
MASTER THESIS

Verilog RTL Regularity Analysis & Effect on
Structured Datapath Placement

Student:
Maria Pantazi-Kypraiou
mpantazi-@uth.gr

Supervisor:
Christos Sotiriou

chsotiriou@e-ce.uth.gr
Committee:

Georgios Stamoulis
georges@e-ce.uth.gr

Fotios Plessas
fplessas@e-ce.uth.gr

A thesis submitted in fulfillment of the requirements
for the degree of Master

in the
Circuits & Systems Laboratory (CASlab)

Department of Electrical and Computer Engineering

March 7, 2023

https://www.linkedin.com/in/maria-pantazi-kypraiou/
mailto:cgeorgakidis@uth.gr
https://www.e-ce.uth.gr/department/faculty/chsotiriou/
mailto:chsotiriou@e-ce.uth.gr
https://www.e-ce.uth.gr/department/faculty/georges/
mailto:georges@e-ce.uth.gr
https://www.e-ce.uth.gr/department/faculty/fplessas/
mailto:fplessas@e-ce.uth.gr
https://caslab.e-ce.uth.gr
https://www.e-ce.uth.gr

Abstract

Several combinational logic architectures (i.e. adders, neural networks and more)
present high structural uniformality and regularity, due to similar or identical parallel
functional data processes. In this work, a verilog RTL techniques flow, of three steps, is
proposed to help increase regularity, a method of extracting regularity using login cones
for designs with or without logic depth (i.e. adders, MUXs) when RTL is not available,
or the designer does not want to change it for better optimizations during synthesis and
finally, a bit-slicing, or not, placement flow is proposed, custom or automated within
some contexts, to optimize HPWL. The case studies are a register file, a CSA booth
multiplier and a DLX execute unit. Firstly, for each design the regularity extractions
is demonstrated and after that, a hierarchical datapath flow, performing an SDP-like
(Structure DataPath) placement.

Περίληψη

Πολλές αρχιτεκτονικές συνδυαστικής λογικής (όπως προσθετές και νευρωνικά δίκτυα)

παρουσιάζουν υψηλή δομική ομοιομορφία και κανονικότητα, λόγω παράλληλων λειτουργικών

διεργασιών δεδομένων. Σε αυτήν την εργασία, προτείνεται μία ροή τριών τεχνικών που ε-

φαρμόζονται σε επίπεδο γλώσσας περιγραφής υλικού, για την αύξηση της ομοιομορφίας, μια

μέθοδος εξαγωγής ομοιομορφίας χρησιμοποιώντας λογικούς κόνους για κυκλώματα με ή χω-

ρίς βάθος λογικής (όπως προσθετές και πολυπλέκτες) όταν η περιγραφή σε κώδικα δεν είναι

διαθέσιμη ή ο σχεδιαστής δεν επιθυμεί να την αλλάξει για βελτιστοποίηση κατά τη σύνθεση

και τέλος προτείνεται μια ροή τοποθέτησης με το χέρι ή αυτοματοποιημένη σε ορισμένα πλα-

ίσια, για τη βελτιστοποίηση του συνολικού μήκους των καλωδίων. Οι μελέτες περιλαμβάνουν

ένα αρχείο καταχώρησης(register file), έναν πολλαπλασιαστή Booth με CSAs και μια μονάδα
εκτέλεσης DLX. Αρχικά, για κάθε κύκλωμα, επιδεικνύεται η εξαγωγή ομοιομορφίας και στη
συνέχεια η ιεραρχική ροή δομημένης τοποθέτησης.

Acknowledgements
I would like to thank my thesis supervisor Prof. Christos Sotiriou, who was always

available and willing to help whenever I ran into trouble or had a question about my
research and guided me in the right direction whenever he thought I needed it. I would
also like to thank Prof. Georgios Stamoulis and Prof. Fotios Plessas for the confidence
they showed in my face.

I would like also to thank the members of the CASlab, who created a friendly envi-
ronment, and especially Dimitrios Valiantzas and Nikolaos Sketopoulos, who helped me in
my thesis research.

Finally, I would like to express my acknowledgements to my family and my friends
supporting me throughout my years of study at the University of Thessaly.

Maria Pantazi-Kypraiou
Volos, 2023

Verilog RTL Regularity Analysis & Effect on
Structured Datapath Placement

Maria Pantazi-Kypraiou
mpantazi-@uth.gr

Copyright © Maria Pantazi-Kypraiou2023

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

mailto:mpantazi-@uth.gr

Ανάλυση Ομοιομορφίας σε Επίπεδο Γλώσσας

Περιγραφής Υλικού και η Επίδραση της στην

Δομημένη Τοποθέτηση

Μαρία Πανταζή-Κυπραίου

mpantazi-@uth.gr

Copyright © Μαρία Πανταζή 2023
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

mailto:mpantazi-@uth.gr

Contents

1 Introduction 6

2 Theoretical Background 8
2.1 EDA & Physical Design Background . 8

2.1.1 Introduction to EDA . 8
2.1.2 Physical Design . 9
2.1.3 Placement . 10

2.2 Structured Datapath Background . 11

3 Regularity Extraction & Measurements 13
3.1 Existing Work on Regularity Extraction 13

3.1.1 Graph Traversals and Matching Approaches 13
3.1.2 Template-based Approaches . 14
3.1.3 Signature-based Methods . 15
3.1.4 Structured Clustering Algorithms 16

4 Verilog RTL Impact on Regularity 20
4.1 The Power of Designer’s Verilog Knowledge 20

4.1.1 What is Verilog? . 20
4.1.2 Synthesis Process . 20

4.2 Techniques that Improve Netlist’s Regularity 23
4.2.1 First Flow Step - Module Separation 24
4.2.2 Second Flow Step - Additional Cellgroups Creation 29
4.2.3 Third Flow Step - Reuse of Regular Modules 33

5 Regularity Extraction & Measurements using Logic Cones 39
5.1 What happens in case of an Agnostic Designer? 39
5.2 Case Studies . 40

5.2.1 33-bit Synthesized Adder . 40
5.2.2 8-to-1 Synthesized Multiplexer . 45

6 Bit Slicing Regular Datapath Placement Flow 53
6.1 Case Studies & their Hierarchical Break-Down Analysis 54
6.2 Regular Placement of Bit-Slices . 54

6.2.1 Register Files . 54
6.2.2 32x32 Booth Multiplier . 57
6.2.3 DLX Execute Unit . 66

1

7 Conclusions & Future Work 68
7.1 Conclusions . 68
7.2 Future Work . 68

2

List of Figures

1.1 Motivation . 7

2.1 Moore’s Law from 1970 till 2020 . 8
2.2 Physical Design Flow . 9
2.3 Global Placement . 10
2.4 Legalisation . 11

3.1 4-to-2 Sliced Datapath [1] . 14
3.2 Signature definition . 16
3.3 Tree of Cellgroups [2] . 16
3.4 Resultant Cluster for group size 5 [2] . 17
3.5 Cellgroup "Column size" explanation . 17
3.6 Single Column Per Cellgroup [2] . 18
3.7 Single Row Per Cellgroup [2] . 18
3.8 Multiple Row, Multiple Columns [2] . 18
3.9 Common Components Across Endpoints [2] 19
3.10 Forest of Trees Matching Problem Example [2] 19

4.1 RTL Techniques Flow . 23
4.2 Schematic of CSA with Separated Modules 28
4.3 CSA Tree with CSAs from section 4.2.1 . 31
4.4 CSA Tree with Original CSAs . 34
4.5 Schematic of CSA Tree with Splitted Modules 35

5.1 Half Adder . 40
5.2 Full Adder . 41
5.3 8 to 1 Multiplexer . 46
5.4 Logic Diagram of 1bit 8 to 1 Multiplexer 46
5.5 Cellgroups of 1-bit 8 to 1 Multiplexer . 51

6.1 Structured Datapath Placement Proposed Flow 53
6.2 Fix Place Cell-groups row-by-row . 55
6.3 GP/LG/DP of 32x32 RegFile’s Flat Cells 55
6.4 Flat VS SDP for 32x32 RegFile . 56
6.5 RegFile 64x64 . 56
6.6 Booth Multiplier Block Diagram . 57
6.7 Proposed IOs for 33-bit Synthetic Adder 58
6.8 Adder’s Cellgroups Fixed Placement . 59
6.9 Fix Place Sum Cellgroups & GP/LG/DP for Flat Ones 59

3

6.10 Flat VS SDP for 33-bit Synthetic Adder 60
6.11 Flat VS SDP for 64-bit Synthetic Adder 60
6.12 Fix Place Input Cell-groups & GP/LG/DP for Flat Cells 61
6.13 Flat VS SDP for 33-bit 8 to 1 Synthetic MUX 61
6.14 Cell-groups Fixed Placement for the Right Combination 62
6.15 Flat VS SDP for CSA Tree (Attempt 1) 63
6.16 Flat VS Semi-SDP for CSA Tree (Attempt 2) 63
6.17 Booth Multiplier Flat VS SDP (Attempt 1) 64
6.18 Booth Multiplier Flat VS SDP (Attempt 2) 65
6.19 Booth Multiplier Flat VS SDP (Attempt 3) 65
6.20 Booth Multiplier Flat VS SDP (Attempt 4) 66
6.21 Flat VS Clustered SDP (1stapproach) VS Automated SDP (2ndapproach) . 67

4

Listings

4.1 4 to 1 MUX with case statement . 21
4.2 Netlist of 4 to 1 MUX with case statement 21
4.3 4 to 1 MUX implemented with gates . 22
4.4 Netlist of 4 to 1 MUX with gates . 22
4.5 Original CSA . 25
4.6 Original CSA’s cellgroups . 25
4.7 Modified CSA . 27
4.8 XOR Submodule . 28
4.9 MAJORITY Submodule . 28
4.10 CSA Tree . 29
4.11 CSA Tree Seed Groups . 31
4.12 XOR Seed Group . 32
4.13 MAJORITY Seed Group . 32
4.14 Tree of Original Carry Save Adders . 33
4.15 Example of I-type instructions . 37
4.16 Part of EU reusing regular adder . 37
5.1 33-bit Behavioural Adder . 41
5.2 Sum Extraction Flow . 42
5.3 TCL List Intersection . 43
5.4 TCL Procedure for Pins Removal . 43
5.5 Seed Group for the 33-bit non-regular adder 44
5.6 Carry Extraction Flow . 45
5.7 Sum Extraction Flow . 45
5.8 33-bit 8 to 1 MUX . 47
5.9 MUX Input Gates Extractions . 48
5.10 Procedure delete_output . 50
5.11 Procedure delete_output_gates . 50
5.12 MUX "output" cellgroup . 51

5

Chapter 1

Introduction

Combinational logic architectures, such as adders and neural networks, often exhibit
high structural uniformity and regularity due to their parallel functional data processes.
This regularity can be leveraged to improve Power, Performance, and Area (PPA) results
in the design process. By taking advantage of the regularity of these architectures, de-
signers can develop custom placements that optimize the layout and routing of the design,
reducing the overall wirelength, represented as Half Perimeter Wirelength (HPWL), area
and power consumption. This approach can lead to improved performance and efficiency
in the design process, as well as reduced manufacturing costs.

The placement step in the design flow of Application-Specific Integrated Circuits
(ASICs) involves the physical placement of logic gates and other circuit components on a
chip. To optimize the placement step for specific design architectures, designers can im-
plement an optimal custom regular placement strategy. This involves designing custom
placements that take into account the regularity and uniformity of the architecture, which
can lead to reduced half-perimeter wirelength (HPWL), area, and power consumption.
Once the custom placements have been developed, a macro-like placement strategy can
be used to place the optimal custom-designed blocks in the layout. This strategy involves
grouping similar blocks together and placing them in predefined areas of the layout to
achieve greater regularity and uniformity. The use of a macro-like placement strategy
can further improve PPA results, as it can help to reduce routing congestion and improve
overall timing and power efficiency. By combining optimal custom regular placement with
a macro-like placement strategy, designers can achieve better PPA results and improve
the overall quality of the ASIC design.

Below, in fig. 1.1, the motivation is shown. On the left there is the flat placement of
a 32-bit register file and on the right its SDP version. The design on the right has clearly
less area and less HPWL, which will be shown later on the results.

6

Figure 1.1: Motivation

7

Chapter 2

Theoretical Background

2.1 EDA & Physical Design Background

2.1.1 Introduction to EDA
An integrated circuit (IC) refers to a collection of electronic circuits that are situ-

ated on a diminutive flat semiconductor material, often composed of silicon. ICs have
gained widespread use in electronic devices and have been instrumental in transforming
the electronics industry. The current-day landscape of modern societies is marked by the
ubiquitous presence of IC-powered devices, ranging from computers to mobile phones and
household appliances. This is primarily attributed to the compact size and economical
nature of ICs, including advanced computer processors and microcontrollers.

Back in the history, IC’s were mainly designed by hand. However, with the rapid
growth of the electronics industry in commonplace applications such as televisions, cars,
cellphones etc and the increased performance demands, manual design has become im-
possible.

