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xii Abstract

Abstract

The purpose of this thesis is to provide a detailed description of the implementation

and acceleration of a Binary Neural Network (BNN) on a Field-Programmable Gate Array

(FPGA). BNNs are extensively used due to their robustness regarding both computation and

memory performance, but their implementation on CPUs can be quite difficult due to the

large number of arithmetic operations involved. FPGAs demonstrate positive prospects for

platforms that are used for accelerating BNNs, as they can be customized to perform special-

ized computations quickly and effectively. In our implementation, we are using the Xilinx

Vivado design suite and sds++ compiler in an attempt to reduce the power consumption of

the system compared to similar implementations. We describe the steps that followed for the

design of our BNN, and the optimization techniques we used, including pipelining and loop

unrolling. Our results demonstrate the effectiveness of FPGAs for accelerating BNNs and

suggest that they have the potential to significantly improve the efficiency and performance

of deep learning applications.

Keywords:
Binarized Neural Networks, Field-Programmable Gate Array, Εfficiency, Αcceleration



Περίληψη xiii

Περίληψη

Σκοπός της παρούσας διπλωματικής εργασίας είναι να παρέχει μια λεπτομερή περιγραφή

της υλοποίησης και της επιτάχυνσης ενός Δυαδικού Νευρωνικού Δικτύου (BNN) σε μια

Επαναπρογραμματιζόμενη Πλατφόρμα Ολοκληρωμένων Κυκλωμάτων (FPGA). Τα BNN

χρησιμοποιούνται εκτενώς λόγω της αποδοτικότητας τους όσον αφορά την υπολογιστική

ισχύ και την κατανάλωση της μνήμης. Ωστόσο, η εφαρμογή τους σε CPU μπορεί να είναι

αρκετά δύσκολη λόγω του μεγάλου όγκου αριθμητικών πράξεων που εμπλέκονται. Οι FPGA

εμφανίζουν μεγαλύτερη συμβατότητα με μοντέλα που χρησιμοποιούνται για την επιτάχυνση

ΒΝΝ, καθώς μπορούν να προσαρμοστούν με ευελιξία, για να εκτελούν εξειδικευμένους

υπολογισμούς γρήγορα και αποτελεσματικά. Στην συγκεκριμένη υλοποίηση, χρησιμοποιούμε

το Xilinx Vivado για την σύνθεση του ΒΝΝ και τον μεταγλωττιστή sds++ σε μια προσπάθεια

να μειώσουμε την κατανάλωση ενέργειας του συστήματος σε σύγκριση με παρόμοιες υλοποι-

ήσεις. Περιγράφουμε τα βήματα που ακολουθήσαμε για το σχεδιασμό του BNN μας και τις

τεχνικές βελτιστοποίησης που χρησιμοποιήσαμε. Τέλος, παρουσιάζουμε τα συμπεράσματά

μας, τα οποία καταδεικνύουν την αποτελεσματικότητα των FPGA για την επιτάχυνση των

BNN και την σημασία των μεθόδων βελτιστοποίησης που εφαρμόστηκαν, καταλήγοντας

στην βέλτιστη εκδοχή.





Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xvii

List of tables xix

Abbreviations xxi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 BNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Vivado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 SDS++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.8 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7

3 Implementation of BNN 9

3.1 Designing the BNN architecture . . . . . . . . . . . . . . . . . . . . . . . 9

xv



xvi Table of contents

3.2 Quantizing the weights and activations . . . . . . . . . . . . . . . . . . . . 11

3.3 Mapping the BNN to FPGA . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Synthesis & Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Acceleration of BNN 13

4.1 Convolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Loop Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Results 17

5.1 BNN with 2 Convolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.2 Loop Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.3 Pipeline & Loop Unrolling . . . . . . . . . . . . . . . . . . . . . . 20

5.2 BNN with 4 Convolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.2 Loop Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.3 Pipeline & Loop Unrolling . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion & Future Work 25

Bibliography 27



List of figures

1.1 Example of a simple CNN . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Wb = sign(W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 sign function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

xvii





List of tables

5.1 BNN with 2 Convolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 BNN with 2 Convolvers & Pipeline . . . . . . . . . . . . . . . . . . . . . 18

5.3 BNN with 2 Convolvers & Loop Unrolling . . . . . . . . . . . . . . . . . 19

5.4 BNN with 2 Convolvers & Loop Unrolling & Pipelining . . . . . . . . . . 20

5.5 BNN with 4 Convolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.6 BNN with 4 Convolvers & Pipelining . . . . . . . . . . . . . . . . . . . . 22

5.7 BNN with 4 Convolvers & Loop Unrolling . . . . . . . . . . . . . . . . . 22

5.8 BNN with 4 Convolvers & Loop Unrolling & Pipelining . . . . . . . . . . 23

xix





Abbreviations

FPGA Field Programmable Gate Array

BNN Binary Neural Network

CNN Convolutional Neural Network

GPU Graphics Processing Unit

RAM Random Access Memory

LUT Lookup Table

HLS High Level Synthesis

CLB Configurable Logic Block

PIP Programmable Interconnect Point

SDS++ Slotted Drive System Plus Plus

GUI Graphical User Interface

IoT Internet of Things

xxi





Chapter 1

Introduction

Artificial intelligence [1] has evolved significantly in recent years thanks to machine

learning and deep learning. These advanced technologies allow computers to learn from data

and patterns, eliminating the need for explicit programming. Deep learning refers to an as-

pect ofmachine learning that uses neural networks to learnmulti-level representations of data.

