖𝑡ℎ hour of the next day. 

At the third step, the sequences are inverted back to their original values and the residual 

forecasting error for each hourly sequence is calculated from the training set. The definition 

of the residual training error at every hour ℎ for the price 𝑝 of the day of interest 𝑑 given 

the known values of the training dataset and the predicted output is defined by the 

formula: 

𝑝𝑑,ℎ
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  𝑝𝑑,ℎ

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑝𝑑,ℎ
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 (7.5) 

 

Following this step, the residual error sequences are fed to an autoregressive model for 

their step-by-step estimation, resulting in the derivation of coefficients that are used to 

predict the error value of the next hour based on historical error data. The final price 

prediction is derived from the addition of the estimated error and the price forecast of the 
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feedforward DNN. The structure of this model is presented in Figure 7.2 and this forecasting 

approach is used in our case study featuring several experiments on different training 

scenarios for the interpretation and analysis of the error compensation process. We refer 

to this model as ERC–DNN in the remainder of this paper. 

 

7.3.4 Case Study and Experiments 

In this section, we present a case study consisting of several experiments used to test the 

forecasting performance of the proposed ERC–DNN model and investigate the impact of 

error compensation in the stability of error profiles for each hour in the day-ahead 

electricity price prediction task. The dataset used for our experiments contains hourly 

observations of day-ahead electricity prices, as well as the exogenous sequences that 

represent the day-ahead forecast of load and the day-ahead forecast of wind generation 

for the Nord Pool energy market during the time period between 01.01.2013 and 

24.12.2018. The dataset is freely available in [329] and was used by the open access 

benchmark of [307] to evaluate the performance of the standard feedforward deep neural 

network. The data is organized according to the feature formation proposed by the 

benchmark. The input features include historical day-ahead prices from the previous three 

days as well as the prices from one week ago labeled as 𝑝𝑑−1,ℎ, 𝑝𝑑−2,ℎ, 𝑝𝑑−3,ℎ and 𝑝𝑑−7,ℎ, 

respectively, where 𝑑 denotes the day of interest and ℎ denotes the hour ranging from 1 

to 24. Additionally, the day-ahead forecasts of the two exogenous variables are included 

for the day of prediction, made available on the previous day and labeled as 𝑥𝑑,ℎ
1  and 𝑥𝑑,ℎ

2 , 

essentially defining a set of 48 features. Furthermore, historical values of each exogenous 

Figure 7.2: The structure of the ERC–DNN model featuring a feedforward deep neural 

network and an autoregressive model for error compensation. 
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variable for the previous day and one week ago, labeled as 𝑥𝑑−1,ℎ
1 , 𝑥𝑑−7,ℎ

1 , 𝑥𝑑−1,ℎ
2  and 

𝑥𝑑−7,ℎ
2 . Lastly, a feature representing the day of the week as a binary vector with 7 elements 

is included, resulting in a total of 241 input features. The output features consist of the 24 

h of day-ahead electricity prices. The dataset is split into a training set of the first 3 years, 

including the hourly observations from 2013 through 2016 and a validation set of the last 

2 years, including years 2017 and 2018 similar to the benchmark model. According to the 

review and benchmark of [307], the recommended minimum testing period for the 

evaluation of electricity price forecasting models includes one year of observations since 

the common practice of including a total of four weeks, one for each season, could be 

unsuitable due to inadequate representation of the average model performance, the 

potential exclusion of extreme events that could have an impact on dataset values and the 

possibility of selecting only the weeks where the model shows improved performance. 

Therefore, following these recommendations and acknowledging the two-year period used 

in the benchmark, we believe that the selection of testing period in this review is a suitable 

evaluation practice and utilize it for the evaluation of our model. Moreover, we 

acknowledge that the training period varies between price forecasting models and select 

the maximum available historical data in the remainder of this dataset for our case study 

in order to have a sufficient number of observations for the convergence of the deep neural 

network. 

Following the guidelines of the open access benchmark, we first constructed a baseline 

feedforward deep neural network of 4 layers for this multivariate time series forecasting 

task. The base DNN implements a set of best practices and consists of a fixed set of 

hyperparameters in order to exclude the performance benefits of hyperparameter 

optimization and isolate the effects of error compensation in our comparison. The 

exclusion of hyperparameter tuning at the preprocessing and training steps highlights the 

role of error estimation as an additional computational layer that reinforces the 

interpretability of the performance improvement through a smaller and simpler set of 

parameters. It is evident that the best set of hyperparameters for a forecasting model 

designed to perform well on a specific machine learning task is dependent on several 

factors including the dataset, the forecasting horizon, system or application constraints and 

the intended architecture. The search space for those optimal parameters is large and the 
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resulting optimal set is often chosen based on the improvement of error metrics without 

having a direct and easily interpretable association to the architecture of the model. On the 

other hand, error estimation presents the simple concept of error refinement through the 

discovery of the coefficients that define the polynomial which best fits to the residual error 

sequences, providing a prediction of the error value that could correct the final prediction 

of the network by bringing the initial forecast to a value closer to the target. Therefore, 

error estimation operates independently from the computational structure of the deep 

neural network and the search goal shifts towards the selection of parameters that could 

prevent the values of error from exhibiting large variations and irregular patterns instead 

of proposing a set of parameters that attempt to configure a black-box approach. 