Figure 2.1: Moore’s Law from 1970 till 2020

8

According to Moore’s Law, shown in fig. 2.1 above, the number of transistors doubles
every approximately two years, so the designing of very large-scale integrated (VLSI) cir-
cuits becomes more and more complex. Electronic Design Automation (EDA) industry
has come to the rescue, developing software tools to aid the engineers design complex
electronic systems more efficiently.

EDA tools automate the design process and enable engineers to create, simulate,
and verify electronic systems with high efficiency and accuracy. EDA encompasses a
broad range of applications, from schematic capture and layout to simulation and anal-
ysis. These tools are essential for designing modern electronics, such as microprocessors,
memory devices, and communication systems, which require precise timing, low power
consumption, and high reliability.

2.1.2 Physical Design
Physical design is the process of transforming a high-level description of a digital

system into a detailed description of the physical components that will implement that
system. It involves selecting the specific hardware components and determining how they
will be interconnected to create the desired system.

Physical Design

Clock Tree Synthesis

Placement

Floorplanning

Partitioning

Timing Closure

Signal Routing

Figure 2.2: Physical Design Flow

As shown in fig. 2.2, physical design consists of a number of steps, including floorplan-
ning, placement, clock tree synthesis, and routing. It starts from the netlist, a synthesized
Register Transfer Level (RTL), and passes through floorplanning, the first major step.
Floorplanning includes the identification of structures that should be placed near others,
depending on area restrictions, speed or constraints required by components. Floorplan-
ning is followed by partitioning, which involves dividing the system into smaller modules
or subsystems that can be designed and implemented separately. The next step, and the
one that will be discussed further below, is placement. During this step, each component’s
location on the Printed Circuit Board (PCB) is determined, as well as the routing of the

9

connections between them. Finally, we have clock tree synthesis and routing. During
the first, buffers or inverters are inserted in a way that the clock is distributed evenly to
sequential elements in the design, minimizing skew and latency, while during the second,
the paths of interconnects are determined, including standard cell and macro pins. The
final output of the physical design process is typically GDSII, a data format representing
layout information.

2.1.3 Placement
In digital circuit design, placement is the crucial step of positioning various compo-

nents on a chip or a PCB. Its primary objective is to minimize wirelength, lower manufac-
turing costs and reduce power consumption, as such, it directly influences the efficiency
and performance of a digital system. The placement process involves three stages, namely
global placement, legalization, and detailed placement. These steps aim to ensure optimal
component positioning and wiring density to enhance the overall design quality.

Global Placement (GP)

During global placement, the entire circuit is divided into smaller blocks or modules,
and the positions of these blocks are optimized to achieve the desired performance and
efficiency. The goal of global placement is to minimize the overall area of the circuit and
reduce the length of the connections between the components.

Rather than paying attention to the placement grid rows, GP focuses on finding
the optimal coordinates for the cells in order to minimize wirelength, while maintaining
some density specifications. After this step, an approximation of gate’s positions is de-
termined, but cells may have overlaps with one another, making the next placement step
(Legalization) essential.

Figure 2.3: Global Placement

Legalization (LG)

Legalization involves adjusting the positions of the components to the placement
manufacturing grid rows in order to meet the constraints and rules set by the IC fabrica-
tion process.

10

During the legalization process, modifications are made to the positions of compo-
nents to ensure compliance with minimum feature sizes and spacing requirements. This
may require the movement of components or the addition of dummy components to occupy
any unutilized spaces. Essentially, the tool relocates cells to conform to legal positions on
the placement grid and eliminates any overlaps between them. These slight modifications
to cell positions can result in changes in the lengths of wire connections, which may give
rise to new timing issues. However, such violations can typically be rectified through
incremental optimization techniques, such as adjusting the sizes of the driving cells, or by
carrying out detailed placement.

Figure 2.4: Legalisation

Detailed Placement

After obtaining a legalized placement solution, the next step is to carry out detailed
placement to further enhance wirelength or other objectives by locally rearranging stan-
dard cells while ensuring that the placement remains legal. Detailed placement presents a
significant opportunity for improving wirelength in a legalized global placement solution
for several reasons. Firstly, the wirelength models used in global placement are typically
inaccurate, such as cut cost, quadratic wirelength with clique net model, or log-sum-
exponential function. Secondly, global placement algorithms often place cells into subre-
gions with little regard for their position within that region. Finally, during legalization,
wirelength may be adversely affected by perturbations. Therefore, detailed placement can
help rectify any issues that arise and achieve better wirelength optimization.

2.2 Structured Datapath Background
Structured Datapath process consists of two steps, regularity extraction and

structured datapath placement. Datapath is implemented in bit-slice structures to
manipulate multiple bits of data simultaneously. The structures could also be made of
several functional stages, that is multiplexers, arithmetic logic units (ALUs) and espe-
cially registers. Registers usually pipeline a basic datapath to reduce critical path issues
and increase the operating frequency. Traditionally, datapath design was a process that
could be done only manually, consumed a lot of time and a significant amount of human

11

effort.
For regularity extraction, a set of structures that is repeated many times in a cir-

cuit netlist has to be identified. The techniques that exist in the literature for regularity
extraction are numerous and they are further discussed in section 3.

Structured datapath placement is a technique used in the physical design of dig-
ital systems to optimize the layout of the system on a printed circuit board (PCB). The
goal of structured datapath placement is to reduce the routing congestion and improve
the performance of the system by organizing the components in a structured way. It is
often used in the design of systems that have numerous components which need to be
interconnected, such as processors.

In structured datapath placement, the components are first grouped into smaller
modules or subsystems, each of which performs a specific function. They are, then, ar-
ranged in a pattern, such as a linear array or a two-dimensional grid. More efficient
routing of signals between the components is allowed, as the connections follow a pre-
dictable pattern.

12

Chapter 3

Regularity Extraction &
Measurements

In a netlist, regularity can be extracted by identifying patterns in the components
and connections. For example, if a particular circuit element appears multiple times
in the netlist, it could be considered a regular element. Similarly, if there are multiple
connections with the same components, they could be considered a regular pattern.

This can be done by using techniques such as graph theory, which can be used to
analyze the connectivity of the components in the circuit. Once the regularity has been
identified, it can be used to simplify the analysis and design of the circuit, or to generate
a more compact representation of the circuit for storage or transmission.

Regularity can be useful in the analysis and optimization of a circuit, as it can allow
for the use of repetitive structures and simplify the design process. With that being clear,
how is regularity extracted?

3.1 Existing Work on Regularity Extraction
To begin with, regularity extraction is a process key to achieving high quality, effi-

cient and low-cost digital designs for a number of reasons. For example, by identifying
and exploiting regularity in a design, the resulting implementation is more structured
and predictable, which can improve the overall quality of the design. Another essential
benefit of regular structures, achieved by grouping cells or modules together, is the area
utilization. Improving the last, results in smaller area and lower power consumption.

Until today, several approaches have been developed on how to extract and mea-
sure regularity within the circuit. Some of them include graph traversals and matching
approaches, while others include template-based approaches, as well as signature-based
methods.

3.1.1 Graph Traversals and Matching Approaches
As far as graph traversals are concerned, in prior approaches, the key was to model

the original circuit into a bipartite graph, in order to use a bipartite edge-cover algorithm
to address the problem, as stated in [1]. Each bipartite graph represents a bit-slice path,
as shown in fig. 3.1.

13

A0

A1

B0

B1

X0

X1

Figure 3.1: 4-to-2 Sliced Datapath [1]

On the other hand, several converts the bit slice problem into bit matching prob-
lem, like in [3]. The motivation of this method is based on the fact that although each
datapath can be different, there may exist a main path between a starting point and its
corresponding ending point. Once the starting points are able to match to ending points,
the gates between a pair of matched points can get extracted to make one bit slice.

3.1.2 Template-based Approaches
The fundamental step of template-based approaches is the generation of a large set of

templates, where a template is a sub-circuit with multiple instances in the circuit. In this
section, two algorithms will be mentioned, one for templates with a tree structure and
one for a special class of multi-output templates, called single-principal-output templates,
where all outputs of a template are in the transitive fanin of a particular output [4].

Based on [4], regularity in a given circuit can be of three types, functional, structural
or topological. For example, given a high level description, a functional-regular circuit
uses a set of functionally-equivalent operations or sub-circuits. Functional regularity is
an essential first step towards the generation of a compact and regular template. A struc-
turally regular description can be represented schematically by assigning a horizontal or
vertical direction to the nets. Finally, a topologically regular design consists of an ordered
set of blocks, which gives a good initial placement for the circuit. For the algorithms that
will be mentioned, functional regularity in high-level descriptions is concerned.

The regularity extraction problem is composed as a graph with input a circuit C
of logic components that can be either small logic blocks, such as AND or OR gates,
multiplexers or arithmetic blocks, such as adders and shifters. This circuit is represented
by a directed graph, where the nodes correspond to the logic components or the primary
inputs and the edges correspond to the interconnection between them. Having formulated
the problem, it can now be stated as follows:

1. Regularity Extraction Problem [4]: Given a circuit represented by a graph
G (V,E), find a cover C(G)={G1, G2, ..., Gn}, which is partitioned into m templates
S1, S2, ..., Sm, such that the number n of sub-graphs and the overall area of the templates
are maximized.

2. Template Generation Problem [4]: Given a circuit represented by a graph
G(V,E), generate the complete set of templates where each template has at least two sub-
graphs.

14

Generation of Tree Templates

A tree template is a template with a single output and no internal reconvergence.
First, the nodes of graph G are topologically sorted, and for every pair of nodes, a template
is generated with two sub-graphs, one rooted at each node. After that, the logic functions
of the two nodes are compared in order to construct the list of children templates. The
template Sm is then compared to previously constructed ones, with a binary search, and
if it is equivalent with others, its sub-graphs are added to the existing one. This process
is repeated for every node-pair.

Generation of Multi-Output Templates

This algorithm is the extension of the algorithm for the tree templates. A disclaimer
is that only those multi-output sub-graphs whose every output lies in the transitive fanin
of a particular output are used, and they are called single PO sub-graphs. A single PO
sub-graph is represented by a list of its nodes in depth-first-search, and that is because
all isomorphic sub-graphs are unique. For node w and root node u, there can be multiple
paths through different incoming edges of u, so, the first thing is to define a list of path,
containing the indices of the incoming edges of u through which w is connected to u.
After that, the nodes in node-list of Gu and Gv are compared pairwise. If the path-list of
the corresponding nodes are different, they are removed from the sub-graphs and finally,
if they are the same, the remaining copies are removed from the node-list.

3.1.3 Signature-based Methods
Signature-based regularity extraction approaches are methods for identifying patterns

or regularities in data by using predefined "signatures" or templates. In this report,
an algorithm that analyzes the circuit connectivity, to recognize regularity, and then
automatically extracts regular structures is going to be mentioned. This algorithm [5]
can handle two design types:

1. Designs with a portion of the datapath components identified at the HDL level.

• Structured cluster information for these components is identified in the netlist.

2. Designs with no such structured cluster information.

• Such information for datapath components is automatically created by using
hints from bus names and datapath features.

Regularity Extraction Problem [5]: Group random instances into regular func-
tions such that the given objective function is optimized.

The signature of a random instance is dictated by its master cell and its connectivity
to datapath instances. For example, the random instance A of the figure 3.2 is connected
to datapath instance P at terminal point x and to datapath Q at terminal point y. So,
the signature for instance A will be:

S(A) = f(M(A), h(M(P), x), h(M(Q), y)),

where f and h are properly chosen hash functions and the function M maps cell
instances to their master cells.

15

P A Qx y

Figure 3.2: Signature definition

3.1.4 Structured Clustering Algorithms
In this report, Structured Clustering Algorithms [2] will be used. The goal of

Structural Clustering algorithms is to create cell groups, based on netlist connectivity.
But first, in order to explain the algorithms, some scientific terms need to be clear.

To begin with, a cluster is a set of connected cellgroups and seed cellgroups
constitute the starting point of the process. In prior approaches (section 3.1.1), seed
groups were generated by identifying registers with common control signals, while here,
they are generated by Flip-Flop (FF) bit bus name. This can happen because FF instance
names are preserved from RTL to netlist. After seed groups are generated, they are grown
backwards into clusters, with the algorithms that will be discussed below, and formulate
cell groups of the same size without the need to be of identical library cell type.

Cluster Representation & SDP Placement

To represent a cluster, a tree of size same as the cellgroups’ size is used, with unique
cells in each cellgroup. Thus, a cluster of size N, contains N isomorphic, single cell member
trees, one per cell group member. In the figure below, there is a representation of a cluster
tree with 20 tree nodes, thus 20 cellgroups.

FF seed
01

2

3

4

6

5

7

8

9

10

11

13

14

15

16

17

18

12

19

Figure 3.3: Tree of Cellgroups [2]

If the cellgroup size is 5, the resultant cluster size is 20∗5 = 100 cells and the cluster
is composed by five sets of cluster trees, like the one in the figure above (figure 3.2).