These networks have facilitated significant advances in different applications, from speech

recognition to natural language processing and game playing. Deep learning techniques have

surpassed conventional machine learning methods by extracting feature representations from

raw data automatically, without the need for human experts to manually engineer features.

In terms of neural networks, one of the most popular types is the Convolutional Neural

Network (CNN), which is commonly used for the identification and classification of images.

Binary Neural Network (BNN) is another type of neural network that has received consider-

able attention over the past few years for its ability to provide accurate estimations with lower

power and memory consumption than a CNN, making it particularly useful for applications

with constrained resources.

1.1 Background

In various implementations of Convolutional Neural Networks (CNNs), GPUs are used to

achieve high accuracy. However, FPGA-based implementations have, increasingly, received

high attention from researchers, since they are more efficient and consume less energy. De-

spite the high accuracy, CNNs need complex models and high-power consumption for their

calculations in comparison to Binarized Neural Networks (BNNs), which have shown great

1



2 Chapter 1. Introduction

potential in certain applications, in terms of accuracy, compared to CNNs. As a result, BNNs

can reduce the bit-widths from 32-bit to a single-bit and give high performance. A further

advantage is that they are perfectly combined with FPGAs, allowing the most efficient im-

plementation to be achieved.

1.2 CNN

Convolutional Neural Networks (CNNs) [2] constitute a form of artificial neural networks

that are considered to be very useful for a vast range of image and video recognition tasks, and

as result, they are widely adopted in both industry and research. They use several different

layers, with the most important being the convolutional layers, the pooling layers, and the

fully connected layers Fig. 1.1. The first ones are responsible for extracting features from

the input image, while the second ones are used to reduce the dimensionality of the feature

maps. At last, the fully connected layers are applied to identify the input image dependent on

the data extracted by the convolutional and pooling layers.

Figure 1.1: Example of a simple CNN

1.3 BNN

BinarizedNeural Networks (BNNs) are similar to Convolutional Neural Networks (CNNs),

however, the values of their weights and activation are binary, rather than continuous values

fig. 1.2. This difference is vital for reducing the computational complexity and the model
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size of the network. As shown in many scientific approaches [3], despite their simplicity,

BNNs can provide high accuracy and efficiency with less power consumption than a CNN

which is a requirement for a system with limited power capability and memory space, like

an embedded system or an edge device.

Figure 1.2:Wb = sign(W)

BNNs are well suited to be implemented on commercial FPGAs boards, since they can

be easily optimized to perform specific computations with minimal power consumption. The

flexibility of an FPGA seems to be useful for optimizations of BNNs, because it allows the

developer to change the hardware topology according to the network’s design, which could

reach or even exceed the accuracy of more complex models, such as a CNN running on a

GPU.

1.4 FPGA

Field Programmable Gate Arrays (FPGAs) are reconfigurable silicon devices with the

ability to be converted into various integrated circuits from simple ones, such as logic gates,

to more complicated systems. They consist of configurable logic blocks (CLBs), in an array,

and programmable interconnect points (PIPs), as well as memory blocks that are used for

Look Up Tables (LUTs), RAM, or even simple Flip Flops and can be configured by the user

to produce the circuit that is suitable for their needs. Generally, a high-level synthesis (HLS)

language will be used to determine the desired configuration of the blocks.
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What is most important about FPGAs is their flexibility to be configured to run simulta-

neously different programs that require different hardware designs which can be reconfigured

easily at low cost. Additionally, the parallelism of the processes running provides efficiency

and acceleration. Finally, FPGAs are suitable for simple circuits because they consume less

power than an ASIC. Considering all these factors, FPGAs are an attractive and efficient

solution for low-volume production.

1.5 Vivado

Xilinx Vivado [4] is a comprehensive software suite for designing and programming FP-

GAs and other programmable logic devices. It provides a wide range of tools and features

for all stages of the FPGA design process, from initial design creation to testing and debug-

ging, as well as, a GUI for designing circuits and a suite of tools for simulating and testing

the design. It also includes a synthesis tool that generates optimized gate-level netlists from

high-level RTL designs and a place-and-route tool that maps the netlist onto the target FPGA

and optimizes the routing of signals. Vivado also provides advanced debugging and analy-

sis tools, including waveform viewers and performance analyzers, to help identify and solve

design issues. Finally, Vivado supports a range of programming languages and design flows,

making it a versatile and flexible tool for FPGA design.

