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Abstract 

 

The role of biomedical imaging has expanded remarkably since the advent of digital 

technology, demonstrated from a wide range of powerful, versatile, and precise diagnostic 

imaging protocols that constitute integral part of most clinical procedures. Modern clinical 

imaging has brought forth new levels of pathophysiology assessment non-invasively, by 

exploiting various macroscopic quantitative imaging parameters that sensitively correlate with 

biological endpoints. However, the digital transformation of medical imaging technology poses 

new challenges in the rational interpretation of the dense quantitative imaging information, 

creating the need for development and usage of novel inferential approaches, to overcome the 

limitations of current qualitative evaluation and exploit its full potential. 

 The present doctoral research aims to address challenges in the interpretation of 

multiparametric Magnetic Resonance Imaging (MRI) in neurologic and oncologic applications, 

and focuses on the incorporation and extension of the emerging data-driven inferential 

approaches that are based on advanced image analysis and statistical learning methodologies. 

 The first study investigated the molecular substrates of the brain functional responses to 

clinically relevant ongoing pain stimuli, as observed through the Arterial Spin Labelling (ASL) 

perfusion technique. More specifically, the study examined the spatial correlation of 

hemodynamic responses of two ASL datasets of acute and chronic ongoing pain patients, with 

neurotransmitter receptor distributions, as informed from Positron Emission Tomography data 

of independent studies, and from transcriptomic data of the human Allen Brain Atlas. The linear 

regression models have revealed moderate to strong associations of the hemodynamic responses 

with the distributions of opioid and dopamine receptor subtypes (R2 values ranging from 0.14 

to 0.35), which play a key role in the cerebral processing of pain signals, and especially the 

endogenous pain modulation mechanism. Differential associations were found for the serotonin 
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receptors examined. Additionally, the results highlight the utility of the adopted methodology 

as an easily applicable tool for enhancing the molecular specificity of functional MRI signals. 

 The second study aimed to develop a data-driven diagnostic model, based on an 

advanced multiparametric MRI dataset, for supporting the clinical task of differentiation 

between low- and high-grade gliomas. The multiparametric MRI data was analysed with a 

robust radiomic analysis workflow, including semi-supervised image segmentation, texture 

feature quantification, and machine learning - based feature selection and classification. The 

most discriminative features identified, were those obtained from the advanced MRI 

techniques, i.e., MR Spectroscopy (MRS), Diffusion Tensor Imaging (DTI) and Dynamic 

Susceptibility Contrast (DSC). The diagnostic model was based on a Support Vector Machine 

(SVM) classifier, evaluated with cross-validation, demonstrating a classification accuracy of 

95.5%. Overall, the study demonstrates the value of utilizing multiparametric signal from 

advanced MRI and quantitative image analysis in the evaluation of brain tumor aggressiveness. 

 The third study presents a radiomic analysis application of multiparametric MRI data 

for differentiating benign from malignant breast lesions. The specific objective was to evaluate 

the potential of Ensemble Learning techniques in feature selection and classification steps of 

the analysis workflow, to increase the relatively moderate diagnostic accuracy of the previously 

reported models that were based on individual classifiers. The key findings of the study were 

the superiority of Diffusion Weighted Imaging (DWI) derived features that completely 

outperformed and substituted the T2-weighted (T2-w) MRI derived features, as well as the 

superiority of Boosting Ensemble Learning compared to SVM classification models (Area 

under Receiver Operating Characteristic curve (AUC)= 0.95 vs. 0.88). 

 Overall, the doctoral research demonstrates the enhanced perception regarding the 

underlying biological processes, gained from the combination of advanced imaging protocols, 

while further exploitation of advanced computational tools facilitates the development of 

powerful diagnostic models for supporting personalized interventions in the clinical setting. 
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Introduction 

 

The role of biomedical imaging has expanded considerably since the advent of digital 

technology in the 1970s and 1980s, highlighted by the major achievements in the field of 

Computed Tomography (CT), which have enabled the generation of images of high quality and 

clinical utility with low radiation dose. Afterwards the addition of Magnetic Resonance Imaging 

(MRI) and Positron Emission Tomography (PET) in the clinical setting brought forth a new 

level of soft-tissue representation which further improved the understanding of molecular 

physiology (1). 

Particularly MRI has emerged as the spearhead in various medical imaging applications 

because it can provide enriched anatomical and functional information, and more importantly 

with the use of harmless static magnetic fields and non-ionizing radiation. Over the last two 

decades MRI has brought a significant advancement in the field of neuroimaging where it has 

given the opportunity to access the brain non-invasively and measure a wide range of highly 

informative brain tissue properties (gross anatomy, neuronal activity, vascularity, connectivity, 

pathology etc) (2). So far, MRI has a pioneering and well-established role in functional 

neuroimaging, highlighted by the numerous accomplished studies focussing on 

cognitive/behavioural, aging, neurodegenerative disorders, etc paradigms (3). Furthermore, 

MRI has a profound impact in oncologic imaging establishing a central role in the detection 

and diagnosis of soft-tissue cancerous lesions, by means of assessing various spatiotemporal 

phenotypic features (e.g., tumor density, pattern of enhancement, cellular composition, 

regularity of tumor margins, and affection of the surrounding or distant tissues) (4). As such, 

MRI has emerged as a powerful tool for complementing the current standard methods of 

invasive biopsy, towards the comprehensive characterization of tumor heterogeneity, which is 

a critical component of tumor growth that also drives the selection of modern targeted therapies. 
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Overall, MR scanners have been transformed from simple imaging modalities into 

advanced computational systems producing a variety of numerical parameters related to tissue 

properties and have proven to be an important technology in medical research and clinical 

practice that holds great potential to improve our understanding regarding pathophysiological 

substrates and aid the clinical decision making. 

Despite the advances in medical imaging technologies, there remains a gap between the 

macroscopic pathophysiological-related phenomena captured by the advanced imaging 

scanners and the underlying molecular and genetic mechanisms of the disease, that give rise to 

them (5). This gap is further enhanced when considering the current standard methods of 

qualitative assessment, due to the endogenous complexity of the physical principles exploited 

by such sophisticated imaging protocols, as well as the complexity of the biological correlations 

that they reflect. It is evident that straightforward clinical interpretations are not always feasible, 

and this poses additional challenges in terms of rationalizing the abundant of the outcome 

quantitative metrics, especially on the basis of the current subjective visual evaluation of 

imaging features, that leads to high inter-reader variability in clinical interpretation and 

adherence to qualitative reporting paradigms (6). 

The need to understand these complex mechanisms has long urged scientists to develop 

new methods in medical imaging research, focusing on the integration and computer assisted 

evaluation of radiological images and patient specific pathophysiologic characteristics. The 

initial research initiatives have been focused on expanding the existing computer vision 

practices, tracing their roots to the early 1960s, towards the systematic evaluation of imaging 

biomarkers with potential to support the overall clinical assessment, demonstrating fair 

efficiency (7). Recently, however, the transition to enterprise digital imaging and re-emergence 

of statistical learning algorithms (i.e., Machine Learning, ML) have led to the development of 

many high-throughput quantitative imaging models aiming at disentangling complex imaging 

and biological correlations with data-driven approaches, to assist and augment physicians’ 
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decision-making, featuring further automation and reliability (1) (Figure 1). Today, in the era 

of Big Data and Artificial Intelligence (AI) innovations, several promising streams of research 

work towards integrating the quantitative information from the different clinical sources, 

including the advanced imaging modalities, and exploiting advanced analytical methods for 

making clinically meaningful conclusions towards a personalized and more preventive 

healthcare (1). 

 

 

Figure 1: The evolution of medical imaging taking advantage of the new powerful modalities and 

advanced techniques such as MRI, as well as the promising era of a machine learning approach towards 

the individualization of medical care and precision oncology. (Adopted without changes from (8) 

Tsougos et al. Application of Radiomics and Decision Support Systems for Breast MR Differential 

Diagnosis. Computational and Mathematical Methods in Medicine, Volume 2018, DOI: 

10.1155/2018/7417126, under the terms of the Creative Commons Attribution 4.0 International License 

http://creativecommons.org/licenses/by/4.0/)  
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Thesis Objectives, Outline, and 

Innovation  

 

Following the recent advances in the field of biomedical imaging, the present thesis deals with 

MRI applications in neurologic and oncologic imaging with a special focus on the emerging 

analytical methods in the integration and data-driven interpretation of multimodal/ 

multiparametric imaging information. More specifically, the present thesis aims: 

a) to address current challenges of specific clinical MRI applications and showcase the 

benefits of exploiting multimodal/multiparametric imaging information,  

b) to identify and validate robust clinically relevant imaging biomarkers, and  

c) to validate and expand ML-based quantitative imaging models for supporting 

multiparametric MRI diagnosis.  

The thesis is structured into three parts that include the theoretic background and original 

research studies within the fields of MR functional neuroimaging (Part A) and oncological 

imaging (Part B), followed by a general discussion of the findings (Part C).  

Part A intends to address the inherent inability of functional MRI to provide the molecular 

correlates of the observed hemodynamic changes, relevant to clinical questions, and increase 

its molecular specificity by means of utilizing PET and transcriptomics data. More specifically, 

after setting the background in Chapter 1, the study presented in Chapter 2 examines the spatial 

concordance of Cerebral Blood Flow (CBF) increase in two cohorts of clinically relevant on-

going pain and neurotransmitter receptor cerebral distributions derived from PET templates of 

healthy participants studies and corresponding receptors’ messenger Ribonucleic Acid (mRNA) 

expressions from the Allen Brain Atlas (ABA). Overall, the results have shown a strong spatial 

matching of CBF changes with opioidergic and dopaminergic receptors distributions, that 

highlight the association of the observed hemodynamic changes with the function of the well-
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known endogenous pain modulation mechanism. Additionally, the biologically validated 

findings highlight the significant utility of the spatial correlation approach as a low-risk/low-

cost hypothesis generating tool that benefits from existing multimodal datasets to bridge the 

translational gap between the advancing knowledge gained from functional MRI and the 

neurotransmitters systems that underly painful experiences.  

Part B is dedicated to the innovative data-driven inferential approaches, termed Radiomics, 

aiming in the comprehensive non-invasive characterization of tumor pathophysiological 

profile, with potential to complement the current standard biopsy-based methods of assessment 

and support the personalized clinical decision making. The detailed background is described in 

Chapter 3. The study in Chapter 4 evaluates an ML diagnostic model for differentiation between 

Low- and High-Grade Gliomas. The study has applied a robust radiomic analysis model on an 

advanced multiparametric MRI protocol of glioma patients. The diagnostic model has 

demonstrated an accuracy of 95.5% in the diagnosis of glioma grade status, while it was the 

first study exploiting and reporting biomarkers from a complete advanced multiparametric MRI 

protocol, including Diffusion Tensor Imaging (DTI), Dynamic Susceptibility Contrast 

Enhanced (DSCE) MRI and MR Spectroscopy (1H-MRS). Chapter 5 presents an application 

of radiomic analysis evaluation of multiparametric MRI for differentiating benign from 

malignant breast cancer. The specific objectives of the study were the validation of robust breast 

MRI imaging biomarkers, as well as to demonstrate the added value of utilizing Boosting 

Ensemble Learning classification techniques, compared to the more conventional classification 

algorithms utilized by previous studies. The key finding of the specific study were the 

superiority of Diffusion Weighted Imaging (DWI) biomarkers compared to T2-weighted (T2-

w) MRI, as well as the superiority of the specific Ensemble Learning classification model 

compared to the previously reported ML models.   

Part C, Chapter 6 discusses the objectives and results of the reported studies, as well as 

open challenges and future considerations in the field of biomedical imaging analytics. 
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Chapter 1  

 

 

1.1 Background 

The advent of whole-brain neuroimaging techniques has shown great promise in the 

development of novel measurements of regional changes in brain function that have shed light 

on the cerebral underpinnings of either the ‘natural state’ of brain activity, e.g., resting-state 

connectivity, baseline receptor availability, etc., or various physiological, pharmacological, or 

task-based/behavioural (sensory, cognitive, stimuli, etc.), interventions (2). In particular, 

functional MRI (fMRI) has emerged as an important tool to map mental processes to their 

neurobiological substates, characterize dysfunction of the brain in a variety of clinical 

conditions, and study the brain's response to pharmacological challenges (5).  

fMRI captures hemodynamic responses which are secondary to the underlying neuronal 

activation. In principle, neurotransmitter release and binding at the synapses convert chemical 

signals to electrical activity in the neurons. The sodium-potassium (K+-Na+) pumping and the 

various metabolic processes related to the synaptic and neuronal activation increase the energy 

consumption of local neurons and astrocytes which is produced locally from glucose and 

oxygen supplied through small vessels (9). In response nearby vessels dilate, both directly via 

signalling molecules such as nitric oxide and adenosine and indirectly via astrocytes, ensuing a 

substantial increase of local blood flow which is accompanied by a change in blood oxygenation 

and glucose metabolism (10). These changes in vascular parameters described by the 

‘’neurovascular’’ and ‘’neurometabolic’’ couplings are detected by fMRI and lead to different 

image contrasts respective to the fMRI sequence utilized (Figure 2). 
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Figure 2: The Neurovascular coupling notion illustrated by the pathway from neural activity to the 

haemodynamic response that is the basis of the different fMRI image contrasts. (Adopted without 

changes from (11) Pattinson KT. Functional magnetic resonance imaging in anaesthesia research. Br J 

Anaesth. 2013;111(6):872-876. doi:10.1093/bja/aet288, under permissions obtained from RightsLink 

Digital Licensing and Rights Management Service) 

 

The Blood Oxygen Level Dependent (BOLD) contrast summarizes the combined effects 

of vascular response, oxygen metabolism and cerebral perfusion (3). Together with advances 

in our understanding of brain anatomy, BOLD provides the ability to record changes in brain 

activity with a spatial resolution at the submillimeter level and a temporal resolution of seconds 

or less, and has expanded our understanding of the location, propagation, and connections of 

brain activity (12). 

Arterial Spin Labelling (ASL) is another fMRI technique which uses magnetically labelled 

water in arterial blood as an endogenous diffusible tracer to measure perfusion noninvasively 

(13). ASL allows for the quantification of regional cerebral blood flow (rCBF) in absolute 

physiological units, as a surrogate marker of ‘natural state’ of neural activity. Whilst the BOLD 
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signal reflects a composite effect of changes in blood flow, vascular volume, and oxygen 

metabolism (14), partially prone to substantial inter-subject/session variabilities, ASL is 

considered to have better characteristics than BOLD in terms of localization of the activation 

and reproducibility (15), however to a reduced spatiotemporal resolution and Signal-to-Noise-

ratio (SNR) compared to BOLD signal. 

As it was mentioned before, signal transduction in the brain is accomplished by the release 

and binding of neurotransmitters at the synapses, which leads to the activation or inhibition of 

specific neuronal pathways. Neurotransmitters thus play an important role in modulating the 

brain’s activity at the molecular level (12). fMRI has been previously used as an indirect marker 

to image the functional response of neuroreceptors to drugs or stimuli that target specific 

receptor sites, also termed pharmacological MRI (phMRI) (16,17). However, the main 

limitation of phMRI is its inability to provide a molecular insight into the main effect of how 

excitatory and inhibitory neural activity adds up to influence the fMRI signal and support the 

neurovascular coupling chain (12,14). This is because fMRI is no selective to receptors, 

therefore the degree to which the observed responses reflect the action at specific target sites, 

remains elusive (18). Consequently, the utility of fMRI signal in addressing core neuroscientific 

questions in the cellular and molecular level is constrained by its indirect nature and inherent 

inability to provide information as to the microscopic processes that give rise to it (5). 

Direct evaluation of human brain chemistry in vivo has been made possible with PET 

examining the dynamics of the regional uptake of selective radiotracers that present high 

biochemical specificity (3). PET has served as evidence of the local neurochemical modulation 

of brain activity, induced by pharmacologic and behavioral challenges, that can be inferred 

through their effects on changes in receptor binding and related outcome measures (3,12). Such 

settings include but are not limited to, direct binding of exogenous drugs, endogenous release 

of neurotransmitters triggered by exogenous drugs or behavior/stimuli, etc. More specifically, 

a radiolabelled compound that targets specific receptor system is administered to obtain the 
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baseline receptor occupancy. Subsequently, the release of endogenous neurotransmitters, 

triggered by drugs or stimuli, or the action of exogenous compounds with relevant receptor 

(ant)agonist action can be monitored by means of the observed loss in the radiotracer 

concentration, as less receptors become available for binding, leading the excess radiotracer 

molecules to be washed out through local vascularity. 

Despite the low spatiotemporal sensitivity, PET has high specificity for the molecular 

correlates of brain activities. Recently, combination of fMRI and PET data have shown unique 

opportunities in associating specific neurochemical events to functional hemodynamic 

activation and investigating the impacts of neurotransmission on neurovascular coupling of the 

human brain (2). Figure 3 presents co-occurrent/co-localized effects in receptor binding and 

cerebral blood volume induced by dopamine D2 antagonist raclopride injection in primate 

brains, as measured by PET and fMRI, respectively. 

However, on-site standalone PET or hybrid PET/fMRI provides only relatively inflexible 

paradigm designs, mainly constrained by the PET-related prohibitive costs, hardware demands, 

and invasiveness (3,15). Moreover, depending on the radiotracer, a PET scan can be only 

selective for one neurotransmitter at the time and, due to radioactivity exposure and tracer 

availability, therefore only a few chemicals can be measured in a subject at a given time. A 

possible way of addressing the limitations posed by on-site PET acquisition for probing 

neurotransmitters dynamics, comes from the Receptor Theory (19). Specifically, according to 

Receptor Theory it can be assumed that relationships between drug kinetics and observed 

pharmacodynamic effects depend on both the drug (i.e., receptor affinity) and the biological 

system (i.e., receptor density). Based on this concept compounds with high affinity for specific 

receptor systems should lead to higher neuro-vascular/metabolic changes in regions with higher 

respective receptor densities. In this context, exploitation of normative templates from 

individual PET studies that quantify whole brain receptors’ densities,  
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Figure 3: Effects on BPnd (upper) and CBV (lower) induced by D2 antagonist administration, 

illustrating the similarities in the spatial distribution of PET/fMRI signals. All maps are created from 

data from two animals with a mixed-effects model. (Adopted without changes from (20) Sander, C. Y., 

Hooker, J. M., Catana, C., Normandin, M. D., Alpert, N. M., Knudsen, G. M., Vanduffel, W., Rosen, B. 

R., & Mandeville, J. B. (2013). Neurovascular coupling to D2/D3 dopamine receptor occupancy using 

simultaneous PET/functional MRI. Proceedings of the National Academy of Sciences of the United 

States of America, 110(27), 11169–11174, under permissions provided by Proceedings of the National 

Academy of Sciences of the United States of America (PNAS)). 

 

assuming its magnitude to be a linear function of receptor spatial distribution and 

availability across brain regions (2). To date, this approach has been efficiently used by several 

studies, mainly to map functional haemodynamic activation induced by different compounds 

onto distributions of their relevant target receptors (18,19,21,22,23). 

In a recent study, Dipasquale et al. have proposed the Receptor-Enriched Analysis of 

functional Connectivity by Targets (REACT), that is a dual regression statistical framework for 

examining spatial covariations of BOLD fMRI with normative PET receptor templates. In the 

original study, REACT has identified serotonergic patterns of brain activation after MDMA 

administration (18). Lawn et al., have used REACT in an exploratory analysis to examine 
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neurochemically distinct components of Lysergic Acid Diethylamide (LSD) – induced 

functional connectivity, and have found significant correlations with the serotonergic and 

dopaminergic receptor systems (22). 

Similarly, combined ASL/PET imaging studies have been applied to address the molecular 

basis of regional changes in cerebral blood flow induced by pharmacological action (19,21). 

Selvaggi et al. tested the association of the main effects of three different antipsychotic drugs 

(D2 receptor antagonists) on rCBF by correlating rCBF maps with normative BPnd maps of 

D2R protein density using voxel-wise regression analysis (21). Their results indicated that the 

functional effects of antipsychotics as measured with rCBF are tightly correlated with the 

distribution of their target receptors in striatal and extra-striatal regions, demonstrating the link 

between neurotransmitter targets and haemodynamic changes and reinforcing rCBF as a robust 

in-vivo marker of drug effects. Of note, the JuSpace (https://github.com/juryxy/JuSpace) is a 

useful toolbox providing a range of receptor PET templates and statistical tools for performing 

spatial correlation analysis with resting-state fMRI and ASL imaging data (24). 

Despite the important contribution of in-vivo PET imaging for probing neurotransmitter 

systems, as described above, currently these applications have limited capacity mainly because 

appropriate radioligands exist only for a small number of target receptors. As a result, lately 

there is an increasing interest for alternative sources of informing the neurotransmitter receptor 

cerebral distributions. Dukart et. al. have previously utilized publicly available 

Autoradiography data (25) to inform receptor distribution. Autoradiography refers to the ex-

vivo quantification of receptor distributions by high resolution PET of post-mortem samples. 

Although numerous radioligands exist for autoradiography that may be used to quantify a wide 

range of neuroreceptors, however the coverage of the whole brain of the current published data 

is still low. 

To account for the missing proteomic information biology studies have used corresponding 

gene expression as a surrogate to inform receptor distribution (26). Towards this direction, the 
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contribution of the multimodal Human Allen Brain Atlas (27), that integrates anatomic and 

genomic information covering the whole brain, has been significant. The atlas features mRNA 

expression measures for >20,000 genes, profiled by about 60,000 microarray probes in different 

brain regions, obtained from six healthy adult human donors. More importantly, with the prior 

use of structural MRI, the locations of the tissue samples have been mapped into the standard 

MNI coordinates system, thus ABA may serve as a reference standard to explore relationships 

between gene expressions and in vivo functional imaging data (Figure 4). Selvaggi et al. study, 

has also investigated the same relationship at the gene expression level using post-mortem brain 

mRNA expression measures of the DRD2 gene. 

