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ABSTRACT 

Machine Learning (ML) is the basis of machine perception and computer vision. Machine 
perception refers to a machine's ability to comprehend various aspects of the world after processing 
and analysis of input data. Machine perception through visual data implements the concept of 
computer vision. The scientific contributions of this dissertation cover a wide range of methods 
and applications in this context. These include salient object detection and localization, image-
based obstacle detection and avoidance, single-image visual measurements, enhancement of 3D 
point cloud object representations, and perceptually interpretable ML.  

The prediction of visual attention on medical images is a research subject that has been 
limitedly studied. To tackle this problem, a novel and robust gaze estimation methodology based 

-operative training scheme is 
proposed, and a novel saliency dataset based on the eye fixations of physicians has been created. 
The approximation of the visual attention of humans has been a popular research topic;  
nevertheless, some of the best performing approaches require both RGB and sensor-based Depth 
(RGB-D) information. The need for additional sensors adds a complexity overhead to a system 
limiting its applicability. In this dissertation, the impact of accurate depth estimation for saliency 
perception is investigated, resulting in a novel monocular salient object detection (MonoSOD), 
based on a two-branch Convolutional Neural Network (CNN) autoencoder architecture, capable 
of predicting depth maps and estimating saliency through a trainable refinement scheme.  

Another contribution of this dissertation is a novel methodology for obstacle detection 
based on RGB-D images. This methodology efficiently incorporates fuzzy logic and human eye 
fixations predicted using Generative Adversarial Networks (GANs). This combination can 
translate the position of detected obstacles into descriptive linguistic encodings that can be used in 
a variety of applications, such as robotic, and assistive navigation. An end-to-end self-supervised 
CNN model, with the capacity to simulate that RGB-D based obstacle detection method has been 
developed, requiring a standard RGB image as input. 

The limitations of the current visual measurement methods, such as their requirements in 
terms of the number of input images and existence of reference objects, have motivated the 
development of a state-of-the-art, more robust method for single-image visual size measurements, 
named Virtual Grid Mapping (VGM). The proposed VGM method requires only a single image as 
input, and it does not require any prior information concerning the scene like the horizon line or 
reference objects. A major advantage of VGM that contributes to its robustness is that copes with 
the uncertainty originating from the calibration and the positioning of the camera; thus, offering a 
higher accuracy than current visual size measurement methods. Given the geometric properties of 
the camera, VGM automatically generates and projects a grid of virtual 3D points to the 2D image 
plane, enabling the establishment of approximative correspondences between 3D points of the real 
world and 2D points of the image plane. These correspondences enable the assessment of the 
distance between an object and a camera and subsequently the measurement of that object. A 
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similar approach to VGM assisted by the predicted depth provided by a CNN model is proposed 
for estimating the size of lesions in biomedical images of the gastrointestinal tract. Various studies 
confirmed that endoscopic assessment of lesion size has inherent limitations and significant 
measurement errors. To cope with this problem, this dissertation investigated a methodology that 
requires only a single endoscopic image, without any need for a reference, in order to estimate the 
size of an object of interest in vivo.  

Another research direction investigated in this dissertation has led to the development of a 
novel approach for 3D model reconstruction, using an implicit neural representation with a 
periodic and parametric activation, named WaveShaping function. This function is utilized by a 
multi-layer perceptron (MLP) trained to learn a continuous function given a finite number of data 
points that describes a coarsely retrieved 3D model. Then, the MLP is regarded as a continuous 
implicit representation of that model; hence, it can interpolate data points to refine and restore 
regions of the 3D model at a higher resolution. 

Recently, the interpretation of the inference process of deep learning models has received 
a lot of attention by the scientific community. Recent legislation and guidelines make the black 
box nature of these models unsuitable for commercial use. To tackle this problem, this dissertation 
proposes a novel, generalized framework for instantiating inherently interpretable CNN models, 
named E Pluribus Unum Interpretable CNN (EPU-CNN). An EPU-CNN model consists of CNN 
sub-networks, each of which receives a different representation of an input image expressing a 
perceptual feature, such as color or texture. The output of an EPU-CNN model consists of the 
classification prediction and its interpretation, in terms of relative contributions of perceptual 
features in different regions of the input image. EPU-CNN models have been extensively evaluated 
on natural and biomedical images concerning both binary and multiclass problems. 
 The various methodologies introduced in this dissertation outperform the respective state-
of-the-art methods, while they are able to cope with various challenges that have been documented 
in the literature for each domain of application. Considering the saliency prediction, the proposed 
methods tackle the problem of estimating visual saliency both on biomedical and natural images. 
In addition, the salient object detection approach provides a novel solution aiming at reducing the 
dependency of such methods on additional sensors. The obstacle detection approaches effectively 
combine depth and visual saliency information to provide a reliable method for detecting obstacles 
in outdoor environments. A user-based evaluation of these methods showed that they can be 
efficiently incorporated into assistive navigation systems and aid visually impaired people to 
navigate outdoors. Regarding the single-image visual measurements proposed in this dissertation, 
the obtained results suggest that they can be successfully employed for measuring objects in 
everyday and medical applications. The use of such methods can aid towards the simplification of 
respective systems that require multiple sensors to perform such measurements. The use of implicit 
neural representations for the refinement of 3D models results in more accurate 3D representations 
of object that can be incorporated into digital twin models for in-silico clinical trials. Finally, the 
EPU-CNN framework satisfies the need for a generalized method for the construction of 
perceptually interpretable models. Additionally, EPU-CNN provides a way to cope with the 
requirements imposed by current legislations regarding the commercial applicability of ML 
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models. The research landscape explored by this dissertation is broad, and its contributions are 
expected to have both a societal and scientific impact, opening novel perspectives for further future 
research and the progress of science. 

 
 

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



vii 
 

 

ML
 

 
 

.  

  

Convolutional Neural Networks, CNNs)   
  

- 
   

 
 

 (MonoSOD
CNN 

 saliency.  
 

RGB-D
 

 Generative Adversarial Networks, GANs

CNN - , 
RGB-D, 

    
 

Virtual Grid Mapping (VGM
VGM 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



viii 
 

VGM 
 

VGM 
  

 
 

VGM 
CNN

 
in vivo.  

  (Implicit Neural Representation, INR) 
WaveShaping function

 (Multilayer 
Perceptron, MLP

 
MLP - 

 

 
 

 
 

CNN E Pluribus Unum Interpretable CNN 
(EPU-CNN EPU-CNN CNN

 EPU-CNN 

EPU-
CNN 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



ix 
 

 

 

 

- -

-
 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



x 
 

 

 

 

 

 

 

 

 

 

 

 

 

           To my family 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xi 
 

ACKNOWLEDGMENTS  

A.I. has took the world at storm recently, with advancements in the field that indicate that 
we currently living through the beginning of a new era. During my doctoral studies I was lucky to 
be in a place that I could observe, study and contribute to this extraordinary field of machine 
learning. One of the most valuable  is that in a 
fast-paced everchanging field, 
absolutely need to know how learn. 

    
First and foremost, I would like to express my heartfelt gratitude to my parents and sister 

for their unwavering support and encouragement throughout these years. They were always by my 
side and helped me with all means possible for which I will be forever grateful. I would also like 
to thank my supervisor and mentor Prof. Dimitris Iakovidis for introducing me and guiding me 
through the fascinating world of scientific research. His advices, in depth knowledge of machine 
learning and computer vision and deep sense of scientific rigor have been inspiring and 
determinant factors for my dedication and progress in my doctoral studies. 

 
I would like to thank my partner and friend Ioanna Asanakidi for supporting me through 

the highs and lows that one faces during the doctoral studies, as well as for the interdisciplinary 
conversations that provided a different perspective to various research topics. I would also like to 
thank my all my colleagues at the lab and especially Dr. Panagiotis Kalozoumis, Dr. Dimitris 
Diamantis and Dr. Michael Vasilakakis for the insightful conversations, sharing of ideas and fun 
times. No matter the time and place, if you share it with great people, you always have fun. 

 

  

 

   

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xii 
 

Table of Contents 
ABSTRACT ................................................................................................................................... iv 

 .................................................................................................................................. vii 

ACKNOWLEDGMENTS ............................................................................................................. xi 

1. Chapter 1  Introduction ....................................................................................................... 1 

1.1 Aims of this Dissertation ...................................................................................................... 4 

1.2 Thesis Contributions ............................................................................................................. 4 

1.3 Thesis Outline ....................................................................................................................... 5 

2. Chapter 2 Visual Sensing & Perception.............................................................................. 7 

2.1 Imaging with Visual Sensors............................................................................................ 8 

2.1.1 Mathematical Modeling of Camera Systems ........................................................ 8 

2.2 Intelligent Machines ....................................................................................................... 13 

2.2.1 The Perceptron (a.k.a. Artificial Neuron) .......................................................... 14 

2.2.2 The Multilayer Perceptron (a.k.a. Artificial Neural Network) ........................ 17 

2.2.3 Feature Extraction and Selection ........................................................................ 20 

2.2.4 Limitations ............................................................................................................. 21 

2.3 Deep Learning ................................................................................................................ 24 

2.3.1 Convolutional Neural Network ............................................................................ 25 

2.3.2 Architectures of Convolutional Neural Networks ............................................. 34 

2.4 Training The Learning Machines ................................................................................... 44 

2.4.1 Loss Functions ....................................................................................................... 45 

2.4.2 Gradient Descent ................................................................................................... 46 

2.4.3 Backpropagation ................................................................................................... 48 

2.4.4 Learning Paradigms ............................................................................................. 51 

2.5 Interpretability ................................................................................................................ 54 

3 Chapter 3  Saliency Prediction .......................................................................................... 57 

3.1 Visual Saliency Estimation on Medical Images ............................................................. 62 

Basic Saliency Model .......................................................................................................... 62 

Enhanced Saliency Model .................................................................................................. 64 

Eye Fixation Dataset ........................................................................................................... 65 

Experiments and Results .................................................................................................... 66 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xiii 
 

3.2 Co-Operative CNNs for Saliency Detection on Biomedical Images ............................. 68 

Experiments and Results .................................................................................................... 70 

3.3 MonoSOD: Monocular Salient Object Detection .......................................................... 71 

Experiments and Results .................................................................................................... 74 

3.4 Conclusions and Future Work ........................................................................................ 78 

4 Chapter 4 Obstacle Detection ............................................................................................ 80 

4.1 Soft Obstacle Detection Using GANs and Fuzzy Logic ................................................ 85 

Experiments and Results .................................................................................................... 89 

4.2 Personalized Soft Obstacle Detection ............................................................................ 91 

Experiments and Results .................................................................................................. 101 

4.4 Self-Supervised CNN for Soft Obstacle Detection ...................................................... 104 

Experiments and Results .................................................................................................. 108 

4.4. Discussion and Future Work ............................................................................................ 110 

5 Chapter 5  Visual Measurements .................................................................................... 112 

5.1 Virtual Grid Mapping for Single-Image Measurements .............................................. 115 

Experiments and Results .................................................................................................. 118 

5.2 In-Vivo Single Image Measurements ........................................................................... 125 

Experiments and Results .................................................................................................. 129 

5.3 Discussion and Future Work ........................................................................................ 131 

6 Chapter 6 Deep Learning in 3D Modeling ..................................................................... 135 

6.1 3D Reconstruction Using Implicit Neural Representations ......................................... 137 

Experiments and Results .................................................................................................. 139 

6.2 Discussion and Future Work ........................................................................................ 142 

7 Chapter 7 Perceptually Interpretable Convolutional Neural Networks ..................... 143 

7.1 Perceptually Interpretable CNN Model........................................................................ 145 

Opponent Perceptual Feature Maps ............................................................................... 147 

Binary Interpretable Classification Model ..................................................................... 149 

Multiclass Interpretable Classification Model ............................................................... 151 

Perceptual Interpretable Output ..................................................................................... 152 

Experiments and Results .................................................................................................. 153 

Classification Performance Assessment .......................................................................... 155 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xiv 
 

Quantitative Interpretability Analysis ............................................................................ 157 

Ablation Study ................................................................................................................... 158 

Qualitative Interpretability Analysis .............................................................................. 158 

Comparison with State-of-the-Art Interpretable Methods ........................................... 164 

7.2 Discussion and Future Work ........................................................................................ 167 

8 Chapter 8 Conclusions and Future Research Directions .............................................. 169 

APPENDIX A ............................................................................................................................. 174 

List of Publications Resulted from this Dissertation .......................................................... 174 

Other Related Publications of the Author ........................................................................... 175 

Bibliography .............................................................................................................................. 177 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xv 
 

List of Figures 

Figure 2.1. Illustration of the pinhole camera model. ..................................................................... 8 
Figure 2.2. Example of radial distrotion ....................................................................................... 10 
Figure 2.3. Example of tangential distortion ................................................................................ 10 
Figure 2.4. Illustration of the Bayer Filter Array BGGR pattern.................................................. 11 
Figure 2.5. Example of a stereo camera ........................................................................................ 12 
Figure 2.6. Example of a depth map ............................................................................................. 12 
Figure 2.7. Example of a near infrared image .............................................................................. 13 
Figure 2.8. Example of a near-infrared / RGB stereo vision camera ............................................ 13 
Figure 2.9 Illustration of a biological neuron and its various parts .............................................. 14 
Figure 2.10 Illustration of a perceptron and its parts .................................................................... 15 
Figure 2.11. Illustrations of the calculations made by a perceptron for the example described in 
Section 2.2.1.................................................................................................................................. 16 
4. Figure 2.12. Illustration of Multilayer Perceptron. Gray circles denote artificial neurons, white 
circles input data that are not processed by artificial neurons and the connections among neurons 
are illustrated with black lines. ..................................................................................................... 17 
Figure 2.13 Illustration of a three-layer MLP trained to approximate the XOR logic gate. ......... 18 
Figure 2.14. Illustration of ML pipeline ....................................................................................... 20 
Figure 2.15. Illustration of the pipelines of traditional ML and DL ............................................. 25 
Figure 2.16. Visual representation of signal S and filter g............................................................ 27 
Figure 2.17. Visual representation of the result of convolution of S and G at the point (1, 1) of S.
....................................................................................................................................................... 28 
Figure 2.18. Whole convolutional progress along the input signal .............................................. 28 
Figure 2.19. Illustration of the convolutional operation using padding. ....................................... 29 
Figure 2.20. Example of feature maps that are estimated by a convolutional layer of a CNN model.
....................................................................................................................................................... 29 
Figure 2.21. Example of trained kernels of a convolutional layer of a CNN model. ................... 30 
Figure 2.22. Example of the average-pooling layer functionality. Different colors indicate the non-
overlapping spatial regions that are defined by the sliding window. ............................................ 32 
Figure 2.23. Example of the global-pooling layer functionality. Different colors indicate the non-
overlapping spatial regions that are defined by the sliding window. ............................................ 32 
Figure 2.24. Example of the global-average-pooling layer functionality. Different colors indicate 
the non-overlapping spatial regions that are defined by the sliding window. .............................. 33 
Figure 2.25. Summarization of the various CNN architectures along with the base logic of their 
development. ................................................................................................................................. 35 
Figure 2.26. Illustration of the LeNet architecture (LeCun et al., 1998) ...................................... 35 
Figure 2.27. Illustration of the AlexNet CNN model architecture ............................................... 36 
Figure 2.28. Illustration of the VGG-16 CNN architecture. ......................................................... 37 
Figure 2.29. Illustration of the inception module design (Szegedy et al., 2015). ......................... 38 
Figure 2.30. Illustration of a residual block (K. He et al., 2016a) ................................................ 39 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xvi 
 

Figure 2.31. Illustration of a DenseNet CNN model (G. Huang et al., 2017). ............................. 40 
Figure 2.32. Illustration of the Auto-Encoder architecture ........................................................... 41 
Figure 2.33. Illustration of U-Net architecture (Ronneberger et al., 2015). ................................. 43 
Figure 2.34. Illustration of an ensemble DL model. ..................................................................... 43 
Figure 2.35. Overview of the training process of CNNs .............................................................. 44 
Figure 2.36. Visualization of the Gradient Descent process. ........................................................ 47 
Figure 2.37. Example of SGD loss fluctuations ........................................................................... 47 
Figure 2.38. Illustration of a simple MLP..................................................................................... 49 
Figure 2.39. Example of Supervised Learning in ML .................................................................. 52 
Figure 2.40. Main pipeline of self-supervised learning (Shurrab & Duwairi, 2022) .................... 52 
Figure 2.41. Visual example of interpretability pipeline .............................................................. 54 
Figure 3.1. Overview of the basic saliency model architecture .................................................... 62 

RGB WCE image used 
stimulus. The yellower the color the more salient the location of the image. .............................. 62 
Figure 3.3. Overview of the enhanced saliency model architecture. ............................................ 64 
Figure 3.4.  Illustration of the refinement effect of the estimated saliency map. (a) Estimated 
saliency map, (b) refined saliency map of (a). .............................................................................. 64 
Figure 3.5.  A qualitative comparison among the ground truth and estimated gaze density maps. 
(a) The RGB WCE image used as input to the network; (b) the ground truth saliency maps based 

 .................................................... 65 
Figure 3.6. Qualitative comparison among the proposed and other saliency estimation models with 
applications on the biomedical domain. Each row represents a different category : (a) the vascular 
lession, (b) the inflammatory lession, (c) the polypoid lession, (d)  the normal colon and (e) the 
normal oesophagus category ......................................................................................................... 67 
Figure 3.7. Overview of the proposed methodology .................................................................... 68 
Figure 3.8. Qualitative comparson of saliency maps generated by various methods. .................. 70 
Figure 3.9. MonoSOD two-network architecture. ........................................................................ 72 
Figure 3.10. MonoSOD vs. RGB-D SOD. (a) RGB input image; (b) Ground truth (GT); (c) RGB-
D depth map; (d) Predicted depth; (e) Detected salient object using MonoSOD; (f) Detected salient 
object using RGB-D SOD. ............................................................................................................ 73 
Figure 3.11. Example of RGB input images depicting salient objects. (a) Bottle. (b) Flower. (c) 
ATM. ............................................................................................................................................. 77 
Figure 3.12. Comparative qualitative results on the images of Fig. 3. (a) GT image. (b) MonoSOD. 
(c) D3Net (Fan et al., 2020). (d) RGB-D SOD. All images are normalized for better visualization.
....................................................................................................................................................... 77 
Figure 3.13. (a) Input images of Fig. 3(a) for different luminosities; (b) Corresponding estimated 
DM of (a); (c) MonoSOD prediction. ............................................................................................ 77 
Figure 4.1. Illustration of the SalGAN architecture of the generator. .......................................... 85 
Figure 4.2. Illustration of the generated saliency map from an input image. (a) Input image. (b) 
The generated saliency map .......................................................................................................... 85 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xvii 
 

Figure 4.3. Membership functions of fuzzy sets used for the localization of objects in the 3D space 
using linguistic variables. (a) Membership functions for low (d1), medium (d1), and high risk (d3) 
upon the distance of the user from an obstacle. (b) Membership functions for left (h1), central (h2) 
and right (h3) positions on the horizontal axis. (c) Membership functions for up (v1), central (v2) 
and bottom (v1) positions on the vertical axis. .............................................................................. 86 
Figure 4.4. A graphical representation of the risk maps. (a) Depth map Mz of the image in Figure 
3.2(a). (b) High-risk map . (c) Medium-risk map . (d) Low-risk map ............... 87 
Figure 4.6. A visual representation of the pipeline of the proposed methodology. ...................... 88 
Figure 4.5. A visual representation of the . (a) The original IRGB image; (b) Image 

; (c) Image ; (d) Image . .............................................. 88 
Figure 4.7. Example detection of high-risk obstacles (nearest crowd and tree branches). (a)  
Original image IRGB. (b) The corresponding image .obtained by using membership 
function d1. .................................................................................................................................... 89 
Figure 4.8 An illustration of different fuzzy operation between the saliency map and the risk map 

. (a) Fuzzy AND. (b) Fuzzy Sum. (c) Fuzzy OR. ................................................................ 90 
Figure 4.9 A qualitative comparison of the fuzzy approach (a) RGB input image. (b) The hard-
thresholded saliency map overlaid to the input image (c) Image  obtained by the 
proposed methodology. (d) Obstacle mask after hard thresholding of the depth map corresponding 
to the region of interest defined in (b). ......................................................................................... 91 
Figure 4.10. Visualization of the proposed obstacle detection and recognition pipeline ............. 92 
Figure 4.11. Examples of the generated saliency maps given an RGB image. (a) Input RGB images. 
(b) respective generated saliency maps......................................................................................... 93 
Figure 4.12. Membership functions of fuzzy sets used for the localization of objects in the 3D 
space using linguistic variables. (a) Membership functions for far left (h1), left (h2), central (h3), 
right (h4) and far right (h5) positions on the horizontal axis. (b) Membership functions for up (v1), 
central (v2) and bottom (v3) positions on the vertical axis. (c) Membership functions for low (r1), 
medium (r1), and high risk (r3) upon the distance of the user from an obstacle ........................... 94 
Figure 4.13. Example of  creation. (a) Depth map D, where lower intensities correspond to 
closer distances; (b) visual representation of  representing regions of high risk; (c)  
representing regions of medium risk; (d)  depicting regions of low risk. Higher intensities in 
(b-d) correspond to lower participation in the respective fuzzy set. All images have been 
normalized for better visualization. .............................................................................................. 95 
Figure 4.14. Example of the aggregation process between the saliency map SM and the high-risk 
map . (a) Original IRGB used for the generation of the saliency map SM; (b) high-risk map 

 used in the aggregation; (c) saliency map SM based on the human eye fixation on image (a); 
(d) the aggregation product using the fuzzy AND operator between images (b) and (c). ............ 96 
Figure 4.15. Example of the creation steps of GM. (a) Depth map D, normalized for better 
visualization; (b) visual representation of the difference map M; (c) difference map M after the 
application of the basic morphological gradient; and (d) the final ground removal mask GM. .... 98 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xviii 
 

Figure 4.16. Example of the ground removal procedure. In (d), the ground has been effectively 
removed. (a) Original IRGB image; (b) corresponding obstacle map ; (c) respective ground 
removal mask GM; (d) masked obstacle map ; ..................................................................... 99 
Figure 4.17. Example of the obstacle boundary extraction and obstacle center calculation. (a)  
obstacle map used for the detection of high-risk obstacles; (b) boundary (green outline) estimation 
of the obstacles; (c) respective centers of the detected obstacles. ................................................ 99 
Figure 4.18. Example of the objects identified as obstacles in our dataset. (a-c) columns/artifacts; 
(d) tree; (e) cultural sight near the ground level; (f) small tree/bush. ......................................... 101 
Figure 4.19. Qualitative example of false ground detection as obstacle resulted using the 
methodology presented in (George Dimas, Ntakolia, et al., 2019) (section 4.1). In all images, the 
obstacles are not in a threatening distance. (a) False positive detection on dirt ground-type; (b) 
False positive detection on rough dirt ground-type. (c) False positive detection on tile ground-type.
..................................................................................................................................................... 102 
Figure 4.20. Qualitative representation of the ground removal method. (a) Original IRGB images; 
(b) Ground masks with the white areas indicating the ground plane; (c) images of (a) masked with 
the masks of (b). .......................................................................................................................... 103 
Figure 4.21. Overview of the CNN model used for self-supervised learning of the soft saliency 
maps. ........................................................................................................................................... 105 
Figure 4.22. Example of the input of the model and the corresponding training target saliency map 
as generated by the methodology described in section 4.2. (a) Input RGB image; (b) training target 
sample. ........................................................................................................................................ 105 
Figure 4.23. Qualitative comparison between the proposed methodology and obstacle maps 
produced by (George Dimas, Diamantis, et al., 2020), each column represents the (a) input images; 
(b) Obstacle maps estimated by the proposed model ; (c) Obstacle maps estimated by 
(George Dimas, Diamantis, et al., 2020) . ..................................................................... 107 
Figure 4.24. Qualitative comparison of obstacle detection performed with the proposed 
methodology (green rectangle) and the one proposed in section 4.2. (red rectangle). (a) tree 
branches. (b) ground anomaly. (c) columns. (d) small bush. (e) tree. (f) small wall. ................. 108 
Figure 5.1. Overview of the pipeline of the proposed methodology .......................................... 115 
Figure 5.4. Illustration of the virtual environment along with the simulated objects that were 
measured ..................................................................................................................................... 120 
Figure 5.5. Visual representation of the experimental setup from which the natural image dataset 
derived......................................................................................................................................... 120 
Figure 5.6. Scaled plans of the monuments used in the evaluation process, marked with the linear 
segments s1, s2 and s3. (a) Stoa of Attalos, (b) Temple of Hephaestus. .................................... 123 
Figure 5.7.  Images illustrate the monuments that were measured marked with the linear segments 
s1, s2 and s3. (a, b) Stoa of Attalos (c) Temple of Hephaestus. ................................................. 124 
6 Figure 5.8. Example 3D-to-2D point correspondences. (a) 3D representation of the grid with 
the points of set Q. (b) The projection P of Q on the image plane with respect to the selected points 
m1 and m2. (c) The linear segment d to be measured, defined by m1 and m2. The grey-level 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xix 
 

intensities of the points in P represent depth, i.e., points lying deeper appear with a higher intensity.
 125 
Figure 5.9. Example 3D-to-2D point correspondences. (a) 3D representation of the grid with the 
points of set Q. (b) The projection P of Q on the image plane with respect to the selected points m1 
and m2. (c) The linear segment d to be measured, defined by m1 and m2. The grey-level intensities 
of the points in P represent depth, i.e., points lying deeper appear with a higher intensity. ....... 126 
Figure 5.10. Example 3D-to-2D point correspondences. (a) 3D representation of the grid with the 
points of set Q. (b) The projection P of Q on the image plane with respect to the selected points m1 
and m2. (c) The linear segment d to be measured, defined by m1 and m2. The grey-level intensities 
of the points in P represent depth, i.e., points lying deeper appear with a higher intensity. ....... 128 
Figure 5.11. Size measurement MAE per measured object. ....................................................... 131 
Figure 6.1. Overview of the INR approach for 3D model refinement and restoration. .............. 137 
Figure 6.2. Graphical representation of the proposed WS and sin functions. (a) Responses and (b) 
derivatives of the WS and sin functions. ..................................................................................... 138 
Figure 6.3. High-resolution 3D GI tract models. (a) Large intestine; (b) Small intestine. ......... 139 
Figure 6.4. Qualitative comparison of the reconstruction outcome for a representative large 
intestine model reconstructed from PCs with various initial densities: (a) 0.5%; (b) 1%; (c) 5%; 
(d) 10%........................................................................................................................................ 140 
Figure 6.5. Graphs of the training and reconstruction time as a function of the PC density for the 
different methods. (a) Training time; (b) Reconstruction time. .................................................. 141 
Figure 7.1. Outline of the EPU-CNN framework. ...................................................................... 146 
Figure 7.2. Illustration of the opponent perceptual features utilized by EPU-CNN. .................. 147 
Figure 7.3. Illustration of multiclass version of the architecture of an EPU-CNN model ......... 151 
Figure 7.4. Example of EPU-Net output visualization using bar-charts and saliency maps. The 
numbering indicates the interpretation order of EPU-CNN output. The label field indicates the 
predicted label. (a) Interpretation of an image classified as a banana. (b) Interpretation of an image 
classified as an apple. .................................................................................................................. 152 
Figure 7.5. Visualization of the complexity of the compared models in terms of the number of 
trainable network parameters. ..................................................................................................... 156 
Figure 7.6. Example of PRMs generated by features maps extracted from different layers of EPUII.
..................................................................................................................................................... 158 
Figure 7.8. Example of local bar-charts produced by EPUII on images from the Bananapple dataset. 
The label field indicates the predicted label. (a) Correctly classified images. (b) Wrongly classfied 
images. (c) Changes in the classification and its interpretation of modified images. ................. 159 
Figure 7.7. Example of dataset-wide interpretations provided by EPU-CNN on all datasets. Green 
(positive response) and red (negative response) bars indicating participation the 1 and 0 class 
respectively, and the black lines indicate the standard deviation. (a) Banapple. (b) KID. (c) 
MICCAI Endovis 2015. (d) Kvasir. (e-g) ISIC 2019. ................................................................ 160 
Figure 7.9. Example of EPU-CNN interpretations, as generated by EPUII, on biomedical images. 
The label field indicates the predicted label. (a) Abnormal and (b) normal endoscopic image; (c) 
Carcinoma and (d) (normal) nevus skin lesion; (e) Abnormal endoscopic image and (f) 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xx 
 

modification of (e) to resemble a normal endoscopic image;  (g) Melanoma skin lesion and (h) 
modification of (g) to resemble nevus. ....................................................................................... 162 
Figure 7.10. Example of CNN interpretations provided by various methodologies. ................. 164 
Figure 7.11. Classification performance in terms of accuracy on the CIFAR-10 dataset. ......... 164 
Figure 7.12.  Example of EPU-CNN interpretations, as generated by EPUII, on images of the 
CIFAR-10 dataset. The label field indicates the predicted label. Row A and B illustrate 
interpretations of correct and wrong prediction, respectively. ................................................... 165 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



xxi 
 

List of Tables 

Table 2.1 Example of criteria........................................................................................................ 15 
Table 2.2. Criteria and their respective exemplary ....................................................................... 16 
Table 2.3 XOR Truth Table .......................................................................................................... 19 
Table 3.1. AUC-J scores on each WCE image category .............................................................. 68 
Table 3.2. AUC-J scores on each WCE image category .............................................................. 70 
Table 3.3. Comparison of MonoSOD and D3Net ......................................................................... 76 
Table 3.4. Comparison of MonoSOD with and without the refinement step ............................... 76 
Table 3.5. MonoSOD vs. RGB-D SOD ........................................................................................ 76 
Table 4.1. Percentage confusion matrix ........................................................................................ 89 
Table 4.2. Confusion matrix of the methodology proposed in section 4.2 ................................. 102 
Table 4.3. Results and quantitative comparison between the proposed and state-of-the art 
methodologies. ............................................................................................................................ 103 
Table 4.4. Obstacle Map Similarity in Terms of AUC-J (%) ..................................................... 108 
Table 4.5. Obstacle Detection Accuracy (%) .............................................................................. 109 
Table 4.6. Time Performance Comparison (image/ms) .............................................................. 109 
Table 5.1. State-of-the-art methodologies for Visual Measurements ......................................... 113 
Table 5.2. Average MAPE on SD ............................................................................................... 121 
Table 5.3. Average MAPE per object of SD .............................................................................. 121 
Table 5.4. Average MAPE per view angle on SD ...................................................................... 121 
Table 5.5. Average MAPE per object on natural image dataset ................................................. 122 
Table 5.6. Comparison of average measurements MAPE per segment on images captured in-the-
wild ............................................................................................................................................. 124 
Table 5.7. Comparative results of measurements on hemispherical objects (in mm) obtained using 
the proposed and the EMTS methods. ........................................................................................ 130 
Table 5.8. Comparative results of measurements on paral. objects (in mm) obtained suing the 
proposed and the EMTS methods. .............................................................................................. 130 
Table 5.9. Comparative results of measurements on 1mm objects (in mm) obtained suing the 
proposed and the EMTS methods. .............................................................................................. 130 
Table 6.1. Quantitative evaluation of the proposed WS activation function against other functions 
based on the CD and EMD metrics for different PC densities. .................................................. 140 
Table 5.1. Classification Results (AUC) of EPU-CNN and CNN models ................................. 156 
Table 7.2. Interpretability accuracy results of EPU-CNN models. ............................................. 157 
 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



1 
 

 

 

 

 

 

 

 

1. Chapter 1  
Introduction 
Machine learning (ML) is a scientific discipline, strongly related to computer science, that recently 
overwhelmingly attracts the interest of academics, the industry and the general public. The last 
decade, the advancements of electrical engineering and computer science (e.g., the development 
of high-performance Graphical Processing Units, GPUs, the development of easy-to-use machine 
learning frameworks, etc.) have made the utilization of ML algorithms faster, easier, and more 
reliable. As a result, nowadays ML has flooded all kinds of domains including art (Ndou, Ajoodha, 
& Jadhav, 2021), linguistics (Otter, Medina, & Kalita, 2020) as well as high-risk fields such as 
autonomous driving (Mozaffari, Al-Jarrah, Dianati, Jennings, & Mouzakitis, 2020) and medicine 
(Piccialli, Di Somma, Giampaolo, Cuomo, & Fortino, 2021). Historically, the origin of machine 
learning as we know it is usually associated with the psychologist Frank Rosenblatt (Fradkov, 
2020). Inspired by the human nervous system, Rosenblatt developed an automaton, named 

sed to recognize letters of the alphabet (Rosenblatt, 1957). This primitive 
perceptron discretized analog signals via a thresholding element and utilized them to perform its 
recognition task. Rosenblatt was the first to perform initial mathematical studies regarding the 
capabilities and training conditions of  the perceptron that were later gain more exposure through 
the Novikoff theorem (Novikoff, 1963; Rosenblatt, 1958, 1960). The research and funding for the 
investigation of the capabilities and prospects of the perceptron however have been reduced when 
a book published in 1969 by Minsky and Papert emphasized some of its limitations regarding its 
capacity to represent logical functions like XOR and NXOR (Fradkov, 2020; Minsky & Papert, 
2017). 

Nevertheless, the scientific community did not lose its interest in researching to advance learning 
algorithms. Researchers kept investigating the learning abilities of multilayer neural networks and 
the first multilayer convolutional neural network, named Neocognitron, has been proposed in 1982 
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(Fukushima & Miyake, 1982). A huge impact to the ML domain has been made with the rework 
of the backpropagation algorithm (Rumelhart, Hinton, & Williams, 1985). The backpropagation 
enabled the efficient training of learning algorithms and introduced several benefits over previous 
approaches. A significant breakthrough was achieved with the introduction of support-vector-
networks that heavily impacted the ML community (Mohri, Rostamizadeh, & Talwalkar, 2018). 
Since then, the advancement of ML algorithms has been constant, initially led by Geoffrey Hinton 
and followed by the triad Yann LeCun, Yoshua Bengio and Juergen Schmidhuber who set the 
foundations for the modern deep learning (DL) (LeCun, Bengio, & Hinton, 2015; Schmidhuber, 
2015).  

Deep learning has penetrated and revolutionized the way problems are handled almost in every 
machine learning application. In natural language processing initially Long Short-Term Memory 
networks (Schmidhuber, Hochreiter, & others, 1997) and later transformers (Wolf et al., 2020) 
provided exceptional results with a recent model being capable to even write a scientific report 
about itself . In computer vision Convolutional Neural 
Networks change the way the problems were tackled by alleviating the requirement for manual 
feature extraction and making tasks that seem extremely hard, such as novel image generation, a 
reality (Ramesh, Dhariwal, Nichol, Chu, & Chen, 2022). In 3D modeling and physics, DL models 
have been proposed that are capable of synthesizing novel views of complex scenes and 
interpolating experiments to provide detailed insight in a given problem (S. Cai, Mao, Wang, Yin, 
& Karniadakis, 2022; Mildenhall et al., 2020). In medicine, CNNs and other ML models can help 
physicians with tedious tasks such as long video examination or assist them in their diagnosis 
procedure (Anwar et al., 2018; Dimitrios K Iakovidis, Tsevas, & Polydorou, 2010). The list of 
deep learning applications that can augment the problem solving in various fields is endless and 
new approaches emerging every day. 

Regardless of their exceptional performance, deep learning models have some fundamental 
drawbacks that prevent their applicability in real-world applications and domains of high-risks. 
First off, recently the commercial applicability of Machine Learning (ML) algorithms has been 
regulated through legislation acts (Selbst & Powles, 2018) that aim at m

(Steponnait, 2016) with requirements, safeguards, and restrictions regarding ML and 
automatic decision-making in general. A crucial aspect regarding the compatibility of ML models 
concerning these regulations is interpretability. But how is the interpretability of ML models 
defined? According to the recent literature (Arrieta et al., 2020), interpretability refers to a passive 
characteristic of a model, indicating the degree to which a human understands the cause of its 
decision. Hence, the provided interpretations of the decision-making process of a model can limit 
its opaqueness (Castelvecchi, 2016) -
sensitive decisions in medicine. In real-world tasks, the discriminative power of ML models, as 
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expressed by their performance measures, e.g., their predictive accuracy, is regarded as an 
insufficient descriptor of their decisions (Rudin et al., 2022). 

Then the data required for training such models limits their application to domains that publicly 
available datasets are in abundance, or the data acquisition is hard. For example, research in size 
measurements and gaze estimation in medical images is difficult since there are not many datasets 
available that can be used (George Dimas, Iakovidis, & Koulaouzidis, 2019; Dimitris K Iakovidis 
et al., 2021). 

The main focus of this dissertation is the investigation and development of novel deep learning 
models in the context of machine perception and computer vision. The models that are proposed 
and investigated in this dissertation have the capacity to perceive their surroundings in terms of 
regions of interest such as salient objects, obstacles etc., as well as being capable of grasping the 
essence of 3D space. An additional essential subject that this thesis investigates is the problem of 
understanding how a model infers a particular result. For this purpose, models that have the 
capacity to provide reasoning regarding to their results with respect to perceptual information that 
can be easily understood by humans are studied. The results of the models that are presented in 
this dissertation indicate that these models can be employed efficiently for the tasks of a) detecting 
salient object and regions based on human perception on natural and biomedical images; b) 
obstacle detection for the assistive navigation of people with visual impairments and robots; c) 
measuring the size of real-world objects as well as abnormalities in biomedical images; d) 
perceiving, representing and reconstructing 3D objects in high quality from sparse 3D 
representations; and e) generalized interpretable classification of natural and biomedical images 
with perceptually human-understandable explanations. 
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1.1 Aims of this Dissertation     

The research focus of this dissertation is the development of novel ML approaches in the context 
of machine perception and computer vision. The methodologies that emerged have broad social 
impact and they can be summarized as follows: 

 The investigation of saliency estimation in natural images as well as biomedical images 
based on human perception using less generated multimodal data. 
 

 The investigation of decision-making approaches in the context of obstacle detection and 
avoidance for computationally assistive navigation. 
 

 The investigation of size measurements methodologies that use a single image (monocular) 
to assess the dimension of a target object tested on natural images of publicly available 
datasets. 
 

 The investigation of methods for the 3D reconstruction of object from sparse point cloud 
representations  

 
 The investigation of interpretable DL models that can provide perceptual explanations 

about their results in accordance with human perception that can be used for signal analysis 

1.2 Thesis Contributions     

The research performed to tackle the aims that were set for this dissertation resulted in the 
development of novel DL frameworks, methodologies, and applications.  Specifically, the results 
that emerged lead to the publication of six (7) articles in scientific journals with a review process 
from which five (5) are published and two (2) are under review; eleven (11) scientific papers in 
proceedings of international conferences from which ten (10) are published and one (1) under 
review. The contributions of this dissertation are summarized as follows: 

 
 A CNN model and training scheme for the estimation of gaze patterns of a physician in 

images of the gastrointestinal tract (George Dimas, Iakovidis, et al., 2019; Gatoula, Dimas, 
Iakovidis, & Koulaouzidis, 2021). 
 

 A CNN model that can detect salient object based on RGB images and complementary 
depth information generated by a Generated Adversarial Network (GAN) (George Dimas, 
Gatoula, & Iakovidis, 2021). 
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 An obstacle detection approach based on gaze estimation and fuzzy logic aiming to assist 
people with visual impairments for their navigation in outdoor settings (George Dimas, 
Diamantis, Kalozoumis, & Iakovidis, 2020; George Dimas, Ntakolia, & Iakovidis, 2019; 
Dimitris K Iakovidis, Diamantis, Dimas, Ntakolia, & Spyrou, 2020). 
 

 A self-supervised CNN model that can efficiently detect obstacles in outdoor settings 
without the need for additional depth information (George Dimas, Cholopoulou, & 
Iakovidis, 2021). 
 

 A single-image methodology for in-vivo measurements (George Dimas, Bianchi, et al., 
2020). 
 

 A single-image methodology for the measurement of the dimensions of objects in natural 
images (George Dimas & Dimitris Iakovidis, 2022). 
 

 An unsupervised methodology for the reconstruction of 3D models, given a sparse point 
cloud representation (P. Kalozoumis, Dimas, Triantafyllou, & Iakovidis, 2022; 
Triantafyllou, Dimas, Kalozoumis, & Iakovidis, 2022). 
 

 A generalized framework for the development of interpretable CNNs that can provide 
interpretations in accordance with human perception (George Dimas, Cholopoulou, & 
Iakovidis, 2022). 

 

1.3 Thesis Outline     

The rest of this thesis is organized in five (7) chapters: 

 Chapter 2 summarizes the theoretical background regarding machine perception and 
computer vision including image understanding and deep learning processes. 
 

 Chapter 3 presents the methodologies that were developed for predicting visual saliency 
on images. 
 

 Chapter 4 presents the methodologies for obstacle detection. 
 

 Chapter 5 presents the methodologies that were developed for scene perception, i.e., 
measurement methodologies based on a single image. 
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 Chapter 6 introduces a novel methodology for the reconstruction of coarse 3D models using 
ML. 
 

 Chapter 7 introduces approaches that investigate methodologies that develop models that 
can perceive their environment in a perceptually interpretable way. 
 

 Chapter 8 presents the conclusions of this dissertation, and directions for future work. 
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2. Chapter 2 
Visual Sensing & Perception  
Machine Perception (MP) can be defined as the ability of the machine to process input data, e.g., 
visual, acoustic, tabular etc., to understand various aspects of the world (Parasher, Sharma, 
Sharma, & Gupta, 2011). The development of intelligent systems that have the capacity to perceive 
the world through visual data, e.g., images, is defined as Computer Vision (CV). In CV, the 
machine processes data extracted from images either in the form of features engineered by humans 
(like in traditional ML) or through a deep learning paradigm where the machine figures out features 
on its own, through a learning process (that we refer to as training), that benefits its world 
comprehension (Shapiro, Stockman, & others, 2001). 

This chapter summarizes the required theoretical background regarding a) camera models and 
image acquisition, i.e., how a sensor captures and represent a scene in a digitized form, b) the 
fundamentals of intelligent machines such as Multilayer Perceptrons (MLP) and Convolutional 
Neural Networks (CNNs), c) how the intelligent machines are trained, d) methodologies that 
enable the understanding of how these machines perceives their environment and e) novel 
applications on how to exploit the properties of neural networks as global function approximators 
for data representation. 
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2.1  Imaging with Visual Sensors 

Light is the fundamental element of photography, and its nature makes photography a major 
chapter of physics. The formation of an image as captures by a camera, can be described by 
employing geometry in the field of optics. A major physical principle that makes photography 
possible is the photoelectric effect. By leveraging both the photoelectric effect and geometry 
regarding the emission of light rays, we can create cameras that capture and visualize a scene at a 
particular moment in time. Then, these instantiations of a scene, known as images, can be 
processed by intelligent machines and enable them to understand their surroundings or assist 
humans in decision making. The focus of this chapter will be to provide the required background 
regarding the camera models and their geometric properties that makes photography possible in 
various scenarios. In addition, the basic sensors that exist for capturing images that represent 
different energies of light or information regarding the scene (e.g., color, infrared, depth) will be 
described. 

2.1.1 Mathematical Modeling of Camera Systems 

A camera model is described by two set 
of basic parameters, the extrinsic and 
intrinsic parameters. The extrinsic 
parameters are used in a procedure 
which transforms the coordinates of the 
scene that is going to be projected in an 
image, to a camera centered coordinate 
system (frame).  The intrinsic 
parameters of the camera include the 
focal length, a scale factor and the image 
center which is also described in the 

literature as principal point (Heikkila & 
. There are also other set of 

parameters that enable a more detailed mathematical expression of the camera model such as, the 
distortion coefficients that model the distortion that may be introduced to an image based on the 
lens of the camera. A well-known and widely used mathematical model of a camera is the Pinhole 
Camera Model. The pinhole camera model is based on the principle of collinearity, where each 
point in the space of the 3D scene in projected by a straight line through the projection center 
(principal point) into the 2D image plane (Figure 2.1). 

The origin of coordinate system of the camera is at the projection point of the camera and it is 
denoted as XC, YC, ZC with the z axis being perpendicular to the image plane as illustrated in   Figure 
2.1. The coordinate system of the 3D plane of the scene is denoted as XW, YW and ZW. The rotation 
process is based on Euler angles ,  and  which denote three sequential elementary clockwise 
rotation around x-, y- and z-axis, respectively. For the world coordinate system to match the 

Figure 2.1. Illustration of the pinhole camera model. 
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coordinate system of the image plane, the first rotation is performed with respect to x-axis, then 
with respect to y- and finally with respect to z-axis. After the rotation of the world axis, to precisely 
match the coordinate system of the image plane, the rotated coordinates need to be translated along 
all axis, with a displacement of x, y, z. Considering the above, for a point P = (x, y, z)T of the 
3D world plane (scene) that is to be projected to its corresponding point the 2D image plane, this 
point P needs initially to be transformed as follows: 

 (2.1) 

where each term corresponds to the following transforms: 

 (2.2) 
 (2.3) 
 (2.4) 

 (2.5) 
 (2.6) 
 (2.7) 

 (2.8) 
 (2.9) 
 (2.10) 

 (2.11) 
 (2.12) 
 (2.13) 

where Eq. (2.2-10) express the Euler angles. Once this transformation takes place, then the intrinsic 
parameters of the camera can be used for the finalization of the projection of the 3D point P to its 
corresponding point in the 2D image plane, p. The projection of the transformed  = ( , , )T 
to the 2D image plane is performed as: 

 (2.14) 

Where f is the focal length of the camera. However, one more step is required to obtain the point 
P in pixel coordinates: 

 (2.15) 

su is a scale factor, Du, Dv are coefficients enabling the transition from the metric unit system to 
pixels and u0, v0 denotes the principal point of the camera.  
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This generic mathematical representation of the 
pinhole camera model is not applicable 
everywhere, nevertheless, is used as the basis for 
more advanced models. Usually, the lens that 
cameras use introduce a distortion effect to the 
captured image. A common distortion that 
occurs is that of the radial distortion. This 
distortion causes the actual image points to be 
displaced radially in the image plane (Figure 
2.2) (Slama, 1980). The effect of radial 
distortion on the points of an image can be 
approximated using the following formula: 

 (2.16) 

where k1, k2 r = (  )1/2. 