The baseline model achieves comparable performance to the open-access benchmark in 

terms of error metrics as we will analyze in the following sections. The DNN structure 

contains an input layer of 241 neurons, two fully connected hidden layers with 100 and 52 

neurons, respectively, and an output layer with 24 neurons for the prediction of the 24 

hourly sequences of the day-ahead prices. The activation function is the rectified linear unit 

(ReLU) [330] and the optimizer is based on stochastic gradient descent [331] with a learning 

rate of 0.0005 for the avoidance of local minima. The dataset is normalized using min-max 

normalization and the neural network features an early-stopping mechanism with a 

patience interval that is equal to 10% of the total number of epochs in order to ensure the 

stability of predictions and the avoidance of overfitting. Figure 7.3 presents the structure 

of the baseline DNN, which is used to derive the day-ahead price predictions as a core 

component of the ERC–DNN model. 
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The DNN is trained and the sequences for price prediction are generated at the output. The 

experiments presented in this work consider three training scenarios, with 10, 100 and 

1000 epochs, respectively, for the investigation of error compensation in a scenario where 

the values of error are large and the network is not near convergence, a moderate scenario 

where the error has improved but there is still room for further training and a training 

scenario where the error of the network could marginally improve after a large number of 

epochs. In all three experiments, the residual error sequences for each hour are calculated 

and their stationarity is verified by the augmented Dickey–Fuller test. Additionally, the 

inspection of the partial autocorrelation function for each error sequence reveals that after 

the first 24 lags the partial autocorrelations decay to values near zero. The results of the 

stationarity test as well as the observation of the partial autocorrelation function 

encourage the integration of an autoregressive model for the estimation of each error 

sequence. Therefore, the residual error sequences are passed to an AR model utilizing a 

window of 24 lags for the prediction of the next value of error in each sequence. After the 

fitting of the model to the data, the autoregression coefficients are computed and the 

estimated hourly error sequences are added to the electricity price forecasts for the 

refinement of the final prediction. Furthermore, the information criteria of AIC, BIC and 

Figure 7.3: Baseline deep neural network structure integrated in the ERC–DNN model 

with 𝑚 = 100 and 𝑛 = 52. 
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HQIC were examined for the suitability of the 24-lag autoregressive model and the 

potential refinement of the model selection process when a threshold for feature 

autocorrelation is set at 0.2, 0.3 and 0.4. This additional experiment could contribute 

towards the appropriate selection of hyperparameters that could be included in future 

benchmarks adopting this technique for post-prediction processing of the model. Since 

hyperparameter optimization for this type of forecasting task already considers a sizable 

set of hyperparameters, the choice between the window length and the more complex 

threshold inspection based on information criteria could often be an important decision 

that could determine the size of the search space and the overall computational burden for 

the recalibration of a model or benchmark, given that short-term and real-time forecasting 

models need to recalibrate relatively fast. Figure 7.4 presents the diagram for the 

autoregressive model of the ERC–DNN used in the experiments. 

 

The ERC–DNN model and the experiments analyzed in this research project were 

developed in Python 3.8.8, using pandas 1.2.3, numpy 1.19.2 and scikit-learn 0.24.1 for 

data analysis, tensorflow 2.3.0 and keras 2.4.3 for the implementation of the deep neural 

network model, statsmodels 0.12.2 for the implementation and evaluation of the 

autoregressive error estimation model and matplotlib 3.3.4 for the visualization of results. 

The project was executed on a desktop computer with an AMD Ryzen 1700X processor, 8 

gigabytes of RAM, and a NVIDIA 1080Ti graphics processor. The code of this day-ahead 

electricity price forecasting model is publicly available on GitHub [332].  

Figure 7.4: Diagram of the autoregressive error estimation model. 
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7.3.5 Performance Metrics 

In this section, we outline the performance metrics utilized in our experiments for the 

comparison of forecasting error and the examination of the error refinement on the 

stability of error metrics for each hourly sequence of this day-ahead forecasting task. For 

the purposes of this study, four error metrics were used to cover different characteristics 

of the performance evaluation process. Mean absolute error was used as a loss function 

for the training of the deep neural network, the configuration of the early-stopping 

mechanism, as well as the evaluation of the ERC–DNN approach since it is an easily 

interpretable error metric. Mean absolute percentage error was utilized for the generalized 

measurement of relative error. Furthermore, the metrics of MSE and RMSE are included in 

the performance evaluation of the experiments since they provide quadratic loss functions 

that measure the forecasting uncertainty while focusing on the impact of large errors. The 

values of MSE could express the sum of the variance and square value of bias, further 

contributing to the performance analysis of a model. Additionally, the values of RMSE 

increase with the variance of the frequency distribution of error magnitudes, resulting in 

larger values when large error values are present [87-90,333]. 