As far as the cluster placement process is concerned, the idea of centre of mass
combined with a set of cluster parameters is used. These parameters are:

1. Row, Column (R, C) Organisation. This can be either, i) multiple rows, single
column, or ii) single row, multiple columns, or finally iii) a custom R, C organisation

16

FF
seed

0
1

2

3

4

6

5

7

8

9

10

11

13

14

15

16

18

17

12

19

SET 1

FF
seed

0
1

2

3

4

6

5

7

8

9

10

11

13

14

15

16

18

17

12

19

SET 2

FF
seed

0
1

2

3

4

6

5

7

8

9

10

11

13

14

15

16

18

17

12

19

SET 3

FF
seed

0
1

2

3

4

6

5

7

8

9

10

11

13

14

15

16

18

17

12

19

SET 4

FF
seed

0
1

2

3

4

6

5

7

8

9

10

11

13

14

15

16

18

17

12

19

SET 5

Figure 3.4: Resultant Cluster for group size 5 [2]

matching the core area aspect ratio.

2. x, y strides. Stride is called the required horizontal and vertical spacing between
the members of a cellgroup.

3. x,y origin. Origin is defined as the x, y coordinates in the core area that the
cellgroups is going to be placed.

Cluster tree cellgroups are placed one by one, in tree traversal order, at the nearest
legal position. As mentioned above, for the cells that belong to a cellgroup, there is
no need to be of the same library cell type, thus the size of each cell may differ. This
situation generates a problem for the R, C organisation and especially for the columns.
If the cellgroup size is 5, and the wanted organisation is multiple columns, single row, C
would be 5. In order for this problem to be eliminated, this 5 (C) is multiplied by the size
of the biggest cell, while if it was multiplied by anything rather than that, the resulted
columns would not be enough to fit all cells. This example is illustrated in the figure
below.

1 2 3 4 5

1 2 3 4 5

Figure 3.5: Cellgroup "Column size" explanation

17

This solution may result in empty space between cells. This space could be filled
with unclustered cells later, in the placement process. For the example in fig. 3.3, the
possible RC organizations could be:

FF1

FF2

FF3

FF4

FF5

Single Column Per Cell Group

Figure 3.6: Single Column Per Cellgroup [2]

Single Row Per Cell Group

FF1FF1FF1FF1FF1

Figure 3.7: Single Row Per Cellgroup [2]

FF1 FF2

FF3 FF4

FF5 RC Organisation
3 Rows, 2 Columns

Figure 3.8: Multiple Row, Multiple Columns [2]

Now, let’s see further the two extraction algorithms that will be used.

18

Greedy Clustering

During the greedy approach, every member’s connected components are explored
backwards in the circuit graph and attempt to find new members that will be added to
the cluster tree representation. The basic principle, also mentioned above, is that one cell
can only belong to one cellgroup. So, the reason that this algorithm is called greedy is that
it makes local decisions about the common components. That is, buffers or gates shared
between logic cones of FF seed groups are excluded from clusters, as clustered cells must be
unique. However, if common components are excluded, the matching size is not optimal.
Isomorphism based clustering algorithm is here to better solve this problem.

Figure 3.9: Common Components Across Endpoints [2]

Isomorphism Based Clustering

Due to graph isomorphism algorithm’s NP complexity, in order to use it, it is trans-
formed into a Forest of Trees Isomorphism problem. That is, the circuit graph is broken
down into a forest of trees by routing new trees at fanout points of the original graph.
These forests are then grown backwards, one per FF endpoint logic cone and the goal is
to find the maximum isomorphism across the forests. The question for the common com-
ponents assignment arises and the answer is that it is performed by solving the maximum
bipartite matching problem, using Edmonds-Karp algorithm, on the formulated bipartite
graph of common components and FF endpoints.

Figure 3.10: Forest of Trees Matching Problem Example [2]

19

Chapter 4

Verilog RTL Impact on Regularity

4.1 The Power of Designer’s Verilog Knowledge

4.1.1 What is Verilog?
Verilog is a hardware description language (HDL) used to design digital circuits and

systems. It is used to describe the behavior and structure of digital circuits and systems,
allowing the designer to describe the functionality of the circuit in a manner that is similar
to the way it would be described in a programming language.

Verilog can be used to design and simulate a wide range of digital circuits and sys-
tems, including processors, memory systems, communication systems, and digital signal
processing systems. It is widely used in the electronic design automation (EDA) industry,
and is supported by a wide range of EDA tools and simulators.

Verilog provides a set of constructs such as modules, always and initial blocks, and
tasks and functions that allow the designer to describe the behavior of the system at
various levels of abstraction, from the gate level to the algorithmic level. It also provides
a rich set of data types, such as integers, logic vectors, and arrays, which can be used to
describe the data that flows through the system.

4.1.2 Synthesis Process
From RTL Verilog all the way to netlist, intercedes a process called synthesis.

It practically takes the high-level description of a digital circuit and converts it into a
gate-level representation of the circuit. The synthesis process typically involves a number
of steps. For starters, the RTL implementation is parsed and checked for syntax errors.
After that, the design is expanded to include any instantiated modules or components and
proceeds to technology mapping. There, the design is mapped to the specific target tech-
nology, such as the type of FPGA or ASIC being used. This step may include performing
logic optimization to reduce the number of gates used in the final design. Placement and
routing are following, in order to determine the physical location of the gates and the
routing of the interconnections between them. The final output (the netlist) cannot be
generated unless timing analysis is performed. During timing analysis, the design passes
through checks to make sure it meets the timing constraints specified in the HDL code.
The netlist can be used for programming of programmable devices (FPGA or CPLD)

20

or for the manufacturing process of custom ASICs. It’s worth noting that the synthesis
process is performed by specialized software called synthesis tool, which may be provided
by the device vendor or by third-party vendors.

During synthesis process, it is very important how RTL is written, for the netlist that
will be generated. For example, a multiplexer (MUX) described with logic gates in RTL,
it is going to have the same gates after synthesis in the netlist, while if it is implemented
with if-else or case statement, the logic gates of the netlist will be different and totally up
to synthesizer. To better understand this situation, there is an example below.

The verilog code for a 4 to 1, 1-bit multiplexer, using a case statement, can be seen
in the listing below.

1 module MUX4to1_case (input a, // 1-bit input
2 input b, // 1-bit input
3 input c, // 1-bit input
4 input d, // 1-bit input
5 input [1:0] sel , // input sel used to select

between a,b,c,d
6 output out); // 1-bit output based on input

sel
7

8 reg out;
9

10 always @ (a or b or c or d or sel) begin
11 case (sel)
12 2’b00 : out <= a;
13 2’b01 : out <= b;
14 2’b10 : out <= c;
15 2’b11 : out <= d;
16 endcase
17 end
18

19 endmodule

Listing 4.1: 4 to 1 MUX with case statement

After synthesis with GENUS Cadence Tool [6], with a virtual clock, the netlist has
the two following library cells:

1 // Generated by Cadence Genus(TM) Synthesis Solution 18.10 - p003_1
2 module MUX4to1_case (a, b, c, d, sel , out);
3 input a, b, c, d, sel;
4 output out;
5 wire a, b, c, d, sel;
6 wire out;
7 wire n_0;
8 inverter g34 (.I (n_0), .ZN (out));
9 multiplexer g35__8780 (. I0 (a), .I1 (b), .S (sel), .ZN (n_0));

10 endmodule

Listing 4.2: Netlist of 4 to 1 MUX with case statement

Due to RTL’s freedom of writing, synthesizer found that these two cells could imple-
ment the task successfully. On the other hand, for the verilog description of the MUX
below, listing 4.3, the gates are specific. The synthesizer will have to look at the library
for cells that could fulfill these gates’ requirements.

21

1 module MUX4to1_gates (input a, // 1-bit input
2 input b, // 1-bit input
3 input c, // 1-bit input
4 input d, // 1-bit input
5 input [1:0] sel , // input sel used to select

between a,b,c,d
6 output out); // 1-bit output based on input

sel
7

8 reg out;
9 wire s1n , s0n , y1 , y2 , y3;

10

11 not G1(s1n , sel [1]); // first not gate
12 not G2(s0n , sel [0]); // second not gate
13

14 // instantiating and gates
15 and G3(y0 , a, s1n , s0n);
16 and G4(y1 , b, s1n , s0);
17 and G5(y2 , c, s1 , s0n);
18 and G6(y3 , d, s1 , s0);
19

20 // instantiating or gate
21 or G7(out , y0 , y1 , y2 , y3);
22 endmodule

Listing 4.3: 4 to 1 MUX implemented with gates

After synthesis with GENUS Cadence Tool [6], with a virtual clock, the netlist has the
three following library cells:

1 // Generated by Cadence Genus(TM) Synthesis Solution 18.10 - p003_1
2 module MUX4to1_gates (a, b, c, d, sel , out);
3 input a, b, c, d;
4 input [1:0] sel;
5 output out;
6 wire a, b, c, d;
7 wire [1:0] sel;
8 wire out;
9 wire n_0 , n_1;

10 nor g25__8780 (.A2 (sel [0]) , .A1 (n_1), .ZN (out));
11 nand g26__4296 (.A2 (a), .A1 (n_0), .ZN (n_1));
12 inverter g27 (.I (sel [1]) , .ZN (n_0));
13 endmodule

Listing 4.4: Netlist of 4 to 1 MUX with gates

After not finding cells with the specific function, the synthesizer searched for the
closest ones. That is, these two RTL representations of a 4 to 1, 1-bit MUXs, implement
the same design, though with different cells. For the specific example, there is no big
difference, due to its size. Image how the area and the timing could be affected for a
bigger design if the RTL description is not optimal.

With that being said, it is of great importance to write "good" verilog code. The
term "good" in the context of regularity extraction is translated to techniques to improve
regularity.

22

4.2 Techniques that Improve Netlist’s Regularity
As mentioned in section 3.1.4, in this report, Structured Clustering Algorithms will

be used and especially Isomorphism Based Clustering. The key to increase regularity
is to understand common components, why they exist in the specific place and how
to deal with them. Reminder, isomorphism algorithm grows cellgroups backwards until
it finds common components.

Proposed RTL Flow to Improve Regularity

Divide Modules into Submodules

Verilog RTL Representation of the Circuit

Create Additional Cellgroups
at Common Components

Reuse Regular Modules

New RTL
With ...

NO
WORKED?

YES
Previous RTL

New RTL
With ...

NO
WORKED?

YES
Previous RTL

POTENTIAL
CELLGROUPS

YES
FINISH

NO

Figure 4.1: RTL Techniques Flow

In the figure fig. 4.1, the RTL changes proposed flow is given. It begins with
the RTL representation of the circuit and passes through the first step, module separation
(section 4.2.1). After that, either this technique increased the regularity, or not, it passes
through the second step, cellgroup creation(section 4.2.2). This step is very important
because the algorithm grows back clusters only from seed groups, which contain registers.
But what if the design does not contain registers at all or there are a lot of common
components and growing back, stops immediately? In this case, it is necessary to have
understood the behavioral RTL implementation in order to be able after synthesis, in the
netlist, to create lists of cells, that is cellgroups.

23

Disclaimer: This step does not exactly belong in the verilog RTL based techniques, but
due to the fact that it is fundamental to have understood the behavioral implementation,
I inserted it in this flow step.

Similarly, whether the second step increased the regularity or not, flow proceeds to
the third step, reuse of already regular modules (section 4.2.3). At the end of that step, it
is highly possible that there is room for addition cellgroups creation, thus it returns to the
second step and repeats the process. If there is no room for additional optimizations to
increase regularity, verilog is ready to be synthesized. The desired percentage of regularity
is, approximately, above 70%.

In order to make the techniques that are going to be proposed, more obvious, an
example will be shown, for each one of the methods. These examples are part of the main
case study of this report. Succinctly, the case studies, further analyzed later, are:

• Register files

– flip-flops (×32 AND ×64)

• Booth Multiplier

– Synthetic adder (×2)

– MUX Tree (×16)

– CSA tree (CSA core OR CSA×16)

• DLX execute unit

Carry Save Adder, member of the CSA tree of booth multiplier, will help analyze
the first technique.

4.2.1 First Flow Step - Module Separation
Carry Save Adder (CSA)

A carry-save adder (CSA) is a type of digital circuit that is used to add multiple
numbers together. It is called a "carry-save" adder because it generates two outputs: a
"sum" output and a "carry" output. The sum output represents the sum of the input
numbers without the carry-out bits, and the carry output represents the carry-out bits
from the addition of the input numbers.

The basic building block of a CSA is a full adder, which is a circuit that can add
three inputs: A, B, and Cin (carry-in) and produces two outputs: S (sum) and Cout
(carry-out). The full adder circuit performs the following operation:

S = A ⊕ B ⊕ Cin (4.1)

Cout = (A&B)|(Cin&(A ⊕ B)) (4.2)

A CSA can be constructed by cascading multiple full adder circuits together, with
the sum output of each full adder being connected to the carry-in input of the next full

24

adder. The number of full adder circuits used in a CSA will depend on the number of
bits in the input numbers. For example, a 4-bit CSA would require 4 full adder circuits.