 

 

 

Figure 4: Overall procedure followed by Hawrylycz MJ et. al for microarray data generation (a,b), 

mapping microarray sampling coordinates into 3D MRI coordinate space (c) and data visualization and 

mining tools contained in the ABA online public data resource. (Adopted without changes from (27) 

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the 

adult human brain transcriptome. Nature. 2012;489(7416):391-399. doi:10.1038/nature11405, under 

permissions obtained from RightsLink Digital Licensing and Rights Management Service). 
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In general, the average distribution of receptor density and gene expression seems to offer 

useful approximations for the influence of a given receptor or gene over the fMRI signal in each 

region. This is primarily evidenced by the fact that molecular-enriched analyses to date have 

found hypothesis-driven pharmacodynamic effects in line with the known receptor affinity and 

(ant)agonist activity of different drugs. However, the utility of such methods in non-

pharmacological interventions and pathophysiological neural correlates remains unknown. 

Based on the reported findings the below study aims to assess the usage of the technique and 

address its efficacy, advantages, and limitations in the clinical ongoing pain paradigm. 
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Chapter 2  

 

 

2.1 Investigating molecular indices of CBF in ongoing pain through 

spatial correlation of ASL-MRI, PET, and anatomical mapping of in-vivo 

mRNA expressions 

 

2.1.1 Aims and Objectives 

Persistent pain is a major health problem, affecting the quality of millions of lives globally and 

imposing a burden on healthcare systems. Despite recent advances in our mechanistic 

understanding of pain, there remains a need for novel, efficacious treatments for persistent pain 

(28). Major limitations of existing therapies include high Number-Needed-to-Treat rates (NNT) 

and the short-term sustainability of treatment effects (28,29). Moreover, many analgesic 

pharmacotherapies are associated with a variety of side effects resulting in a narrow therapeutic 

window. For example, while Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) offer some 

benefit, they increase risks of ischemic cardiovascular events and can impair renal function 

(29). Opiates, the prototypical analgesic, show little sustained benefit for chronic pain and are 

associated with serious gastrointestinal and cognitive side effects as well as risk of abuse and 

addiction (29). 

Historically, pharmacological studies have relied entirely upon participants’ self-reports to 

quantify their pain experiences, but interindividual differences in pain responses have hampered 

patient stratification and development of novel treatments (30). Chronic pain had been viewed 
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as ‘acute pain that is lasting too long’, with prolonged nociceptive input from 

sensitized nociceptors or damaged nerve fibres (14). However, activation of nociceptors is 

neither sufficient nor necessary to produce a pain experience (31). For example, severity of 

joint damage in osteoarthritis correlates only weakly with the experienced pain (32) and a given 

intensity of noxious stimulation can produce vastly diverging levels of reported pain (33). 

Additionally, chronic pain patients often suffer psychiatric comorbidities including depression 

and anxiety (14), while emotional state, context and prior experiences can profoundly alter the 

pain experience (31). Collectively, these highlight the importance of the Central Nervous 

System (CNS) in not only the conversion of nociceptive input into conscious pain perception, 

but also its complex modulation (14). Therefore, methods to unravel complex supraspinal 

mechanisms that occur to amplify and maintain pain are critical to both our understanding of, 

and ability to treat, chronic pain conditions (34). 

Whole-brain neuroimaging techniques, such as BOLD and fMRI, have provided insight 

into how the coordinated activity across multiple brain regions, referred to as “functional 

connectivity,” contribute to pain perception and its modulation (35). Beyond evoked pain 

paradigms, resting-state BOLD has been also used to collect information about the ‘natural 

state’ of brain activity in order to identify differences in functional connectivity of medium-

term brain activity in chronic pain individuals (13,34). Additionally, ASL is gaining interest in 

pain research (13), as this approach allows for the quantification of rCBF in absolute 

physiological units, as a surrogate marker of neural activity. More importantly, ASL is more 

sensitive in capturing low-frequency signal fluctuations compared to evoked-response BOLD 

fMRI, making it well suited to characterise brain activity associated with ongoing or 

spontaneous pain observed in numerous pain phenotypes including postsurgical, orofacial 

neuropathic and musculoskeletal pain (13,15,30,36,37). 

Despite the utility of these techniques for understanding the neural correlates of both acute 

and chronic pain conditions, they are inherently unable to delineate the neurochemical 
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substrates underlying the fMRI signal (12,14). An important aspect of understanding 

interindividual variations in pain experience is the study of neurochemical substrates of the 

brain function involved in both nociception but also neuroplastic phenomena increasingly 

accepted to occur in patients with chronic pain. It is evident that the development of chronic 

pain interventions and monitoring of clinical outcomes requires indices to address pain 

modulation processes at a molecular level, as neurotransmitter concentrations and receptor 

binding are the main targets of pain-relieving drugs. Analgesic drugs mediate their effects 

through modulating neurotransmitter systems at the molecular level. As such, there remains a 

gap between the significant advances in understanding pain processing indexed by 

neurovascular coupling and the targeting or development of existing or novel treatments to 

these molecular systems. Integration of PET offers an opportunity to probe these molecular 

systems using selective radiotracers, and highlight the neurochemical signatures involved in the 

functional networks indexed by fMRI (2,3,15). For example, it has confirmed in humans the 

existence of an “opioid-sensitive” Descending Pain Modulatory System (DPMS) that is relevant 

to human experience in many settings, including its involvement in pharmacological and 

nonpharmacological analgesia (15,31,38). In a previous study, Wey et al. utilized simultaneous 

PET/fMRI to directly correlate neuroreceptor occupancy with regional haemodynamic changes 

in pressure pain and showed that pain induced changes in opioidergic neurotransmission 

contribute a significant component of the fMRI signal (39). Karjalainen et al. have collected 

PET/fMRI data from healthy participants to illustrate the role of opioid and dopamine systems 

in nociceptive processing of vicarious pain stimulation (40). However, integration of either 

standalone PET or hybrid PET/fMRI have relatively inflexible paradigm design opportunities, 

constrained by dose-radiation limits and the half-life of both the drug and the tracer isotope, as 

described in the previous chapter. To overcome limitations posed by on-site PET acquisition, 

exploitation of normative Binding Potential (BPnd) templates from individual PET studies has 

become increasingly popular to inform neurotransmitter related activity, assuming its 
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magnitude to be a linear function of receptor spatial distribution and availability across brain 

regions (2). 

Despite the utility of ASL in characterising ongoing pain, to date no study has attempted 

to explore its underlying neurochemical basis. In line with the previous reports, here we 

hypothesise that the spatial distribution of neurotransmitter receptor densities quantified by PET 

can inform the pain related ASL signal change to gain insight into the molecular substrates of 

ongoing pain. To test this, we explored associations of rCBF differences of pain versus non-

pain conditions with available normative BPnd templates of the μ-opioid, dopamine D2 and 5-

hydroxytryptamine (5-HT) receptor subtypes. These were selected given their important, yet 

diverse, roles in pain processing and endogenous pain modulation. We also incorporate 

receptors’ mRNA expression profiles, extracted from the ABA, to inform the underlying 

receptor distribution by means of transcriptomics. The methodology is applied to two individual 

datasets of well-established pain models, which were previously utilized in the respective 

studies of Howard et al. (30,41), in order to extent these reports, by exploring the neurochemical 

basis of the specific pain-related rCBF changes identified: i) acute post-operative ongoing pain 

following lower jaw Third Molar Extraction (TME) (41) and ii) chronic pain secondary to hand 

Osteoarthritis (OA) (30). To our knowledge, this is the first study examining the relationship of 

ASL-derived CBF changes with neurotransmitter receptors profiles and mRNA expression 

distributions in spontaneous and persistent, clinically relevant pain. 

 

2.1.2 Material and Methods 

TME participants and study design 

The study was approved by King’s College Hospital NHS Research ethics committee (Ref 

07/H0808/115). Sixteen right-handed, healthy, male volunteers aged 20–41 (mean age=26.4 

years) provided written informed consent to participate. All participants were examined by oral 
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surgeons at the King’s College London Dental Institute and diagnosed with bilateral recurrent 

pericoronitis.  

Participants were invited to participate in the study in response to a university circular email 

requesting patients requiring wisdom tooth removal or following referral from their primary 

care dentist to the dental institute for third molar extraction. All participants fulfilled NICE 

(2000) guidelines for recommended extraction of lower jaw left and right third molars (41). 

Female participants were excluded due to possible variability induced by the phase of the 

menstrual cycle on cerebral haemodynamics and postsurgical pain responses (42). Other 

exclusion criteria were: Prescribed oral nitrates, usage of tramadol, codeine, NSAIDs or 

paracetamol within 12h before each session, consumption of alcohol for 24 hours prior to each 

session, caffeine-containing products for 6 hours prior to each session, tobacco- or nicotine-

containing products for 4 hours prior to admission, history of psychosis or psychological 

disease, known history of other disorder which is strongly associated with polyneuropathy, 

including alcohol, existing problems (e.g., uncontrolled hypertension, renal failure, cancer, liver 

disease, severe spinal trauma, active thyroid disease, congestive heart failure, etc.), smoking of 

more than 5 cigarettes per day or consumption of more than 6 cups of caffeinated drinks per 

day, any evidence of a history or current use of drugs of abuse, a non-Caucasian ethnicity, any 

person unable to lie still within the environment of the fMRI scanner for the required period to 

perform the study and those where MRI scanning were contraindicated (metal, pacemaker, etc), 

any person unable to understand and follow the instructions of the investigators. 

Participants were scanned on five separate occasions (S1–S5); screening/familiarisation 

(S1), pre-surgical (S2) and post-surgical sessions (S3) for the first extraction and pre-surgical 

(S4) and postsurgical (S5) sessions for the second extraction. An interval of at least two weeks 

separated S3 and S4, to ensure that participants had completely recovered from their first 

surgery and were not experiencing any residual pain. MR examinations during sessions S2–S5 

were identical, while the order of left and right tooth extraction was balanced and pseudo-
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randomised across the group. Post-surgical pain scanning sessions were commenced following 

recordings of three consecutive VAS scores greater than or equal to 30/100 on a 100mm pen-

and paper VAS, each spaced ten minutes apart. During all scanning sessions, estimates of 

ongoing pain intensity were obtained using a computerized Visual Analogue Scale (VAS), 

anchored with ‘no pain’ and ‘worst pain imaginable’, displayed on a screen visible to 

participants at the foot of the scanner bed. Computerised VAS scores had a range of 0-100, with 

identical anchors (41). 

 

OA participants and study design 

The study was approved by the local NHS research ethics committee (Ref 07/H0807/69) and 

sixteen right-handed postmenopausal female subjects 18-80 years of age (mean age = 60.8 

years) who fulfilled the American College of Rheumatology criteria for carpometacarpal 

(CMC) OA in their dominant (right) hand provided written informed consent to participate in 

the study (30). Importantly, OA patients were included only if they suffered from pain around 

one of the first carpometacarpal joints due to the osteoarthritis, and the pain duration was greater 

than 6 months, and they did not have severe pain elsewhere in the body. Additionally, seventeen 

age- and sex-matched controls (with a mean age of 64.7 years) provided written informed 

consent to participate in the study (30).  

Exclusion criteria for the study were: Acute joint trauma of the hand within 12 months of 

commencing the study, history of psychosis or psychological disease requiring ongoing 

psychoactive drugs (excluding anti-depressants stable in dose for at least 3 months and not 

anticipated to change), use of prohibited medications, in the absence of appropriate washout 

periods, such as oral or intramuscular corticosteroids within 4 weeks prior to screening, 

monoamine oxidase inhibitors within 2 weeks of screening, analgesic agents, other than 

NSAIDs, Cox-2 inhibitors, or acetaminophen within 1 week prior to screening [Note: Aspirin 
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use of less than 325 mg per day for cardiovascular prophylaxis was permitted. The use of 

NSAIDs, Cox-2 inhibitors and compound analgesic medications (containing low-dose opioid 

components) was permitted provided the patient was on a stable regimen for at least 4 weeks 

prior to screening and for the duration of the study. Acetaminophen up to 4 g/day was permitted, 

provided it was not used in the 24 hours prior to each session], intra-articular steroids into the 

study joint within 12 weeks, and to any other joint within 4 weeks prior to screening, clinically 

significant or unstable medical or psychological conditions that, in the opinion of the 

investigator, would compromise participation in the study, smoking of more than 5 cigarettes 

per day or consumption of more than 6 cups of caffeinated drinks per day, any evidence of a 

history or current use of drugs of abuse, consumption of alcohol for 24 hours prior to each 

session, caffeine-containing products for 6 hours prior to each session, tobacco- or nicotine-

containing products for 4 hours prior to admission, any person unable to lie still within the 

environment of the fMRI scanner for the required period to perform the study and those where 

MRI scanning were contraindicated (metal, pacemaker, etc), any person unable to understand 

and follow the instructions of the investigators. 

The study consisted of 2 identical sessions, separated by a minimum of 7 days and a 

maximum of 21 days. Each session involved a screening and familiarization stage prior to MRI. 

OA pain intensity estimates where acquired prior to and following each MRI session using a 

Numerical Rating Scale (NRS) ranging from 0 (no pain) to 10 (worst pain imaginable) (30). 

 

MRI acquisition and pre-processing 

Imaging was performed on a 3 Tesla Signa HDx whole-body MR imaging system (General 

Electric, (GE), USA) fitted with an 8-channel, phased-array receive-only head coil. High-

resolution T1-weighted (T1-w) and T2-w MR structural sequences were acquired for 

radiological assessment and image registration, using 3D spoiled gradient recalled (resolution 

= 1 x 1 x 1 mm) and fast spin echo sequences, respectively. Resting-state rCBF measurements 
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were made using Pseudo-Continuous ASL (pCASL), using an irradiation time of 1.5 s and post-

labelling delay of 1.5 s. pCASL images were acquired using a single-shot, 3D Fast Spin Echo 

(FSE) readout resulting in whole-brain blood flow maps, with scanning parameters as follows: 

time to echo 32 ms, repetition time 5,500 ms; echo train length 64, matrix size 48x64x60, Field 

Of View (FOV) 18x24x18 cm, and number of excitations 3 and spatial resolution of 1x1x3 mm.  

Each TME participant was involved in four sessions: two pain-free and two during post-

surgical pain. Each OA and control participant was scanned twice. Each MRI session comprised 

of six consecutive pCASL scans for TME and two consecutive pCASL scans for OA and 

control participants, respectively. The multiple scans were acquired because ASL is an 

inherently low SNR technique, thus averaging between scans and relevant sessions is expected 

to improve data quality (43). TME pain data were averaged across lateralised teeth, as previous 

investigations (41,43) had demonstrated no effects of stimulus laterality on rCBF. 

Pre-processing was performed using FSL software version 4.1.5 

(http://www.fmrib.ox.ac.uk/fsl) and Statistical Parametric Mapping software (SPM) version 12 

(http://www.fil.ion.ucl.ac.uk/spm). For each subject, all collected ASL images within and 

across relevant pain sessions were co-registered with each other and a mean image generated 

[SPM]. The T2-w image was skull stripped using a brain extraction tool [FSL-BET] and the 

resulting brain-only image was co-registered with the average ASL image and used as a mask 

to exclude extra-cerebral signal [SPM-CO-REGISTER]. A nonlinear transformation was 

calculated between the mean ASL image and a custom ASL template in the standardized, 

stereotaxic co-ordinates of the MNI [SPM-NORMALISE]. The raw images were then 

transformed to MNI space in one interpolation step. The resulting images were smoothed with 

an 8 mm full width at half maximum isotropic Gaussian kernel [SPM] and masked to include 

gray matter voxels only. Probabilistic gray matter images in MNI space, derived from the FSL 

voxel-based morphometry toolbox, were thresholded to produce a mask which included all 

voxels from all subjects with a 20% likelihood of being gray matter. To account for the inter-
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subject variability of global blood perfusion values, all normalized, smoothed images were 

scaled to have a median value of 1,000. This scaling was performed to increase reproducibility 

and to ensure that global inter-subject differences in CBF values did not confound later analysis 

(3). 

 

ΔCBF profiles  

Group level analyses to quantify CBF changes between pain vs non-pain states was performed 

in SPM, using paired and independent-group t-tests for TME and OA/controls datasets, 

respectively. Specifically, for each dataset a voxel-wise PAIN>NON-PAIN t-contrast map 

(ΔCBF) was calculated. Subsequently, the t-contrast maps of both datasets reflecting ΔCBF 

were segmented into the 85 Volumes of Interest (VOIs) provided by the Desikan-Killiany (DK) 

atlas (44). ΔCBF profile vectors for TME and OA-Controls were obtained by averaging the 

ΔCBF values of all voxels in each VOI.  

Additionally, voxel-wise PAIN>NON-PAIN z-contrast maps were calculated, considering 

cluster-level Familywise Error rate (FWE) correction (p=0.05, cluster defining threshold= 

0.001) according to the random field theory (45), to demonstrate areas of statistically significant 

pain-related increases CBF. The specific maps were not utilized in the subsequent analysis, 

however a sample of them is presented in Figure 9, along with corresponding DK atlas VOIs, 

as this might be valuable to the reader. Please also refer to the previous studies of Howard et al. 

(30,41) where a more extended analysis and discussion of the ASL findings in the specific 

cohorts is provided. 

As it was mentioned before, in the current study we have considered uncorrected whole-

brain t-contrast maps and all 85 cortical and subcortical VOIs as defined in the DK atlas to test 

the association of ΔCBF and receptor density profiles. The rationale for including the whole 

brain in the analysis, rather than focus only on the regions previously known to be implicated 
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in pain or those demonstrating a significant increase in CBF, is based on the fundamental 

assumption of the current study; namely, that if a neurotransmitter’s activity is related to the 

pain stimulus, then the observed distribution of CBF change should spatially match the 

concentration of the respective neurotransmitter receptor within the whole brain. Thus, it is 

necessary to utilize all the available parcellations into the model in order to account the CBF 

variability across the whole brain, to perform an unbiased correlation for testing this hypothesis 

and confirming the validity of the technique. We anticipated that a whole-brain analysis might 

lead to weaker associations of ΔCBF with the neurotransmitter receptors distributions, due to 

the inclusion of receptor-rich regions that are not conventionally associated with pain 

processing. Nevertheless, beyond avoiding the statistical bias in the correlation models, there 

is also evidence that ongoing pain may be associated with increased blood flow in brain regions 

both within and outside those commonly associated with experiencing pain, for example, the 

somatosensory, prefrontal, and insular cortices, but also the superior parietal lobule, which is 

part of the dorsal attention network (14). Additionally, from a clinical perspective, the inclusion 

of all VOIs is important for comparing results between the different pain pathologies in which 

there may be subtly different patterns of rCBF alterations that relate to the phenotypic and 

demographic aspects of the cohorts in question. 

 

 

Receptor BPnd profiles 

Receptor BPnd profiles were obtained from previously published PET templates quantified 

from healthy subjects. Density of μ-opioid receptor expression as revealed by [11C]carfentanil 

PET scans from 89 healthy volunteers (46) was acquired from the Neurovault collection 

[https://identifiers.org/neurovault.image:115126]. Dopamine receptor D2/D3 expression was 

extracted from an independent [18F] Fallypride PET template obtained by averaging six BPnd 
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maps of healthy young volunteers (47). The publicly available high-resolution in vivo atlas of 

four serotonin receptors, i.e., 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 

(https://xtra.nru.dk/FS5ht-atlas/), created from molecular high-resolution PET scans acquired 

in 210 healthy individuals with different selective PET-radioligands was also utilized (48). 

Similar to the process followed for ΔCBF profile vectors, all the available PET templates were 

segmented into 85 VOIs with the DK atlas (44) and region-wise average BPnd values were 

calculated. A sample of PET axial slices used in the study is presented in Figure 5. 

 

 

 

Figure 5: A sample of axial slices presenting receptor BPnd PET maps (bottom six rows) that were used 

in the linear correlation analysis. All maps are presented after White Matter masking out, and prior to 

applying any normalization or log-transformation.  
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mRNA expression profiles 

Brain transcriptome profiles were obtained from the Allen Brain Atlas (https://human.brain-

map.org/), an open access, multimodal atlas integrating anatomic and genomic information of 

the human brain (27) that can serve as a reference standard to explore relationships between 

gene expressions and in vivo functional imaging data (49). ABA comprises microarray-based 

mRNA expression values sampled over post-mortem brain tissue from 5 males and 1 female 

donors between 18 and 68 years of age, with no known neuropsychiatric or neuropathological 

history. The anatomical sites of tissue sample acquisition are projected on a high-resolution 

brain template in MNI coordinates that facilitates integration with the imaging data. 

Current analysis has focused on the mRNA expressions of thirty-four neurotransmitter 

receptor subtypes for investigating the potential relationship with ΔCBF changes in a data-

driven approach, i.e. μ-, κ-, δ- opioids; dopamine D1-D5; adrenaline α1 -A, -B, -D; adrenaline 

α2 -A, -B, -C; adrenaline β1, β2, β3; serotonin 5-HT -1A, -1B, -1D, -1E, -1F, -2A, -2B, -2C, -

3A, -3B, -3C, -3D, -3E, -4, -5A, -6, -7. For this task the MATLAB toolbox: Multimodal 

Environment for Neuroimaging and Genomic Analysis (MENGA) 

(http://www.nitrc.org/projects/menga/), which allows integration of ABA and imaging data, 

was utilized (50). 