7.4 Results 

In this section, we present the results of the experiments with the inclusion of figures 

featuring a comparison of error metrics between the ERC–DNN and the baseline DNN for 

each training scenario. This comparison provides an overview of the stability and 

performance refinement that occurred in each hourly price sequence after the 

autoregressive error compensation module is added to the DNN architecture. Additionally, 

the overall performance of the model for each scenario is presented based on aggregated 

error metrics, in order to examine the generalized improvement in prediction accuracy 

stemming from the error estimation process. Furthermore, the exploration of information 

criteria for the selection of a refined autoregressive model is investigated and the value of 

implementing a threshold method instead of the window of lagged error observations for 

error estimation is discussed. Since the performance metrics did not fluctuate greatly after 

consecutive executions, the results presented in this section constitute averages from 10 

executions for each experiment. It is worth noting that the baseline DNN structure 

presented in this work performs similarly to the DNN model of the open access benchmark 
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[307] since it achieves a MAE of 1.987, a MAPE of 6.895 and an RMSE score of 3.877 after 

4000 training epochs, while the DNN benchmark configuration with the lowest error 

metrics achieved a MAE of 1.797, a MAPE of 5.738 and an RMSE of 3.474 after 

hyperparameter optimization. Therefore, the resulting ERC–DNN model is utilizing a highly 

performant neural network component for the experiments. 

First, we consider the training scenario of 10 epochs. The main purpose of this experiment 

is to present the effect of error compensation on the DNN forecast when the error has 

larger values that fluctuate greatly from sequence to sequence. In the simple univariate 

case, we could assume that this scenario refers to a network that has not reached 

convergence and could be unstable or not properly trained, while in the multivariate case 

we could observe that each output sequence differs greatly from the desired values and 

error magnitudes vary for each hour. Error compensation has the greatest impact on this 

scenario, as the accurate error estimation leads to a larger prediction refinement. In the 

subplots of Figure 7.5, we can observe that after the implementation of error 

compensation, large errors are no longer present, and this greatly improves the MSE and 

RMSE scores of the model. Moreover, the error profile for each hourly sequence is 

stabilized, resulting in an average model performance that is close to the model 

performance for each hourly predicted sequence. 

  

(a) (b) 
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(c) (d) 

 

The second experiment considers the training scenario of 100 epochs. In this task, the 

neural network reaches a more acceptable forecasting performance with each hourly 

sequence having similar error metrics. As can be observed from the subplots of Figure 7.6, 

there are slight error variations between the hourly sequences showing that the network 

is still unable to predict every hour of the day-ahead prediction equally well. The effect of 

error compensation in the ERC–DNN improves the forecasting performance and the error 

metrics are lower than those presented in the open-access benchmark. Since neural 

network models on sufficiently large datasets do not typically converge after 100 epochs 

and the values of error are not distinctly high, the slight error variations observed in the 

baseline evaluation are passed down to the ERC–DNN. Therefore, when compared to the 

10-epoch scenario, the performance of the model improved in a similar way but the 

stability improvement of error among hourly sequences was not as drastic. 

Figure 7.5: Hourly error metric comparison between the baseline DNN and the ERC–

DNN model for 10 training epochs including: (a) MAPE; (b) MSE; (c) RMSE; (d) MAE. 
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(a) (b) 

  

(c) (d) 

 

The third scenario considers 1000 training epochs and refers to models that are near 

finalization, where the model converges to predicted values close to the target output and 

the error metrics remain relatively low. Through this experiment, we can observe that the 

error metrics could follow more consistent patterns, in this case denoting that the first 

hourly sequences of the day-ahead forecasting task are predicted more accurately when 

compared to the last few hours. This phenomenon could be a cause of concern when the 

model is deployed for real-world applications since the model could generate substantially 

divergent values for the last few hours of each day. The error compensation improves the 

performance of this model and flattens the previously described effect, resulting in more 

consistently accurate predictions. However, it is worth noting that as the neural network is 

close to reaching convergence, the error values are considerably lower, and the overall 

Figure 7.6: Hourly error metric comparison between the baseline DNN and the ERC–

DNN model for 100 training epochs including: (a) MAPE; (b) MSE; (c) RMSE; (d) MAE. 
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refinement of predictions is smaller for larger numbers of epochs. The subplots of Figure 

7.7 visualize this scenario. 

 
 

(a) (b) 

  
(c) (d) 

 

Overall, we can observe that across all four performance metrics, the integration of the 

error compensation module refined the predictions and resulted in improved performance 

in every training scenario, denoting that better and substantially more stable error metrics 

can be derived even in situations where the neural network is not close to convergence. 

Table 7.1 presents the overall error metric comparison that cohesively depicts the impact 

of this post-processing error estimation model. 

 

 

 

Figure 7.7: Hourly error metric comparison between the baseline DNN and the ERC–

DNN model for 1000 training epochs including: (a) MAPE; (b) MSE; (c) RMSE; (d) MAE. 
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Table 7.1: Error metrics for the performance evaluation of the baseline DNN and the 

proposed ERC–DNN. 

Model Scenario MAPE MSE RMSE MAE 

Base DNN 10 Epochs 25.375 130.332 11.194 8.581 

ERC–DNN 10 Epochs 6.456 10.367 3.206 2.137 

Base-DNN 100 Epochs 10.492 24.761 4.970 3.068 

ERC–DNN 100 Epochs 4.688 6.165 2.481 1.507 

Base-DNN 1000 Epochs 7.583 16.625 4.067 2.156 

ERC–DNN 1000 Epochs 3.464 4.510 2.123 1.105 

 