The advantage of a CSA over a conventional adder is that it can perform the addition
of multiple numbers in parallel, which can significantly increase the speed of the addition
operation.

RTL Implementation of original CSA & Regularity Measurements

The implementation of a CSA is very simple and consists of two basic functions, xor
and majority (equations 4.1 and 4.2). So, the verilog code for a 64 bit carry save adder
will be the listing 4.5:

1 module originalCSA (s1 , s2 , p1 , p2 , p3 , clk);
2 input clk;
3 input [63:0] p1 ,p2 ,p3;
4 output reg [63:0] s1 ,s2;
5

6 always @(posedge clk)
7 begin
8 s1 = p1 ^ p2 ^ p3;
9 s2 = (p1 & p2) | (p2 & p3) | (p3 & p1);

10 end
11 endmodule

Listing 4.5: Original CSA

Disclaimer: The only reason registers are used, instead of just wires is to be easier
for the structured clustering isomorphism algorithm, to extract the cellgroups, based on
the flip-flop name. After synthesizing the above circuit for 1 nanosecond clock period at
a 250 nanometer library and loading the resulting netlist at ASP tool [7], the extracted
regularity is:

> INFO: Total Cells = 192, Total Grouped Cells = 128, Grouped Cell Ratio = 67%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 25288.70um^2,
> Total Grouped Cells Area = 17160.19um^2, Grouped Cell Area Ratio = 68%

As shown, Grouped Cell Ratio is equal to 67%. This percentage is not bad, mainly
due to the fact that the design is really small. The reason it stops growing back the
cluster is, as mentioned before, the common components. In fact, the resulted cellgroup
is only one, containing the registers of S1 and S2, that is, the seed group. In listing 4.6
there is the cellgroups report extracted from ASP tool.

1 ###
2 # Generated by: PathVIZ (Version : 1.0)
3 # OS: Linux x86_64 (Host: torreyridge)
4 # Generated on: Sun Jan 29 18:40:19 2023
5 # Design : originalCSA
6 ###

25

7 # Core Utilisation : 70%
8 # Core Width , Height : 0.000 , 0.000 , Aspect Ratio: -nan
9 # Core X, Y Offsets : 0.000 , 0.000

10 ###
11 create_cellgroup -module originalCSA -groupid 1 -groupname originalCSA

/\\ s2_reg \[53\] { originalCSA /\\ s2_reg \[53\] originalCSA /\\ s1_reg
\[62\] originalCSA /\\ s1_reg \[60\] originalCSA /\\ s1_reg \[56\]
originalCSA /\\ s1_reg \[1\] originalCSA /\\ s1_reg \[48\] originalCSA /\\
s1_reg \[32\] originalCSA /\\ s1_reg \[0\] originalCSA /\\ s1_reg \[33\]
originalCSA /\\ s2_reg \[0\] originalCSA /\\ s2_reg \[63\] originalCSA /\\
s1_reg \[31\] originalCSA /\\ s2_reg \[7\] originalCSA /\\ s2_reg \[62\]
originalCSA /\\ s2_reg \[61\] originalCSA /\\ s1_reg \[47\] originalCSA /\\
s1_reg \[30\] originalCSA /\\ s2_reg \[60\] originalCSA /\\ s2_reg \[59\]
originalCSA /\\ s1_reg \[29\] originalCSA /\\ s2_reg \[11\] originalCSA /\\
s2_reg \[58\] originalCSA /\\ s2_reg \[57\] originalCSA /\\ s1_reg \[55\]
originalCSA /\\ s2_reg \[13\] originalCSA /\\ s1_reg \[46\] originalCSA /\\
s1_reg \[28\] originalCSA /\\ s2_reg \[56\] originalCSA /\\ s2_reg \[16\]
originalCSA /\\ s2_reg \[55\] originalCSA /\\ s1_reg \[27\] originalCSA /\\
s2_reg \[54\] originalCSA /\\ s2_reg \[50\] originalCSA /\\ s1_reg \[45\]
originalCSA /\\ s1_reg \[26\] originalCSA /\\ s2_reg \[52\] originalCSA /\\
s2_reg \[19\] originalCSA /\\ s2_reg \[51\] originalCSA /\\ s1_reg \[25\]
originalCSA /\\ s1_reg \[63\] originalCSA /\\ s2_reg \[21\] originalCSA /\\
s2_reg \[49\] originalCSA /\\ s1_reg \[59\] originalCSA /\\ s1_reg \[54\]
originalCSA /\\ s2_reg \[24\] originalCSA /\\ s1_reg \[44\] originalCSA /\\
s1_reg \[24\] originalCSA /\\ s2_reg \[48\] originalCSA /\\ s2_reg \[47\]
originalCSA /\\ s1_reg \[23\] originalCSA /\\ s2_reg \[46\] originalCSA /\\
s2_reg \[45\] originalCSA /\\ s2_reg \[28\] originalCSA /\\ s1_reg \[43\]
originalCSA /\\ s1_reg \[22\] originalCSA /\\ s2_reg \[44\] originalCSA /\\
s2_reg \[30\] originalCSA /\\ s2_reg \[43\] originalCSA /\\ s1_reg \[21\]
originalCSA /\\ s2_reg \[42\] originalCSA /\\ s1_reg \[16\] originalCSA /\\
s2_reg \[41\] originalCSA /\\ s1_reg \[53\] originalCSA /\\ s1_reg \[42\]
originalCSA /\\ s2_reg \[22\] originalCSA /\\ s2_reg \[40\] originalCSA /\\
s2_reg \[39\] originalCSA /\\ s1_reg \[19\] originalCSA /\\ s2_reg \[38\]
originalCSA /\\ s2_reg \[37\] originalCSA /\\ s1_reg \[41\] originalCSA /\\
s1_reg \[18\] originalCSA /\\ s2_reg \[36\] originalCSA /\\ s2_reg \[35\]
originalCSA /\\ s1_reg \[17\] originalCSA /\\ s2_reg \[34\] originalCSA /\\
s2_reg \[17\] originalCSA /\\ s1_reg \[61\] originalCSA /\\ s1_reg \[58\]
originalCSA /\\ s1_reg \[52\] originalCSA /\\ s1_reg \[40\] originalCSA /\\
s2_reg \[32\] originalCSA /\\ s2_reg \[31\] originalCSA /\\ s1_reg \[15\]
originalCSA /\\ s2_reg \[29\] originalCSA /\\ s1_reg \[39\] originalCSA /\\
s1_reg \[14\] originalCSA /\\ s2_reg \[27\] originalCSA /\\ s1_reg \[13\]
originalCSA /\\ s2_reg \[26\] originalCSA /\\ s2_reg \[25\] originalCSA /\\
s1_reg \[51\] originalCSA /\\ s1_reg \[38\] originalCSA /\\ s1_reg \[12\]
originalCSA /\\ s2_reg \[23\] originalCSA /\\ s1_reg \[11\] originalCSA /\\
s1_reg \[20\] originalCSA /\\ s1_reg \[37\] originalCSA /\\ s1_reg \[10\]
originalCSA /\\ s2_reg \[20\] originalCSA /\\ s1_reg \[9\] originalCSA /\\
s2_reg \[18\] originalCSA /\\ s2_reg \[33\] originalCSA /\\ s1_reg \[57\]
originalCSA /\\ s1_reg \[50\] originalCSA /\\ s1_reg \[36\] originalCSA /\\
s1_reg \[8\] originalCSA /\\ s2_reg \[15\] originalCSA /\\ s1_reg \[7\]
originalCSA /\\ s2_reg \[14\] originalCSA /\\ s1_reg \[35\] originalCSA /\\
s1_reg \[6\] originalCSA /\\ s2_reg \[12\] originalCSA /\\ s1_reg \[5\]
originalCSA /\\ s2_reg \[10\] originalCSA /\\ s2_reg \[9\] originalCSA /\\
s1_reg \[49\] originalCSA /\\ s1_reg \[34\] originalCSA /\\ s1_reg \[4\]
originalCSA /\\ s2_reg \[8\] originalCSA /\\ s1_reg \[3\] originalCSA /\\
s2_reg \[6\] originalCSA /\\ s2_reg \[5\] originalCSA /\\ s1_reg \[2\]
originalCSA /\\ s2_reg \[4\] originalCSA /\\ s2_reg \[3\] originalCSA /\\
s2_reg \[2\] originalCSA /\\ s2_reg \[1\]}

12 # -flatsortedgroupid 0

26

13

14 # initialise group placement constraints after new groups are
instantiated

15 remove_groups_placement_constraints
16

17 # verify that all specified cellgroup components are indeed unique
18 check_cellgroups

Listing 4.6: Original CSA’s cellgroups

The common components here exist because the synthesizer uses the optimal cells
from the library based on the RTL given. As a result, and mainly to optimize the circuit,
it uses logic that merges S1 and S2 and common gates between them, that they stop the
cluster from going back. So, the proposal here to prevent this from happening is:

Divide modules into submodules, separate them when it
is necessary, in order to force the synthesizer to withhold
the hierarchy and not optimize similar logic as common
parts of the same logic cone.

Quote 1: First Proposed Technique - Module’s Separation

RTL Implementation of modified CSA & Regularity Measurements

In order to test the Quote 1, modified CSA is implemented, with the two main
functions (equations 4.1 and 4.2) in separate modules. So, the verilog code for the 64 bit
modified carry save adder will be:

1 module splittedCSA (s1 , s2 , p1 , p2 , p3 , clk);
2 input clk;
3 input [63:0] p1 ,p2 ,p3;
4 output reg [63:0] s1 , s2;
5

6 wire [63:0] s1_wire , s2_wire ;
7

8 XOR xor_inst (.p1(p1),
9 .p2(p2),

10 .p3(p3),
11 .s1(s1_wire));
12

13 MAJORITY majority_inst (.p1(p1),
14 .p2(p2),
15 .p3(p3),
16 .s1(s2_wire));
17

18 always @(posedge clk)
19 begin
20 s1 <= s1_wire ;
21 s2 <= s2_wire ;
22 end
23 endmodule

Listing 4.7: Modified CSA

where XOR and MAJORITY the modules in listings listing 4.8 and listing 4.9 re-
spectively.

27

1 module XOR(p1 , p2 , p3 , s1);
2 input [63:0] p1 , p2 , p3;
3 output [63:0] s1;
4

5 assign s1 = p1 ^ p2 ^ p3;
6 endmodule

Listing 4.8: XOR Submodule

1 module MAJORITY (p1 , p2 , p3 , s1);
2 input [63:0] p1 , p2 , p3;
3 output [63:0] s1;
4

5 assign s1 = (p1 & p2) | (p2 & p3) | (p3 & p1);
6 endmodule

Listing 4.9: MAJORITY Submodule

Again, the only reason registers are used is to be easier for the structured clustering
isomorphism algorithm, to extract the cellgroups, based on the flip-flop name.

After synthesizing the above circuit for 1 nanosecond clock period at a 250 nanometer
library and loading the resulting netlist at ASP tool [7], the extracted regularity is:

> INFO: Total Cells = 386, Total Grouped Cells = 384, Grouped Cell Ratio = 99%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 27998.21um^2,
> Total Grouped Cells Area = 27998.21um^2, Grouped Cell Area Ratio = 100%

As shown, Grouped Cell Ratio is equal to 99%. By forcing the synthesizer to withhold
the hierarchy, it is not trying to optimize it, using gates that will satisfy both S1 and S2

function. This results in better regularity measurements.

XOR

MAJORITY

p1

p2

p3

s1

s2

CSA

Figure 4.2: Schematic of CSA with Separated Modules

In fig. 4.2, there is the CSA instantiation with XOR and MAJORITY submodules.
Both XOR and MAJORITY take the same inputs, p1, p2 and p3 and state as output s1

28

and s2 respectively. Growing back from them, thanks to the submodules, there will be no
common components amongst them. This is the reason why regularity reaches 99%.

4.2.2 Second Flow Step - Additional Cellgroups Creation
Continuing with the flow, the second step is the creation of additional cellgroups,

regarding the netlist synthesized from step one (section 4.2.1). For the specific example,
carry save adder, the regularity is already 99%, so let me extend it to the CSA Core, a tree
of sixteen CSAs. For this design, (section 4.2.2), as the flow indicates, module separation
comes first, and it is followed by cellgroup creation. Despite the result, it proceeds to step
three, reuse of regular modules and back to step 2 to check if there is room for additional
cellgroup creation. For convenience, and in order to maintain the flow of this report and
to not go back and forth, to explain this step, the netlist after step three is going to be
used, that is, the netlist with the already maximum usage of regular modules. How this
process is executed and what the results are, is going to be shown later, in section 4.2.3.
But firstly, CSA Core will be explained.

Booth Multiplier Core - CSA Tree

CSA tree consists of sixteen CSA adders, connected in levels. As CSA is an adder
3-to-2, meaning that it corresponds 3 inputs to 2 outputs, the number of levels of sixteen
such adders will be 5. The verilog implementation is given in the listing 4.10.