Since the between-donors gene expression values are highly heterogeneous and tissue 

sampling generates variability, with the potential to compromise spatial correlations, we have 

focused our analysis on the left hemisphere only, for which there were more specimens 

available in ABA. In addition, the imaging and genomic data may present substantial spatial 

heterogeneity within anatomical regions of interest. While for MRI and PET data a continuous 

set of voxels is available, that enables averaging among a sufficient number of voxels values to 

obtain a representative mean per region, in case of ABA the tissue samples are provided in 

discrete locations within brain tissue. Similarly, the MENGA software utilized here for the 

imaging-transcriptomic correlation analysis, performs a discrete resampling of CBF to match 
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the exact anatomical locations of tissue sampling. Accordingly, efficient quantification of CBF 

and mRNA expressions is required to perform the correlation analysis; larger VOIs are needed, 

particularly for cortical regions, to obtain sufficient data per region to compensate for this 

inherent spatial heterogeneity. Thus, both ΔCBF contrast maps and ABA mRNA samples have 

been grouped over fifteen coarse ABA regions. These include a combination of cortical and 

subcortical VOIs, comprised of whole volume delineations of frontal, temporal, parietal and 

occipital lobes, as well as the brainstem, amygdala, thalamus, hippocampus, cerebellum, 

cingulate gyrus, insula, striatum, globus pallidus, claustrum, and basal forebrain. 

 

Statistical analysis 

Paired-samples t-tests and one-sample t-tests were used to assess statistically significant 

differences of the pain intensity ratings across pain and pain vs pain-free sessions, respectively, 

for both TME and OA-Controls datasets.  

Linear regression models (Pearson correlation) were built in MATLAB 2019b 

(https://www.mathworks.com/), to correlate ΔCBF responses of TME Pain vs No-Pain and OA 

vs Pain-free control datasets with regional receptor BPnd distributions (explanatory variables). 

Initially, the normality of regression residuals’ distribution was assessed with Shapiro-Wilk test 

for normality. In cases of highly skewed distributions, a log-linear transformation was applied. 

A cut-off value of 10 times the mean Cook’s distance was used to exclude extreme observations. 

Non-parametric Spearman's correlations between ΔCBF profiles and receptor BPnd profiles 

were also performed. Additionally, a stepwise regression function was used to build multiple 

linear regression models, while Variance Inflation Factor (VIF), and Variance Decomposition 

Proportion (VDP), were used as additional diagnostic tools to correct for multicollinearity 

between BPnd variables, considering thresholds of VIF<3 and VDP<0.9 for Condition 

Index>30 (51). Bonferroni correction was considered to assess statistical significance (Figure 

6). 
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Figure 6: Statistical framework for ΔCBF calculation and correlation with PET templates. PET, 

positron emission tomography. 

 

The univariate analysis utility in the MENGA toolbox was used for correlating ΔCBF with 

receptor gene expressions (Figure 7). The univariate cross-correlation analysis consists of the 

weighted regression of CBF contrast images and mRNA data for each donor. The weights are 

defined as the ratio of the number of samples in each region over the variability of the image 

data in that region for each subject. Specifically, the higher the number of samples, the smaller 

is the expected variability in a VOI. The linear regression results are expressed in terms of 

squared Pearson’s correlation coefficients (R2), directionality of the correlation (+1 or -1), and 

the number of times (out of 6 matches) for which MENGA finds a positive or negative 

correlation (50). The between-donors autocorrelation for both imaging and genomic data is also 

returned as a metric to assess the consistency of mRNA expressions among donors. 
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Figure 7: The complete workflow of ΔCBF and transcriptomics correlation analysis. (adopted without 

changes from (50) Rizzo et al. MENGA: A New Comprehensive Tool for the Integration of 

Neuroimaging Data and the Allen Human Brain Transcriptome Atlas, PLOS ONE 11(2): 2016, under 

the terms of the Creative Commons Attribution 4.0 International License 

http://creativecommons.org/licenses/by/4.0/) 
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2.1.3 Results 

 

Pain intensity ratings analysis 

TME Participants reported significant increases in VAS-derived subjectively reported pain 

following TME, compared to pain-free pre-surgical sessions (0-100 VAS scores averaged 

across all pCASL scans: Pre-surgery mean ± SD = 1.67 ± 2.02, Post-surgery = 55.56 ± 15.77, 

p<0.001). Pain intensity VAS scores following extraction of left, compared to right, third 

molars did not differ (p = 0.97) (Figure 8). OA NRS estimates of ongoing pain (mean ± SD = 

3.65 ± 2.21) differed significantly compared from controls, that presented zero mean NRS 

measurement in all scans (p < 0.001). We observed NRS scores in the OA group to be 

significantly higher in session 2 (mean ± SD = 4.15 ± 2.37) than in session 1 (mean ± SD = 

3.15 ± 1.92, p < 0.001) (Figure 8). 

 

 

 

Figure 8: Bar plots showing the mean ± SD pain intensity ratings of all subjects pCASL scans within 

each session, as indexed by VAS for TME participants (left chart) and NRS for OA patients (right chart). 

NRS, numerical rating scale; OA, osteoarthritis; TME, third molar extraction; VAS, visual analogue 

scale 

 

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:22:09 EEST - 3.14.141.223



53 

 

rCBF group level analysis 

TME: Group level analysis revealed a distributed network of brain regions with significant 

increases in rCBF following the extraction of left and right third molars, compared to pain-free 

pre-surgical scans in the same participants. Regions showing rCBF increases included, but were 

not limited to thalamus, primary and secondary somatosensory cortices, anterior and posterior 

insula, anterior cingulate cortex and midbrain. Post-surgical decreases in CBF were not 

observed, and there were no significant differences of rCBF between cerebral hemispheres, in 

either pre-surgical or post-surgical scanning sessions following either left or right TME.  

OA: A distributed network of brain regions demonstrated local increases in CBF in 

participants with OA compared to matched controls, largely lateralised to the left hemisphere 

contralateral to the painful joint. There were no increases in rCBF identified in the control group 

compared to the OA group.  

A sample of cluster-corrected z-score maps showing the abovementioned significant 

increases in regional CBF along with corresponding DK VOIs are provided in Figure 9. 

Additionally, the ΔCBF profiles, in terms of average t-scores of all DK VOIs, that were utilized 

for the spatial correlation with receptor BPnd profiles, are presented Table 1. A sample of axial 

slices of such ΔCBF maps generated is presented in Figure 10. 
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Figure 9: A sample of brain slices in the three planes showing statistically significant increases in CBF 

of pain compared to non-pain TME, and OA compared to Controls groups, in terms of cluster-corrected 

Z-score maps (left), along with the corresponding Desikan-Killiany atlas VOIs (green/white) with which 

they present a significant overlap (right). ΔCBF significant increases of TME pain are shown for: (a.) 

Postcentral Gyrus (featuring overlap with primary and secondary Somatosensory cortices); (b.) Insula; 

(c.) Thalamus and (d.) Brainstem (featuring overlap with Midbrain/Periaqueductal Gray). ΔCBF 

significant increases of OA are shown for: (e.) Amygdala; (f.) Hippocampus (green) and 

Parahippocampal Gyrus (white); (g.) Medial Orbitofrontal Gyrus and (h.) Brainstem (featuring overlap 

with Midbrain/Periaqueductal Gray). 
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Table 1: DK VOIs along with corresponding ΔCBF measurements. 

No VOI NAME POSITION TME ΔCBF 

Average T-score 

OA ΔCBF 

Average T-score 

1 lh_caudalanteriorcingulate frontal lobe 3.48 2.73 

2 lh_caudalmiddlefrontal frontal lobe 2.34 1.92 

3 lh_cuneus occipital lobe 2.09 1.27 

4 lh_entorhinal temporal lobe 2.30 2.27 

5 lh_fusiform temporal lobe 1.54 2.17 

6 lh_inferiorparietal parietal lobe 2.07 1.75 

7 lh_inferiortemporal temporal lobe 1.49 2.53 

8 lh_isthmuscingulate frontal lobe 2.69 1.82 

9 lh_lateraloccipital occipital lobe 1.09 1.67 

10 lh_lateralorbitofrontal frontal lobe 1.56 2.74 

11 lh_lingual occipital lobe 1.99 2.02 

12 lh_medialorbitofrontal frontal lobe 3.16 1.76 

13 lh_middletemporal temporal lobe 1.65 2.70 

14 lh_parahippocampal temporal lobe 1.57 2.81 

15 lh_paracentral parietal lobe 2.84 1.43 

16 lh_parsopercularis frontal lobe 2.62 2.36 

17 lh_parsorbitalis frontal lobe 2.14 1.89 

18 lh_parstriangularis frontal lobe 2.09 2.09 

19 lh_pericalcarine occipital lobe 1.91 1.72 

20 lh_postcentral parietal lobe 3.10 1.75 

21 lh_posteriorcingulate parietal lobe 2.84 2.31 

22 lh_precentral frontal lobe 2.75 2.13 

23 lh_precuneus parietal lobe 1.92 0.72 

24 lh_rostralanteriorcingulate frontal lobe 3.89 1.92 

25 lh_rostralmiddlefrontal frontal lobe 2.27 1.60 

26 lh_superiorfrontal Frontal lobe 2.74 1.87 

27 lh_superiorparietal parietal lobe 3.17 0.56 

28 lh_superiortemporal temporal lobe 2.06 2.47 

29 lh_supramarginal parietal lobe 2.77 1.70 

30 lh_frontalpole frontal lobe 1.45 2.21 

31 lh_temporalpole temporal lobe 2.15 2.22 

32 lh_transversetemporal temporal lobe 1.36 2.41 

33 lh_insula frontal lobe 2.69 2.09 
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34 rh_caudalanteriorcingulate frontal lobe 2.93 2.92 

35 rh_caudalmiddlefrontal frontal lobe 1.86 1.51 

36 rh_cuneus occipital lobe 1.93 0.64 

37 rh_entorhinal temporal lobe 2.56 0.60 

38 rh_fusiform temporal lobe 1.96 0.97 

39 rh_inferiorparietal parietal lobe 1.74 0.54 

40 rh_inferiortemporal temporal lobe 1.36 1.02 

41 rh_isthmuscingulate frontal lobe 2.17 1.43 

42 rh_lateraloccipital occipital lobe 1.21 0.50 

43 rh_lateralorbitofrontal frontal lobe 2.04 2.79 

44 rh_lingual occipital lobe 1.89 1.12 

45 rh_medialorbitofrontal frontal lobe 2.75 1.66 

46 rh_middletemporal temporal lobe 1.48 1.44 

47 rh_parahippocampal temporal lobe 2.69 1.14 

48 rh_paracentral parietal lobe 2.49 0.59 

49 rh_parsopercularis frontal lobe 2.57 1.27 

50 rh_parsorbitalis frontal lobe 2.18 1.84 

51 rh_parstriangularis frontal lobe 2.40 1.77 

52 rh_pericalcarine occipital lobe 1.91 0.70 

53 rh_postcentral parietal lobe 2.43 0.44 

54 rh_posteriorcingulate parietal lobe 2.22 2.05 

55 rh_precentral frontal lobe 2.25 1.00 

56 rh_precuneus parietal lobe 1.89 0.39 

57 rh_rostralanteriorcingulate frontal lobe 3.41 1.55 

58 rh_rostralmiddlefrontal frontal lobe 2.48 1.61 

59 rh_superiorfrontal frontal lobe 2.78 1.45 

60 rh_superiorparietal parietal lobe 2.86 0.31 

61 rh_superiortemporal temporal lobe 2.02 1.51 

62 rh_supramarginal parietal lobe 1.47 0.19 

63 rh_frontalpole frontal lobe 1.76 2.46 

64 rh_temporalpole temporal lobe 2.96 1.69 

65 rh_transversetemporal temporal lobe 2.25 0.93 

66 rh_insula frontal lobe 3.09 1.45 

67 lh_cerebellum cerebellum 1.64 1.94 

68 lh_thalamus thalamus 2.57 2.84 

69 lh_caudate caudate 3.49 2.70 

70 lh_putamen putamen 3.56 2.40 
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71 lh_pallidum pallidum 3.61 2.14 

72 brainstem brainstem 2.44 1.12 

73 lh_hippocampus hippocampus 1.84 2.71 

74 lh_amygdala amygdala 2.40 2.55 

75 lh_Accumbens accumbens 3.42 2.82 

76 lh_ventraldiencephalon thalamus 2.67 2.39 

77 rh_cerebellum cerebellum 2.20 1.09 

78 rh_thalamus thalamus 2.14 1.79 

79 rh_caudate caudate 3.93 2.47 

80 rh_putamen putamen 3.14 2.27 

81 rh_pallidum pallidum 2.42 1.84 

82 rh_hippocampus hippocampus 2.17 1.09 

83 rh_amygdala amygdala 2.80 0.86 

84 rh_Accumbens accumbens 3.47 1.93 

85 rh_ventraldiencephalon thalamus 2.57 1.64 

Abbreviations: lh: Left Hemisphere; rh: Right Hemisphere; VOI: Volume of Interest; 

 

 

 

Figure 10: A sample of axial slices presenting the pain vs non-pain for TME, and OA vs Controls 

ΔCBFs in terms of T-score maps (top two rows). All maps are presented after White Matter masking 

out. 
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Linear Correlations 

ΔCBF statistically significant correlations (t-test, p<0.05) were found with μ-opioid, D2, and 

5-HT-2A receptor distributions in the TME dataset. μ-opioid demonstrated the strongest 

positive association [R2=0.35, Pearson rho=+0.59, Spearman rho=+0.56] followed by D2 

[R2=0.24, Pearson rho=+0.49, Spearman rho=+0.33], while a strong negative association was 

observed for 5-HT-2A [R2=0.23, Pearson rho=-0.48, Spearman rho=-0.51]. Weak negative 

associations were observed for 5-HT-1A [R2=0.05, Pearson rho=-0.22, Spearman rho=-0.24] 

and 5-HT-1B [R2=0.01, Pearson rho=-0,11, Spearman rho=-0.19] and a weak positive 

correlation for 5-HT-4 [R2=0.04, Pearson rho=+0.20, Spearman rho=-0.05]. The results are 

summarized in Figure 11. 

Statistically significant associations (p<0.05) were observed between OA vs control rCBF 

differences and μ-opioid [R2=0.20, Pearson rho=+0.45, Spearman rho=+0.44], D2 [R2=0.14, 

Pearson rho=+0.38, Spearman rho=+0.39]. R2 and rho values, were consistently lower in the 

OA vs control dataset, compared to the TME data analysis. In contrast with TME data, no 

statistically significant associations with the serotonin maps were found. The results are 

summarized in Figure 12. 

 

Multiple Linear Correlations 

Multiple linear regression models for TME and OA datasets included all receptor templates 

except for 5-HT-4 that was found redundant. The adjusted R-squared values were R2=0.44 and 

R2=0.16, for TME and OA respectively. Statistical significance of the regressors was used to 

evaluate the contributions of each receptor to the multivariate model fits. In TME model the μ-

opioid, D2 and 5-HT-2A survived Bonferroni correction (p=0.05/5=0.01), exactly replicating 

results of univariate analysis. In the OA-control model, only the μ-opioid receptor reached 

significance.  
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Figure 11: TME study regression plots: Scatterplots of the 85 VOIs (dots) displaying the relationship 

of the average regional CBF change (ΔCBF) between pain and non-pain states of TME dataset with 

average regional BPnd values of the six receptor templates utilised. The linear regression curve (red 

line) and 95% confidence bounds (dashed lines) are shown. The dots are presented color-coded as shown 

in the figure legend to provide a coarse positioning of the VOIs into the brain. BPnd, binding potential; 

CBF, cerebral blood flow; TME, third molar extraction; VOI, volumes of interest. 
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Figure 12: OA regression plots: Scatterplots of the 85 VOIs (dots) displaying the relationship of the 

average regional CBF change (ΔCBF) between pain and nonpain states of OA and controls datasets with 

average regional BPnd values of the six receptor templates utilised. The linear regression curve (red 

line) and 95% confidence bounds (dashed lines) are shown. The dots are presented color-coded as shown 

in the figure legend to provide a coarse positioning of the VOIs into the brain. BPnd, binding potential; 

CBF, cerebral blood flow; OA, osteoarthritis; VOI, volumes of interest. 
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mRNA correlations 

Within the genomic-imaging correlation analysis performed in MENGA, only 18 out of 35 

genes examined presented a sufficiently high between-donor mRNA expression consistency 

(auto-correlation values R2>0.40) to be reported (detailed in Table 2). The directionality of the 

correlations was found to be consistent in both TME and OA datasets, respectively, however 

their cross-correlation values with rCBF presented great variability between the two datasets. 

Statistically significant correlations (p<0.05) were observed for OPR-K1 in TME, DR-D2 in 

OA, ADR-A-2A in OA and 5-HTR-5A in TME and OA. 

 

 

Table 2: mRNA correlations results 

Gene 

group 
Gene 

Gene auto-

correlation 

TME cross-

correlation 

OA cross-

correlation 

Direction 

of 

correlation 

  (R2) (R2) (p-val) (R2) (p-val)  

Opioid 
OPR-M1 

OPR-K1  

0.82 

0.72 

0.11 

0.30 

0.230 

0.034 * 

0.10 

0.23 

0.245 

0.070 

+1 

+1 

Dopamine 

DR-D1 

DR-D2 

DR-D3 

DR-D5 

0.69 

0.88 

0.44 

0.44 

0.16 

0.12 

0.19 

0.06 

0.140 

0.207 

0.104 

0.379 

0.15 

0.36 

0.04 

0.10 

0.154 

0.018 * 

0.475 

0.245 

+1 

+1 

+1 

-1 

Adrenaline 

ADR-A-1A 

ADR-A-1B 

ADR-A-2A 

ADR-A-2C 

ADR-B-2 

0.45 

0.94 

0.78 

0.89 

0.54 

0.16 

0.02 

0.13 

0.08 

0.17 

0.140 

0.619 

0.188 

0.307 

0.129 

0.05 

0.19 

0.31 

0.06 

0.21 

0.431 

0.104 

0.029 * 

0.379 

0.086 

+1 

-1 

+1 

+1 

+1 

Serotonin 

5-HTR-1A 

5-HTR-1E 

5-HTR-2C 

5-HTR-3B 

5-HTR-5A 

5-HT-4 

5-HTR-7 

0.90 

0.82 

0.90 

0.48 

0.60 

0.73 

0.80 

0.05 

0.06 

0.23 

0.19 

0.27 

0.07 

0.26 

0.431 

0.379 

0.070 

0.104 

0.047 * 

0.340 

0.058 

0.19 

0.08 

0.09 

0.19 

0.30 

0.09 

0.13 

0.104 

0.307 

0.277 

0.104 

0.034 * 

0.277 

0.188 

-1 

-1 

+1 

-1 

-1 

+1 

+1 

*  Statistically significant correlations 
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2.1.4 Discussion 

The present study demonstrates relationships between ASL-derived rCBF indices of ongoing 

pain and specific receptor spatial distribution profiles obtained from PET and mRNA data 

within neurotransmitter systems relevant to clinical pain. Moderate to strongly significant 

correlations were observed between ΔCBF and both mu-opioid and D2, while weak positive 

and negative correlations for the 5-HT receptors’ BPnd distributions were identified in both 

spontaneous (TME) and persistent (OA) pain models. Only the 5-HT-2A receptor showed a 

significant negative correlation with ΔCBF in TME. We observed stronger μ-opioid and D2 

receptor correlations with ΔCBF in the TME, compared to the OA dataset. Multiple linear 

regression models were found to largely replicate the univariate analysis results, but additional 

weaker effects of the receptors on ΔCBF were not observed in these models. The significant 

relationships found between receptor mRNA expressions and ΔCBF were relevant to the 

receptors’ expected functions in pain processing, but correlation coefficient values varied 

between datasets and corresponding results of ΔCBF and PET templates analysis. This study 

provides important new evidence regarding the link between pain-related, ASL-derived rCBF 

signals with the opioidergic and dopaminergic systems, two crucial components of pain 

processing (38). Beyond acting as ‘proof of concept’, these findings help inform future 

investigation of the molecular mechanisms underlying painful experiences, namely 

neurotransmitter systems, which may show functionally relevant disruption in acute and 

chronic pain conditions, as well as modulation by treatment. 

Several major differences were immediately apparent between the TME-pain and OA 

datasets. Mechanistic insights from each study have been described previously (see (30,41)) but 

are briefly summarised here. Perhaps most notably, in the TME data, a remarkably symmetric 

distribution of increases in rCBF following removal of both left and right teeth was observed. 

By contrast, rCBF increases in OA participants were markedly lateralised, predominantly 

located in the left hemisphere contralateral to the painful thumb. Laterality issues aside, there 
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were many similarities between the two datasets, namely, a distributed network of increases in 

rCBF only in brain regions commonly associated with the pain experience, including primary 

and secondary somatosensory, anterior and poster insula and anterior cingulate cortices, 

thalamus, and midbrain (including the Periaqueductal Gray (PAG)). rCBF increases in several 

of these regions have also been reported in other chronic pain cohorts, for example Chronic 

Low Back Pain (CLBP) (37). Quantitative comparisons between datasets were not performed 

here, given so many phenotypic differences between TME and OA datasets respectively, 

including pain phenotype (acute post-surgical vs persistent pain); body site (bilateral dentition 

vs unilateral hand); age (young vs older adults); sex (male vs female); experimental design 

(within vs between subject). Often it is considered more straightforward to study experimentally 

induced pain in healthy volunteer participants, compared to patients with chronic pain. The 

latter are a comparatively more heterogeneous cohort, with defining characteristics not only in 

terms of behaviour (inescapable, ongoing daily pain, psychological sequelae including anxiety 

and depression; medication use, etc), but also brain structure (52) and brain function (36). In 

view of producing transiently inescapable ongoing post-surgical pain, we and others have 

argued in favour of the TME model being an excellent ‘half-way house’ between acute and 

chronic pain states (53). The reader is referred to the recent review of (15) which provides a 

thorough summary of reports of rCBF changes relating to acute and chronic pain states. 