Tangential distortion is another regularly occurring distortion. This distortion is in effect when the 
centers of curvature of lens surface are not always strictly collinear and is characterized as 
decentering including both a radial and tangential component. Tangential distortion is modelled as 
follows: 

 (2.17) 

 p1 and p2 are the coefficients of the tangential distortion. By combining Eq. (2.16) and Eq. (2.17) 
and incorporating them in the basic model of the pinhole camera, i.e., Eq. (2.15), a more accurate 
formal expression of a camera is derived: 

Figure 2.2. Example of radial distrotion 

Figure 2.3. Example of tangential distortion 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



11 
 

 (2.18) 

 

2.1.2 Types of Imaging Sensors 

There are many types of imaging sensors that are used in various camera systems. The camera 
sensor is responsible for collecting the visible or non-visible light converting it to an electrical 
signal that can be organized to render images and videos. Multiple camera sensors can be used in 
different arrangements to extract information from a scene such as the depth information. This 
section is dedicated to three different sensors that have been used and investigated in various 
application described in this dissertation. 

RGB Sensor 

An RGB sensor is responsible for converting visible light with a 
wavelength of 400 to 700nm to an electrical signal that can be used 
to generate an image or a sequence of images, i.e., a video. RGB 
camera sensors are designed to perceive color in a similar way to 
the human eye. These sensors usually have cells equipped with 3 
kinds of filter elements. Each one is capable of filtering a band of 
light isolating red, green and blue colors (Lukac, Plataniotis, & 
Hatzinakos, 2005). These cells along with the filter elements are 
structured in a Color Filter Array (CFA) with a Bayer BGGR 
pattern (Figure 2.10). The filter proportions, i.e., 2 green filters, one 

red and one blue, have been chosen to mimic the human eyesight. The 2 green filters are justified 
because of the increased sensitivity of humans to the color green during daytime. 

Each cell receives all color information but due to the filtering each cell receives only photons  
with a wavelength that corresponds to either red, green, or blue color. After the deciphering of the 
color information by each cell of the camera sensor, follows a process that is called demosaicing. 
This process is performed both by firmware of the camera and embedded software to enable the 
transformation of each Bayer pattern element of the sensor array to pixels and form the final image. 

Stereo Camera Sensor 

A single RGB camera is capable of capturing a scene in the form of an image. Although the color 
information of a scene is useful, it is not always sufficient in the context of computer vision 
applications. For example, for autonomous driving, color information is useful for detecting 
objects in the scene, categorizing them in classes or segmenting the image, based on its semantics. 
For the navigation of the car, however, a 3D perception of the scene is necessary. For this purpose, 
there are various approaches to assess 3D information, such as specialized sensors like sonar 
sensors, laser-based sensors (LIDAR) etc. Another approach is the usage of multiple cameras in a 

Figure 2.4. Illustration of the 
Bayer Filter Array BGGR pattern 
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horizontal or vertical arrangement. With two 
cameras arranged in straight line vertically or 
horizontally, the distance to a point can be 
measured provided that the point is in the 
overlapping view of the two cameras. An 
illustration of a stereo setup is illustrated in Figure 
2.5. By considering the triangles PCLCR and PPLPR 
the value of depth that denotes the distance z 
between the camera and the point that is depicted in 
an image at a pixel p = (x, y)T in a pair of images 
captured at the same time by the left and right 
camera can be calculated as follows: 

 (2.19) 

where b is the distance between the optical centers 
of the two cameras measured in world units, i.e., 
cm, mm etc., the difference xl - xr is the portion 
known as disparity where xl and xr indicate the 
position of the coordinate x of p on the left and right 
image. The magnitude of the disparity is inversely 
proportional to the distance between p and the 

camera, i.e., the bigger the disparity the closer the point to the camera. By applying Eq. (2.19) for 
each pixel p on an image captured by a stereo camera system, the estimated depth values z can be 
organized in an array with the same dimensions of the original image. This array, each element of 
which indicates the depth value of the scene, is called a depth map. An example of depth map 
captured by a stereo camera system is illustrated in Figure 2.6. 

The use of multiple cameras of images for assessing 3D cues regarding a scene is called Stereo 
Vision. Stereo vision is currently used in many applications, ranging from navigating vehicles on 
another planet, to assisting people with visual impairments in their day to day lives (George Dimas, 
Ntakolia, et al., 2019; Scaramuzza & Fraundorfer, 2011). 

Near Infrared Sensor 

Conventional RGB cameras operate well in well-lit environments, during the daylight or by using 
artificial light in darker sceneries. There are cases, however, where during the daylight because of 
atmospheric conditions like the presence of fog, smoke etc. or not well-lit scenes, the performance 
of the cameras deteriorate. Hence, the applicability of conventional cameras in stereo vision setups 
is limited. The limitation that is introduced by conventional cameras lies to the fact that they exploit 
only a specific spectrum of the light that is known as visible light. There are other sensors that can 
produce images of a scene by leveraging the non-visible light like the infrared or near-infrared 

Figure 2.5. Example of a stereo camera 

Figure 2.6. Example of a depth map 
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radiation. Such stereo vision systems usually 
incorporate both RGB and infrared sensors. 
A representative example is the RGB-D 
camera Intel D435. D435 utilizes the infrared 
based sensors for producing depth maps and 
RGB sensors for capturing the color 
information of the scene (Grunnet-Jepsen, 
Sweetser, Winer, Takagi, & Woodfill, 2018; 
Hussmann, Ringbeck, & Hagebeuker, 2008). 
Such camera systems provide robust imaging 
that is not affected by atmospheric or other 
conditions. Additionally, D435 uses 
projectors that emit optical patterns using the 
infrared spectrum to enhance the depth 
information that can be acquired. Such 
projectors overlay the observed scene with a 
semi-random texture that facilitates finding 
correspondences and are particularly useful 
in the case of texture-less surfaces like indoor 
dimly lit white walls. Since these optical 
patterns are emitted in the infrared spectrum, 

they do not interfere with the RGB sensor. As a result, the D435 can simultaneously capture color 
images and acquire accurate depth information. 

2.2 Intelligent Machines 

When we refer to intelligent machine, we mean systems that are capable of learning on their own 
through an algorithmic training process. Once they are trained, these systems are capable of 
providing us with estimations given a set of input data. This process is called inference. In detail, 
machine learning systems are capable of detecting patterns in large amounts of data when they are 
tasked to tackle a specific problem (Society, 2017). Another definition for machine learning 
models, that can be considered more detailed, is the automated process of discovering correlations 
between variables in a dataset, for the purpose of making predictions or estimates of some outcome 
(Lehr & Ohm, 2017). 

Many machine learning models have been proposed in the literature, some of the most well-known 
etc. (Mahesh, 2020). 

This dissertation, however, focuses on MLPs and CNNs as the most notorious machine learning 
(and deep learning) models that dominated the CV scene. MLPs and CNNs have been successfully 
employed in various CV applications, from recognizing handwritten characters to the detection of 
abnormalities in biomedical images. The modeling for both ML algorithms has been based on 

Figure 2.7. Example of a near infrared image 

Figure 2.8. Example of a near-infrared / RGB stereo vision 
camera 
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biological systems of the brain and the eye. In the following sections, more details are provided
with respect to the modeling, training, and the inference process of these models.

2.2.1 The Perceptron (a.k.a. 
Artificial Neuron)

The fundamental block of MLPs, is called 
perceptron, also known as, artificial neuron. The 
design of the perceptron has been inspired by 
the neurons (nerve cells) of the brain. The
biological neurons are the fundamental units of 
the brain and the human nervous system. These 
cells are responsible for the reception of signals 
originating from the external world as well as 
for providing responses that enable specific 
biological functions (e.g., motor functions of 
muscles) and for transforming and relaying 
electrical signals from the reception of the 
signal to the final function. Approximately a 
human employs 100 billion neurons that they 
define its personality, the responses of the body
and most of the aspects of the human being.

To understand how the design of the perceptron 
has been conceived we need to study the 
architecture of a biological neuron. One can 

imagine the structure of a biological neuron as a tree consisting of three main parts: a) dendrites, 
b) an axon and c) the main cell body (soma). By continuing the tree analogy, these three parts of 
the neuron correspond to the branches, roots and trunk of a tree, respectively. The dendrites are 
responsible for receiving the input signals that derive from other cells, the axon is responsible of 
providing a transformed version of the input signal while the soma is where the DNA of the neuron 
is stored in its nucleus and the proteins that are transported via the axon and the dendrites are 
synthesized. To better visualize the overall structure of a biological neuron an illustration of its 
structure is presented in Figure 2.9.

A perceptron can be considered as a simplified version of a biological neuron. Schematically, the 
graphical representation of a perceptron is very similar to that of a biological neuron. To better 
understand the similarities between the two, an illustration of an artificial neuron is presented in 
Figure 2.10. From the inspection of the two illustrations, i.e., of the biological (Figure 2.9) and the 
artificial neuron (Figure 2.10) we can easily draw some correspondences between the two designs. 
The weights of the artificial neuron can be considered as the dendrites, since they receive an input 

Figure 2.9 Illustration of a biological neuron and its 
various parts
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that is transformed by some weights. The combination of the transfer and activation function 
resembles the soma of the neuron where the input stimuli are collected by the dendrites  

 

Figure 2.10 Illustration of a perceptron and its parts 

to be propagated to the axon that outputs the final transformed signal. The perceptron is a 
parametric function that can be modeled mathematically as follows (Kubat & Kubat, 2017): 

 (2.20) 
or 

 (2.21) 

 

where Eq. (2.20) is the mathematical model of a perceptron using linear algebra whereas Eq. (2.21) 
is its analytical form. In Eq. (2.20) W = (w1, w2, w3 wn)T and x = (x1, x2, x3 n)T are the 
vectors corresponding to the weights of the perceptron and input stimuli, while b is a bias term. 
Function ( ) is called an activation function and is usually used to introduce non-linearity to the 
perceptron making it capable to approximate complex non-linear functions. 

Table 2.1 Example of criteria 
 
perceptron to examine some of its applications. 
The perceptron is used to approximate other 
function that their mathematical model is 
unknown; however, some examples of pairs of 

Criteria Weights 

(x1) Weather is good w1 = 0.3 

(x2) I had a good meal 1 hour ago w2 = 0.7 

(x3) I have free time of >1 hour  w3 = 0.6 
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inputs and outputs need to be known for training. Let us consider a perceptron that we want to 
decide for us whether we should work out or not. The inputs are a set of criteria that are either True 
or False encoded in a binary format of 0 and 1, respectively. Each criteria resembles an input xi, i 
= 1, 2, 3 n, as presented in Table 2.1. Each of these criteria is assigned with a value of 1 or 0 
representing whether a statement is True or False. The next step is to assign to each criterion a 
weight wi, i = 1, 2, 3 n, to enable the decision-making process of the perceptron (Table 2.1). 
These weights derive from a training process during of which the perceptron converges to the best 
possible set of weights that provide the best possible outcome according to a particular task. In this 
example, it is assumed that the perceptron is already trained to provide the best decision regarding 
our workout. More details regarding the training process of MLPs and CNNs are provided in the 
following sections (see section 2.4). One more component that it needs to be determined is the 
activation function that according to Eq.(2.21), ( ), outputs the final decision of the perceptron. 
In this case the  will be a Heavyside function (i.e., step function) parametrized by a: 

 (2.22) 

 
Table 2.2. Criteria and their respective exemplary  
values 

where a for this example is set to a = 0.9.  
set a scenario where the criteria presented in 
Table 2.1 have the values presented in  

Table 2.2. For simplicity the bias term is set to 0. 
Then according to Eq. (2.20), by considering the 

respective values and weights of the criteria the perceptron proceeds to the following calculations 
presented in Figure 2.11. As it can be observed,  

 

Figure 2.11. Illustrations of the calculations made by a perceptron for the example described in Section 2.2.1. 

Criteria Values 

(x1) Weather is good 0 

(x2) I had a good meal 1 hour ago 1 

(x3) I have free time of >1 hour  0 
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given the weights of the perceptron and the values that have been provided as input, its prediction 
is 0, i.e., the user should not workout.  

However, the perceptron model is only capable of solving classification problems where the input 
vectors are linearly separable. A common problem that is considered unsolvable by a simple 
perceptron is the approximation of the XOR logical gate. How are such problems tackled? 
Considering that our brain does not use neurons in a single layer but networks of multiple layers 
of neurons connected to each other, more sophisticated networks have been proposed that can 
approximate any function. These universal approximators are known as Multilayer Perceptrons or 
Multilayer Neural Networks (Hornik, Stinchcombe, & White, 1989).  

2.2.2 The Multilayer Perceptron (a.k.a. Artificial Neural Network) 

3.  

4. Figure 2.12. Illustration of Multilayer Perceptron. Gray circles denote artificial neurons, white circles input data 
that are not processed by artificial neurons and the connections among neurons are illustrated with black lines. 

The perceptron has been modeled to mimic the structure and functionality of the biological neurons 
that can be found in the brain. The biological brain, however, is far more advanced, consisting of 
billions of neurons that are connected in a complex way. he simple perceptron model is not 
sufficient to emulate the more complicated design of the brain, and as a result it is limited in solving 
only problems that incorporate linearly separable set of vectors.  

A more advanced model is the Multilayer Perceptron (MLP) also known as Artificial Neural 
Network (ANN). Instead of utilizing a single layer of Perceptrons, an MLP consists of multiple 
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layers each of which is fully connected with the layer that follows. An illustration of the MLP 
architecture is illustrated in Figure 2.12. As it can be observed in Figure 2.12, an MLP consists of 
at least three layers of artificial neurons. The first layer is called input layer, the intermediate layers 
of the MLP are called hidden layers and the final layer that provides the desired output is named 
output layer. Each unit of the first layer corresponds to the elements of the input vector  

 

Figure 2.13 Illustration of a three-layer MLP trained to approximate the XOR logic gate. 

whereas the units of the rest layers are artificial neurons that following the mathematical model 
described in the previous section (2.2.1). All the units of each layer are fully connected with all 
the units of the following layer (Figure 2.12.). The number of input and output units is determined 
by the structure of the input vector and the desired output. For example, to approximate the XOR 
logical operator, the input vector would be comprised of two input elements and the output target 
would be a single value; hence, the input layer of an MLP tasked to approximate the XOR operator 
would have two input units and one output neuron. 

According to the Universal Approximation Theorem, MLPs are capable of approximating any 
measurable function to any degree of accuracy without any theoretical constraints for its success. 
When an MLP is unable to approximate a target function this is due to insufficient number of 
hidden units, i.e., neurons in the hidden layers, or because the available data do not have 
deterministic relationship between the input and the target samples (Hornik et al., 1989). In 
addition, these statements are true for both one- and multi-dimensional problems.  
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Nevertheless, even if in theory an MLP with a single hidden layer of a finite number of neurons is 
capable of approximating any measurable function, in practice MLPs are usually designed with 
multiple hidden layers. This, however, introduces additional hyper-parameters (e.g., number of 
hidden layers, number of neurons in each hidden layer etc.) that need to be tuned for constructing 
an efficient MLP for a specific problem. MLPs with multiple hidden layers may achieve a better 
generalization performance but are slower; on the other hand, an unnecessary increase in the 
number of hidden layers and their neurons may lead to overfitting. In general, ways to efficiently 
design an MLP for a specific task is still an open issue in the ML research and it can be regarded 
as a limitation of these models (Panchal, Ganatra, Kosta, & Panchal, 2011; Uzair & Jamil, 2020). 

Table 2.3 XOR Truth Table 

An example to demonstrate how an MLP manages to solve
the XOR classification problem with a single hidden layer
is provided. The truth table of the XOR gate is presented in 
Table 2.3. The XOR gate can be approximated by a three-
layer MLP with two input units, a single hidden layer of 
two hidden neurons and an output layer of one neuron. An 
illustration of an MLP already trained to correctly 

approximate the XOR is illustrated in Figure 2.13. Each neuron of this MLP follows the 
mathematical model of Eq. (2.20) where the biases bi, i = 1, 2, 3 and weights of each neuron are 
presented in Figure 2.13. For this example, as an activation function , the following step function 
was chosen: 

(2.23) 

Once the MLP is well-defined and trained is capable of approximating the XOR logic gate and 
predicting the output of the XOR given a set of inputs. Let the vector x = (0, 1)T be the input of the 
MLP, i.e., x1 = 0 and x2 = 1. According to Table 2.3 the output of the MLP given x should be 1. 
By performing the respective calculations, we have: 

1st
 Hidden Neuron:  (2.24) 

2nd
 Hidden Neuron: (2.25) 

Output Neuron:      (2.26) 

As it can be observed in Eq. (2.26), the MLP that is used predicted correctly that the output of the 
XOR would be 1. By trying other combinations as input, it can be concluded that the respective 
network is indeed capable of correctly predicting the output of the XOR logic gate. 

MLPs are arguably one of the most generalized forms of artificial neural networks, proven to be 
capable of learning any measurable function. There are some limitations, however. Such 
algorithms receive inputs in the form of vectors, and as a result multidimensional data, such as 
images, cannot be directly propagated to MLPs since they need to be vectorized. Vectorized 
images, i.e., unraveled images in the form of a vector instead of an array, or other multi-

Input Output 
x1 x2 y 
0 0 0 
1 0 1 
0 1 1 
1 1 0 
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dimensional data increase dramatically the parameters of the first hidden layer of the network, and 
the approximation of these parameters is computationally demanding during the training. 

2.2.3 Feature Extraction and Selection 

Figure 2.14. Illustration of ML pipeline 

The training of MLPs involves -
target pair examples during training, enables the learning process during which the network fine 
tunes its weights and biases to provide accurate prediction regarding a classification or regression 
task. After its training the network is capable of  providing the correct target results given a 
respective input. The training data that an MLP is capable of handling are in the form of N-
dimensional vectors. Each vector that comprises the input data represents an observation, and the 
target output that corresponds to that observation represent the outcome that we want to 
approximate given the respective observation. Each observation is also called a feature vector. The 
elements of these feature vectors are observable quantities that are called features. 

There are two main steps that are required for the efficient training of an ML algorithm, namely, 
the feature extraction and feature selection. Feature extraction enables the abstraction of 
information that subsequently leads to the reduction of its dimensionality. Feature selection aims 
at leveraging the most meaningful features that have been extracted. For an MLP to handle 
multidimensional data, e.g., images, certain features need to be extracted from each image. As it 
is discussed below (see section 2.2.4), by using entire images as input in an MLP, results to the 
vast increase to its parameters that makes its training computationally intensive and time 
consuming. For this reason, various methods have been proposed that can detect salient points, 
i.e., single pixels or spatial regions in an image that are considered important. Once these salient 
points are detected, various features that encode information regarding the color, texture etc., can 
be extracted and provided to an MLP to be trained and learn a given task. The feature extraction 
process leads to the construction of a dataset containing feature-target output pairs. 

In most cases, a constructed  dataset used for the training of an MLP contains noisy observations 
or observable quantities that are not correlated to the desired target output, i.e., are irrelevant. The 
inclusion of such samples in the training process may lead to an unreliable predictive model that 
has low accuracy or is unstable. To cope with this problem, the datasets that are used for training 
an MLP usually require manual curation by the user to determine which observable quantities are 
useful or which observations are noisy to ultimately be excluded from the learning procedure. This 
process is called Feature Selection. 
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Feature selection enhances the training process by reducing the training time (by excluding feature 
vectors),  increases the accuracy of the model by removing irrelevant or noisy data (Doraisamy, 
Golzari, Mohd, Sulaiman, & Udzir, 2008). Furthermore, by reducing the features incorporated in 
the decision-making process of the model a better understanding regarding which features affect 
the predictive outcome can be achieved (Arauzo-Azofra, Aznarte, & Ben tez, 2011). Algorithms 
that have been developed for feature selection can be organized in three categories, namely, filters, 
wrappers and embedded selectors.  

Filter algorithms perform a process that aims at selecting the appropriate feature for a given task 
prior to the training of a classifier (Duch, Winiarski, Biesiada, & Kachel, 2003). Such algorithms 
evaluate the features and rank them according to their relevance. After the ranking the filter 
algorithms conclude to a set of superior features that can be used for training efficiently a classifier. 
Hence, filter algorithms are classifier invariant since they only examine the quality of the data and 
disregard the classification or regression algorithm that will be utilized. 

Wrapper algorithms, in contrast to filter algorithms, are dependent on the classifier. These feature 
selection methods, consider a subset of the feature set and proceed to evaluate the performance of 
the ML algorithm using only this subset (Ron & George, 1997). This process is repeated for various 
subsets of the initial feature set. After many repetitions the optimum subset that leads to a superior 
performance of the ML algorithm is selected for training and inference. Wrapper algorithms are 
considered more reliable than filters, however, are more time consuming and computationally 
intensive since they require many trials to determine the best feature subset that enables a particular 
ML algorithm to solve a specific problem. In addition, the employment of a different ML algorithm 
leads to the selection of a different feature subset. This drawback is tackled by using some heuristic 
methods like genetic algorithms, greedy stepwise, best first, or random search. Nevertheless, 
wrappers become a prohibitive approach when the dataset at hand is high dimensional.  

Embedded methods for feature selection aiming to determine the optimum features during the 
execution of the ML algorithm. Their name derives from the fact that they are a part of the ML 
algorithm itself either as its normal or extended functionality. Embedded feature selection 
algorithms include among others, decision trees and multinomial logistic regression and its 
variants (Cawley, Talbot, & Girolami, 2006; Sandri & Zuccolotto, 2006). Other embedded feature 
selection approaches incorporate weighting on the features based on regularization models that use 
loss function to simultaneously minimize the fitting error and the feature coefficients to be small 
or zero. 

2.2.4 Limitations 

As it was described in the previous sections, MLP is one of the most generalized universal 
approximators capable of learning any measurable function given a hidden layer with finite 
number of artificial neurons. Nevertheless, MLPs have its disadvantages, e.g., MLPs can only 
process data in the form of vectors, has several hyperparameters, input data (features) need to be 
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engineered by humans etc. Some of these drawbacks that MLPs are posed to have been tackled 
with more recent and specialized models. This section summarizes these limitations in the 
following categories.    

(1) Computational Complexity: The computational complexity of an MLP during the training is
directly correlated with the number of connections between its layers. Since each neuron is
connected to all the neurons of the next layer, the number of trainable parameters of an MLP
model can greatly increase according to its architecture and the size of the input vector. The
formula that can be used to estimate the parameters between two layers is the following:

(2.27) 

where pk and nK are the number of trainable parameters and neurons of the Kth MLP layer, 
respectively. For example, for a three-layer MLP with 100 input units, 256 hidden and 1 output 
units the total parameters can be computed as follows: 

(2.28) 

For a simple network like this, the trainable parameters according to Eq. (2.28) are 26,113. 
This number can dramatically increase with more complex MLPs that utilize more neurons 
and layers. Hence, MLP cannot be efficiently trained in scenarios where the input data consists 
of very large vectors and the complexity of the problem requires many neurons or additional 
layers.  

(2) Tuning of Hyperparameters: By disregarding the choice of activation functions and training
algorithms (see section 2.4) MLPs still have a lot of hyperparameters that need tuning. For
example, even if with a single hidden layer an MLP can in theory approximate any function,
the number of neurons that is required still needs to be determined. In practice, MLPs designed
to be applied in various tasks usually utilize more than one layers where the number of neuros
that each layer comprises still needs to be determined. It is obvious that the determination of
the optimum number of layers and neurons it is not an easy task. Usually, with more than one
hidden layer the accuracy of the MLP increases with a trade off in training time and inference
(since the number of parameters increase, see Eq. (2.27)). However, if not the optimum number
of neurons is found, the number of layers required to tackled successfully a particular problem
may be difficult to determine (Uzair & Jamil, 2020).

(3) Limitations in Computer Vision: Modern CV requires the efficient processing of huge image
and video datasets of high resolution. This makes the incorporation of MLPs in such tasks a
tedious process since we can easily conclude that it would require a huge number of trainable
parameters for training and using an MLP in that context. -
characterizes the layers of MLPs makes them incapable of handling CV tasks easily just with
the utilization of images as input. For example, the images of the MNIST dataset have a
resolution of 32 32 that to
form with a dimension of 1 1024. If we were to use a simple three-layer MLP with a hidden
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layer that comprises 256 neurons and 9 output neurons (for classifying the numbers between 
0-9 that are depicted in MNIST images), then the total parameters of that MLP would be 
264,713. For a real-life task, if that three-layer MLP was to process a Full HD RGB image 
(1920 ry classification, i.e., one output neuron, it would require to learn 
1,592,525,313 parameters. That would require immense computational power for just training 
a simple MLP with modern CV data. 
 

(4) Hand-Cafted Extraction and Selection: As it was described in section 2.2.3, an MLP to be 
trained properly demands curated pairs of input and target data. The inputs that are being used 
by an MLP to infer a prediction need to be correlated and well represented in the dataset for 
accurate results. The whole process of data curation is not an easy task, and the user needs to 
manually process them. As a result, this procedure is very time-consuming, and mistakes or 
inconsistencies can lead in unstable models with low accuracy. In the case of CV applications, 
due to the increased computational complexity that is introduced to an MLP by processing 
entire images, the use of algorithms that detect salient points from which hand-crafted features 
are extracted, is necessary, e.g., abnormality detection in the gastrointestinal tract is benefited 
by color information whereas visual odometry by both color and lightness (George Dimas, 
Spyrou, Iakovidis, & Koulaouzidis, 2017a; Dimitris K Iakovidis & Koulaouzidis, 2014). 
Therefore, the user needs to conclude which salient point detection algorithms and feature 
extractors are suitable for each problem. The task of determining the most suitable salient 
detector and features per problem can be considered as an additional hyperparameter that need 
to be found and fine-tuned for a well-trained and efficient MLP.   
 

(5) Black Box: Recently ML algorithms, have been imposed under regulations that have as 
requirements, safeguards and restrictions regarding ML and automatic decision-making in 
general. MLPs, and other DL models, are considered black boxes. As a result, after their 
training on a dataset, even if they are providing correct predictions, is completely unknown to 
users which features are considered meaningful. This makes such models unreliable since in 
high-stake domains like medicine, even if accuracy is of major importance, the rational of an 
inference is valuable. For example, if the sole purpose of an ML algorithm is either to make a 
prediction or to determine through learning if there is a correlation between the input and the 
output data, then the term is not considered a problem. If, however, the application 
focuses on extracting additional knowledge from a prediction process, e.g., find new cues that 
lead to the determination of a malignancy in biomedical data,  or the interaction of driving 
mechanisms, then the - sability and its 
applicability in commercial applications. 
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2.3 Deep Learning 

Conventional ML algorithms, like MLPs, have various limitations; a major one being their 
inability to directly use raw data, e.g., entire images. On the contrary, the data that are utilized to 
train an MLP, need to be pre-processed manually to determine which features of these data are 
useful and should be considered. This procedure demands domain expertise, the engineering of 
features that need to be extracted from the data and the selection of subsets of the most useful ones. 
In summary, conventional ML algorithms require a manual process where human users design 
data representations that enhance enables the efficient training and learning of ML models. 

These representations, however, can be learned; and for this purpose various methods have been 
proposed that are capable of learning representations given raw data (Bengio, Courville, & 
Vincent, 2013). These methods can be used by learning models to inherit the ability of utilizing 
raw data and extract representations that are learned during the training phase. Hence, the 
representations are automatically designed to make an ML model provide its best performance 
when trained on a particular set of data for tasks like classification, detection, or regression. More 
recent representation learning approaches that have dominated various domains including CV, are 
referred to as Deep Learning (DL). The definition of DL as it is provided by (LeCun et al., 2015) 
is the following:  

Deep Learning methods are representation-learning methods with multiple levels of 
representation, obtained by composing simple but non-linear modules that each transform the 
representation at one level (starting with the raw input) into a representation at a higher, slightly 
more abstract level. With the composition of enough such transformations, very complex functions 
can be learned.  

The purpose of these non-linear modules is to subsequently transform the input raw data into a 
representation that can be used by the machine to tackle a specific task. In the case of classification, 
for example, these representations, from the viewpoint of the machine, are better at segregating 
the various classes that define the classification problem; in the case of object detection, these 
representations are better at segregating the target entity that the machine is tasked to detect. Such 
processes that transform a set of data to a different representation are occurring constantly in our 
everyday life. For example, our eyes can be regarded as a deep learning module that through 
evolution learned to transform photons (raw data) to a representation that is leveraged by our brain 
to generate a visual perception of our surroundings. Another analogy that can be used to better 
grasp the utility of deep learning modules is that of a digital camera. A digital camera is a set of 
non-linear modules that, similar to the biological eye, transforms photons (raw data) to a digital 
representation of a scene that can be understood by a machine and be viewed by a human. The 
fundamental difference between traditional ML and DL models is illustrated in Figure 2.15. 
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Figure 2.15. Illustration of the pipelines of traditional ML and DL 

In the context of CV, a DL model that takes as input a colored image in the form of a tensor of 
pixel arrays, learns to subsequently transform it to various representations that up to a particular 
level of abstraction (i.e., higher level) are similar to the features that are designed by humans. For 
example, the first layer (i.e., first non-linear module) transforms the input tensor to a representation 
that encodes either the presence or absence of edges at different spatial regions of the image and 
orientations. The second layer, by leveraging the representation that is generated by the first one, 
learns to detect patterns that encodes various arrangements of edges. Similarly, the rest of the 
layers, regardless of the depth of the model (i.e., the total number of layers) learn to leverage the 
representations of their previous layer to encode different features that enable the DL model to 
solve a particular problem. The key feature of DL models is that are capable of learning features, 
specifically designed for solving a particular problem, without any human intervention (LeCun et 
al., 2015).  

Deep Learning models have dominated almost all the domains that deal with high dimensional 
data, making serious advancements towards the solution of problems that have been hard to tackle 
by using conventional ML. Deep Learning models, and specifically Convolutional Neural 
Networks have achieved record performance in CV tasks like image recognition, object detection, 
human gaze estimation and image generation. This dissertation, mainly focuses on understanding, 
evolving, and investigating the structure and capabilities of the CNN model that has been one of 
the most used and promising in DL. 

2.3.1 Convolutional Neural Network  

Similarly to MLPs, CNNs have been inspired by the design of the biological eye (Hubel & Wiesel, 
1962). More specifically, a research team led by Fukushima managed to leverage the findings 
regarding the functionality of the cells in the visual cortex of cats, that was identified by Hubel & 
Wiesel, to create the predecessor of modern CNN, named Neocongnitron (Fukushima & Miyake, 
1982). The first indication that CNNs have prospect to dominate the CV field was presented in 
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1989 by Yann LeCun and his team (LeCun et al., 1989). LeCun demonstrated that a CNN model 
trained using the backpropagation algorithm in a supervised manner is capable of classifying 
images of handwritten digits with satisfactory accuracy. However, the CNN revolutionized the 
Deep Learning and CV field in 2012 when the AlexNet deep CNN architecture was proposed 
(Krizhevsky, Sutskever, & Hinton, 2017).  

The AlexNet architecture, to today s standards, is simple consisting of five convolutional and max-
pooling layers followed by three Fully Connected (FC) layers. These three components, i.e., 
convolutional, pooling and FC layers can be considered as the fundamental blocks of any CNN 
architecture designed to tackle classification tasks. Before diving into the structural details of 
different architectures we need to investigate the utility and usage of each of these components. 

Convolutional Layers 

A convolutional layer is the fundamental block of any CNN model. This layer, along with the 
CNNs in general, takes its name from a mathematical operation known as convolution. In the 
continuous space, a convolution is an integral that expresses the amount of overlap between  a 
function g and a function f, as the function g is shifted over f, mathematically expressed as:  

(2.26) 

In the discreet space, a convolution can be expressed as a summation process that expresses the 
amount of overlap between a g and f as the g is shifted over f : 

(2.27) 

In CV convolutions are widely used for applying various filters on images. The filtering of images 
is used for various tasks, from detecting specific features, e.g., edges on images or smoothing the 
image by removing noise using the Gaussian filter. Firstly,  see how the operation of 
convolution is used to apply a filter on a 2D discreet signal, e.g., an image. Two dimensional 
signals, like images, are represented as N M matrices. The filters that are usually applied on such 
signals are called kernels, and are also represented in the form of matrices of n  dimensions  
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Figure 2.16. Visual representation of signal S and filter g. 

where usually N < n and M < m. In this section we will consider that all the 2D input and kernels 
have are squares. Let us consider, a 5 5 2D discreet signal S and a filter G with a kernel of 3 3 
that are presented in detail in Figure 2.16. 

The operation of convolution between two discreet 2D functions (or between a discreet signal and 
filter) is mathematically expressed as follows: 

 (2.28) 

where  n  and j = m, m + s M  m  denotes the point that the filter is centered 
to perform the convolutional operation and s is the stride, i.e.
2D signal S.  A visual representation of the result of the convolution considering signal S with the 
filter G at the point (1, 1) of S, given a stride of 1 is illustrated in Figure 2.17. As it can be seen the 
result of a such an operation has lower dimensions than the original signal. The red frame illustrates 
the neighborhood that the filter is applied in this first step. To define the size of the output we need 
to 
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Figure 2.17. Visual representation of the result of convolution of S and G at the point (1, 1) of S. 

consider the number of possible placements of the filter on the input signal. The possible 
placements are bounded in such way that the frame should be always inside the bounds of the 
signal. In our example, the first placement is at (1, 1) of S. Considering that the stride is equal to 1 
the placements of the filter are the following: (1, 1), (1, 2), (1, 3) , (2, 1), (2, 2), (2, 3), (3, 1), (3, 
2), (3, 3). Hence, the size of the output of a convolution between the S and G would be 3  3. A 
formula to determine the size of the output is expressed as follows: 

 (2.29) 

where o is the size of the dimensions of the output. 

 

Figure 2.18. Whole convolutional progress along the input signal 

There are cases however where the output of a convolutional operation needs to maintain the size 
of the input signal. In order to achieve this, a process is adopted that is called padding. Padding is 
the process where additional rows and columns are appended in the input signal for the output of 
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the convolution to have the same dimensions with the input. For example, in a 5 5 2D signal that 
is convolved with a 3 3 filter with a stride of 1, for the output to maintain the dimensions of the 
input, it required to additional rows and columns. In detail, is this example it requires 2 additional 
columns (one appended on the left and one on the right) and 2 additional rows (one appended on 
the top and one on the bottom). This process is illustrated in Figure 2.19. 

 

Figure 2.19. Illustration of the convolutional operation using padding. 

As it can be seen in Figure 2.19, the 
additional rows and columns are filled with 
0 in this demonstration. This is called zero-
padding which is the most common 
padding method; nevertheless, these 
additional positions can also be filled with 
average values from a border neighborhood 
of the input signal. 

As it was described above, the convolution 
operation is the fundamental block of a 
convolutional layer. Each convolutional 
layer consists of multiple square filters (i.e., 
kernels). The most common dimensions of 
these kernels are 3 3, 5 5, 7 7 and 1 1. 
These dimensions along with the number of 

filters that each convolutional layer utilizes are determined by the user that designs a CNN model. 
It should be noted that each individual kernel of a convolutional layer has a depth that is equal to 
the depth of the input that receives. For example, the first convolutional layer of the AlexNet filter 
CNN receives as input an RGB image and it is stated that it utilizes 96 kernels with dimensions of 
11 11. Since each kernel is applied on an RGB image the first convolutional layer has 96 kernels 
with dimensions of 11 11 3.  

Figure 2.20. Example of feature maps that are estimated by a 
convolutional layer of a CNN model. 
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The values of each kernel are 
the trainable parameters of the 
convolutional layer and are 
determined through training. 
We refer to the values of each 
kernel as weights. All the 
kernels comprise the weights 
of a convolutional layer. Each 
kernel has its own parameters 
which are not shared with 
other kernels in a 
convolutional layer. In this 

way, each kernel learns to describe a feature that may be contained in the input. The result of the 
convolutional operation of each kernel with the input is called feature map. Feature maps are 2D 
representations of the input that encode the presence or absence of a certain feature described by 
each kernel. Each convolutional layer outputs a number of feature maps equal to the number of 
kernels that it utilizes. For example, the first convolutional layer of AlexNet, since it has 96 kernels, 
it will output 96 feature maps. A visualization of feature maps and trained  kernels of a 
convolutional layer are illustrated in Figure 2.20 and  Figure 2.21, respectively. As it can be seen 
in the trained kernels, the training process guided them to resemble features that are similar to the 
edge detection filters with various orientations. The features that are represented by the kernels of 
each convolutional layer, however, are not engineered by a human (i.e., hand-crafted), but are the 
product of a learning procedure where the deep learning model search on its own for the optimum 
representations that will benefit the convergence to a solution for a given task. 

A convolutional layer, however, apart from the convolution of the kernels with the input it also 
introduces to the output a bias term and a non-linearity similarly to MLPs. Therefore, for an input 
of a 2D square input signal S with dimensions of that has zero-padding so the output of the 
convolutional operation maintain same dimensions as S, a kernel of a convolutional layer w with 
a size  is applied on a position i, j of S as follows: 

 (2.11) 

where O denotes the output feature map and O[i, j] the position of the result of the left part of 
(2.11). The terms b and  denote the bias term and activation function of the convolutional layer. 
In a CNN model architecture, the first convolutional layer receives as input the original 2D input 
signal, whereas the following convolutional layer receive as input the output of the previous layer. 

Some noteworthy properties and specificities regarding convolutional layers in DL are 
summarized below: 

Figure 2.21. Example of trained kernels of a convolutional layer of a CNN 
model. 
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 Each kernel is applied sequentially along the whole input; its weights remain unchanged during 
this process. Hence, each kernel can be regarded as a feature detector. 
 

 The convolutional layer is translation invariant with respect to the input. This means, that if an 
object is shifted through an image it will not affect the response of the kernels since they search 
for specific features along the height and width of the input image. 

 
 Convolutional layers are however affected by changes in orientation in the input signal. If a 

convolutional layer is not trained to detect changes in orientation, the feature detection process 
carried by the kernels will fail. 

 
 Since each kernel considers the depth of the input we cannot dynamically change the input 

dimensions of convolutional layers. For example, if a convolutional layer is trained on RGB 
images it cannot process grayscale images since its each kernel will have 3 channels. 
 

 The libraries that are available for the development of CNNs  implement convolutions as cross-
correlation, this however does not affect the results since in practice the same weights (but 
flipped) would be learned by the kernels even if were used in the context of conventional 
convolutions. 

Pooling Layers 

A common practice that satisfies both the dimensionality reduction problem, the reduction of 
computational intensity of CNNs, and the redundancy that may be introduced by overlapping 
convolutions when the stride is small, is the pooling technique. In CNNs, pooling is implemented 
in dedicated layers that usually are after a convolutional, or multiple convolutional layers. The 
pooling process is also inspired by biological mechanisms of the complex cells of the V1 visual 
area. Complex cells have been observed to combine local features that have been detected by 
simple cells of the visual cortex. The combination process is achieved by aggregating local features 
over a small spatial neighborhood. Similarly, the pooling layer has the functionality to aggregate 
local features that are located in a small spatial neighborhood of the estimated feature map of a 
convolutional layer. This process also enhance the translation invariance that describes CNNs 

. 

The most common approach that is used in CNNs to implement pooling is the aggregation of the 
values of a feature map using a sliding that selects non-overlapping neighborhoods of a feature 
map. There are different aggregation processes that are adopted in different CNN architectures; 
nevertheless, the most used are the following: a) max-pooling, b) average-pooling and c) global 
average- or max-pooling. Usually, 
a stride of 2 to avoid the aggregation of overlapping regions). Max-pooling, as it is indicated by 
the name, aggregates the values that are indicated by the sliding window of the pooling layer by  
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Figure 2.22. Example of the average-pooling layer functionality. Different colors indicate the non-overlapping 
spatial regions that are defined by the sliding window. 

selecting the maximum value. The goal of max-pooling is to create a less complex representation, 
in terms of dimensionality, of the input feature maps that encode only the most dominant 
responses. Figure 2.23 illustrates an example of the max-pooling operation. The different colors 
indicate the different non-overlapping regions defined by the sliding window during the pooling 
process. On the other hand, average-pooling averages the values that are in the spatial region that 
is indicated by the sliding window (Figure 2.23). 

Global-pooling takes a slightly different approach than simple max- and average-pooling. The 
output of the last convolutional layer is a set of feature maps each of which encodes the information 
regarding the presence and absence of specific low-level features. In the context of classification,  

Figure 2.23. Example of the global-pooling layer functionality. Different colors indicate the non-overlapping 
spatial regions that are defined by the sliding window. 
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Figure 2.24. Example of the global-average-pooling layer functionality. Different colors indicate the non-overlapping 
spatial regions that are defined by the sliding window. 

these feature maps need to be transformed in a vector form to be propagated to the following FC 
layers that are used to output the classification outcome. The transformation process of feature 
maps is used to make the CNN output compatible with traditional MLPs. Global pooling is used 
to remove this need and make CNNs capable of performing classification tasks without the need 
of FC layers. Global-average pooling is similar to the conventional average pooling with a slight 
twist: instead of limiting the sliding window on a spatial region along the height and width of a 
single feature map it considers this spatial region along the whole set of feature maps and averages 
all these values. As a result, global-average pooling extracts a single feature map that represent the 
average value of all the feature maps along the spatial region indicated by the sliding window. 

An example of the global-average pooling layer is illustrated in Figure 2.24. As it can be noticed, 
regardless of the depth of the input, global-average pooling is capable of providing a single feature 
map as output that it can be easily propagated to the output layer that is responsible for estimating 
the classification or regression outcome. So, for an input of 4 4 3 the average and max pooling 
layers utilizing a 2 2 sliding window with a stride of 2 would provide and output of 2 2 3 whereas 
the global-average pooling using the same parameters would provide an output of 2 2 1. Global 
average pooling is more commonly used in modern CNN architectures like ResNet (He, Zhang, 
Ren, & Sun, 2016). 

Pooling methods, however, even if they are widely used in almost all CNN architectures they are 
not considered as a best practice (Schmidhuber, 2007), that refers to the 
conservation of information at all stages of processing, contradicts the base principle of pooling 
approaches. These pooling methods, i.e., max-, average- and global-average pooling contributes 
to the loss of information with one or the other way. For this reason recently in the literature 
pooling methods that aim at maintaining the information during pooling to enhance the 
performance of DL algorithms have been proposed (Diamantis & Iakovidis, 2020).  
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Fully Connected Layers 

A CNN architecture is usually consisting of multiple convolutional layers that are followed by 
pooling layers. Then, after the final combination of convolutional and pooling layers, a set of  Fully 
Connected (FC) layers follows. The purpose of the FC layers is to leverage the features estimated 
by the convolutional part of a CNN to perform a classification or regression task. 

For the FC layers to be incorporated into a convolutional part of CNN architectures, the feature 
maps that are estimated by the final convolutional layer of a CNN need to be transformed to a 
vector form. After that, this vectorized form is propagated to the FC layers in a similar way with 
the features that are propagated in an MLP. Each FC layer consists of multiple artificial neurons 
that are fully connected to the neurons of the previous and next FC layer. The last FC layer that is 
designed according to the needs of the problem that needs to be tackled provides the prediction 
outcome.  

A drawback of the FC layers is that they are computationally intensive during training and 
introduce an overhead of complexity to the CNN model that is proportional to the architecture of 
the FC part and the dimensionality of the feature maps that are estimated by final convolutional 
layer (see section 2.2.4). For this reason, in more recent architectures the global-average pooling 
layer is utilized. 

2.3.2 Architectures of Convolutional Neural Networks 

In recent years, the availability of large amounts of data and the innovation regarding the hardware 
required for their training and inference made CNNs a hot research topic. The advancements on 
the optimization of their training process, like fine tuning of their training parameters and 
especially the emergence of new CNN architectures achieving outstanding performance in image 
classification and recognition tasks have revolutionized the field of CV (Gu et al., 2018; Sinha, 
Verma, & Haidar, 2017). T
different combinations of various components that are utilized by CNNs, e.g., convolutional, 
pooling and FC layers, in order to create a unified model that can be trained and solve a problem. 

Current CNN architectures are designed based on convolutional blocks. Convolutional blocks are 
organized modules of multiple convolutional, pooling, and other layers. These blocks are repeated 
throughout the architecture with or without changes regarding the parameters of the convolutional 
layers, e.g., size and number of kernels, strides, activation functions etc. The main focus regarding  
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Figure 2.25. Summarization of the various CNN architectures along with the base logic of their development. 

the investigation of new architectures revolves around the development of novel convolutional 
blocks that can be used in a modular way. This section summarizes the most important CNN and 
convolutional block architectures that have been proposed throughout the years. Figure 2.25 
summarizes the various architectures that have been proposed in the literature throughout the years 
and provided game-changing performance in image classification and recognition tasks. In 
addition, Figure 2.25 presents the base principles that guided the development of the respective 
models. 