1.6 SDS++

SDS++ is a toolkit developed by Xilinx that is included with the SDx development en-

vironment [5] and is intended for the programming of FPGA-accelerated applications. It is

a C/C++ compiler that generates FPGA-optimized code directly from high-level designs, al-

lowing software developers to take advantage of the FPGA acceleration capabilities without

having to write low-level hardware description language (HDL) code. SDS++ supports a

wide range of FPGA devices and includes a set of libraries and APIs for delegating process-

ing efforts to the FPGA. It also includes tools for profiling and analyzing the performance of

the accelerated application, enabling developers to optimize their code for the target FPGA.

SDS++ is integrated with the Vivado design suite, allowing seamless design and verification

of the FPGA-based acceleration. Overall, SDS++ provides an easy-to-use and efficient way
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to create FPGA-accelerated applications, enabling software developers to take advantage of

the power and flexibility of FPGAs without requiring expertise in hardware design.

1.7 Contribution

This thesis tackles the problem of high power and memory consumption by implement-

ing and accelerating a BNN on a Xilinx FPGA. The acceleration has been achieved by using

optimization techniques such as pipelining and loop unrolling, which have been widely used

to enhance the performance of digital circuits. These techniques enable the design to pro-

cess more data in less time, thus reducing power and memory requirements. Also, a different

number of convolvers were examined. Additionally, the study examines the impact of vary-

ing the number of convolvers in the BNN. The results of the experiments are presented and

discussed in the following chapters, shedding light on the trade-offs between computational

complexity and accuracy. This project contributes to the development of more efficient and

effective hardware architectures for BNNs, with potential applications in various fields, like

computer vision, robotics, and IoT.

1.8 Structure of thesis

The rest of the thesis is organized as follows. In Chapter 2, related approaches and solu-

tions will be reported. In Chapter 3, the implementation of the BNN used for this thesis will

be analyzed. In Chapter 4, the acceleration techniques that have been applied to the BNNwill

be presented. In Chapter 5 the results of the optimization experiments will be explained and

finally, in Chapter 6 ideas for future work will be discussed.





Chapter 2

Related Work

As already noted, Binary Neural Networks (BNNs) are neural networks that replace

floating-point weights and activations with binary values, resulting in memory conservation

and complexity minimization of computational processes. They have gained popularity in re-

cent years due to their ability to reduce memory requirements and computational complexity

compared to traditional neural networks. Implementing BNNs in FPGAs can lead to further

benefits such as improved power efficiency and reduced latency. Several studies [6, 7, 8] have

produced encouraging findings in manifold applications, to name a few, image classification

and natural language processing, while retaining minimal accuracy loss.

”FINN:AFramework for Fast, Scalable BinarizedNeural Network Inference” byUmuroglu

et al. This work [9] presents a framework for implementing BNNs on FPGAs using the Xilinx

Vivado design suite. The authors use the ZC706 FPGA platform and perform experiments on

image classification tasks.

”A GPU-Outperforming FPGA Accelerator Architecture for Binary Convolutional Neu-

ral Networks” by Li et al. In this work [10], the authors propose a hardware-friendly bi-

nary convolutional neural network architecture and implement it on a Virtex-7 FPGA. They

demonstrate the effectiveness of their approach according to throughput and energy effi-

ciency.

There is no doubt that the implementation and acceleration of BNNs in FPGAs have

received considerable interest, primarily because of their potential advantages, reduced power

consumption and enhanced performance. Thus, it is indispensable to examine the cutting-

edge developments of BNNs on FPGAs to identify the limitations and challenges in this field

and investigate plausible solutions to counteract them.

7



8 Chapter 2. Related Work

The research in this field has been extensive. However, prior studies have left some gaps

that deserve attention. First of all, although BNNs are computationally less complex than

traditional neural networks, their implementation on FPGAs still poses challenges owing to

the restricted resources available on FPGAs, namely, on-chip memory and programmable

I/O blocks. Additionally, they have been found to exhibit lower levels of accuracy [7] com-

pared to classic neural networks, which is a primary bottleneck in certain applications. On

the other hand, FPGAs are highly customizable, but the customization process is complex

[11] and time-consuming. Finally, BNNs on FPGAs have been used for various applications,

but their performance and accuracy under real-world scenarios still need to be evaluated and

optimized. As a result, we need to conduct further research to implement BNNs on FPGA in

a more cost-effective manner and to improve the accuracy of BNNs without eliminating their

numerous advantages while attempting to make the customization process more efficient and

user-friendly.



Chapter 3

Implementation of BNN

This chapter provides an overview of the required steps for a BNN implementation and

the steps followed in our own BNN implementation.

The design of the architecture in which the number of layers of the network and the

number of neurons in each layer is determined. The activation function for the network is also

an important consideration, established in the beginning. The next step is about quantizing

the weights and activations from their original floating-point values. Afterward, the BNN

is ready to be mapped to the FPGA which means that the digital circuit for the network’s

implementation has to be created. Following that, the digital circuits have to be synthesized

to generate the digital logic that will be implemented on the FPGA. Once the digital circuits

have been created and synthesized, the FPGAwill be configured according to the digital logic

which has been produced in the previous step. The last three actions can be done using an

HLS tool. The final step concerns the optimization of the BNN.