However, what is important in this proof-of-concept study is the demonstration of a relationship 

between the spatial distribution of neurotransmitter receptor densities, and changes in rCBF 

associated with individuals’ pain experiences, both experimentally induced and chronic. 

We acknowledge that the techniques employed here have some limitations. Spatial 

autocorrelation - i.e., statistical dependence between neighbouring voxels/regions - is inherent 

within brain maps that might increase the Type I error of common statistical inference 

frameworks. While some spatial permutation methods exist for generating spatially null models 

for brain maps (for a complete review see (54)), none of them are suitable for applying spatial 
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shuffling across both hemispheres and both cortical and subcortical areas in the same model. 

This intrinsic limitation is due to the requirement for different distance calculation methods 

between corresponding parcels, thus constraining the utility of current approaches for whole 

brain correlation analyses. Our consideration of transcriptomic data provides additional 

challenges to any approach to this problem. We consider that the development of appropriate 

methodologies to mitigate spatial autocorrelation issues as an important future challenge for the 

field. 

Our method exploits the availability of normative receptor templates, but it should be 

acknowledged that these data do not account for potential pathologic or neuroplastic changes 

that may be induced by chronic pain conditions, or possible effects of long-term medication use 

on receptor expression profiles. In an ideal world, to maximise interpretability and validity of 

results, studies would make use of subject-specific PET scans to provide precise quantification 

of receptor binding and directly addressing the underlying neurochemical conditions. However, 

broad consideration of multiple neurotransmitter systems would be financially punitive, not 

least largely impossible to implement given both the cost and safety limitations on repeated 

administration of radiotracers. The benefit of the current technique is that it can leverage 

existing datasets and provide insights when more expensive and complex techniques have yet 

to, or cannot, be employed. As such, the current approach offers significant utility as a low-risk 

hypothesis generating tool at a relatively low cost. 

The most important finding of our study was the significant correlation of ΔCBF with the 

μ-opioid receptor profile. Arguably, this validates the techniques employed here; the μ-opioid 

receptor plays a well-established pivotal role in pain processing (55). Increased neural activity 

in opioid-rich descending pain modulatory structures such as the rostral anterior cingulate 

cortex, amygdala, and PAG has been reported during placebo interventions (56). In a previous 

study, placebo responders that received the opiate antagonist naloxone under blinded conditions 

indicated pain levels similar to those of the non-responders, indicating that the mechanism of 
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placebo analgesia engaged required engagement of endogenous opioid-mediated systems (31). 

Moreover, opioid analgesics including morphine, methadone, fentanyl, and oxycodone are a 

cornerstone in the pharmacotherapy for pain and act primarily upon the μ-opioid receptors 

(MOR) (57). The strong association between ΔCBF and μ-opioid receptor particularly observed 

in the TME dataset is in accordance with previous preclinical (58) and clinical (39,40) 

PET/fMRI studies of acute pain conducted with the μ-opioid selective radiotracer 

[11C]carfentanil,  further adding credence to the ability of the techniques employed here to 

capture meaningful molecular relationships. Given its sensitivity to detect low-frequency signal 

fluctuations, ASL has the potential characteristics to be developed as a biomarker to probe 

opioidergic systems, both in patient/control designs as well as ‘within-subject’ experimental 

conditions, for example, drug/placebo comparisons. 

Associations between ΔCBF and μ-opioid in the OA group were weaker than those 

identified in the TME cohort. Although this may partially be attributed to the increased 

heterogeneity between OA and healthy control groups utilized in the specific model design, 

however the contradictory reports regarding the role of mu-opioid receptor in mediating 

analgesia within chronic pain conditions remains highly equivocal (59). For example, two 

previous studies found that administration of naloxone did not block placebo effects in patients 

with chronic pain, suggesting that the endogenous opioid system functions differently under 

conditions of chronic pain (56). Similarly, recent reports suggest that mechanisms in addition 

to the opioidergic system are also important in mediating placebo responses more generally 

(60). Chronic pain is associated with structural and functional changes in the central nervous 

system that affect multiple brain structures involved in pain perception and modulation. Recent 

MRI and PET studies have provided insights into the maladaptive neuroplasticity related to 

chronic pain, such as the reduced μ-opioid receptor availability in chronic pain disorders 

including rheumatoid arthritis and neuropathic pain (38). Furthermore, a previous study has 

shown increased levels of endogenous opioids in the cerebrospinal fluid of fibromyalgia 
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patients, an indirect index of reduced μ-opioid receptor availability, which may hold some 

explanatory value for the poor efficacy of opioids in fibromyalgia (61). Potentially, altered 

opioid neurotransmission in our OA patients might have affected the association of μ-opioid 

receptor density with ΔCBF, illustrating a limitation when using normative receptor templates, 

as previously described. 

We also sought to investigate potential monoaminergic associations with rCBF. 

Monoamines regulate the endogenous pain system (62), and both peripheral and central 

monoaminergic dysfunction has been reported in various pain aetiologies (63). Currently 

monoaminergic pharmacotherapies do not constitute a first line choice for chronic pain (e.g., in 

osteoarthritis) (64). However, recently drugs like duloxetine have been repurposed from other 

neuropsychiatric conditions and are used for neuropathic pain and fibromyalgia. Such drugs are 

thought to impart analgesic efficacy through inhibiting the reuptake of monoamines in brain 

and spinal levels (63). 

Dopamine’s central circuitry has an important role in pain processing, while among the 

five subtypes of dopamine receptors (D1-D5) in the CNS, the D1 and D2 are those most 

strongly implicated in pain modulation within animal models (63). Activation of D2/D3 

receptors at the spinal level induces an anti-nociceptive effect, whereas stimulation of D1/D5 

receptors is pro-nociceptive (63). Early evidence from human PET imaging studies have shown 

a strong correlation of striatal D2 receptor availability with individual variations in subjective 

ratings of sensory and affective qualities of persistent pain (65) in fibromyalgia (66). In our 

study a statistically significant correlation was observed between ΔCBF and the D2 receptor in 

both datasets, while the D2 association follows a similar trend with μ-opioid. Although this 

finding is important, however a straightforward interpretation is difficult; strong co-localization 

of μ-opioid and D2 receptor distributions exists, and this kind of analysis has an intrinsic 

limitation in differentiating between co-founding effects. In other words, we cannot be sure of 
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the extent to which the result reflects a direct D2 receptor involvement, or a mixed effect of 

interactions between the opioid and dopamine systems. 

We suggest that future studies should take into account these considerations and previous 

evidence, and particularly utilize PET/fMRI to shed further light on the opioid–dopamine 

system, which has been shown to play an important role in endogenous analgesia and placebo 

effects (58). Specifically, as most striatal neurons express both opioid and dopamine D2/D3 

receptors, it is thought that dopamine produces analgesic effects via interactions with 

endogenous opioids in midbrain areas (62). A recent study exploiting 7T fMRI has shown 

evidence that placebo is likely mediated by the lateral PAG, an area that produces a non-opiate 

mediated analgesia upon stimulation (60). Generally, PAG that is an essential element of the 

descending pain modulatory system (38), has a dense concentration of mu-opioid receptors but 

also contains a subpopulation of dopaminergic neurons that, if ablated or antagonized, 

attenuates the antinociceptive effects of systemic morphine. On the other hand, dopamine 

receptor agonists and dopamine transport inhibitors enhance the antinociceptive effects of 

opioids (67). Other analgesics (e.g., gabapentinoids) that were used in combination with those 

having a direct effect on monoaminergic system, have been reported to alleviate certain types 

of chronic pain (28,63). Therefore, combined therapies that modulate multiple neurotransmitter 

systems may offer stronger therapeutic benefit than that of systemic analgesics. 

Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine widely distributed both at the 

periphery and in the central nervous system. Although the peripheral pronociceptive role of 5-

HT is well established, its modulatory role at the spinal and supraspinal levels seems highly 

variable, depending on the type of receptor, the neural structure and pathophysiological 

condition, emphasizing the complexity of its implications for the neurobiological mechanisms 

underlying nociception (68). 

In general, there are very few in vivo human PET studies quantifying 5-HT receptor 

subtypes due to the lack of selective radioligands or sparsity of receptors in the brain (69). 
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Among the few existing 5-HT receptor PET templates that were used in this study, only the 5-

HT-2A showed a moderate, but inverse association with the ΔCBF profile, particularly in the 

TME dataset. In a previous PET study, the 5-HT-2A receptor availability in the brain, and 

specifically in regions involved in cognitive and affective functions, was found to co-vary 

strongly with the responses to long-lasting (tonic) heat pain stimulus (70). The authors 

suggested that 5-HT-2A has a role in pain processing but is more related with the cognitive and 

emotional assessment of painful stimuli rather than its implication in antinociception. We 

speculate that these pain excitatory effects of 5-HT-2A are illustrated here by the negative 

nature of the correlation in the TME post-surgical pain dataset. 

A previous PET study that correlated responses to the cold pressor test with 5-HT-1A 

receptor binding in the brain found 5-HT-1A receptors to be involved in regulation of pain-

related responses (71). However, the association between pain intensity and 5-HT-1A BPnd 

was also present in brain regions not conventionally associated with pain processing, possibly 

indicating an indirect serotoninergic effect on behavioural responses rather than a specific pain 

modulatory action (71). These findings were further validated by the same authors in a newer 

study (72) and could explain the insignificant relationship of ΔCBF and 5-HT-1A distributions 

observed in our whole-brain analysis. 

A significant correlation of 5-HT-1B and 5-HT-4 with hemodynamic responses was not 

observed here and there are no reports from human imaging studies addressing the role of the 

specific 5-HT receptors in pain that could help us elucidate these findings. In general, the 5-

HT-1B/D receptors are thought to have similar action in pain processing with the 5-HT-1A 

receptors, because of their homologous structure (73). Preclinical studies comparing agonists 

and antagonists for 5-HT receptor subtypes, found a significant antinociceptive role for 

supraspinal 5-HT-4 and 5-HT-7 receptors in visceral and neuropathic pain models (73). This 

highlights the potential importance of these receptors in pain inhibition, which requires further 

investigation. 
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We also exploited gene expression profiles from the ABA microarray data to obtain 

information about receptors’ spatial distributions by means of mRNA availability. In general, 

the directionality of the relationships between receptor expression and ΔCBF, are consistent 

with our ASL/PET analyses, however direct comparisons of the magnitudes of the associations 

between methods would be arbitrary due to their different implementations. Of note, besides 

the small sample size underpinning ABA and interindividual differences between donors, 

mRNA expressions only approximate cellular protein levels due to post-transcriptional 

regulatory mechanisms (50). That said, the directionality of the ΔCBF associations with both 

PET and mRNA templates accords with the expected functions of supraspinal receptors in pain 

processing. This is perhaps best illustrated here by the positive correlation of the receptors that 

exert inhibitory effects (e.g., μ-opioid, D2/D3, ADR-A-2A/C, 5-HT-7) and the negative/weak 

correlation for receptors that are thought to facilitate pain signals or are more associated with 

behavioural and emotional aspects of the pain experience (e.g., D5, 5-HTR-1A/B, 5-HTR-2A, 

5-HTR-3B) (12). More importantly, considerations regarding directionality relate to existing 

literature that has directly investigated receptor-specific PET and hemodynamic measures at a 

mechanistic level, further adding credence to the ability of the techniques employed here to 

capture meaningful molecular relationships (2). However, it should be noted that an inverse 

relationship between the signs of the observed inhibitory and excitatory functional responses 

should be expected when comparing the two methodologies. This is because the previous 

studies that have made use of simultaneous or sequential PET-MRI address the functional 

responses through the dynamic measurement of BPnd decrease, i.e., loss of receptors’ 

availability, as an indicator of neuronal activation. In contrast, the method implemented here 

assumes the magnitude of neurotransmitter activity to be proportional with receptor’s spatial 

distribution and availability across brain regions, as indexed by the static PET templates or the 

transcriptomic data utilized. 
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Further statistically significant correlations with ΔCBF were observed for mRNA indices 

of kappa-opioid and adra-A-2A receptors, implying a potential supplementary role in pain 

modulation. Though the MOR is the main target for opioid analgesics, the δ- (DOR) and κ- 

(KOR) opioid receptors have recently gained attention as potential targets for pain and analgesia 

regulation (74). The relative affinities of opioid analgesics for these receptors confer unique 

properties relating to mood and stress reactivity (74). Specifically, while MOR agonists produce 

euphoria and promote stress coping, KOR agonists produce dysphoria, stress-like responses 

and negative affect, whilst agonists at DOR reduce anxiety and promote positive affect. Our 

findings indicate functional significance of KORs in ongoing pain and adds credence to 

attempts to understand how best to pharmacologically modulate the multiplicity of opioid 

receptors to maximise clinical utility whilst minimising adverse effects (74). Recent evidence 

has also demonstrated adrenergic analgesic effects imposed by pharmacologic stimulation of 

cortical a2A adrenoceptors in animals (75). Overall, we consider this initial evidence important 

as several gene candidates could play an important role for understanding neuron structural and 

functional alterations apparent in persistent pain conditions and serve for the development of 

individualised pain therapies (76,77). 

 

2.1.5 Conclusion 

In conclusion, we provide a novel demonstration of the relationship between ongoing pain, as 

informed from ASL based rCBF, and a priori understanding of molecular receptor density 

profiles. Strong relationships were found for the μ-opioid receptor and dopamine D2 receptor, 

further supporting the primacy of these neurotransmitter systems in pain processing. The 

methodology deployed here is a useful tool to help bridge the translational gap between the 

advancing knowledge gained from MRI and the neurotransmitter systems that underlie these 

findings. Specifically, understanding the neurotransmitter systems engaged during pain, 
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perturbed in chronic pain, and modulated under analgesic intervention are crucial steps to 

producing evidence-based precision medicine and development of novel analgesic 

pharmacotherapeutics. 
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Chapter 3  

 

 

3.1 Background 

Cancer is a highly heterogeneous disease, in terms of aetiology, prognosis, and response to 

therapy, while the (epi)genetic properties of the individual cancer cells are highly variable (4). 

Especially malignant tumors present biological complexity which appears across several tumor 

subtypes that exhibit substantial variation in gene expression, biochemistry, histopathology, 

and macroscopic structure (78). Beyond clonal evolution from single progenitors into more 

aggressive variants, cancerous cells also present branched evolution. This biologic 

heterogeneity, which is also constantly prone to various environmental stressors, leads to 

various temporal and regional differences (e.g., regarding stromal architecture oxygen 

consumption, glucose metabolism, protein, and growth factor expression). As a result, 

cancerous tumors’ progression takes place over spatially distinct patterns of blood flow, vessel 

permeability, cell proliferation, cell death and other features (78). The spatial and temporal 

heterogeneity observed between individual patients (inter-tumor heterogeneity) and/or within 

each lesion (intratumor heterogeneity), as a consequence of the genetic diversity of the 

mutations-derived subpopulations (78), can lead to the failure of targeted therapies, even with 

validated targets and drugs, as resistant clones survive and multiply (79). 

Nowadays, the personalized approach to medical care is based on the large-scale data 

synthesis from various sources, such as the new generation molecular biology “-omics” tools 

(e.g., Genomics (Deoxyribo-Nucleic Acid (DNA)), Proteomics (Proteins), Metabolomics 

(Metabolites), Transcriptomics (RNA), etc), as well as other factors (heredity, lifestyle), so that 
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a holistic description of the pathology of each patient is created. The ultimate goal of this 

process is to classify patients into subgroups with common biological characteristics (e.g., 

expression of specific genes or predicted response to treatment), as long as different population 

groups may present different susceptibility to disease, and require more specialized diagnostic, 

prognostic and therapeutic approaches. Especially in cancerous tumors, the very important 

contribution of the above technologies, which aim at characterizing the biological heterogeneity 

of the lesions, by identifying the molecular phenotypes of the mutations of the disease, is 

already evident (80). However, cancerous tumors’ biological heterogeneity is prone to 

underestimation when based on the standard histopathology examination, as this considers 

sparce tissue samples, hence present limitations in mapping the biological variations within the 

whole tumor (81). Additionally, biopsy-based tissue sampling is an invasive procedure that is 

highly prone to appearance of adverse effects or might even be contraindicated for some 

patients and cancers. Consequently, these limitations narrow down further its utility for 

monitoring cancer progression over time.  

Nevertheless, it must be noted that novel biopsy methods offering unique opportunities to 

address the afore-mentioned limitations are currently evaluated and gradually being adapted in 

the clinical practice. Whole-mount histology can examine greater volumes of tissue to assess 

tumor profile, however, this technique applies mostly after radical tumor excisions (e.g., 

prostatectomy), and it is not ideal for assessing tumors of intermediate risk (82). Liquid biopsy 

has brought significant advancement in monitoring dynamics of various types of primary and 

metastatic tumors, by detecting cancer cells or corresponding DNA fragments in blood 

circulation. Even though this method is non-invasive and thus can be applied repeatedly to 

facilitate early detection and monitor response to treatment, however it has a number of 

disadvantages; Liquid biopsy is generally fragile and requires extremely sensitive and specific 

methods that are presently in low availability and accompanied by several technical constraints, 

so it is still lacking clinical validation. Additionally, tumour heterogeneity may not be totally 
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captured when considering small quantities of related cells, thus it is highly prone to false-

negative results, not to mention that it lacks any spatial information regarding tumor sites (83). 

Medical imaging has become one of the most important factors in medical science that 

contributes to the assessment of a variety of pathological conditions. In terms of personalized 

cancer treatment modern clinical imaging can provide a more comprehensive characterization 

of tumor biological heterogeneity, by means of exploiting a variety of phenotypic features (e.g., 

tumor density, pattern of enhancement, cellular composition, regularity of tumor margins, and 

affection of the surrounding or distant tissues) (4) (Figure 13). More importantly, the 

exploitation of advance tomographic imaging together with the largely non-invasive nature and 

the widespread availability of the respective techniques, enables tumor profiling and 

progression monitoring in a continuous spatial and temporal basis. In turn, the well validated 

macroscopic imaging biomarkers outputs are utilized throughout the cancer management 

procedures, i.e., guidance of diagnosis, staging and planning interventions, monitoring of 

therapeutic approaches, prediction of treatment response, and outcomes determinations (84). 

The clinical management breast cancer constitutes a characteristic example of the substantial 

contribution of medical imaging, as the 5-year survival rates have improved tremendously since 

the 1980s, mainly because of the significant uptake of conventional and advanced 

mammographic screening, that have facilitated early detection and risk stratification, along with 

the improvements in targeted treatments (4). 

Particularly MRI has emerged as the spearhead for screening soft tissue cancers presenting 

high suspicion for malignancy and has provided substantial improvements in tumor detection 

and characterization. MRI generates high-resolution/high-contrast images that can provide a 

definite differentiation of tumor margins and peripheral organs anatomy, while it is suitable for 

identifying tumor infiltrative components and associated edematogeneous regions in the 

surrounding tissues, as well as for the simultaneous assessment of nearby nodal status, and 

presence of local or distant metastasis. The addition of advanced MRI techniques to the 
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conventional structural MRI, such as DWI, DCE, and MR Spectroscopic imaging provide 

significant structural, functional, and metabolic information in the microscopic and cellular 

levels, highlighting multifaceted aspects of the underlying pathophysiology (Figure 13), and 

have increased the capabilities of the non-invasive evaluation of cancer pathology status, 

aggressiveness, and response to treatment. 

 Despite the indisputable contribution of MRI and other advanced imaging modalities in 

narrowing down the biopsy-based challenges in cancer management, existing limitations 

partially degrade their predominant role and clinical implementation. Traditional radiological 

evaluation relies largely upon qualitative features, while parts of detailed gray tones 

 

 

Figure 13: Main imaging techniques in the evaluation of tumor biology and microenvinroment (adopted 

without changes from (85) García-Figueiras, R., Baleato-González, S., Padhani, A. R., Luna-Alcalá, A., 

Vallejo-Casas, J. A., Sala, E., Vilanova, J. C., Koh, D. M., Herranz-Carnero, M., & Vargas, H. A. (2019), 

How clinical imaging can assess cancer biology, Insights into imaging, 10(1), 28, under the terms of the 

Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/) 
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patterns that may reflect important biological underlying information may not be easily 

perceived by the human eye. Additionally, tumor biological processes may be closely 

correlated, and their accurate interpretation is not always straightforward, especially when 

phenotypic similarities exist between pathologies, e.g., pathologies mimicking tumors, 

heterogeneous lesions presenting overlapping or even identical imaging characteristics, often 

coexisting with contradictory clinical evidence from other sources (6). 

At this point it should be also mentioned that the endogenous complexity of the physical 

principles exploited by the sophisticated imaging protocols, that are largely extending beyond 

the traditional training of the radiologists, along with the vast amounts of numerical data 

produced may pose more of a problem rather than a solution to the many of the afore-mentioned 

differential diagnostic dilemmas. Consequently, the collection and rational exploitation of the 

abundance of these important quantitative metrics, often leads to high inter-reader variability 

in interpretation and adherence to qualitative reporting paradigms. 