1 module CSA_core_splitted (sum0 , sum1 , sum2 , sum3 , sum4 , sum5 , sum6 , sum7 ,
sum8 , sum9 , sum10 , sum11 , sum12 , sum13 , sum14 , sum15 , s15_ff , c15_ff

, clk , reset);
2

3 input clk , reset ;
4

5 // CSA inputs //
6 input [63:0] sum0 , sum1 , sum2 , sum3 , sum4 , sum5 , sum6 , sum7 , sum8 , sum9 ,

sum10 , sum11 , sum12 , sum13 , sum14 , sum15;
7

8 // CSA outputs //
9 wire [63:0] s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 , s10 , s11 , s12 , s13 ,

s14 , s15;
10 wire [63:0] c0 , c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 , c9 , c10 , c11 , c12 , c13 ,

c15 , c15;
11

12 output reg [63:0] s15_ff ;
13 output reg [63:0] c15_ff ;
14

15 // first CSA level //
16 splittedCSA csa_0 (.s1(s0) ,.s2(c0) ,.p1(sum0) ,.p2(sum1) ,.p3(sum2));
17 splittedCSA csa_1 (.s1(s1) ,.s2(c1) ,.p1(sum3) p2(sum4) ,.p3(sum5));
18 splittedCSA csa_2 (.s1(s2) ,.s2(c2) ,.p1(sum6) ,.p2(sum7) ,.p3 (64 ’b0));
19 splittedCSA csa_3 (.s1(s3) ,.s2(c3) ,.p1(sum8) ,.p2(sum9) ,.p3(sum10));
20 splittedCSA csa_4 (.s1(s4) ,.s2(c4) ,.p1(sum11) ,.p2(sum12) ,.p3(sum13));
21 splittedCSA csa_5 (.s1(s5) ,.s2(c5) ,.p1(sum14) ,.p2(sum15) ,.p3 (64 ’b0));
22

23 // second CSA level //
24 splittedCSA csa_6 (.s1(s6) ,.s2(c6) ,.p1(s0) ,.p2({c0 [62:0] ,1 ’ b0}) ,.p3(s1))

;
25 splittedCSA csa_7 (.s1(s7) ,.s2(c7) ,.p1({c1 [62:0] , 1’b0}) ,.p2(s2) ,.p3 ({c2

[62:0] , 1’b0 }));

29

26 splittedCSA csa_8 (.s1(s8) ,.s2(c8) ,.p1(s3) ,.p2({c3 [62:0] , 1’b0 }) ,.p3(s4)
);

27 splittedCSA csa_9 (.s1(s9) ,.s2(c9) ,.p1({c4 [62:0] , 1’b0}) ,.p2(s5) ,.p3 ({c5
[62:0] , 1’b0 }));

28

29 // third CSA level //
30 splittedCSA csa_10 (. s1(s10) ,.s2(c10) ,.p1(s6) ,.p2({ c6 [62:0] , 1’b0}) ,.p3(

s7));
31 splittedCSA csa_11 (. s1(s11) ,.s2(c11) ,.p1(s8) ,.p2({ c8 [62:0] , 1’b0}) ,.p3(

s9));
32

33 // fourth CSA level //
34 splittedCSA csa_12 (. s1(s12) ,.s2(c12) ,.p1(s10) ,.p2 ({ c10 [62:0] , 1’b0 }) ,.

p3({ c7 [62:0] , 1’b0}));
35 splittedCSA csa_13 (. s1(s13) ,.s2(c13) ,.p1(s11) ,.p2 ({ c11 [62:0] , 1’b0 }) ,.

p3({ c9 [62:0] , 1’b0}));
36

37 // fifth CSA level //
38 splittedCSA csa_14 (. s1(s14) ,.s2(c14) ,.p1(s12) ,.p2 ({ c12 [62:0] , 1’b0 }) ,.

p3(s13));
39

40 // last CSA level //
41 splittedCSA csa_15 (. s1(s15) ,.s2(c15) ,.p1(s14) ,.p2 ({ c14 [62:0] , 1’b0 }) ,.

p3({ c13 [62:0] , 1’b0}));
42

43 always @(posedge clk or posedge reset)
44 begin
45 if (reset == 1’b1)
46 begin
47 s15_ff <= 64’d0;
48 c15_ff <= 64’d0;
49 end
50 else
51 begin
52 s15_ff <= s15;
53 c15_ff <= c15;
54 end
55 end
56

57 endmodule

Listing 4.10: CSA Tree

The CSA tree schematic is in the fig. 4.3. For the internal CSAs, separated CSA is
used. That is, from the registers s15_ff and c15_ff, it will grow back to CSA_15 and
due to XOR and MAJORITY submodules, as shown in section 4.2.1, the algorithm will
not find any common components until it reaches the inputs of CSA_15. There, due to
the fact that both submodules have the same inputs, the growing will stop. This happens
because, seed groups, the start points of the growing, are by default, groups with registers,
thus all 64 bits of s15_ff and c15_ff (listing 4.11). That is, although the substructure is
ready, there are no cellgroups to start from and grow back. The resulting regularity is
shown in block 4.2.2.

30

S0

C0

MAJORITY

XOR

CSA 0

S1

C1

P2 MAJORITY

XOR

CSA 1

S2

C2MAJORITY

XOR

CSA 2

S3

C3

MAJORITY

XOR

CSA 3

S4

C4
MAJORITY

XOR

CSA 4

S5

C5
MAJORITY

XOR

CSA 5

S6

C6

MAJORITY

XOR

CSA 6

S7

C7
MAJORITY

XOR

CSA 7

S8

C8

MAJORITY

XOR

CSA 8

S9

C9
MAJORITY

XOR

CSA 9

S10

C10

MAJORITY

XOR

CSA 10

S11

C11

MAJORITY

XOR

CSA 11

S12

C12

MAJORITY

XOR

CSA 12

S13

C13

MAJORITY

XOR

CSA 13

S14

C14

MAJORITY

XOR

CSA 14
S15

C15
MAJORITY

XOR

CSA 15

P1

P3

P2

P1

P3

P2

P1

P3

P2

P1

P3

P2

P1

P3

P2

P1

P3

Figure 4.3: CSA Tree with CSAs from section 4.2.1

1 create_cellgroup -module CSA_core_splitted -groupid 1 -groupname
CSA_core_splitted /\\ c15_ff_reg \[17\] { CSA_core_splitted /\\ c15_ff_reg
\[17\] CSA_core_splitted /\\ c15_ff_reg \[63\] CSA_core_splitted /\\
c15_ff_reg \[62\] CSA_core_splitted /\\ c15_ff_reg \[61\]
CSA_core_splitted /\\ c15_ff_reg \[60\] CSA_core_splitted /\\ c15_ff_reg
\[59\] CSA_core_splitted /\\ c15_ff_reg \[5\]
CSA_core_splitted /\\ c15_ff_reg \[4\] CSA_core_splitted /\\ c15_ff_reg
\[3\] CSA_core_splitted /\\ c15_ff_reg \[2\]}

2 # -flatsortedgroupid 1
3

4 create_cellgroup -module CSA_core_splitted -groupid 2 -groupname
CSA_core_splitted /\\ s15_ff_reg \[62\] { CSA_core_splitted /\\ s15_ff_reg
\[62\] CSA_core_splitted /\\ s15_ff_reg \[60\] CSA_core_splitted /\\
s15_ff_reg \[56\] CSA_core_splitted /\\ s15_ff_reg \[48\]
CSA_core_splitted /\\ s15_ff_reg \[32\] CSA_core_splitted /\\ s15_ff_reg
\[31\] CSA_core_splitted /\\ s15_ff_reg \[2\]
CSA_core_splitted /\\ s15_ff_reg \[1\] CSA_core_splitted /\\ s15_ff_reg
\[61\] CSA_core_splitted /\\ s15_ff_reg \[0\]}

5 # -flatsortedgroupid 0

Listing 4.11: CSA Tree Seed Groups

> INFO: Total Cells = 4222, Total Grouped Cells = 633, Grouped Cell Ratio = 15%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 190504.94um^2,
> Total Grouped Cells Area = 39421.87um^2, Grouped Cell Area Ratio = 21%

The solution here, is to create the cellgroups that will play the role of seed-groups, to

31

continue growing back. So, for every CSA, two cellgroups have to be created, one to grow
the XOR sub-module (listing 4.12) back and one for the MAJORITY(listing 4.13).

1 create_cellgroup -module XOR -groupid 1 -groupname XOR_0 {XOR/ g12490 XOR
/ g12492 XOR/g2 XOR/ g12914 XOR/ g12919 XOR/ g12921 XOR/ g12922 XOR/ g12929

XOR/ g12930 XOR/ g12933 XOR/ g12934 XOR/ g12935 XOR/ g12936 XOR/ g12937
XOR/ g12938 XOR/ g12939 XOR/ g12940 XOR/ g12941 XOR/ g12947 XOR/ g12950 XOR
/ g12951 XOR/ g12953 XOR/ g12954 XOR/ g12955 XOR/ g12958 XOR/ g12961 XOR/
g12967 XOR/ g12974 XOR/ g12978 XOR/ g12980 XOR/ g12981 XOR/ g12983 XOR/
g12986 XOR/ g12988 XOR/ g12989 XOR/ g12990 XOR/ g12994 XOR/ g13000 XOR/
g13003 XOR/ g13005 XOR/ g13006 XOR/ g13007 XOR/ g13008 XOR/ g13009 XOR/
g13013 XOR/ g13015 XOR/ g13016 XOR/ g13017 XOR/ g13018 XOR/ g13020 XOR/
g13021 XOR/ g13022 XOR/ g13023 XOR/ g13025 XOR/ g13027 XOR/ g13029 XOR/
g13030 XOR/ g13031 XOR/ g13032 XOR/ g13033 XOR/ g13034 XOR/ g13035 XOR/
g13036 XOR/ g13038 }

Listing 4.12: XOR Seed Group

1 create_cellgroup -module MAJORITY -groupid 1 -groupname MAJORITY_0 {
MAJORITY / g9470 MAJORITY /g9471 MAJORITY /g9472 MAJORITY /g9473 MAJORITY /
g9474 MAJORITY / g9475 MAJORITY /g9476 MAJORITY /g9477 MAJORITY / g9478
MAJORITY / g9479 MAJORITY /g9480 MAJORITY /g9481 MAJORITY /g9482 MAJORITY /
g9483 MAJORITY / g9484 MAJORITY /g9485 MAJORITY /g9486 MAJORITY / g9487
MAJORITY / g9488 MAJORITY /g9489 MAJORITY /g9490 MAJORITY /g9491 MAJORITY /
g9492 MAJORITY / g9493 MAJORITY /g9494 MAJORITY /g9495 MAJORITY / g9496
MAJORITY / g9497 MAJORITY /g9498 MAJORITY /g9499 MAJORITY /g9500 MAJORITY /
g9532 MAJORITY / g9533 MAJORITY /g9534 MAJORITY /g9535 MAJORITY / g9536
MAJORITY / g9537 MAJORITY /g9538 MAJORITY /g9539 MAJORITY /g9540 MAJORITY /
g9541 MAJORITY / g9542 MAJORITY /g9543 MAJORITY /g9544 MAJORITY / g9545
MAJORITY / g9546 MAJORITY /g9547 MAJORITY /g9548 MAJORITY /g9549 MAJORITY /
g9550 MAJORITY / g9551 MAJORITY /g9552 MAJORITY /g9553 MAJORITY / g9554
MAJORITY / g9555 MAJORITY /g9556 MAJORITY /g9557 MAJORITY /g9558 MAJORITY /
g9559 MAJORITY / g9560 MAJORITY /g9561 MAJORITY /g9562 MAJORITY / g9563}

Listing 4.13: MAJORITY Seed Group

These two cellgroups contain the cells that are connecting to the output of each sub-
module. After creating all wanted cellgroups and growing back the clusters, the resulted
regularity is:

> INFO: Total Cells = 4222, Total Grouped Cells = 4171, Grouped Cell Ratio = 99%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 190504.94um^2,
> Total Grouped Cells Area = 190427.33um^2, Grouped Cell Area Ratio = 100%

As shown, Grouped Cell Ratio is equal to 99%. By creating cellgroups where common
components are found, gives the algorithm more space to grow back and significantly
increase the regularity. This leads to the second conclusion:

Create cellgroups, where common components are found,
in order to behave like seed-groups.

Quote 2: Second Proposed Technique - Cellgroup Creation

32

4.2.3 Third Flow Step - Reuse of Regular Modules
Last but not least, it is very important to reuse already regular modules for regularity

increment. If a circuit has multiple instantiations of the same logic function, it is preferred
to try to regularize one of them and then reuse it.

CSA Tree

In order to clarify this proposition, once again, CSA tree example will be used. CSA
tree, used in modified radix-4 32x32 booth multiplier, as explained above, consists of
sixteen carry save adders, connected in levels. The verilog RTL implementation, using
the original CSA, is in the listing 4.14, where "originalCSA" the listing 4.5.