For this thesis, a BNN has been implemented using C++ and Vivado has been used as the

HLS tool [12] for the generation of the RTL description of the network. Below there are, in

detail, the steps that were followed for this model.

3.1 Designing the BNN architecture

As it was mentioned above, this stage identifies the number of layers, the number of

neurons in each layer, and the type of activation function to be used. Furthermore, during the

design phase, it is necessary to balance the complexity of the architecture with the required

accuracy and performance. The main criteria for this design were efficiency as well as low

9



10 Chapter 3. Implementation of BNN

power and memory consumption, in order to have a suitable model to run on the FPGA.

In our BNN, the number of layers and neurons has been chosen based on the simplicity

of the project, thus a small number of layers are adequate. For more complex tasks a larger

number of layers is required. Likewise, the number of neurons in each layer has a significant

impact since it affects the computational operations required for forward and reverse passes.

A large number of neurons in each layer will result in a highly complicated BNN, on the other

hand, it may also increase the accuracy of the model.

The activation function that has been used is the sign function fig. 3.1 due to its simplic-

ity and efficiency. It is the most popular and well-suited activation function for devices with

limited power and memory capabilities. In particular, only a single bit is required to repre-

sent the activations, as opposed to multiple bits required by other activation functions. As a

result, XNOR and bit-count operations have been used to perform the binary convolutions

and pooling required for the BNN. A lookup table-based approach has been also used to im-

plement the binary sign function required for the hidden layers. A further advantage of the

sign function is its simplicity, which relies on a unique comparison operation that allows for

precise quantization of activations and weights. Consequently, the network becomes more

computationally efficient, since the conversion from floating-point to binary representations

is straightforward and it, also, has a reduced memory footprint.

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

Figure 3.1: sign function



3.2 Quantizing the weights and activations 11

3.2 Quantizing the weights and activations

The quantization process is converting the values of weights and activations of a tra-

ditional neural network, from real numbers into binary values, most commonly +1 and -1.

Initially, a threshold value needs to be selected above which the weights and activations are

set to +1, and below which they are set to -1. In our case, this value is the ’zero value’ but it

is possible to adjust the level of thresholding to optimize the ratio between the accuracy and

performance of the BNN. Secondly, by comparing the weights and activations of the BNN

with the threshold value, they are quantized to give the +1 or -1 status. The quantized weights

and activations are therefore stored in memory and are immediately available to be used in the

forward and backward passes of the BNN. This step can result in a loss of precision, which

can affect the accuracy of the BNN. Therefore, it’s crucial to carefully select the threshold

value and monitor the accuracy of the BNN after quantization. For our implementation, the

post-training quantization technique was used to mitigate the accuracy loss.

3.3 Mapping the BNN to FPGA

As part of the mapping process, it is necessary to determine which specific digital circuits

will be used for the FPGA implementation of the BNN. For example, the BNN’s computation

functions, such as convolution, pooling, and fully connected layers, need to be implemented

using appropriate digital building blocks like adders, multipliers, and registers. Furthermore,

to store the weights and activations of the BNN, the memory architecture must be determined,

for example, on-chip or external memory. Among these considerations are the required mem-

ory size, as well as the memory organization, such as the number of banks, the number of

ports, and the method of accessing the memory. It is also necessary to determine the inter-

connect structure, such as routing resources, in order to connect the various digital building

blocks and memory components. There are several factors to consider, including determin-

ing the number of interconnects, the topology of the interconnects, and the routing resources,

such as switch boxes and routing tracks.

Mapping a BNN to an FPGA involves determining the specific digital circuits and mem-

ory architecture that will be used to implement the BNN, and determining the interconnect

structure that will connect the various digital building blocks and memory components. This

process is crucial to ensure that the BNN can be implemented on the FPGA efficiently and
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that the performance, power consumption, and area of the BNN implementation meet the

requirements of the specific application.

3.4 Synthesis & Implementation

The synthesizing of the design has been created by Vivado HLS as well as the imple-

mentation of the BNN on the FPGA. At the beginning of this step, we chose the suitable

hardware architecture that could provide us with all the resources needed for our model.

Then, we inserted the Verilog code, which has been produced during the build process of

our implementation, into our Vivado project. Finally, the tool could begin the synthesis of

the code into a netlist which had to be optimized to reduce the number of logic elements

and maximize the clock frequency. The optimized netlist was then mapped onto the target

FPGA, which involves assigning the netlist to physical resources, such as lookup tables and

flip-flops, and generating the routing connections. During this stage, the design had to meet

the timing and resource constraints of the FPGA.



Chapter 4

Acceleration of BNN

In the following chapter, we will present the acceleration methodologies employed in our

BNN. In addition to the binary weights and activations of our network, that were already

reduced the hardware resources required, as we used an FPGA, we were able to parallelize

the computations which allowed multiple calculations to be performed simultaneously. This

greatly reduced the overall processing time and it was especially beneficial for further increas-

ing efficiency in implementation. Overall, the acceleration provided significant performance

improvements which are going to be presented in detail in Chapter 5.