Hyperparameter optimization considers a large space of training parameters in search of a 

combination that produces optimal error metrics after training. These parameters are 

specified before the training process starts and affect the error of the model during the 

training iterations. After the inspection of the results presented in this work, the argument 

for the inclusion of parameters that regulate error estimation and affect the error after the 

initial training is complete, such as the window of lagged observations for the definition of 

an autoregressive model, or the choice of error estimation method could be valid as future 

benchmarks could consider the full spectrum of error optimization, in an attempt at setting 

the new standard for model comparisons, where prediction refinement becomes one of 

the core final steps. However, expanding the search space and introducing additional 

hyperparameters is not always a viable option, especially when we consider the potential 

lack of computing power or the time restrictions imposed by the short recalibration period 

of real-time models. In this study, the consideration of an autoregressive model utilizing a 

window of 24 lagged observations for error estimation was a reasonable and 

computationally inexpensive choice, since the total execution time of the experiments was 

not dramatically increased. Additionally, the execution of the experiments considered the 

parameters that could encourage the usage of an autoregressive model for this task, such 

as the augmented Dickey–Fuller test of stationarity, the computation of partial 

autocorrelations, and the computation of information criteria for the error estimator. 
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While the search for the optimal window size based on partial autocorrelations could be 

regarded as an important step in model selection, and as a potential hyperparameter in 

more complex optimization problems, the investigation of different model selection 

criteria could introduce additional hyperparameters is equally necessary. This work 

explored the information criteria threshold selection method as an alternative to the 

simpler window selection. The information criteria threshold selection method iteratively 

fits the autoregressive model using lagged observations that surpass a specified 

autocorrelation function threshold (ACF). The three information criteria scores of AIC, BIC 

and HQIC are computed and the model that achieves the lowest score for each hourly error 

sequence is selected. After examining the scores extracted from this alternative model 

selection approach in Tables 7.2–7.4, we observed that in the scenario of 10 epochs, where 

the error compensation model achieves the greatest prediction refinement, not all error 

sequences led to improved information criteria when lagged observations over a certain 

autocorrelation threshold were selected since the values depend on the error sequences 

generated by the DNN. This also holds true for the 100 and 1000 epoch scenarios. 

Furthermore, the improvement of the information criteria is negligible when compared to 

the 24-lagged window method. Consequently, in the scenario where all hourly error 

sequences were able to benefit from the threshold method, the increase in forecasting 

performance would not be impactful enough to justify the computational burden of 

iteratively searching for the model that satisfies that criteria. Hence, the simplicity of the 

window method for autoregressive error estimation would be the preferred method for 

ERC–DNN and the window size would be an appropriate hyperparameter to tune that 

model. 

Table 7.2: Comparison between the 24-lag window method and the threshold method 

based on AIC scores for the 10-epoch scenario of ERC–DNN. Cells colored in green denote 

an improvement in information criteria score while cells colored in blue denote worse 

overall scores when compared to the window method. 

Criterio 
24 Lag 

Window 
ACF≥0.2 ACF≥0.3 ACF≥0.4 

AIC H0 1.9790 1.9292 1.9457 1.9593 

AIC H1 2.3797 2.3523 2.3672 2.4724 
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AIC H2 2.2449 2.2150 2.2319 2.2567 

AIC H3 1.9656 1.9224 1.9224 1.9353 

AIC H4 1.8745 1.8592 1.8865 1.9663 

AIC H5 1.9847 1.9182 1.9391 2.1244 

AIC H6 1.8880 1.8673 1.8815 1.9277 

AIC H7 2.1403 2.1229 2.1346 2.2355 

AIC H8 2.1850 2.1650 2.2633 2.2739 

AIC H9 1.7241 1.7407 1.8363 1.8498 

AIC H10 1.9550 1.9456 1.9843 2.1282 

AIC H11 1.9167 1.8956 1.9077 1.9281 

AIC H12 2.1428 2.0839 2.0982 2.1227 

AIC H13 1.9478 1.9120 1.9276 1.9573 

AIC H14 2.1011 2.0691 2.0691 2.1047 

AIC H15 2.0097 1.9600 1.9786 1.9980 

AIC H16 1.7016 1.6398 1.6466 1.6662 

AIC H17 2.0564 2.0659 2.0754 2.1979 

AIC H18 2.1026 2.0382 2.0585 2.0754 

AIC H19 2.1297 2.0518 2.0838 2.0931 

AIC H20 1.8115 1.7889 1.8569 1.8683 

AIC H21 2.3006 2.2009 2.2022 2.2343 

AIC H22 1.9503 1.8856 1.8926 1.9041 

AIC H23 1.9740 1.9508 1.9687 1.9879 

 

Table 7.3: Comparison between the 24-lag window method and the threshold method 

based on BIC scores for the 10-epoch scenario of ERC–DNN. Cells colored in green denote 

an improvement in information criteria score while cells colored in blue denote worse 

overall scores when compared to the window method. 