LeNet CNN Architecture 

LetNet CNN architecture was proposed in 1998 by Yan LeCun, Leon Bottou, Yoshua Bengio and 
Patrick Haffner (LeCun, Bottou, Bengio, & Haffner, 1998). LeNet is one of the earliest CNN 
models that has been used for recognizing handwritten characters. The architecture of this model 
is small since it consists of 2 convolutional layers 3 FC layers and 2 pooling layers. An illustration 
of LeNet can be seen in Figure 2.26. 

 

Figure 2.26. [1998] IEEE Reprinted with permission. Illustration of the LeNet architecture (LeCun et al., 1998) 
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This model was designed to classify grayscale images with dimensions of 32 32. The first 
convolutional layer utilized 6, 5  kernels that were performing convolutions with a stride of 1 on 
the input image. The second layer of this model was an average pooling layer that was applied on 
the feature maps estimated by the first layer with a sliding window of 2  and a stride of 2. The 
third and fourth layer of LeNet consists of a convolutional and an average pooling layer, 
respectively. This convolutional layer had 16 kernels with a dimension of 5  that are applied on 
the input with a stride of 1. The average pooling after the third layer had the same parameters as 
the previous pooling layer. The fifth, sixth and the output layer are FC layers with 128, 84 and 10 
artificial neurons, respectively. The neurons of the final layer, i.e., output layer, are decided 
according to the number of classes the model is tasked to categorize. 

AlexNet CNN Architecture 

The AlexNet CNN architecture was proposed in 2012 and it was trained for classifying RGB 
images of 1000 different classes of the ImageNet benchmark dataset (Krizhevsky et al., 2017). 
This model has a deeper architecture than AlexNet and consists of 5 convolutional layers, 3 FC 
layers and 3 pooling layers. The first convolutional layer comprises 96 kernels of 11
applied on the input with a stride of 4. The first convolutional layer is followed by a max-pooling 

 that shifts with a stride of 2. The third and fourth layers, 
similarly to the first two, are a convolutional followed by a max-pooling layer. This  

 

Figure 2.27. [2017] ACM Reprinted with permission. Illustration of the AlexNet CNN model architecture 
(Krizhevsky et al. 2017). 

convolutional layer has 256 kernels with a size of 
layer with a stride of 1. In contrast to the first convolutional layer, this layer also uses padding on 
the input to manage the change in dimensions that is caused by the convolution. The max-pooling 
operation of the fourth layer had the same parameters as the previous max-pooling layer. The fifth, 
sixth and seventh layer are consecutive convolutional layers with the first two utilizing 384 kernels 

 size that is also applied on the input with a stride of 1. These 3 layers utilized 
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padding in order the output of each layer to have the same dimensions with the input. After the 
convolution and the pooling layers AlexNet employs 2 FC layers and a final FC output layer. The 
first two FC layers have 4096 neurons whereas the output layer has 1000 neurons, same as the 
number of the classes that comprise the ImageNet dataset. 

VGG CNN Architecture 

The VGG CNN architecture has been proposed in 2014 introducing a very deep structural design 
for large-scale image recognition tasks (Simonyan & Zisserman, 2014). The VGG architecture 
employs small filters (kernels) that can encode the notion of up, down, right, left and center, i.e., 
3 -pooling and FC layers. VGG is structured in blocks of multiple 
convolutional layers followed by max-pooling operations. The most well-known and used VGG 
iteration is the VGG-16 version of the architecture. The number 16 indicates the number of 
convolutional and FC layers incorporated in this instantiation of the VGG architecture. In the 
original paper, the authors also proposed and tested two additional instances of the architecture, 
namely, the shallower VGG-11 and a deeper model VGG-19. Nevertheless, VGG-16 has been 
used in countless applications from the moment of its introduction until now. 

 

Figure 2.28. [2019] IOP Publishing. Illustration of the VGG-16 CNN architecture (Ming & Xu, 2019). 

A visualization of the VGG-16 architecture is illustrated in Figure 2.28. VGG-16 consists of 13 
convolutional and 5 max-pooling layers organized in 5 blocks followed by 3 FC layers organized 
in 5 different blocks. The 5 first blocks of VGG-16 have the role of the feature extractor whereas 
the 3 FC layers leverage these extracted features to perform the classification task. The final layer 
of each convolutional block is a max-
2; thus, only the convolutional layers will be described for each block. The first convolutional 
block of VGG-16 includes 2 convolutional layers with identical parameters, i.e., 64 filters with a 
kernel size of 3 Like the first convolutional block, the second one has two 
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convolutional layers utilizing 128 filters with a kernel size of 3  The third 
convolutional block has 3 convolutional layers with 256 filters, a kernel size of 3
of 1. The fourth and fifth convolutional blocks are identical consisting of 3 convolutional layers 
each with 512 filters, a kernel size of 3
padding on their input to preserve the dimensions of the input after the convolutional operations. 
These convolutional blocks are followed by 2 FC and an output FC layer. The first 2 FC layers 
have 4096 neurons whereas the output layer has 1000 neurons, same as the number of classed the 
network is trained on. This model architecture managed to surpass the performance of AlexNet on 
the ImageNet dataset making VGG-16 the go-to model for tackling CV problems. The small size 
of kernels that VGG-
result the feature maps that are estimated from each convolutional layer encode more information 
compared to the feature maps of AlexNet that uses bigger kernels.  

GoogleNet CNN Architecture 

The architectures of VGG and AlexNet are based on convolutional layers arranged in a sequential 
manner. A different approach has been adopted by the GoogleNet CNN model which introduced 
the Inception module (Szegedy et al., 2015). The authors that proposed the Inception module in 
the context of GoogleNet model, deviate from the conventional designing of sequential 
convolutions and proposed a parallel structure to their convolutional blocks. A visual 
representation of the Inception module is illustrated in Figure 2.29. 

 

Figure 2.29. 2015] IEEE. Illustration of the inception module design (Szegedy et al., 2015). 

As it can be observed in Figure 2.29 the convolutional layers are structured in a parallel 
arrangement and utilize kernels of various sizes. The variations on size of the kernels aim at 
extracting features at different resolutions from the same input. Filters with kernels of smaller size 
can extract finer features whereas filters with kernels of bigger size extract coarser features. The  
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intention behind this design is the achievement of deeper CNN models capable of extracting more 
abstract features at different resolutions for achieving higher performance. The 1 1 convolutions 
are purposed to regulate the size of the input that is propagated to the more computationally 
intensive 3
also concatenated with a pooled version of their input. Moreover, GoogleNet replaced FC layers 
after the convolutional part of the model with a global-average layer and an FC output layer. In 
this way the computational complexity of the model decreases. GoogleNet managed to outperform 
VGG models in terms of classification accuracy on the ImageNet benchmark dataset. 

 ResNet CNN Architecture 

Another inspirational architecture that managed to outperform all the previous model that have 
been proposed and tested on the ImageNet benchmark dataset is called ResNet (He et al., 2016). 
The ResNet architecture was engineered to fulfill the need of deeper models that can be trained 
easily without facing the problem of vanishing gradient. The vanishing gradient problem emerges 
when an DL model is trained with a gradient-based optimization algorithm that utilizing 
backpropagation (Basodi, Ji, Zhang, & Pan, 2020; Hochreiter, 1998).  

The problem of vanishing gradients usually 
occurs during the training of very deep CNN 
architectures, e.g., in the VGG architecture, 
and in recurrent neural networks. A training 
process that incorporates these methods 
updates the weights of a DL model 
according to the partial derivative of the loss 
function with respect to the trainable 
parameters of the model. In the case of deep 
architectures, the weights close to the output 
layer can be updated without issues. 
Nevertheless, the partial derivative of the 
loss with respect to weights closer to the 

input layer can become vanishingly low, and as a result the weights of these layers closer to the 
input will either receive indifferent changes or will not be changed at all. As a result, in cases that 
vanishing gradient emerges the training of the model becomes more time consuming or, in the 
worst case, does not update its weights at all. 

To cope with this problem and enable the construction of deeper CNN architecture, ResNet 
introduced the residual block (Figure 2.30). A residual block is constructed according to two main 
principles: the identity mapping and that multiple non-linear layers can approximate complicated 

Figure 2.30 to better describe the residual block. In Figure 
2.30 a convolutional layer (weight layer) followed by a ReLU non-linearity and another 
convolutional layer, given an input x are trained to approximate a function F(x) which is similar to 

Figure 2.30. Illustration of a residual block (K. He et al., 
2016a) 
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the approach followed by conventional CNN architectures. The authors of ResNet go a step further 
and utilize the identity mapping, i.e., the addition of x to F(x) (i.e., F(x) + x) to force these modules 
to learn a function that approximates a residual of the form H(x) = F(x) + x  F(x) = H(x)  x. A 
restriction to residual blocks is that x and F(x) must have the same dimensions for the successful 
summation.  

This direction provides the error backpropagation two different paths during the derivation, one 
through F(x) and another through the identity mapping, i.e., through x. Hence, if the gradient 
vanishes during the error backpropagation through F(x) the target weights can still be updated by 
computing the gradients through x. Similarly to the VGG architecture, the authors of ResNet 
proposed in their original paper multiple instantiations of ResNet of various degrees of depth (i.e., 
number of convolutional layers). Additionally, in the same fashion as GoogleNet, ResNet utilize 
a global-average pooling layer followed by a single FC output instead of multiple FC layers to 
perform a classification or recognition task. 

DenseNet CNN Architecture 

Guided by the need for deeper and easy to train CNN models, in 2017 the Densely Connected 
Convolutional Neural Networks (DenseNet) have been proposed (G. Huang, Liu, Van Der Maaten, 
& Weinberger, 2017). This kind of architecture has been inspired by the FC neural networks that 
have been described in section 2.2.2. Previously, CNNs where designed in a feed forward fashion 
i.e., a layer was propagating its output only to the following part of the model (a deviation of this 
trend can be found to ResNet were the input of a convolutional layer is added also to its output). 
DenseNet went a step further by introducing densely connected convolutional blocks. These 
convolutional blocks connect their layers to every other consecutive layer in a feed-forward 
fashion. In conventional CNN architectures a convolutional block with L layers would have L 
connections, i.e., one between each layer and its subsequent layer, whereas dense blocks establish 

 direct connections. A visual representation of a network utilizing dense blocks is illustrated 

in Figure 2.31. 

 

Figure 2.31. 2015] IEEE. Illustration of a DenseNet CNN model (G. Huang et al., 2017). 

In contrast to residual blocks where the information of a previous layer is added to the output of 
the next one, the connections in DenseNet are not formed in the basis of summation but with 
concatenation. In detail, the output of a layer is concatenated to the inputs of all the other layers. 
A restriction is that for the successful concatenation of feature maps their dimensions must be the 
same. Considering a dense convolutional block, the output of a layer Hl, where l = 1, 2, 3 L is 
the index of a layer indicating its position in a dense block, is denoted as: xl = H([x0, x1, x2 xl-
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1]), where [ ] denotes the operation of concatenation. This structure benefits the training and reduce 
the problem of vanishing gradients in a similar way with the residual connections. Since the output 
of layer 0 is present at the last layer L it provides different pathways to the backpropagation of the 
error for the computation of gradients that can effectively change the weights for an efficient 
training process. 

Auto-Encoder CNN Architecture 

The architectures that have been described previously are mainly used for image classification and 
regression problems that to be solved require the extraction of features from 2D signals, like 
images, and the output is a vector expressing the probability of an image to belong to a class, 
coordinates of bounding boxes, estimating the price of a house from an image etc. Such models 
employ a fully convolutional part, i.e., a part consisting exclusively by convolutions connected 
with various ways to each other, followed by a single or multiple FC layers. However, there is 
another set of problems, that requires the extraction of features from an image that are utilized to 
generate a 2D map, e.g., class membership, on a pixel level. Such architectures usually receive as 
input an image and outputs a 2D map of the same, lower or higher dimensions to the input. These 
architectures are known as Auto-Encoders. 

 

Figure 2.32. Illustration of the Auto-Encoder architecture 

In the literature Auto-Encoders have been originally introduced in 1987 but with different 
terminology (Ballard, 1987; Schmidhuber, 2015). Convolutional Auto-Encoders consists of three 
parts: an encoder, a bottleneck and a decoder (Figure 2.32). The encoder has the same functionality 
with  the convolutional part of a conventional CNN model used for image classification. An 
encoder can be constructed using multiple sequential convolutional blocks consisting of various 
components such as convolutional and pooling layers. The output of the encoding model is a 
representation of the input image, i.e., an encoding of the input image, that is learned during the 
training and is shaped based on the task that the Auto-Encoder is trained to tackle. The output of 
the encoder is an unknown encoding of an image (unknown because it is learned by a black box) 
and it is also known as a latent representation of an image. Usually, the encoder has convolutional 
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blocks followed by pooling layers that are used to compress the input into a learned representation. 
The output section of the encoder is followed by the decoder part and is called bottleneck. 

The purpose of the bottleneck is to suppress the information flow from the encoder to the decoder 
and is considered the most important part of the Auto-Encoder CNN model. Bottleneck distills the 
most important information to pass through to the decoder model. Another use of the bottleneck 
is that the compressed latent representation contributes to the avoidance of overfitting; the smaller 
the bottleneck (i.e., the smaller the dimensions of the output of the encoder) the less chance for 
overfitting to emerge. However, if the bottleneck is too small, valuable information that would be 
necessary for the resolution of a task can be lost. 

The final part of an Auto-Encoder is the decoder model. The decoder model receives as input the 
output of the encoder, i.e., the latent representation, and outputs a 2D map relevant to the task that 
the Auto-Encoder CNN model is tasked to solve. This module of the Auto-Encoder, usually, has 
a symmetrical architecture to the encoder but in a reverse order and with the pooling layers 
replaced with up-sampling layers. 

Originally the Auto-Encoder architecture was designed as an unsupervised method to encode 
and/or compress an input signal. This was achieved by training an Auto-Encoder to provide an 
output identical to the input. In the context of CV such architectures have been used for denoising, 
super resolution, gaze prediction etc. (Gatoula et al., 2021; Huaibo Huang, He, Sun, & Tan, 2017; 
K. Zhang, Zuo, Chen, Meng, & Zhang, 2017).  

U-Net CNN Architecture 

When Auto-Encoder CNN models are employed to different application, they maintain their main 
structure, i.e., encoder, bottleneck, decoder, but they differentiate regarding other aspects such as 
the number of convolutional blocks they include in their structure. A noteworthy variation that 
revolutionized segmentation in biomedical images is that of the U-Net model (Ronneberger, 
Fischer, & Brox, 2015).  

U-Net follows the main architectural principle of an Auto-Encoder but, in the same fashion with 
DenseNet or ResNet, changes the way its layers are connected. U-Net can be considered as an 
Auto-Encoder where each block of the encoder model is directly connected to its symmetric block 
of the decoder. An illustration to better grasp the structure and how the connections between the 
encoder and the decoder model are established can be seen in Figure 2.33. The connections 
between the encoder and the decoder are established by concatenating the output of the 
convolutional blocks of the encoder to the respective blocks of the decoder. The idea behind these 
connections is that the operation of up-sampling that is performed by the decoder is a sparse 
operation; thus, the information that is provided by the encoder introduces to the up-sampling 
process good priors for enhancing the performance of the network. In addition, in contrast to tasks 
like classification where the only information that is utilized is the output of the convolutional 
network, segmentation requires additional information regarding lower features to better determine  
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Figure 2.33. 2015] Springer Nature. Illustration of U-Net architecture (Ronneberger et al., 2015). 

boundary cues. Since its original introduction, many variations of the U-Net architecture have been 
proposed in the literature with changes that further enhance the performance (Huimin Huang et 
al., 2020; Z. Zhou, Rahman Siddiquee, Tajbakhsh, & Liang, 2018).  

Ensemble CNN Architecture 

Until now we have discussed 
architectures that used for building 
single models that are trained end-to-
end and they deviate only regarding the 
structure of the convolutional blocks 
that use as building blocks. Another 
approach is to use multiple CNN 
models, of the same or different 
architecture, structured in parallel to 
form an ensemble of CNNs for 
performing classification tasks, 
usually through a voting process 

(Amin-Naji, Aghagolzadeh, & Ezoji, 2019; K. Liu, Zhang, & Pan, 2016). Often the models that 
are used in ensemble settings are trained separately on the same data and then their consensus is 
considered for deciding the outcome of a particular task. In other cases, the different models that 

Figure 2.34. Illustration of an ensemble DL model. 
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form a CNN ensemble are trained in a unified way by backpropagating the total error of the 
consensus.  

A benefit of ensemble architectures of CNN models is that instead of very deep architectures, 
many shallow models can be used for constructing a unified network for performing CV tasks. 
With shallow architectures, the problem of vanishing gradients is reduced, and the training 
becomes a less complicated process. Furthermore, ensembles of networks enable the use of 
multimodal data. This can be achieved by stacking in parallel CNNs and MLPs. Thus, tabular data 
and images can be used as inputs at the same time in a model that can process both kinds of 
information at once. 

2.4 Training The Learning Machines  

Convolutional neural networks, and ML models in general, are data-driven representation learning 
methods. To learn these representations, such models need to be trained using input-output pairs, 
e.g., images along with their respective class membership. During training, an ML model learns to 
map these inputs to the desirable outputs by examining the mapping error at each training step and 
trying to optimize its parameters to provide the correct result. 

 

Figure 2.35. Overview of the training process of CNNs 

The training of DL model is based on four pillars: a) data,  b) loss function, c) the training algorithm 
and d) the learning paradigm. Data are of major importance for the learning process of CNNs. 
Deep CNN models require big amounts of data to learn tasks such as classification and recognition. 
The quality of these data is also a big factor to the training of CNN. Data annotated correctly can 
accelerate the convergence of CNN to solution, whereas bad quality annotations deteriorate the 
performance of a model. The loss function is a function of the form L( ) where y is the ground 
truth output, i.e., the output that a network should provide, whereas  is the output that the network 
estimates. Loss functions are used to assess the approximation capabilities of a model during 
training by estimating the error between the ground truth and estimated output. Loss functions are 
designed according to the problem at hand, i.e., binary classification problems require the use of a 
different loss function than multiclass classification problems. A training algorithm is responsible 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



45 
 

for monitoring the estimated error of a model and utilizing the loss function to update the weights 
of the network through a process known as backpropagation. The learning paradigm describes the 
method that the data are used during training. The decision regarding which learning paradigm 
will be used at each case is mainly determined by the data that are available for solving a particular 
problem. An overview of the basic training pipeline of CNN models (and ML in general) is 
presented in Figure 2.35.  In this section we will investigate the basics of loss functions and training 
algorithms. 

2.4.1 Loss Functions 

In the essence, a DL model is a function approximator algorithm which is trained to estimate the 
output of a function given a set of specific inputs. A DL model, such as CNNs can be formally 
denoted as follows: 

 (2.31) 

where f(  ; ) denotes the CNN model, x is an input to the model,  is the parameterization of f and 
 is the estimated output of f (  ; ) given an input x. Loss functions are of the form  ( , ), they 

receive two inputs, the approximated output provided a DL model, and the ground truth output 
that f would output under ideal conditions (i.e., if it was perfectly parameterized to model the target 
function). he training process of a neural network it is required to 
be differentiable with respect to all the parameters  of the model that we want to train. Loss 
functions are designed differently for each task. For example, the performance of a model when 
being trained to solve a binary classification problem is usually assessed using a loss function 
known as Binary Cross-Entropy (BCE) (Ruby & Yendapalli, 2020). On the other hand, multiclass 
classification problems require the employment of a loss function known as Categorical Cross-
Entropy (CCE) (Zhilu Zhang & Sabuncu, 2018). Other widely used loss functions are the Mean 
Squared Error (MSE), Absolute Error (AE), Mean Absolute Percentage Error (MAPE), Root Mean 
Squared Error (RMSE) and their formulation is presented below: 

 (2.32) 

 (2.33) 

 (2.34) 

 (2.35) 
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 (2.36) 

 (2.37) 

With N the number of training samples is denoted, y denotes ground truth value and in Eq. (2.33) 
C denotes the total number of classes incorporated in the learning process. Apart from the 
assessment of the error that occurs during training by the approximator, the loss function is also 
used during the back-propagation. During each training step, the backpropagation of the weights 
is achieved by deriving the loss-function with respect to the weights that we want to update. The 
loss functions that were referred earlier are some of the fundamental ones that are commonly used 
in the training of MLPs and CNNs. There are also many more loss function that have been 
developed during the years that are used in either in combination or standalone to enhance the 
performance of the models. Some game-changing loss functions that have been proposed in the 
literature are the adversarial, focal and perceptual losses (Goodfellow et al., 2020; Johnson, Alahi, 
& Fei- . 

2.4.2 Gradient Descent 

A successful training of a CNN or MLP model is signaled when given a set of inputs the model 
provides outputs  that minimize the responses of a loss function . For this to happen during the 
training the parameters of the model needs to be updated for the optimization of its performance. 
The task of calculating the change in the parameters that is required in order to minimize the 
responses of the loss function relies to the optimizer algorithm. Many optimization algorithms 
have been introduced for the efficient training of neural networks, however, the majority them are 
based on the iconic Gradient Descent (GD) algorithm. The gradient descent algorithm and its 
variations are considered as the go-to approach for optimizing the parameters of neural network 
model (Ruder, 2016). 

The GD algorithm provid y, f (  ; )) by 
optimizing the parameters  of f towards the opposite direction of the gradient of the loss function 
with respect to the parameters of f, i.e.,  y, f (  ; )). To better grasp the logic behind this 
process, we can visualize an exemplary surface of  (y, f (  ; )). The gradient descent algorithm 
actually finds a path along the slope of the surface (gradient of  with respect to )  that leads us 
from a high point of this surface (high responses of the loss function, big approximation error), 
downhill (error minimization) to a valley (local or global minima). The path downhill towards an 
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optimum parameterization of f that 
minimizes  is performed with a step . The 
parameters  that is incorporated in the GD 

careful
discovery process towards an optimum 
solution. Big steps, i.e., big values of , may 
lead the parameterization process to lose an 
optimum solution whereas small steps, i.e., 
big values of , may lead to the increase of 
the training times since it will take more 
time to reach a possible solution.  

A formal notation of the gradient descent 
step is the following: 

 (2.38) 

where  and  are the parameterization of f before and after the weight update performed by the 
gradient descent step, respectively. In the case of the vanilla version of gradient descent, the 
gradient regarding the whole dataset needs to be calculated to update the weights at each step 
(epoch). As a result, this version of gradient descent is time consuming and computationally 
intensive for the update of the weights at each step. For this purpose, different versions of gradient 
descent have been developed that can cope with this issue. 

Stochastic GD (SGD) is a refined version of the 
original GD algorithm that tackles the calculation 
redundancy that has been noticed when training 
models on large datasets. SGD copes with this 
redundancy by updating the weights consecutively 
for each sample in the dataset at each epoch (instead 
one time for the whole dataset at each epoch). Hence, 
Eq. (2.38) can be rewritten to express SGD as: 

 (2.39) 

where denotes the index of training sample in the dataset. In short, with SGD the 
weights of neural network are updated as many times as the individual training samples in a dataset 
at each epoch whereas with GD the weights are updates once per epoch considering the whole 
dataset. A drawback of SGD is that introduces big fluctuations in the changes of the parameters 
(Figure 2.37), and as a result to the responses of , that can complicate convergence to the exact 

Figure 2.36. Visualization of the Gradient Descent process. 

Figure 2.37. Example of SGD loss fluctuations 
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minimum. By steadily and slowly decreasing the learning rate, however, this drawback can be 
overcome. 

By combining the GD and SGD, we get a version of this training algorithm that is known as mini-
batch GD. Mini-batch GD, splits the dataset in data batches, i.e., groups of data of a certain size, 
and updates the weights of the model after the loss is calculated on each batch. To formally express 
the mini-batch version of GD Eq. (2.39) is rewritten as: 

 (2.40) 

where {i + n} = {i, i + 1, i + 2 i + n} denotes the indices of the training samples that are 
included in the current training batch, and n = 1, 2, 3 N is the size of each training batch. The 
batch-sizes are usually a power of 2, e.g., 8, 32, 64, 128 etc. With this approach the fluctuation that 
SGD introduces is reduced leading to a smoother training process with a more stable convergence 
to a minimum. Furthermore, the mini-batch approach can leverage the optimizations of the matrix 
operations that are implemented in recent DL libraries which highly accelerate the training process 
(Ruder, 2016). Nowadays, when we refer to SGD, we imply the mini-batch approach to GD which 
is the algorithm of choice for the training of neural networks. 

New training algorithms are constantly introduced in the literature either in the form of refinements 
to existing ones, like the incorporation of momentum to SGD or the Nesterov accelerated gradient 
(Nesterov, 1983; Sutton, 1986), or by re-approaching SGD with novel methods. More recent 
alternatives to SGD are the Adagrad, Adadelta, Adam, Adamax and Nadam (Dozat, 2016; Duchi, 
Hazan, & Singer, 2011; Kingma & Ba, 2014; Zeiler, 2012). These new optimizers provide a more 
efficient way for the computation of gradients and the alternation of weights towards increased 
training stability and convergence to an optimum solution. 

2.4.3 Backpropagation 

It is often common to confuse GD with the backpropagation algorithm, and vice versa, as if it is 
the same thing. GD is the algorithm that provides a way to descent through the gradient of the loss 
function with respect to the network parameterization, i.e., to optimize the weights of the network 
with the goal of minimizing of the loss function and achieving convergence of the model towards 
a solution. On the other hand, back propagation is the process through which the gradients of the 
loss function with respect to the parameters of the model are calculated throughout the network in 
a backward fashion starting from the output layer all the way to the input. Thus, backpropagation 
is a process that is applied prior to the GD. Once the gradients are calculated by the 
backpropagation algorithm, GD, or any other alternative, can be applied to update the weights of 
the network. 
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According to Rojas, the backpropagation, applied on a simple MLP of three layers (one input, one 
hidden and one output layer), can be summarized in four simple steps (Rojas, 2013): 

1) Feed-forward computation. 
 

2) Backpropagation of the error to the output layer (i.e., computation of gradients of the loss 
function with respect to the weights of the output layer). 
 

3) Back propagation to the hidden layer (i.e., computation of gradients of the loss function with 
respect to the weights of the hidden layer). 
 

4) Update of the weights of the output and hidden layer (i.e., exploiting the computed gradients 
to apply an algorithm like GD). 

Now that we sum  

Initially, we need to provide the model that we need to optimize with some training input samples 
to get an estimation that approximates our objective. Then, this estimation is used as input by a 
loss function along with a ground truth, i.e., the real value that the model was tasked to estimate, 
to assess the error of the estimation. The input to the loss function is not just a scalar, or a vector 
of the estimate but the whole network.  

After the assessment of the error, the backpropagation calculates the gradients of the loss function 
with respect to all the parameters of the network that need to be optimized. These gradients 
translate to how much each weight in its current state affects the error calculated by the loss 
function. 

The calculated gradients are then used by an optimization algorithm to update all the trainable 
parameters of the network. The parameters are changed in order to minimize the loss function. For 

Figure 2.38. Illustration of a simple MLP. 
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this purpose, backpropagation uses a fundamental tool of calculus, the chain rule. In calculus, chain 
rule is a tool that expresses the derivative of the composition of two differentiable functions.  

To better understand how backpropagation works we will need an example. Let f(x; ) be a simple 
neural network with an input layer that receives a single input x, a single output layer and a hidden 
layer consisting of a single and two neurons, respectively. An illustration of this network can be 
seen in Figure 2.38, with  = {w1, w2, w3, w4}, wi  and (  ) denoting the activation function 
that is utilized by each neuron. For simplicity, the biases have not been considered in the 
parametrization of this network. Given a loss function  the assessment of the estimation error can 

y, f(x; )) where it becomes apparent that  is differentiable with respect to the 
parameters of model f. By assuming that each layer is a function, the model f is actual a composite 
function,  f(x; ) = o(h(x; w1, w2); w3, w4) = o(h1(x; w1), h2(x; w2); w3, w4). Hence, the estimation of 
the loss can be expressed as:   

 (2.31) 

To estimate the gradients with respect to the parameters of the network f we need to estimate the 
partial derivatives of L with respect to all the weights of the network, i.e., . To achieve this, we 
utilize the chain rule as follows: 

 (2.32) 

 (2.33) 

 (2.34) 

 (2.35) 

Once all the partial derivatives have been calculated using the backpropagation algorithm, they 
can be used iteratively to update the parameters of the network. For example, using the GD (Eq. 
2.28) the parameters of the network are updated as follows: 

 (2.36) 

 (2.37) 

 (2.38) 
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 (2.39) 

This process is repeated throughout the training until the network converges to a solution with a 
low estimation error. Even if the process of backpropagation in this example has been 
demonstrated in the context of MLPs, the same process is applied on CNNs. The combination of 
backpropagation and the various approaches of GD is a very simple yet powerful training method. 

2.4.4 Learning Paradigms 

DL models like CNNs and MLPs are representation learning algorithms. In the previous chapter 
we defined and analyzed the process that takes place during the learning procedure of a model. It 
was mentioned many times throughout this manuscript, that the architecture and training of these 
algorithms is heavily inspired by biology, so are the methods of learning. There are many ways 
through which we can train a human to learn something. In all methods however the common 
ground is that the subjects that is learning something should be improved by observing the errors 
that makes. Similarly with DL models, there are different ways that the learning process can be 
approached, the observation of error and the optimization of the model through its errors however 
remains the same. Hence, a constant among all the learning approaches is the computation of 
gradients through backpropagation and the use of this information to update the weights towards 
a solution.     

The choice of the learning approach that is used to train a DL model to solve a particular problem 
is decided considering the following factors: a) which component of the model needs 
improvement, b) the existence of the prior knowledge that exists in the model, i.e., if it has been 
already trained to solve a different or similar problem and c) what kind of data (and feedback on 
the data) is available. Based on these three factors there are four main learning paradigms that 
exist, namely, supervised learning, self-supervised learning, unsupervised learning and transfer 
learning. 

Supervised Learning  

In the supervised learning paradigm, a DL model is trained by observing pairs of input and output 
data samples (Figure 2.39). Through the observation of these data, the model learns a 
representation of the input data that helps it to approximate a function that maps the input to the 
respective output. An example of such data in the context of CV are image-label pairs. The images 
are used as input to the model which is tasked to map the image to its respective label. Labels 
describe classes that are represented in an image. For example, if we want to train a model to 
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classify images that contain dogs or cats, 

depending on whether either animal is 
depicted in an image.

The goal of the learning process is to 
optimize the model in such way that when 
it will be asked to classify an image that was
not included in the training data to 
successfully predict its class. The agent 
learns a function that, when given a new 

image, predicts the appropriate label. 

In a formal way the supervised learning describes the training process where given a training set 
of N examples of input-output pairs {(x1, y1), (x2, y2), (x3, y3 xN, yN)}, where each data pair 
was generated by an unknown function yi = g(xi), i = 1, 2, 3 N, a ML or DL model f is tasked 
to approximate the true function g that generated the given data (Russell, 2010). These xi are known 
as inputs and yi as ground truth values, i.e., the true value we are asking the model that we train to 
predict. The learning process should be in such way that the model is capable to approximate the 
output on the true function g when given an input that was not included in the training procedure. 

Self-Supervised Learning

A more recent learning paradigm is the 
self-supervised learning (Figure 2.40)
(Shurrab & Duwairi, 2022). In 
supervised learning, instead of using a 
set of already known input-output data 
pairs, self-supervision enables learning 
of semantic features with the generation 
of supervisory signals from a collection
of unlabeled data, i.e., only input data 
which the true function that provides the 
ground truth output is unknown,   
without the need for human annotation
(Liang Chen et al., 2019). A model that 
is trained through the self-supervised 
paradigm, it can either directly deployed 
to provide predictions given certain 
inputs or its learned features can be used 
for subsequent tasks where the amount of 
the annotated data is limited. 

Figure 2.39. Example of Supervised Learning in ML

Figure 2.40. 2022] Shurrab et al. Main pipeline of self-
supervised learning (Shurrab & Duwairi, 2022) (DOI: 
10.7717/peerjcs.1045/fig-1)
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The main component of self-supervised learning is the pretext task. During this task the model is 
trained in a supervised fashion using unlabeled data. For this process to be characterized as 
supervised the unlabeled data is required to be annotated. In contrast to supervised learning, the 
annotation occurs in an automated process through which the data are labeled in way that enables 
the model to learn useful representations. 

The self-supervised learning paradigm gained ground in fields where the amount of  unlabeled 
data is overwhelming. A domain that is characterized by the imbalanced quantity of labeled vs. 
unlabeled data is the biomedical domain. Hence, several methodologies have been proposed that 
demonstrate the effectiveness of the self-supervised learning in many applications like 
classification, detection, localization, and segmentation tasks (Liang Chen et al., 2019; Lu, Chen, 
Wang, Dillon, & Mahmood, 2019).  

Unsupervised Learning 

In contrast to self-supervised learning paradigm, unsupervised learning is a concept that has been 
proposed in the early days of ML (Barlow, 1989). Self-supervised learning, as described above, is 
often confused with unsupervised learning. Both unsupervised and self-supervised learning omit 
the need for manually annotated data, nevertheless, the self-supervised approach still requires 
some sort of annotation to utilize the available data. On the other hand, unsupervised learning does 
not require any form of annotation, only raw input data points (Ghahramani, 2003). 

According to the unsupervised learning paradigm, a ML model is trained by simply utilizing inputs 
x1, x2, . . ., xN without any supervised target output y or a reward system. This concept may be 
confusing since it is difficult to understand how a model can learn without a predetermined goal. 
The context that unsupervised learning is employed is that of finding patterns in unstructured data 
through some sort of training. A model that follows this learning paradigm, usually is trained to 
either reduce the dimensionality of the input signals or to learn some sort of representation of the 
input data that can organize them in clusters. An example of dimensionality reduction through 
unsupervised learning can be given with an Auto-Encoder model. An Auto-Encoder model can be 
trained in a way that given an input x to output an estimation  that is the same as the input. In this 
way for its training only the input data x are required. Then, once its trained, the bottleneck of the 
Auto-Encoder is a latent representation of the input image with reduced dimensionality. 

Transfer Learning 

The transfer learning paradigm is used to further improve a ML model in a specific problem by 
transferring knowledge from another, related problem. This is usually the case when the data that 
are available for solving a problem are not enough for a model to approximate a solution. This 
approach is very similar to how humans are often tackling problems by combining information 
that have been acquired by past experiences. A simple example is the following: Imagine two 
people who are interested in learning how to play the piano. One person is yet to learn any musical 
instrument whereas the other person has extensive music knowledge through playing the guitar. 
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The person who has a background in musical studies, is more likely to learn faster how to play the 
piano compared to the person who does not know how to play any instrument. The accelerated 
learning that is very likely to occur to the person who knows how to play a musical instrument 
relies to fact that he can transfer previously learned music knowledge to the current learning task. 
In other words, a person is able to take information from a previously learned task and use it in a 
beneficial way to learn a related task (S. Pan & Yang, 2010). 

The learning paradigm of transfer learning is employed when the data availability for solving a 
problem is limited. This is very common when we want to train a model for tackling a detection 
or recognition task in the biomedical domain. The ethics involved in this domain make the data 
usage and availability limited. Hence, to cope with this difficulty, a model can be initially trained 
on a big dataset that is available (e.g., ImageNet), acquire the necessary knowledge regarding 
image processing and subsequently be fine-tuned on a smaller dataset. Many applications have 
successfully utilized transfer learning for the efficient training of ML models. These applications 
include text sentiment classification (C. Wang & Mahadevan, 2011), image classification (W. Li, 
Duan, Xu, & Tsang, 2013), human activity classification (W. Li et al., 2013), software defect 
classification (Nam & Kim, 2015), and multi-language text classification (J. T. Zhou, Tsang, Pan, 
& Tan, 2014). 

2.5 Interpretability 

Recently the commercial applicability 
of ML algorithms has been regulated 
by legislation acts that aim at making 
the   
requirements, safeguards, and 
restrictions regarding ML and 
automatic decision-making in general 
(Selbst & Powles, 2018). 
Interpretability is a critical factor in 
the compatibility of ML models with 
these regulations. But how is the 
interpretability of machine learning 
models defined? According to recent 
literature, interpretability is a passive 

characteristic of a model that indicates how well a human understands the reason for its decision 
(Angelov, Soares, Jiang, Arnold, & Atkinson, 2021). As a result, providing interpretations of a 
model's decision-making process can reduce its opacity and earn users' trust, for example, by 
providing interpretations for risk-sensitive decisions in medicine. In real-world problems, ML 
models' discriminative capacity, as expressed by performance measures such as predictive 
accuracy, is regarded as an inadequate descriptor of their decisions (Rudin et al., 2022). 

Figure 2.41. Visual example of interpretability pipeline 
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Various approaches to interpretability have been taken from a post hoc standpoint, i.e., methods 
that use a fitted black-box as input to determine the causality of its approximations (Murdoch, 
Singh, Kumbier, Abbasi-Asl, & Yu, 2019). Image perturbation methods used on the network 
including masking, substituting features with zero or random counterfactual instances, occlusion, 
conditional sampling, and so on. Such approaches seek to identify image regions that have an 
impact on classification outcome -Romero, Gorostiaga, Soguero-Ruiz, Mora-
Rojo- . Other post-hoc methodologies deal with 
the interpretation problem by developing simple proxy models that behave similarly to the original 
model and implement the perturbation concept at the feature level (Lundberg & Lee, 2017a; 
Ribeiro, Singh, & Guestrin, 2016). Because the proxy model only approximates the computations 
of the black box, this approach limits the credibility of the explanations (Mittelstadt, Russell, & 
Wachter, 2019). Another set of techniques for reducing operation complexity and achieving 
interpretability makes use of the gradient that is backpropagated from the output prediction to the 
input layer. These methods create saliency maps by visualizing gradients to highlight areas that 
the network considers important (Yu, Xiang, Fang, Chen, & Zhu, 2022); nevertheless, solely 
relying on their explanations, can be misleading (Adebayo et al., 2018). In general, these methods 
aim to interpret a deep learning model's inference after development and training, which can result 
in unreliable interpretations (Rudin, 2019).  

A different approach to interpretability is the development of ML models that are interpretable by 
design, e.g., decision trees, lists, and sets (Lakkaraju, Bach, & Leskovec, 2016). Such models are 
also known as inherently interpretable, and they typically introduce a trade-off between 
interpretability and accuracy. Since its structure is simpler, its predictive performance may be 
inferior to that of a more complex black-box model. However, due to the importance of 
understanding, validating, and trusting ML models in high-risk decision-making domains, this 
trade-off may be preferable (G. Yang, Ye, & Xia, 2022). CNNs with embedded feature guiding 
and self-attention mechanisms in their architecture, can also be regarded as inherently interpretable 
(Sharma & Mishra, 2022). These mechanisms derive interpretations by visualizing saliency maps 
and CNN features indicating certain concepts on the input image (R. Chen, Chen, Ren, Huang, & 
Zhang, 2019). Such models, however, typically do not associate the saliency maps with human-
perceivable features and do not account for the contribution of these salient regions to the result. 
Other methods attempt to disentangle features by quantifying the alignment of predefined concepts 
with learned filters in different layers of a network (Liang et al., 2020); nevertheless, they do not 
address the direct contribution of the concept representations to the final outcome (Bau, Zhou, 
Khosla, Oliva, & Torralba, 2017). In addition, the training process of these models demands a 
considerable amount of manual effort for additional annotations regarding the human-
understandable concepts depicted in each image (Barbiero et al., 2022). Approaches extending 
regular CNNs to encode object parts in deeper convolutional layers, have also been proposed but, 
they usually lead to the degradation of performance (Q. Zhang, Yang, Ma, & Wu, 2019). Another 
approach is to leverage the intelligibility and expressiveness of Generalized Additive Models 
(GAMs) (Hastie & Tibshirani, 1990), which are recognized for their interpretability (Arrieta et al., 
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2020). The interpretation provided by a GAM is based on observations that link the effect of each 
input feature to the predicted output. GAMs are used in a variety of applications to leverage their 
expressiveness in domains such as healthcare (Y. Cai, Zheng, Zhang, Jiang, & Huang, 2020). 
GAMs based on Multilayer Perceptrons (MLPs) (Z. Yang, Zhang, & Sudjianto, 2021), were 
recently proposed for interpretable data classification and regression but these particular models 
are not tailored for contemporary, CNN-based, computer vision tasks. 

More recent interpretable CNN models often utilize information that derives from saliency maps, 
indicating regions within an image that the model concentrates its attention. These models lacking 
the ability of explaining how these regions contribute to the predictions. A relevant methodology 
incorporates interpretable components into a CNN model to explain its predictions (Jung & Kwon, 
2021); nevertheless, the provided interpretations are intertwined with predefined edge kernels, and 
the selection of the color components does not consider any aspects of human perception. In 
general, there is a paucity of methodologies that have the capacity of explaining the categorization 
of images based on perceptual qualities, i.e., components such as color and texture represented in 
a way that people can readily perceive and comprehend . 
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3 Chapter 3  
Saliency Prediction 
This section investigates the ability of DL models to estimate visual saliency that approximates 
that of humans. Eye or gaze tracking has been studied to reveal how visual search and recognition 
tasks are performed by humans. In the context of medicine, the study of gaze tracking data can 
provide information that can improve human performance 
Liu, 2018). The interpretation of medical images is usually challenging and requires domain 
expertise . The spatial locations within these images, which 
attract the attention of the medical experts, are characterized as visually salient; however, saliency 

identification are usually collected using specialized eye tracking devices (Judd, Ehinger, Durand, 
& Torralba, 2009), conventional cameras, such as webcams (Krafka et al., 2016), whereas mouse 
tracking has also been reported as an interesting alternative for this purpose (M. Jiang, Huang, 
Duan, & Zhao, 2015).  

The problem of gaze estimation based on human eye fixations has been investigated to predict the 
locations considered as salient by humans, mainly using machine learning-based methods. For 
example, in (Kummerer, Wallis, Gatys, & Bethge, 2017) a probabilistic model for saliency 
detection in general images was proposed. That model uses transfer learning from the VGG-19 
deep neural network for the prediction of fixation densities. In (Jia & Bruce, 2018), it has been 
shown that deeper CNN architectures can deliver better results in visual saliency estimation, and 
proposed a scalable model. In (J. Pan et al., 2017), Pan et al. combined the adversarial loss function 
with the binary cross entropy to achieve better results in the visual saliency estimation task based 
on human eye fixations. Recurrent architectures have also been used for that purpose (N. Liu & 
Han, 2018)(Cornia, Baraldi, Serra, & Cucchiara, 2018). Promising results in the visual saliency 
prediction, on natural images, have been resulted from methods not only based on machine 
learning approaches. In particular, a bottom up Graph Based Visual (GBVS) saliency model has 
been proposed in (Harel, Koch, & Perona, 2007) by Harel et al. The GBVS method consists of two 
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steps, first forming activation maps on certain feature channels and then normalizing them so that 
so conspicuities to be highlighted and to admit combination with other maps.  

In the context of medical imaging, domain expertise is an important component (Fox & Faulkner-
Jones, 2017). Eye tracking studies have been performed for different purposes. Eye trackers have 
been used to identify how physicians with different levels of experience parse a medical image. 
Bernal et al (Bernal et al., 2014) used eye-tracking methodologies to investigate the different 
search patterns between experts and novice physicians, in the context of polyp detection in video 
colonoscopy. 

Jampani et al. used eye-tracking to investigate how different imaging methods affect the 
examination procedure (Jampani, Sivaswamy, Vaidya, & others, 2012). Mendi and Milanova  used 
an algorithmic model that mimics the human viewing behavior by producing visual saliency maps 
(Mendi & Milanova, 2009). The saliency maps were used for the initialization of an active contour 
method, for the purpose of medical image segmentation. In another work a computational visual 
attention model was used for the purpose of hysteroscopy video summarization (Muhammad, 
Ahmad, Sajjad, & Baik, 2016). However, there has not been an accurate model that is able to 
predict the gaze behavior of an experienced physician. A thorough literature review investigating 
eye-tracking applications in the medical domain has been conducted in . It 
includes studies where eye-tracking was used for identification of expertise, development of 
training and modeling of visual search patterns, and concludes in that existing computational 
models cannot sufficiently predict the human gaze behavior.  

In section 3.1 
fixations on images from Wireless Capsule Endoscopy (WCE). The proposed method investigates  
two deep Convolutional Neural Network (CNN) autoencoder architectures; a basic model, named 
MedGaze, and an its enhanced version that utilize an additional convolutional block for refining 
the output along with a post-processing step for more accurate saliency estimation. Both networks 
are trained to predi
saliency maps. They are inspired from (J. Pan et al., 2017), but with an additional regularization 
methods being introduced in the decoder part of the network architecture to achieve a more robust 
performance. Moreover, a novel dataset is presented that was created for the needs of the 
experiments. The dataset consists of WCE images along with the saliency maps of the medical 

eye fixations.  

An extension of this approach is presented in section 3.2 where a novel co-operative training 
scheme is presented for the improvement of saliency prediction in biomedical images. The 
proposed methodology incorporates two deep CNNs during the training process, a CNN for 
predicting the spatial location of the phys   a CNN classifier for the purpose of 
classifying the estimated saliency maps aggregated with their corresponding RGB images, as 
normal or abnormal. These two networks are trained in a co-operative manner leveraging a novel 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



59 
 

loss function that considers both the accuracy of the saliency maps estimated by the generator 
model and the error of the CNN classifier, aiming to optimize the saliency map generation 
performance. 