4.1 Convolvers

Optimization of a BNN can be accomplished by adjusting the number of convolutional

layers and the parameters within each layer, including the size of the filters, the stride, and the

padding. The effectiveness of the convolutional layers depends on the complexity of the input

data and the nature of the problem being solved. It is possible to capturemore intricate patterns

in the input data by employing a greater number of convolutional layers. The downside of

this is that it also increases the computational cost and the likelihood of overfitting the data.

Overfitting occurs when a model becomes too complex and starts to memorize the training

data instead of learning the general patterns, which can lead to poor performance on unseen

data. On the other hand, if the model has fewer convolutional layers than needed to capture

complex patterns on the data, it may also have a limited ability to capture those patterns.

Hence, in order to choose the optimal number of layers for a BNN, the complexity of the

model should be balanced against the computational burden. To determine the best number

13
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of convolutional layers, we experimented with different numbers and evaluated their perfor-

mance. We observed that the number of convolutional layers in a BNN impacts its perfor-

mance and efficiency, and for the optimal number of layers, we have taken into consideration

the trade-off between model complexity and computational cost. As demonstrated by the re-

sults presented in Chapter 5, the optimal approach entails the selection of four convolvers in

conjunction with a series of optimization techniques.

4.2 Pipeline

The first optimization technique that was used is Pipelining. Generally, it refers to a

method that allows multiple instructions to be executed simultaneously in order to increase

the performance of FPGAs. As a general principle, pipelining consists of segmenting a single

instruction into multiple stages, each representing one step of the execution process. The di-

vision of the instruction into stages enables the execution of a new instruction to begin while

the previous instruction is still in progress. It also allows parallelizing multiple instructions

since the stages can be executed concurrently.

Stages in the pipeline correspond to discrete phases in the process of executing an in-

struction. As part of these phases, the instruction may be fetched from memory, decoded,

executed, or written back to memory. When multiple instructions are executed in parallel,

as outlined in /cite[pipeline], the FPGA is capable of achieving significant performance and

efficiency gains as compared to sequential execution. As pipelines are structured in such a

way as to enable parallel execution of different stages of the instruction execution process,

idle time is reduced and FPGA resources are maximized. Designing a pipeline that balances

the number of stages and their complexity will allow performance optimization while mini-

mizing potential bottlenecks and hazards.

In order to apply all the above to our implementation we used HLS Pragmas which direc-

tive provided by Xilinx. Specifically, we used the ”#pragma pipeline” to specify that a loop

in the code should be pipelined, meaning that each iteration of the loop should be executed

in parallel with the previous iteration.

Formally, the ”pragma pipeline” directive is used to specify the pipeline depth of a loop,

which is the number of loop iterations that can be executed in parallel. By using this direc-

tive, the designer can control the number of pipeline stages in the design, which can have a
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significant impact on the performance and resource utilization of the resulting hardware. The

directive provides the compiler with information about the intended behavior of the loop,

allowing it to optimize the code for pipelining and improve the performance of the design.

Algorithm 1 Reseting of the Convolutional Buffer with Pipelining
1: Procedure Pipeline each iteration of the loop

2: for (i = 0; i < WORD−SIZE; i++) do

3: #pragma HLS pipeline //Use the HLS pragma for pipelining

4: buffer[i][j] = 0); //Reset Convolution buffer

5: end for

6: End Procedure

4.3 Loop Unrolling

Loop unrolling [13] is the second method that was used for acceleration, by reducing the

number of iterations required to process the data. Loop unrolling is based on the concept that

the loop body is reprised a fixed number of times in order to decrease loop control overhead,

which involves checking loop conditions and incrementing loop indexes.

For our BNN, loop unrolling was applicable to the convolutional layers, where the fil-

ter weights are involved in overlapping patches of input data. Convolution loops were un-

rolled to reduce loop control statements and speed up processing. Further, loop unrolling

also improved the utilization of the system resources, like the arithmetic units and memory,

by allowing multiple operations to be performed in parallel. This had as a result increase in

performance and latency reduction. It is important to note that loop unrolling could also in-

crease memory usage, as the unrolled code may require more memory to store the duplicated

loop bodies. and can as well lead to excessive code size and decreased performance due to

increased overhead associated with instruction fetch and dispatch. Thus, we aimed to achieve

optimal performance by finding the right balance between loop unrolling and code size

The procedure to apply this technique to our implementation was the same with the

pipelining, We used the Xilinx pragma ”#pragma HLS unroll” [14]. As it was mentioned

before, this optimization technique is used to specify that a loop should be unrolled, meaning

that multiple iterations of the loop should be executed in a single pass.

Specifically, the ”#pragma HLS unroll” directive converts a loop consisting of a prede-
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termined number of iterations into a series of equivalent code blocks, each representing one

iteration of the initial loop. As a result of the directive, the compiler is provided with infor-

mation regarding the calculated behavior of the loop, permitting it to optimize the code for

unrolling and to enhance the performance of the design. By unrolling the loop, the compiler

is able to generate optimized code that reduces the overhead of loop control instructions and

improves the performance of the design.