The adoption of Imaging Reporting and Data System lexicons in various cancers imaging 

protocols, e.g., breast cancer (BI-RADS), prostate cancer (PI-RADS), that were established to 

standardize the inter-institutional imaging data collection and assessment, have fairly improved 

the overall diagnostic benefit. However, these lexicons mainly rely upon subjective evaluation 

of imaging findings, with very few incorporated quantitative features, such as lesion size, 

volume, length and functional and/or metabolic measures that may hold a prognostic value or 

provide an estimated risk of malignancy. As a result, lots of numerical information which may 

hold diagnostic potential remains unexploited, not to mention that the reported inter-observer 

agreement has only been moderate to good according to several multi-reader studies (86). 

Tracing their routes to the early 60s’ and 70’s and following that time advances in 

computational technology an ever-increasing interest from the research community the past 

decades has been focus on incorporating computers’ power and image processing and analyses 

methodologies in the assessment of medical images. These approaches were motivated by the 
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fundamental principle that the macroscopic imaging phenotypic characteristics were evidently 

reflecting tumor biological processes present in the histological and molecular levels, while the 

initial efforts intended to aid the unravelling of the ‘hidden’ information into the images, that is 

difficult to be captured by the human eye (84). In this context various computational 

methodologies of significant utility, termed Texture Analysis, were developed. 

The objective of texture analysis is to quantify the numeric and/or the spatial distribution 

of image intensities within defined regions of interest. Generally, texture features excel in 

providing more detailed structural and dimensional information of pixel intensity values 

distribution, which facilitates an upgraded quantitative perception of tissue imaging 

characteristics and the more effective inter-comparison between images (87). 

Numerous studies have identified significant statistical correlations of texture features with 

tumors’ biological properties, as informed from histopathological findings. Therefore, it is 

widely accepted that these parameters are more sensitively associated with various clinical 

endpoints compared with the qualitative radiologic and clinical data more commonly utilized 

today and may possibly serve as useful tools for the assessment of the severity, degree of 

change, or status of a cancer lesion, relative to normal (6,88). Of note, the afore-mentioned 

conclusions have led to the development of many different Computer Assisted Diagnostic 

(CAD) systems for standardizing and using the technology in the clinical setting (7).  

CAD algorithms are mainly composed of two stages, i.e., detection and classification of 

suspicious regions, into cancerous and normal tissue (89). Initially, detection is performed using 

basic image enhancement methods, descriptors of statistical distribution of intensity values, and 

decomposition of the image through wavelet transforms, in order to investigate differences 

between tumorous areas and background. Subsequently, based on an initial hypothesis 

concerning possible connections between cancer progression and specific imaging data, CAD 

systems use a set of quantitative imaging features describing the geometrical structure, intensity 
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distribution and texture of a Region of Interest (ROI), automatically or manually contoured 

(89). 

However, the advances in medical imaging systems, transforming scanners form single 

imaging modalities into advanced computational systems producing a variety of numerical 

parameters, as well as the exponential growth in computer technology of the past decade, 

including novel pattern recognition, have opened new horizons in the quantitative imaging 

biomarker analysis, introducing the rapidly evolving field of "Radiomics". Etymologically, 

radiomics comes from the union of the terms radio- (radiation or radiology), and -omics, a 

common suffix used to form nouns relating to the study of the totality of a field (e.g., genomics, 

proteomics, metabolomics, transcriptomics), and mainly focuses on the global non-invasive 

assessment of cancerous lesions biological profiles. 

Generally, Radiomics can be considered as an extension of CAD systems. In contrast to 

CAD’s simplicity and ability for answering only elementary clinical questions by using few 

data and evaluating pre-defined hypothesis regarding the specific clinical task of interest, 

Radiomics analysis aims to the integration and analysis of large-scale imaging and clinical 

information. The feasibility for implementing Radiomic analysis arises from the profound 

difficulty in having a-priori knowledge or making hypothesis when investigating the plethora 

of complex clinical quantitative information. Of note, the applicability of Radiomic analysis is 

based on the recent developments of high-throughput computational tools and statistical 

frameworks that facilitate exploitation of data-driven inference approaches. The latter enable 

the precise association of the extended libraries of voxel-based quantitative variables (e.g., 

relating to tumor size, shape, gray level intensity and texture, etc.) with biological and clinical 

endpoints, for enhancing the non-invasive biomarker discovery and overcoming the limitations 

of conventional evaluation methods. 

Especially, the exploitation of AI techniques to extract clinically meaningful conclusions 

from the quantitative variables, has enabled both the identification of clinically significant 
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associations between imaging biomarkers and patient-specific pathophysiological 

characteristics, as well as the development of reliable and reproducible integrative decision 

support systems, that hold potential to augment diagnostic benefit, enhance patient risk 

stratification and prognostication buttressing the emerging targeted therapeutic approaches 

(90). 

 

3.2 Radiomic Analysis workflow 

Image segmentation is usually the first step, after data pre-processing (noise reduction, 

correction of artifacts, normalization, etc.), in the radiomic analysis workflow towards lesion 

evaluation for diagnosis and selection of appropriate treatment plan. The precise definition of 

breast lesion boundaries is a very important procedure, as it affects the subsequent qualitative 

analysis of the radiomic descriptors extracted from the corresponding regions or volumes of 

interest (ROI/VOI). In daily clinical routine ROIs are manually segmented by expert 

radiologists, but besides that it is a time-consuming process, this approach induces intra- / inter-

observer variability and reproducibility errors, as many tumors present indistinct and blurring 

boundaries (91). The development and validation of novel semi-automated or automated 

segmentation algorithms is an open research field which presents interesting and sophisticated 

results. However, the semi-automated approaches are mandatory, so that the final choice remain 

user-depended, since fully automated methods are so far feasible only if there are strong signal 

differences between the lesion and the background (92). In addition, time-cost minimization for 

segmenting all tumor slices in tomographic imaging modalities, such as MRI, enables the 

reconstruction of three-dimensional (3D) tumor models, which further facilitate the global 

assessment of the pathology. 

After tumor delineation, radiomic features are extracted from the information contained in 

the segmented ROIs, that can be used to qualitative assess tumor phenotype, aggressiveness, 
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treatment response, cancer genetics, and differentiate between benign and malignant tumor 

(84). Radiomic features may be divided into several categories depending on their 

characteristics, such as shape-size based, histogram-based, textural, and transform-based 

features (81,89). Shape and size-based features provide information about tumor location and 

different size parameters, like surface, volume, diameter, sphericity, and surface-to-volume 

ratio. First order histogram parameters, such as mean value, standard deviation, percentiles, 

skewness, kurtosis, entropy enable the rough assessment of pixel intensity global distribution 

without considering spatial variations. Second order histograms such as Gray level Co-

occurrence matrices (GLCM) (93,94) and Gray Level Run Length Matrices (GLRLM) (95,96) 

characterize spatial relationships between pixel intensities in different 2D or 3D directions, and 

thus are robust in quantifying tumor structural properties and various patterns of heterogeneity. 

Once radiomic features have been calculated and stored along with all other quantitative 

imaging and clinical data, a set of the few most important features need to be defined and 

selected for ML model development. Generally, within the vast amounts of radiomic features 

many spurious correlations, collinearities and noise are present, and ML models tend to overfit 

and generalize poorly in new data. This effect is critical in medical imaging ML models because 

of the relatively larger number of predictors (>1000) compared to the number of training cases, 

especially when considering the advanced imaging applications (<500). To this scope the use 

of feature selection / dimensionality reduction techniques is highly recommended (7). Besides 

the reduction of feature number towards training reliable ML models, these techniques have 

proved valuable for identifying robust imaging biomarkers that also help to enhance clinical 

interpretation. Subsequently the main task is to correlate the selected feature subset to 

diagnostic and prognostic outcomes or to the underlying biology. To date the main research 

focus is on the incremental diagnostic and predictive value that can be obtained from advanced 

machine learning classifiers, like Logistic Regression (LR), Support Vector Machine (SVM), 

Random Forests (RF) and boosted trees classifiers. These techniques present huge potential to 
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improve the understanding of complex pathological conditions, through identifying robust 

associations between morphological or functional changes in imaging and clinical variants 

linked to the diseases, in patients’ subgroups. 

Lately, Deep Learning (DL), a class of machine learning algorithms, that has become the 

state-of-the-art approach in computer vision, essentially replacing conventional ML algorithms 

for most applications, are being introduced in medical image analysis (97). DL algorithms excel 

at learning a hierarchy of increasingly complex imaging features, directly from raw data and 

are considered as a powerful alternative to the quite demanding and time-consuming 

conventional ML-based radiomic analysis approaches, that involve manual/semi-automatic 

tumor delineation, hand-crafted feature extraction and testing of different classifiers (98). 

Overall, these pattern recognition techniques based on their ability to learn information from 

the provided training datasets have demonstrated a superior efficiency in the understanding of 

complex pathological conditions and making accurate classification of disease status, through 

identifying robust associations between morphological/functional changes in imaging and 

clinical variants linked to the diseases. More importantly, due to the inherent requirement for 

accumulated resources (large datasets, increased computational power), for reaching accurate 

training, DL imaging diagnostic models have better generalization perspectives and can more 

efficiently adapt to diverse scanning protocols (Figure 14).  

To date, quantitative imaging research constitutes a multidisciplinary scientific field that 

brings together many different specialties (clinicians, biologists, physicists, engineers, IT 

professionals). However, it is still a very challenging process, including various complicated 

tasks, (e.g., clinical, and histological examinations, multi-modality image scanning), facing 

complex technical difficulties (development of novel computational methods) and 

methodological challenges (poor study design, data overfitting, and lack of standards for results 

validating) (99,100).  

 

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:22:09 EEST - 3.14.141.223



85 

 

 

Figure 14: Conventional and Deep Learning Radiomic analysis workflows. 

 

 

The following studies that were conducted in the framework of the present thesis aim in the 

exploitation of multiparametric MRI information for addressing brain and breast cancer 

diagnostic challenges. Towards this direction the respective methodological approaches have 

made use of robust radiomic analysis pipelines to identify and validate clinically relevant 

imaging biomarkers and expand previously reported quantitative imaging models. 
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Chapter 4  

 

 

4.1 A Radiomic Analysis Model of Advanced Multiparametric MRI for 

Glioma Grading 

 

4.1.1 Aims and Objectives 

Gliomas are the most aggressive primary brain tumors presenting poor survival rates grades. 

According to the World Health Organization (WHO), gliomas are subdivided into four 

categories considering their malignancy status, i.e., grades I, II (low grade gliomas - LGG) and 

grades III, IV (high grade gliomas - HGG) (101). Therefore, preoperative accurate grade 

classification is of main clinical importance, related to early prognosis as well as precise 

selection of the therapeutic approach. 

To date, several studies have reported that MRI either with conventional (102,103,104) or 

more importantly with advanced MRI sequences (105,106,107,108) may contribute to tumor 

heterogeneity assessment, overcoming sample-biopsy limitations towards glioma grading, 

providing different perspectives of gliomas pathophysiology. The proposed methods are 

complemented by advanced image analysis techniques, such as morphological and texture 

analysis methods, for increasing diagnostic accuracy through the quantitative assessment of the 

specific information provided by structural and functional MR images (109). Even though the 

specific findings seem promising, the increased methodological variability of the current MRI 

unilateral evaluation approaches, resulting into conflicting sensitivity and specificity reports, 
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could lead to a misinterpretation and hence underestimation of gliomas’ biological 

heterogeneity mechanisms. 

As it has been mentioned from certain research studies exploiting mp-MRI data 

(110,111,112,113,114), the combination of several MRI parameters, evaluating underlying 

pathophysiology, may lead to a better understanding of tumor characteristics, and a more 

accurate classification of LGGs and HGGs. Furthermore, the recent advent of Radiomics i.e., 

the inclusion of novel approaches incorporating advanced quantification and classification 

methodologies, which facilitate the manipulation and evaluation of multidimensional imaging 

feature data, may serve as a sophisticated analysis framework (79,115). In addition, the 

potential applicability of radiomic analysis in performing various clinical data associations 

(e.g., imaging, genomics) (116,117), has been already exploited by some glioma grading studies 

(118,119), in consent with the 2016 WHO guidelines (120) in which molecular genomic factors 

(e.g. Isocitrate dehydrogenase (IDH) mutation status, 6-methylguanine-DNA methyltransferase 

(MGMT) promoter methylation) have been added to histological factors for glioma 

characterization. 

Hence, it is evident that in the precision medicine era, a plethora of quantitative parameters 

should be taken into consideration for an accurate tumor characterization. In this direction, a 

radiomic approach with mp-MRI data, can demonstrate a superior contribution towards glioma 

classification, because of its advantages in describing the detailed microarchitectural and 

functional tumor processes. However, there is still a demand for further investigation on the 

validation and utility of combining such techniques, to establish a powerful non-invasive tool 

in clinical practice (121). 

The aim of this study was to create and utilize a radiomic analysis pipeline, to 

comprehensively evaluate a full 3T multiparametric MRI approach, including all the available 

advanced techniques, i.e., DWI, DTI, 1H-MRS and DSCE imaging, to produce valid imaging 

biomarkers for the distinction between high- and low- grade gliomas. The specific 
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implementation utilizes a DTI semi-automated clustering segmentation technique for 

delineating tumor core VOIs in all the available MRI parametric images. Radiomic feature 

extraction included first and second order textural features, and additional advanced MR 

quantitative parameters (1H-MRS metabolite ratios, relative Cerebral Blood Volume). Feature 

selection and classification modelling are based on Support Vector Machine classifiers (SVMs), 

while the discrimination accuracy is evaluated with Receiver Operator Characteristic (ROC) 

analysis. 

To the best of our knowledge, there are only a few studies (122,123) that incorporate 

conventional MR data accompanied by all the available advanced MR neuroimaging techniques 

used in brain tumor evaluation. Our approach produced a robust analysis pipeline which shows 

that radiomic features derived from mp-MRI, supports accurate low vs high grade glioma 

classification, by exploiting the underlying pathophysiology as expressed by the advanced 

neuroimaging techniques. 

 

4.1.2 Material and Methods 

 

Multiparametric MRI acquisition protocol 

Forty patients initially diagnosed with Low- or High-Grade Gliomas (20 LGG & 20 HGG) 

underwent an MRI exam on a 3-Tesla MR wholebody scanner (SignaHDx; General Electric 

(GE) Healthcare, Waukesha, WI, USA), applying an advanced imaging examination protocol 

including, conventional MRI sequences, 1H-MRS, DWI, DTI and DSCE, using a 4-channel 

birdcage and an 8-channel phased-array head coil (Figure 15). Prior to this retrospective study, 

local Institutional Review Board approval and patient consent was obtained. 

The conventional MRI protocol included pre-contrast sagittal and transverse T1-w FSE 

(Repetition Time (TR) / Echo Time (TE) 700 ms/9.3 ms), transverse T2-w FSE (TR/TE 2640 
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ms/102 ms), coronal T2-w FSE (TR/TE 2920 ms/102 ms), and T2-w Fluid Attenuation 

Inversion Recovery (FLAIR) (TR/TE 8500 ms/130 ms) scans, with 512 × 512 matrix size, 24 

× 24 cm2 Field of View (FOV), 0.5 mm in-plane resolution and slice thickness of 5 mm with 

gap 1 mm. Post-contrast isotropic 3-dimensional Spoiled Gradient Echo (3D-SPGR, TR/TE 6.9 

ms/2.1 ms, 12 flip angle, 24 × 24 cm2 FOV, 136 slices of 1 mm thickness and 1 mm3 voxel 

size) and T1-w post contrast axial images were also obtained. 

1H-MRS imaging was performed using the automated PROton Brain Exam (PROBE; GE 

Healthcare, Waukesha, WI, USA) spectroscopy package before contrast administration to avoid 

signal disturbance. MRS was performed both as Single Voxel (SV) and multivoxel (Chemical 

Shift Imaging, CSI) when this was feasible. It actually depended on the size of the lesion and 

the anatomical site. We avoided areas of known susceptibility differences leading to poor field 

homogeneity, including the mesial anterior temporal and inferior frontal lobes because of their 

proximity to air-cavities, or proximity to the skull due to lipid contamination. The measurement 

parameters used in single voxel scans were 1500/35 ms (TR/TE), 128 signal acquisitions and 

voxel size was chosen to be not less than 3.375 cm3 for adequate SNR with a duration of 3 min 

and 48 sec. The typical SV used was of the order of 8 cm3 (2 × 2 × 2 cm) for increased SNR. 

The measurement parameters used in 2D-MRSI were 1000/144 ms (TR/TE), 16x16 phase 

encoding steps, section thickness ≥ 10 mm and the FOV size was adjusted to each patient’s 

brain anatomy. The duration was of the order of 4 min and 20 sec. Typical spectra of the 

corresponding tumor groups are shown in Figure 15. 

The use of multivoxel (CSI) technique is a very valuable technique to evaluate 

simultaneously the retrospective area of the tumor site (when applicable, taking into account 

areas of heterogeneity and lipids contamination), and was acquired at a higher echo time of 144 

ms hence we had a better evaluation of lipids and lactate. The differentiation of lipids and lactate 

when in doubt was done using the flipping of lactate at long TE (144 ms) and analysis using 

the TARQUIN software (http://tarquin.sourceforge.net/) (124). 
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We generally used the auto shimming method based on the vendor’s software, but manual 

shimming was implemented in difficult cases by adjusting receiver/transmitter gains. There 

were a few times that despite all this effort, complete elimination of small local deviations from 

the B0 field uniformity was very difficult and these cases were omitted. In general, our 

linewidth was kept below 10 Hz for SV and below 20 Hz for CSI. 

Diffusion-weighted MR imaging was performed prior to contrast media injection, via a 

single-shot, spin-echo, echo planar sequence with b-values of 0 s/mm2 and 1000 s/mm2 

performed in 50 sec. DTI was performed in the axial plane with single-shot spin-echo echo 

planar: TR/TE 8000 ms/89.8 ms, gradients applied in 32 non-linear directions, b = 0 s/mm2 and 

1000 s/mm2, FOV = 24 cm2, 1 mm in-plane resolution, slice thickness = 4 mm with gap = 1 

mm and NEX = 1, with a duration of 4 min and 32sec. 

The DSCE MR images were acquired with a single-shot gradient echo planar imaging 

sequence (TR/TE 2000 ms /20.7 ms, flip angle 60°, FOV = 24×24cm2, slice thickness = 5 mm 

with gap = 1 mm, NEX = 1) during the first pass of bolus of gadolinium contrast material 

(DOTAREM) at a dose of 0.1 mmol/kg body weight with a duration of 1 min and 08 sec. The 

location of the perfusion-weighted MR data set was determined by using the axial T1-w images 

after contrast injection to locate the lesion and axial T2-w images to locate the peritumoral T2 

signal abnormality. 

At this point, it must be mentioned that gadolinium-containing contrast agents are normally 

excluded by the blood-brain barrier (BBB) and cannot enter the extracellular spaces of the brain 

and spinal cord. The disruption of the BBB caused by diseases like enhancing tumors, subacute 

infarcts etc., results in leakage of the contrast agent into the extravascular space. This leakage 

should be corrected for, because it can lead to systematic errors due to the additional 

pronounced T1- and T2*-relaxation effects that violate the fundamental assumption of tracer 

kinetic modelling on which DSCE is based, that no recirculation of the contrast agent occurs.  
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Figure 15: Upper image; A case of a low-grade glioma, presenting high signal intensity on a T2-

weighted image (a), no contrast enhancement on a T1 3D-SPGR image (b) and an isointense signal on 

a diffusion-weighted image (c). The lesion shows increased MD (f), lower FA (g) and no significant 

perfusion (h) on the corresponding parametric maps. The peritumoral (e) and intratumoral (i and j) 

spectra are also depicted. Lower image; A case of a high-grade glioma (glioblastoma multiforme), 

presenting high signal intensity on a T2-weighted image (a) and ring-shaped enhancement on a T1-

weighted post contrast image (b). On the DW-image the lesion presents low signal intensity (c) resulting 

in higher intratumoral MD (f), lower intratumoral FA (g) and high peritumoral rCBV (h) reflecting 

tumor infiltration in the surrounding parenchyma. The corresponding peritumoral (e) and intratumoral 

(i and j) spectra are also depicted. 

 

Hence T1 shortening from extravascular gadolinium can lead to increased signal and may blunt 

the desired T2* shortening on which DSCE is based on. Several strategies exist to minimize 

this effect, from simple techniques to more sophisticated models of the first pass kinetics 
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(125,126). One simple and popular method that we have used in our work is called ‘preloading’. 

A one-fourth to one-third of the total dose was administered about 5–10 min before the dynamic 

imaging, and a T1-w to guide the perfusion section positioning was run in between. This 

‘preloading’ of gadolinium reduces contaminating T1 effects by shortening the pre-bolus 

intravoxel T1, raising the baseline signal so that T2* changes can then be better appreciated 

(127). 