1 module CSA_core_original (sum0 , sum1 , sum2 , sum3 , sum4 , sum5 , sum6 , sum7 ,
sum8 , sum9 , sum10 , sum11 , sum12 , sum13 , sum14 , sum15 , s15_ff , c15_ff

, clk , reset);
2

3 input clk , reset ;
4

5 // CSA inputs //
6 input [63:0] sum0 , sum1 , sum2 , sum3 , sum4 , sum5 , sum6 , sum7 , sum8 , sum9 ,

sum10 , sum11 , sum12 , sum13 , sum14 , sum15;
7

8 // CSA outputs //
9 wire [63:0] s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 , s10 , s11 , s12 , s13 ,

s14 , s15;
10 wire [63:0] c0 , c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 , c9 , c10 , c11 , c12 , c13 ,

c15 , c15;
11

12 output reg [63:0] s15_ff ;
13 output reg [63:0] c15_ff ;
14

15 // first CSA level //
16 originalCSA csa_0 (.s1(s0) ,.s2(c0) ,.p1(sum0) ,.p2(sum1) ,.p3(sum2));
17 originalCSA csa_1 (.s1(s1) ,.s2(c1) ,.p1(sum3) p2(sum4) ,.p3(sum5));
18 originalCSA csa_2 (.s1(s2) ,.s2(c2) ,.p1(sum6) ,.p2(sum7) ,.p3 (64 ’b0));
19 originalCSA csa_3 (.s1(s3) ,.s2(c3) ,.p1(sum8) ,.p2(sum9) ,.p3(sum10));
20 originalCSA csa_4 (.s1(s4) ,.s2(c4) ,.p1(sum11) ,.p2(sum12) ,.p3(sum13));
21 originalCSA csa_5 (.s1(s5) ,.s2(c5) ,.p1(sum14) ,.p2(sum15) ,.p3 (64 ’b0));
22

23 // second CSA level //
24 originalCSA csa_6 (.s1(s6) ,.s2(c6) ,.p1(s0) ,.p2({c0 [62:0] ,1 ’ b0}) ,.p3(s1))

;
25 originalCSA csa_7 (.s1(s7) ,.s2(c7) ,.p1({c1 [62:0] , 1’b0}) ,.p2(s2) ,.p3 ({c2

[62:0] , 1’b0 }));
26 originalCSA csa_8 (.s1(s8) ,.s2(c8) ,.p1(s3) ,.p2({c3 [62:0] , 1’b0 }) ,.p3(s4)

);
27 originalCSA csa_9 (.s1(s9) ,.s2(c9) ,.p1({c4 [62:0] , 1’b0}) ,.p2(s5) ,.p3 ({c5

[62:0] , 1’b0 }));
28

29 // third CSA level //
30 originalCSA csa_10 (. s1(s10) ,.s2(c10) ,.p1(s6) ,.p2({ c6 [62:0] , 1’b0}) ,.p3(

s7));
31 originalCSA csa_11 (. s1(s11) ,.s2(c11) ,.p1(s8) ,.p2({ c8 [62:0] , 1’b0}) ,.p3(

s9));
32

33 // fourth CSA level //

33

34 originalCSA csa_12 (. s1(s12) ,.s2(c12) ,.p1(s10) ,.p2 ({ c10 [62:0] , 1’b0 }) ,.
p3({ c7 [62:0] , 1’b0}));

35 originalCSA csa_13 (. s1(s13) ,.s2(c13) ,.p1(s11) ,.p2 ({ c11 [62:0] , 1’b0 }) ,.
p3({ c9 [62:0] , 1’b0}));

36

37 // fifth CSA level //
38 originalCSA csa_14 (. s1(s14) ,.s2(c14) ,.p1(s12) ,.p2 ({ c12 [62:0] , 1’b0 }) ,.

p3(s13));
39

40 // last CSA level //
41 originalCSA csa_15 (. s1(s15) ,.s2(c15) ,.p1(s14) ,.p2 ({ c14 [62:0] , 1’b0 }) ,.

p3({ c13 [62:0] , 1’b0}));
42

43 always @(posedge clk or posedge reset)
44 begin
45 if (reset == 1’b1)
46 begin
47 s15_ff <= 64’d0;
48 c15_ff <= 64’d0;
49 end
50 else
51 begin
52 s15_ff <= s15;
53 c15_ff <= c15;
54 end
55 end

Listing 4.14: Tree of Original Carry Save Adders

The CSA tree schematic is in the fig. 4.4.

P1

P2

P3
S0

C0

CSA 0

P1

P2

P3

S1

C1

CSA 1

S2

C2CSA 2

S3

C3

CSA 3

S4

C4

CSA 4

S5

C5CSA 5

S6

C6

CSA 6

S7

C7CSA 7

S8

C8

CSA 8

S9

C9CSA 9

S10

C10

CSA 10

S11

C11

CSA 11

S12

C12

CSA 12

S13

C13

CSA 13

S14

C14

CSA 14

S15

C15

CSA 15

P1

P2

P3

P1

P2

P3

P1

P2

P3

P1

P2

P3

Figure 4.4: CSA Tree with Original CSAs

The regularity measurements for the above design, synthesized at 4 nanoseconds,
is:

34

> INFO: Total Cells = 1583, Total Grouped Cells = 190, Grouped Cell Ratio = 12%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 143921.23um^2,
> Total Grouped Cells Area = 27603.07um^2, Grouped Cell Area Ratio = 19%

In section 4.2.1 the CSA was regularized by dividing adder module to two submodules,
xor and majority. So, in this section, original CSA is going to be replaced by separated
CSA module in the process of reusing regular modules. For starters, only the last one
of all sixteen adders is going to be replaced by the regular one. After synthesizing at 4
nanoseconds period and loading the netlist at ASP tool [7], the regularity measurement
is:

> INFO: Total Cells = 1771, Total Grouped Cells = 381, Grouped Cell Ratio = 22%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 146179.15um^2,
> Total Grouped Cells Area = 29903.33um^2, Grouped Cell Area Ratio = 20%

Comparatively, to the previous analysis, regularity has increased 10% by replacing
only one of the sixteen adders. Now, all adders are going to be replaced like in the
schematic below:

S0

C0

MAJORITY

XOR

CSA 0

S1

C1

P2 MAJORITY

XOR

CSA 1

S2

C2MAJORITY

XOR

CSA 2

S3

C3

MAJORITY

XOR

CSA 3

S4

C4
MAJORITY

XOR

CSA 4

S5

C5
MAJORITY

XOR

CSA 5

S6

C6

MAJORITY

XOR

CSA 6

S7

C7
MAJORITY

XOR

CSA 7

S8

C8

MAJORITY

XOR

CSA 8

S9

C9
MAJORITY

XOR

CSA 9

S10

C10

MAJORITY

XOR

CSA 10

S11

C11

MAJORITY

XOR

CSA 11

S12

C12

MAJORITY

XOR

CSA 12

S13

C13

MAJORITY

XOR

CSA 13

S14

C14

MAJORITY

XOR

CSA 14
S15

C15
MAJORITY

XOR

CSA 15

P1

P3

P2

P1

P3

P2

P1

P3

P2

P1

P3

P2

P1

P3

P2

P1

P3

Figure 4.5: Schematic of CSA Tree with Splitted Modules

For the specific design, although all adders are replaced by the regular ones, regularity
will not increase more. This happens because now it is necessary to create the additional

35

cellgroups, discussed in section 4.2.2. The point of the process is:

When instantiations of the same module appear in the
design more than one time, try and regularize a single one
and reuse it for the rest of them.

Quote 3: Third Proposed Technique - Reuse of Regular Modules

DLX Execute Unit

The execute unit is a significant part of the DLX processor architecture, but first, let
me say a few words about DLX itself.

DLX Processor is a reference model of a Reduced Instruction Set Computing
(RISC) microprocessor. The DLX, like the MIPS design, bases its performance on the
use of an instruction pipeline. This pipeline, is a sequence of stages through which in-
structions are executed, and is designed to increase the performance of the processor
by allowing multiple instructions to be processed in parallel. A typical DLX processor
pipeline consists of the following stages:

• Instruction Fetch (IF): In this stage, the instruction to be executed is fetched from
memory and stored in an instruction register.

• Instruction Decode (ID): In this stage, the instruction is decoded and the operands
are read from the register file.

• Execution (EX): In this stage, the ALU performs the arithmetic or logical operation
specified by the instruction.

• Memory Access (MEM): In this stage, the processor accesses memory to read or
write data.

• Write Back (WB): In this stage, the result of the operation is written back to the
register file.

Each stage of the pipeline takes one clock cycle to complete, so an instruction can
be processed in multiple stages in parallel. However, the pipeline also introduces the
potential for stalls and hazards, which can reduce performance if not properly handled.

Back to the Execution Unit(EU), also known as the Arithmetic Logic Unit (ALU),
is a key component of the DLX processor. Its primary function is to perform the arith-
metic and logical operations specified by the instructions. The EU is responsible for
performing operations such as addition, subtraction, bitwise operations (e.g. AND, OR,
NOT), and other functions required by the instruction set architecture (ISA) of the DLX
processor.

The EU is typically composed of several functional units, including a set of arithmetic
logic circuits and a set of register files. The arithmetic logic circuits perform the actual
arithmetic and logical operations, while the register files store the intermediate results.
The EU also has inputs for the operands, which are either read from the register file or
fetched from memory, and outputs for the results, which are written back to the register
file or memory.

DLX instructions can be broken down into three types, R-type, I-type and J-type.
R-type instructions are register-register instructions that perform arithmetic and logi-
cal operations on data stored in the register file, while I-type instructions are register-

36

immediate instructions that perform arithmetic and logical operations on data stored in
the register file and an immediate value. Finally, J-type instructions are jump instruc-
tions that change the program counter to a target address. Each type of instruction has
a unique opcode that identifies the instruction and specifies its operation. The DLX ISA
defines the syntax and semantics of each instruction, including the number and type of
operands and the operation performed by the instruction. The instruction formats are
used to efficiently encode and decode instructions in the DLX processor.

In all of the three types, an adder design is widely used for the functions that are
performed. For example, for the I-type:

1 case(IR_opcode_field)
2 ‘LW : ALU_result = reg_out_A + Imm;
3 ‘LH : ALU_result = reg_out_A + Imm;
4 ‘LB : ALU_result = reg_out_A + Imm;
5 ‘LBU : ALU_result = reg_out_A + Imm;
6 ‘LHU : ALU_result = reg_out_A + Imm;
7 ...

Listing 4.15: Example of I-type instructions

After synthesizing DLX EU for three nanosecond clock period and loading into ASP
tool [7], the regularity measurements are below:

> INFO: Total Cells = 2958, Total Grouped Cells = 359, Grouped Cell Ratio = 12%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 101811.02um^2,
> Total Grouped Cells Area = 19855.58um^2, Grouped Cell Area Ratio = 20%

Now, suppose there is an adder design, regular enough, that could replace those
adders (+) in the EU. In total, there are ten adders (+). By replacing them with the
regular one, the RTL implementation will look like:

1 module EXcustomADDERS (ALU_result , reg_out_B_EX , reg_dst_out ,
mem_write_EX , mem_read_EX , mem_to_reg_EX , reg_write_EX , opcode_of_EX ,

opcode_of_EX_reg , reg_dst_of_EX , clk , reset , IR_opcode_field ,
IR_function_field , reg_out_A , reg_out_B , Imm , rt_addr , rd_addr ,
reg_dst , reg_write , mem_to_reg , mem_read , mem_write , byte , word ,
counter , noop);

2 ...
3 // custom adders instantiation //
4 simple_adder_wire #(.k(32)) LW (.a(reg_out_A), .b(Imm), .sum(lw));
5 simple_adder_wire #(.k(32)) LH (.a(reg_out_A), .b(Imm), .sum(lh));
6 simple_adder_wire #(.k(32)) LB (.a(reg_out_A), .b(Imm), .sum(lb));
7 simple_adder_wire #(.k(32)) LBU (.a(reg_out_A), .b(Imm), .sum(lbu));
8 simple_adder_wire #(.k(32)) LHU (.a(reg_out_A), .b(Imm), .sum(lhu));
9 ...

10

11 always @(posedge clk)
12 begin
13 ...
14 case(IR_opcode_field)

37

15 ‘LW : ALU_result = lw;
16 ‘LH : ALU_result = lh;
17 ‘LB : ALU_result = lb;
18 ‘LBU : ALU_result = lbu;
19 ‘LHU : ALU_result = lhu;
20 ...
21 endcase
22 ...
23 end
24 ...
25 endmodule

Listing 4.16: Part of EU reusing regular adder

After synthesizing DLX EU for four nanosecond clock period and loading into ASP
tool [7], the regularity measurements are below:

> INFO: Total Cells = 7316, Total Grouped Cells = 2714, Grouped Cell Ratio = 37%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 233391.31um^2,
> Total Grouped Cells Area = 92595.89um^2, Grouped Cell Area Ratio = 40%

Grouped Cell Ratio increased from 12% to 37%, without modifying the RTL, by
just reusing an already regular module. This result indicates the significance of the
third flow step. But how did this adder become regular? What is underneath the
simple_adder_wire module used in listing 4.16? These questions will be answered in
the next chapter.