Algorithm 2 Reseting of the Convolutional Buffer with Loop Unrolling
1: Procedure Unroll the iterations of the loop

2: for (i = 0; i < WORD−SIZE; i++) do

3: #pragma HLS unroll //Use the HLS pragma for loop unrollning

4: buffer[i][j] = 0; //Reset Convolution buffer

5: end for

6: End Procedure

The aforementioned techniques aid in emphasizing the fundamental significance of im-

plementing a robust and thorough approach, which combines the mentioned methodologies

to ensure maximum efficacy and efficiency. This procedure is essential to achieving superior

performance outcomes such as the ones that will be proposed at the next chapter.



Chapter 5

Results

In this chapter, we present the optimization results produced by Vivado HLS. To deter-

mine the optimal acceleration for our network, we conducted several experiments, always

keeping in mind the theoretical background described in the previous chapters.

The FPGAused for the synthesis and implementation processwas theVirtex-7, xc7vx485tffg1157-

1. The choice has been made in order to fulfill the requirements for the resources that our

project needed.

5.1 BNN with 2 Convolvers

In this synthesis and implementation run using Vivado, the design has used 21897 LUTs

out of the available 303600. Additionally, the design has utilized 1568 of the Slice LUTs as

memory, with 768 of them being distributed RAM and 800 of them being shift registers. The

remaining 20329 LUTs are used as logic and the power consumption on-chip was 259.111

(W).

Table 5.1: BNN with 2 Convolvers

17
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Slice Type Used Available Util%

Slice LUTs* 24437 303600 8.05

LUT as Logic 22869 303600 7.53

LUT as Memory 1568 130800 1.20

LUT as Distributed RAM 768

LUT as Shift Register 800

Slice registers 25656 607200 4.23

Register as Flip Flop 25656 607200 4.23

Register as Latch 0 607200 0.00

F7 Muxes 2102 151800 1.24

F8 Muxes 985 75900 1.30

Total On-Chip Power = 259.111 (W)

5.1.1 Pipeline

In this synthesis and implementation run using Vivado, the design has used 24005 LUTs

out of the available 303600. Additionally, the design has utilized 1568 of the Slice LUTs as

memory, with 768 of them being distributed RAM and 800 of them being shift registers. The

remaining 22437 LUTs are used as logic and the power consumption on-chip was 311.614

(W).

Table 5.2: BNN with 2 Convolvers & Pipeline
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Slice Type Used Available Util%

Slice LUTs* 24005 303600 7.91

LUT as Logic 22437 303600 7.39

LUT as Memory 1568 130800 1.20

LUT as Distributed RAM 768

LUT as Shift Register 800

Slice registers 24761 607200 3.80

Register as Flip Flop 24761 607200 3.80

Register as Latch 0 607200 0.00

F7 Muxes 2098 151800 1.24

F8 Muxes 744 75900 1.12

Total On-Chip Power = 311.614 (W)

5.1.2 Loop Unrolling

In this synthesis and implementation run using Vivado, the design has used 21897 LUTs

out of the available 303600. Additionally, the design has utilized 1568 of the available LUTs

as memory, with 768 of them being distributed RAM and 800 of them being shift regis-

ters. The remaining 20329 LUTs are used as logic and the power consumption on-chip was

281.296 (W).

Table 5.3: BNN with 2 Convolvers & Loop Unrolling
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Slice Type Used Available Util%

Slice LUTs* 21897 303600 7.21

LUT as Logic 20329 303600 6.70

LUT as Memory 1568 130800 1.20

LUT as Distributed RAM 768

LUT as Shift Register 800

Slice registers 23071 607200 3.80

Register as Flip Flop 23071 607200 3.80

Register as Latch 0 607200 0.00

F7 Muxes 1881 151800 1.24

F8 Muxes 850 75900 1.12

Total On-Chip Power = 281.296 (W)

5.1.3 Pipeline & Loop Unrolling

In this synthesis and implementation run using Vivado, the design has used 24527 LUTs

out of the available 303600. Additionally, the design has utilized 1568 of the Slice LUTs as

memory, with 768 of them being distributed RAM and 800 of them being shift registers. The

remaining 22959 LUTs are used as logic and the power consumption on-chip was 329.672

(W).

Table 5.4: BNN with 2 Convolvers & Loop Unrolling & Pipelining
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Slice Type Used Available Util%

Slice LUTs* 24527 303600 7.21

LUT as Logic 22959 303600 6.70

LUT as Memory 1568 130800 1.20

LUT as Distributed RAM 768

LUT as Shift Register 800

Slice registers 23071 607200 3.80

Register as Flip Flop 23071 607200 3.80

Register as Latch 0 607200 0.00

F7 Muxes 1881 151800 1.24

F8 Muxes 850 75900 1.12

Total On-Chip Power = 329.672 (W)

5.2 BNN with 4 Convolvers

In this synthesis and implementation run using Vivado, the design has used 29678 LUTs

out of the available 303600. Additionally, the design has utilized 816 of the Slice LUTs as

memory, as shift registers. The remaining 28862 LUTs are used as logic and the power con-

sumption on-chip was 441.492 (W).