 

Data post-processing 

Initially, all available MRI raw data were converted from Digital Imaging and Communications 

in Medicine (DICOM) to Neuroimaging Informatics Technology Initiative (NIFTI) 1.1 format 

with the ‘dicom2nii’ tool provided by MRIcron software (https://www.nitrc.org/ 

projects/mricron). Subsequently, FSL software of FMRIB Software Library v5.0 

(https://fsl.fmrib.ox.ac.uk/) (128,129,130), was utilized for parametric MR volumes co-

registering and re-slicing into an isotropic voxel size of 1 mm3, as well as applying bias field 

corrections. DTI data post-processing was performed with FSL, including motion artifacts and 

eddy current distortions corrections (131), brain tissue extraction, Diffusion Tensor estimation 

and Mean Diffusivity (MD), Fractional Anisotropy (FA), Pure Isotropy (p) and Pure Anisotropy 

(q) parametric maps calculation (132). In-vivo SV and multivoxel spectroscopic data analysis 

and calculation of metabolite ratios were performed on an Advanced Linux workstation using 

the Functool software (GE Healthcare). Postprocessing of the raw spectral data included 

baseline correction, frequency inversion and phase shift. Gaussian curves were fitted to NAcetyl 

Aspartate (NAA), Choline (Cho), Creatine (Cr), lipid and lactate metabolites’ peaks for 

determination of peak area. Finally, metabolite ratios of NAA/Cr, Cho/Cr, mI/Cr and Lipids/Cr 

were calculated from the area under each metabolite peak. The Functool software was utilized 

for processing DSCE data and analyzing the perfusion imaging time curves for extracting the 

Cerebral Blood Volume (CBV) parametric maps. In addition, the gadolinium uptake time 
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curves were also utilized for identifying the volume of contrast agent maximum uptake for 

every patient, which was used in the subsequent radiomic analysis process for textural features 

extraction. 

 

Volume of interest (VOI) extraction 

In the framework of radiomic-based quantification of tissue heterogeneity, the accurate and 

reproducible segmentation of regions and volumes of interest is critical. To this scope, a 

clustering segmentation method reported in a previous study by Vamvakas et al. (133), was 

utilized for the identification of different tumor subregions (habitat imaging (79)), providing 

the radiologist with the appropriate information for manually performing whole tumor 

delineation. However, the quantification of tumor imaging characteristics may easily be biased 

from the presence of peritumoral edema and hemorrhagic tumor components, which do not 

have a contiguous occurrence in the two tumor groups. Probably, they would be offered as 

semantic annotations (79), however semantic features were not considered in this study. 

In the literature both intra and peritumoral regions are usually evaluated (6,134,135). The 

hypothesis is that high grade gliomas are infiltrative lesions, thus pathological tissues may be 

present in the surrounding white matter, while low grade gliomas are not. Therefore, the 

surrounding edema of LGGs is considered to be pure vasogenic whereas around HGGs there 

should be a combination of vasogenic edema and infiltrating tumor cells along the perivascular 

spaces. Hence all techniques would yield some kind of differentiation based on that. On the 

other hand, a great deal of evidence in the literature supports that there can be great 

discrepancies regarding the peritumoral region especially regarding MRS and DTI 

(113,136,137). Moreover, LGGs often appear without any significant peritumoral parenchyma 

alteration, hence a reproducible estimation would be to compare the actual tumors and evaluate 

whether radiomic techniques such as texture or morphological features may provide extra 
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information. Therefore, we opted to evaluate only the intratumoral area, aiming to identify 

differences regarding diffusive and solid growth patterns of LGGs and HGGs respectively, for 

two reasons: a) The radiomic analysis regarding textural features should be performed on a 

directly comparable and reproducible evaluation area for both tumor types. Hence, in order to 

ensure lack of bias and reproducibility we chose to use the tumor core of both lesions, and b) 

there can be difficult cases where peritumoral evaluation might not be possible, either due to 

areas of poor homogeneity (e.g., air filled cavities like the sinuses or proximity to the skull) or 

maybe even to the lack of cooperation of the patient for the whole duration of the exam 

(especially for MRS). In such cases, the radiologist is left with the evaluation of the intratumoral 

area which is obtained first. So, the hypothesis is that an evaluation of the intratumoral region 

only, should be able to discriminate between tumor grades. 

The proposed clustering segmentation method is based on DTI parametric maps for 

classifying the brain voxels of each patient into groups with similar isotropic and anisotropic 

diffusion properties, accounting for normal and tumorous brain tissue diffusivities. Specifically, 

k-medians clustering (k = 16) is applied on a 2D histogram of p (isotropic) and q (anisotropic) 

components of the diffusion tensor, derived from all patient cohort. Subsequently, Red-Green-

Blue (RGB) color mapping of clusters according to the relative magnitudes of p, q and T2-w 

(from b = 0 s/mm2 DTI volumes) values of the cluster centroids and subsequent colour assigning 

to each individual patient’s brain voxels according to their position in the p-q space, results in 

whole brain segmented maps (Figure 16). These color-coded maps are based on the contouring 

provided by diffusion properties, being robust in displaying tissue microarchitecture, thus 

healthy and tumorous brain tissues present distinctive boundaries. 

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:22:09 EEST - 3.14.141.223



96 

 

Figure 16: Whole brain segmented maps of a LGG (e) and a HGG (j) case, resulting from the k-medians 

clustering of the DTI isotropic (c, h), anisotropic (d, i) and T2-wheighted components feature space (a, 

f). The different colors presented (k=16) correspond to distinct brain tissue diffusion properties, which 

facilitate the precise definition of healthy tissue, tumor core and peritumoral edema. The final 

delineation of tumor core (red outline) is the outcome of the further combination with T1- wheighted 

post-contrast imaging (b, g). 

 

Finally, tumor core segments highlighted by the clustering technique, were delineated on 

colormaps by an experienced radiologist, and stacked up to form tumor VOI masks. 

Subsequently, these VOI masks were applied on the various co-registered multiparametric 
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images of our dataset (Figure 17), resulting in a set of 3D parametric representations of the 

gliomas. 

Each patient’s VOIs taken into account were exactly the same on every tumor core region 

for all the imaging series (i.e., T1-w, T2-w, FLAIR, DTI and DSCE raw) except for CBV and 

spectroscopy. Specifically, the rCBV measurements were calculated from ROIs which were 

placed in regions of the highest perfusion as seen on the CBV color overlay maps, referred as 

the ‘hot spot’ method. The placement of ROIs was carefully performed to avoid large vessels 

based on the combined information from T1-w image after contrast enhancement, and T2-w 

FSE images. The mean rCBV was used for the subsequent analysis. 

For both spectroscopic techniques, a rectangular ROI was localized by using the transverse 

T2-w FLAIR or T2-w FSE, sagittal T1-w FSE and coronal T2-w FSE imaging sequences. 

Spectra for each patient were acquired from the intratumoral, peritumoral and contralateral 

regions of interest. The contralateral normal area was used as the control spectrum. Within the 

tumor, the size and location of the voxel were carefully adjusted to include as much of the solid 

tumor portion as possible, avoiding the inclusion of obvious cyst, hemorrhage, edema, 

calcification, and normal-appearing brain. For each patient, the SV scan was first applied in the 

intratumoral region of interest followed by peritumoral and contralateral normal area. The 2D-

MRSI scan was then performed, including the region as the one previously chosen for the SV 

scan, in order to have a direct metabolite comparison between the two 1H-MRS techniques. 

 

Radiomic feature extraction 

Histogram analysis have considered 12 statistical features acquired from normalized data 

histograms with an in-house MATLAB 2015b (https://www.mathworks.com/) code. Texture 

analysis was implemented in MaZda ver.5 software 

(http://www.eletel.p.lodz.pl/programy/mazda/) (138,139,140), considering 11 GLCM in 5-
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pixel distances and 5 GLRLM features, both calculated on 8-bit quantized images. After the 

acquisition, textural features were averaged over the 13 directions of the 3D image, to obtain 

directionality independence measurements. In summary, the quantitative radiomic features 

extracted from the eight tumor parametric VOIs, regarding p, q, MD, FA, T1w-C, T2w-FSE, 

T2w-FLAIR and volumes of maximum gadolinium uptake of DSCE MRI, along with the four 

metabolic ratios of 1H-MRS (Ch/Cr, NAA/Cr, mI/Cr, Lipids/Cr) and mean rCBV values 

(Figure 17), resulted in a total of 581 distinct attributes for each subject. 

 

Feature selection and classification 

In a recently reported study, Zhang et al. (141) have made comparisons between several feature 

selection and classification algorithms implemented in Weka software 

(https://www.cs.waikato.ac.nz/ml/weka/) (142), regarding a mp-MRI dataset for glioma grade 

classification. According to their results, the combination of Support Vector Machine – 

Recursive Feature Elimination (SVM-RFE) and SVM classification demonstrated superior 

performance regarding the specific task, in comparison with other feature selection and 

classification models. 

Adopting the indices and the basic methodological concepts of the abovementioned study, 

machine learning feature selection and classification were implemented in Weka 3.8 software, 

following four major steps, as they are described below (Figure 17): 

In the beginning, radiomic features were imported in the SVM-RFE algorithm 

(‘SVMattributeEval’ with the ‘Ranker’ search method), which is a wrapping feature selection 

method introduced by Guyon et al. (143). More specifically, SVM-RFE iteratively eliminates 

a set of features by removing the less important one, according to the weighting vectors of an 

SVM classifier. Consequently, feature ranking in a descending order of discriminative 

importance is obtained, according to the elimination sequence. 
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Afterwards, the performances of different well established SVM packages (‘LibLinear’, 

‘LibSVM’, ‘SMO’) were evaluated with ROC analysis, on consecutively SVM-RFE feature 

subsets, to identify the SVM model presenting the best fitting to our dataset. Each classifier was 

repeatedly trained, starting with the 10 higher-ranked features with a stepwise of adding up 10 

features at each iteration, and tested with leave-one-out cross-validation (LOOCV) to avoid 

overfitting by increasing the number of folds. As it was observed, the ‘SMO’ package with 

linear kernel (default), that is an SVM classifier implementing Platt et al. Sequential Minimal 

Optimization (SMO) algorithm (144), achieved the best performance, compared to ‘LibLinear’ 

and ‘LibSVM’. At this step, all the above-mentioned SVM classification packages were 

implemented utilizing Weka 3.8 default hyperparameters. 

Subsequently, the task of determining the optimal feature subset was driven by the 

classification performance of ‘SMO’ classifier through a detailed investigation between 

different numbers of SVM-RFE top ranked features, with a stepwise of adding 1 feature at each 

iteration. As soon as the optimal features where determined, according to the subset presenting 

the highest accuracy values, further investigation through a grid search method (‘GridSearch’) 

aiming in accuracy maximization was utilized for optimizing the hyperparameters of the 

classification model. 

At this point, it should be noted that all data post-processing and analysis steps were 

implemented in state-of-the-art software which have been utilized by many studies (145). In 

addition, the results of our work have been based on the pre-validations of the used software, 

as these were analytically described in their original studies 

(124,128,129,130,131,132,138,139,140,142). 
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Figure 17: The Radiomic Analysis pipeline of the study. In the first two sub-panels a complete sample 

of a patient’s multiparametric MR images and the respective VOIs placement methodologies are 

depicted. Subsequently, the figure presents feature extraction (third sub-panel) and the two steps of 

classification (fourth sub-panel), including (a) the optimal SVM classifier selection and (b) the optimal 

feature subset definition, along with the final differentiation outcome. 
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4.1.3 Results 

The initial classification trials performed in the study have shown that linear kernel ‘SMO’ 

algorithm demonstrated better classification performance (Acc = 90% / AUC = 0.899) in 

comparison with ‘LibLinear’ (Acc = 55% / AUC = 0.500) and ‘LibSVM’ (Acc = 75% / AUC 

= 0.732). The subsequent evaluation of different feature subsets with linear ‘SMO’, has 

nominated the adaptation of 21 SVM-RFE top ranked features, shown in Table 3, which provide 

the highest discriminating ability between LGGs and HGGs (Acc = 95% / Se = 93.9% / Sp = 

94.4% / AUC = 94.4%). Also, Lipids/Cr metabolic ratio was the highest ranked feature. As 

shown in Table 4, all MRI modalities/parameters have contributed to the final feature set, except 

for DTI’s Fractional Anisotropy (FA). In addition, 8 features where histogram-based and 12 

features where textural-based, while GLCM features were much more statistically significant 

than GLRLM (11vs1). 

Finally, the classification model refinement performed by ‘Grid Search’ method, have 

determined a complexity parameter c = 103 for the linear kernel ‘SMO’, demonstrating a total 

performance of 95.5% Accuracy (Acc), 95% Sensitivity (Se), 96% Specificity (Sp) and 95.5% 

Area Under the ROC Curve (AUC). 
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Table 3: SVM-RFE top-ranked feature subset selected for classification 

Rank 

MRI 

modality / 

parameter 

Quantification 

Method 

Radiomic 

Feature 

LGG 

mean ± sd 

HGG 

mean ± sd 

1 1H-MRS - Lipids/Cr 0.90 ± 0.38 3.34 ± 1.17 

2 T1W-C Histogram Skewness 0.17 ± 0.79 0.56 ± 0.21 

3 q Histogram Mean 0.32 ± 0.07 * 0.24 ± 0.05 * 

4 T1W-C Histogram Variance 211.91 ± 38.59 402.46 ± 64.09 

5 MD GLCM 
Inverse Diff. 

Moment 
0.16 ± 0.05 0.11 ± 0.04 

6 q GLCM 
Sum of 

Squares 
115.91 ± 19.98 133.73 ± 15.62 

7 DSCE GLRLM 

Run Length 

Non-

Uniformity 

904.61 ± 460.26 1901.95 ± 1046.79 

8 T1W-C GLCM 

Angular 

Second 

Moment 

2.48 ± 0.90 ** 1.79 ± 0.30 ** 

9 
T2W-

FLAIR 
GLCM 

Difference 

Variance 
47.98 ± 27.73 23.51 ± 11.68 

10 q GLCM Correlation 0.24 ± 0.10 0.17 ± 0.16 

11 q Histogram Median 0.29 ± 0.06 * 0.22 ± 0.04 * 

12 MD GLCM 
Difference 

Entropy 
1.23 ± 0.11 1.35 ± 0.10 

13 
T2W-

FLAIR 
Histogram Variance 174.33 ± 33.33 140.05 ± 36.21 

14 rCBV - Mean 1.68±0.59 7.80±5.13 

15 p GLCM Contrast 94.79 ± 51.75 156.34 ± 63.78 

16 
T2W-

FLAIR 
GLCM 

Sum 

Variance 
171.32 ± 76.73 102.79 ± 37.33 

17 DSCE Histogram Minimum 2406.75 ± 1105 1391.63 ± 852.41 

18 
T2W-

FLAIR 
GLCM 

Difference 

Entropy 
1.25 ± 0.11 1.19 ± 0.10 

19 T2W-FSE Histogram Entropy 5.15 ± 0.39 4.94 ± 0.36 

20 DSCE GLCM 

Angular 

Second 

Moment 

4.97 ± 2.89 ** 2.40 ± 1.38 ** 

21 q GLCM 
GLCM Sum 

Entropy 
1.79 ± 0.05 1.76 ± 0.05 

      

*Mean and Standard error in the units x10-3 mm2/s 

**Mean and Standard error in the units x10-3  

Abbreviations: DCSE, Dynamic Susceptibility Contrast Enhanced; GLCM, Gray-level co-occurrence matrix; GLRLM, 

Gray-level run-length matrix; MD, Mean Diffusivity; MRS, MR Spectroscopy; p, pure isotropy; q, pure anisotropy;   
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Table 4: Summarized results showing the distribution of the significant radiomic features 

among MR modality/parameter and feature extraction method 

       MRI modality / 

                parameter 

 

Features 

Conventional MRI DTI DSCE MRS 

T1W-

C 

T2W-

FSE 

T2W-

Flair 
MD FA p q Raw rCBV 

Lipids/ 

Cr 

Histogram 2 1 1 0 0 0 2 1 

- - 
Textural 

GLCM 1 0 3 2 0 1 3 1 

GLRLM 0 0 0 0 0 0 0 1 

Total Radiomic 

Features 
3 1 4 2 0 1 5 3 1 1 

Abbreviations: Cr, Creatine;  DCSE, Dynamic Susceptibility Contrast Enhanced; DTI, Diffusion Tensor Imaging; FA, 

Fractional Anisotropy; GLCM, Gray-level co-occurrence matrix; GLRLM, Gray-level run-length matrix; MD, Mean 

Diffusivity; rCBV, relative Cerebral Blood Volume; p, pure isotropy; q, pure anisotropy;   

 

4.1.4 Discussion 

In the present study, radiomic analysis on a 3T mp-MRI dataset was performed for the 

classification between low- and high-grade gliomas. The specific implementation utilized a 

semi-automated clustering segmentation technique for delineating tumor core VOIs in all 

available MR parametric volumes, derived from structural MRI sequences (T1w-C, T2w-FSE, 

T2w-FLAIR), DTI (p, q, MD, FA,) and DSCE MRI raw data (maximum gadolinium uptake 

volumes). Subsequently, several quantitative histogram and textural features were calculated 

on each patient’s parametric VOIs. Additional MRS metabolic ratios (NAA/Cr, Cho/Cr, mI/Cr 

and Lipids/Cr) and mean rCBV values, extracted from corresponding tumor VOIs, were 

considered, finally forming a set of 581 quantitative parameters (features) for each individual 

patient, which were inserted into the SVM-RFE in order to acquire feature ranking in a 

descending order of discriminative importance. Subsequently, comparisons performed between 

different SVM classifier implementations resulted in the adoptation of linear kernel SMO 

classifier as the more efficient classification performance on our data set. The classification 
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model utilizing 21 mp-MRI radiomic features, demonstrated 95.5% Accuracy, 95% Sensitivity, 

96% Specificity and 95.5% Area Under ROC Curve in differentiating LGG vs HGG. 

The justification for implementing the specific SVM feature selection and classification 

methods on our mp-MRI dataset, is based on the predictive robustness indicated by similar 

studies regarding glioma grading in the past. In a computer-aided-diagnostic approach, Chen et 

al. (146) utilized SVM-RFE for selecting textural features, derived from CNN-based segments 

which were based on conventional MRI data only, and XGBoost classification, presenting a 

91.27% accuracy. On the other hand, Citak-Er et al. (122) have proposed a sophisticated SVM-

RFE implementation, in which different tumor ROIs mean values were analyzed with the 

addition of advanced techniques (1H-MRS, DSCE) but without a texture analysis approach as 

in our work. Their results utilizing the SVM-RFE outcome for training a linear SVM classifier 

yielded 93% classification accuracy. More importantly, Tian et al. (123) in a very recent study 

(2018), following their initial approach (141), proposed a multi parametric, MRI glioma grading 

classification scheme including advanced techniques such as ASL perfusion imaging, which 

was based on SVM-RFE and RBF kernelized SVM. Contrary to Citak-Er et al. (122), they have 

utilized a texture analysis approach similar to ours, showing 96% accuracy and 98% AUC 

values. Hence, it is evident that the addition of advanced MRI techniques and multiparametric 

texture analysis data, substantially improves the classification performance. In fact, when 

applying the same classification procedure in this data set, excluding the advanced quantitative 

parameters the performance dropped to 90% Accuracy, 90% Sensitivity, 97% Specificity and 

89% AUC. 

Even though Tian’s et al. (123) study presents slightly better performance outcomes 

compared to our study, our model utilizes a significantly smaller number of radiomic features 

imported into the SVM classifier (21 vs. 28), increasing its relative efficiency. Since the two 

studies follow similar feature extraction, selection, and classification methodologies, it is 

obvious that our study’s good performance should be attributed to the addition of the micro-
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architectural and metabolic neuroimaging data utilized, i.e., Diffusion Tensor and 

Spectroscopic imaging, not included in Tian’s et al. study. As it is depicted in Table 3, in our 

study an important number of features extracted from these techniques, have shown high 

discriminative ability, as this is already investigated and confirmed in previous studies 

(113,147). 

More specifically DTI and MRS as additional quantitative parameters have already proven 

their ability in conventional analysis techniques. Regarding diffusion imaging, several previous 

studies have reported the value of textural features of Apparent Diffusion Coefficient (ADC) 

maps as potential biomarkers for glioma grade differentiation (105,106,148,149). In a more 

recent study, Raja et al. (150) investigated the contribution of Diffusion Tensor and Diffusion 

Kurtosis Imaging (DKI) in grading of gliomas. Their texture-based features have shown 

significant differences regarding several DTI parametric maps, except for FA, which comes in 

agreement with the results of our study. However, we have found that the anisotropic diffusion 

tensor component, as expressed by the pure anisotropy parameter (q) has proven to be of great 

importance (5 out of the 21 features were derived for q maps) and could play an essential role 

in glioma heterogeneity assessment. 

In addition to DTI, MR spectroscopy is a powerful technique for evaluating brain tumor 

metabolic processes with an increased diagnostic impact. Many studies support the potential of 

MRS metabolic ratios in glioma grade differentiation (108,110,111,151), especially when 

combined with other advanced techniques. Even though a statistically significant difference for 

the specific ratios was not observed in our study, which might be expected since we are 

comparing HGGs vs LGGs (152), however the MRS derived Lipids/Cr ratio was the highest 

ranked feature compared to the total number of the radiomic features utilized. Consequently, 

the lipids concentration in glioma’s tumor core, which is proportional to the extent of tumor’s 

necrotic component, may serve as a robust imaging biomarker in differentiating between Low- 

and High-grade gliomas. 
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Perfusion imaging has evolved to a clinical tool of high importance in characterizing tumor 

malignancy status due to its increased correlation with cancer proliferation and progression. As 

shown in Table 3 a significant number of features imported to the classification model (7 out 

21), are derived from perfusion MR techniques. These results come in agreement with 

previously reported studies (107,140), which insist that perfusion MRI may efficiently capture 

the intratumor heterogeneity, regarding angiogenesis and vascularity of gliomas. Also, 

according to the literature an additive value is obtained when radiomic analysis is employed on 

either conventional or advanced contrast enhancement techniques (102,103,104,153). 