Sections 3.1 and 3.2 are dedicated to approaches that tackle the problem of visual saliency 
estimation in terms of salient regions. However, the characterization of objects as salient instead 
of abstract regions is also important and applicable contexts and applications. For instance, salient 
object detection (SOD) is commonly used for obstacle avoidance in autonomous robot and vehicle 
navigation (Craye, Filliat, & Goudou, 2016; L. Huang, Li, Li, & Lin, 2019; Klein, Illing, Gaspers, 
Schulz, & Cremers, 2017). Also, in the context of biomedicine, SOD can be very useful for 
abnormality detection in medical images (George Dimas, Iakovidis, et al., 2019; Dimitris K 
Iakovidis, Georgakopoulos, Vasilakakis, Koulaouzidis, & Plagianakos, 2018).  

Today, the majority of methods for SOD rely on machine learning approaches, based mainly on 
Convolutional Neural Networks (CNN). These methods usually determine saliency from plain 
RGB images (N. Liu & Han, 2016; D. Zhang, Han, Han, & Shao, 2015). However, a limitation of 
these approaches is that their performance can be easily affected by background objects, which 
may have similar appearance. This has been tackled by utilizing RGB-Depth (RGB-D) paired 
information (Qu et al., 2017; N. Wang & Gong, 2019; Zhao et al., 2019). Depth information can 
effectively describe geometric cues, projected in an RGB image. Hence, it contributes in further 
improvement of performance and robustness of SOD methods, with regard to applications of 
object recognition (M. Gao, Jiang, Zou, John, & Liu, 2019; Shah, 2019), and obstacle detection 
(George Dimas, Diamantis, et al., 2020). 

Depth information is acquired using additional sensors, such as stereo camera systems (e.g., Intel 
RealSense), structured light based (e.g., Microsoft Kinect), Light Detection and Ranging (LIDAR) 
systems etc. Such sensors can provide sufficient information about depth; however, their use 
introduces an additional overhead to the overall cost and flexibility of a system. 

Recently machine learning models have been proposed for monocular depth estimation, with a 
performance approximating that of RGB-D sensors (Alhashim & Wonka, 2018; Chaney, Bucher, 
Chatzipantazis, Shi, & Daniilidis, n.d.; Tateno, Tombari, Laina, & Navab, 2017). However, these 
methods are yet to be assessed with respect to their capacity of representing depth effectively for 
SOD. 

Several CNN-based methods have been proposed to deal with SOD in images obtained by RGB-
D sensors. Han et al. (Han, Chen, Liu, Yan, & Li, 2017) proposed a deep CNN model composed 
of three separable CNNs, in order to generate pixel-level saliency maps. More specifically, an 
RGB image and its corresponding depth image are fed into two detached networks to extract the 
RGB and depth view respectively. Transfer learning techniques such as deep supervision in hidden 
layers and task-relevant initialization, are integrated into the network which processes the depth 
cue for enhancing the generated depth representation. Then, a third CNN receives as input the 
above acquired views, to automatically combine both the RGB and the depth representation in an 
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optimal way. Furthermore, to efficiently capture the high level semantics, a global structural loss 
is adopted during training process.  

Wang and Gong (N. Wang & Gong, 2019) suggested a dual-stream CNN to produce saliency 
maps.  This approach enables a synchronous processing of RGB and depth images. Each branch 
computes a saliency map of either the RGB or the depth image and simultaneously extracts high 
level features from the input images. A trainable saliency fusion module is used to efficiently 
incorporate the generated saliency maps by taking into consideration the extracted high-level 
features. Chen et al. (Hao Chen, Li, & Su, 2019) also adopted a double stream architecture to 
generate saliency maps. Initially, each stream which contains two branches, for global and local 
feature extraction, is trained independently. Afterwards, both RGB and depth local features are 
directly combined, whilst global branches are merged in a fully connected layer. Then, the whole 
network is trained again in an end-to-end manner and the predictions corresponding to the local 
and global branches are summed up to construct the final saliency map.  

In another work, Chen and Li (Hao Chen & Li, 2018) introduced complementarity-aware fusion 
(CA-Fuse) modules to take full advantage of the complementary information included in the pairs 
of color and depth images. The suggested approach interposes CA-Fuse modules between the 
parallel convolutional layers of a two-stream architecture. These trainable modules select color 
and depth features and efficiently combines them, and they progressively fuse their predictions to 
facilitate the construction of saliency maps. Zhao et al. (Zhao et al., 2019) developed a so-called 
fluid pyramid integration model enabling a CNN architecture to exploit both cross-modal 
information and multi-scale features for saliency map generation. A contribution of that study was 
the automatic enhancement of depth information before its incorporation in the fluid pyramid 
integration model, by leveraging a contrast prior.  

A three-stream attention-aware network was proposed by Chen and Li (Hao Chen & Li, 2019) for 
saliency map generation. Apart from the two streams usually used for extracting color and depth 
features, in that study, an additional stream is used in parallel. This stream is used to discriminate 
representative RGB and depth views, by receiving as input, corresponding concatenated features 
extracted from each level of the depth and RGB streams. Then, it utilizes these views to learn 
supplementary RGB-D features. Eventually, the three streams are combined in a shallow CNN to 
produce the final saliency map.   

Fan et al. (Fan, Lin, Zhang, Zhu, & Cheng, 2020) have also proposed a three-stream architecture, 
called D3Net, which unlike the previous one, is composed of three, separately trained, 
convolutional sub-networks. Each of these sub-networks aims to estimate accurate SOD by 
receiving as inputs RGB, depth and cross-modal RGB-D tensors, respectively. Hence, Depth, RGB 
and cross-modal saliency maps are produced from each stream.  Moreover, a histogram-based 
depth depurator unit is introduced during the inference process to discard the low-quality depth 
maps and fuse the remaining maps to predict the final saliency map. 
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The previous methodologies depend on the complementary depth information, derived by 
additional sensors, which introduces an implementation and cost overhead for real-world 
applications. Additionally, the most recent RGB-D SOD architectures are based on three networks 
to achieve high SOD accuracy. To address this challenge, the study that is presented in section 
53.3: i) proposes a novel monocular salient object detection model, abbreviated as MonoSOD, 
where the depth information is estimated by a CNN model; ii) presents an improved architecture 
of a SOD model, characterized by lower computational complexity than that of the respective 
state-of-the-art model; iii) introduces an additional, trainable, post-processing step, where the 
output of the SOD process is refined for improved accuracy; iv) compares several pretrained CNN-
based depth estimation models with sensor-based ones in the context of SOD. The proposed 
approach is based on a model with two branches, capable of both predicting depth and estimating 
the saliency of an object. This approach simplifies the hardware and software requirements for 
SOD.  
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3.1 Visual Saliency Estimation on Medical Images

Basic Saliency Model 

Figure 3.1. Overview of the basic saliency model architecture

The proposed methodology for gaze 
prediction is based on a deep Convolutional 
Neural Network (CNN) trained to learn and 
estimate saliency maps that are based on 

(Figure 3.1). The network receives as input 
an RGB WCE image and outputs a saliency 

gaze on the respective image. The details 
about the CNN architecture and its training, 
as well as the methodology for the dataset 
creation are described in the following 
subsections.

Our model consists of two parts, an 
encoder, which is used to compress the 
input volume to a latent-space 
representation and a decoder, which is 
employed to reconstruct the target
objective using that latent-space 
representation. The architecture of the 

proposed model is illustrated in Figure 3.1.

The encoder part of the model has a similar architecture with the VGG-16 CNN model (Simonyan 
& Zisserman, 2014). The first two blocks of the model consist of two convolutional (orange and 
light orange) layers and a max pooling layer (pink). The rest of the blocks consist of three 
convolutional layers (light yellow) and a max pooling layer. This model is used as an encoder, 
with the final max pooling and fully connected (FC) layers of the original VGG-16, removed. The 
max pooling layers of the encoder are used to down-scale the feature maps. The weights used are 
those of a VGG-16 network trained on ImageNet dataset (J. Deng et al., 2009).

(a) (b)

Figure 3.2. Illustration of the gaze saliency maps based on 

on the visual stimulus. The yellower the color the more 
salient the location of the image.
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The decoder part of the model has the same architecture with the encoder but with a reverse order 
of blocks. Also, the max pooling layers have been replaced with up-sampling layers. The up-
sampling layers are used to increase the size of the output to match the dimensions of the input 
image. The first two blocks consist of three convolutional layers (light green) and an up-sampling 
layer (dark orange). The following two blocks consist of two convolutional layers (green and dark 
green) and an up-sampling layer. An additional, final, point-wise convolutional layer (red), i.e., a 

for the saliency map generation. The point-wise convolution has been chosen for a more precise 
saliency estimation, so forth, each pixel is being examined if it is salient instead of a neighborhood. 
The values of the saliency map can be expressed as probabilities of a pixel being salient, so the 
sigmoidal activation function which has a response range in the interval of [0, 1] is the best fit for 
that purpose. In addition, the weights of the decoder are randomly initialized. The activation 
functions of the convolutional layers of the encoder-decoder network are the Rectified Linear Unit 

he last convolutional layer 
 

The network i.e., with a 
height and width of 96 pixels and 3 color channels normalized to the interval of [0, 1]. The 

ions. During the 
training process the saliency maps are also normalized to the interval of [0, 1] and their dimensions 

interpreted as probabilities of pixels being observed by the physicians. Furthermore, because of 
the peripheral vision, more pixels may be observed around of the fixation points, and that makes 
it appropriate to apply a point-wise convolutional operation on the final layer. In that context, a 
loss function that fits the solution of the aforementioned task, is the binary cross entropy (BCE) 
loss function. BCE is calculated as the average of the individual BCEs of all pixels in an estimated 
saliency map. A saliency map S can be formally expressed as follows: 

 (3.1) 

Then we can calculate the BCE between the ground truth S and the estimated  saliency maps as 
follows: 

 (3.2) 

The training algorithm that was used was AdaGrad because it greatly improves the robustness of 
SGD and is effective for the training of large-scale neural networks. The learning rate value was 

-4 and L2 weight regularization was applied on all the convolutional layers with  -4. 
To achieve a more robust model, we introduced to the decoder part of the architecture the dropout 
regularization algorithm. The dropout algorithm leads to units that are robust and are dependent 
free from the activation of other independent units (Baldi & Sadowski, 2014). Thus, with the  
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Figure 3.3. Overview of the enhanced saliency model architecture.

application of the dropout algorithm on our 
network, we achieve a more generalized 
approach to the problem we intend to tackle.

Enhanced Saliency Model

The enhanced architecture that was 
developed has the same architecture with the 
basic model with an exception to the decoder 

model. In detail, after the final convolutional block of the decoder, a reconstruction convolutional 
block has been added aiming towards a more thorough analysis of the latent representation of the 
encoder, and a more precise restoration of the ground truth saliency map. The size of the final 
reconstruction block can affect the quality of the results produced by the model. To maintain low 
complexity and high reconstruction quality, 3 convolutional layers followed by a pixel-wise 
convolution for the final saliency prediction was experimentally determined to achieve satisfactory 
results. Each one the three convolutional layers of the reconstruction block is composed of the 
same number of kernels, equal to the respective number utilized in the convolutional layers of the 
block before the reconstruction module. The point-wise convolution layer uses a kernel with a size 

activation function of that final layer has been chosen to be the sigmoidal since saliency can be 
interpret as the probability of a pixel being salient, i.e., within the [0, 1] interval. The activation 
function of the convolutional layers, of both the encoder and the decoder, is the Rectified Linear 
Unit (ReLU)

After the saliency map estimation, we deploy an additional step for further improvement of the 
saliency map by removing salient values with low probability of occurrence. For this step, a 
parametric Heaviside function, H is utilized:

(a) (b)

Figure 3.4. Illustration of the refinement effect of the 
estimated saliency map. (a) Estimated saliency map, (b) 
refined saliency map of (a).
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 (3.3) 

where a, S(i, j)  [0, 1], a is a trainable parameter and S(i, j) a value of a pixel of the produced 
saliency map, S. The function H considers a neighborhood around a target pixel at (i, j). The 
application of H on S discards salient pixels with low probability of occurrence, refining the saliency 
map for its further exploitation on other applications. An illustrative example of this model is 
depicted in Figure 3.3. An example of the application of Eq. (3.3) on a saliency map can be seen in 
Figure 3.4. 
 
Eye Fixation Dataset 

To train a CNN, it is of major importance 
to find a dataset with a sufficient amount of 
data. In the context of eye fixations, on 
WCE images, to our best of our knowledge, 
there is not any openly available dataset for 
WCE, so we created our own dataset, using 
the publicly available WCE image dataset 
KID (Dimitris K Iakovidis & Koulaouzidis, 
2015)(A. Koulaouzidis et al., 2017). The 
KID dataset is based on WCE anonymized 
images and videos, with high quality 
annotations made by experts in the field. 

 physician with expertise in the field of 
WCE, examined the images from the KID 
dataset. Eye tracking was performed using 
The Eye Tribe  eye tracker. The physician 
was instructed to examine each image 
presented, and once he was confident for a 
diagnostic assessment, to move forward 
onto the next one. The data that was 
captured w, the tracking points of the eyes 

in terms of pixel coordinates and the timestamp of each point. During the eye-tracking data 
acquisition process, the physician was not allowed to move from his initial position in which the 
eye tracker has been calibrated for the maximum accuracy. However, since it is practically not 
possible for the physician to be absolutely still, in order to maintain the accuracy of the experiment 
sufficiently high, the eye-tracker was re-calibrated every 30 images to avoid inconsistencies. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.5.  A qualitative comparison among the ground truth 
and estimated gaze density maps. (a) The RGB WCE image 
used as input to the network; (b) the ground truth saliency 

saliency maps. 
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The data points that were recorded during the eye tracking process were categorized to saccade 
and fixation points. We focus on fixation points because during saccades, little to none visual 
processing can be achieved (Salvucci & Goldberg, 2000). We used the velocity based, Velocity 
Threshold Identification (I-VT) algorithm for the fixation estimation because of its accuracy and 
its implementation ease (Salvucci & Goldberg, 2000). An illustration of the eye tracking data 
points before and after the fixation estimation can be seen in Figure 3.5. 

For the target saliency map creation, we applied the two-dimensional Gaussian Function (Bernal 
et al., 2014) on each fixation point that was estimated by the I-VT algorithm. The parameter  of 
the Gaussian Function was set to be the time difference, t, between the current fixation point and 
the next one, formally expressed as:  

 (3.4) 

In that manner, we are considering the peripheral vision of the physician. 

Experiments and Results 

To evaluate the proposed methodology we considered  the Judd implementation of the Area Under 
Curve (AUC-J) (Riche, Duvinage, Mancas, Gosselin, & Dutoit, 2013). AUC-J is calculated by 
treating the saliency maps as binary classifiers by separating the negative and positive samples in 
different thresholds. Given a threshold, the positive rate is described by the pixel-values of the 
saliency map that are above it, at the fixation locations. Accordingly, the false positive rate is 
determined by pixel-values that are above a given threshold, at non-fixation locations described 
by the pixel-values of the saliency map that are above it, at the fixation locations. Thus, the false 
positive rate is determined by pixel-values that are above a given threshold, at non-fixation 
locations.  

For the evaluation of our model we exploited 5 out of the 7 categories of the KID dataset. Namely, 
the inflammatory, vascular, polypoid, normal oesophagus and colon image categories were used 
concluding to 1025 images in total. In detail, in our dataset there were 227 images depicting 
inflammatory lesions, 303 images of vascular lesions, 44 images of polypoid lesions and 451 
images of normal tissue from the colon and oesophagus. We used the 5-fold stratified Cross-
Validation (CV) procedure for the training instance, where the images of each category were split 
into training, validation and testing set with proportions of 60%, 25% and 15% respectively. The 

testing data were augmented to increase the number of samples in the dataset for the training and 
evaluation. The images were augmented with respect to their orientation and the augmentation was 

Additionally, the early stopping method was applied monitoring the validation performance during 
the training process. The proposed model was trained using the Adagrad algorithm with an initial 

-4. 
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The experimental results derived from the evaluation of the proposed methodology are 
summarized in Table 3.1. According to Table I the average AUC-J achieved by the introduced 
CNN model was 0.718. In detail, the AUC-J scores for the normal image categories of the colon 
and the oesophagus were 0.652 and 0.863 respectively. As for the abnormal image categories of 
vascular, inflammatory, and polypoid lesions the average AUC-J scores for all the iterations of 5-
fold CV were 0.662, 0.695, 0.719 accordingly.  

Moreover, a comparison was conducted between the proposed method and relevant state-of-the-
art methods for saliency prediction on biomedical images. Particularly, the GBVS graph model 
(Harel et al., 2007) and MedGaze CNN model (G. Dimas, Iakovidis, & Koulaouzidis, 2019). The 

(a) 

     

(b) 

     

(c) 

     

(d) 

     

(e) 

     

 Input Image GT Enhanced Basic GBVS 

Figure 3.6. Qualitative comparison among the proposed and other saliency estimation models with applications on 
the biomedical domain. Each row represents a different category : (a) the vascular lession, (b) the inflammatory 
lession, (c) the polypoid lession, (d)  the normal colon and (e) the normal oesophagus category 
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GBVS model achieved average AUC-J score of 0.591 in all image categories. The MedGaze model 
resulted in an average AUC-J score of 0.693. In general, the proposed model outperformed both  

Table 3.1. AUC-J scores on each WCE image category 

the GBVS and MedGaze model for all the image categories. All models compared present standard 
deviation of the order of ~10-2. Additionally, a qualitative performance assessment is presented in 
Figure 3.6. As it can be observed the proposed model managed to predict more accurately the eye-
fixation regions of the physicians when compared to the other two models. 

3.2 Co-Operative CNNs for Saliency Detection on 
Biomedical Images 

 

Figure 3.7. Overview of the proposed methodology 

The gaze prediction methodology proposed in this section, is based on the synergy of two CNN 
models trained in a co-operative way. The first CNN model has an autoencoder architecture and it 

eye fixations on WCE images. 
The second model is a CNN classifier, which receives as input the aggregation of an estimated 
saliency map with its corresponding RGB image. This model is tasked to classify the aggregation 

Data 
Models 

Enhanced Model Basic Model GBVS[23] 

Inflammatory 0.715 0.656 0.589 

Vascular 0.683 0.665 0.617 

Polypoid 0.720 0.694 0.617 

Normal Oes. 0.877 0.826 0.574 

Normal Col. 0.636 0.626 0.562 

Average 0.726 0.693 0.591 
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result as normal or abnormal. Both models are based on the VGG-16 CNN model pretrained on 
the ImageNet dataset (Simonyan & Zisserman, 2014), (J. Deng et al., 2009). These CNNs are 
trained in parallel. The classification error is back-propagated only to the classifier model whereas 
both the classification and saliency estimation error are fused together using a joint loss function 
that is utilized to update the weights of the saliency map generation model. An overview of the 
proposed methodology is illustrated in Figure 3.7. 

The model that was employed for tackling the task of saliency prediction was the one described in 
section 3.1. The classifier model used in the proposed methodology is a CNN model connected 
with an FC part. The CNN model architecture is identical to that of VGG-16 model with an 
exception to the FC part. The FC part that is used to our classifier comprises 3 layers. Each of the 
first two layers have 100 neurons and the last layer that is tasked with the label prediction has 1 
neuron, since our classification problem is defined by two labels, i.e., normal and abnormal (0 and 
1 respectively). The activation function that was used for all neurons was the sigmoidal activation 
function. 

Similar to the Generative Adversarial Network (GAN), the proposed training scheme incorporates 
two models (Goodfellow et al., 2014). In the case of GANs, the generator and discriminator 
networks are engaged in a competitive min-max game, where a generative network, G, is trying to 
maximize the error of the discrimination network D and vice-versa. On the other hand, in the 
proposed training scheme the saliency generator model tries to produce saliency maps that 
minimize the classification error of the classifier model. At the same time, the classifier provides 
feedback to the generator model regarding the classification error to assist the change of the 
generator weights for more accurate saliency map prediction.  

This process has been inspired by the examination process performed 

based on the information extracted from the regions corresponding to their eye fixations (Just & 
Carpenter, 1984). Since these regions are mainly considered for the medical decision making, 
instead of using the whole images, only the salient regions of the images are sufficient to train a 
classifier for the task of categorizing normal and abnormal findings. These regions can be isolated 
by aggregating the saliency map S and its corresponding image IRGB by multiplication (Figure 3.7). 

Each epoch of the proposed training process can be summarized into three steps. The first step of 
the training is the saliency map estimation and the assessment of the reconstruction loss, LR. As a 
reconstruction loss, the binary cross-entropy (BCE) loss function is used. At the second step, the 
estimated saliency map S is multiplied with the input image IRGB providing an image IS where only 
the salient regions of image IRGB are visible. Subsequently, IS is propagated to the classifier network 
C, which is tasked to classify the input as normal or abnormal. Once again, the classification loss, 
LC, is assessed using the BCE. Once both LR and LC are calculated, the latter, i.e., LC, is 
backpropagated to the classification model C, whereas a joint loss function that we refer to as co-
operative loss (LCOOP) is backpropagated to the saliency generator model GS. LCOOP, incorporates 
both LR and LC as follows: 
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 (3.5) 

where  and  coefficients used as weights determining the significance of each loss factor. Then, 
in the third step LCOOP is backpropagated to the saliency generator model GS. With the use of the 
joint loss the network is forced to alter its weights towards the generation of accurate saliency 
maps that can be used to increase the performance of image classification. As it is presented in the 
following section, this training leads to the generation of more accurate saliency maps. 

Experiments and Results 

      

      
Input GT Enhanced Basic GAN Co-Op 

Figure 3.8. Qualitative comparson of saliency maps generated by various methods. 

Table 3.2. AUC-J scores on each WCE image category 
For the training the dataset described in 3.1. 
The input RGB WCE images were 

the saliency generator network was a single-
channel saliency map with dimensions of 

interval of [0, 1]. The classification network 
receives the saliency generator input image 
multiplied with the generated saliency maps 
to isolate the salient regions, so the input 
image dimensions of the classification 

images of the generator and the classification network were also normalized in the interval of [0, 
1]. The training algorithm that was applied on both the saliency generator network and the 

-4. The dropout algorithm was also used, 
with dropout-rate of 0.5, along with the L2 -4) on all the convolutional 
layers of the decoder. Furthermore, the training, validation and testing data were augmented to 
increase the number of images in the dataset for the purpose of training and evaluation. The images 
were augmented with respect to their orientation and the augmentation was performed by rotating 

 

Data 
Models 

Proposed GAN Basic Enhanced 

Inflam. 0.76 0.66 0.66 0.72 

Vascular 0.72 0.67 0.67 0.68 

Polypoid 0.77 0.69 0.69 0.72 

Normal 
Oes. 0.87 0.86 0.82 0.87 

Normal 
Col. 0.69 0.72 0.626 0.64 

Average 0.76 0.72 0.69 0.73 
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To assess the performance of saliency generation methods the Judd implementation of the Area 
Under Curve (AUC-J) was considered, as a widely accepted measure (Riche et al., 2013). AUC-J 
is calculated by treating the saliency maps as binary classifiers by separating the negative and 
positive samples in different thresholds. Given a threshold, the positive rate is described by the 
pixel-values of the saliency map that are above it, at the fixation locations. Accordingly, the false 
positive rate is determined by pixel-values that are above a given threshold, at non-fixation 
locations. 

The average score among all data categories of our proposed cooperative model in terms of AUC-
J was 0.76 (Table 3.2). Additionally, the evaluation included state-of-the-art models for saliency 
predictions on medical images, i.e., the basic and enhanced models proposed in section 3.1. Since 
the proposed co-operative training procedure resembles the GAN training scheme, for comparison, 
the proposed model was trained with the adversarial loss, according to (J. Pan et al., 2017). For the 
training of the GAN, the generator architecture and input were kept the same, whereas the 
discriminator input changed to the concatenation of the input image IRGB with the corresponding 
saliency map. 

In terms of average performance, in most cases the proposed cooperative model provided a higher 
score in terms of AUC-J. A detailed summary describing the performance of each network that 
was used in this evaluation process can be seen in Table 3.2. Furthermore, a qualitative comparison 
of the saliency maps generated by the methodologies incorporated in the evaluation process is 
presented in Figure 3.8.   

3.3 MonoSOD: Monocular Salient Object Detection 
The architecture of MonoSOD is illustrated in Figure 3.9. It consists of two autoencoder CNN 
branches. The first one, implements depth prediction, and the second one implements SOD based 
on the predicted depth. In this study we investigate two backbone architectures for depth prediction, 
namely DenseDepth (Alhashim & Wonka, 2018) and Monodepth2 (Godard, Mac Aodha, Firman, 
& Brostow, 2019). The SOD network enhances the RGB-D sub-network proposed by Fan et al. 
(Fan et al., 2020) by incorporating a SOD refinement step. More specifically, the input of this 
network is a tensor consisting of an RGB image and the respective depth map generated by the 
depth prediction branch. This tensor, representing the joint RGB-D information and is subsequently 
processed and propagated through the network. As a result, an initial SOD is estimated, which is 
then refined by a trainable filtering scheme, enhancing the detection accuracy of the salient object.  

A CNN model capable of predicting a depth map DM from an RGB image IRGB, can be considered 
as an approximation function , with . Such function, maps values of RGB  
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images to depth values, considering I as the 
input space of all RGB color images, and D 
as the depth space of the images in I.   

For the purposes of our study, we consider 
two state-of-the-art CNN-based models as 
depth predictors, namely DenseDepth 
(Alhashim & Wonka, 2018) and 
Monodepth2 (Godard et al., 2019). These 
networks have a similar U-Net architecture 
with different backbone networks. Another 
difference is that DenseDepth is a 
supervised model, whereas Monodepth2 
follows a self-supervised learning 
paradigm. These models are briefly 
described below. 

DenseDepth: The architecture of 
DenseDepth model consists of an encoder 
and a decoder network. The encoder 
network aims to map an input image IRGB to 

a latent representation and has the same architecture with DenseNet-169 (G. Huang et al., 2017). 
The weights of the encoder are initialized by training the model, for a classification task, on 
ImageNet dataset (J. Deng et al., 2009). The latent representation of that IRGB image is then 
propagated to a decoder network. The decoder consists of up-sampling layers followed by 
convolutional layers and skip-connections from the encoder. The decoder outputs a corresponding 
depth map in half the resolution of the input image. The output depth map is then resized with 
bilinear up-sampling to match the dimensions of the input RGB images. 

Monodepth2: The encoder of Monodepth2 is a ResNet18 (He et al., 2016), similarly to the 
DenseDepth, its weights were initialized by using the ImageNet dataset. The decoder network that 
Monodepth2 uses, is similar to that of (Chaney et al., n.d.), with sigmoid activation function at the 
final layer, responsible for the output and exponential linear units (Clevert, Unterthiner, & 
Hochreiter, 2015) non-linearities elsewhere. In addition, the decoder network employs reflection 
padding instead of zero padding which reduces the border artifacts in the produced depth map. 
Monodepth2 is considered as self-supervised because it is trained to predict the appearance of a 
target image from the viewpoint of another image. 

The encoder of MonoSOD extends the VGG-16 model (Simonyan & Zisserman, 2014) with an 
additional convolutional  block, to preserve, as much as possible, the semantic information of the 
input images. The VGG-16 network consists of five convolutional blocks and a fully connected  

 

Figure 3.9. MonoSOD two-network architecture. 
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layer. The first two blocks are composed of 
two convolutional layers followed by a max 
pooling layer. The remaining blocks are 
consisted of three convolutional layers 
followed by a max pooling layer. Both the 
final max pooling layer and the fully 
connected layer of the original VGG-16 
network have been removed from the model. 
An additional convolutional block composed 
of two convolutional layers and an average 
pooling layer has been added to expand the 
architecture of VGG-16 network. The 
convolutional layers of the 6th block utilize 

the convolutional layers of the encoder utilize 
convolutional kernels of s
Rectified Linear Unit (ReLU) as activation 
function. 

The decoder of the network has the same 
architecture with the first five blocks of the 
encoder but in a reverse order and simplified 
structure. In detail, all the convolutional 
blocks of the decoder consist of single 

all the 
max-pooling layers have been removed and replaced with up-sampling layers. To attain richer 
features, the feature maps deriving from the first five layers of the encoder, are concatenated with 
the respective feature maps of the decoder. Before the concatenation, the feature maps of the 

maintain the overall number of channels equal to four after the concatenation process. 

The final block of the decoder can be described as a prediction block. This block consists of two 
as the final 

final convolutional block, the first two convolutional operations utilize the ReLU activation 
function. Since the values of the expected output are within the range of [0, 1] the sigmoidal 
activation function is used for the prediction of the saliency map, which depicts the respective 
salient object. 

 
(a) 

 
(b) 

(c) (d) 

 
(e) 

  
(f) 

Figure 3.10. MonoSOD vs. RGB-D SOD. (a) RGB input 
image; (b) Ground truth (GT); (c) RGB-D depth map; (d) 
Predicted depth; (e) Detected salient object using 
MonoSOD; (f) Detected salient object using RGB-D 
SOD. 
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For the training of the network, the Binary Cross Entropy (BCE) function was adopted. BCE is 
estimated as the average of the individual BCEs of all pixels in an estimated saliency map s, 
formally expressed as: 

 (3.6) 

where sij  [0,1]  and gij  [0,1] are the values of s and the ground truth (GT) g, at a pixel coordinate 
(i, j) of s and g, respectively, where i N,  and N, M are the dimensions 
along the vertical and horizontal axis of the SOD map respectively. 

After the initial SOD, we introduce an additional refinement step. For the refinement, we introduce 
a parametric Heaviside function, Hp formally expressed as: 

 (3.7) 

where a, x  [0, 1], a is a trainable parameter and x a value of a pixel of the produced SOD map, 
s. The function Hp is employed to refine the saliency map in a convolutional manner, considering 
the local neighborhood around a pixel at a coordinate (i, j). This operation can be expressed as: 

 (3.8) 

where s is the SOD map, initially estimated by the model,  is its refined counterpart while m and 
n denote the width and height of the local neighborhood. This refinement process can have a 
significant impact to SOD accuracy as indicated by the results presented in the experiments and 
results section. 

Experiments and Results 

The experimental evaluation was performed on 3 benchmark RGB-D datasets for SOD, namely, 
NLPR (H. Peng, Li, Xiong, Hu, & Ji, 2014), NJU2K (Ju, Ge, Geng, Ren, & Wu, 2014), and STERE 
(Niu, Geng, Li, & Liu, 2012). Both NLPR and STERE datasets are composed of 1000 images, 
whereas NJU2K has approximately 2000 images. The depth information in these datasets, was 
estimated either using stereo cameras (in NJU2K, STERE) or it was acquired using the Microsoft 
Kinect sensor (in NLPR).  

To conduct a fair comparison with other methodologies we have followed the data splitting 
approach indicated by (Fan et al., 2020), i.e., both NLPR and NJU2K datasets were split in two 
parts.  In total, 700 image-depth pairs from NLPR and 1485 from NJU2K dataset were selected to 
construct the training and validation data partition for the training of MonoSOD. The remaining 
300 image pairs from NLPR and 500 from NJU2K dataset, and the whole STERE dataset were 
used for testing purposes. 
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Adam algorithm with an initial learning rate value of 1e-4. The model was trained using the early 
stopping technique monitoring the loss of the validation partition. The weights of the model was 
initialized using the method described in (He, Zhang, Ren, & Sun, 2015). The training images 
were augmented by horizontally flipping (Perez & Wang, 2017), (Fan et al., 2020). DenseDepth 
and MonoDepth2 were trained using the NYU Depth v2 (Silberman, Hoiem, Kohli, & Fergus, 
2012) and KITTI (Geiger, Lenz, & Urtasun, 2012) datasets respectively. 

For conducting the evaluation of the proposed model, four evaluation metrics were selected, 
namely, the Mean Absolute Error (MAE) (Perazzi, Krahenbuhl, Pritch, & Sorkine-Hornung, 
2012), the max F-measure (F ) (Borji, Cheng, Jiang, & Li, 2015), the Structure measure (S-
measure, Sa) (Fan, Cheng, Liu, Li, & Borji, 2017), and the Enhanced alignment measure (E-
measure, ) (Fan et al., 2018).  

MAE: Enables the quantification of the deviation between estimated and GT maps. The mean 
absolute error between a real-valued saliency map s and a binary GT g for all image pixels is 
calculated as follows: 

 (3.9) 

where N is the total number of pixels. MAE estimates the approximation degree between the 
saliency and the GT map, and it is normalized in the interval [0,1]. Generally, the error is 
proportional to the size of the object. Thus, smaller objects are typically correlated with smaller 
errors and vice versa. Although, this measure provides a direct estimate of the errors, it completely 
ignores their spatial properties. 

F-measure: This metric is regarded as a region-based similarity metric. F-measure is a harmonic 
mean of average precision and average recall, formally defined as: 

 (3.10) 

In our comparison, similar to (Fan et al., 2020) , we set 2 = 0.3 to weigh precision more than recall 
and we calculate the max F-measure using various fixed thresholds within the interval of [0, 255]. 

S-measure: Behavioral vision studies confirm the assertion that the human visual system is 
extremely sensitive to S-measure was developed to assess a generated saliency map by taking into 
account the structural similarity between a predicted saliency and a GT map. S-measure 
incorporates both the region-aware (Sr) and the object-aware (So) structural similarity in a final 
structure metric, calculated as: 

 (3.11) 

where b  [0,1] denotes a balance parameter. As in (Fan et al., 2020), we set this parameter to 0.5. 
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Table 3.3. Comparison of MonoSOD and D3Net 

E-measure: Cognitive vision studies ascertain the fact that human vision is highly sensitive to both 
global and local information in scenes. Although the most evaluation metrics capture various types 
of errors in either pixel-wise or structural way, E-measure taking into consideration both pixel-
level errors and image-level errors. This metric introduces the enhanced alignment matrix to  

Metrics 
MonoSOD D3Net (Fan et al., 2020) 

DenseDepth Monodpeth2 DenseDepth Monodpeth2 Prov. Depth 

F   0.875 0.869 0.857 0.849 0.896 

  0.927 0.924 0.920 0.919 0.947 

Sa   0.893 0.891 0.898 0.895 0.903 

 0.042 0.042 0.043 0.045 0.039 

better and vice versa. 

Table 3.4. Comparison of MonoSOD with and without the refinement step 

Datasets Metrics 
MonoSOD MonoSOD w/o Ref. 

DenseDepth Monodepth2 DenseDepth Monodepth2 

NJU2K (Ju 
et al., 2014)  

F   0.877 0.873 0.861 0.860 

  0.917 0.916 0.908 0.908 

Sa  0.886 0.886 0.892 0.891 

 0.049 0.048 0.051 0.051 

NLPR (H. 
Peng et al., 

2014) 

F   0.878 0.867 0.855 0.844 

  0.944 0.939 0.939 0.936 

Sa  0.904 0.899 0.909 0.904 

 0.030 0.032 0.032 0.034 

STERE (Niu 
et al., 2012) 

F   0.871 0.868 0.857 0.855 

  0.921 0.919 0.915 0.914 

Sa  0.889 0.889 0.894 0.893 

 0.047 0.046 0.050 0.049 

 

Table 3.5. MonoSOD vs. RGB-D SOD 

Metrics 
MonoSOD RGB-D SOD 

DenseDepth Monodepth2 Prov. Depth 

F   0.875 0.869 0.877 

  0.927 0.924 0.930 

Sa  0.893 0.891 0.897 

 0.042 0.042 0.040 
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simultaneously formulate local pixel 
values with the image-level mean value. 
Thus, it captures both global statistics and 
local pixel matching information. E-
measure is calculated as: 

 (3.12) 

where h, w corresponds to the height and 
the width of the map, respectively, and 

denotes the enhancement alignment 
matrix of the binary foreground estimated 
map (FM). 

The performance of the proposed 
methodology was assessed in comparison 
to the state-of-the-art for SOD, on all the 
benchmark datasets, using the 
aforementioned evaluation metrics. The 
quantitative results are summarized in 
Table 3.3. MonoSOD using DenseDepth 
provided higher scores as compared to 
MonoDepth2. However, MonoDepth2 
follows a self-supervised training 
approach that it could justify its lower 
performance. The state-of-the-art SOD 
model proposed in (Fan et al., 2020) 
(D3Net) was evaluated on the same 
datasets as MonoSOD. Also, it has been 
trained and tested using both the sensor-
based estimated depth provided (Provid. 
Depth) along with the datasets and 
predicted depth maps. MonoSOD had an 
overall higher performance than D3Net 
when both used predicted depth. On the 
other hand, D3Net achieved marginally 
higher scores (of the order of ~10-2 for F , 

, Sa and of the order of ~10-3 for MAE) 
when it was trained with sensor-based 
estimated depth. It is worth noting that 

 
(a) 

 
(b) 

 
(c) 

Figure 3.11. Example of RGB input images depicting salient 
objects. (a) Bottle. (b) Flower. (c) ATM. 

GT 
MonoSOD 

DenseDepth 

D3Net     
Provid. 
Depth 

RGB-D 
SOD 

Provid. 
Depth 

    

    

    
(a) (b) (c) (d) 

Figure 3.12. Comparative qualitative results on the images of 
Fig. 3. (a) GT image. (b) MonoSOD. (c) D3Net (Fan et al., 
2020). (d) RGB-D SOD. All images are normalized for better 
visualization. 

    

 
(a) 

 
(b) 

 
(c) 

Figure 3.13. (a) Input images of Fig. 3(a) for different 
luminosities; (b) Corresponding estimated DM of (a); (c) 
MonoSOD prediction. 
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D3Net is more complex than MonoSOD, since it uses 3 separate autoencoder-like networks. 
MonoSOD follows a two-branch architecture capable of predicting depth and subsequently 
combining it with RGB information for SOD estimation. 

The impact of the refinement step to the overall SOD methodology, was evaluated by an additional 
experiment, where the refinement step was absent from the inference pipeline. The results obtained 
are summarized in Table 3.4 and indicate that this step can substantially improve the performance 
of MonoSOD. The MonoSOD architecture, equipped with the refinement process, provided higher 
scores on most evaluation metrics. Furthermore, to investigate the effect of depth accuracy on 
SOD performance, MonoSOD was trained with the sensor based estimated depth provided along 
with the respective datasets. In the following we refer to this model as RGB-D SOD. The results 
of this comparison are presented in Table 3.5. As it can be observed, RGB-D SOD provides 
comparable results to MonoSOD, which reinforces the claim that the predicted depth can replace 
the sensor-based estimated depth.  

A qualitative comparison among MonoSOD, D3Net and RGB-D SOD is illustrated in Figure 3.12 
using representative images of the benchmark datasets (Figure 3.11). The GT is provided in Figure 
3.12 (a). Figure 3.12 (b), Figure 3.12 (c) and Figure 3.12 (d) present the detected salient objects 
using MonoSOD, D3Net and RGB-D SOD, respectively. It can be noticed that the differences 
between them are marginal. Additionally, in Figure 3.13 is illustrated a qualitative comparison of 
the performance of MonoSOD using different luminosities. In Figure 3.13 (a) the images in the 
first and second row illustrate the image of Figure 3.11 (b) with a luminosity of -50% and +50% 
respectively. It can be observed that the MonoSOD prediction is only slightly affected by the 
luminosity change. 

3.4 Conclusions and Future Work 
Towards the development of models able to perceive the salient regions in images, in section 3.1 
two different CNN model architectures have been presented designed for saliency estimation on 
WCE images based on eye fixations of physicians. As distinct from other approaches the proposed 
models are capable to efficient detect gaze patterns for a variety of normal and abnormal WCE 
image categories. According to the results, the enhanced architecture that was developed that 
comprises a convolutional reconstruction block and a post-refinement step outperformed both the 
basic model and the state-of-the art methods that have been proposed for applications in the same 
context. An extension to the methodology that was described in section 3.1 has been introduced in 
section 3.2 where a novel CNN model is presented for estimating saliency maps based on 

approaches in the sense that is capable to efficient detect gaze patterns for a variety of normal and 
abnormal WCE image categories, as well as it utilizes a novel co-operative training scheme. This 
training scheme is similar to Generative Adversarial Networks but instead of utilizing two 
networks competing each other, we have incorporated two co-operative models (Goodfellow et 
al., 2014).  
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Apart from the work that was presented aiming to tackle the estimation of salient regions, in section 
3.3 a novel depth-aware, two-branch CNN salient object detection methodology, called 
MonoSOD, that unlike relevant state-of-the-art methodologies utilizes predicted depth instead of 
sensor-based estimated depth is proposed. This method in contrast to salient region prediction, 
focuses on the detection of salient objects, i.e., separated objects that attract the visual attention. 
The results provided by the evaluation of the proposed methodology, indicate that the 
incorporation of depth predicted by a CNN model, can provide comparable performance for SOD, 
with that of sensor-based SOD methods. MonoSOD outperforms the state-of-the-art D3Net when 
both utilize predicted depth, with a smaller architectural complexity (D3Net has a three-branch 
architecture, whereas MonoSOD has a two-branch architecture). This work also contributed to the 
comparison among the performance of different models, given predicted and sensor-based 
estimated depth. The results lead to the conclusion that there is only a marginal difference, both 
from a quantitative and qualitative perspective, in terms of SOD performance, between the 
utilization of predicted and sensor-based estimated depth. MonoSOD can be beneficial for robotic 
applications where the installation of sensor-based depth acquisition methods is difficult due to 
the design requirements of the robot, e.g., in robotic capsule endoscopes (Ciuti et al., 2016).  

Regarding the salient region estimation, as a future work we intend to investigate different CNN 
architectures and image representations, e.g., using CIE-Lab color space instead of RGB, for the 
improvement of the saliency estimation. Considering the results obtained from the study of SOD, 
as a future work, we intend to further investigate ways for a more robust monocular SOD 
methodology through application-specific depth representation and approximation methods. 
Additionally, we intend to further improve the architecture of the model, by reducing its 
computational complexity with the minimum trade-off in terms of performance. Furthermore, the 
results obtained by MonoSOD should be a motivation for further investigation to determine which 
aspect of depth information is beneficial for a network; the pixel-level precision of depth values 
or a rougher representation of the depth in a scene? 
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4 Chapter 4 
Obstacle Detection 
According to the World Health Organization (WHO), about 16% of the worldwide population 
lives with some type of visual impairment (WHO, 2018). Visually challenged people (VCP) 
struggle in their everyday life and have major difficulties in participating in sports, cultural, tourist, 
family, and other types of outdoor activities. The last two decades, a key solution to this problem 
has been the development of assistive devices able to help, at least partially, the VCP to adjust in 
the modern way of life and actively participate in different types of activities. Such assistive 
devices require the cooperation of researchers from different fields, such as medicine, smart 
electronics, computer science, and engineering. So far, as a result of this interdisciplinary 
cooperation, several designs and components of wearable camera-enabled systems for VCP have 
been proposed (Caraiman et al., 2017; Schwarze et al., 2016; Suresh, Arora, Laha, Gaba, & 
Bhambri, 2017; Tapu, Mocanu, & Zaharia, 2017).  

Such systems incorporate sensors, such as cameras, ultrasonic sensors, laser distance sensors, 
inertial measurement units, microphones, and GPS, which enable the user identify his/her position 
in an area of interest (i.e., outdoor environment, hospital, museum, archaeological site, etc.), avoid 
static or moving obstacles and hazards in close proximity, and provide directions not only for 
navigation support, but also for personalized guidance in that area. Also, mobile cloud-based 
applications (Z. Mahmood, Bibi, Usman, Khan, & Muhammad, 2019), methodologies for optimal 
estimation of trajectories using GPS and other sensors accessible from a mobile device (Ahmed et 
al., 2019), and algorithms enabling efficient data coding for video streaming (Khan et al., 2019), 
can be considered for enhanced user experience in this context. Users should be able to easily 
interact with the system through speech in real-time. Moreover, the system should be able to share 
the navigation experience of the user not strictly as audio-visual information, but also through 
social interaction with remote individuals, including people with locomotor disabilities and the 
elderly. 
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During the last two years, several studies and research projects have been initiated, setting higher 
standards towards systems for computer-assisted navigation of VCP. In (Bashiri et al., 2018), an 
Enterprise Edition of a Google glass device was employed to support visually challenged 
individuals during their movement. Their system comprised a user interface, a computer network 
platform, and an electronic device to integrate all components into a single assistive device. In (K. 
Yang et al., 2017), a commercial pair of smart glasses (KR-VISION), consisting of an RGB-D 
sensor (RealSense R200) and a set of bone-conducting earphones, was linked to a portable 
processor. The RealSense R200 sensor was also employed in (Long, Wang, Cheng, Hu, & Yang, 
2019), together with a low-power millimetre wave (MMW) radar sensor, in order to unify object 
detection, recognition, and fusion. Another smart assistive navigation system comprised a smart-
glass with a Raspberry Pi camera attached on a Raspberry Pi processor, as well as a smart shoe 
with an IR sensor for obstacle detection attached on an Arduino board (Pardasani, Indi, Banerjee, 
Kamal, & Garg, 2019). In (B. Jiang, Yang, Lv, & Song, 2019), a binocular vision probe with two 
charged coupled device (CCD) cameras and a semiconductor laser was employed to capture 
images in a fixed frequency. A composite head-mounted wearable system with a camera, 
ultrasonic sensor, IR sensor, button controller, and battery for image recognition was proposed in 
(S. Chen, Yao, Cao, & Shen, 2019). Two less complex approaches were proposed in (Adegoke, 
Oyeleke, Mahmud, Ajoje, & Thomase, 2019) and (M. T. Islam, Ahmad, & Bappy, 2020). In the 
first, two ultrasonic sensors, two vibrating motors, two transistors, and an Arduino Pro Mini Chip 
were attached on a simple pair of glasses. The directions were provided to the user through 
vibrations. In the second, a Raspberry Pi camera and two ultrasonic sensors attached on a 
Raspberry Pi processor were placed on a plexiglass frame.  