Table 5.5: BNN with 4 Convolvers

Slice Type Used Available Util%

Slice LUTs* 29678 303600 9.78

LUT as Logic 28862 303600 9.51

LUT as Memory 816 130800 0.62

LUT as Distributed RAM 0

LUT as Shift Register 816

Slice registers 31241 607200 5.15

Register as Flip Flop 31241 607200 5.15

Register as Latch 0 607200 0.00

F7 Muxes 2297 151800 1.51

F8 Muxes 912 75900 1.20

Total On-Chip Power = 441.492 (W)
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5.2.1 Pipeline

In this synthesis and implementation run using Vivado, the design has used 29678 LUTs

out of the available 303600. Additionally, the design has utilized 816 of the Slice LUTs as

memory, as shift registers. The remaining 28862 LUTs are used as logic and the power con-

sumption on-chip was 370.496 (W).

Table 5.6: BNN with 4 Convolvers & Pipelining

Slice Type Used Available Util%

Slice LUTs* 29317 303600 9.66

LUT as Logic 28501 303600 9.39

LUT as Memory 816 130800 0.62

LUT as Distributed RAM 0

LUT as Shift Register 816

Slice registers 30332 607200 5.00

Register as Flip Flop 30332 607200 5.00

Register as Latch 0 0 0.00

F7 Muxes 2163 151800 1.42

F8 Muxes 704 75900 0.93

Total On-Chip Power = 370.496 (W)

5.2.2 Loop Unrolling

In this synthesis and implementation run using Vivado, the design has used 29678 LUTs

out of the available 303600. Additionally, the design has utilized 816 of the Slice LUTs as

memory, as shift registers. The remaining 28862 LUTs are used as logic and the power con-

sumption on-chip was 221.630 (W).

Table 5.7: BNN with 4 Convolvers & Loop Unrolling
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Slice Type Used Available Util%

Slice LUTs* 27962 303600 9.21

LUT as Logic 27146 303600 8.94

LUT as Memory 816 130800 0.62

LUT as Distributed RAM 0

LUT as Shift Register 816

Slice registers 28749 607200 3.80

Register as Flip Flop 28749 607200 3.80

Register as Latch 0 607200 0.00

F7 Muxes 2061 151800 1.36

F8 Muxes 610 75900 0.80

Total On-Chip Power = 221.630 (W)

5.2.3 Pipeline & Loop Unrolling

In this synthesis and implementation run using Vivado, the design has used 12346 Look-

Up Tables (LUTs) out of the available 22346. Additionally, the design has utilized 882 of the

available LUTs as memory, with 382 of them being distributed RAM and 500 of them being

shift registers and the power consumption on-chip was 394.974 (W).

Table 5.8: BNN with 4 Convolvers & Loop Unrolling & Pipelining

Slice Type Used Available Util%

Slice LUTs* 27307 303600 8.99

LUT as Logic 26491 303600 8.73

LUT as Memory 816 130800 0.62

LUT as Distributed RAM 0

LUT as Shift Register 816

Slice registers 27740 607200 4.57

Register as Flip Flop 27740 607200 4.57

Register as Latch 0 607200 0.00

F7 Muxes 2249 151800 1.48

F8 Muxes 896 75900 1.18

Total On-Chip Power = 394.974 (W)
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5.3 Summary

Based on these simulations, we have evaluated the design under a variety of configura-

tions and settings. A different set of results was produced by each run, including the use of

LUTs, memory usage, and power consumption. This analysis has enabled us to identify the

most efficient implementation that offers the best performance. It was particularly evident

in the implementation with four convolvers and loop unrolling that a relatively low number

of LUTs was utilized, with 27962 LUTs being operated out of 303600 available. Moreover,

this run met all timing constraints, while consuming the least amount of memory and power.

In light of these findings, it is reasonable to conclude that this run is the most appropriate

implementation of the design, giving the best balance between resource utilization, perfor-

mance, and power consumption. Based on the results of this analysis, future iterations and

improvements to the design can be guided.



Chapter 6

Conclusion & Future Work

We have presented the implementation and acceleration of a BNN on an FPGA. The

implementation can be customized in order to test different optimization techniques. An HLS

tool is used for bitstream generation and simulation of the model. The system can be trained

with a number of images that the user defines and then it can be flashed on a real FPGA.

According to the results, pipelining, and loop unrolling has been essential for the accel-

eration of the BNN. Both techniques have reduced the number of LUTs used and improved

the results.

The present implementation can be extended to be evaluated in a wide range of real-

world applications. Some examples of the fields that can be applied are computer vision and

robotics where the combination of high accuracy and low power consumption is vital. In more

detail, BNNs can be used for edge devices like drones and surveillance cameras to perform

object or face recognition and semantic segmentation, as well as, for robots for tasks such as

object grasping and human-robot interaction. Another important application is in Healthcare,

where BNNs can be utilized for wearable devices and medical equipment allowing heart

rate monitoring and sleep analysis. Last but not least, in the Automotive industry BNNs can

be applied in autonomous vehicles for lane detection, obstacle avoidance, and traffic sign

recognition.