Criterio 
24 Lag 

Window 
ACF≥0.2 ACF≥0.3 ACF≥0.4 

BIC H0 2.0017 1.9432 1.9736 2.0901 

BIC H1 1.9672 1.9173 1.9173 1.9173 
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BIC H2 1.9315 1.8794 1.8915 1.9250 

BIC H3 2.1973 2.1854 2.3153 2.3311 

BIC H4 2.0103 1.9635 1.9782 2.0938 

BIC H5 1.9218 1.8858 1.8889 1.9136 

BIC H6 1.8862 1.8436 1.8553 1.8759 

BIC H7 2.2287 2.1715 2.1715 2.1715 

BIC H8 2.0533 1.9991 2.0230 2.2113 

BIC H9 1.7851 1.7451 1.7534 1.7636 

BIC H10 1.9882 1.9916 2.0489 2.0610 

BIC H11 1.9267 1.8791 1.9633 2.0198 

BIC H12 1.9583 1.8886 1.9166 2.0390 

BIC H13 2.2644 2.2398 2.2596 2.2722 

BIC H14 1.9082 1.8561 1.8827 1.9004 

BIC H15 2.0200 1.9953 2.0252 2.0324 

BIC H16 2.2123 2.1749 2.1958 2.2805 

BIC H17 1.9061 1.8738 1.9013 1.9500 

BIC H18 2.2660 2.2364 2.3039 2.3164 

BIC H19 2.2894 2.2566 2.2606 2.2723 

BIC H20 2.0338 2.0195 2.0519 2.1707 

BIC H21 1.9222 1.8812 1.8894 1.8964 

BIC H22 2.1217 2.1079 2.1177 2.1850 

BIC H23 2.2551 2.1922 2.2201 2.2400 

 

Table 7.4: Comparison between the 24-lag window method and the threshold method 

based on HQIC scores for the 10-epoch scenario of ERC–DNN. Cells colored in green denote 

an improvement in information criteria score while cells colored in blue denote worse 

overall scores when compared to the window method. 

Criterio 24 Lag 

Window 

ACF≥0.2 ACF≥0.3 ACF≥0.4 

HQIC H0 1.7015 1.6794 1.7168 1.7683 
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HQIC H1 1.7430 1.7622 1.9189 1.9189 

HQIC H2 1.9680 1.8916 1.8972 1.9285 

HQIC H3 2.1361 2.1003 2.1188 2.1306 

HQIC H4 2.0807 2.0603 2.0747 2.1937 

HQIC H5 2.1427 2.0985 2.1003 2.1074 

HQIC H6 1.9908 1.9275 1.9384 2.0965 

HQIC H7 2.2277 2.1472 2.1683 2.3292 

HQIC H8 1.9853 1.9692 2.0512 2.0531 

HQIC H9 1.7594 1.7209 1.7608 1.7660 

HQIC H10 1.9160 1.9157 2.0202 2.0238 

HQIC H11 1.7992 1.7590 1.7652 1.7720 

HQIC H12 1.7352 1.6870 1.6892 1.6954 

HQIC H13 2.0105 1.9698 1.9835 2.0081 

HQIC H14 2.1561 2.1161 2.2623 2.2693 

HQIC H15 2.2703 2.2803 2.3123 2.3182 

HQIC H16 2.4097 2.3869 2.4141 2.5297 

HQIC H17 1.9114 1.8745 1.8745 1.8745 

HQIC H18 2.3749 2.4596 2.4653 2.4653 

HQIC H19 1.8727 1.8393 1.8588 1.8701 

HQIC H20 1.9275 1.8702 1.8853 2.0014 

HQIC H21 1.9794 1.9832 2.0800 2.0936 

HQIC H22 2.0047 1.9994 2.1103 2.1193 

HQIC H23 2.1320 2.0913 2.0997 2.1247 

 

Institutional Repository - Library & Information Centre - University of Thessaly
07/10/2024 14:12:36 EEST - 3.135.190.5



236 

7.5 Discussion 

This work presented an error compensation deep neural network for the task of day-ahead 

electricity price forecasting. The proposed model used an autoregressive module to 

estimate hourly residual error sequences and refine and improve the predictions of the 

neural network model. This approach was tested in three different training scenarios, 

where the values of the error were high, moderate, and low in order to cover several 

potential network behaviors, ranging from fairly unstable to nearly convergent. The ERC–

DNN yielded impressive results, with improved error metrics in every training scenario 

when compared to the baseline model. In detail, the error compensation method stabilized 

the performance of the poorly trained network in the first scenario, decreasing the value 

of MAE from 8.581 to 2.137. Additionally, significant performance improvements were 

observed in the moderate and the longer training scenarios with the values of MAE 

decreasing from 3.068 to 1.507 in the 100-epoch experiment and from 2.156 to 1.105 in 

the 1000-epoch experiment. This forecasting approach resulted in improved error metrics 

when compared to the benchmark results presented in [307]. 

The improvement of forecasting performance is not the only benefit provided by this 

approach, since the error compensation method manages to create more consistent 

predictions, resulting in multivariate models that can predict each hourly sequence at a 

similar level of accuracy. The inclusion of an autoregressive module resulted in a clear and 

interpretable approach to error improvement since it operates on the output of neural 

networks. Therefore, error estimation and refinement through this approach could be 

easily associated with the analysis of hourly residual error sequences instead of searching 

for the optimal combination of structural parameters that configure complex deep neural 

networks in a black-box approach. The design, implementation and testing of this method 

provides some useful insights towards the development of more robust and stable hybrid 

models, as well as the integration of error compensation as an additional optimization 

option for benchmarks during post-processing. However, one potential disadvantage of 

this method is the dependence on the error sequences and their characteristics. In this 

project, we implemented several methods, such as stationarity and autocorrelation 

analysis to ensure that the autoregressive module would behave appropriately. In 

scenarios where those methods would yield inconsistent results, this approach may not 
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result in substantial error improvements. As a result, we believe that the analysis of error 

sequences is a crucial part that precedes the integration of that data in post-processing 

techniques and should not be omitted. Since most hybrid models and benchmarks utilize 

hyperparameter optimization to search for the optimal combination of parameters that 

minimize the error metrics, the integration of error compensation could introduce a wide 

set of additional parameters that would increase the overall complexity of the models and 

potentially render that refinement more computationally expensive. While the simple 

choice of the window size in an autoregressive error estimation model seems to be an 

appropriate hyperparameter for the configuration of this method, the consideration of 

more complex estimation methods could result in refinement techniques that greatly 

hinder the execution time of those models. 