38

Chapter 5

Regularity Extraction &
Measurements using Logic Cones

5.1 What happens in case of an Agnostic Designer?
In the previous chapter, it was made pretty clear that regularity depends a lot on the

verilog RTL design, that is, the designer’s knowledge and the use of verilog. But what
happens if the designer is agnostic? What happens if the designer wants on purpose to
let the synthesis tool find the best implementation of a specific design of a circuit?

Usually, this depends on the requirements and constraints of the design. If there are
specific requirements for the circuit, such as performance, power consumption, or specific
component constraints, then writing a specific design can help meet those requirements.
However, if the purpose is to maximize performance and find the most efficient implemen-
tation, using a synthesizer to find the best implementation can be beneficial. Ultimately,
the choice between a specific design and using a synthesizer will depend on the specific
needs of the project and the goals of the designer.

That is, either the designer is agnostic or wants to let the synthesis tool meet the
requirements and constraints of the design, there must be developed a way of extracting
regularity for general designs that their verilog could not be changed. The term general
designs stands for behavioral RTL. For example, there are multiple ways to implement
an adder and various different architectures, like:

• Ripple Carry Adder: This is the simplest form of an adder, in which the carry
generated in one stage is propagated to the next stage.

• Carry Lookahead Adder: This type of adder uses a carry-lookahead logic to
generate carry bits in parallel, which reduces the delay in carry propagation and
increases the speed of the adder.

• Bounded Delay Adder: This adder architecture is designed to provide a guaran-
teed maximum delay for the carry propagation.

• Kogge-Stone Adder: This is a high-speed parallel prefix adder that uses a pipelined
architecture to reduce the critical path delay.

• Brent-Kung Adder: This is a high-speed parallel prefix adder that uses a recursive
structure to reduce the number of gates required.

39

• Wallace Tree Adder: This is a high-speed pipelined adder that uses a combi-
nation of carry-lookahead and carry-skip techniques to reduce the delay in carry
propagation.

And of course there is the behavioral implementation as well. Like mentioned above,
the behavioral implementation of an adder is just the symbol +. The "+" symbol is a
general mathematical symbol for addition and is used to perform arithmetic addition in
various contexts. If "+" symbol is used without specifying a particular adder architecture,
the resulting design, will depend on the context in which it is used. For example, in digital
electronics, the "+" symbol may represent a simple ripple carry adder, a carry-lookahead
adder, or any other type of adder architecture. In this case, no RTL changes can be done
to increase the regularity, because both sum and carry chains are hidden and depend
entirely on the synthesizer.

For that reason, a flow has been developed for cases, like the adder above, that the
bit dependencies are hidden, to try and extract regularity. It may be design-specific, but
it is also general enough for the specific design.

5.2 Case Studies

5.2.1 33-bit Synthesized Adder
An adder is a digital circuit that performs arithmetic operations, specifically addition.

It typically consists of two chains: the sum chain and the carry chain. The sum chain
generates the least significant bit (LSB) of the sum, while the carry chain generates the
carry-out signal that is used to compute the next higher-order bit of the sum.

CARRY

AND

SUM

XOR

A

B

Figure 5.1: Half Adder

In fig. 5.1, there is a half-adder. A half adder is a simple type of binary adder that
performs the addition of two single binary digits (0 or 1). It has two inputs, A and B, and
two outputs, the sum and the carry. The sum is the exclusive OR (XOR) of the inputs,
while the carry is the AND of the inputs. A half adder is called "half" because it only
computes the least significant bit (LSB) of the sum, and not the carry bit that is used to
compute the next higher-order bit. The half adder is a building block for creating larger
adders, such as full adders, which can handle the addition of multiple binary digits.

In the fig. 5.2, there is, respectively, a full adder. It has three inputs: A, B and
Carry-in (Cin), and two outputs: Sum (S) and Carry-out (Cout). The Sum is the result
of the modulo-2 addition of the inputs, and the Carry-out is the result of the carry from
the addition. A full adder is essentially a combination of two half adders, where one
computes the sum and the other computes the carry.

40

AND

XOR

A

B SUM

XOR
Cin

AND CARRY OUT

OR

Figure 5.2: Full Adder

In the above two figures (fig. 5.1 and fig. 5.2), the sum and the carry chain, are pretty
obvious.

Now, let’s take a look at the listing 5.1.
1 module simple_adder_wire (a, b, sum);
2 input [32:0] a, b;
3 output [32:0] sum;
4

5 assign sum = a + b;
6

7 endmodule

Listing 5.1: 33-bit Behavioural Adder

sum = a + b

The sum chain could be retrieved because of the output pins, while the carry chain
is completely hidden. The only items that are known are the 33 bits of the two inputs, a
and b and the 33 bits of the output, sum. Finding the backward logic cone from each bit
of output sum, could possibly result in the sum chain. At the same time, the nth bit of
sum will most definitely contain the nth bit of a and b. However, in this previous logic
cone, there will also be parts of the carry chain, which, depending on the architecture,
may be completely different for each sum bit. So, the need arises to separate the sum
chain from the carry one. Up to this, the flow has taken the shape below:

1. For bit n, find the forward logic cone of input a (FLCan)

2. For bit n, find the forward logic cone of input b (FLCbn)

3. For bit n, find the backward logic cone of output sum (BLCsumn)

4. Concatenate list of FLCan with list of FLCbn

The next and final step to eliminate the carry bits from the sum chain is to intersect
the two lists from items 3 and 4. That is,

41

5. Intersect list of (FLCan, FLCbn) with BLCsumn

Each sumn list, containing the bits on the nth sum chain, will be a cell-
group.

Every step of the flow has been developed through TCL [8] functions and scripts that
are being sourced in ASP tool [7].

1 set BITS 33
2

3 for {set n 0} {$n < $BITS} {incr n} {
4 // step 1 //
5 set a($n) [get_forward_logic_cone simple_adder_reg /a|$n -longest]
6 // step 2 //
7 set b($n) [get_forward_logic_cone simple_adder_reg /b|$n -longest]
8

9 // step 4 //
10 set ab($n) [concat $a($n) $b($n)]
11

12 // step 3 //
13 set sumBackward ($n) [get_backward_logic_cone simple_adder_reg /\\

sum_reg \[$n \]/D -longest]
14

15 // step 5 //
16 set SUM($n) [intersection $ab($n) $sumBackward ($n)]
17

18 set cellgroupSUM ($n) [extract_pins_from_conesList $SUM($n)]
19

20 create_cellgroup -module simple_adder_wire -groupid $n -groupname
sum$n $cellgroupSUM ($n)

21 }

Listing 5.2: Sum Extraction Flow

Commands used in steps 1, 2 and 3, get_forward_logic_cone <pin_name> -longest
and get_backward_logic_cone <pin_name> -longest already exist in the ASP tool, and
each one returns a list with the pins of the forward logic cone of pin_name and the
backward one, respectively. Similarly, in step 4, command concat, exists already through
the TCL interface. However, command intersection, used in step 5 does not pre-exist.
The intersection of two lists in Tcl is the set of elements that are present in both lists.
In other words, it’s the common elements between the two lists. Intersecting two lists,
may be complicated and its time complexity depends on the implementation used. One
approach is to use the lsort command to sort both lists and then use two pointers to
iterate through the sorted lists and compare elements. If a match is found, the element
is added to the result list. Another approach is to use a loop to iterate through one list
and check for elements in the other list using the lsearch command. This approach has a
time complexity of O(n2) in the worst case, where n is the length of the longer list.

The cache command is used to cache the results of a command, so that subsequent
calls to the same command with the same arguments can be served from the cache, rather
than executing the command again. If the lists being intersected are large and the oper-
ation is performed frequently, caching the result of the intersection operation with cache
could help speed up the process by reducing the number of times the intersection opera-
tion needs to be performed.

So, combining a for loop to traverse the two lists and the cache command, the tcl
procedure for the intersection is in the listing 5.3:

42

1 proc intersection {list1 list2 } {
2 set result {}
3

4 foreach x $list1 {
5 set cache ($x) 1
6 }
7

8 foreach y $list2 {
9 if {[info exists cache ($y)]} {

10 lappend result $y
11 }
12 }
13

14 return $result
15 }

Listing 5.3: TCL List Intersection

Finally, at line 18 of listing 5.7, there is the last procedure needed for sum ex-
traction. Procedure extract_pins_from_conesList is needed here, because commands
get_forward_logic_cone and get_backward_logic_cone return lists with pins and not
only the cells that will compose the cellgroup.

1 proc extract_pins_from_conesList {list} {
2 set result {}
3 set i 0
4

5 foreach x $list {
6 if {$i == 0} {
7 incr i
8 } else {
9 if {[string last | $x] == -1} {

10 // filter last appearence of ’/’ to locate the pin //
11 set lastAT [string last / $x]
12 set n [expr $lastAT -1]
13 set final [string range $x 0 $n]
14

15 // check if cell already exists , else append it //
16 if {[lsearch -exact $result $final] < 0} {
17 lappend result $final
18 }
19 }
20 }
21 }
22 return $result
23 }

Listing 5.4: TCL Procedure for Pins Removal

The procedure in the listing 5.4, practically traverses the list given as argument, re-
moves the pin from the cell and finally check if it already exists in the list. The possibility
of already being on the list lies to the fact a cell has inputs and outputs. If a cell exists
in the logic cone, both the input and its output will be in the list, resulting in duplicate
entries.

43

So, after synthesizing listing 5.1 and loading into ASP tool [7], the regularity mea-
surements are:

> INFO: Total Cells = 365, Total Grouped Cells = 192, Grouped Cell Ratio = 53%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 11063.81um^2,
> Total Grouped Cells Area = 6046.99um^2, Grouped Cell Area Ratio = 55%

Comparing to the regularity measurements without the sum extraction process, but
only a cellgroup to play the role of seed group, containing the cells connected to the 33
bits of output sum:

> INFO: Total Cells = 365, Total Grouped Cells = 66, Grouped Cell Ratio = 18%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 11063.81um^2,
> Total Grouped Cells Area = 3062.30um^2, Grouped Cell Area Ratio = 28%

The cellgroup is in the listing 5.5.
1 create_cellgroup -module simple_adder_wire_DW01_add_1 -groupid 1 -

groupname sum { simple_adder_wire_DW01_add_1 /U376
simple_adder_wire_DW01_add_1 /U394 simple_adder_wire_DW01_add_1 /U395
simple_adder_wire_DW01_add_1 /U397 simple_adder_wire_DW01_add_1 /U399
simple_adder_wire_DW01_add_1 /U400 simple_adder_wire_DW01_add_1 /U402
simple_adder_wire_DW01_add_1 /U405 simple_adder_wire_DW01_add_1 /U406
simple_adder_wire_DW01_add_1 /U407 simple_adder_wire_DW01_add_1 /U409
simple_adder_wire_DW01_add_1 /U415 simple_adder_wire_DW01_add_1 /U427
simple_adder_wire_DW01_add_1 /U428 simple_adder_wire_DW01_add_1 /U429
simple_adder_wire_DW01_add_1 /U432 simple_adder_wire_DW01_add_1 /U448
simple_adder_wire_DW01_add_1 /U460 simple_adder_wire_DW01_add_1 /U465
simple_adder_wire_DW01_add_1 /U475 simple_adder_wire_DW01_add_1 /U476
simple_adder_wire_DW01_add_1 /U485 simple_adder_wire_DW01_add_1 /U487
simple_adder_wire_DW01_add_1 /U492 simple_adder_wire_DW01_add_1 /U498
simple_adder_wire_DW01_add_1 /U514 simple_adder_wire_DW01_add_1 /U521
simple_adder_wire_DW01_add_1 /U522 simple_adder_wire_DW01_add_1 /U527
simple_adder_wire_DW01_add_1 /U584 simple_adder_wire_DW01_add_1 /U585
simple_adder_wire_DW01_add_1 /U586 simple_adder_wire_DW01_add_1 /U587}

Listing 5.5: Seed Group for the 33-bit non-regular adder

On the other hand, finding the carry chain through logic cones is less complex. With
n starting from 0, because Cin is zero,

1. For bit n, find the backward logic cone of output sum (BLCsumn)

2. For bit (n+1), find the backward logic cone of output sum (BLCsum(n+1))

44

3. For carry(n + 1) Intersect list of BLCsum(n+1) with BLCsumn

Each carry(n + 1) list, containing the bits on the (n+1)th carry chain, will
be a cellgroup.

Every step of the flow has been developed through TCL [8] functions and scripts that
are being sourced in ASP tool [7].

1 set BITS 32
2

3 for {set n 0} {$n < $BITS} {incr n} {
4 // step 3, using results from step 3 of sum extraction flow //
5 set CARRY ([expr $n + 1]) [intersection $sumBackward ($n) $sumBackward

([expr $n + 1])]
6 set cellgroupCARRY ([expr $n + 1]) [extract_pins_from_conesList

$CARRY ([expr $n + 1])]
7 }

Listing 5.6: Carry Extraction Flow

The command used in step 3 is the intersection command from listing 5.3, and the
command at line 6 is the command from listing 5.4.