The previously mentioned systems incorporate several types of sensors, which increase the 
computational demands and the energy consumption, the weight of the wearable device, as well 
as the complexity of the system. In addition, although directions in the form of vibrations are faster 
perceivable, their expressiveness is limited, and the learning curve required increases with the 
number of messages needed for user navigation. 

From the review of the available systems above, it can be easily concluded that the commercially 
available assistive technologies for navigation are mainly based on Global Positioning System 
(GPS). GPS assistive guidance approaches are unsuitable for VCPs since they lack high accuracy 
in urban environments (the error can be estimated even to several meters); the signal can be easily 
lost during operation for various reasons such as line-of-sight restrictions or multi-path effect. In 
addition, GPS needs sufficient number of directly visible satellites to work properly (Rodr guez, 
Bergasa, Alcantarilla, Yebes, & Cela, 2012). 

A factor that would make an assistive system for navigation suitable for VCPs is its ability to detect 
various types of objects in images by computer vision. The analysis of user requirements of the 
project ENORASI (D.K. Iakovidis, 2019), showed that the users would like the system to detect 
in real-time mainly vertical objects such as trees, humans, stairs and terrain anomalies, while in 
parallel the system should be able to accurately and reliably detect the surrounding area for 
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potential cultural sights. Computer vision methods for obstacle detection are also important in the 
robotic navigation domain (Brassai, Iantovics, & Enachescu, 2012), so any methodology being 
developed for a form of assistive/independent navigation can be applied for the navigation of VCPs 
to the robotic navigation domain and vice-versa.  

Several studies investigating deep learning approaches have addressed the issue of object detection 
in images. A Faster Region-Based Convolutional Neural Network (R-CNN) (Ren, He, Girshick, 
& Sun, 2015) for real-time object detection with region proposal networks was used to detect and 
track objects in (Kaur & Bhattacharya, 2018). Motion, sharpening and blurring filters were used 
to enhance feature representation. An approach enabling joint object detection, tracking and 
recognition was developed in the context of the DEEP-SEE framework, presented in (Tapu et al., 
2017). An intelligent smart glass using deep learning machine vision techniques and Robot 
Operating System (ROS) was presented in (Suresh et al., 2017), where three CNN architectures 
were used, namely Faster R-CNNs (Ren et al., 2015), You Only Look Once (YOLO) CNN 
(Redmon, Divvala, Girshick, & Farhadi, 2016) and Single Shot multibox Detectors (SSDs) (W. Liu 
et al., 2016). However, the main purpose of these methods was to solely detect objects and not 
classify them as obstacles.  

An obstacle detection module of a wearable mobility aid based on LeNet was proposed in (Poggi 
& Mattoccia, 2016), and a unified real-time object detection method based on a YOLO CNN was 
proposed in (Redmon et al., 2016). These machine learning-based methods consider obstacle 
detection as a 2D problem in the image plane. A few studies have considered obstacle detection 
for VCP as a 3D problem by incorporating depth information. Such information is usually derived 
from stereo vision systems (see section 2.1.2). A multi-stage depth-aware random forest model 
using discriminative saliency fusion was developed for salient region detection (H. Song, Liu, Du, 
& Sun, 2016). For micro air vehicle flight applications, a multi-task deep architecture that jointly 
estimates depth and obstacles without computing a global map was proposed (Mancini, Costante, 
Valigi, & Ciarfuglia, 2018). For traffic situations, a stereo and motion fusion approach using 
flow/depth constraint for obstacle detection was developed in the context of the Daimler-Chrysler 
urban traffic assistance project (Heinrich, 2002). 

A key component of all these systems and methodologies that aim at tackling the problem of 
assistive navigation is that they exploit information deriving from multiple sensors or complex 
sensory systems such as stereo vision cameras. Under the scope of sensory substitution several 

nition 
regarding the surroundings. This is achieved through the incorporation of various sensors such as 
ultrasonic (Bottega & Balbinot, 2020; Rahman, Islam, Ahmmed, & Khan, 2020) and specialized 
camera systems capable of providing both RGB and depth information that describe a scene 
(Barontini, Catalano, Pallottino, Leporini, & Bianchi, 2020). 

More recently, various deep learning approaches have been proposed to comprehensively capture 
the surrounding environment. Joshi et al. (Joshi, Yadav, Dutta, & Travieso-Gonzalez, 2020) 
proposed a navigation system leveraging deep learning-based object detection, that utilizes 
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distance sensors to assist VIPs through audio feedback. Similarly, in 
2020; Shahira, Tripathy, & Lijiya, 2019; Yadav, Joshi, Dutta, Kiac, & Sikora, 2020) ultrasonic 
sensors were used alongside deep-learning models for obstacle detection. In (Afif, Ayachi, Said, 
Pissaloux, & Atri, 2020; Hsieh, Lin, & Xu, 2020; O.-C. A. Liu, Li, Yan, Ng, & Kwok, 2020), 
Convolutional Neural Network (CNN) models were employed for object detection and recognition 
in indoor spaces for the assistive navigation of the VCPs.  

With the exploitation of the segmentation capabilities of deep learning methods, several systems 
have been developed to guide the visually impaired (Duh, Sung, Chiang, Chang, & Chen, 2020), 
(Hengle, Kulkarni, Bavadekar, Kulkarni, & Udyawar, 2020). Bauer et al. (Bauer et al., 2020) 
presented a wearable device that exploits the 3D information of the environment to pinpoint the 
relative locations of objects in the surrounding area. Additionally, the detected objects were 
semantically described, to convey them to the user as audio or haptic feedback. Leveraging the 
depth information acquired from an RGB-D camera whilst performing segmentation, the 
methodologies presented in (Haoye Chen et al., 2020; Martinez, Yang, Constantinescu, & 
Stiefelhagen, 2020) were proposed for the guidance of VIPs. All these approaches, however, are 
segmenting a scene to semantically isolate spatial regions, while assessing their risk using hard 
thresholds on depth information estimated by additional sensors. Some works have considered the 
application of self-supervised learning techniques to perform obstacle detection under differing 
settings, including robotic navigation (X. Deng et al., 2020; Kahn, Abbeel, & Levine, 2021), depth 
estimation for vision-based vehicles (Tektonidis & Monnin, 2020) and obstacle avoidance for 
unmanned aerial vehicles (Dijk, 2020). However, only a few self-supervised methodologies 
indirectly address the assistive navigation for VIPs, by discovering terrain characteristics 
(Ishikawa, Hachiuma, & Saito, 2021; Kurobe, Nakajima, Saito, & Kitani, 2020) and generating 
natural language image captions (Y. Song, Chen, Zhao, & Jin, 2019). 

By considering all the above, in this dissertation various methodologies that go beyond the state-
of-the-art regarding assistive navigation have been investigated. In detail, three methodologies 
based on DL and Fuzzy Logic have been developed aiming at tackling the problems of obstacle 
detection and avoidance. The first method that is presented in section 4.1 introduces a novel 
direction for tackling the problem of obstacle detection based on a Generative Adversarial Network 
(GAN) trained to detect salient regions on images and fusing them with spatial risk assessed using 
depth maps estimated by an RGB-D sensor. The fusion between the saliency and risk information 
is performed with the use of fuzzy sets. Unlike previous approaches the proposed method enables 
the assessment of the degree to which an obstacle imposes risk to the user, and it provides an 
inherent way of naturally describing the current situation to the user using linguistic values. The 
use of fuzzy sets enables soft assessment of the bounds of a threat (e.g., there are overlapping 
distance intervals within which an obstacle can be considered both as a high or medium risk 
threats) which is proved to be more effective than conventional approaches, usually employing 
hard bounds (Long Chen, Guo, & Sun, 2010), e.g., an obstacle is considered as a threat of high 
risk after a specified distance. The human eye fixation map produced by the GAN, combined with 
the fuzzy interpretation of the depth values, produce a perceptually meaningful and interpretable 
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information for the user. Additionally, this method when compared with the machine learning-
based obstacle detection methods that can be found in the literature, does not need any training 
regarding the obstacle detection part. 

Then, in section 4.2 an extension of the first methodology is presented that incorporates additional 
modules such as personalization elements, a simple ground removal approach for the elimination 
of false positive findings and a linguistic encoding of the position of the obstacle to communicate 
commands for their avoidance. In section 4.4 a novel deep learning-based obstacle detection 
methodology is investigated that applies self-supervised learning. It is based on a CNN model that 
is trained with input and output pairs of a state-of-the-art obstacle detection algorithm that is 
described in section 4.2, aiming to approximate it through simulation. Unlike the methodologies 
presented in sections 4.1 and 4.2, it uses only the RGB components of the input images (i.e., the 
depth component is excluded), and it is significantly less computationally intensive. The model 
learns to infer a fuzzy saliency map softly representing image regions corresponding to obstacles 
in the environment, considered of high-risk for possible collision of the subject that is bearing the 
camera. According to the methodology described in 4.2, the saliency maps are subsequently 
utilized for obstacle localization using bounding boxes. The self-supervised aspect of this 
methodology emerges from the use of automatically generated training samples produced by the 
methodology described in 4.2. Thus, in contrast to other methods that either predict depth 
(Tektonidis & Monnin, 2020) or involve additional sensors, such as ultrasound sensors (M. M. 
Islam et al., 2020; Shahira et al., 2019; Yadav et al., 2020), the model that we employ, implicitly 
learns all the subprocess of an obstacle detection method (section 4.2) given a single RGB input 
image. The motivation for this research lies on the fact that currently, obstacle detection algorithms 
require the incorporation of multiple sensors and computationally expensive methods for the 
assessment of obstacles in images. These approaches affect the portability and the response time 
of the systems designed for assistive navigation. A single CNN model, that can efficiently detect 
regions with obstacles in an image, would contribute to less complex and more time-efficient 
navigational systems. 
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4.1 Soft Obstacle Detection Using GANs and Fuzzy Logic

The proposed method consists of two components; the saliency map generation using a GAN 
trained on human eye fixations, called SalGAN (J. Pan et al., 2017) and a fuzzy set-based approach 
combining the 3D spatial information acquired by an RGB-D sensor to risk values for a possible 
obstacle threat.

The saliency map generation is based on a GAN (Goodfellow et al., 2014), which is a deep CNN 
(Fig. 1). The main motivation utilizing it in the saliency prediction, is that it produces saliency 
maps based on human eye fixations. Thus, an eye fixation-based salient map carries the 
information of what regions in an image would be interesting for a human. So forth, the obstacle 
detection process can become more intuitive, in the sense that the algorithm will be able to detect 
regions that humans consider as more salient. Furthermore, it can be trained with eye fixation data 
captured from individuals navigating through paths with obstacles, and hence extend its potentials.

The GAN architecture consists 
of two CNNs, a discriminator 
and a generator network. The 
combination of the two CNNs 
aims to predict visual saliency 
maps from an image. The 
generator produces the saliency 
maps in its output, and the 
discriminator optimizes its 
resemblance with ground truth 

saliency maps obtained from humans using eye tracking data (Bylinskii et al., 2016). The generator 
CNN has an encoder-decoder architecture. The encoder part has the same architecture as VGG-16 
(Simonyan & Zisserman, 2014), including both convolutional and pooling layers (illustrated in 
grey and purple colour in Figure 4.1. However, it does not have the final pooling and fully 
connected layers (FC) layers of VGG-16. The max-pooling layers of the encoder are used for 
downscaling of the feature maps. The encoder network weights are initialized with those of a 
VGG-16 model trained on the ImageNet dataset (J. Deng et al., 2009). For the purpose of 
estimating saliency maps, only the last two groups of convolutional layers have been modified 

Figure 4.1. Illustration of the SalGAN architecture of the generator.

Figure 4.2. Illustration of the generated saliency map from an input image. 
(a) Input image. (b) The generated saliency map
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(a) (b)

(c)

Figure 4.3. Membership functions of fuzzy sets used for the localization of objects in the 3D space using linguistic 
variables. (a) Membership functions for low (d1), medium (d1), and high risk (d3) upon the distance of the user from 
an obstacle. (b) Membership functions for left (h1), central (h2) and right (h3) positions on the horizontal axis. (c) 
Membership functions for up (v1), central (v2) and bottom (v1) positions on the vertical axis.

during training. The decoder part of the CNN has up-sampling instead of pooling layers followed 
by convolutional filters in order to increase the size of the output to match the size of the input 
image. The decoder architecture is identical to the encoder architecture but with the layers placed 
in reverse order. as an activation function, Rectified Linear Unit (ReLU) was used in all 

a sigmoid activation function. The weights of the decoder were randomly initialized. The 

followed by 3 FC layers. The activation functions for the convolutional and FC layers are the 
ReLU and hyperbolic tangent tanh function, respectively. Exception is the final layer, which uses 
the sigmoid activation function. An example of a saliency map produced by the generative model, 
is illustrated in Figure 4.2. In Figure 4.1 is illustrated the architecture of the generative model. The 
convolutional layers of the encoder are depicted with a blue colour and the max-pooling layers 
with red; the convolutional layers of the decoder are depicted with green colour, the up-sampling 
layers with orange and th e final convolutional layer with the sigmoid activation with gray colour.

The generated saliency map can be seen as a broad weighted region of interest in which an obstacle 
may reside, i.e., higher intensities of the saliency map correspond to higher likelihoods for possible 
objects of interest. To limit the search region for the detection of an obstacle, we exploit the values 
of a depth map produced by an    RGB-D sensor. To assess the risk of a threatening obstacle for 
the VII, we employ a methodology based on fuzzy sets (Nguyen, Walker, & Walker, 2018). We 
consider a set of 3 fuzzy sets 1, 2, 3, which correspond to three different risk levels, expressible 
by linguistic values indicating high, medium, and low risk respectively. Each fuzzy set represents 
a degree of risk that an object in each depth value z, may impose a threat to the VII. The universe 
of discourse for these fuzzy sets is the range of values of the depth maps produced by the RGB-D 
sensor. The fuzzy sets 1 and 2, and the fuzzy sets 2 and 3, are overlapping between each other, 
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considering the uncertainty in the 
assessment of an obstacle threat 
as high or medium, and as 
medium or low respectively, upon 
its distance from the user. The 
respective membership functions 
di(z), i = 1, 2, 3 are illustrated in 
Figure 4.3(a), where z  is 
a value of the estimated depth 
map. 

For the spatial localization of an 
obstacle in the image plane, we 
constructed 6 additional fuzzy 
sets, namely H1, H2 and H3 for the 
horizontal axis, corresponding to 
the left, central and right part of 

the image, namely, V1, V2 and V3 for the vertical axis, corresponding to the up, central, and bottom 
part of the image. The respective membership functions, hi(x), and vi(y) are illustrated in Figure 
4.3 (b), (c), where x [0, 1] and y [0, 1] are the horizontal and vertical coordinates within an 
image, normalized by image width and height, respectively. 

Once we establish the membership functions for each fuzzy set, we create three different risk maps, 
 based on the depth values and the membership functions of each fuzzy set i. Each risk map 

consists of the responses of a membership function given a depth value z and it can be formally 
expressed as follows: 

 (4.1) 

where Mz is the depth map of an RGB image, IRGB. From Eq. (4.2) a total of 3 risk maps is derived, 
where each, represents regions of a degree of risk that an object may impose a threat to a person 
navigating within its range. A visual representation of the risk maps can be seen in Figure 4.4. 
Figure 4.4 (a) illustrates the depth map corresponding to Figure 4.2 (a), where the dark pixel values 
represent lower depth values (nearest distances) and the brighter pixel values represent higher 
depth values (further distances). Figure 4.4 (b)-(d) are illustrations of the different risk maps 
produced by Eq.(4.2) using membership functions di(z), i=1, 2, 3. The brighter pixel values of the 
risk maps indicate higher participation in 1, 2 and 3 fuzzy sets respectively. 

To further localize an obstacle imposing threat to a navigating VII, we combine the information 
from the saliency map SM with a risk map , using the fuzzy AND operator ( ) (Nguyen et al., 
2018) : 

 (4.2) 

Figure 4.4. A graphical representation of the risk maps. (a) Depth map Mz 
of the image in Figure 4.2(a). (b) High-risk map . (c) Medium-risk map 

. (d) Low-risk map . 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



88

where F1, F2 are two 2D fuzzy maps, 
with values within [0, 1], and x, y
represents the coordinates of each 
value within the 2D map. A risk map 

and a (normalized) saliency map 
SM, can be considered as such fuzzy 
maps, since the risk maps are 
generated by the responses of fuzzy 
membership functions, and saliency 
maps indicate the degree to which a

pixel belongs to a salient region. Thus, Eq.(4.3) gives a new image:

(4.3)

where non-zero pixel-values of represent the location of an obstacle and a degree of 
participation in a risk-level in the respective region. An example of the application of Eq. (4.4) for 

Figure 4.6. A visual representation of the . (a) The original IRGB image; (b) Image ; (c) Image 
; (d) Image .

Figure 4.5. A visual representation of the pipeline of the proposed 
methodology.
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the combination of the saliency map of Figure 4.2 with each of the different risk maps of Figure 
4.3 is illustrated in Figure 4.6. In Figure 4.6 (b) the whitish area indicates that the respective object 
in image Figure 4.6 (a) (the tree on the left) is of high-risk so it is labeled as an obstacle to be 
avoided. The whitish area in Figure 4.6 (c) indicates the objects of medium-risk and the whitish 
area in Figure 4.6 (d) indicates that the respective objects are of low-risk. The fact that the lower 
part of the tree is highlighted in both Figure 4.6 (b) and Figure 4.6 (c) is due to the overlap of the 
respective membership functions. The overall pipeline of the proposed methodology is 
summarized in Figure 4.7. 

Experiments and Results 

For the validation of our method, we captured 10,170 frames in total. The videos were captured 
using an RGB-D sensor, namely, the state-of-the-art Intel  RealSense  D435. The size of this 
sensor is conveniently small (90 25 25mm) to be attached on a wearable system for the assistive 
navigation of the VII. It enables 3D depth sensing, with a maximum range of 10m. The D435 
sensor has two infrared (IR) cameras that enable stereoscopic vision, an IR projector and a high 
resolution RGB camera. The IR projector is used to improve the depth estimation. This is done by 
the stereoscopic system while projecting a static IR pattern on the scene. The IR pattern projection 
enables the texture enrichment of low texture scenes.  

Table 4.1. Percentage confusion matrix 

The originally captured videos were 
uniformly subsampled, by acquiring a 
sample every 5 frames. After this process, 
the resulting dataset was composed of a total 
of 2034 frames, including 6 obstacle 
categories, namely trees or tree branches, 

ground anomalies, crowds and stones. The obstacles in the dataset were annotated by a human 
observer. For the obstacle detection, we used the high-risk map . 

Predicted Values 
True Values 

Positive Negative 

Positive 47.50% 6.66% 

Negative 5.20% 40.62% 

Figure 4.7. Example detection of high-risk obstacles (nearest crowd and tree branches). (a)  Original image IRGB. 
(b) The corresponding image .obtained by using membership function d1. 
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The interval of the high-risk membership function was set to be at 0 < z  3.5m. The interval was 
decided from the user requirements described in (Dimitris K Iakovidis et al., 2020) . The desired 
distance for an obstacle to be detected, according to the VII, was up to 2m. We can interpret this 

-
Regarding this interpretation, we can assume that all the obstacles within a range of 2m are of high 
risk but after the 2m threshold is safe. Unlike previous methodologies, we do not consider this 
distance as a hard threshold for the identification of an obstacle as threatening. As it can be seen 
in Figure 4.3 (a) our high-risk membership function is 1 within the interval 0 < z 
starts degrading up to the 3.5m where it becomes zero. In that manner, we are able to capture the 
desired distance up to 2m and mark it as high risk but also consider the uncertainty around it, i.e., 
within the interval 1.5m < z z 
begin to express a participation in the medium risk domain. This was decided upon the usual 
practice of the membership being intersected on their middle. This way the risk of an approaching 
obstacle can be progressively assessed with respect to its distance. In addition, we fulfill the 
requirements of the VII since the impulses of the high-risk membership function within the interval 

1 fuzzy set with high participation compared to other fuzzy 
set. This can be clearly seen in Figure 4.3.   

The application of the proposed methodology for obstacle detection on the available dataset 
resulted in an accuracy of 88.1%, with the respective specificity to be 85.9% and the sensitivity 
90.1%. A confusion matrix with the detailed results in terms of percentages can be seen in Table 
4.1. We compared our approach with a state-of-the-art methodology, where hard thresholding is 
employed. For a threshold at 3m the hard thresholding method produced an accuracy of 81.1%, 
with a specificity of 79.1% and a sensitivity of 82.9%, whereas by further reducing the threshold, 
the detection performance was degraded. A qualitative comparison of the two approaches is 
illustrated in Figure 4.8. Figure 4.8 (b) illustrates the hard-thresholded saliency map overlaid to 
the input image. It can be noticed that the rock at the bottom right is not included in the region of 
interest defined by the saliency map. This region of interest is used to isolate a respective region 
of the depth map, which is subsequently hard-thresholded to obtain possibly threatening obstacle 
regions. The result of this process is illustrated in Figure 4.8 (d), where the rock is falsely not 
considered as a threat. Comparatively in Figure 4.8 (c) the image  obtained by the 
proposed methodology includes the rock. This is because of the fuzzy fusion applied between the 

Figure 4.8 An illustration of different fuzzy operation between the saliency map and the risk map . (a) Fuzzy AND. 
(b) Fuzzy Sum. (c) Fuzzy OR. 
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saliency map and the risk-map. The fuzzy fusion operation defines a region that may not be 
considered sufficiently salient by SalGAN, but due to the uncertainty-aware evaluation of the 
depth map using fuzzy sets, a certain degree of risk is assigned. In Figure 4.9, is illustrated a 
qualitative comparison among the fuzzy AND (Figure 4.9 (a)), OR (Figure 4.9 (b)) and SUM 
(Figure 4.9 (c)) operation. In can be observed that the fuzzy AND operation produces the most 
reliable results.   

4.2 Personalized Soft Obstacle Detection 
In section 4.1 an obstacle detection methodology has been described that is based on the fusion of 
the information deriving from estimated human eye-fixations, in terms of saliency maps, and 
information regarding the risk that is imposed to a user as it is assessed by the depth information 
that is captured by an RGB-D sensor. In this section, that methodology (section 4.1) is extended 
with personalization elements and modules that minimize the detection of false positive findings, 
i.e., characterization of objects as obstacles when in reality impose no harm to the user. This 
methodology has been merged with other components that lead to the construction of a more 
complete system for the assistive navigation of the VCPs. However, the main focus of this section 

Figure 4.9 A qualitative comparison of the fuzzy approach (a) RGB input image. (b) The hard-thresholded saliency 
map overlaid to the input image (c) Image  obtained by the proposed methodology. (d) Obstacle mask after 
hard thresholding of the depth map corresponding to the region of interest defined in (b). 
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will be the obstacle detection and avoidance part of the system whereas the other components, i.e., 
object recognition, will only be mentioned and not analysed. The obstacle detection and 
recognition component of the system can be described as a two-step process. In the first step, the 
detection function incorporates a deep learning model and a risk assessment approach using fuzzy 
sets similarly to the methodology described in section 4.1. Henceforth, the deep learning model is 
used to predict, eye-human fixations, on images captured during the navigation of the VCP and 
sequentially fuzzy sets are used to assess the risk based on depth values calculated by the RGB-D 
camera, generating risk maps, expressing different degrees of risk. The risk and saliency maps are 
then fused using a fuzzy aggregation process through which, the probable obstacles are detected. 
In the second step, the recognition of the probable obstacles takes place. For this purpose, each 
obstacle region is propagated to a deep learning model, which is trained to infer class labels for 
objects found in the navigation scenery (Figure 4.10).  

The saliency maps used are generated by a GAN (Goodfellow et al., 2014) that have been utilized 
for the same purpose in section 4.1. The generated saliency maps derive from human eye fixation 
points and thus, they make the significance of a region in a scene more instinctual. Such 
information can be exploited for the obstacle detection procedure, and at the same time, enhance 
the intuition of the methodology. Additionally, the machine learning aspect enables the 
extensibility of the methodology, since it can be trained with additional eye fixation data, collected 
from individuals during their navigation through rough terrains. An example of the saliency maps 
estimated from a given image can be seen in Figure 4.11. Since the model is trained on human 
eye-fixation data, it identifies as salient, regions in the image that the attention of a human would 
be focused. As it can be observed in Figure 4.11, in the first image, the most salient region 
corresponds to the fire extinguisher cabinet; in the second image, to the people on the left side; 
and in the last image, to the elevated ground and the tree branch. 

To assess the risk, it can be easily deduced that objects/areas that are close to the VCP navigating 
in an area and are salient according to the human gaze, may pose a certain degree of threat to the 
VCP. Therefore, as a first step, the regions that are in a certain range from the navigating person 
need to be extracted, so that they can be determined as threatening. Hence, we consider a set of 3 

Figure 4.10. Visualization of the proposed obstacle detection and recognition pipeline 
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Figure 4.11. Examples of the generated saliency maps given an RGB image. (a) Input RGB images. 
(b) respective generated saliency maps. 

 fuzzy sets, namely, R1, R2, and R3 describing three different risk levels, which can be described 
with the linguistic values of high, medium, and low risk, respectively. The fuzzy sets R1, R2, and 
R3, represent a different degree of risk and their universe of discourse is the range of depth values 
of a depth map. Regarding the fuzzy aspect of these sets and taking into consideration the 
uncertainty in the risk assessment, there is an overlap between the fuzzy sets describing low and 
medium, and medium and high risk. The fuzzy sets R1, R2, and R3 are described by the membership 
function ri(z), i = 1, 2, 3, where z  Figure 4.12. 

description of their position in a manner that it can be communicated and easily perceived by the 
user. In our system, the description of the spatial location of an object is performed using linguistic  
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(a) (b)

(c)

Figure 4.12. Membership functions of fuzzy sets used for the localization of objects in the 3D space using linguistic 
variables. (a) Membership functions for far left (h1), left (h2), central (h3), right (h4) and far right (h5) positions on the 
horizontal axis. (b) Membership functions for up (v1), central (v2) and bottom (v3) positions on the vertical axis. (c) 
Membership functions for low (r1), medium (r1), and high risk (r3) upon the distance of the user from an obstacle

expressions. We propose an approach based on fuzzy logic to interpret the obstacle position using 
linguistic expressions (linguistic values) represented by fuzzy sets. Spatial localization of an 
obstacle in an image can be achieved by defining 8 additional fuzzy sets. More specifically, we 
define 5 fuzzy sets for the localization along the horizontal axis of the image, namely, H1, H2, H3, 
H4, and H5 corresponding to far left, left, central, right, and far right portions of the image. 
Additionally, to express the location of the obstacle along the vertical axis of the image, we define 
3 fuzzy sets, namely, V1, V2, and V3 denoting the upper, central, and bottom portions of the image. 
The respective membership functions of these fuzzy sets are hj(x), j = 1, 2, 3, 4, 5 and vi(y), i = 1,2, 
3, where x, y [0, 1] are normalized image coordinates. An illustration of these membership 
functions can be seen in Figure 4.12.

Some obstacles, such as tree branches, may be near the individual with respect to the depth, but at 
a certain height that safe passage would not be affected. Thus, a personalization step was
introduced to the methodology eliminating false alarms. The personalization aspect and the 
minimization of false positive obstacle detection instances are implemented through an additional 
fuzzy set P, addressing the risk an obstacle poses to a person with respect to the height. For the 
description of this P fuzzy set we define a two dimensional membership function p(ho, hu), where 
ho and hu are the heights of the obstacle and the user, respectively. More details concerning the 
personalization aspect of this method will described later.For the risk assessment, since the 
membership functions describing each fuzzy set were defined, the next step is the creation of 3 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.13. Example of  creation. (a) Depth map D, where lower intensities correspond to closer distances; (b) 
visual representation of  representing regions of high risk; (c)  representing regions of medium risk; (d)  
depicting regions of low risk. Higher intensities in (b-d) correspond to lower participation in the respective fuzzy set. 
All images have been normalized for better visualization. 

risk maps, . The risk maps , derive from the responses of a membership function, ri(z), and 
are formally expressed as: 

 (4.4) 

where D is a depth map that corresponds to an RGB image IRGB. Using all the risk assessment 
membership functions, namely r1, r2, and r3, 3 different risk maps, , , and  are derived. 
Each of these risk maps depicts regions that may pose different degrees of risk to the VCP 
navigating in the area. In detail, risk map  represents regions that may pose high degree of risk, 

 medium degree of risk, and finally  low degree of risk. A visual representation of these 
maps can be seen in Figure 4.13. Figure 4.13 7(b-c) illustrate the risk maps derived from the 
responses of the r1, r2, and r3 membership functions on the depth map of Figure 4.13 (a). Brighter 
pixel intensities represent higher participation in the respective fuzzy set, while darker pixel 
intensities represent lower participation. 

In the proposed methodology, the obstacle detection is a combination between the risk assessed 
from the depth maps and the degree of saliency that is obtained from the GAN described 
previously. The saliency map SM that is produced from a given IRGB is aggregated with each risk  

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



96 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.14. Example of the aggregation process between the saliency map SM and the high-risk map . (a) Original 
IRGB used for the generation of the saliency map SM; (b) high-risk map  used in the aggregation; (c) saliency map 
SM based on the human eye fixation on image (a); (d) the aggregation product using the fuzzy AND operator between 
images (b) and (c). 

map , where i = 1, 2, 3, using the fuzzy AND ( ) operator (Godel t-norm) (Feferman, Dawson, 
Kleene, Moore, & Solovay, 1998), formally expressed as: 

 (4.5) 

In Eq. (4.5) F1 and F2 denote two generic 2D fuzzy maps with values within the [0, 1] interval, 
and x, y are the coordinates of each value of the 2D fuzzy map. The risk maps  are, by definition, 
fuzzy 2D maps, since they derive from the responses of membership functions ri on a depth map. 
The saliency map SM can be considered as a fuzzy map where its values represent the degree of 
participation of a given pixel to the salient domain. Therefore, they can be combined with the fuzzy 
AND operator to produce a new fuzzy 2D map  as follows: 

 (4.6) 

The non-zero values of the 2D fuzzy map  (obstacle map) at each coordinate (x, y) indicate the 
location of an obstacle and express the degree of participation in the risk domain of the 
respective . Figure 4.14 (d) illustrates the respective  produced using the fuzzy AND operator 
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with the three . Higher pixel values of the  portray higher participation on the respective risk 
category and the probability of the location of an obstacle. 

Theoretically, the  can be directly used to detect obstacles posing different degrees of risk to 
the VCP navigating in the area. However, if the orientation of the camera is towards the ground, 
the ground plane can be often falsely perceived as obstacle. Consequently, a refinement step is 
needed to optimize the obstacle detection results and reduce the occurrence of false alarm error. 
Therefore, a simple but effective approach for ground plane extraction is adopted. The ground 
plane has a distinctive gradient representation along the Y axis in depth maps, which can be 
exploited in order to remove it from the . As a first step, the gradient of the depth map D is 
estimated by: 

 
(4.7) 

A visual representation of a normalized difference map  in the [0, 255] interval can be seen in  

Figure 4.15. As it can be seen, the regions corresponding to the ground have smaller differences 
than the rest of the depth map. In the next step, a basic morphological gradient g (J.-F. Rivest, 

Soille, & Beucher, 1993) is applied on the gradient of D along the y direction . A basic 

morphological gradient is basically the difference between dilation and erosion of the  given an 

all-one kernel k : 

 
(4.8) 

where  and  denote the operations of dilation and erosion and their subscripts indicate the used 
kernel. In contrast to the usual gradient of an image, the basic morphological gradient g 
corresponds to the maximum variation in an elementary neighborhood rather than a local slope. 
The morphological gradient is followed by consecutive operations of erosion and dilation with a 
kernel k . As it can be noticed in Figure 4.15, the basic morphological filter g gives higher 
responses on non-ground regions and thus the following operations of erosion and dilation are able 
to eliminate the ground regions quite effectively. The product of these consecutive operations is a 
ground removal mask GM, which is then multiplied with , setting the values corresponding to 
the ground, to zero. This ground removal approach has been experimentally proven to be sufficient 
to eliminate the false identification of the ground as obstacle. A visual representation of the ground 
mask creation and the ground removal can be seen in Figure 4.15 and Figure 4.16, respectively. 

Once the obstacle map of the depicted scene is estimated following the process described above, 
the next step is the spatial localization of the obstacle in linguistic values. This step is crucial for 
the communication of the surroundings to a VCP. For this purpose, Fuzzy Sets are utilized by the 
proposed methodology. Five membership functions are used to determine the location of an 
obstacle along the horizontal axis (x-axis) and 3 along the vertical axis (y-axis). 
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Initially, the boundaries of the obstacles depicted in the obstacle maps need to be determined. For 
the obstacle detection task, the  obstacle map, through which the high-risk obstacles are  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.15. Example of the creation steps of GM. (a) Depth map D, normalized for better visualization; (b) visual 
representation of the difference map M; (c) difference map M after the application of the basic morphological 
gradient; and (d) the final ground removal mask GM. 

represented, is chosen. Then, the boundaries bl, where l 
using a border following the methodology presented in (Suzuki & others, 1985). Once the 
boundaries of each probable obstacle depicted in  are acquired, their centers cl = (cx, cy), l = 1, 

(Kotoulas & Andreadis, 
2005) of boundaries bl. The centers cl can be defined using the raw moments m00, m10, and m01 of 
bl as follows: 

 

 
(4.9) 

 (4.10) 

 
where q k x, y denote image coordinates along the x-axis and y-axis 
respectively. An example of the obstacle boundary detection can be seen in Figure 4.17, where the 
boundaries of the obstacles are illustrated with green lines (Figure 4.17 (b)) and the centers of the 
obstacles are marked with red circles (Figure 4.17 (c)). 

Once the centers have been calculated, their location can be determined and described with 
linguistic values using the horizontal and vertical membership functions, hj, where j = 1, 2, 3, 4, 5, 
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and vi, where  i = 1, 2 ,3. If the response of hj(cx) and vi(cy) is greater than 0.65, then the respective 
obstacle with a boundary center of cl = (cx, cy) will be described with the linguistic value that these  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.16. Example of the ground removal procedure. In (d), the ground has been effectively removed. (a) Original 
IRGB image; (b) corresponding obstacle map ; (c) respective ground removal mask GM; (d) masked obstacle map 

; 

(a) (b) (c) 

Figure 4.17. Example of the obstacle boundary extraction and obstacle center calculation. (a)  obstacle map used 
for the detection of high-risk obstacles; (b) boundary (green outline) estimation of the obstacles; (c) respective centers 
of the detected obstacles. 

hj and vi represent. Additionally, the distance between object and person is estimated using the 
depth value of depth map D at the location of D(cx, cy). Using this information, the VCP can be 
warned regarding the location and distance of the obstacle and, as an extension, be assisted to 
avoid it.     

The obstacle map depicts probable obstacles that are salient for humans and are within a certain 
range. However, this can lead to false positive indications, since some obstacles, such as tree 
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branches, can be within a range that can be considered threatening, but at a height greater than that 
of the user, not affecting his/her navigation. False positive indications of this nature can be avoided 
using the membership function p(ho, hu). To use this membership function, the 3D points of the 
scene need to be determined by exploiting the intrinsic parameters of the camera and the provided 
depth map. 

To project 2D points on the 3D space in the metric system (meters), we need to know the 
corresponding depth value z for each 2D point. Based on the pinhole model, which describes the 
geometric properties of our camera (H , the projection of a 3D point to the 
2D image plane is described as follows: 

 
 
(4.11) 

 
Where f is the effective focal length of camera and (X, Y, z)T is the 3D point corresponding to a 2D 
point on the image plane . Once the projected point  is acquired, the transition to 
pixel coordinates (x, y)T is described by the following equation: 

 (4.12) 

su denotes a scale factor, Du, Dv are coefficients needed for the transition from the metric units to 
pixels and (x0, y0)T is the principal point of the camera. With the combination of Eqs. (4.11)-(4.12) 
the projection which describes the transition from 3D space to the 2D image pixel coordinate 
system can be expressed as 

 (4.13) 

The 3D projection of a 2D point with pixel coordinates (x, y), for which the depth value z is known, 
can be performed by solving Eq. (4.13) for X, Y formally expressed below (Dimitris K Iakovidis, 
Dimas, et al., 2018): 

 (4.14) 

where fx = fDusu and fy = fDv. Eq. (4.14) is applied on all the 2D points of IRGB with known depth 
values z. After the 3D points have been calculated, the Y coordinates are used to create a 2D height 
map HM of the scene, where each value is a Y coordinate indicating the height an object at the 
corresponding pixel coordinate in IRBG.  Given the height hu of the user, we apply the p membership 
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function on the height map HM to assess the risk with respect to the height of the user. The 
responses of p on HM create a 2D fuzzy map PM as shown below: 

 (4.15) 

Finally, the fuzzy AND operator is used to combine  with PM, resulting in a final personalized 
obstacle map : 

 (4.16) 

Non-zero values of  represent the final location of a probable obstacle with respect to the height 
of the user and the degree of participation to the respective risk degree, i.e the fuzzy AND operation 
between  with PM describes the high-risk obstacles in the scenery 

Experiments and Results 

(a)  (b) (c) 

(d) (e) (f) 

Figure 4.18. Example of the objects identified as obstacles in our dataset. (a-c) columns/artifacts; (d) tree; (e) cultural 
sight near the ground level; (f) small tree/bush. 

To validate the proposed system, a new dataset was constructed consisting of videos captured from 
an area of cultural interest, namely the Ancient Agora of Athens, Greece. The videos were captured 
using a RealSense D435 mounted on smart glasses and were divided into two categories. The first 
category focused on videos of free walk around the area of Ancient Agora, and the second category 
on controlled trajectories towards obstacles found in the same area. The validation of the system 
was developed around both obstacle detection and their class recognition. When an obstacle was 
identified and its boundaries were determined, the area of the obstacle was cropped and propagated 
to the obstacle recognition network. In the rest of this section, the experimental framework will be 
further described along with results achieved using the proposed methodology. 

The dataset composed for the purposes of this study focuses on vertical obstacles that can be found 
in sites of cultural interest. The dataset consisted of 15.415 video frames captured by researchers 
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wearing the smart glasses. In 5.138 video frames the person wearing the camera was walking 
towards the obstacles, but not in a range for the obstacle to be considered threatening. In the rest 
10.277 video frames, the person was walking until collision, towards obstacles considered as 
threatening, which should be detected and recognized. The intervals determining whether an  

(a) (b) (c) 

Figure 4.19. Qualitative example of false ground detection as obstacle resulted using the methodology presented in 
(George Dimas, Ntakolia, et al., 2019) (section 4.1). In all images, the obstacles are not in a threatening distance. (a) 
False positive detection on dirt ground-type; (b) False positive detection on rough dirt ground-type. (c) False positive 
detection on tile ground-type. 

Table 4.2. Confusion matrix of the methodology proposed in section 4.2 

obstacle is considered as threatening or not were set according to the user requirements established 
by VCP for obstacle detection tasks in (Dimitris K Iakovidis et al., 2020). Regarding that, the 
desired detection distance for the early avoidance of an obstacle according to the VCP user 
requirements is up to 2 m. 

During data collection, the camera captured RGB images, corresponding depth maps, and stereo 
infrared (IR) images. The D435 sensor is equipped with an IR projector which is used for the 
improvement of depth quality through the projection of an IR pattern that enables texture 
enrichment. The IR projector was used during the data acquisition for a more accurate estimation 
of the depth. In this study, only the RGB images and the depth maps needed for our methodology 
were used. The categories of obstacles visible in the dataset were columns, trees, archaeological 
artifacts, crowds, and stones. An example of types of obstacles included in our dataset can be seen 
in Figure 4.18. As previously mentioned, all data were captured in an outdoor environment, in the 
Ancient Agora of Athens. In addition, it is worth noting that the data collection protocol that was 
followed excludes any images that include human subjects that could be recognized in any way.  

For the obstacle detection task, only the high-risk map was used, since it depicts objects that pose 
immediate threat to the VCP navigating the area. The high-risk interval of the membership function 
r1 was decided to be at 0 < z < 3.5 m. By utilizing the fuzzy sets, an immediate threat within the 
range of 0 < z < 1.5 m can be identified, since the responses of r1 in this interval are 1 and then it 

Actual 
Detected 

Positive (%) Negative (%) 

Positive (%) 55.1 9.0 

Negative (%) 5.3 30.6 
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degrades until the distance of 3.5 m, where it becomes 0. With this approach, the uncertainty within 
the interval of 1.5 < z < 3.5 m is taken into consideration, while at the same time, the requirement 
regarding the detection up to 2 m is satisfied. The GAN that was used for the estimation of the 
saliency maps based on the human eye-fixation was trained on the SALICON dataset (M. Jiang et 
al., 2015). 

  
 

 

 
 

  

 
(a) 

 
(b) 

 
(c) 

Figure 4.20. Qualitative representation of the ground removal method. (a) Original IRGB images; (b) Ground masks 
with the white areas indicating the ground plane; (c) images of (a) masked with the masks of (b). 

Table 4.3. Results and quantitative comparison between the proposed and state-of-the art methodologies. 

Metrics Proposed (%) 
Method (George Dimas, 

Ntakolia, et al., 2019) (%)  
Method (Lee, Su, & Chen, 

2012) (%) 

Accuracy 85.7 72.6 63.7 
Sensitivity 86.0 91.7 87.3 
Specificity 85.2 38.6  21.6 

The proposed methodology was evaluated on the dataset described above. For the evaluation of 
the obstacle detection methodology the sensitivity, specificity, and accuracy metrics were used. 
The sensitivity and specificity are formally defined as follows: 

 (4.17) 

 (4.18) 
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where TP (true positive) are the true positive obstacle detections, e.g. the obstacles that were 
correctly detected, FP (false positive) are the falsely detected obstacles, TN (true negative) are 
frames were correctly no obstacles were detected, and FN (false negative) are frames that obstacles 
were not correctly detected.  

Our method resulted in an accuracy of 85.7% on its application of the aforementioned dataset, with 
a sensitivity and specificity of 85.9% and 85.2%, respectively. A confusion matrix for the proposed 
method is presented in Table 4.2. For further evaluation, the proposed method was compared to 
that proposed in (George Dimas, Ntakolia, et al., 2019), which, on the same dataset, resulted in an 
accuracy of 72.6% with a sensitivity and specificity of 91.7% and 38.6%, respectively. The method 
proposed in (George Dimas, Ntakolia, et al., 2019) included neither the ground plane removal in 
its pipeline nor the personalization aspect. On the other hand, the proposed approach was greatly 
benefited from these aspects in the minimization of false alarms. As it can be seen in Figure 4.19, 
the dataset contains frames where the camera is oriented towards the ground, and without a ground 
plane removal step, false alarms are inevitable. The obstacles in Figure 4.19, were not in a range 
to be identified as a threat to the user; however, in Figure 4.19 (a-c), where the ground plane 
removal has not been applied, the ground have been falsely identified (green boxes) as obstacle. 
A quantitative comparison between the two methods can be seen in Table 4.3. 

Qualitative results with respect to the ground detection method can be seen in Figure 4.20. As it 
can be observed, the methodology used for the ground plane detection is resilient to different 
ground types. The ground types that were found in our dataset were grounds with dirt, tiles, marble, 
and gravels. In addition, using such a method reduces greatly the false alarm rate when the head is 
oriented towards the ground plane. Even though the masking process is noisy, the obstacle 
inference procedure is not affected.  

Current imaging, computer vision, speech, and decision-making technologies have the potentials 
to further evolve and be incorporated into effective assistive systems for the navigation and 
guidance of VCPs. The present study explored novel solutions to the identified challenges, with 
the aim to deliver an integrated system with enhanced usability and accessibility. Key features in 
the context of such a system are obstacle detection, recognition, easily interpretable feedback for 
the effective obstacle avoidance and a novel system architecture. Some obstacle detection methods 
such as (Poggi & Mattoccia, 2016) tackle the problem by incorporating deep learning methods for 
the obstacle detection tasks and using only the 2D traits of the images. 

4.4 Self-Supervised CNN for Soft Obstacle Detection 
An overview of the proposed methodology is schematically illustrated in Figure 4.21. It consists 
of two main components, a U-Net CNN learning model, and a supervisor, g, implementing the 
obstacle detection algorithm proposed in (George Dimas, Diamantis, et al., 2020) (section 4.2), 
The output of the supervisor is used to train the learning model, so that it learns to estimate the 
output of the obstacle detection algorithm, given an RGB input image. The learning model is 
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trained in a self-supervised manner since the target 
training samples are automatically generated. For the 
training procedure, RGB-Depth image pairs are 
required; both the RGB and depth images are used as 
input to the obstacle detection algorithm to output maps 
illustrating regions of possible obstacles. Then the RGB 
image is used as input to the model which is trained to 
approximate the maps produced by the obstacle 
detection algorithm. The details of the network 
architecture and the self-supervised training 
methodology are described in the following paragraphs. 

The model presented adopts an FCN-based U-Net 
(Ronneberger et al., 2015) architecture, comprised of an 
encoder part for feature extraction and a decoder part 
for the reconstruction of the target image. The 
backbone network that defines the architectural 
structure of the encoder is ResNet34 (He et al., 2016), 

pre-trained on ImageNet (J. Deng et al., 2009). The encoder is a variant of the ResNet model, 
composed of 34 convolutional layers with residual 
connections. The first convolution layer utilizes a 
kernel wi -pooling 
operation. The subsequent convolution blocks include 
a number of convolution layers whereas after each 

Figure 4.22. Example of the input of the model 
and the corresponding training target saliency map 
as generated by the methodology described in 
section 4.2. (a) Input RGB image; (b) training 
target sample. 