25





Bibliography

[1] Karan Aggarwal, Maad M. Mijwil, Sonia, Abdel-Hameed Al-Mistarehi, Safwan Alo-

mari, Murat Gök, Anas M. Zein Alaabdin, and Safaa H. Abdulrhman. Has the future

started? the current growth of artificial intelligence, machine learning, and deep learn-

ing. Iraqi Journal For Computer Science and Mathematics, 3(1):115–123, Jan. 2022.

[2] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convo-

lutional neural network. In 2017 International Conference on Engineering and Tech-

nology (ICET), pages 1–6, 2017.

[3] Maoyang Xiang and Tee Hui Teo. Implementation of binarized neural networks in all-

programmable system-on-chip platforms. Feb. 2022.

[4] Vivado high-level synthesis user guide 2022.2. https://docs.xilinx.

com/viewer/book-attachment/NsrqATHzUj6if4Toia~ORQ/

eysSTISAO7ZIMF3n0HIRrQ. Last accessed: 20-02-2023.

[5] Sdsoc environment user guide. https://www.xilinx.com/support/

documents/sw_manuals/xilinx2019_1/ug1027-sdsoc-user-

guide.pdf. Last accessed: 20-02-2023.

[6] Wenyu Zhao, Teli Ma, Xuan Gong, Baochang Zhang, and David Doermann. A review

of recent advances of binary neural networks for edge computing. IEEE Journal on

Miniaturization for Air and Space Systems, 2(1):25–35, Mar. 2021.

[7] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe.

Binary neural networks: A survey. Pattern Recognition, 105:107 – 281, Sep. 2020.

27

https://docs.xilinx.com/viewer/book-attachment/NsrqATHzUj6if4Toia~ORQ/eysSTISAO7ZIMF3n0HIRrQ
https://docs.xilinx.com/viewer/book-attachment/NsrqATHzUj6if4Toia~ORQ/eysSTISAO7ZIMF3n0HIRrQ
https://docs.xilinx.com/viewer/book-attachment/NsrqATHzUj6if4Toia~ORQ/eysSTISAO7ZIMF3n0HIRrQ
https://www.xilinx.com/support/documents/sw_manuals/xilinx2019_1/ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2019_1/ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2019_1/ug1027-sdsoc-user-guide.pdf


28 Bibliography

[8] Qingliang Liu, Jinmei Lai, and Jiabao Gao. An efficient channel-aware sparse binarized

neural networks inference accelerator. IEEE Transactions on Circuits and Systems II:

Express Briefs, 69(3):1637 – 1641, Oct. 2022.

[9] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip

Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable bina-

rized neural network inference. page 65–74, Feb. 2017.

[10] Yixing Li, Zichuan Liu, Kai Xu, Hao Yu, and Fengbo Ren. A gpu-outperforming fpga

accelerator architecture for binary convolutional neural networks. 14(2), Jul. 2018.

[11] Hongwu Peng, Shanglin Zhou, Scott Weitze, Jiaxin Li, Sahidul Islam, Tong Geng, Ang

Li, Wei Zhang, Minghu Song, Mimi Xie, Hang Liu, and Caiwen Ding. Binary com-

plex neural network acceleration on fpga : (invited paper). In 2021 IEEE 32nd In-

ternational Conference on Application-specific Systems, Architectures and Processors

(ASAP), pages 85–92, Jul 2021.

[12] Vivado high-level synthesis Τutorial. https://docs.xilinx.com/v/

u/2014.2-English/ug871-vivado-high-level-synthesis-

tutorial. Last accessed: 20-02-2023.

[13] J.C. Huang and T. Leng. Generalized loop-unrolling: a method for program speedup.

In Proceedings 1999 IEEE Symposium on Application-Specific Systems and Software

Engineering and Technology. ASSET’99 (Cat. No.PR00122), pages 244–248, 1999.

[14] Vitis pragmas. https://docs.xilinx.com/r/en-US/ug1399-vitis-

hls/HLS-Pragmas. Last accessed: 20-02-2023.

https://docs.xilinx.com/v/u/2014.2-English/ug871-vivado-high-level-synthesis-tutorial
https://docs.xilinx.com/v/u/2014.2-English/ug871-vivado-high-level-synthesis-tutorial
https://docs.xilinx.com/v/u/2014.2-English/ug871-vivado-high-level-synthesis-tutorial
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Background
	CNN
	BNN
	FPGA
	Vivado
	SDS++
	Contribution
	Structure of thesis

	Related Work
	Implementation of BNN
	Designing the BNN architecture
	Quantizing the weights and activations
	Mapping the BNN to FPGA
	Synthesis & Implementation

	Acceleration of BNN
	Convolvers
	Pipeline
	Loop Unrolling

	Results
	BNN with 2 Convolvers
	Pipeline
	Loop Unrolling
	Pipeline & Loop Unrolling

	BNN with 4 Convolvers
	Pipeline
	Loop Unrolling
	Pipeline & Loop Unrolling

	Summary

	Conclusion & Future Work
	Bibliography