The contribution of this work is not limited to the research and development of electricity 

price forecasting models since there are several ways this approach could benefit market 

participants and the grid. Firstly, this approach could reduce the price uncertainty of 

generators while assisting them indirectly in the maximization of profit. Since generators 

often need to select the highest price after inspecting offers from different markets in order 

to sell the production [334], this method could lead to more informed decisions due to the 

increased stability and forecasting performance. Secondly, trading companies could 

develop more robust short-term contracts due to the availability of more accurate price 

estimates. Lastly, the grid could benefit from more stable and accurate price predictions 

since the effect of price volatility could lead to more blackouts and the urgent usage of 

reserves. 

This project attempted to cover several research gaps through the investigation of the error 

compensation effect on the well-known DNN structure used in open-access benchmarks 

and several forecasting applications. While recent studies shared a similar direction in the 

implementation of error compensation on the LSTM structure [253] as well as more 

traditional statistical methods for different forecasting tasks, this study considered the 

feedforward deep neural network as the building block for the development of performant 

forecasting models that include error estimation. The examination of the results in 

conjunction with recent research findings derived from statistical and machine learning 

models reinforces the concept that error estimation is a beneficial post-processing 
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technique for deep learning models in the energy sector. There are several additional 

aspects regarding this method that could be explored in future work. First, a wide 

comparison of error estimation models ranging from simple statistical approaches to the 

increasingly complex neural network models could contribute towards the optimal model 

selection of the error refinement module post-training. Second, the ERC–DNN model could 

be tested on many electricity markets that display different price characteristics, such as 

different levels of price fluctuations in an attempt to study the effects of the unique price 

curve behavior on the training error. Additionally, the inspection of distinctly different error 

sequences could result in useful insights into the behavior of the model and the adaptability 

to different market dynamics. Lastly, the benefits of hyperparameter optimization could be 

studied in combination with error compensation, in an attempt to quantify the overall 

performance improvement and the computational tradeoff for short-term and real-time 

applications. 
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 Conclusions and Future Work 

8.1 Summary of Contributions 

In this dissertation, the forecasting structure for regression tasks in the energy sector was 

examined with emphasis on short-term load and price predictions. The main forecasting 

modules and procedures involved in the forecasting pipeline were highlighted in order to 

denote the significance of each module and outline the flow of information from the initial 

data collection to the final output estimation. Through this examination, several challenges 

and research gaps directly connected to the interpretability, scalability, flexibility and 

accuracy of the most prominent forecasting methodologies in this research area were 

identified. In response to those challenges, extensive model comparisons and novel design 

strategies were developed towards the improvement of the main forecasting modules. The 

proposed methodologies were tested in use cases where the challenges, performance 

hinderances and structural intricacies of those components could be easily detected and 

associated to specific forecasting scenarios. 

The study of the preprocessing module highlighted the need for robust feature selection 

and efficient management of uncertainty. Robust feature selection could lead to 

dimensionality reduction as well as improved model performance and generalization 

capability and due to the identification of the most important features. Additionally, since 

several influential features in the prediction of load and price could include some degree 

of uncertainty, mechanisms that are capable of generating compact sets of rules could 

enhance the overall interpretability of the model, assisting in the discovery of optimal 

model parameters. In this scope, we examined the role of fuzzy inference in forecasting 

methods for the generation of rules that attempt to explain uncertain features and 

concluded that while robust feature selection and uncertainty management could be 

addressed separately, there is a connection between these challenges. Since the studied 

environments in the energy sector are increasingly complex, the rules utilized for the 

definition of relationships between variables could cause scalability and interpretability 

issues when all input variables are considered, resulting in poor estimation performance 

and rendering some forecasting tasks infeasible. Therefore, our contribution focused on 

the development of a rule generation strategy that improved upon the prominent 
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linearized tree structure and derived a small and accurate set of rules through the 

integration of a robust hybrid feature selection method.  This approach identified the most 

important features in the dataset, denoting the impact of efficient feature selection 

towards dimensionality reduction and utilized them for rule generation, denoting the 

accurate extraction of relationships that influence the variable of load. 

The study of the forecasting framework highlighted several challenges and research gaps 

with regards to the type of modeling approach utilized for variable estimation. In 

standalone modeling, most prominent and state-of-the-art models utilized in regression 

tasks are readily available through several application programming interfaces. However, 

there is uncertainty surrounding the selection of similarly performant estimators since the 

learning behavior and error evaluation of those models is not fully explored for all 

regression tasks through experimentation. Following this observation, it is evident that 

while prominent standalone neural network structures could be used interchangeably for 

some forecasting tasks, yielding satisfactory accuracy, there are some edge cases where 

the usage of some classes of neural networks would not be suitable in terms of 

convergence time or performance. These edge cases are not properly examined through 

comprehensive comparisons, leading to confusion and poor decision-making throughout 

the research process. Consequently, our contribution considers the examination of neural 

network structures for minutely sampled active power predictions in order to address the 

edge case of high resolution very short-term predictions where the brevity of the learning 

process and the substantial adjustment of weights could impact forecasting performance. 