 

Figure 4.21. Overview of the CNN model used for self-supervised learning of the soft saliency maps. 
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block follows a max-
and the selected activation function is ReLU. The structure of the decoder takes on a symmetric 
formation to the encoder with the max-pooling layers replaced by up-sampling layers and 
maintaining the skip connections of the encoder. The feature maps of the decoder are concatenated 
with the corresponding feature maps of the encoder after each step. The final layer of the decoder 
uses a sigmoid activation function that outputs the predicted image. 

The U-Net model is trained in a self-supervised manner. Self-supervised training describes the 
process where the supervisory signal, defining the learning task of a neural network, is generated 
via an automatic process (Jing & Tian, 2020). Thus, target training data, are generated without 
human supervision or intervention. The training samples are generated automatically using the 
methodology described in 4.2. That approach uses fuzzy sets and a Generative Adversarial 
Network (GAN) to exploit both depth and RGB information for obstacle detection. The depth 
maps (DM) are used for the derivation of risk maps (RM) that their pixel values expressing high 
( , medium (  and low risk (  regions, based on the VIP requirements assessed in 
(Ntakolia, Dimas, & Iakovidis, 2020). The construction of these risk maps is performed using 
fuzzy logic. The RGB information is used to produce saliency maps (SM) based on human eye 
fixation through the GAN model. To assess regions of probable obstacle occurrence, the generated 
saliency map is aggregated with  through a fuzzy AND operation (Nguyen et al., 2018). This 
process provides a 2D obstacle map, OM  [0, 1] , where its pixel values express the probability 
of an obstacle inclusion. Examples of this aggregation for different images are presented in Figure 
4.22 (b). The U-Net model is trained to estimate the OM given only the RGB information. 

Let us consider the U-Net model as a function approximator , where IRGB is a color 
image and  is an estimated obstacle map. The automatic process of the training target samples 
generation, as described above, can be denoted as , where  is used as a 
training target sample. For the training of f, we use a loss function incorporating the binary focal 
loss (L1) (Lin et al., 2017) and the dice loss (L2) (Sudre, Li, Vercauteren, Ourselin, & Cardoso, 
2017) functions. The focal loss function introduces a modulating term to the well-known cross-
entropy loss function, to focus learning on hard examples and down-weight negatives that are 
usually over-represented in segmentation and detection tasks. The focal loss function is formally 
expressed as follows: 

 (4.19) 

where  is a tunable focusing parameter, a is a balanced variant,  p, and pt is defined 
as: 

 (4.20) 

Dice loss function is based on the Dice coefficient, a metric used to calculate the similarity between 
two images. The Dice Loss function (L2) is formally defined as follows: 
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 (4.21) 

where , 1 is added to both the numerator and denominator for ensuring that the loss 
function is not undefined in edge case scenarios. So, the proposed joint loss function L is  

   

   

   

 
(a) 

 
(b) 

 
(c) 

Figure 4.23. Qualitative comparison between the proposed methodology and obstacle maps produced by (George 
Dimas, Diamantis, et al., 2020), each column represents the (a) input images; (b) Obstacle maps estimated by the 
proposed model ; (c) Obstacle maps estimated by (George Dimas, Diamantis, et al., 2020) .   

constructed as the summation between L1 and L2. As it can be observed in Eq.(3.21) the CNN is 
tasked to minimize the loss L by comparing its output to the automatically generated training target 
sample. 

 (4.22) 

The experimental evaluation was performed on three datasets consisting of RGB-D image pairs 
extracted from videos, captured using the Intel RealSense D435 stereo camera. The first dataset, 
D1, consists of images captured from the broader area of the Ancient Agora of Athens, and it 
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includes 861 RGB-Depth image pairs. The second dataset, D2, consists of 579 images, captured 
from the broader area of the Odeon of Herodes Atticus. The third dataset, D3, was used as a test 
set and it consists of 300 images captured from different locations from the area of Ancient Agora 
of Athens. 

During training, the images of the respective training set were split with a proportion of 80% for 
training and 20% for validation. After the splitting, the images of the training set were augmented 
using flipping with respect to their horizontal axis. To avoid overfitting the early stopping 
technique was employed, monitoring the loss of the validation set. 

Experiments and Results 

Table 4.4. Obstacle Map Similarity in Terms of AUC-J (%) 

Datasets 
Input Image Size 

   

D1 68.90 70.52 70.53 

D2 62.01 62.07 61.01 

D1,2 69.01 70.11 71.46 

Average 66.64  4.01 67.57  4.76 67.67  5.78 

The proposed methodology was evaluated on the basis of two criteria: a) the similarity of its output 
with the output of the supervisor, assessed in terms of the Judd implementation of the area under 
receiver operating characteristic (AUC-J) (Riche et al., 2013); and b) the accuracy of obstacle 
detection in comparison to the obstacle detection approach described in 4.2. The U-Net model was 

(a) (b) (c) 

(d) (e) (f) 

Figure 4.24. Qualitative comparison of obstacle detection performed with the proposed methodology (green 
rectangle) and the one proposed in section 4.2. (red rectangle). (a) tree branches. (b) ground anomaly. (c) columns. 
(d) small bush. (e) tree. (f) small wall. 
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trained using three different training sets, namely D1, D2, and a joint dataset composed of both 
D1 and D2 datasets (D1,2). All model instances were evaluated on the same test dataset D3, which 
does not have any overlap with D1 and D2. This procedure was followed to investigate the 
generalization capacity of the proposed methodology when trained and employed on images 
deriving from different locations. 

Table 4.5. Obstacle Detection Accuracy (%) 

Datasets 
Input Image Size 

   

D1 70.92 78.37 72.06 

D2 54.59 68.79 66.31 

D1,2 61.44 71.07 66.69 

Average 8.20   

Table 4.6. Time Performance Comparison (image/ms) 

Methodology Input Image Size 

Self-Supervised 
   

   

Supervisor 
(section 4.2) 

 

To investigate the performance with respect to the input image size, we trained and evaluated the 
U- Table 4.4 
summarizes the performance of all model instances, in terms of AUC-J. As it can be observed, the 

performance variation with respect to the size of the input image is negligible. A qualitative 
comparison between the obstacle maps that were estimated by the proposed methodology and the 
methodology of 4.2 is illustrated in Figure 4.23. It can be noticed that the U-Net model can 
successfully approximate the respective obstacle maps. 

The obstacle detection accuracy of the proposed methodology was also evaluated on dataset D3, 
with all model instances, i.e., the models trained on D1, D2 and D1,2, for different input image 
sizes. Table 4.5 summarizes the results obtained, in comparison to the methodology of 4.2, which 
was  85.7% on the same dataset. It can be noticed that the best performance was achieved when 

assessment of the detection results is presented in Figure 4.24. 

In addition, we have performed a comparison between the two methodologies with respect to their 
time-performance. Both methods were evaluated on the same computer equipped with an AMD 
Ryzen 5 3400G 3.70GHz processor, 16.00 GB RAM and the NVIDIA 2060 Super GPU. The 
results are summarized in Table 4.6. The minimum execution time of the proposed methodology 
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 presented in 4.2 was 
hese results indicate that by using a single CNN model for 

obstacle detection, a navigational system can be benefited considerably in terms of time 
performance. It is worth noting that the differences between the execution times using the different 
image sizes tested, is negligible. 

4.4. Discussion and Future Work 
In conclusion, section 4 introduces various novel methods for obstacle detection where the 3D 
information acquired using an RGB-D sensor has been used for assessing the risk imposed to a 
user in the scenery by processing the depth values of the scene with the employment of fuzzy sets. 
The human eye fixation was also taken into consideration, estimated by a GAN, in terms of 
saliency maps. The fuzzy aggregation of the risk estimates and the human eye fixation resulted to 
the efficient detection of obstacles in the scenery.  

In detail a preliminary and extended approach to computationally assistive navigation in terms of 
obstacle detection and avoidance have been described in sections 4.1 and 4.2, respectively. In 
contrast to other depth-aware methods, such as this proposed by (Lee et al., 2012), the obstacles 
detected with our approach are described with linguistic values regarding their opposing risk and 
spatial location, making them easily interpretable by the VCP. In addition, the proposed methods 
do not only extract obstacles that are an immediate threat to the VCP, e.g., these with non-zero 
responses from the high-risk membership function r1, but also obstacles that are of medium and 
low risk. Therefore, all obstacles are known at any time, even if they are not of immediate high 
risk.  

The personalization aspects of the methodology presented in section 4.2, alongside with the ground 
plane detection and removal, provides a significant lower false alarm rate when compared to its 
preliminary counterpart (section 4.1). Furthermore, this method can detect and notify the user 
about partially visible obstacles with the condition that the part of the obstacle is: a) salient, b) 
within a distance that it would be considered of high risk and c) in a height that would be affecting 
the user. The overall accuracy of the proposed method was estimated to be 85.7%, when the 
methodology proposed in section 4.1 resulted to an accuracy of 72.6%, based on the dataset 
described in the experiments and results of section 4.2. Additionally, in contrast to other 
methodologies such as (Suresh et al., 2017)(Cheng, Wang, Bai, & Xu, 2019; Kaur & Bhattacharya, 
2018)(Bai et al., 2019; Neela Maadhuree, Mathews, & Rene Robin, 2020), the proposed obstacle 
detection system is solely based on visual cues obtained using only an RGB-D sensor, minimizing 
the computational and energy resources required for the integration, fusion, and synchronization 
of multiple sensors. 

Additionally, a novel self-supervised CNN-based system was proposed, trying to simplify the 
obstacle detection methodology of 4.2, capable of efficiently detecting regions of possible high-
risk obstacles given an RGB image as input, contrary to other methodologies that are based on 
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multiple sensors. The proposed system has a significantly lower execution time per image when 
compared to an RGB-D-based obstacle detection algorithm; thus, it can contribute to more 
efficient, less complex navigational systems for VIPs. The results obtained by this study lead to 
the following conclusions: a) the proposed methodology approximates the obstacle detection 
performance of its supervisor algorithm presented in section 4.2, while achieving significantly 
lower execution times; b) the obstacle detection performance of the proposed methodology is not 
significantly affected by the input image size used. Therefore, the computational complexity can 
be further reduced by using smaller input images; c) self-supervised learning can be effectively 
used for developing lower-complexity saliency estimation and classification systems. The 
methodology presented can be considered as a first step, towards the development of more efficient 
assistive navigation systems.  

Future work includes further improvement of the obstacle detection performance of our self-
supervised methodology to better approximate its supervisor. Also, the perspectives for adaptation 
of the proposed methodology for other application domains are promising. 
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5 Chapter 5  
Visual Measurements 
Visual measurements (VMs) are a research topic that has received a lot of attention in recent years. 
VMs employ 3D cues extracted from images to perform measurements in physical units. Such 
measurements may include size, depth, travel distance, and so on, and they frequently necessitate 
the use of stereoscopic cameras or additional sensors, such as laser-based sensors. (Y. Li & Wang, 
2020). The majority of the current VM methods that do not rely on such sensors, are based on 
information extracted from consecutively captured images (Scaramuzza & Fraundorfer, 2011; 
Zheng, Tang, & Liu, 2018). VMs can be used in a wide range of domains, including autonomous 
navigation (Aqel, Marhaban, Saripan, & Ismail, 2016; Balamurugan, Valarmathi, & Naidu, 2016; 
George Dimas, Diamantis, et al., 2020) and biomedicine (George Dimas, Bianchi, et al., 2020; 
Dimitris K Iakovidis, Dimas, et al., 2018; F. Mahmood, Chen, Sudarsky, Yu, & Durr, 2018). The 
difficulty in accurately estimating the size and depth of an object from visual data stems from the 
projective nature of image formation, which is bounded by the geometric properties of the camera 
(Hartley & Zisserman, 2003). Many depth prediction approaches, such as Structure from Motion 
(SfM) and deep learning (DL), have been suggested in the literature. SfM approaches can forecast 
depth at a limited scale. DL-based techniques rely on big, annotated training datasets. In addition, 
they typically require prior knowledge of an adequate scaling factor in order to convert their 
estimates into physical units. (Godard et al., 2019; G. Huang et al., 2017). As a result, these 
limitations impede their performance in unconstrained conditions (in-the-wild) (Alhashim & 
Wonka, 2018).   

An important method coping with single image size measurements, called Single View Metrology 
(SVM), has been proposed by Criminisi et al. (Criminisi, Reid, & Zisserman, 2000). The geometric 
properties of the 3D-2D projection are used in that method to compute the height of an object given 
the height of the camera and the horizon line. Researchers have been inspired by SVM's core 
principle to develop a unified solution for single image size measurements. (Hoiem, Efros, & 
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Hebert, 2008; Zhu et al., 2020). However, SVM requires that the horizon line is known a priori 
(and this can be challenging, e.g., indoors). 

The research that is presented in this section is motivated by the fact that single image VMs can 
be extremely valuable in the context of various applications, such as the navigation of autonomous 
vehicles, or the assessment of findings in medical images. Furthermore, they can contribute to the 
creation of lower-cost, more adaptable solutions with less hardware complexity. Henceforth, two 
novel methodologies are proposed, one designed for general applications in-the-wild and one 
designed for biomedical applications which is benchmarked in the context of endoscopy in the 
gastrointestinal (GI) tract. 

The first methodology, named Virtual Grid Mapping (VGM), uses the inverse projection mapping 
as its foundation for visual size measurements based on a single image. Instead of attempting to 
deduce 3D information from 2D image space, an automatic grid of virtual 3D points is generated 
and projected to the 2D image plane, allowing the establishment of initial direct correspondences 
between 3D and 2D points. With these correspondences, the size and distance of an object of 

Methods 

Characteristics 

Size 
Measurements 

Depth 
Prediction 

Single Image Uncertainty 
Aware 

Deep Learning 

Criminisi et 
al., 2000 

 -  - - 

Hoiem et al., 
2008 

 -  - - 

Liu et al., 2010 -   - - 

Chen et al., 
2016 

-   - - 

Alhashim et 
al., 2018 

-   -  

Jiao et al., 
2018 

-   -  

Godard et al., 
2019 

-   -  

Zhu et al., 
2020 

 -  -  

Proposed     - 

Table 5.1. State-of-the-art methodologies for Visual Measurements 
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interest from the camera can be inferred. Unlike previous methods, the proposed one accounts for 
camera calibration and positioning uncertainty by employing an adaptive fusion process to 
improve the robustness of the initial depth estimation, that is subsequently used in size estimation. 
In comparison to SVM, the proposed VGM method introduces an alternative, simpler, and more 
reliable approach that does not require knowledge of the horizon line in the input images, nor any 
complex training process on large datasets, as in the case of DL methods. 

The main contributions of VGM can be summarized as follows: a) a novel, straightforward method 
for measuring object sizes (and depth) in natural images based on a virtual grid; b) an adaptive 
fusion methodology that deals with the uncertainty caused by camera calibration and positioning; 
c) The evaluation and comparison of the proposed method with other state-of-the art approaches 
in simulated, controlled, and in-the-wild conditions.  

This section also introduces a methodology similar to VGM developed for biomedical applications 
aiming to in-vivo measurement of the size of an endoscopically observed object of interest in the 
GI tract. Beyond the state-of-the-art, the proposed methodology is based on a single image, rather 
than multiple consecutively captured images of the same object as in previous approaches 
(Dimitris K Iakovidis et al., 2019). Given the intrinsic parameters of the camera it enables the 
measurement of linear segments (e.g., along the length or width of the object) in physical units, 
e.g., in mm. The evaluation of the proposed approach was performed with a three-dimensional 3D- 
printed colon phantom, in which various objects of known size were placed in order to be 
measured.  
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5.1 Virtual Grid Mapping for Single-Image Measurements 

The proposed methodology can be divided in two parts. The first part involves calculating the 
distance between an object of interest and a camera (depth). This is accomplished by establishing 
3D-2D direct correspondences by projecting to the image plane a grid of automatically generated 
virtual 3D points, Q. The feasibility of this step relies on the availability of the camera model and 
intrinsic parameters. With these initial 3D-2D correspondences and a defined linear segment to be 
measured within an image, depth information can be extracted. With the depth information known, 
we can proceed to measure the linear segment. Another assumption that is considered for size 
measurements using the proposed method, as with other single image approaches, is that the object 
of interest is lying on the ground (Criminisi et al., 2000; Hoiem et al., 2008; Zhu et al., 2020). The 
second part of the proposed method assumes that the initial depth estimation is only a rough 
approximation of the true depth due to uncertainty caused by the accuracy of camera calibration 
and the camera positioning. To deal with this, a set of possible depth values is considered, and they 
are fused together using different weights that are adapted through an optimization process. Figure 
5.1 depicts an overview of the proposed methodology.

Virtual Grid Mapping: Let us consider an object in the 2D image plane, contained in a rectangular 
bounding box, b. The bounding box has four linear segments  b = (l1, l2, l3, l4)T, which 

are defined by a set of points , j = 1, 2, 3, 4, on the image plane, e.g., l1 = ( , )T , each of 

which have a pair of point coordinates (u, v)T in the image. An example bounding box is illustrated 
in Figure 5.1. Overview of the pipeline of the proposed methodology Figure 5.1. Our objective is 
to calculate the size d of a linear segment defined by two points p and p' in world units. To achieve 
this, the distance dc between the camera and the object of interest is required.

The point of origin in the world coordinate system is defined by the camera, positioned at a height 
h (xc = 0, yc = h, zc = 0); hence, points that lay on the ground plane are positioned on yg = -h. For 
the purpose of this study the pinhole camera model is adopted as described in 

Figure 5.1. Overview of the pipeline of the proposed methodology
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1997). Thus, the projection of a 3D world point to the 2D image plane, can be formally expressed 
as follows: 

 (5.1) 

where f is the effective focal length of the camera, su is a scale factor, Du and Dv are coefficients 
enabling the transition from the metric unit system to pixels, and (u0, v0)T denotes the principal 
point of the camera. It should be noted that the camera lens is assumed not to introduce any 
distortion effect to the images. By denoting fx = fDusu and fy = fDv Eq. (5.1) can be rewritten in a 
more intuitive form as: 

 (5.2) 

Since the projection from the 3D world to the 2D image plane is defined, it is now possible to 
project virtual 3D points q to the 2D image plane using Eq. (5.2). Let Q be a set of generated virtual 
3D points q = (x, yg, z)T, where x, z  XYZ world coordinate system (Figure 
5.1). The X-  and Y-axes are along the width and height of the 3D scene while the Z-axis is along 
its depth. In addition, the generation of points q  Q is constrained as follows: 

 (5.3) 

 (5.4) 

 (5.5) 

where a, b  maximum and minimum values of x and z coordinates, 
i.e., they delimit the spatial span of the points along the X- and Z-axis. The variables sx, sy  
denote the density of the 3D points along the X- and Z-axis, respectively, whereas mod denotes the 
modulus operation. Hence, the set Q can be considered as a 3D point cloud, where each point q  
Q can be projected to the 2D image plane by applying Eq. (5.2) q  Q.  The projection of points 
q  Q to the 2D image plane leads to the construction of a 2D point set P that defines the ground 
plane in the image space. In this way, each point p  P corresponds to a known 3D point. A 
graphical representation of point sets Q and P is illustrated in Figure 5.1.  

Depth Estimation: As mentioned in the previous section, the object to be measured, is contained 
within a rectangular bounding box, b, where the l4 is the linear segment of its  therefore, all the 
points of l4 lie on the ground plane. Initially, to be able to measure the object, we need to find the 
distance dc between the object and the camera. To achieve this the middle point of l4 is estimated 

as . From Eq. (5.2) it can be derived that 3D points with the same coordinates x, 

y and z, will have the same coordinates on the image plane. Hence, to find the approximate depth 
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value dc the Euclidean distance between pm and all the points of P is calculated. Then the point in 
P that minimizes that distance is selected: 

 (5.6) 

where is the index of each point in set P. From Eq. (5.6) it can be easily derived that 
pm ~ pc  P  and thus, pm has approximately a corresponding virtual point qm  Q. The point qm is 
the 3D projection of pc , which according to the point projection model, its z coordinate is a close 
approximation of the z coordinate of pm, i.e., z = dc. However, the density of the virtual grid and 
the positioning of the camera introduce a degree of uncertainty to the initial estimation of dc. To 
cope with that, a refinement step of dc is proposed. Instead of using directly the initial distance dc 
from the point pc determined by Eq.(6.6), a set of n different distances , k = , are 
selected from a respective set of n points , k = , closer to pm. Thus, a vector  = 
( , )T is formed, and all the distances  are fused together using a weight vector 
w = (w1, w2, w3 n)T, wn   

 (5.7) 

Weights Estimation: Changes of the position of the camera and the accuracy of the calibration 
affects the projection of the virtual grid. As a result, the initial estimation of dc can be based on 
wrongly selected points of the virtual grid. Hence, a refinement step is required in order to estimate 
a more precise distance  between the camera and the object of interest.  

The estimation of   requires the approximation of a weight vector w, as it was mentioned in the 
previous section. The purpose of these weights is their application on a depth fusion procedure 
(Eq. (7)) where probable depth values are aggregated to estimate a more accurate estimate of the 
final distance between the camera and the object to be measured. Hence, a loss function L needs 
to be minimized with respect to an objective for the approximation of w. 

The training objective that aims to approximate w requires the correct estimation of a set of ground 
truth distance dgt, between the camera and the object. This is achieved by using a set of probable 
depth values in   along with a set of trainable weights w for each ground truth distance dgt. The 
function fd that we want to approximate is defined as follows: 

 (5.8) 

Where x n vector of depth values and w = (w1, w2, w3 n)T. Given Eq. (5.8) the loss 
function L that we want to minimize with respect to w is: 

  (5.9) 

For the approximation of w using Eq. (4.10), the Nelder-Mead optimization algorithm was used 
(F. Gao & Han, 2012). 
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Size Measurements: The estimation of  that denotes an uncertainty-aware estimator of the 
distance between the camera and the object of interest. By solving Eq. (5.2) with respect to x and 
y using as z the estimated , the following equation can be derived: 

 (5.10) 

By applying  Eq. (5.10) to p and p'  their 3D counterparts q = (x, y, ),  q' = (x', y', ) can be 
calculated. Then, d in the 3D space is computed by the Euclidean distance , which 
can be expressed with respect to p and p', as follows: 

 (5.11) 

In Eq. (5.11) fpixels is equal to fx and fy when the linear segment defined by p and p' is parallel to the 
X- and Y-axis, respectively. In the case where the linear segment is not parallel to either axis, Eq. 
(5.11) takes the following general form: 

 (5.12) 

Experiments and Results 

For the evaluation of the proposed methodology and its quantitative comparison against other 
single-image based approaches three datasets were used; a) a dataset constructed in a simulated 
environment, using the Webots robot simulation platform (Michel, 2004; Webots, n.d.); b) a 
dataset consisting of natural images, captured using a stereoscopic camera (Intel RealSense  
D435) of various objects with known dimensions and in known distances from the camera and c) 
images captured in-the-wild illustrating monuments of known dimensions. 

The evaluation process of the proposed methodology was performed through size measurements 
with respect to the height and width of the objects. The evaluation metric that was used, was the 
Mean Absolute Percentage Error (MAPE) defined as: 

 (5.14) 

 

where N denotes the total number of samples, gti and esti are the ground truth and estimated value 
of the ith sample, respectively defined as: 

 (5.15) 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



119 
 

 (5.16) 

By using MAPE we can directly compare the performance of our measurement methodology 
among objects of different sizes. Following the methodology described in this section, we initially 
estimated the weights that have been used for the depth estimation procedure. To estimate the 
weights that were used to perform measurements in the simulated environment, we used images 

evaluation of the proposed methodology and were only exploited for the approximation of weights. 
The same weights were used for the measurement procedure using the natural image dataset and 
they were slightly adjusted for the case of the in-the-wild measurements. 

Two different experiments were performed in the simulated environment. In the first experiment, 
a series of measurements was conducted, utilizing a controlled experimental setup including a 
dataset that was constructed in the simulated environment, consisting of 5 cubic objects with sizes 
of 0.3, 0.5, 1.0, 2.0 and 3.0 meters. These objects were captured from different view angles and 
different distances. In detail, for each object, 30 images were captured from various distances in 
the interval of [1, 10] meters. For each distance, each object was placed in 4 different view angles 
with respect to the camera, i.e.,  

In the second experiment, the proposed methodology was evaluated through a Montel Carlo 
experimental setup where the size and position of the cubic objects has been randomly sampled 
for a total of 10,000 iterations. The sampling intervals regarding the position and size have been 
chosen so that the entire object could be visible within the frame of the image that was captured 
by the simulated camera object.  

The simulated camera object that was used in both experimental setups, was parameterized to 
approximate the Intel RealSense  D435 RGB sensor. The intrinsic parameters  
of the simulated camera were estimated by the simulation platform throughout the simulation. The 
camera was mounted on a human model, in the height of the face since most images are being 
captured while holding the camera in this way (Hoiem et al., 2008).  

The human model had a height of 1.75m and the camera was placed with zero tilt, and its X-Z 
plane defined by its X- and Z-axis be parallel to the ground plane. The bounding boxes of the 
objects to be measured, were extracted using the object recognition capabilities of Webots camera 
object. Using the object recognition module of Webots it was possible to know at any moment the 
relative distance of the object with respect to the camera, its position on the 3D environment and 
its position and dimensions on the image plane. An illustration of the simulated experimental setup 
is illustrated in Figure 5.2. 

The overall MAPE achieved on the controlled simulated dataset (SD), that was scored by the 

1.30% (Table 5.2). Additionally, we have evaluated our method with respect to the impact of the 
weighted depth approximation by performing measurements without the incorporation of the  
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Figure 5.2. Illustration of the virtual environment along with the simulated objects that were measured 

 

Figure 5.3. Visual representation of the experimental setup from which the natural image dataset derived 

weighted aggregation step. The non-
proving that the weighted aggregation step significantly improves the performance of the proposed 
method (Table 5.2). A detailed performance analysis is presented in Table 5.3 and Table 5.4 where 
the performance with respect to the object size (Table 5.3) and view angle (Table 5.4) is presented. 

Regarding the Monte Carlo experimental setup, the proposed methodology scored a MAPE of 
-

the weighted approach seems to be more consistent achieving a lower MAPE in a large-scale 
evaluation. 
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Table 5.2. Average MAPE on SD 

Methods 
Metrics 

MAPE (%) Std. (%) 
Weighted 3.41 1.30 

Non-Weighted 4.62 2.49 
SVM (Criminisi et al., 

2000) 
4.29 1.96 

Table 5.3. Average MAPE per object of SD 

Object Size 
(m) 

Methods 

Weighted Non-Weighted 
SVM (Criminisi et al., 
2000) 

MAPE Std. MAPE Std. MAPE Std. 
0.3 3.21 0.44 3.83 0.49 4.17 0.53 
0.5 4.15 0.53 5.40 0.59 5.70 0.55 
1 5.33 0.60 6.71 0.64 6.98 0.85 
2 1.95 0.15 4.62 4.99 2.09 0.19 
3 2.42 0.19 2.52 0.12 2.52 0.19 

Table 5.4. Average MAPE per view angle on SD 

View Angle 

Methods 

Weighted Non-Weighted 
SVM (Criminisi et al., 

2000) 
MAPE Std. MAPE Std. MAPE Std. 

0  3.05 1.07 3.69 1.68 3.78 1.69 
5  3.53 1.53 5.90 3.79 4.11 2.04 

15  3.45 1.47 4.39 2.13 4.47 2.21 
20  3.62 1.47 4.50 2.12 4.80 2.36 

For comparison, we also tested the performance of Single View Metrology (SVM) as described in 
(Criminisi et al., 2000). The results indicate that our method outperforms SVM, when applied both 
on the controlled and Monte Carlo experimental setups. The performance of SVM in the controlled 

indicate that the proposed methodology is more accurate for measuring objects using a single 
image while maintaining a more stable performance since the standard deviation (Std.) is 
significantly lower. The advantage of the proposed methodology over SVM, was also assessed by 
using the two paired t-test as statistically significant (p < 0.001 at a significance level of a = 0.05). 
Additionally, when the performance is analyzed in detail, as presented in Tables 2, 3, it can be 
observed, that both the weighted and non-weighted version of the proposed methodology are more 
versatile since their performance in terms of MAPE is more robust regardless the view angle and 
object size. 
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Table 5.5. Average MAPE per object on natural image dataset 

Objects 

Methods 

Weighted Non-Weighted 
SVM (Criminisi et al., 

2000) 
MAPE Std. MAPE Std. MAPE Std. 

1 2.90 1.76 3.81 2.71 3.79 2.85 
2 3.23 1.7 4.79 3.23 4.46 3.35 
3 3.18 1.98 4.98 3.2 4.66 3.3 
4 3.08 1.54 4.88 3.17 4.94 3.18 
5 2.57 1.37 5.38 2.54 5.39 2.41 
6 2.94 2.17 4.18 2.98 4.17 3.01 
7 4.14 3.56 4.59 1.71 4.25 1.83 
8 3.82 2.01 7.74 2.61 7.33 1.85 
9 2.33 1.77 6.27 2.33 5.67 3.31 

Average 3.13 0.51 5.18 1.19 4.96 1.10 

The dataset that was constructed with natural images (not simulated), consisted of 9 different 
parallelepipedal objects, with their side dimension ranging from 7.8 cm to 53 cm. The objects were 
captured from different distances and viewing angles with respect to the camera. Each different 
position was marked on a surface where both the objects and the camera were placed on throughout 
the experiment (Figure 5.3). The positions were measured using a measuring tape. All the objects 
were placed on the same positions and captured using the Intel RealSense  D435. The intrinsic 
parameters of the Intel RealSense  D435 RGB sensor are provided by the manufacturer.  
RealSense  D435 RGB sensor has a focal length of fpixels = (613.71, 613.79) and a principal point 
c  

During the experiment, the camera was mounted on a tripod, on a height of 12 cm. The camera 
was leveled so that its X-Z plane defined by its X- and Z-axis be approximately parallel to the 
ground plane. The bounding boxes were extracted by a human. In addition, to cross validated the 
distances between the camera and object according to the annotated marker on the surface, the 
distances also have been measured and logged using the Intel RealSense  D435 stereoscopic 
capabilities. The MAPE that was achieved on the natural image dataset, by the proposed 

Table 5.5). 
Measurements using both the proposed method without the weights and the SVM approach were 
performed. The non-
1.19%, providing more evidence that the weighted aggregation approach has a significant impact 
to the accuracy of the measurements. The 
The proposed method, with the weighted aggregation step had the highest measurement accuracy 
while achieving a small Std., indicating a more stable performance overall. A summary of the 
measurement results per object is presented in Table 5.5. 
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To further evaluate the performance and 
robustness of the proposed single image 
measurement methodology, we evaluated it 
by measuring objects illustrated in natural 
images captured in-the- 

wild. In detail we chose two well-known 
landmarks located in the Ancient Agora of 
Athens, Greece, namely the Stoa of Attalos 
and the Temple of Hephaestus illustrated in 
Figure 5.5 (a, b) and Figure 5.5 (c) 
respectively. The dimensions of these 
landmarks are widely known and 
documented. In addition, architectural 
plans of these monuments along with the 
respective scale of the plans  (Figure 5.4 (a, 
b)) are provided by the American School of 
Classical Studies in Athens (Classical 
Studies, n.d.). 

Regarding the Stoa of Attalos, the 
measurements that were performed were 
along the height of the monument. Two 
vertical linear segments were chosen to be 
measured, one spanning along the total 
height of the monument (s1) and one (s2) 
defining the height of the first floor. The 
height of the  

Stoa of Attalos is reported to be 11.42m (s1) (Bernard & Pike, 2015) which was used as ground 
truth. The size of (s2) was measured to be 6.97m by exploiting the scale provided in the respective 
plan of the monument (Figure 5.4 (a)). Additionally, s2 was measured from two different 
perspectives (Figure 5.5 (a, b) since the spatial layout of the broader area of the Stoa of Attalos 
was appropriate to capture the monument in that way while maintaining s2 in the image. Regarding 
the Temple of Hephaestus, we measured the linear segment depicted in Figure 5.5 (c) (s3). The 
real size of s3 was calculated to be 6.96m by using the respective plan of the temple, which 

s1, s2, s3 were measured along each 
column where both the column and each segment were clearly visible in the image. In detail, 
regarding the Stoa of Attalos, s1 was sampled along 10 different columns depicted in Figure 5.5 
(a), whereas s2 was sampled along 18 different columns from both Figure 5.5 (a, b). The segment 
s3 corresponding to Temple of Hephaestus, was sampled along 4 different collumns depicted in 
Figure 5.5 (c).    

 
(a) 

 
(b) 

Figure 5.4. Scaled plans of the monuments used in the 
evaluation process, marked with the linear segments s1, s2 
and s3. (a) Stoa of Attalos, (b) Temple of Hephaestus. 
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Table 5.6. Comparison of average measurements MAPE per segment on images captured in-the-wild

Segments

Methods

Weighted Non-Weighted
SVM (Criminisi et 

al., 2000)
RealSense

MAPE Std. MAPE Std. MAPE Std. MAPE Std.

s1 5.33 4.26 8.29 6.59 9.54 7.86 57.03 22.75

s2 4.15 3.03 4.59 3.77 4.43 3.64 36.28 33.59

s3 20.89 14.54 28.15 13.50 27.90 13.59 62.15 43.01

Average 8.63 10.28 11.41 12.45 11.57 12.50 47.93 34.33

The images that were used for the 
evaluation were captured using the Intel 
RealSense D435 stereo camera. The 
camera was held on a height of 1.90m by 
a user; however, the exact positioning of 
the camera was unknown, i.e., the 
degrees of roll and tilt. For the SVM 
method the horizon line was manually 
extracted. Furthermore, we included in 
the comparison, the measurement results 
using the depth maps provided by the 
Intel RealSense D435. 

The results of the in-the-wild evaluation 
are summarized in the Table 5.6. The 
proposed methodology achieved an 

which was the lowest amongst all. The 
weights that were used were estimated 
using the Webots simulation platform. 
The non-weighted approach achieved 
the second lower error, scoring a MAPE 

achieved by the SVM method, and the 
stereo (RealSense) approach were 

using the depth maps deriving from the RealSense camera, could be attributed to the long distance 
between the camera and the segments that were measured. D400 series depth cameras are 
documented to give the most precise depth data in short distances. This is due to the non-linear 

(a)

(b)

Figure 5.5.  Images illustrate the monuments that were 
measured marked with the linear segments s1, s2 and s3. (a, b) 
Stoa of Attalos (c) Temple of Hephaestus.
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scaling of  the  depth prediction error along the depth of the scene (Grunnet-Jepsen, Sweetser, & 
Woodfill, 2018).

5.2 In-Vivo Single Image Measurements 

6 Figure 5.6. Example 3D-to-2D point correspondences. (a) 3D representation of the grid with the points of set Q. (b) 
The projection P of Q on the image plane with respect to the selected points m1 and m2. (c) The linear segment d to 
be measured, defined by m1 and m2. The grey-level intensities of the points in P represent depth, i.e., points lying 
deeper appear with a higher intensity.

As a first step in the proposed methodology, two points of an object of interest, e.g., a lesion in the 
GI tract, are selected in an endoscopic image. These points define a linear segment to be measured. 
Then, a set Q of 3D points forming a grid is defined (Figure 5.6 (a)). The 3D point grid expands 
only on XZ plane as it is sufficient for efficient implementation of the proposed methodology. 
Assuming that the intrinsic parameters of the camera are known, all the 3D points of Q are 
projected on the 2D image plane based on the pinhole camera model to a set P of 2D points (Figure 
5.6 (b)). Thus, 3D-to-2D correspondences are obtained. For visualization purposes Figure 5.6 (b) 
represents the points of P with different grey-level intensities to indicate that they originate from 
points of Q obtained from different depths set Q. This visualization does not show all the points 
of Q as projected in P because the points are overlapping in the 2D space.

Also, the points in Figure 5.6 (b) are not uniformly distributed because of the conic field of view 
of the camera. As a next step, the selected points of the 2D image plane are matched with the 2D 

projections on this plane of the 3D points based on their Euclidean distances. A problem is that 
some points that are close to each other, on the image plane, may have different distances in the 
3D space. To tackle this problem, we introduce an additional step for the depth estimation. 
Therefore, when the depth value (z coordinate) of the corresponding 3D point is determined, it is 
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Figure 5.7. Graphical representation of the sets Q1 and Q2 with their respective 2D correspondences P1 and P2. (a) 3D 
representation of Q1 and Q2. (b) Example of sets P1 and P2 with respect to m1 and m2.

used to perform the size measurement by exploiting the geometric properties of the pinhole camera 
model.

Let us consider a user-defined linear segment d (Figure 5.6) on the object of interest to be measured 
given two 2D points m1 = (u1, v1)T, m2 = (u2, v2)T. To be able to measure the size of this 
linear segment, i.e., the distance between these two points in the 3D space, the intrinsic parameters 
of the camera are needed. Then we need to estimate the depth of these points and project them to 
the 3D space. The intrinsic parameters of the camera can be recovered by a calibration procedure 
(Zhengyou Zhang, 1999). Once the intrinsic parameters of the camera are recovered, namely the 
focal length fp = (fx, fy) in pixel units, the principal point c = (u0, v0) and the distortion correction 
parameters, we can artificially project any known 3D point, onto the 2D image plane. 

The generation of the 3D point cloud is similar to the one presented in section 5.1. Let Q be a set 
of 3D points q = (x, y, z)T, where x, y, z are coordinates in the XYZ cartesian coordinate system 
(Figure 5.6). The X and Y axes are along the width and the height of the GI tract while the Z-axis 
is along its depth. Each point q, in our 3D point set Q, satisfies the following conditions:

(5.17)
(5.18)
(5.19)

where a, b x and z coordinates, 
and sx, sy x and z of each 
3D point, and mod represents the modulo operation. Thus, set Q can be considered as a 3D point 
cloud on the XZ plane (Figure 5.6 (a)). Since set Q is defined, and the intrinsic parameters of the 
camera are known, any 3D point q Q, can be projected on the 2D image plane. Based on the 
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pinhole camera model, a projection of a 3D point q = (x, y, z)T to the 2D image plane can be 
described as follows : 

 (5.20) 

To create 3D-to-2D correspondences, we apply Eq. (5.20) on all the points of set Q. As a result, a 
new set of 2D points P where each point p , corresponds to a known 3D point q. To find the 
depth values of points m1 and m2, we perform a matching procedure among the 2D points of the 
set P with points m1 and m2. The matching is based on the Euclidean distance between the points 
of the set P and the selected points m1 and m2.  

From Eq. (5.20), it can be easily derived that the 3D points with the same x and z coordinates in 
the 3D space, will also have the same 2D pixel coordinate u in the 2D image space. By taking into 
account the conditions (5.17)-(5.19), and Eq. (5.20), all the 2D points of set P will have the same 
pixel coordinates v but different pixel coordinates u. Each point p of P that share similar or the 
same pixel coordinates u with points m1 and m2 may as well have the same or similar z values in 
the 3D space. To find these points p, that have similar pixel coordinates u with points m1 and m2, 
we calculate the Euclidean distances among them, and we choose a subset of these points p that 
have a Euclidean distance from m1 and m2, that is below a threshold t. This step results into two 
sets of points, P1 and P2 that can be formally expressed as follows: 

 (5.21) 
 (5.22) 

with  denoting the 2D Euclidean distance (norm). The value of threshold t controls the 
number of point matches between p and m1, m2. Larger values of t result in more point matches; 
however, the quality of the matches deteriorates. Smaller values of t result in higher quality 
matches, but it should not be too low, depending on the density of the grid, as it may result in no 
matches.  

All points of P1 and P2 respectively, are basically projections of known 3D points q in the 2D 
image plane; therefore, their corresponding x and z coordinates, are known. Some of these 
coordinates may be close or the same to those of m1 and m2. However, due to the nature of the 
projection, the points of P1 and P2, may have different depth values z even if they have similar 
pixel coordinates (u, v)T in the 2D image plane.  For this purpose, a depth approximation approach 
is considered for the refinement of the 2D to 3D correspondences. 

Let Q1 and Q2 be the sets of all 3D points that correspond to the 2D points of P1 and P2 respectively 
(Figure 5.7). The 3D projections of m1 and m2 from the image plane to the 3D space are assumed 
to be on the same depth, and thus, both m1 and m2 will share the same z value.  To estimate the z 
value of m1 and m2 using the corresponding sets Q1 and Q2, we introduce an intermediate machine 
learning assisted step by using a pre-trained Convolutional Neural Network (CNN) that have been  
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Figure 5.8. Example of a generated depth map Dm using a CNN [36]. (a) Endoscopic image used as input to the CNN. 
(b) The output of the CNN. (c) 3D representation of the endoscopic image using Dm for the representation of depth. 
 

previously proposed for depth map estimation from monocular RGB images (Alhashim & Wonka, 
2018). The CNN has an auto-encoder architecture, with skip connections. The encoder of the 
network is a DenseNet-169 (G. Huang et al., 2017). The decoder consists of bilinear 2 up-
sampling layers followed by two convolutional layers. Since ANNs are considered as function 
approximators, the proposed CNN model, using an encoder-decoder architecture can be formally 
expressed as follows: 

 (5.23) 
 (5.24) 

 (5.25) 

The encoder function is denoted with , and its purpose is to map the input data of space I which 
consists of all RGB images IRGB, to a latent space . Then, the decoder function, denoted as , has 

the task to predict the ground truth depth map  of space , that corresponds to the scene of 
IRGB, using an instance of latent space . Both the encoder and decoder networks are trained to 
minimize Eq. (5.25).     
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For the needs of this methodology, the CNN receives as input an RGB endoscopic image and 
generates a normalized depth map Dm expressing the relative distance of the object to be measured, 
from the camera. An example is illustrated in Figure 5.8. The output of the CNN is relative and 
approximate; therefore, it cannot be considered directly for absolute depth estimation. It is 
considered only as a tool for the selection of appropriate points from sets Q1 and Q2, which include 
3D points more accurately estimated by the calibration procedure described above.  

To select points from sets Q1 and Q2 that correspond to m1 and m2, the values of Dm are quantized 
into three levels that intuitively express short, medium and long distances from the camera (without 
quantizing Dm values result in inferior performance as it can be confirmed by the results presented 
below). If an object to be measured in the RGB image belongs to a region of short, medium or long 
distance, the minimum, mean or maximum z value from both the sets Q1 and Q2, respectively, is 
selected as the most appropriate depth value of m1 and m2 points. 

Experiments and Results 

For the experimental evaluation of this methodology an experimental workbench was used. That 
experimental setup aims at mimicking a colonoscopic scenario through controlled and repeatable 
instrumentations. A conventional endoscope was manually navigated into a rigid colonic phantom, 
reconstructed from a real colon computed tomography (CT), selected from the Cancer Imaging 
Archive dataset (Prior et al., 2017). Due to the use of non-deformable material for the physical 
realization of the phantom, i.e., ABS polymer, the diameter and curvature angles of the 
reconstructed colon have been slightly scaled-up to ensure the progress of the colonoscope along 
the entire path of the phantom. Several colored targets were installed and fixed in calibrated 
positions, internally along the colonic tract. The targets aim at reproducing landmarks, 
characterized by different shapes and sizes: parallelepiped-shaped (6.36 mm  6.36 mm  4.5 
mm), hemisphere-shaped (4.5 mm and 1 mm). An electromagnetic tracking system (EMTS), 
positioned under the colonic phantom, was used to track both the position of the endoscope and of 
the rigid phantom with two independent sensors, inserted and fixed at the tip of the operating 
channel and attached to the colonic phantom, respectively. 

The evaluation of the proposed methodology was achieved by performing size measurements, with 
respect to the length of the target object to be measured. The measurements were performed on all 
the available targets, i.e., 12 hemispherical objects with a diameter of 4.5mm and 1mm, and 6 
parallelepipedal with a square base of 6.36mm, from various distances and perspectives, in 218 
different video frames. To define the linear segments on the objects, an endoscopist annotated the 
points on the images, as done in clinical practice. For the estimation of the intrinsic parameters of 

(Zhengyou Zhang, 1999) calibration methodology, as 
implemented by Bouget (Bouguet, 2004), which includes pre-processing for lens distortion 
correction. For the calibration process, we used 40 images of a checkerboard pattern. The focal 
length was estimated to be fp = (402.36, 435.59) and the principal point c = (359.11, 263.22).  
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Table 5.7. Comparative results of measurements on hemispherical objects (in mm) obtained using the proposed and 
the EMTS methods. 

Relative Distance 
Proposed 

3-level Dm 
Proposed 
Full Dm 

EMTS 

Short     

Medium    

Long    

Average    

Table 5.8. Comparative results of measurements on paral. objects (in mm) obtained suing the proposed and the EMTS 
methods. 

Relative Distance 
Proposed 

3-level Dm 
Proposed 
Full Dm 

EMTS 

Short     

Medium    

Long    

Average    

Table 5.9. Comparative results of measurements on 1mm objects (in mm) obtained suing the proposed and the EMTS 
methods. 