However, as it has been previously reported (107) the ‘hot spot’ segmentation method that we 

utilized in CBV maps along with the subsequent inability for radiomic quantification, might 

have restricted the further contribution of the advanced DSCE imaging technique to the 

classification task. The recent technological advancements in the field of medical imaging have 

given rise to the incorporation of innovative methodologies regarding tumor phenotypic 

characteristics quantification and multiparametric data analysis which as shown by our results 

may aid in improving the clinical decision support process. Besides the current technical 

complexity challenges of radiomic analysis, further attention should be paid in utilizing the 

diagnostic outcome in a reliable manner (79). To this scope, it is evident that all methods of 

high-throughput analysis must consider well-established imaging techniques, which have been 

strongly validated upon various clinical hypotheses and underlying pathophysiology to 

guarantee their measurement accuracy and valid contribution. An equally important 

methodological step in such an analysis is to ensure that the involved medical personnel can 

ensure MR image quality, consistency, and accuracy by providing minimum quality standards 

in the inclusion or exclusion of the evaluated radiomic parameters. 

The main limitation of this study regards to the small patient sample size utilized, which 

possibly would have implied bias to the advanced analysis that was conducted. In addition, the 

sample size limitation was the main reason for the exclusion of the gliomas sub-grades 
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differentiation task. In a future study of evaluating multiparametric MRI for glioma grade 

differentiation, it would be interesting to consider the inclusion of additional MR techniques 

with promising results (e.g., DKI, ASL). Also, except for MR modalities, an investigation of 

additional shape and textural radiomic features and genomic data (i.e., IDH mutation, etc) 

should be performed, to further assess their utility. 

 

4.1.5 Conclusion 

In conclusion, the current study presents a comprehensive methodological perspective for 

evaluating MRI derived phenotypic characteristics for LGG vs HGG characterization, based on 

multiparametric MR neuroimaging data and radiomic analysis methods. It shows that radiomic 

features derived from mp-MRI can be an important tool in an accurate LGG vs HGG 

differentiation even in this limited patient population. 
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Chapter 5 

 

 

5.1 Evaluation of 3T multiparametric MRI with radiomic analysis for 

differentiating benign and malignant breast lesions 

 

5.1.1 Aims and Objectives 

Female breast cancer was the leading cause of global cancer incidence in 2020 and the fifth in 

cancer mortality rates among both sexes worldwide (154). Over the past decades effective 

breast cancer prognosis and patients’ survival rates have increased due to the improvements 

and availability of innovative screening technologies (155). MRI of the breast has emerged as 

an exceptionally powerful technique, with increased sensitivity in breast cancer detection, even 

compared to mammography and ultrasonography (156). Additionally, the simultaneous 

evaluation of different MRI sequences, such as Dynamic Contrast Enhance (DCE) and DWI, 

referred here as mpMRI, can be used to assess a multitude of morphological and functional 

cancer-related processes, related to breast tumor development, progression, and response to 

treatment (157). Currently, mpMRI has a pivotal role in differentiating benign and malignant 

breast lesions that present highly overlapping enhancement patterns, non-invasively (156). 

However, despite the potential to obviate unnecessary biopsies and follow-up examinations of 

benign tumors, mpMRI-based breast tumor differentiation still has increased false positive 

findings (158). 
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Breast MRI diagnosis has been further enriched by computer-aided image analysis, to assist 

the radiologists in leveraging the substantial quantitative imaging information and assessing 

tumor profile (159). The spread of “-omics” strategies has provided a novel conceptual 

framework, termed Radiomics, aiming at the extraction of immense numbers of imaging 

features, that can serve as imaging biomarkers. Especially, when coupled with sophisticated 

supervised ML algorithms, these data can be used to construct clinically significant diagnostic 

and predictive models for assisting personalized care of oncologic patients (160,161).  

In this context, a few previous studies have developed radiomic models with SVM for 

classifying breast tumors in mpMRI datasets, demonstrating high predictive efficiencies in 

terms of AUC, ranging from 0.85 to 0.92 (162,163,164,165). In another study (166), four 

different classification algorithms, i.e., SVM, Naïve Bayes, k-Nearest Neighbours, and Logistic 

Regression, were evaluated, demonstrating comparable performances with an average 

AUC=0.93. Recently, a newly designed classification model, the difference-weighted local 

hyperplane has been proposed (167), that have shown a performance of AUC=0.90 in 

differentiating benign vs malignant lesions. Although very promising, the difficulty in 

collecting mpMRI datasets of adequate size, as well as the inherent complexity of mpMRI 

biomarkers, are hampering the capabilities of the proposed models, in terms of performance 

and generalizability. 

Recently, Ensemble Learning methods that combine the predictions of multiple classifiers 

to reach better performance than a single estimator does, have gained interest in radiomics 

research (168). These strategies have proven very useful in modelling heterogeneous datasets 

of any size and complexity (160), while also excel at trading off the approximation and 

estimation errors compared to the more conventional ML approaches (169). Particularly, 

Boosting Ensemble Classifiers have shown to outperform other classification techniques within 

breast mpMRI radiomics, for molecular subtypes recognition (170,171), prediction of sentinel 

lymph node metastasis (172), and early prediction of treatment response and survival outcomes 
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(173). Additionally, their predictive efficiency for differentiating benign from malignant breast 

lesions has shown promise within DCE MRI radiomics alone in a recent study (AUC=0.96) 

(174), but this have not yet been evaluated within mpMRI datasets. 

The current study sought to investigate the optimization of the aforementioned radiomics 

approaches in terms of evaluating the performance of four popular implementations of Decision 

Trees (DT) Boosting classifiers, namely Adaptive Boosting (AdaBoost) (175), Gradient 

Boosting (GB) (176), Extreme Gradient Boosting (XGBoost) (177) and Light Gradient 

Boosting Machine (LightGBM) (178), for breast cancer classification with mp-MRI radiomic 

features. A feature selection process based on the Boruta algorithm, Hierarchical Clustering 

(HC) on Spearman’s rank correlation coefficients between features and RF classification was 

adopted, for determining all relevant and non-redundant feature subset, to improve the 

diagnostic efficiency of the classification models. For reference, an SVM classifier was also 

trained and evaluated on the same feature subset to allow performance comparisons, since this 

algorithm represents the current state-of-the-art ML method in breast mpMRI diagnostic 

radiomic models. To our knowledge this is the first study presenting the value of Ensemble 

Learning methods within multiparametric MRI radiomics for breast cancer classification. 

 

5.1.2 Material and Methods 

 

Patient Cohort and MRI acquisition 

The reporting of this study conforms to the STROBE checklist (179), according to the relevant 

Equator Network reporting guidelines (https://www.equator-network.org/reporting-

guidelines/). This retrospective study was granted approval by the Internal Ethics Committee 

of the Department of Medicine of the University of Thessaly (approval number: 195). A sample 

of breast MRI data was obtained from a cohort of 293 female patients that have been 
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consecutively examined in our institution the past five years and gave written informed consent 

for their participation in the study. The inclusion criteria were mass-like lesions detected 

on mammography and/or ultrasonography prior to any type of biopsy, with histological status 

verification from core needle biopsy or surgical excision, that was considered as the gold-

standard of diagnosis. The exclusion criteria for this study were receiving of neoadjuvant 

chemotherapy or radiation therapy, pregnancy/breastfeeding, presence of any implants or 

metallic clips from previous surgical procedures and general contraindications to MRI scanning 

or to the administration of contrast agents. Breast lesions with a maximum diameter less than 

1.0 cm in any direction were also excluded to reduce potential bias in radiomic feature 

measurements. 

MR images were acquired on a 3.0 T MRI scanner (GE Healthcare, Signa HDx, 

Milwaukee, WI, USA) with patients placed in the prone position, using a dedicated phased 

array 8-channel breast coil. All patients underwent the same imaging protocol including 

conventional breast MRI with DCE and DWI. Each conventional MRI examination included 

scanning of the two breasts. Breast DCE-MRI protocol consisted of an axial T2-w FSE 

sequence (T2-FSE), ((TR/TE) = 3600/100 ms, flip angle=90°, matrix size = 512x512, slice 

thickness=4.0 mm), an axial Short Tau Inversion Recovery sequence (STIR), 

(TR/TE=3900/90 ms, flip angle=90°, matrix size = 512x512, slice thickness=4.0 mm), and a 

3D T1-w VIBRANT dynamic sequence with fat-suppression (TR/TE = 4.94/2.1 ms, flip angle 

= 10°, matrix size = 512x512, isotropic voxel size of 1 mm3) which was applied before and five 

times after the intravenous (IV) injection of a Gadolinium-based contrast agent with a 10 second 

timing delay, using an automatic injector system. The DWI protocol consisted of a DWI 

sequence which was acquired before injection of the contrast medium (TR/TE = 

6000 ms/90 ms, flip angle = 90°, matrix size = 256x256, slice thickness = 4.0 mm, and b-values 

of 0 and 850 s/mm2). 
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Image post-acquisition processing and Feature Extraction 

The DCE-MRI volumes that were acquired 2-3 minutes after contrast agent administration and 

present the maximum enhancement between the different post-contrast time frames, were 

included in the analysis. ADC maps were calculated the from DWI images with two b-values 

(0 and 850 s/mm2) using the mono-exponential model fitting. Tumor contours in all consecutive 

slices in the three parametric datasets (DCE, T2-w, ADC), were manually drawn by a 

radiologist (20 years of experience), and the corresponding 3D volume masks of tumor masses 

were generated. Since the precision in tumor contouring may crucially affect the radiomic 

analysis, a second radiologist (23 years of experience) was recruited to provide independent 

segments for validation. The Dice coefficient implemented with an in-house python code was 

used to assess overlapping between segments. In case of segments with poor overlapping 

(Dice<0.85) a consensus between the two radiologists was reached for standardizing the 

delineation. 

Radiomic feature extraction was implemented in Python 3.6 with the Pyradiomics 

library (100) which complies with the Imaging Biomarkers Standardization Initiative guidelines 

(IBSI) (180). Prior to feature extraction, outliers from pixel values distributions, as determined 

by the μ±3σ criterion, were excluded. Radiomic feature extraction was applied on the original 

parametric images without any filtering and 19 3D Shape-based, 16 First Order Statistics, 10 

GLCM, 24 GLRLM, 16 Gray Level Size Zone Matrix (GLSZM), 5 Neighbouring Gray Tone 

Difference Matrix (NGTDM) and 14 Gray Level Dependence Matrix (GLDM) features were 

calculated, resulting in a total of 293 features for the whole imaging set of each subject. Since 

shape features’ calculation relies solely on imaging information of tumor margins and are 

independent of the whole tumor voxel intensity histogram, the extraction of shape features was 

applied only in DCE-MRI sequence, that presents an isotropic pixel spacing acquisition. In this 

way, we avoided to include redundant and misleading information regarding the tumor shape 

in the analysis. Additionally, the calculation of texture features utilized histogram binning with 
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a fixed bin count of 64 bits-per-pixel for GLCM, GLDM, GLRLM and GLSZM features, and 

32 bits-per-pixel for NGTDM features according to the Pyradiomics guidelines. 

 

Statistical Analyses 

A filter-based method was utilized to identify and exclude the non-informative features by 

assessing their individual discriminatory power. Specifically, univariate parametric (Student’s 

t-test) or non-parametric (Mann-Whitney U-test) statistical tests (a=0.05) were applied on each 

feature separately to assess statistically significantly differences between the corresponding 

distributions of benign and malignant cases. The selection of the appropriate statistical test was 

made according to the outcome of the Shapiro-Wilk test for normality (a=0.05). With this filter-

based approach we achieved to reduce the dimensionality of the initial feature space to increase 

the efficiency of the subsequent selection algorithm. A z-score transformation was applied to 

the remaining features, to standardize their values on the same scale. 

 

Feature Selection  

Feature selection processes were implemented in Python 3.6 using numpy [https://numpy.org], 

scipy [https://scipy.org], and scikit-learn [https://scikit-learn.org] libraries, and the Boruta_py 

package obtained from [https://github.com/scikit-learn-contrib/boruta_py]. The graphics were 

generated with the matplotlib library (181).  

The Boruta algorithm which is a wrapper method around a RF classifier was implemented 

for the feature selection process (182). In principle, the Boruta method, generates artificial 

features by shuffling the original feature values across subjects. The original and artificial 

features are combined and evaluated with the RF classifier. Finally, the importance of artificial 

features is used as reference for selecting original features according to the RF permutation 

importance measure. By default, the Boruta algorithm generates two subsets of relevant 
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features, one presenting high and the other intermediate importance, respectively. Here, only 

the subset of highly important features was kept for further analysis. However, as is the case 

with the most wrapper feature selection techniques, Boruta does not handle feature 

multicollinearity, thus redundant information tends to be present in the final subset, and this 

might compromise the subsequent classification performance. Two previous studies have 

utilized additional steps of collinearity analysis to identify and exclude redundant features 

(183,184). In the specific implementation adopted here, HC with Ward’s linkage method was 

applied to a cross-correlation matrix of Spearman’s rank correlation coefficients, between the 

highly important features selected with Boruta. In each cluster of features with high 

dependency, defined as those having Spearman rho values above 0.6, a new RF classifier was 

applied to rank the within-cluster feature importance, according to the RF Gini’s Index. The 

most important feature per cluster was retained to form the final feature subset. 

 

Classification Modelling and Evaluation 

Python implementations for XGBoost and LightGBM were obtained from their original sources 

[https://github.com/dmlc/xgboost], [https://github.com/microsoft/LightGBM] and used 

through the scikit-learn Application Programming Interface (API), which is a common 

framework for ML applications (185). 

The final feature subset was used to train the GB, AdaBoost, XGBoost, LightGBM and 

SVM classifiers in differentiating benign from malignant breast lesions. All four boosting 

classification algorithms have shared the same hyperparameters, i.e., number of trees = 1000, 

max depth = 3, learning rate = 0.1 and the ‘early stopping’ option enabled. SVM classifier was 

built with scikit-learn library default hyperparameters, i.e., Radial Basis Kernel, ’scale’ option 

for kernel coefficient gamma, and regularization parameter C=1. The ‘.632+ bootstrap’ 

validation method (186) as implemented in mlxtend python package 

(http://rasbt.github.io/mlxtend/) and ROC analysis were employed to validate the models’ 
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performance and obtain the AUC evaluation metric. The resulting classification scores of Acc, 

Se, Sp and AUC were averaged across 300 bootstraps. Additionally, the DeLong’s test was 

utilized to identify pairwise statistically significant differences between the AUC values of the 

models (187). The complete workflow of the radiomic analysis implemented in this study is 

presented in Figure 18. 

 

 

Figure 18: The radiomic analysis workflow. 

 

 

5.1.3 Results 

From the initially available patient cohort, a sample of 140 patients with all required data 

available that also met the inclusion criteria, was included, as shown in the flow diagram (Figure 

19). In case where multiple lesions were present in the same or the opposite breast, only a single 

lesion per subject was selected, finally conforming a balanced dataset of 70 benign and 70 

malignant lesions that was considered for the analysis. 
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Figure 19: Flow diagram of the study participants selection. 

 

Demographic and clinical characteristics of the sample utilized are presented in Table 5. 

Specifically, the mean age was 44.6 ± 11.8 for the benign and 57.4 ± 12.5 for the malignant 

cases. The mean volume size was 1.8 ± 1.6 cm3 and 4.0 ± 2.4 cm3 for benign and malignant 

lesions, respectively. Benign lesions were of type Fibroadenomas according to the 

histopathology examination.  The radiologic assessment had assigned 48/70 lesions to type 2, 

19/70 to type 3 and 3/70 to type 4 according to BI-RADS categorization of the American 

College of Radiology (ACR) (188). The malignant lesion sample consisted of 53 Invasive 

Ductal Carcinomas (IDCs,) 12 Invasive Lobular Carcinomas (ILCs), 4 Ductal Carcinoma In-

Situ (DCIS) and 1 Lobular Carcinoma In-Situ (LCIS), while 10/70 were found to be of 

histological grade I, 39/70 of histological grade II and 21/70 of histological grade III.  
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Table 5: Demographic and clinical characteristics of the patient sample 

 Benign Malignant 

Patients (N) 70 females (50%) 70 females (50%) 

Lesions (N) 70 (50%) 70 (50%) 

Age (mean ± std) 44.6 ± 11.8 57.4 ± 12.5 

Volume in cm3 (mean ± std) 1.8 ± 1.6 4.0 ± 2.4 

Histological type (N) 

FA 

IDC 

ILC 

DCIS 

LCIS 

 

70 (100%) 

 

 

53 (76%) 

12 (17%) 

4 (6%) 

1 (1%) 

Histological grade 

I 

II 

III 

 

 

10 (14%) 

39 (56%) 

21 (30%) 

MRI BI-RADS categories 

2 

3 

4 

5 

 

48 (69%) 

19 (27%) 

3 (4%) 

 

 

 

14 (20%) 

56 (80%) 

Abbreviations: FA, Fibroadenoma; IDC, Invasive Ductal Carcinoma; ILC, Invasive Lobular Carcinoma; DCIS, Ductal 

Carcinoma In-Situ; LCIS, Lobular Carcinoma In-Situ 

 

The radiologic assessment had assigned 14/70 and 56/70 to MRI BI-RADS categories 4 and 5, 

respectively. 

Manual segmentations of the lesions had presented a high overlapping among the two 

radiologists (raters), denoted by an average Dice coefficient of 0.88±0.09. 

The parametric and non-parametric statistical tests have revealed 82 out of 293 total 

features to be non-informative (p>0.05) and these were excluded from the analysis. Out of the 

remaining 211 features, the Boruta algorithm have nominated 32 highly important features, i.e., 

10 from shape, 8 from DCE histogram, 5 from DCE texture, 8 from ADC histogram and 1 from 

ADC texture presented in Table 6. 

Interestingly, we observed that T2-w based features were totally absent from this highly 

important feature subset, while ADC histogram features were the most important among the 
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remaining features (z-scores = 1.3±0.60 – 7.0±2.00). Figure 20 presents boxplots of each 

feature’s importance (z-score) distribution obtained from the RF permutations. 

 

 

 

Figure 20: Feature importance in terms of z-score distributions of RF permutations for the highly 

important feature subset nominated by Boruta. 
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Table 6: Boruta selected features 

Index Feature name 

 

Importance 

(mean±std) 

 

0 original_shape_LeastAxisLength 1.43±0.76 

1 original_shape_Maximum2DDiameterColumn 2.14±0.80 

2 original_shape_Maximum2DDiameterRow 1.52±0.82 

3 original_shape_Maximum2DDiameterSlice 2.22±1.10 

4 original_shape_Maximum3DDiameter 0.94±0.54 

5 original_shape_MeshVolume 1.65±0.63 

6 original_shape_MinorAxisLength 1.38±0.58 

7 original_shape_Sphericity 2.46±0.72 

8 original_shape_SurfaceArea 3.51±1.37 

9 original_shape_VoxelVolume 1.50±0.58 

10 DCE_original_firstorder_90Percentile 0.82±0.36 

11 DCE_original_firstorder_Energy 1.33±0.61 

12 DCE_original_firstorder_Maximum 0.89±0.40 

13 DCE_original_firstorder_Mean 0.94±0.44 

14 DCE_original_firstorder_Median 0.90±0.37 

15 DCE_original_firstorder_RootMeanSquared 0.87±0.43 

16 DCE_original_firstorder_Skewness 0.72±0.35 

17 DCE_original_firstorder_TotalEnergy 1.81±0.70 

18 DCE_original_gldm_DependenceNonUniformity 1.06±0.58 

19 DCE_original_glrlm_GrayLevelNonUniformity 0.70±0.44 

20 DCE_original_glrlm_RunLengthNonUniformity 1.35±0.60 

21 DCE_original_glszm_GrayLevelNonUniformity 1.12±0.48 

22 DCE_original_glszm_SizeZoneNonUniformity 1.55±0.49 

23 ADC_original_firstorder_10Percentile 4.91±1.75 

24 ADC_original_firstorder_90Percentile 5.36±1.58 

25 ADC_original_firstorder_Maximum 2.74±0.87 

26 ADC_original_firstorder_Mean 6.65±2.18 

27 ADC_original_firstorder_Median 6.22±1.59 

28 ADC_original_firstorder_Minimum 3.86±1.41 

29 ADC_original_firstorder_RootMeanSquared 7.10±1.98 

30 ADC_original_firstorder_TotalEnergy 1.26±0.59 

31 ADC_original_ngtdm_Busyness 0.67±0.45 

Abbreviations: DCE, Dynamic Contrast Enhanced; ADC, Apparent Diffusion Coefficient; std, standard deviation 
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The pairwise Spearman’s rank correlation coefficients have revealed several statistical 

dependencies (rho=0.60 to 0.98), especially between shape and texture features of DCE and 

DWI (Figure 21). Histogram features have shown smaller correlation values with either shape 

or textural features. The second step of Boruta selected subsets elimination with HC and RF 

importance resulted in the determination of a minimum subset, consisting of 5 features, namely 

Sphericity, Surface Area, DCE_median, DCE_skewness, ADC_mean. 

 

 

Figure 21: The Hierarchical Clustering dendrogram (a) illustrating clusters arrangement as informed by 

the correlation plot (b) of Boruta selected features.  
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Average classification metrics of the different models, in terms of mean and 95% 

Confidence Intervals (CI) across the bootstrap validation subsamples, are presented in Table 7. 