This research work provided a comprehensive comparison that denoted the superiority of 

MLP over LSTM and CNN baseline architectures in terms of accuracy and convergence time 

when the sampling is highly granular for point forecasts. Through this project, the 

comparison of prominent neural network models reinforced clarity and provided insight 

towards the behavior of those structures, serving as the building block for more complex 

architectures in this very short-term scenario. 

In combinatorial modeling, the utilization of multiple estimators typically yields improved 

accuracy and leads to more flexible approaches that could adapt better to the input data. 

Furthermore, efficient combinatorial modeling could be impactful in forecasting tasks 

where the varying patterns and distribution shifts introduce the challenges of data and 
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concept drift, offering improved resilience as the parameters of the estimator members 

are adjusted to optimally fit subsets of data. However, it is evident that the combination of 

estimators is not always deterministic, resulting in arbitrary decision making, poor 

reproducibility and interpretability. Therefore, our contribution towards the development 

and implementation of a novel estimator selection strategy based on structural time series 

characteristics provided a robust solution towards the generation of estimator sets that 

best explain the training data and yield improved performance. This project considered the 

design of stacking and voting estimators since ensemble learning approaches are some of 

the most prominent methods in combinatorial modeling and provide performance benefits 

that could be easily monitored. Peak and non-peak indices were the main structural 

characteristics considered for estimator selection and our methodology denoted that the 

ensemble approaches generated from the error metric examination of those 

characteristics achieved the expected performance boost. 

In meta-modeling design, the scope shift of the main forecasting structure for the 

derivation of alternative time series representations and the inclusion of additional 

forecasting layers that estimate the target variable add significant value to the 

generalization capabilities of forecasting models and offer increased resilience towards the 

initial dataset structure through the extraction of knowledge. We observed that meta-

modeling principles could be applied to short-term forecasting tasks in the energy sector 

since the data collected and analyzed for the purposes of real-world applications could 

have a suboptimal structure, rendering the task of pattern identification increasingly 

difficult. Additionally, these datasets could contain hidden relationships between time 

series features that stem from the impact of community influential factors as the data 

collection process often considers time series of different types of consumers, buildings 

and energy markets. Our contribution focused on the extraction of knowledge from the 

examination of consumer similarity and causality for the estimation of alternative load time 

series representations through LSTM ensembles that were combined to predict the target 

variable through an MLP generalizer. This approach denoted that the combination of those 

components vastly improved the error metrics when compared to the base model. This 

performance improvement highlighted that the extraction of similar and causal load time 
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series representations boosted the accuracy of the base model as the initial dataset that 

isolated the features for individual consumption exhibited poor quality. 

The study of the output module highlighted the intricacies of estimated time series 

evaluation and interpretation since standalone, combinatorial and meta-modeling 

estimators could derive suboptimal and unstable predictions due to challenges related to 

dataset quality and model tuning. The risk of poor performance in a priori processing could 

be mitigated through the design of complementary a posteriori methods applied to the 

output module towards the improvement of model metrics and the stabilization of error 

profiles. It is clear that a posteriori processing methods are not sufficiently presented in 

recent short-term forecasting research projects in the energy sector and often omitted 

from relative reviews. Following these observations, our contribution focused on the 

design of a hybrid estimator that features a deep neural network structure for a priori 

processing and an autoregressive error compensation module for a posteriori processing. 

The proposed architecture was applied on the forecasting task of day-ahead electricity 

price prediction and was compared to a benchmark deep neural network model that 

shared the same a priori processing structure. The results denoted that the error 

compensation module improved error metrics and let to more consistent predictions when 

different training scenarios were considered. Consequently, this a priori strategy 

highlighted the benefits of residual error estimation, deeming it essential for error 

refinement. Through the experiments presented in this work, some important observations 

were made towards hyperparameter tuning for both the a priori and a posteriori processing 

paradigm. Moreover, this study denoted the performance challenges that may arise due to 

the expansion of the parameter space with the inclusion of the error compensation 

module. These challenges are directly connected to the complexity of the forecasting 

structure and the time needed for recalibration and tuning. The consideration of short-

term forecasting horizons imposes time constraints that may render the deployment of 

more complex estimation structures infeasible. Therefore, the development of balanced 

hybrid architectures that respect the benefits of both processing paradigms while featuring 

a parameter space that does not introduce performance bottlenecks at any stage should 

be the goal for most estimation approaches in the future. 
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Evidently, the study of recent research projects as well as the experiments conducted for 

the design and development of novel forecasting strategies indicated that the prominence 

of data processing methodologies and forecasting structures is directly associated with 

trade-offs relevant to the structure of the energy time series and the studied research 

questions. The quality and quantity of the available data denotes the preprocessing 

methods that need to be included in the forecasting pipeline in order to achieve higher 

compatibility between the input and the initial model assumptions. Forecasting models 

that utilize an insufficient number of preprocessing techniques often result in poor training. 