Relative Distance 
Proposed 

3-level Dm 
Proposed 
Full Dm 

EMTS 

Short      

By following the methodology, described in above, we measured the length of the selected objects. 
The performance of our method was measured by the Mean Absolute Error (MAE) between the 
estimated and the actual size of the measured objects. From the 6 hemispherical objects appearing 
in the dataset, 2 were identified as in short, 1 as in medium and 3 as in long distance from the 
camera. From the 6 parallelepipedal objects appearing in the dataset, 2 were identified as in short, 
2 as in medium and 2 as in long distance from the camera. Regarding the 1mm-hemispherical 
objects, they were all identified in short distances from the camera, since they were not clearly 
visible from longer distances.  

The average MAE achieved on the 4.5mm-hemispherical objects and on the parallelepipedal 
objects, using depth maps quantized in short, medium and long distance, was 0.98mm  0.66mm 
and 2.05mm  1.10mm respectively. The average MAE obtained with the same method on the 
1mm-hemispherical objects was 0.28mm . The results per distance are presented in 
Table 5.7-Table 5.9. In comparison we also provide the results of the proposed methodology using 
the full range of the depth values in Dm instead of using the 3-level quantized Dm. The results 
validate that the MAE in the latter case is larger, in detail, 2.36mm -

for the 1mm-hemispherical objects.   

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



131

Another comparison was performed using the measurements of the targets using the z depth values 
from the object to the camera, provided by the EMTS. Using the EMTS z values for the 
measurement of the 4.5mm- hemispherical, the parallelepipedal and the 1mm-hemispherical 
objects, the average MAE was 2.89mm 2.34mm, 2.80mm and 0.21mm 
respectively. It is worth noting that the error using the EMTS method is higher than the one 
obtained by the proposed methodology with an exception to the measurements of the 1mm objects 
where it achieves better results. This is reasonable since all of these objects were captured in short 
distances and the EMTS performs better for short distances, as it can be observed in Table 5.7-
Table 5.8.

An indication of the accuracy of the proposed size measurement approach can be obtained by 
following the significance level criteria proposed in (Schoen, Gerber, & Margulies, 1997). In that 
study a measurement is considered inaccurate when the MAE is greater than 3mm. As it can be 
seen in Figure 5.9, the majority of our measurements are below the 3mm threshold. In Fig. 6, the 
solid black line, indicates the respective MAE among all measurements. The dashed line represents 
the 3mm error significance threshold.

5.3 Discussion and Future Work

In section 5.1, a novel, single image, uncertainty-aware measurement methodology is proposed. 
The proposed method is based on the establishment 3D-to-2D correspondences by projecting 
virtual 3D points to the 2D image plane. These correspondences are exploited to perform 
measurements on an image, in metric units, without the need of an image sequence, or any depth 
estimation CNN or any sensor-based framework. Therefore, it can be considered as a solution for 
VMs with low-cost camera-enabled devices, such as conventional smartphones, robotic systems, 

Figure 5.9. Size measurement MAE per measured object.
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unmanned vehicles, and assistive systems, which promises impactful applications(Oh & Han, 
2021; Yan, He, Basiri, & Hancock, 2019). 

Regarding the performance of the proposed (weighted) methodology, it outperforms its non-
weighted counterpart and SVM (Criminisi et al., 2000). A detailed comparison between the 
proposed and other methods was presented in Table 5.2-Table 5.5. The comparative results were 
conducted by using a dataset consisted of synthetic images and natural images depicting objects 
of various dimensions. Furthermore, we evaluated and compared the performance of the proposed 
method on images illustrating monuments of known dimensions in-the-wild. The proposed method 
outperformed all other methods including a stereo approach using the Intel RealSense  D435 
camera (Table 5.6). 

The proposed method considers the uncertainty factor of the initial depth estimation step. Probable 
depths are considered near the initial depth value which are aggregated using a trainable step 
providing a more accurate depth estimate. A limitation of the proposed methodology relied to the 
generation of  virtual 3D point set Q. The generation of Q is constrained by the parameters a, b 
that introduce additional complexity in comparison to SVM. However, these parameters can be 
easily determined in a simulated environment as demonstrated in the experiments and results of 
section 5.1. The results provided by the proposed methodology on datasets consisting of synthetic 
and natural images were consistent by utilizing the parameters initialized in the simulated 
environment. Furthermore, in contrast to SVM that is only capable of height estimation, the 
proposed method, estimates the depth of an object which enables its measurement along all 
dimensions. In contrast to SVM, the proposed method does not require any information regarding 
the horizon line; hence it is more versatile to changes in the positioning of the camera and in 
environments where the horizon line detection process can fail. Moreover, the depth estimation 
approach, is far less complex and computationally intensive in comparison to deep learning 
models. The depth information provided by our method, can be exploited to various applications, 
such as obstacle detection and risk assessment with respect to its distance, viewing angle and size  
eliminating the need for additional specialized sensors, such as stereo camera rigs that are usually 
employed in such cases as it was described in section 5.1. 

In section 5.2, we investigated a methodology for in-vivo visual measurement of objects, e.g., 
lesions, in endoscopic images. Previous relevant methodologies are mainly based on the use of 
reference objects, or on the use of multiple consecutive video frames of the objects in order to 
perform measurements (Dimitris K Iakovidis et al., 2019). Unlike these methodologies, the 
proposed one requires only a single image of the object of interest. Also, the evaluation of the 
proposed methodology was performed using a more realistic experimental setup, using a 3D 
printed colonic phantom and freely moving camera. The most relevant previous approaches 
(George Dimas, Iakovidis, Karargyris, Ciuti, & Anastasios, 2017; George Dimas, Spyrou, 
Iakovidis, & Koulaouzidis, 2017b; Dimitris K Iakovidis et al., 2019) are based on straight 
(unfolded) bowel phantoms with 1-DoF camera motion. 
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The hemispherical objects used as measurement targets were constructed in such way to represent 
sessile polyps (Arebi et al., 2007). Polyps of this type are elevated from the adjacent mucosa 
without a clear stalk (Paris Workshop, 2003). Other types of polyps include pedunculated, 
hyperplasia, and inflammatory with different geometrical structures. However, instead of trying to 
model all the different types of polyps, which can be a complicated task considering their diversity, 
we have included the parallelepipedal shapes to demonstrate the capability of the proposed 
methodology to measure objects of different shapes. The application of the proposed methodology 
for the measurement of diverse specimens, can be performed in the context of a medical study 
validating the results of the research presented in section 5.2.  

The MAE of the most recent relevant methodology (Dimitris K Iakovidis et al., 2019), was 
e circular pins of 

0.95mm diameter. These pins were attached on a 30cm straight small bowel phantom, and the 
measurements were performed using a wireless capsule endoscope. By applying the proposed 

 0.10mm, which is marginally 
lower. It is worth noting that this result was achieved using only a single image, whereas the 
methodology presented in (Dimitris K Iakovidis et al., 2019), requires multiple images to perform 
the size measurements. Also, the EMTS approach resulted in a MAE among all measurements of 
1.96mm mm which is significantly larger than the respective MAE of our method which is 
1.10mm . Besides the performance of the EMTS, it requires equipment that would 
hardly be used during an actual WCE examination.  

An intermediate step of the proposed methodology uses a CNN that predicts the relative distance 
from the camera given a monocular RGB image. However, this CNN is pretrained on non-
endoscopic data; therefore, the quality and accuracy of the depth map may not be optimal. To cope 
with this issue a rough, intuitive, approximation distance is considered, in terms of short, medium, 
and long semantic descriptors. 

Overall, a significant advantage of the proposed method is that it requires only one image for 
accurate size-measurement of an object, whereas other methods require multiple images (Dimitris 
K Iakovidis et al., 2019), reference objects (Kume, Watanabe, Yoshikawa, & Harada, 2014)(Kaz, 

, lasers and structured light (Goldstein, Segol, Gross, Jacob, & 
Siersema, 2017)(Visentini-Scarzanella et al., 2018). Disadvantages of the proposed method 
include its dependency on the density of the point grid, which is manually defined by the 
parameters sx and sz, and its dependency on the quality of the depth map estimation.  

Perspectives for future research include automated approaches for the estimation of parameters sx 

and sz, and methods for more accurate depth estimation method, which could further improve the 
performance of the proposed method. However, this would require the construction of a training 
set of endoscopic images with ground truth depth maps. Such depth maps could be obtained with 
special setups, e.g., stereoscopic imaging. As it was noted by (Oka et al., 2014), the accuracy of 
the measurements may be affected by the orientation of the camera towards the target object. In 
this study, we have not taken into consideration the angle of view towards the objects to be 
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measured. This could be another source of uncertainty, which we intend to investigate in a future 
study, with an enhanced experimental setup enabling the assessment of the angle of view. Other 
future improvements of the proposed approach may include considerations of other uncertainty 
factors, such as the determination of the points selected by the physician.  

It is worth noting that in an extensive review study performed by (Dimitris K Iakovidis & 
Koulaouzidis, 2015), indicates that the topic of endoscopic size measurements has not been 
sufficiently investigated, although it can be significant for malignancy assessment. The proposed 
methodology contributes towards filling the gap of performing in-vivo measurements based on 
computer vision, without the use of any external reference.  

The proposed methodology is valuable in a variety of applications well beyond GI endoscopy. It 
is applicable on any endoscopic imaging modality either in the medical domain, e.g., laparoscopy, 
colposcopy, etc., or in other domains, e.g., pipe inspection, and it can be extended to cover also 
non-endoscopic visual size measurements.  

As a future work we intend to further improve both methodologies mainly with respect to their 
parametrization and its dependence on the height knowledge. The parametrization can be 
automated according to the camera parameters and the scale of the objects that are needed to be 
measured. 
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6 Chapter 6 
Deep Learning in 3D Modeling 
Another interesting subject is the investigation of the capacity of a DL model to perceive and 
represent complex 3D structures. In the last few decades, three-dimensional (3D) models of 
complex tissues, such as human organs, have been developed for a wide range of applications in 
the medical and biomedical engineering fields. Using such 3D models, the function of an organ 
under different normal or pathological conditions can be simulated using in silico models referred 
to as digital twins (P. G. Kalozoumis, Marino, Carniel, & Iakovidis, 2022). To enhance both 
product efficacy and patient safety, biomedical products, such as medical devices, are extensively 
tested prior to commercialization, usually with extensive animal and human studies. In silico 
clinical trials (ISCT) can provide solutions to these issues by partially replacing or complementing 
clinical trials for testing medical devices and drugs. Nevertheless, the accuracy of the simulation 
outcome depends highly on the fidelity of the 3D model characteristics. A mesh representation of 
the geometric structure of a target object is usually extracted from one or more images of that 
object, e.g., magnetic resonance (MR) or computed tomography (CT) images. However, the 
resolution of the acquired images may be insufficient, resulting in coarse 3D models with low 
geometric accuracy, which can compromise the simulated outcome.  

Implicit representations have exhibited a capability to express shapes in the form of continuous 
functions with the use of artificial neural networks (ANNs) (Z. Chen & Zhang, 2019; Chibane, 
Pons-Moll, & others, 2020; Mescheder, Oechsle, Niemeyer, Nowozin, & Geiger, 2019; Park, 
Florence, Straub, Newcombe, & Lovegrove, 2019) or convolutional neural networks (CNNs) (S. 
Peng, Niemeyer, Mescheder, Pollefeys, & Geiger, 2020). These networks, known as implicit 
neural representations (INRs), are tasked to approximate implicit functions based on raw data, 
point clouds (PCs), or latent codes with or without supervision (Mescheder et al., 2019; Park et 
al., 2019; Sitzmann, Martel, Bergman, Lindell, & Wetzstein, 2020). Signed distance functions 
(SDFs) have been recently utilized in INRs to infer different geometries (Chabra et al., 2020; Ma, 
Han, Liu, & Zwicker, 2020; Park et al., 2019; Sitzmann et al., 2020). However, many of these 
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approaches require 3D supervision and cannot solely use raw PC data. This problem has been 
tackled by using the Eikonal equation to approximate SDFs (Gropp, Yariv, Haim, Atzmon, & 
Lipman, 2020; Sitzmann et al., 2020). 

Regarding methods related to the 3D reconstruction of complex human tissue structures, early 
approaches have focused on conventional methods such as structure from motion (Hu, Penney, 
Edwards, Figl, & Hawkes, 2007). More recently, generative models for 3D organ shape 
reconstruction have been proposed using autoencoder architectures (Balashova et al., 2019; Z. 
Wang et al., 2020). The related research has produced promising results; however, it has mainly 
focused on learning-based models requiring 3D supervision and computationally demanding 
neural network architectures. On the other hand, INR approaches have been applied only on high-
resolution image reconstruction (Reed et al., 2021; Wu et al., 2021). 

In section 6.1, we leverage the capacity of multilayer perceptrons (MLPs) to learn continuous INRs 
for the reconstruction of high-quality 3D models of the gastrointestinal (GI) tract from initially 
coarse representations of these models. More specifically, an MLP-based INR is proposed, where 
the neural network has a novel activation function, called hereinafter WaveShaping (WS). The WS 
function improves the performance of recently-proposed periodic activation functions that have 
been used in the Sinusoidal Representation Networks (SIREN) (Sitzmann et al., 2020). Moreover, 
the form of its first derivative benefits the training process, enabling the network to provide better 
reconstruction results during inference. Thus, coarse 3D models of the GI tract can be properly 
restored to be used in simulation configurations. To the best of our knowledge this is the first time 
that INRs have been used to reconstruct 3D models of the GI tract from coarse 3D representations. 
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6.1 3D Reconstruction Using Implicit Neural Representations 
 

 

Figure 6.1. Overview of the INR approach for 3D model refinement and restoration. 

 The proposed methodology aims at reconstructing 3D coarsely retrieved models of the GI tract 
by employing an MLP network tasked to learn an implicit continuous representation of that model 
(Figure 6.1). The proposed methodology does not require training on large datasets since it focuses 
on a single 3D model. The MLP network, utilizes the proposed WS activation function to learn an 
SDF (Osher & Fedkiw, 2003), which describes efficiently the 3D model that it aims to reconstruct. 
The MLP receives as input a point u = (x, y, z)T of a 3D model, and it outputs a value approximating 
the respective SDF response. That value describes the distance of a point from the surface of the 
3D model. After the training process, the model is capable of reconstructing the 3D model, which 
was initially coarse, at a higher resolution by predicting through inference if a point in the defined 
3D space belongs to the surface of the model, i.e., its distance from the surface is 0. 

Let us consider p = (x, y, z)T , x, y, z  (-1, 1) as a point of a normalized PC P, with 3D points lying 
on the surface of a modeled object. This surface is described by an SDF iso-surface s s 3

(Osher & Fedkiw, 2003), which encodes the surface of the 3D model as the signed distance of a 
point p 
denoted by a positive and negative distance d, respectively. A response d = 0 denotes a surface 
point p of the 3D model. An SDF that describes a particular 3D model can be approximated by a 
neural network. Therefore, a 3D model is implicitly represented by the weights of the MLP. 
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An SDF describing a 3D model of the GI tract can be approximated by an appropriately trained 
MLP g  ) parametrized by . The MLP g  ) should learn how the SDF responds for different 
points p that are on and off the surface of the model. Thus, the training dataset should be arranged 
to contain the points p of the PC P that lie on the surface of the model and random normalized 
samples of points q = (x , y, z) that reside on the rest of the domain. These points p can be sampled 
from a random uniform distribution consisting of x, y, and z coordinates, within the range of                   
[-1, 1]. Each training batch N is composed of the points p and q with N/2 points each.   

In our approach the loss function proposed in (Sitzmann et al., 2020) was used to train  MLP g
; ). Once g is trained it can be used to reconstruct an initially coarse model of the GI tract at higher 
resolutions. Let us consider a cubic normalized PC K with a density n3

 and points k = (x, y, z)T, x, 
y, z  [-1, 1]. By inferring SDF values  using g, the coarse model that was used for training 
can be reconstructed with higher detail by examining the responses of the network. Zero and non-
zero responses denote that a point k resides on and off the model surface, respectively. For the 
reconstruction of the mesh only the points k that provide zero responses are considered. In this 
way, coarse models can be reconstructed at different resolutions. This process is feasible if K is 
composed of points originating from the same distribution as the training samples p and q. 
Nevertheless, a raw PC containing only the coordinates of the vertices is insufficient to generate a  

3D mesh. Thus, the marching cubes algorithm is 
employed for the 3D mesh generation from the 
predicted PC (Lewiner, Lopes, Vieira, & Tavares, 
2003). 

Recently, the utilization of the sinusoidal (sin) 
function for enhancing the performance of INRs has 
been proposed in (Sitzmann et al., 2020). The 
incorporation of the sin function to the neurons of an 
MLP has substantially improved its representation 
among different applications in the context of INR. 
The proposed approach introduces the WS function 
is aiming at further improving the implicit 
representation capacity of MLP regarding 3D 
models of the GI tract. The implementation of the 
proposed WS is achieved by applying the tanh 

- sin function. The 
tanh function is chosen since it is widely used as a 
wave-shaper in various applications in the context of 
signal processing (Huovilainen, 2004; Lazzarini & 
Timoney, 2010; Pakarinen & Yeh, 2009). The 
proposed WS activation function and its derivative 
are: 

 
(a) 

 
(b) 

Figure 6.2. Graphical representation of the 
proposed WS and sin functions. (a) Responses 
and (b) derivatives of the WS and sin functions. 
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 (6.1) 

 (6.2) 

where    is a learnable parameter of WS in contrast to (Sitzmann et al., 2020), where it is 
applied manually as a constant throughout the training and inference processes. Eq. (6.2) describes 
the first derivative of the WS function. As it can be seen in Figure 6.2 (a), for  = 1, the WS 
function can be regarded as a scaled approximation of sin. This means that WS maintains the 
properties of sin, i.e., phase, periodicity, and it has upper and lower bounds. Nevertheless, it can 
be observed that the derivation of the WS function produces a more complex expression (Figure 
6.2 (b)). Thus, it is expected that, during the training process, WS will produce a different 
computation of gradients compared to sin. In the following section, it will be demonstrated that 
the gradients computed during the training of an MLP that utilizes the WS function enable the 
network to efficiently reconstruct 3D models of the GI tract given only a small number of surface 
points. 

Experiments and Results 

 
(a) 

 
(b) 

Figure 6.3. High-resolution 3D GI tract models. (a) Large intestine; (b) Small intestine. 

 To assess the reconstruction capacity of our methodology, a set of 5 different high-resolution 3D 
models of the large and small intestine was used (Clark et al., 2013). An example of these high-
resolution models is illustrated in Figure 6.3. All model operations that were necessary for the 
evaluation process were performed in MeshLab v2021.10 (Cignoni et al., 2008). In detail, each 
model was represented by a dense PC that was automatically subsampled by Poisson disk sampling 
to generate sparse PCs of 0.5%, 1%, 5%, 10%, 20%, and 40% the original PC density. The models 
of each subsampling threshold, e.g., the models comprising 0.5% of the points of the original high-
resolution model, had the same ratio of points per unit area. The sub-sampling process was 
performed to simulate 3D models of the GI tract with a coarse 3D representation. This resulted in 
30 different 3D PCs with various densities. 

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



140 
 

Train 
Input 

    

Proposed 

    

SIREN 

    

Baseline 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.4. Qualitative comparison of the reconstruction outcome for a representative large intestine model 
reconstructed from PCs with various initial densities: (a) 0.5%; (b) 1%; (c) 5%; (d) 10%. 

Table 6.1. Quantitative evaluation of the proposed WS activation function against other functions based on the CD 
and EMD metrics for different PC densities. 

PC Density (%) 

Methodologies 

Proposed SIREN Baseline (ReLU) 

CD EMD CD EMD CD EMD 
0.5 2.128 0.776 3.523 1.427 33.176 15.857 
1 1.622 0.784 2.026 0.804 10.550 9.660 
5 1.157 0.443 1.248 0.515 26.136 12.008 
10 1.038 0.323 1.089 0.362 8.235 6.057 
20 1.068 0.312 1.065 0.344 39.468 25.686 
40 0.953 0.378 0.963 0.318 20.065 16.058 

In all the experiments, the architecture of the neural network comprised 4 hidden layers, with 256 
neurons each, utilizing the proposed WS activation function and a linear output layer. This type of 
MLP architecture has been widely used in related  works (Ben-Shabat, Koneputugodage, & Gould, 
2022; Sitzmann et al., 2020). All models that were used in the evaluation process were trained with  
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the same number of epochs, batch size, and 
initialization parameters. The optimizer that was used 
to update the weights of the models was Adam, with 
an initial learning rate of 10-4. Additionally, the 
reconstruction was performed at a resolution of 2563. 
The experiments were conducted using a computer 
system equipped with an AMD Ryzen 5 3400G 
3.70GHz processor, 16.00 GB RAM and the NVIDIA 
2060 Super GPU. 

The evaluation of the proposed method was performed 
with respect to the reconstruction accuracy of the 
high-resolution models given their coarse 
representations using the Chamfer Distance (CD) and 

(Levina & 
Bickel, 2001). Given two different PCs, CD is used to 
evaluate the distances between their closest points. 
EMD is used for the comparison of two different data 
distributions and is approximated by the 1st 

Wasserstein Distance. Both CD and EMD are well-
recognized metrics widely used to evaluate the 
performance of 3D reconstruction methods 
(Achlioptas, Diamanti, Mitliagkas, & Guibas, 2018; 
Z. Deng, Yao, Deng, & Zhang, 2021). These metrics 
are used to evaluate the similarity of two PCs in terms 
of the distance between their points. For comparison, 

SIREN (Sitzmann et al., 2020) was incorporated in the evaluation. In addition, an  

MLP with the aforementioned architecture, equipped with the Rectified Linear Unit (ReLU) 
(Agarap, 2018) was used as a baseline network in the comparative study.  

Figure 6.4 presents a qualitative comparison among the results obtained by the different 
methodologies. As it can be observed, the use of the WS function improves substantially the 
refinement capacity of the MLP when the PC is highly sparse (Figure 6.4 (a, b, c)). However, as 
the PC of the model becomes denser (Figure 6.4 (d)), i.e., more detailed, the results produced by 
the proposed methodology become comparable to (Sitzmann et al., 2020). In Figure 6.4 (a, b) it 
can be noticed that artifacts and distortions (e.g., holes) are present in the model generated by 
SIREN. On the other hand, the proposed methodology utilizing the WS achieves a more detailed 
reconstruction with less noticeable distortions. Overall, the SIREN produces less detailed models 
compared to the WS-based method given highly-sparce PCs (Figure 6.4 (a, b)). Figure 6.4 (c, d) 
show that the baseline model can reconstruct the shape of the target 3D geometry, but the quality 
is worse compared to the other two methods. Table 6.1 summarizes the quantitative results  

 
(a) 

 
(b) 

Figure 6.5. Graphs of the training and 
reconstruction time as a function of the PC 
density for the different methods. (a) Training 
time; (b) Reconstruction time. 
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obtained from the comparative evaluation in terms of CD and EMD. The best results, which are 
obtained for lower CD and EMD values, are indicated in boldface typesetting. Overall, the 
quantitative results confirm the qualitative observations. It can be noticed that the proposed 
methodology results in a notably better performance with only 1% and 5% points of the original 
PC. As the PCs become denser, the proposed methodology produces comparable results with 
SIREN. 

Figure 6.5 presents two graphs illustrating the training and reconstruction times required by each 
methodology to converge and generate meshes, respectively. Although the proposed methodology 
involves more complex computations (for the estimation of Eqs. (6.1) and (6.2)), the time it 
requires to be fully trained and reconstruct high-resolution meshes is of the order of the other 
approaches. Therefore, it has high-quality 3D reconstruction capabilities in a time-efficient 
manner. 

6.2 Discussion and Future Work 
In this section the use of INRs along with a novel periodic parametric activation function for the 
purpose of reconstructing coarse 3D models of the GI tract has been investigated. This approach 
examines the ability of a neural network to perceive and represent a data structure. After the 
training, a neural network is a continuous representation of that data structure and can be used to 
interpolate data points with high accuracy. To the best of our knowledge, this is the first time that 
INRs are exploited for the reconstruction of complex tissue models, such as the large and small 
intestine. The proposed method is based on a 5-layer MLP combined with a novel neural activation 
function. The effect of the proposed WS activation function was compared with state-of-the-art 
methodologies. The evaluation study suggests that the WS function can produce better results, 
both qualitatively and quantitatively, when evaluated in the context of 3D reconstruction of 3D 
models of the GI tract. More importantly, the WS function results in 3D models with significantly 
higher quality with only a few point observations. In addition, the parametrization of WS alleviates 
the need for its manual adjustment when the target model changes. 

The proposed 3D reconstruction methodology can be regarded as unsupervised since it is trained 
directly on a PC of a coarse 3D model of the GI tract without the need for a huge dataset of other 
models and any labeled data. It can be used for the patient-specific reconstruction of various parts 
of the GI tract that can be incorporated in simulations or digital twins to assess critical clinical 
conditions, abnormality detection processes in the 3D domain, and pre-operative procedures.  

Given the fact that periodic functions seem to have a positive effect on INRs, future work should 
focus on exploring other periodic activation functions and how different types of parameterizations 
affect the performance of the network. Moreover, the application of the WS activation function for 
the reconstruction of 3D models in different contexts or fields can be considered as a direction for 
future research. 
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7 Chapter 7 
Perceptually Interpretable Convolutional Neural 
Networks 
The discriminative power and remarkable performance of Convolutional Neural Networks (CNNs) 
on image classification comes along with a demand for consistent and meaningful interpretations 
that explain their decisions. The need for interpretation becomes more crucial with the application 
of CNN classifiers in high-stake domains, such as medicine (Diamantis, Iakovidis, & 
Koulaouzidis, 2019; Dimitris K Iakovidis, Georgakopoulos, et al., 2018) and autonomous driving 
(Kim & Canny, 2017; Y.-C. Liu et al., 2020). The interpretation of the inference process could 
earn the trust of the user by stripping away some of the opaqueness characterizing these black-box 
models (Castelvecchi, 2016). 

A variety of different methods have been proposed to tackle the interpretation problem post-hoc. 
These include methods that construct proxy models with similar behavior to the original model 
aiming at extracting influential regions around a prediction (Ribeiro et al., 2016) or providing 
global behavioral explanations (Covert, Lundberg, & Lee, 2020). Another set of post-hoc 
techniques utilize the gradient that is backpropagated from the output prediction back to the input 
layer. These approaches construct saliency maps highlighting areas on the image that the network 
finds important (Qin et al., 2019; Selvaraju et al., 2016; Shrikumar, Greenside, & Kundaje, 2017; 

Khosla, Lapedriza, Oliva, & Torralba, 2016). In general, post-hoc methods aim at interpreting the 
inference procedures of a deep learning algorithm after its development, while it has been 
documented that they could be unreliable in several cases (Rudin, 2019).  

Approaching the problem from a different perspective, some methods aim towards the embedment 
of the interpretation mechanism into the design of deep learning models. Such methods are 
described as inherently interpretable and include decision trees, lists, sets, etc. (Lakkaraju et al., 
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2016; Quinlan, 2014; R. L. Rivest, 1987). The structure of an inherently interpretable model is 
usually simpler; thus, its performance may be inferior to that of a more complex design that is 
interpreted post hoc. These approaches include feature disentanglement (Liang et al., 2020) and 
network dissection, which are aiming at quantifying the alignment of hidden variable-concept pairs 
(Bau et al., 2017) CNN models with feature guiding and self-attention mechanisms embedded in 
their architecture can also be regarded as inherently interpretable (Y.-C. Liu et al., 2020; Q. Zhang, 
Wu, & Zhu, 2018). These mechanisms enable the derivation of interpretations by visualizing 
saliency maps and CNN features that highlight important regions and concepts on the input image 
that guide a classification prediction (R. Chen et al., 2019).  

Recently, inherently interpretable models that leverage the intelligibility and expressiveness of 
Generalized Additive Models (GAMs) have been proposed in the literature (Hastie & Tibshirani, 
1990). These models use an architecture based on an ensemble of Multilayer Perceptrons (MLPs) 
(Agarwal, Frosst, Zhang, Caruana, & Hinton, 2020; Z. Yang, Zhang, & Sudjianto, 2020) to provide 
an interpretable outcome according to the contribution of each input feature to the ensemble 
consensus. CAM as a novel framework, extends the concept of the recently proposed MLP-based 
GAMs, for the interpretation of CNN-based image classification tasks of multi-class problems.    

Considering the above, in the following section, a novel framework for constructing interpretable 
CNN models aiming at tackling computer vision tasks, named E Pluribus Unum Convolutional 
Neural Networks (EPU-CNN), is presented. EPU-CNN introduces a new direction towards 
interpretable CNN model design, leveraging the properties of additive models. The architecture of 
an EPU-CNN model consists of an ensemble of CNN subnetworks. Each sub-network receives a 
different representation of the input image, which expresses a perceptual feature of that image. A 
feature is considered perceptual if it can be easily perceived and interpreted by humans. For 
example, perceptual features include phenomenal representations, such as hue in HSV color space, 
and opponent representations, such as the component a (green-red color balance) of CIE-Lab 
(Wyszecki & Stiles, 2000). EPU-CNN predictions are the result of a discretized decision-making 
process performed by its CNN subnetworks. Other ensemble-based architectures are usually 
propagating the output of the subnetworks to fully connected modules, which obscures the 
contribution of each subnetwork to the final outcome (Y. Chen et al., 2019). On the contrary, the 
proposed aggregation is a linear process which, combined with the perceptual inputs, enables the 
direct interpretation of the classification procedure. Each subnetwork decides a classification 
outcome based on the perceptual feature that it receives as input. These decisions express the 
degree of similarity of an image to a particular class with respect to different perceptual features. 
EPU-CNN is easily scalable, since it consists of a number of sub-networks that can be adapted 
according to the needs of different applications. 
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7.1 Perceptually Interpretable CNN Model 
The need for perceptual interpretation of image classification has motivated the development of a 
novel framework for the construction of inherently interpretable CNN models for computer vision 
tasks that is presented in this section. The proposed framework is called E Pluribus Unum 
Interpretable CNN (EPU-CNN), which means "out of many, one" interpretable CNN in Latin. The 
proposed framework has the significant advantage of being generic, in the sense that it can be used 
to make conventional CNN models interpretable. Following the GAM approach, an EPU-CNN 
model can be built as an ensemble of base CNN sub-networks given a base CNN architecture. 
According to EPU-CNN framework, each sub-network of the model must receive a set of 
complementary perceptual feature representations of the same input image. As a result, EPU-CNN 
is scalable since it can support an arbitrary number of parallel sub-networks corresponding to 
different perceptual features. The sub-networks are jointly trained and work together to generate 
interpretable class predictions automatically. An EPU-CNN model associates perceptual features 
with salient regions computed by the various sub-networks, and it explains a classification result 
by indicating the relative contribution of each feature to a predicted outcome.  

To the best of our knowledge, EPU-CNN is the first GAM-based framework for building 
interpretable CNN ensembles, regardless of the base CNN architecture or application domain. 
Unlike current ensembles, EPU-CNN models enable interpretable classification based on both 
perceptual features and their spatial expression within an image; thus, the classification results can 
be interpreted more thoroughly and intuitively. It is worth noting that assembling shallower CNN 
architectures can be more efficient than training a single large model. (Kondratyuk, Tan, Brown, 
& Gong, 2020). Furthermore, unlike previous interpretable CNN models (Q. Zhang et al., 2018, 
2019), the classification performance of EPU-CNN models is comparable to or higher than that of 
their non-interpretable counterpart, which in the case of EPU-CNN is the base CNN model. This 
is demonstrated with an extensive experimental evaluation on various biomedical datasets, 
including datasets from gastrointestinal endoscopy and dermatology, as well as a novel contributed 
benchmark dataset, inspired by relevant research in cognitive science (Deroy, 2013). 

EPU-CNN framework follows the GAM approach for constructing image classification models 
capable of providing interpretations regarding their results. GAMs extend the well-known linear 
regression models by incorporating to their architecture a sum of smooth functions , i = 1, 

, N. A GAM can be formally expressed as: 

 (5.1) 

where x = (x1, x2, N)T , x  , denotes an input feature vector, g e.g., 
logit),  is a bias term and [Y | x] denotes the expected value of the response variable Y, given an 
input x. Each fi , represents a univariate smooth function, , mapping each xi   to fi(xi), 
that reflects xi participation to the predicted output of the model. This structure provides a simple 
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solution to interpretability of the 
model since it allows the user to investigate 
how each input variable xi affects the 
predicted output. 

For the construction of its interpretable 
ensemble of CNNs, EPU-CNN framework 
considers Eq. (5.1) as a template (Figure 7.1). 
The arrangement of the sub-networks is 
parallel, and all the sub-networks have 
identical architectures. The architecture that is 
used by the sub-networks is referred to as the 
base model. Each input that is propagated to 
the different sub-networks should encode a 
perceptual feature representation of an image. 
This representation is referred to as the 
Perceptual Feature Map (PFM) of an input 
image, and it can be obtained by performing 
an image transformation that reveals a 
physical property of choice that can be easily 
perceived and interpreted by humans over the 
input image space, such as color and texture. 

2). The number 
of sub-networks is based on the number of 
different PFMs needed to make a CNN 
interpretable for a specific application. Given 
that each sub-network of an ensemble with a 
parallel topology should receive inputs with 
complementary information (Woniak, Grana, 
& Corchado, 2014), the PFMs should be 
orthogonal. Let N different PFMs Ii, i = 1, 2, 

N, of an input image I be the input that is propagated to a respective sub-network          Ci

i), where i denoting its parameterization. All the sub-networks are trained jointly as a single 
model; hence, the input of a model constructed according to  EPU-CNN framework is a tensor I = 
(I1, I2 IN) with dimensions of , where N, H, and W denote the number, height, and 
width of the PFMs Ii, respectively. Each sub-network provides a univariate output Ci(Ii; i). The 
output of the EPU-CNN ensemble is computed as the sum of all Ci(Ii; i), i = . Each 
output Ci(Ii; i) is considered as a Relative Similarity Score (RSS) that quantifies the relative 
similarity of an image I to a class with respect to Ii. In a classification problem that incorporates n 
classes, RSS receives  n values that fall within the range [-1, 1] for each class. An absolute RSS 
value closer to 1 indicates greater similarity, whereas a positive or negative RSS sign indicates that 

 

Figure 7.1. Outline of the EPU-CNN framework. 
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the similarity is associated with one class or the other. With the visualization of RSS scores, a 
human can better understand how each Ii influences the EPU-CNN model's classification result. 
Furthermore, the scores can be associated with respective image regions by examining the layer 
activations of each subnetwork, allowing for a more in-depth interpretation of the classification 
result based on the spatial arrangement of the observed features within the input image. The 
following paragraphs describe the PFMs considered in this study, the formulation of the 
classification model, and its interpretable output. 

Opponent Perceptual Feature Maps  

The generation of PFMs in this study is 
motivated by Hering's theory of human 
perception of color vision proposed in the 
1800s and Hurvich and Jameson's 
opponent-process theory proposed in the 
1950s. (Hurvich & Jameson, 1957). A 
receptive field is a pattern of 
photoreceptors that determines the 
behavior of a cell in the human visual 
system's retina. A cell that is excited by a 
light stimulus in the center of its 
receptive field will be inhibited by a light 
stimulus in the annulus surrounding the 
excitatory center since receptive fields 
have a center-surround organization. 
Photoreceptors are classified according to their sensitivity to light frequency and intensity, as well 
as their response to chromatic and luminance variations. Receptive fields can be color-opponent 
or spatially-opponent without being color-opponent, depending on the type of photoreceptors 
(Chatterjee & Callaway, 2003). Studies have shown that transmitted stimuli to the retina can be 
decomposed into independent luminance and chromatic-opponent sources of information, and that 
the human visual system processes chromatic and luminance information separately 

. Furthermore, experiments that have been conducted 
in the context of computer vision shown that encoding the chromatic and luminance components 
separately is beneficial for image recognition tasks 

.  

Motivated by these studies, the proposed framework takes into account representations of the input 
images that are characterized as opponent, focusing on two important properties for image 
understanding, i.e., color and texture . Color and texture also 
provide cues that allow inferences about the shapes of objects and surfaces in the image. Opponent 
color spaces have been proposed to address the shortcomings of RGB color space that include high 
correlation between the R, G, and B components and its incompatibility with human perception. 

 

Figure 7.2. Illustration of the opponent perceptual features utilized 
by EPU-CNN. 
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Ohta's color space, which is obtained as a linear transformation of RGB and has been proposed in 
the context of color image segmentation, and CIE-Lab, which is obtained as a non-linear 
transformation of RGB and has been proposed as a device independent, perceptually uniform color 
space, are two representative examples (i.e., a color space where a given numerical change 
corresponds to similar perceived change in color) (Wyszecki & Stiles, 2000). Motivated by the 
effectiveness of CIE-Lab in many computer vision tasks and especially in biomedicine (Dimitris 
K Iakovidis & Koulaouzidis, 2014), this study considers CIE-Lab as a basis for three PFMs that 
correspond to tis components. Moreover, the orthogonality that characterizes the components of 
CIE-Lab is suitable for the generation of PFMs in the context of EPU-CNN framework. The a and 
b components of CIE-Lab encode two antagonistic colors that cannot be perceived together 
simultaneously, e.g. - - In detail, a, expresses 
the antagonism between green-red hues (redness is expressed for a > 0, and greenness is expressed 
for a < 0), and component b expresses the antagonism between blue-yellow hues (yellowness is 
expressed for b > 0, and blueness is expressed for b < 0). The L component represents perceptual 
lightness, which expresses a luminance antagonism between light and dark. This component, 
which is essentially a greyscale representation of the RGB image, has the highest variance because 
it concentrates information regarding the texture of the contents of an image 

. 

In the computer vision field, many studies have been based on the representation of the spatial 
frequency of images, for the modeling of texture and its utilization in machine perception 
applications (P.-W. Huang & Dai, 2003). Towards the interpretation of the classification outcomes 
based on characteristics of perceptual texture, the lightness component L of CIE-Lab is further 
decomposed with respect to its spatial frequency. This decomposition is justified by the capacity 
of the human eye to focus on the appropriate range of spatial frequencies with the goal of capturing 
relevant details that describe an image; hence, visual perception treats images at different levels of 
resolution. Details at lower resolutions correspond to larger structural elements of  a scene, 
whereas at details at higher resolutions encode smaller structures. The 2D Discrete Wavelet 
Transform can model the concept of multiresolution image representation (DWT) (Mallat, 2009). 
The original image is decomposed using a wavelet orthonormal basis to yield this representation. 

-
pass filters called Quadrature Mirror Filters (QMFs) while along with dyadic down-sampling, is 
used to compute the 2D DWT efficiently. A multilevel 2D DWT can be performed by successively 
applying the 1-level 2D DWT to the filtered image with the lowest frequencies and focusing on 
different bands of non-overlapping spatial frequencies. The last level's lowest frequency image 
represents a smooth approximation of the input image, where the different structures, such as 
objects, parts of objects, and background, can be more easily separated based on their intensity. 
Based on this observation, the approximation image of the third level of the 2D DWT was chosen 
as a PFM representing the light-dark antagonism with less noise than the original L component in 
the context of EPU-CNN. The higher frequency bands can be used as PFMs representing image 
texture in greater detail.  The frequency bands chosen are determined by the application context 
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and the level of the desired interpretation detail. The highest frequency band of the first level of 
the 2D-DWT was chosen in this study to represent the antagonistic concept of coarse-fine texture 
due to the fact that the edges of an image become clearer at that level. The density of image edges 
per unit area is associated with the concept of coarse-fine texture (Tuceryan & Jain, 1993), because 
finer textures have a higher edge density per unit area than coarser textures. Such edge-based 
representations are perceptually meaningful for object discrimination in a scene (Biederman & Ju, 
1988). Given that after each level of the 2D DWT the resolution of the image of the previous level 
is reduced by a factor of 2, and that the base CNN model architecture depends on the dimensions 
of the input image, the filtered images obtained after the application of the 2D DWT are scaled to 
match the size of the input image I. Henceforth, an input tensor of an EPU-CNN model is formed 
as I = (I1, I2, I3, I4), where I1 and I2 are the PFMs corresponding to the light-dark and coarse-fine 
concepts respectively, I3 = b corresponds to blue-yellow, and I4 = a corresponds to the green-red 
concept. An example illustrating the opponent PFMs used in this study, is provided in Figure 7.2. 

Binary Interpretable Classification Model 

Given an input tensor I composed of N input PFMs, an EPU-CNN model performs feature 
extraction and classification. An EPU-CNN model is constructed from N CNN sub-networks Ci, 
with each sub-network receiving a PFM Ii, i = 1, 2 N, as input. Each Ci can be regarded as a 
function Ci i), Ci : XH W Z, where XH W and Z are the input and univariate output space of 
each Ci, respectively. A sub-network Ci consists of two parts: a) a feature extractor  
parametrized by i; and b) a univariate function  parametrized by i. Thus Eq. (5.1) is 
reformulated: 

 (5.2) 

where  represents a feature extraction model composed of a CNN followed by a Fully Connected 
Neural Network (FC-NN), that utilizes activation functions, which are not conditioned to be 
smooth, and  represents a single FC-NN layer utilizing a smooth activation function that 
provides the final univariate output of a CNN sub-network, {N} = { 1, 2, N} and {N} = { 1, 

2, N} are the parameters of , , respectively. Equation (5.2) encapsulates the properties 
and definition of GAMs while extending its capacity to exploit CNN models for computer vision 
tasks. he feature extractor , can be implemented by a conventional CNN architecture, whereas 
the number of output neurons and the activation function of  should be considered so to 
appropriately represent the classification outcome, in a binary or multiclass setting. In the context 
of binary classification, which is considered in this study, is formulated with a single output 
neuron and the hyperbolic tangent (tanh) activation function, resulting in sub-network responses 
within the range of [-1, 1]. Ultimately, this allows to intuitively express the contribution of each 
feature to the final prediction, as positive or negative contribution with respect to a class label. 
Since EPU-CNN is applied in the context of binary classification, we chose the final output of an 
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EPU-CNN model to be within the interval of [0, 1]. However, the formulation of EPU-CNN 
presented in Eq. (5.2) indicates that the final output can fall out of the range of [0, 1], i.e., given a 
N number of Ci and a bias term  the right-hand part of Eq. (5.2) provides values that fall within 
the range of    [   ,   + ].  

Accordingly, the logit efined as: 

 (5.3) 

can be used as a suitable link function, g logit is the log-sigmoid 
function , Eq. (2) can be rewritten as: 

 (5.4) 

or 

 
(5.5) 

where {N} = { 1, 2 N}. By utilizing the log-sigmoid function we bound the output of EPU-
CNN within the desirable range of [0, 1] suitable for binary classification applications. Equation 
(5.5) is a formal representation of an EPU-CNN model as illustrated in Figure 7.1. To train an 
EPU-CNN model in the context of binary classification, the Binary Cross Entropy (BCE) is chosen 
as a loss function to be minimized: 

 (5.6) 

where j = , k, EPUCNN(Ij; {N}) is the class probability of Ij and yj is the ground truth label 
of Ij. As it can be observed from Eq.(5.6), the total error of the EPU-CNN, deriving from the 
responses of the CNN ensemble consensus, is used to update the parameters of each 

 of the parallel sub-network ensemble topology, simultaneously. It is worth noting 
that an EPU-CNN model can also be adapted for multiclass datasets, e.g., using n>1 output 
neurons instead of one, in the case of n > 1 classes. Then, 
by considering the contribution of the multiclass classification outcome of each CNN sub-network 
to the final classification result (see Multiclass Interpretable Classification Model). 
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Multiclass Interpretable Classification Model

EPU-CNN can also be used for the development of interpretable CNNs that can be used in solving 
problems that incorporate data that belong to multiple classes, i.e., multi class problems. These 
EPU-CNN models utilize subnetworks that can be expressed as functions i : XH W D M, where 
H, W and D denote the dimensions of height, width, and depth of the input volume, respectively, 
whereas XH W D and M denote the input and output space, respectively. The output space of each 
subnetwork is M dimensional, where M is the number of classes. The input of these EPU-CNN 
models is the same as to those that are tasked to tackle binary classification problems, i.e.,  a tensor
I = (I1, I2, I3, IN) with dimensions of N H W D. Hence, the EPU-CNN models for multiclass 
problems has the following general form that is similar to Eq. (5.5):

(5.7)

By applying the softmax activation function to the right part of Eq. 2, the output is bounded within 
the desirable interval. Equation (5.8) is a formal representation of an EPU-CNN model designed 
for multiclass problems as illustrated in Figure 7.3. To train of an EPUmulti model, a joint loss 
function is used that considers the classification error of both EPUmulti as a whole and its individual 
subnetworks. In detail, to assess the classification error of a model constructed according to the 
proposed framework, the Categorical Cross-Entropy (CCE) is applied during the training on both 
EPUmulti and its subnetworks:

(5.8)

Figure 7.3. Illustration of multiclass version of the architecture of an EPU-CNN model

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



152 
 

 where EPUmulti (I; { }) and i( i) are the class probabilities of  as estimated by a EPUmulti model 
and the decisions of its subnetwork i given an image representation Fi, respectively. The term y 
is the categorical representation of the ground truth label of . According to Eq. (5.8), the ensemble 
is trained jointly through back-propagation and each subnetwork learns to extract features that 
correspond to a particular perceptual domain of the input image. In this way, each subnetwork 
attempts to classify an input image with respect to its corresponding domain of knowledge. Hence, 
the output of each subnetwork of EPUmulti provides a classification decision with respect to the 
image representation that it receives as input. The aggregation of these decisions comprises the 
final classification result of EPUmulti. 