Regarding Boosting Ensemble methods, it was observed that XGboost achieved the highest 

accuracy (Acc=0.88 [95% CI 0.84-0.92]) and overall performance (AUC=0.95 [95% CI 0.91-

0.99]) followed by LGBM (Acc=0.87 [95% CI 0.83-0.91]/ AUC=0.94 [95% CI 0.90-0.98]), 

Adaboost (Acc=0.83 [95% CI 0.80-0.86] / AUC=0.90 [95% CI 0.87-0.93]), and GB (Acc=0.83 

[95% CI 0.80-0.86] / AUC=0.89 [95% CI 0.86-0.92]). According to the pairwise statistical 

comparisons that were performed between the AUC values (Table 8), the observed 

interindividual differences in overall performances of XGBoost and LGBM were statistically 

significantly higher than AdaBoost and GB. The SVM classification model has yielded 

statistically significantly lower performance (Acc=0.84 [95% CI 0.80-0.88] / AUC=0.88 [95% 

CI 0.84-0.92]) than XGBoost and LGBM, but this was found statistically comparable with the 

performances demonstrated by AdaBoost and GB (Table 8). XGBoost has also achieved the 

highest sensitivity (Se=0.91 [95% CI 0.85-0.97]) and specificity (Sp=0.90 [95% CI 0.82-0.98]). 

Sensitivity and specificity metrics for the rest of the classification models were: LGBM Se=0.90 

[95% CI 0.84-0.96] / Sp=0.89 [95% CI 0.81-0.97], AdaBoost Se=0.83 [95% CI 0.78-0.88] / 

Sp=0.82 [95% CI 0.75-0.89], GB Se=0.82 [95% CI 0.77-0.87] / Sp=0.80 [95% CI 0.73-0.87], 

SVM Se=0.80 [95% CI 0.77-0.88] / Sp=79 [95% CI 0.70-0.88]. Figure 22 presents the ROC 

curves plots of the classification models. 
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Table 7: Classification model results (mean [95% CI]) 

 XGBoost LGBM AdaBoost GB SVM 

Acc 
0.88  

[0.84-0.92] 

0.87  

[0.83-0.91] 

0.83  

[0.80-0.86] 

0.83  

[0.80-0.86] 

0.84  

[0.80-0.88] 

Se 
0.91  

[0.85-0.97] 

0.90  

[0.84-0.96] 

0.83  

[0.78-0.88] 

0.82  

[0.77-0.87] 

0.80  

[0.77-0.88] 

Sp 
0.90  

[0.82-0.98] 

0.89  

[0.81-0.97] 

0.82  

[0.75-0.89] 

0.80  

[0.73-0.87] 

0.79  

[0.70-0.88] 

AUC 
0.95  

[0.91-0.99] 

0.94  

[0.90-0.98] 

0.90  

[0.87-0.93] 

0.89  

[0.86-0.92] 

0.88  

[0.84-0.92] 

Abbreviations: Acc, Accuracy;  AUC, Area Under Curve; Se, Sensitivity, Sp, Specificity 

 

 

Table 8: p-values of the pairwise statistical comparisons of the classification models AUC 

values derived from DeLong’s test. 

 XGBoost LGBM AdaBoost GB SVM 

XGBoost  0.77 0.029 0.022 0.017 

LGBM   0.032 0.026 0.020 

AdaBoost    0.93 0.71 

GB     0.81 

SVM      
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Figure 22: Receiver operating characteristic (ROC) curves of the classification models. 

 

 

5.1.4 Discussion 

In this study we investigate the utility of a novel radiomic analysis pipeline, based on Ensemble 

Learning, for increasing the mpMRI predictive capability towards differentiation of benign and 

malignant breast lesions. A feature selection process, based on Random Forest classification 

with the Boruta wrapper and hierarchical clustering on Spearman’s rank correlation coefficients 

has nominated 5 radiomic features from shape, DCE and DWI as being the most important for 

breast cancer differentiation. Four DT Boosting Ensembles were evaluated with bootstrapping 

validation and their performances were compared with an SVM classification model. XGBoost 

and LGBM achieved statistically significantly higher AUC values, compared to the 

performances of the rest of the methods. Overall, this study provides novel evidence regarding 

the robustness of the newer implementations of Boosting ensemble classification methods, 

which hold potential to enhance breast cancer precision medicine with minimum invasive 

approaches. 
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Differentiation of benign and malignant breast lesions is an important step for breast cancer 

management, since it determines the therapeutic plan that the clinicians will follow, ranging 

from active surveillance to chemotherapy/radiotherapy and tumor excision (155). MRI of the 

breast has been increasingly recognized as a powerful diagnostic tool. The American College 

of Radiology has established the BI-RADS MRI lexicon that provides standardized assessment 

and reporting of MRI findings and a classification system to determine the probability of 

malignancy and biopsy recommendations. Currently, MRI BI-RADS incorporates 

morphological and functional descriptors for DCE-MRI and T2-w, which constitute the typical 

MRI protocol (156). However, due to an overlap in imaging descriptors between benign and 

malignant tumors the standard MRI protocol presents moderate specificity, thus many BI-

RADS 4 and 5 biopsies might be misdiagnosed (158). Notably, the incorporation of DWI ADC 

mapping has been shown to significantly improve specificity which may reduce unnecessary 

biopsies and invasive diagnostic procedures (189). In a recent meta-analysis of 22 studies, it 

was shown that the pooled specificity increased to 0.85 with the inclusion of DWI parameters 

compared to the pooled specificity of 0.71 for the DCE-MRI alone (190). 

Previous studies have demonstrated that breast mpMRI radiomic features, representing a 

quantitative description of a specific geometrical or physical property of the image, hold great 

potential for overcoming the caveats of the subjective qualitative radiologic assessment (191). 

Indeed, these features derived from tumor shape, texture, kinetics, etc, encode both simple 

patterns within medical images but also many higher order patterns not apparent to the human 

eye (192). More importantly, radiomic features can be input to supervised machine learning 

models that hold diagnostic and predictive power for automating the quantitative evaluation 

towards further reduction of the false positive findings (165,193). However, not all of the 

extracted features are important, therefore a feature selection technique is needed within 

radiomics analysis to determine the most tumor subtype discriminative and biologically 

relevant features to construct robust classification models (161). 
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In this study we have used Boruta, which is a wrapper algorithm around a Random Forest 

classifier. The highly important feature subset nominated by Boruta consisted of shape, 

histogram and textural features from DCE and ADC. Notably, ADC features were the most 

important for the specific classification task, while none of T2-w features were found to 

participate in the selected subset. We consider this an important finding, in line with previous 

evidence expanding the findings of conventional evaluation to radiomic analysis, where 

quantitative measurements of ADC maps were reported to have more impact on classification 

performance than those of T2-w (165,194). Generally, Boruta has proven to be the most robust 

all-relevant feature selection strategy in gene selection (195), while very recently this algorithm 

has been successfully used in radiomics studies (183,184), but not yet in breast MRI diagnosis. 

Additionally, in a recent radiogenomics study (196) it was shown to outperform other robust 

feature selection ensemble methods, such as the Minimum Redundancy Maximum Relevance 

(MRMR) algorithm. 

Since Boruta is an all-relevant feature selection method, we additionally implemented steps 

of Hierarchical Clustering on Spearman’s rank correlation coefficients and Random Forest 

classification as published elsewhere (183,184), to exclude redundant features and form the 

final feature subset for classification. Interestingly, shape features were found highly correlated 

with texture features and outperformed them, thus, only shape and 1st order histogram features 

were included in the final subset. 

Boosting models’ training with the specific radiomic signature have demonstrated high 

performances of XGBoost (AUC=0.95) and LGBM (AUC=0.94) algorithms in benign vs 

malignant breast lesions differentiation. Of note, the AUC values between the two models were 

not found statistically different, however, despite the apparent algorithmic similarities, these 

models may present substantial variations in classification accuracy, as well as processing time, 

in larger datasets (178). Adaboost and GB were found to have significantly lower AUC values 

of 0.90 and 0.89, respectively. Generally, these findings come in agreement with a growing 
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body of recent literature, suggesting the unique efficiency of Boosting ensembles either for 

classifying conventional radiomic features (190,191), imaging features extracted from 

Convolutional Neural Networks (CNN) (173,197), or both (198). Additionally, they are adding 

more credence to the existing reports within various breast MRI radiomics paradigms 

(170,171,172,173). Regarding breast MRI diagnosis, in a previously proposed CADx based on 

ensemble methods for feature selection and classification, AdaBoost has achieved a high 

performance (AUC=0.96) in differentiating malignant and benign lesions by means of DCE 

MRI radiomic features (174). Beyond the exploitation of ensemble learning methods, the 

authors have also made use of wavelet features. As it was previously demonstrated, the wavelet 

transformation of medical images holds potential for capturing various spatial frequency texture 

patterns within heterogeneous breast lesion regions (199). This might partially explain the high 

performance observed in their study, although the model was evaluated on DCE-MRI alone and 

utilized the AdaBoost algorithm which has achieved a significantly lower performance in our 

study. Besides, the additional use of the DWI sequence in our study has resulted in the adoption 

of a minimum set of clinically perceivable radiomic features which facilitates the enhanced 

interpretability of the specific diagnostic model. 

Additionally, XGBoost and LGBM models were found to outperform the SVM classifier 

(AUC=0.88), which has been a commonly utilized ML classification strategy in breast MRI 

radiomics. Specifically, in the studies of Damiel Naranjo et al. (162), Parekh et al. (163) and 

Hu et al. (164), SVM classifiers were utilized to differentiate breast lesions over mpMRI 

datasets consisting of DCE, DWI and T2-w images, with all models achieving similar 

performances of AUC=0.85, AUC=0.87 and AUC=0.87, respectively. Cai et al. (166) have 

compared four different classification algorithms, i.e., SVM, Naïve Bayes, k-Nearest 

Neighbours, and Logistic Regression. SVM has demonstrated a high performance (AUC = 

0.91), although this was not found significantly different from the other classifiers utilized in 

their study. Further evidence regarding SVM capability for breast cancer diagnosis has been 
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presented by Zhang et al. (165), where their model achieved a performance of 0.92. However, 

it is worth to mention that the authors have utilized advanced pharmacokinetic parameters of 

DCE MRI and Diffusion Kurtosis Imaging (DKI) in their radiomic signature, while in the 

present study a more conventional mpMRI protocol was available, and thus we might didn’t 

observed such a high performance for the SVM model. Considering the above-mentioned 

findings and with respect to any particular methodological differences between the studies, it is 

evident that ensemble learning classification holds great potential for overcoming the limited 

efficacy of conventional ML models towards increasing the breast mpMRI diagnostic accuracy. 

Our study has some limitations. Specifically, only one mpMRI dataset of restricted size 

was available to train and test our classification models, while an additional external 

independent validation dataset would allow to evaluate their generalization on new ‘unseen’ 

data. Additionally, no power calculation for estimating the sample size selected for the study 

was done. Since this was an exploratory analysis investigating the utility of Boosting algorithms 

in breast cancer classification, reproducibility analysis of segmentation and feature extraction 

procedures was not performed. Furthermore, due to the abbreviated nature of the mpMRI 

protocol in our institution, the inclusion of DCE kinetic features or other MRI sequences (e.g., 

Diffusion Tensor Imaging, Diffusion Kurtosis Imaging, MR Spectroscopy, etc), previously 

demonstrated to have a significant impact in breast cancer diagnosis (8,200,201), was not 

feasible. 

 

5.1.5 Conclusion 

In conclusion, mpMRI of the breast holds potential for accurate differentiation of benign and 

malignant breast lesions, to reduce invasive diagnostic procedures. The integration of Ensemble 

Learning methods within mpMRI radiomics could provide valuable precise quantification of 

the diagnostic information and identify while reducing the subjective reader interpretation 

errors.  
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Chapter 6 

 

 

6.1 Discussion of studies’ findings, challenges, and future considerations  

 

The present doctoral research investigates the clinical benefit arising from the exploitation of 

multiparametric imaging, through studying several MRI applications of neurologic and 

oncologic interest. In this context, particular focus been given on the evaluation of novel 

analytic methodologies that aim to enhance the data-driven interpretation regarding the clinical 

associations of the quantitative imaging parameters, towards supporting the non-invasive and 

personalized characterization of pathological conditions. 

The first study aimed to evaluate the utility of a spatial correlation approach for enhancing 

the molecular information obtained from fMRI signals, in terms of assessing the spatial 

correlation between the observed hemodynamic responses and various neurotransmitters 

receptor systems. The methodology benefits from the use of normative PET and/or mRNA 

expression data obtained from independent studies that inform receptor distribution, 

overcoming the constrains of on-site PET implementation for directly monitoring 

neurotransmitter dynamics. The proposed methodology has been efficiently used to map 

hemodynamic changes induced by compounds onto their target receptor cites. Although 

providing very important evidence, these proof-of-concept correlations are facilitated by the 

fact that the corresponding pharmacological interventions studies, minimize the range of the 

neurotransmitters engaged into the study, while the dosage incretion can induce very distinct 

fMRI signals. However, until recently the methodology’s value to inform molecular substrates 
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of fMRI signal in the context of endogenous neurotransmitter release remained unexplored. To 

this scope the ongoing pain paradigm was selected, as this is of great clinical interest, while it 

is a partially studied field, by means of BOLD fMRI/PET, with sufficient previous evidence. 

Specifically, previous studies have showed the potential of ASL in advancing our 

understanding regarding brain function alterations in ongoing pain. However, the link between 

the observed hemodynamic changes and the underlying neurobiological processes remains 

unclear. The present study presents important evidence regarding the link between pain-related, 

ASL-derived CBF signals with two crucial components of pain processing, the opioidergic and 

dopaminergic systems. These biologically validated findings highlight the significant utility of 

the current approach as a low-risk low-cost hypothesis generating tool that benefits from 

existing PET and transcriptomic datasets to bridge the translational gap between the advancing 

knowledge gained from MRI and the neurotransmitters systems that underlying painful 

experiences. 

Multimodal imaging and transcriptomics spatial correlation analysis help inform future 

investigation of the molecular mechanisms which may show functionally relevant disruption in 

acute and chronic pain conditions, as well as modulation by treatment. However, it should be 

noted that the applicability of such approaches is generally limited by the availability of PET 

normative maps, thus more efforts should be made in a multi-institutional level to study 

appropriate radioligands and produce more maps covering a wide range of neurotransmitter 

receptors. Our study has also shown the significant utility of ABA in utilizing transcriptomics 

to inform receptor distribution. In this context novel data e.g., next-generation RNA sequencing 

is expected to form a more concrete database of mRNA expressions, as well as to improve 

statistical power currently compromised by ABA small sample size of donors (5). Additionally, 

novel statistical frameworks for overcoming current limitations of the spatial correlation 

analysis of multimodal signals are needed. Of note, more advanced statistical analyses are being 

used with BOLD fMRI signals, e.g., the REACT method (18), however such techniques are not 
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suitable for ASL MRI signals. The point of novel methods developed should be the 

strengthening of more fine grain spatial sampling of the imaging data, i.e., to include more 

regions of interest, or even to perform analysis in a voxel-wise level. The spatial autocorrelation 

issue should also gain attention of future studies, in the direction of utilizing both cortical and 

subcortical areas in the analysis. 

The second study aimed to develop a radiomic analysis model for exploiting 

multiparametric MRI in the differential diagnosis between low- and high-grade gliomas. 

Inspired by the emerging analytic applications in data-driven oncologic imaging inference, the 

present study has provided significant evidence regarding the superiority of advanced imaging 

modalities to provide imaging biomarkers for tumor profile characterization. Specifically, the 

parameter of lipids/Cr derived from MR spectroscopic imaging was the most important 

biomarker, essentially describing the difference in the necrotic component between the two 

grades statuses. Dynamic perfusion and diffusion sequences can provide additional robust 

biomarkers that complete the non-invasive parameters regarding the tumor extend, structure, 

and biologic processes which are uniquely associated with the tumor profile. Furthermore, the 

specific study has showcased the utility of advanced machine learning pipelines for revealing 

and modelling important associations of the imaging and biologic data and may be used to 

support the conventional human-based diagnostic evaluation in the clinical practise, featuring 

high stability and precision in the decision making. 

The third study of the present thesis aimed to exploit radiomic analysis for identifying 

robust imaging biomarkers from breast mpMRI for differentiating benign from malignant 

lesions. Additional aim was to evaluate the utility of advanced ensemble learning algorithms, 

towards extending the capabilities of respective previously published ML models. The results 

have provided important evidence regarding the superiority of DWI compared to T2-weighted 

MRI for complementing DCE MRI in the characterization of breast malignancy. Evaluation of 
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Ensemble Learning algorithms have shown increased performance compared to the more 

conventional ML approaches, such as SVMs. 

Overall, both studies have highlighted the substantial improvement in oncologic diagnosis 

when this incorporates advanced multiparametric imaging techniques that exploit the unique 

advantages of each single method, along with overcoming their individual limitations. 

However, various practical considerations arise, either related to the ease and applicability of 

advanced imaging in the clinical practise, as well as the incorporation of state-of-the-art 

machine learning evaluation techniques. These considerations are currently in the centre of 

interest of many research teams and will be discussed below. 

Initially, it should be realized that the availability of advanced scanning protocols is 

relatively low due to the associated high costs for the equipment acquisition and operation. To 

date it is estimated that over 50000 MRI units are in use across the globe, however the vast 

majority are 1.5 Tesla units, that do not feature advanced imaging protocols, not to mention that 

access to MRI scanning in many underdeveloped countries is extremely limited. Of note, even 

in countries with high units-per-million-population rates of MRI facilities, the time needed for 

the acquisition and evaluation of advanced multiparametric imaging protocols may constitute 

more of a problem rather than a solution for health care systems. This is particular evident in 

cancer screening when considering the small proportion of clinically significant cancers 

compared to the total number of suspicious cases examined in daily basis. For instance, 

considering the high rates of incoming patients, and the duration of a complete mpMRI 

scanning protocol (~50 min) it is evident that radiologic departments are currently pushed to 

their limits. Thus, there is an unmet need for introducing fast scanning protocols, that despite 

their lower diagnostic efficiency compared to the complete protocols, they could be utilized to 

provide a coarse evaluation of the pathology and stratify patients according to the estimated 

risk of malignancy. In turn the mpMRI protocol could be offered only to those patients with a 
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strong suspicion for high-risk, to complement characterization procedures, also reducing the 

associated burden and costs of the health providers. 

Following the afore mentioned constraints, today many research departments in academia 

and beyond focus on the development and evaluation of various solutions, such as low-cost, 

portable MRI scanners of low magnetic field that can be used to cover the increased demands 

in decentralized hospitals, or low-income countries, and fast scanning protocols for reducing 

the duration of MRI examination. Of note, these solutions certainly trade-off the quality and 

benefits of advanced imaging protocols. To compensate for the loss of clinically important 

imaging information, a significant stream of research focuses on exploiting machine learning 

methodologies for addressing these challenges. Some important examples include the 

development of novel AI-based reconstruction algorithms that generate high-resolution images 

from sparse sampled (compressed sensing) (202) and parallel image acquisition (203), and the 

use of ML methods to augment the capabilities of conventional imaging protocols not including 

advanced techniques (204), and abbreviated or even ultra-fast advanced protocols (205) that are 

based on the acquisition of only a sample of the images of a complete multiparametric protocol. 

Nevertheless, these approaches have still to go through intensive validation, however the value 

of ML algorithms in boosting the capabilities of abbreviated protocols in various clinical 

questions is already evident. 

Despite the new levels of knowledge obtained from the emerging statistical learning 

frameworks, their application is challenged by numerous factors that are universally present in 

almost all corresponding medical imaging paradigms. First and foremost, the success of AI 

models is critically related to the training sample size utilized. In principle, sufficient amount 

of training data, and data of different origins bringing along the unique intrinsic features of their 

acquisition procedures, are required to ensure that models will have high reliability and 

capability of generalizing in new unseen data. However, this is a key challenge when 

considering advanced MRI techniques, since there are only few decades that these have been 
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incorporated into the clinical practise, while there are even fewer years that data for research 

affairs are being collected in a systematic manner. Towards this direction the important 

contribution of extended multi-institutional research consortia, aiming in large scale data 

collection, analysis, and standardization of clinically specific radiomic signatures, should be 

acknowledged (206). Besides big data, these efforts also benefit from the augmented 

computational power for analysis and pursuing the different scientific aspects into a 

collaborative manner (e.g., study design, results interpretation, etc). 

Lately, the further considerations regarding the incorporation of AI algorithms in medical 

image applications and the key principles that should be adopted for promoting best practice in 

this technology application, have let to the development of novel frameworks for protected data 

sharing between research consortia. In this context, the emerging framework of Federated 

Learning is currently the state-of-art approach. Federated Learning aims in decentralized ML 

algorithm training for accurate and robust models, where only the training parameters of the 

models are shared but not the original image inputs (207). This approach has demonstrated 

unique efficiency in a recent study for brain tumor segmentation that exploited data from 71 

research departments worldwide (208). 

In conclusion, the past decade research has provided strong evidence regarding the value 

of incorporating advanced computational methods to leverage the enriched information 

provided from the advanced imaging protocols. However, due to the several limitations, 

including reproducibility/repeatability issues, lacks standards for outcomes validation, low 

level of technical experience from the clinical personnel, etc, the field has not yet reached the 

required maturity and credibility needed for the translation and exploitation of the 

methodologies into the daily clinical practice. Fortunately, overcoming the initial proof-of-

concept nature, novel studies currently aim to shrink the gap between research and practice by 

designing extended clinical trials towards the standardization and acceptance of the AI 

protocols. Finally, it is evident that we are in front of an epoch-making moment, where the 
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incorporation of computational intelligence approaches is gradually transforming the clinical 

practice into a more efficient and preventive healthcare. 
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