On the other side of the spectrum, data overprocessing may result in input datasets that 

no longer capture the unique characteristics and irregularities of the studied time series, 

resulting in poor generalization. Furthermore, the trade-off between execution time and 

accuracy influences the selection of processing techniques and estimators since the 

problem framing process in energy research and the goals of energy applications set 

specific requirements. Therefore, projects utilizing input at a higher sampling rate and 

requiring faster recalibration when the available computational power is limited, could 

benefit from simpler forecasting architectures such as linear regressors, tree-based 

estimators and their hybrid variants. Alternatively, research work and applications focusing 

solely on accuracy, could utilize more complex hybrid neural network structures that 

include meta-modeling techniques and attention mechanisms. Lastly, the trade-off 

between model complexity and transparency needs to be considered in the development 

of forecasting pipelines. Transparent architectures that feature enhanced interpretability 

and explainability typically share a simpler structure and enable the thorough 

understanding of forecasting mechanisms as well as clearer interpretation of results 

without requiring an extensive technical background. Consequently, business and 

consumer-level applications could benefit from less complex and more transparent models 

since the expected behavior of the model could be easily understood through the 

processing of sample data. Research efforts tend to focus on structure-agnostic 

transparency, in an attempt at generating more complex models utilizing interpretable 

estimation processes deterministically.   
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8.2 Future Work 

The examination of the short-term forecasting pipeline in the energy sector and the 

contributions presented in this dissertation enable several interesting research directions 

that could improve the performance of the modules involved in the forecasting structure 

and introduce more robust design strategies. 

In the examination of the preprocessing module our contribution focused on the selection 

of the most impactful features and the detailed interpretation of influential factors through 

the generation of rules. Since this study addressed the a priori analysis of features for the 

derivation of optimal input sets, extensive experiments could be conducted towards the 

interpretability and explainability of those features from the forecasting models after the 

training process. The quantification of feature importance and the examination of metrics 

that specify the degree of attention dedicated to selected sequence segments provide 

insight towards the thorough understanding of the learning process. Some robust 

forecasting structures such as the temporal fusion transformer already provide information 

about feature interpretability through attention graphs and feature importance scores. 

However, this level of comprehensive data analysis could be extended to other models and 

side-by-side comparisons could denote the different decisions that led to the convergence 

of each structure. 

In the examination of standalone modeling, our study contributed towards the 

performance analysis of edge cases that were not sufficiently explored before in terms of 

accuracy, training behavior and training time, reinforcing the decision-making process for 

the informed selection of estimators in similar forecasting tasks. Since the process of 

estimator selection constitutes a wide research topic, future research could focus on the 

detailed comparison of estimators in terms several complementary aspects such as 

scalability and the compact analysis of data requirements for optimal training in a plethora 

of forecasting tasks utilizing energy data. Future research efforts could contribute towards 

the detailed taxonomy of forecasting methods with regards to those aspects in the form of 

reviews and benchmarks that consider several edge cases such as minutely forecasting. 

Furthermore, our contribution towards combinatorial modeling focused on the 

development of a deterministic estimator selection strategy for ensemble regressors. This 

approach considered the cross-examination of structural characteristics such as peak and 
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non-peak data points. This strategy could be extended in future projects in order to 

examine different time series characteristics connected to the shape of the target sequence 

and the respective properties of trend and seasonal components. This estimator selection 

approach could be tested on estimator sets belonging to different statistical and machine 

learning subcategories. Additionally, the inspection of structural time series characteristics 

could benefit the design of more complex forecasting structures such as deeper multi-stage 

ensemble estimators as well as cooperative and sequential hybrid models since clarity 

needs to be reinforced in the development of those architectures. 

The study of meta-modeling and the development of a forecasting approach that utilizes 

community influential factors for the derivation of alternative target time series 

representations was tested considering full consumer anonymity and included only the 

essential features needed for power consumption predictions in order to simulate real-

world scenarios where the quality and availability of consumer data are far from ideal. 

However, the exploration of more descriptive client features could enable the 

development of more versatile meta-modeling approaches that study impact of 

community and derive more time series components that could enhance the generalization 

capabilities of the surrogate model. It is worth mentioning that since the research area of 

meta-modeling approaches is vast, several novel methodologies, operating on a different 

context at the base forecasting structure, could be introduced in future projects. One 

increasingly interesting research direction could consider the estimation of time series that 

focus on the explanation of trend and seasonality components at the base estimator and 

the reconstruction of the estimated target at the meta-modeling output. 

Lastly, for the improvement of the output module, more robust feedback mechanisms for 

the interpretation and subsequent minimization of error could be developed. Our 

contribution introduced a simple autoregressive structure in order to maintain relatively 

low computational cost and include a small set of additional hyperparameters that are 

directly connected to the error series but not dependent on the main forecasting structure. 

Future studies could utilize more interpretable neural network structures for error 

estimation and introduce hyperparameters that could express the connection between the 

main forecasting structure and the error estimation module. Furthermore, a thorough time 

complexity analysis could outline the cost of combining error estimation mechanisms with 
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several prominent forecasting structures in order to suggest performant and scalable 

architectures that result in sufficient error stability for each forecasting horizon. In this 

scope the application and impact of error estimation modules in long term energy 

forecasting tasks could be worth examining since error values tend to be higher and less 

consistent as the prediction horizon increases.
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