Perceptual Interpretable Output 

Considering an input image, EPU-CNN provides 
three outputs, as illustrated in Figure 7.1 and 
Figure 7.2, namely, a) the predicted class 
EPUCNN(I; {N}); b) a set of RSSs Ci(Ii; i), i = 1, 
2 N, explaining why the image is classified in 
that class; and c) a set of Perceptual Relevance 
Maps (PRMs) Si explaining which image regions 
are responsible for each RSS. Figure 7.4 illustrates 
the provided outputs of the model for two images 
that belong to different classes. The classification 
result is indicated as a textual label characterizing 
the input image, and the RSSs are visualized 
through bar-charts. Each bar-chart consists of 
horizontal red or green colored bars, indicating the 
magnitude of resemblance that each Ii is estimated 
to have for the banana and apple class, 
respectively. Additionally, the model provides 
with respect to each Ii, areas (PRMs) highlighting 
their resemblance to the predicted class. The color 
scaling from orange to yellow regions of the maps 
indicates the ascending intensity of activation. 

Image-specific visualizations of RSSs enable the 
interpretation of the classification process of 
unlabeled input  images. This is the most 
important aspect of an EPU-CNN model. For 
example, the image of Figure 7.4 (a), is classified 
as a banana, because all PFMs, i.e., light-dark, 
coarse-fine, blue-yellow and green-red, as 

 
(a) 

 
(b) 

Figure 7.4. Example of EPU-Net output 
visualization using bar-charts and saliency maps. 
The numbering indicates the interpretation order of 
EPU-CNN output. The label field indicates the 
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indicated by the respective RSSs, guide the prediction towards the banana class, which corresponds 
to negative Ci(Ii; i) responses (red). Accordingly, the image of Figure 7.4 (b), is classified as an 
apple, because all PFMs guide the prediction towards the apple class, i.e., positive Ci(Ii; i) 
responses (green). However, it is not necessary for all the Ci(Ii; i) responses to be negative for an 
image to be classified as a banana, since EPU-CNN models consider the consensus of the sub-
networks. 

Perceptual Relevance Maps, Si, are generated to visually inspect the relevant regions of the input 
image I with respect to each RSS Ci(Ii; i). Let  indicate a tensor of feature 

maps with , where n, h, w denote the depth, height and width of , and , 
as computed by a convolutional layer l of a Ci. The selection of l is intertwined with its capacity 
to highlight regions that contribute to the derivation of Ci(Ii; i). The deeper the layer l that  is 
extracted from, the more approximate the correspondence among the feature maps  and the input 
image I; thus, a middle layer l of Ci is considered for the construction of each Si (Dimitris K 
Iakovidis, Georgakopoulos, et al., 2018) (Section 3.4). 

To quantify the amount of information that each  encodes, we compute the Shannon Entropy 
(SE) scores. Then, half of the most informative , i.e.,  that correspond to the highest entropy 
scores, are aggregated to construct the Si. The aggregation is performed by averaging  features 
maps which results to the initial Si estimation. Then Si is further refined, by applying a thresholding 
method that maximizes the entropic correlation between the foreground and background of Si, for 
maximum information transfer (Yen, Chang, & Chang, 1995). The entropy-based thresholding 
operation is performed to exclude values associated with lower saliency and communicate to the 
user the most informative regions. An example of different Si of input images I can be seen in 
Figure 7.4. The generated Si illustrated in Figure 7.4 are overlayed on the input images (Figure 7.4 
(a, b)). The highlighted regions indicate the spatial association of similarity scores Ci(Ii; i) with 
the respective input image. Moreover, the numbers in the images of Figure 7.4 indicate in which 
order the different outputs of an EPU-CNN can be considered by the user.  Initially a user can 
examine the regions that are highlighted by the generated PRMs of each PFM (1). Subsequently, 
these regions are participating to the classification outcome, towards either class, with a magnitude 
that is indicated by the RSSs (2). Finally, the PRMs (1) along with the RSSs (2) can assist the user 
to interpret the class prediction of an EPU-CNN (3).  

Experiments and Results 

Datasets: The training and evaluation of EPU-CNN incorporates six different datasets. Initially, a 
dataset created specifically for assessing the interpretability capabilities of EPU-CNN was 
considered. The goal of using this dataset was to demonstrate EPU-CNN capabilities using clear, 
simple, and perceptually meaningful examples. By taking into consideration the importance of 
biomedicine as a critical application area for explainable and interpretable artificial intelligence 
(AI), four well-known biomedical benchmark datasets comprising endoscopic and dermoscopic 
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images were used for further evaluation. Lastly, a well-known benchmark dataset for real image 
classification was also considered to demonstrate the generality of the proposed approach. 

Interpretability Dataset: A new dataset called Banapple was created for the purposes of this study 
consisting of images illustrating bananas and apples .  by collecting images from Flickr that were 
licensed under the Creative Commons license. The images depict bananas and apples with varying 
color, placement, size, and background. The inspiration for this dataset comes from cognitive 
science studies in which human perception is investigated using examples with discrete properties 
of bananas and apples (Deroy, 2013). The performed experiments aim at demonstrating that EPU-
CNN is capable of capturing the discriminative characteristics of bananas and apples by the 
perceptual features it incorporates, i.e., apples have a circular shape and usually red color, whereas 
bananas have a bow-like shape and usually a yellow color. In addition, samples that deviate from 
the average appearance of these objects can provide insights regarding the reliability of the 
interpretation of the model. 

Endoscopic Datasets: This evaluation includes publicly available datasets of endoscopic images. 
Namely, KID (Anastasios Koulaouzidis et al., 2017), Kvasir (Pogorelov et al., 2017) and a dataset 
that was part of the MICCAI 2015 Endovis challenge (Navab, Hornegger, Wells, & Frangi, 2015). 
KID dataset comprises 2,352 annotated wireless capsule endoscopy (WCE) images of abnormal 
findings, i.e., inflammatory, vascular and polypoid lesions as well as images depicting normal 
tissue from the esophagus, stomach, small bowel and colon. The Kvasir dataset consists of images 
of the gastrointestinal (GI) tract, annotated and verified by medical experts. These include 4,000 
images of anatomical landmarks, i.e., Z-line, pylorus and cecum, and pathological findings of 
esophagitis, polyps and ulcerative colitis. The dataset also contains sets of images related to 
endoscopic polyp removal that were not utilized for this work. The MICCAI 2015 Endovis 
challenge dataset consists of 800 gastroscopic images of normal and abnormal findings, such as 
gastritis, ulcer, and bleeding. 

Dermoscopic Dataset: The evaluation process of EPU-CNN has also included the International 
Skin Image Collaboration Challenge 2019 (ISIC2019) dermoscopic image collection. ISIC2019 
challenge provides a publicly available archive of 25,331 dermoscopic images of eight different 
categories of skin lesions, namely, melanoma, melanocytic nevus, carcinomas (both of basal and 
squamous cells), actinic and benign keratosis, dermatofibroma, and vascular lesions. These images 
were used to construct three different binary classification problems: a) melanomas vs. 
melanocytic nevi (Me. vs. Ne.); b) carcinomas vs. melanocytic nevi (Ca. vs. Ne.) and c) carcinomas 
vs. melanomas (Ca. vs. Me.). The tasks a) and b) are characterized as a classification between 
abnormal (carcinomas, melanomas) and normal (melanocytic nevus) skin lesions whereas task c) 
discriminates two abnormal categories of different incidence and survival rates, i.e., melanomas 
have higher mortality rates than carcinomas (Siegel, Miller, Fuchs, & Jemal, 2021). Task a) 
comprised of 9000 images whereas task b) and c) 8200 and 8500 images respectively. 

CIFAR-10: To demonstrate the generality of the proposed framework, EPU-CNN was further 
validated on the long-standing benchmark dataset CIFAR-10. CIFAR-10 consists of 60,000 color 
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images of natural objects that belong to 10 different classes. The dataset is split in 50,000 training 
 

Classification Performance Assessment 

For the comparison of the classification performance of EPU-CNN, we selected three well 
established CNN models, namely, VGG16 (Simonyan & Zisserman, 2014), ResNet50 (He et al., 
2016) and DenseNet169 (G. Huang et al., 2017) and an inherently interpretable CNN model 
abbreviated as TT (C. Chen et al., 2019). VGG16 was used as a base for the TT model. The same 
training parameters, i.e., batch size, optimization algorithm and data augmentation, were applied 
on all networks involved in the evaluation process. In detail, the batch size was set to 64 and as an 
optimization algorithm the Stochastic Gradient Decent was used; the training data were augmented 
only with respect to their orientation. The weights of all networks were randomly initialized before 
training. Five different CNNs architectures were considered for the construction of EPU-CNN 
models. In detail, two indicative CNN architectures, namely, BaseI and BaseII, along with VGG16, 
ResNet50 and DenseNet169 were incorporated as base models in the EPU-CNN framework.  

These models were selected to demonstrate the generality of the proposed framework, i.e., its 
applicability to rendering different conventional CNN architectures interpretable. Regarding the 
architecture of the indicative CNN architectures, BaseI, consists of 3 convolutional blocks in total, 
followed by an FCNN. The first two convolutional blocks are identical and include two 
convolutional layers followed by a max-pooling and a batch normalization layer. The 
convolutional layers of these blocks have a depth size of 64 and 128 respectively. The following 
convolutional block consists of three convolutional layers with a depth size of 256 followed by a 
max-pooling and a batch normalization. All the kernels of the convolutional layers had a size of 

BaseII, follows the same architecture with BaseI with an additional convolutional block, in 
the beginning of the architecture, utilizing an inception module. BaseI, BaseII, VGG16, ResNet50 
and DenseNet169 were used for the construction of EPUI, EPUII, EPUVGG, EPUResNet and 
EPUDenseNet, respectively. 

The evaluation followed a 10-fold cross validation procedure with the average Area Under the 
receiver operating Characteristic (AUC) score among all folds. The AUC was selected as an 
overall summary measure of binary classification performance, which unlike accuracy, is 
relatively robust for datasets with imbalanced class distributions (Provost & Fawcett, 1997). The 
performance of all models is summarized in Table 7.1. The best results are in boldface typesetting 
and the results ranked second are underlined. It can be observed that the results obtained by the 
EPU-CNN models indicate an overall better or comparable classification performance to their non-
interpretable counterparts, i.e., BaseI, BaseII, VGG16, ResNet50 and DenseNet169. In detail, on 
Banapple, Endovis-MICCAI, Kvasir and ISIC 2019 (Me. vs. Ne.) EPUII provided substantially 
better results when compared to the other EPU-CNN and the majority of base models. Figure 4 
illustrates the number of trainable parameters of each model. It can be observed that the complexity 
of an EPU-CNN model is analogous to that of its base model. Additionally, an EPU-CNN can  

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:48:37 EEST - 18.222.76.217



156

Table 7.1. Classification Results (AUC) of EPU-CNN and CNN models

Models

Datasets

Banapple KID Endovis Kvasir
ISIC 2019

Ca.vs.Ne. Ca.vs.Me. Me.vs.Ne.

EPUI

EPUII 0.92 0.94 0.91 0.94

EPUVGG 0.90 0.93 01 0.89 0.88 4 0.90 1 3

EPUResNet 0.84 0.86 0.84 0.79 0.88 08 0.78 6 0.86 4

EPUDenseNet 0.90 0.93 0.87 0.90 0.97 3 0.92 2 0.92 3

BaseI

BaseII 0.9 1 0.93 0.92 0.93

VGG16 0.90 0.90 0.93 0.85

ResNet50 0.89 0.92 0.88 0.87 0.69 0.90 0.92

DenseNet169 0.88 0.94 0.90 0.88 0.76 0.90 0.91

TTVGG 0.82 0.04 0.91 0.03 0.93 0.05 0.85 0.04 0.88 0.03 0.76 0.01 0.81 0.02

Figure 7.5. Visualization of the complexity of the compared models in terms of the number of trainable network 
parameters.
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provide competent results even with base models of low complexity, i.e., EPUI and EPUII utilize 
~40 and ~19 million parameters, respectively; however, they provide higher classification 
performance when compared to more complex EPU-CNN models. Furthermore, the less complex 
EPUII has comparable or even better  
classification performance when compared to EPUI while it outperforms substantially ResNet50 
that is a more computationally demanding base model (~27M parameters). On the other hand, the 
inherently interpretable (TT) model that has a similar complexity to EPUII , i.e., ~20M parameters, 
provides the lowest overall classification performance amongst all models. 

Quantitative Interpretability Analysis 

To quantitatively evaluate the interpretability of the proposed framework we exploited the 
properties of the Banapple benchmark dataset. Banapple is suitable for this purpose because our 
perception of the class-related objects is directly associated with the way we categorize them, 
based on their visual attributes regarding color and shape (Deroy, 2013). Therefore, the subsequent 
task of annotating the images of Banapple did not require any domain-specific knowledge. Images 
of bananas and apples have distinguishable characteristics with respect to all PFMs utilized by the 
EPU-CNN models, i.e., light-dark, coarse-fine, blue-yellow and green-red. Thus, in the case of a 
correct class prediction, ideally, all RSSs should trend towards the same direction, as indicated by 
the sign of an RSS, e.g., all RSSs for an apple image should be positive, whereas for a banana 
image should be negative. Hence, given that the EPU-CNN models in this study use four PFMs, a 
ground truth, , and predicted, , interpretability label is expressed as follows: 

 (5.10) 

 (5.11) 

where y is the ground truth class label of an image I, 1 and 0 denotes the apple and banana class 
respectively whereas sign(Ci(Ii; i)) returns the sign of an RSS. Given a set of ground truth and 
predicted interpretability label pairs, the interpretability accuracy aint, is calculated as the average 
Jaccard Index(Jaccard, 1912), J  

 (5.12) 

Table 7.2. Interpretability accuracy results of EPU-CNN models. 

Metric 
EPU-CNN Models 

EPUI EPUII EPUVGG EPUResNet EPUDenseNet 

aint (%)      
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EPUI, EPUII achieved the highest aint 
This means that the capacity of both EPUI and EPUII models is comparable with respect to their 
capacity to interpret the classification of bananas and apples. Since EPUII achieves a better overall 
classification performance, aint score and it is more computationally efficient, it has been chosen 
for the qualitative investigation of interpretability that is presented in the following sections. 

Ablation Study 

 

Figure 7.6. Example of PRMs generated by features maps extracted from different layers of EPUII. 

An ablation study was performed to determine the impact of layer selection to the construction of 
PRMs, using EPUII as the best performing model. The feature maps estimated by 3 different layers 
have been chosen for the construction of the respective PRMs. Each of these layers corresponded 
to the last layer of each convolutional block of EPUII. 

Figure 7.6 illustrates indicative PRMs constructed using feature maps estimated by different 
convolutional layers on predictions from the Banapple, Kvasir and ISIC2019 datasets. As it can 
be observed, the regions identified as meaningful regarding each PFM are approximately 
consistent with each other regardless of the degree of abstraction that each set of feature maps 
encodes. However, the feature maps estimated by the intermediate 5th layer provide less noisy  
PRMs that highlight with more precision the areas on the input image that are estimated to be 
meaningful with respect to each PFM. 

Qualitative Interpretability Analysis 

The qualitative analysis of EPU-CNN was investigated by considering both PRMs, global and 
local bar-charts generated by the EPUII model, for each dataset. Given a validation set of images 
with a priori known class memberships, global bar-charts are constructed by averaging the RSSs 
per class, as provided by each sub-network of EPUII. Global bar-charts enhance the transparency 
of the model and reveal the overall contribution of PFMs regarding the data discrimination process. 
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(a) 

 
(b) 

 
(c) 

Figure 7.7. Example of local bar-charts produced by EPUII on images from the Bananapple dataset. The label field indicates the 
predicted label. (a) Correctly classified images. (b) Wrongly classfied images. (c) Changes in the classification and its interpretation 
of modified images. 
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 In a global bar-chart, PFMs of low or high significance can be identified by their dataset-wide 
score, which can lead to the selection of a subset of the most informative PFMs, i.e., by pruning 
or replacing the sub-networks the PFMs of low significance. The respective results obtained per 
or replacing the sub-networks corresponding to the PFMs of low significance. The respective 
results obtained per dataset are provided in the next paragraphs. 

Banapple: The global bar-charts illustrated in Figure 7.8 (a) indicate that all the perceptual features 
contribute to the classification of the images. This result is in accordance with our perceptual 
understanding (Deroy, 2013), since apples and bananas are discriminated with respect to all PFMs 
considered in this study. Figure 7.7 illustrates examples of local bar-charts along with the 
respective PRMs of classified images. Specifically, the images presented in Figure 7.7 (a) were 
correctly classified by EPUII, and this is reflected by the visualization of the RSSs. The PRMs of 
each sub-network indicate the regions of the input image which resemble the class that each RSS 
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Figure 7.8. Example of dataset-wide interpretations provided by EPU-CNN on all datasets. Green (positive 
response) and red (negative response) bars indicating participation the 1 and 0 class respectively, and the black lines 
indicate the standard deviation. (a) Banapple. (b) KID. (c) MICCAI Endovis 2015. (d) Kvasir. (e-g) ISIC 2019. 
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suggests. For instance, in Figure 7.7 (a)-B the highlighted areas of the PRMs corresponding to 
green-red and blue-yellow are overlayed precisely on the class-related object, i.e., the bananas. 
Interestingly, the difference between the light-dark and coarse-fine RSSs can be justified by the 
obscurity of the highlighted regions of Slight-dark and Scoarse-fine, i.e., both PRMs highlight the table. 
Figure 7.7 (b) illustrates wrongly classified images. Notably, each of these images have 
resemblances to the opposite class with respect to color and shape. For example, in Figure 7.7 (b)-
A the perceptual features of light-dark, coarse-fine and blue-yellow, wrongfully guide the 
prediction towards the banana class (red). This can be justified since the image contains objects 
that share characteristics that resemble the banana class, i.e., the shape and color of the hands 
holding the apple. The RSS of green-red however, trends towards the apple class (green) with high  
magnitude, whereas the respective Sgreen-red, highlights the apple. Accordingly, the PRMs of 
light-dark and coarse-fine focus on the hands explaining the trend of the respective RSSs towards 
the banana class. Nevertheless, even though Sblue-yellow focuses on the apple, the respective 
RSSs indicate that the image belongs to the banana class. In Figure 7.7 (b)-B the light-dark and 
blue-yellow RSSs trend towards the apple class (green). The direction of these RSSs towards the 
incorrect class can be justified considering that the color and orientation of the bananas are not 
representative of their class. Accordingly, Slight-dark and Sblue-yellow focus only partially on the 
banana. Similarly, the shape and color from the inside of the apple in Figure 7.7 (b)-C is unusual 
for an apple. Hence, the coarse-fine and red-green RSSs lean towards the opposite direction.  

It can be observed that the negative red-green and coarse-fine scores, have corresponding PRMs 
that do not focus on the class-related object, i.e., they highlight regions of the hand and the 
background. Also, the greenish color of the bananas in Figure 7.7 (b)-D, can be descriptive for 
both classes (as both bananas and apples can be green), which is also expressed by the 
disagreement between the relative scores of the color PFMs. Interestingly, the disagreement 
between the light-dark and coarse-fine scores can also be justified by the highlighted regions in 
the respective PRMs, i.e., the outline of the banana object in Scoarse-fine and the circular region, 
resembling an  apple in Slight-dark. 

To further investigate the behavior of EPU-CNN, we have chosen an image depicting an apple 
(Figure 7.7 (c)-A) which was digitally processed to obtain 3 variations: a) to illustrate a bitten 
apple (Figure 7.7 (c)-B); b) an apple with a shape resembling that of a banana (Figure 7.7 (c)-C); 
and c) an apple resembling both the shape and color of a banana while maintaining a reddish region 
(Figure 7.7 (c)-D). The interpretation changes that can be observed include the following: 

When the shape resembles a bitten apple the coarse-fine PFM is still guiding the prediction towards 
the apple class but with greater uncertainty (Figure 7.7 (c)-B), whereas the Scoarse-fine discriminates 
the image based on its textural variations, i.e., the curvature of the left side of the apple. 

When the shape resembles a banana, the coarse-fine PFM strongly suggests that the image belongs 
to the banana class (Figure 7.7 (c)-C, (c)-D). The magnitude of light-dark RSS has also changed, 
but still trends towards the apple class. The Slight-dark and Scoarse-fine appear to contribute to the 
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segregation the depicted object; however, only the RSS of  coarse-fine PFM suggests the opposite 
class, indicating that is more sensitive to shape variations.  

When the yellow region is added, the light-dark and green-yellow PFMs guide the prediction to 
the banana class. However, the green-red RSS trends towards the apple class. As expected, Sblue-

yellow and Sgreen-red focus on the yellow and red segments of the object respectively (Figure 7.7 (c)-
D). This justifies the trend of each PFM towards either class, i.e., yellow and red are representative 
colors of banana and apple class respectively. 

These interpretations reveal that the coarse-fine PFM enables the respective sub-network to 
respond to different shape variations and infer relevant decisions. In addition, the color related 
PFMs, i.e., blue-yellow and green-red, are very sensitive to the class-related colors and it is clearly 
reflected both in the respective PRMs and RSSs. When both the class-related colors, i.e., yellow 
and red, cooccur in the image, the blue-yellow and green-red PFM guide the prediction towards 
the banana and apple class respectively. 

Endoscopic Datasets: The experiments showed that EPUII tend to discriminate normal from 
abnormal images of the endoscopic datasets mainly based on the blue-yellow and green-red PFMs. 
This is illustrated in the respective global bar-charts (Figure 7.8 (b-d)). As it can be observed, the 
light-dark and coarse-fine are biased towards a specific class, in all endoscopic datasets. On the 
other hand, the chromatic PFMs are the main contributors to the correct classification predictions. 
This finding is in accordance with the literature since it has been proven that color has a leading role 
in finding abnormalities in the gastrointestinal tract (Dimitris K Iakovidis & Koulaouzidis, 2014). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 7.9. Example of EPU-CNN interpretations, as generated by EPUII, on biomedical images. The label field 
indicates the predicted label. (a) Abnormal and (b) normal endoscopic image; (c) Carcinoma and (d) (normal) nevus 
skin lesion; (e) Abnormal endoscopic image and (f) modification of (e) to resemble a normal endoscopic image;  (g) 
Melanoma skin lesion and (h) modification of (g) to resemble nevus. 
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An example of local bar-charts visualizing the prediction interpretations of EPU-CNN on 
endoscopic images is presented in Figure 7.9 (a, b). Since the light-dark and coarse-fine features 
are not informative, only the color related PFMs were considered. Figure 7.9 (a, b) illustrate 
correctly classified endoscopic images of both the normal and abnormal class. In the case of the 
image depicting an abnormality (Figure 7.9 (a)), the Sgreen-red indicates that the focus of the sub-
network that corresponds to the green-red PFM focuses on the abnormality, i.e., blood, whereas 
Sblue-yellow focuses on normal tissue and only partially on the abnormal region.  

To assess the behavior of EPUII in a more controlled way in the endoscopic datasets, we proceeded 
to digitally process an endoscopic image and create different conditions for their classification to 
the normal and the abnormal classes. Indicative examples are presented in Figure 7.9 where the 
abnormal region of Figure 7.9 (e) is removed, resulting in the synthetic image of Figure 7.9 (f). The 
qualitative result of this process, considering only the chromatic PFMs, is reflected in the RSSs and 
the PRMs of Figure 7.9 (f). Specifically, it can be noticed that by replacing the abnormal region 
with normal tissue, the RSS of the green-red PFM shifts from trending towards the abnormal class 
(red) to the normal class (green). Furthermore, the RSS of the green-red PFM, in the absence of an 
abnormality, indicate that the respective subnetwork focuses on normal tissue. 

Dermoscopic Datasets: The evaluation of the interpretability of EPUII on the dermoscopic datasets 
revealed that all the PFMs participate actively in the classification process with an exception to 
green-red PFM that appears biased towards either the Melanoma or Carcinoma class on all trials 
(Figure 7.8 (e-g)). This is an indication that the PFM of green-red is not informative to the network 
regarding the classification of dermoscopic images. Furthermore, as it can be observed in Figure 
7.8 (e-g) the classification process of EPUII is relying on both chromatic and textural cues (i.e., 
blue-yellow, light-dark and coarse-fine) that are also considered by the ABCD rule of skin lesion 
classification to assess the malignancy of a lesion (Nachbar et al., 1994).  

An example of local bar-charts of classified dermoscopic images are illustrated in Figure 7.9 (c, d). 
The local bar-chart includes the most informative PFMs, i.e., light-dark, coarse-fine and blue-
yellow. In Figure 7.9 (c, d) all RSSs are trending, correctly, towards the abnormal (carcinoma, red) 
and normal (nevus, green) class respectively. In the case of the carcinoma (Figure 7.9 (c)), Slight-dark 
focuses on the entirety of the image, whereas Scoarse-fine and Sblue-yellow focuses on regions with color 
variations, e.g., on the yellow spot and little cuts on the lest and bottom side of the image 
respectively. In the case of the nevus (Figure 7.9 (d)),  Slight-dark and Scoarse-fine isolate the lesion by 
segregating it from the rest of the image, either by focusing on it or around it, whereas Sblue-yellow 
indicates only a slight attention of the network to the lesion. Similarly, to the other datasets, we 
proceeded to digitally modify the image of Figure 7.9 (g) that illustrates a melanoma to resemble a 
nevus. The modification was implemented according to the rule-based diagnostic criteria expressed 
by the ABCD rule(Nachbar et al., 1994); in detail, we removed the part of the lesion that introduced 
color variation on the same mole and obtained a more symmetrical shape. The qualitative results of 
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this process are illustrated in Figure 7.9 (h), where it is shown that after the modification all the 
RSSs trend towards the nevus class (green). Furthermore, the Sblue-yellow PRM, in the absence of an 
abnormal region, indicate that the respective subnetwork does not focus on the skin lesion. The 
Slight-dark and Scoarse-fine PRMs seem to maintain a similar behavior with the unmodified image. 

Comparison with State-of-the-Art Interpretable Methods 

Even though there is an increasing research 
interest regarding the interpretation of CNNs, 
there is still not a standard procedure to evaluate 
and compare the interpretable output. 
Nevertheless, a qualitative comparison can reveal 
strengths and weaknesses of such methods. In this 
study, the interpretations that EPU-CNN provides 
are qualitatively compared to seven 
methodologies that have been proposed to 
interpret CNNs and have been also widely used in 
the literature. These methods provide saliency 
maps indicating regions or points on the input 
image that are estimated to be crucial for a 

prediction inferred by a CNN. In detail, six post-hoc methodologies, namely, Grad-CAM (Selvaraju 
et al., 2017), LIME (Ribeiro et al., 2016), XRAI , 
Shapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017b), Smoothgrad (Smilkov et al., 
2017) and Vanilla Gradients (Simonyan, Vedaldi, & Zisserman, 2013),  as well as one inherently 
interpretable model (C. Chen et al., 2019) (TT) were utilized in this evaluation. The post-hoc 
methodologies were applied on the CNN models that achieved the highest performance on each 
dataset according to Table 7.1, whereas TT was trained on each dataset from scratch. All the 
methods provide interpretations in the form of saliency maps while TT can also provide bounding  

Figure 7.10. Example of CNN interpretations provided by various methodologies. 

Figure 7.11. Classification performance in terms of 
accuracy on the CIFAR-10 dataset. 
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boxes that specify discreetly the estimated region of interest. These methods were selected since 
they can render CNN models interpretable without the need for training on datasets specifically 
annotated for interpretable learning, e.g., with annotation regarding the concepts that are depicted 
on images. Figure 7.10 summarizes the interpretations provided by each method on exemplary 
images that are presented in Figure 7.7 and Figure 7.9. All the images have been correctly classified 
by the respective models that were used. In detail, only XRAI and SHAP were successful at 
highlighting regions of interest on the images that can be regarded crucial for classification, i.e., 
areas of the apple, the skin lesion and blood depicted in the endoscopic image. The gradient-based 
interpretation approaches, i.e., Grad-CAM, Smoothgrad and Vanilla Grad.,  also revealed  that the 
respective CNN models focus on image regions that can be regarded meaningful; nevertheless, the 
fuzziness of their visualization makes the  communication of their interpretations difficult to 
comprehend. On the other hand, EPU-CNN can provide different visualizations, that highlight the 
most relevant regions with respect to each PFM as it was estimated by the layer activations of each 
subnetwork. This can also be expressed quantitatively since the RSSs indicate the degree to which 
each highlighted region affects the classification result. Furthermore, the dataset-wide plots that can 
be constructed by using an  

A 

B 

(a) (b) (c) 

Figure 7.12.  Example of EPU-CNN interpretations, as generated by EPUII, on images of the CIFAR-10 dataset. 
The label field indicates the predicted label. Row A and B illustrate interpretations of correct and wrong prediction, 
respectively. 
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EPU-CNN model give insights regarding which PFMs are important for classifying the images of 
a particular dataset. To the best of our knowledge no other interpretation approach can incorporate 
all this information to its explanations and simultaneously be applied on non-specialized datasets, 
e.g., datasets where each image is annotated only with respect to their class membership. 
Figure 7.12  illustrates interpretations provided by EPUII on predictions of images on the      
CIFAR-10 dataset. For consistency with the interpretations of the binary settings, the respective 
illustrations depict how each PFM drives a prediction towards either the predicted (green) or any 
other class (red). The rows A and B of  Figure 7.12 illustrate interpretations of correct and wrong 
classifications on images included in the CIFAR-10 dataset, respectively. As it can be observed 
the PRMs generated by the EPUII on the interpretations presented in Figure 7.12-A highlight the 
object of interest with more precision when compared to the wrongly classified images (Figure 
7.12-B). For example, in Figure 7.12 (b) A all the PRMs highlight regions of the frog, and the 
image has been correctly classified. On the other hand, in Figure 7.12 (a)-B the PRMs mainly 
highlight regions around the frog and the respective image is misclassified to the airplane class, 
based on all the PFMs except from the blue-yellow. Furthermore, it can be noticed that the 
respective RSSs behave similarly, i.e., in Figure 7.12 (c)-A the PRM of coarse-fine highlights the 
whole image and it does not focus solely on the bird. Accordingly, the respective RSS of coarse-
fine has a smaller magnitude towards the correct class than the rest of RSSs, which, based on the 
respective PRMs consider mainly the region of the bird. Moreover, in Figure 7.12 (b)-B the image 
that belongs to the deer class is misclassified as a dog. As it can be noticed, the PRMs of coarse-
fine and blue-yellow are mainly focusing on the head region of the deer and the respective RSSs 
drives the prediction towards the dog class. This can be attributed to the fact that the particular 
deer does not seem to have horns, and it has a color pattern that matches that of the dog class. This 
can be further substantiated by observing the image of Figure 7.12 (a)-A. This image depicts a 
deer that has been correctly classified by the EPU-CNN model. As it can be noticed, the PRMs of 
coarse-fine and blue-yellow highlight the head region of the deer where the horns are present. 
Finally, the image of Figure 7.12 (c)-B that depicts an airplane is classified to the truck class based 
on the PFMs of light-dark and coarse-fine. As it can be noticed, all the PRMs focus on the body 
of the airplane, and on the wheels, whereas no PRM focuses on the wings. Therefore, the respective 
RSSs of light-dark and coarse-fine drive the prediction with a higher magnitude towards the truck 
class. Figure 7.11 presents a comparison in terms of classification accuracy among EPUII (orange 
bar) and other state-of-the-art CNN models (G. Huang et al., 2017),(He et al., 2016),(Simonyan & 
Zisserman, 2014),(Ha, Dai, & Le, 2016), (Sabour, Frosst, & Hinton, 2017) (gray bars) on the 
CIFAR-10 dataset. EPUII achieved an accuracy score of 93.31% which is comparable or better 
than the other models considered. However, a major advantage over the other models is that the 
EPU-CNN model can provide interpretations regarding the classification outcome. 
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7.2 Discussion and Future Work 
In section 7.1 a novel, generalized framework, called EPU-CNN is proposed. EPU-CNN provides 
a guideline for the development of interpretable CNN models, inspired by GAMs. A model, 
designed according to EPU-CNN framework, consists of an ensemble of sub-networks with a base 
CNN architecture that is trained as one. The proposed framework can be used to render 
conventional CNN model interpretable, by using it as a base model. Each sub-network receives as 
input a different PFM of an input image, chosen according to the literature of cognitive science 
and human perception. EPU-CNN is designed in such way enabling human-friendly interpretations 
of its classification results based on the utilized perceptual features. The interpretations provided 
EPU-CNN are in the form of RSSs that quantify the resemblance of a perceptual feature to a 
respective class. These interpretations are complemented by PRMs indicating the image regions 
where the network focuses to infer its interpretable decisions. Furthermore, EPU-CNN provides 
spatial expression of an explanation on the input image. Thus said, the most important conclusions 
of this study can be summarized as follows: 

EPU-CNN models satisfy the need for interpretable models based on human perception, i.e., the 
proposed framework is able to provide interpretations in accordance with human perception and 
cognitive science, e.g., EPU-CNN classifies endoscopic images based on the chromatic perceptual 
features. Unlike other inherently interpretable CNN methodologies (Q. Zhang et al., 2018, 2019), 
the classification performance of EPU-CNN models is not affected by their capacity to provide 
interpretations. In fact, the results obtained from the comparison of EPU-CNN models with 
respective non-interpretable CNN models, show that their performance is better or at least 
comparable to that of the non-interpretable models. In addition, when an image is modified with 
respect to a perceptual feature, e.g., color, the interpretations derived from the EPU-CNN model 
change accordingly both on natural and biomedical images (Figure 7.7 and Figure 7.9). Moreover, 
since EPU-CNN is a generalized framework, it provides a template for the development of 
interpretable CNNs that fulfill the requirements imposed by current legislations regarding the 
commercial applicability of ML models.  

Most inherently interpretable models that have been proposed in the literature, can only be applied 
on datasets that are further annotated with respect to human-understandable concepts illustrated in 
each image, which results in limitation regarding their applicability (Barbiero et al., 2022; Bau et 
al., 2017). The PFM selection of an EPU-CNN model can be considered as a less demanding and 
time-consuming procedure when compared to the annotation of huge datasets with the human-
understandable concepts. Additionally, since the selection of the textural and color perceptual 
features, that are based on the 2D DWT and Lab, respectively,  is empirical, as a future work we 
intend to automate the PFM selection towards a direction that minimizes human intervention and 
is more compatible with the principles of deep learning. 

An aspect of EPU-CNN that can be considered as a limitation of the proposed framework, is the 
manual selection of PFMs. The process of the selection, however, enables the user to leverage 
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specific PFMs that are relevant to a particular application and as a result to acquire meaningful 
interpretations and insights regarding the internal process of an EPU-CNN model. For example, in 
the case of endoscopic images, the EPU-CNN models considered only the PFMs of color as more 
important which is in accordance with the respective literature. As future work, we intend to 
investigate ways for the automated selection of PFMs or the generation of PFMs with certain 
attributes by each subnetwork. 
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8 Chapter 8 
Conclusions and Future Research Directions 
The domain of Machine Perception and Computer Vision is full of challenges. The research 
conducted in the context of this dissertation contributed to the advancement of science by 
investigating novel methodologies to cope with visual saliency prediction, obstacle detection, 
visual size measurements, 3D model reconstruction and refinement, as well as perceptually 
interpretable ML. These methodologies were investigated in the context of various applications 
with societal impact, including assistive systems for the navigation of visually impaired individuals 
based on visual cues, and medical decision support systems for detection.  

The spatial regions attracting the attention of human observers is a significant indicator of how 
humans comprehend images, i.e., where the important regions of the image are placed, or where 
an action or event occurs (Bylinskii et al., 2016). Given enough data, an ML model can be trained 
to predict these locations. Henceforth, Sections 3.1 and 3.2 present methodologies for detecting 
gaze patterns in a number of normal and pathological WCE image categories. According to the 
results, the enhanced architecture that employs an additional convolutional reconstruction block 
combined with a post-refinement step outperformed both the basic model and the state-of-the art 
methods that have been proposed for gaze prediction in biomedical images. Furthermore, in section 
3.2 the utilization of a novel co-operative training procedure is proposed. This training scheme 
incorporates two models trained jointly in a co-operative manner. Each network is dedicated to a 
specific task; one network focuses on predicting salient maps whereas the other utilizes the 
saliency maps along with their respective input images for classification. Hence, their co-operation 
considers both the saliency map accuracy and its effect on the classification of abnormalities. A 
model trained according to this scheme outperforms other relevant gaze prediction methodologies 
in terms of accuracy of visual saliency prediction. To the best of our knowledge, these are the first 
deep learning models that have been developed for the gaze estimation of physicians on biomedical 
images.  
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The monocular salient object detection approach presented in section 3.3 focuses on natural images 
and it is designed to cope with the dependency of previous approaches on sensor-based depth 
information. The novel depth-aware, two-branch CNN salient object detection methodology, 
referred to as MonoSOD, utilizes predicted depth maps instead of depth information deriving from 
specialized sensors. The performance of MonoSOD indicates that the incorporation of predicted 
depth, can provide comparable performance for SOD with that of sensor-based approaches. 
Additionally, MonoSOD outperforms the state-of-the-art D3Net when both utilize predicted depth 
while maintaining a smaller architectural complexity. 

A novel depth-aware obstacle detection method, based on fuzzy sets and visual saliency prediction, 
was presented in section 4.1. This method has been extended with the incorporation of 
personalized parametrization along with a simple ground plane removal approach and it was 
subsequently applied for computer-assisted navigation, as described in 4.2. The personalization 
aspects of the methodology presented in section 4.2, alongside with the ground plane removal, 
provides a significant lower false alarm rate when compared to its preliminary counterpart (section 
4.1). At the same time, both methodologies outperformed in terms of obstacle detection accuracy 
approaches that are solely based on depth information. Furthermore, the use of just an RGB-D 
sensor results to the minimization of resources that would otherwise require the integration, fusion, 
and synchronization of multiple sensors. Additionally, the proposed RGB-D obstacle detection  
methodology (section 4.2) has been integrated in an assistive system for the navigation of VCPs, 
named ENORASI. To evaluate the efficacy of the proposed method, in terms of obstacle detection 
and avoidance, a user evaluation study has been conducted. In this study, VCPs were wearing the 
ENORASI system, employing the proposed obstacle detection methodology, to navigate outdoors 
(Mitsou et al., 2022). The results indicate that the proposed approach can efficiently assist VCPs 
to safely avoid obstacles in outdoor environments.  

An alternative obstacle detection methodology, based on self-supervised learning, was presented 
in section 4.4. The results obtained by the self-supervised model in the context of obstacle 
detection provide evidence this type of training can lead to a less complex, faster, and scalable 
obstacle detection method. This approach simplifies the obstacle detection methodology of 4.2 and 
is capable of efficiently detecting regions containing possible high-risk obstacles given only an 
RGB image as input. It should be noted that the obstacle detection methods proposed in section 4 
are generic and they can also be used in other application, such as navigation of autonomous 
vehicles and robotic agents in general. 

Regarding the visual measurement methodologies that have been described in section 5, the 
respective evaluation study suggests that they can successfully be employed for the measurement 
of objects both in everyday applications, in-the-wild, and medical applications. In the case of 
natural images, since the proposed approach requires only a single image and knowledge about the 
intrinsic parameters of the camera along with its approximate position, it can be used to simplify 
systems that currently use stereo camera rigs or specialized sensors, e.g., LIDAR. In the context 
of size measurements during endoscopy and particularly WCE examination, i.e., in-vivo, such 
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methodologies are crucial. The simplification of the device requirements, especially in the case of 
WCE, leads to more efficient designs of medical devices. Size measurements in WCE images has 
been an under-research subject, and prior studies usually focused on using multiple images and 
visual odometry that some-times, considering the kinematics of the capsule inside the bowel, is a 
very tedious task (Dimitris K Iakovidis, Dimas, et al., 2018). Hence, the development of single-
image approaches can be employed  to overcome these difficulties providing a more robust way 
for the assessment of the size of lesions or other findings to aid the decision-making process of 
physicians. 

With respect to the reconstruction of 3D models given a sparse 3D object representation, the 
proposed unsupervised approach described in 6.1 provides a simple and effective method for 
tackling such problems. This is achieved by leveraging the universal approximation capabilities of 
neural networks along with a novel activation function, named WaveShaping (WS), that is used to 
train a model to approximate, perceive and represent a function describing a 3D model. Once such 
a model is trained, it can be used to interpolate data points that are missing from the original sparse 
3D representation of the model and produce a finer version that can be used for the development 
of digital twins. This is important since 3D representations of organs can be refined and used for 
more accurate and precise in-silico trials. 

To cope with the problem of interpretability in CNNs, this dissertation introduces EPU-CNN 
framework (section 7.1). This novel framework provides a guide for the construction of  
perceptually interpretable CNN models. The EPU-CNN models can be regarded as a new class of 
models tasked to tackle both binary and multi-class interpretable classification tasks in the domain 
of CV. The classification results obtained from EPU-CNN models show that they perform better 
or at least on par when compared to their non-interpretable counterparts. In addition, when an 
image is modified with respect to a perceptual feature, e.g., color, the interpretations derived from 
the EPU-CNN model change accordingly both on natural and biomedical images. Another 
important feature of EPU-CNN models is that they can provide interpretations in terms of salient 
regions that correspond to perceptual attributes of an image along with their quantified contribution 
to the final prediction. On the other hand, other interpretable methods are capable of only providing 
image regions that the model finds important without quantifying their contribution to the 
prediction or associating them with a perceptual image component. Furthermore, EPU-CNN 
models fulfill the requirements imposed by current legislations regarding the commercial 
applicability of ML models. Unlike other methods, EPU-CNN does not require training on 
predefined concepts to support the interpretations regarding its classification results and can be 
applied on any dataset. Its interpretations are based on perceptual image components, which, 
according to cognitive science, are also utilized by humans to perform classification-related tasks 

.  

The methodologies introduced in this dissertation cope with several known problems in the field 
of Machine Perception and Computer Vision; yet, they still have some limitations summarized 
below:  
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i. The predicted depth used in the context of MonoSOD enables the model to provide 
comparable performance to state-of-the-art SOD methods but did not manage to outperform 
the utilization of sensor-based depth. 
 

ii. The self-supervised approach proposed in section 4.4 is able to approximate the performance 
to its supervisor but needs further improvement to be able to replace it in real world 
applications 

 
iii. Even though the single-image methodologies presented in sections 5.1 and 5.2 outperform 

other measurement approaches, they require the fine tune of a set of parameters that can be 
considered as a limitation. Furthermore, currently single image measurement methodologies 
measure the dimensions of an object in terms of linear segments within a bounding box 
surrounding the target object and they are not modeled to estimate the size of complex 3D 
surfaces. 

 
iv. Regarding EPU-CNN (section 7.1), the manual selection of PFM relies to the user for the 

correct assessment of the required information for the solution of a problem. The lack of 
automated PFM selection can lead to the incorporation of irrelevant PFMs that may lead to 
the decreased performance of the model or additional trials. 

Considering the limitations listed above and the constantly increasing pace that the DL field is 
advancing, this doctoral dissertation concludes by suggesting future research directions: 

i. Regarding saliency prediction, the optimization of depth maps to outperform sensor-based 
models is a challenging research direction. The results obtained by MonoSOD should motivate 
studies to explore whether the pixel-level precision of depth values or a rougher representation 
of the depth in a scene is more beneficial for a model. Furthermore, different representations 
of complementary information should be examined to determine their effect in the performance 
of saliency prediction methodologies. 

 
ii. More approaches should focus on the improvement of performance concerning self-supervised 

obstacle detection approaches. The results provided by our approach have shown that this 
direction is promising however more improvements either by using more advanced network 
architectures or more data incorporated in the training must be considered. Furthermore, the 
incorporation of predicted depth as input to the model trained for obstacle detection is a 
promising approach for future work.  
 

iii. Training DL models using self-supervised approaches should be further investigated and 
incorporated in various methodologies where automated supervision provided by other 
algorithms is possible. As it was presented in section 4.4, training a model to learn another 
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algorithm using a self-supervised training scheme can lead to a simpler and time-efficient 
solution. 
 

iv. Single-image measurement approaches should be further researched and optimized. The 
proposed approaches can be further improved with the introduction of an automated 
approximation procedure of the parameters regarding  the virtual grid generation. It would be 
interesting as a future work to develop methods that automatically estimate these parameters 
based on the intrinsic parameters of the camera and the application environment, e.g., 
measurements in the gastrointestinal tract and in outdoors environments require a sparser and 
denser grid, respectively. Another future direction regarding the improvement of single-image 
measurement methodologies is the improvement of their model for estimating the size of 
complex 3D shapes instead of just the height, width and length of an object. This can be 
achieved with the utilization of advanced segmentation algorithms that can precisely define 
the boundaries of an object. 

 
v. Motivated by the study presented in section 5 future research directions include further 

exploration of periodic activation functions and how different types of parameterizations affect 
the performance of the reconstruction model. Moreover, the robustness in terms of 
performance of WS function given datasets with low number of samples, its employment of 
other classes of problems, such as classification, image segmentation etc., fields should be 
considered as a direction for future research. 
 

vi. In the context of EPU-CNN (section 7.1) a future research direction includes the development 
of methodologies that can automatically determine which Perceptual Feature Maps (PFMs) are 
considered important for developing an interpretable EPU-CNN model that can tackle a 
problem efficiently. These automated approaches can be either embedded to the model, i.e., an 
additional convolutional block that generates a PFM representation according guided by prior 
knowledge regarding various image components, e.g., color, or independent modules. Another 
interesting direction if the employment of EPU-CNN framework in the context of a novel 
direction towards interpretable image mapping problems such as, interpretable depth 
prediction, image segmentation, saliency prediction etc. 
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