However, depending on the adder architecture, each carry chain could contain cells
from other carry chains. For example, for the 33 bit adder, carry chains 4 and 5 are:

1 CARRY (4): 8
2 CARRY (4): simple_adder_wire_DW01_add_1 /U436 simple_adder_wire_DW01_add_1

/U440 simple_adder_wire_DW01_add_1 /U390 simple_adder_wire_DW01_add_1 /
U441 simple_adder_wire_DW01_add_1 /U374 simple_adder_wire_DW01_add_1 /
U365 simple_adder_wire_DW01_add_1 /U375 simple_adder_wire_DW01_add_1 /
U437

3 CARRY (5): 15
4 CARRY (5): simple_adder_wire_DW01_add_1 /U557 simple_adder_wire_DW01_add_1

/U439 simple_adder_wire_DW01_add_1 /U412 simple_adder_wire_DW01_add_1 /
U356 simple_adder_wire_DW01_add_1 /U357 simple_adder_wire_DW01_add_1 /
U436 simple_adder_wire_DW01_add_1 /U361 simple_adder_wire_DW01_add_1 /
U413 simple_adder_wire_DW01_add_1 /U440 simple_adder_wire_DW01_add_1 /
U390 simple_adder_wire_DW01_add_1 /U441 simple_adder_wire_DW01_add_1 /
U374 simple_adder_wire_DW01_add_1 /U365 simple_adder_wire_DW01_add_1 /
U375 simple_adder_wire_DW01_add_1 /U437

Listing 5.7: Sum Extraction Flow

Carry chain 5 consists of every cell from carry chain 4 and seven more cells. That is,
these lists are not unique, and in order to create cellgroups, lists must contain unique cells.
The sum up, this process, the carry extraction flow, is not used to identify carry chains,
make lists of them and subsequently, create cellgroups of them. This process is used to
simply identify the carry chains, how their size increases along with the sum chains, in
order to help later with the placement of the cellgroups.

5.2.2 8-to-1 Synthesized Multiplexer
A multiplexer, also known as a MUX, is a device or circuit that selects one of several

input signals and forwards the selected input to a single output line. The selection of
the input is controlled by a set of selection lines. The design of a multiplexer involves
specifying the number of inputs, the number of selection lines, the implementation of

45

the logic that determines the input selection, and the choice of the technology used to
implement the circuit.

A multiplexer can be implemented using various digital circuit elements such as
gates, flip-flops, and decoders. The design of a multiplexer can also be described using
a truth table, which shows the relationship between the inputs and outputs, or by using
Boolean equations. In modern digital systems, multiplexers are often integrated into larger
integrated circuits, and they are commonly used in communication systems, computer
memory systems, and digital signal processing applications.

In fig. 5.3, there is an 8 to 1 multiplexer, the study of this subsection, and its truth
table.

OUT

8-1
M
U
X

A

B

C

D

E

F

G

H

s1
s2

s0

S0 S1 S2 OUT

0 0 0 A

0 0 1 B

0 1 0 C

0 1 1 D

1 0 0 E

1 0 1 F

1 1 0 G

1 1 1 H

Figure 5.3: 8 to 1 Multiplexer

In fig. 5.4, there is the diagram of a 1 bit 8 to 1 multiplexer, using gates.

Figure 5.4: Logic Diagram of 1bit 8 to 1 Multiplexer

46

In this case study, the flow applied to the 33bit adder in section 5.2.1 will not work.
This happens because a multiplexer design does not have a logic depth like the adder.
Depending on the type of the MUX, 4 to 1, 8 to 1 etc, and the characteristics of the
available gates of the library, like the number of inputs, the logic depth may differ, but its
overall orientation is vertical, like shown in fig. 5.4. That is, grouping output "out" may
not be the best approach.

The backward logic cone of output "out" for an 8-to-1 multiplexer (MUX) consists
of all the inputs and control signals that affect the value of the output "out". In other
words, it includes all the inputs and control signals that are necessary to determine the
value of the output "out". For example:

• Data inputs: There would be 8 data inputs to the MUX, representing the 8
different data signals that can be selected as the output.

• Selection inputs: The MUX would have 3 selection inputs, which determine which
of the 8 data inputs is selected as the output.

• Output enable (OE) signal: The MUX may have an output enable (OE) signal,
which controls whether the MUX outputs the selected data signal or a default value
(such as a high impedance state).

So, in summary, the backward logic cone of output "out" for an 8-to-1 MUX would
typically consist of the 8 data inputs, the 3 selection inputs, and the output enable (OE)
signal (which is not present in this case). So, having excluded the output as a possible
cellgroup, what is left?

A more suitable approach for a multiplexer would be to group all bits of an input
and then create cellgroups of each input to grow backwards.

1 module MUX8to1 (input [32:0] a, // 8-bit input
2 input [32:0] b, // 8-bit input
3 input [32:0] c, // 8-bit input
4 input [32:0] d, // 8-bit input
5 input [32:0] e, // 8-bit input
6 input [32:0] f, // 8-bit input
7 input [32:0] g, // 8-bit input
8 input [32:0] h, // 8-bit input
9 input [2:0] sel , // input sel used to select between a

,b,c,d
10 output reg [32:0] out); // 8-bit output based on input

sel
11

12 always @ (a or b or c or d or sel) begin
13 case (sel)
14 3’b000 : out <= a;
15 3’b001 : out <= b;
16 3’b010 : out <= c;
17 3’b011 : out <= d;
18 3’b100 : out <= e;
19 3’b101 : out <= f;
20 3’b110 : out <= g;
21 3’b111 : out <= h;
22 endcase
23 end
24 endmodule

Listing 5.8: 33-bit 8 to 1 MUX

47

After synthesizing the RTL implementation of the MUX in the listing 5.8, the eight
inputs a, b, c, d, e, f, g and h are clear. So, based on them, the flow takes the form
below:

1. For input a:

(a) For bit n, find the forward logic cone of input a (FLCan)

(b) For the forward logic cone obtained, find and delete the output

(c) For the forward logic cone obtained, find and delete the gates connected to the
output

(d) Add the remaining gates to the result list

2. For input b:

(a) For bit n, find the forward logic cone of input b (FLCbn)

(b) For the forward logic cone obtained, find and delete the output

(c) For the forward logic cone obtained, find and delete the gates connected to the
output

(d) Add the remaining gates to the result list

3. For input c:

(a) For bit n, find the forward logic cone of input c (FLCcn)

(b) For the forward logic cone obtained, find and delete the output

(c) For the forward logic cone obtained, find and delete the gates connected to the
output

(d) Add the remaining gates to the result list

4. inputs d to g...

5. For input h:

(a) For bit n, find the forward logic cone of input h (FLChn)

(b) For the forward logic cone obtained, find and delete the output

(c) For the forward logic cone obtained, find and delete the gates connected to the
output

(d) Add the remaining gates to the result list

Each result list, containing the gates of each input, will be a cellgroup.
Every step of the flow has been developed through TCL [8] functions and scripts that

are being sourced in ASP tool [7].
1 set SEL 3
2 set INPUTS 8
3 set BITS 33
4

5 set result {}
6 set n 0
7

48

8 // collect gates for input a //
9 for {set i 0} {$i < $BITS} {incr i} {

10 // step 1a //
11 set input($i) [get_forward_logic_cone MUX8to1_k0 /a|$i -longest]
12 // step 1b //
13 set noout($i) [delete_output $input ($i)]
14

15 // step 1c //
16 set noout($i) [delete_output_gates $noout ($i)]
17 // step 1d //
18 set result [concat $result $noout ($i)]
19 }
20 set cellgroup ($n) [extract_pins_from_conesList $result]
21

22 // reinitialise result list //
23 set result {}
24

25 incr n
26

27 // collect gates for input b //
28 for {set i 0} {$i < $BITS} {incr i} {
29 set input($i) [get_forward_logic_cone MUX8to1_k0 /b|$i -longest]
30 set noout($i) [delete_output $input ($i)]
31

32 set noout($i) [delete_output_gates $noout ($i)]
33 set result [concat $result $noout ($i)]
34 }
35 set cellgroup ($n) [extract_pins_from_conesList $result]
36

37 // reinitialise result list //
38 set result {}
39

40 incr n
41

42 // collect gates for input c //
43 for {set i 0} {$i < $BITS} {incr i} {
44 set input($i) [get_forward_logic_cone MUX8to1_k0 /c|$i -longest]
45 set noout($i) [delete_output $input ($i)]
46

47 set noout($i) [delete_output_gates $noout ($i)]
48 set result [concat $result $noout ($i)]
49 }
50 set cellgroup ($n) [extract_pins_from_conesList $result]
51

52 // reinitialise result list //
53 set result {}
54

55 // inputs d-g //
56

57 incr n
58

59 // collect gates for input h //
60 for {set i 0} {$i < $BITS} {incr i} {
61 set input($i) [get_forward_logic_cone MUX8to1_k0 /h|$i -longest]
62 set noout($i) [delete_output $input ($i)]
63

64 set noout($i) [delete_output_gates $noout ($i)]
65 set result [concat $result $noout ($i)]

49

66 }
67 set cellgroup ($n) [extract_pins_from_conesList $result]

Listing 5.9: MUX Input Gates Extractions

Command used in steps #a, get_forward_logic_cone <pin_name> -longest, as men-
tioned in section 5.2.1, already exist in the ASP tool, and returns a list with the pins of
the forward logic cone of pin_name. Similarly, command concat, exists already through
the TCL interface and command extract_pins_from_conesList, was explained in list-
ing 5.4.

Moving on to step #b, command delete_output does exactly what its name says,
deletes the output pin:

1 proc delete_output {list} {
2 set result {}
3

4 foreach x $list {
5 set substring "out"
6 if {[string first $substring $x] == -1} {
7 lappend result $x
8 }
9 }

10 return $result
11 }

Listing 5.10: Procedure delete_output

Finally, command delete_output_gates, clarifies the list by removing the cells con-
nected to the output. The procedure is in the listing 5.11.

1 // (listsize - 2) for 8 bits //
2 // (listsize - 6) for 33 bits (6 is for PINS , that is 3 GATES) //
3 // This number depends on the lib cells and their number of inputs //
4

5 proc delete_output_gates {list} {
6 set result {}
7 set listsize [llength $list]
8

9 set i 0
10 foreach x $list {
11 if {$i < [expr $listsize - 6] } {
12 lappend result $x
13 }
14 incr i
15 }
16 return $result
17 }

Listing 5.11: Procedure delete_output_gates

Basically, this process creates cellgroups of all the bits of each input. For example,
for the fig. 5.4, an 8 to 1 1 bit MUX, that is, each input has 1 bit, the cellgroups would
be eight with only 1 entry each of them.

50

A cellgroup

C cellgroup

D cellgroup

B cellgroup

E cellgroup

G cellgroup

H cellgroup

F cellgroup

Figure 5.5: Cellgroups of 1-bit 8 to 1 Multiplexer

So, after synthesizing the listing 5.8, following the flow, and loading the netlist into
the ASP tool [7], the regularity measurements are:

> INFO: Total Cells = 415, Total Grouped Cells = 264, Grouped Cell Ratio = 64%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 12079.87um^2,
> Total Grouped Cells Area = 7451.14um^2, Grouped Cell Area Ratio = 62%

For the specific circuit, another possible action would be to create a cellgroup of
all the bits of the output cells and grow it backwards. In this way, each bit will grow
backwards and will manage to group the "output" gates that were excluded from the flow
before. Although, this is a technique characterized "design-specific", while the flow in the
listing 5.9 could be applied in more designs with similar behavior as MUX, that is not
expectable logic depth.

The output cellgroup that could be created is:
1 create_cellgroup -module MUX8to1 -groupid 1 -groupname OUT { MUX8to1 /

U416 MUX8to1 /U428 MUX8to1 /U440 MUX8to1 /U452 MUX8to1 /U464 MUX8to1 /U476
MUX8to1 /U488 MUX8to1 /U500 MUX8to1 /U512 MUX8to1 /U524 MUX8to1 /U536

MUX8to1 /U548 MUX8to1 /U560 MUX8to1 /U572 MUX8to1 /U584 MUX8to1 /U596
MUX8to1 /U608 MUX8to1 /U620 MUX8to1 /U632 MUX8to1 /U644 MUX8to1 /U656
MUX8to1 /U668 MUX8to1 /U680 MUX8to1 /U692 MUX8to1 /U704 MUX8to1 /U716
MUX8to1 /U728 MUX8to1 /U740 MUX8to1 /U752 MUX8to1 /U764 MUX8to1 /U776
MUX8to1 /U788 MUX8to1 /U800}

Listing 5.12: MUX "output" cellgroup

After growing it backwards, with the isomorphism algorithm, the regularity measure-
ment is:

51

> INFO: Total Cells = 415, Total Grouped Cells = 396, Grouped Cell Ratio = 95%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 12079.87um^2,
> Total Grouped Cells Area = 11642.40um^2, Grouped Cell Area Ratio = 96%

52

Chapter 6

Bit Slicing Regular Datapath
Placement Flow

Verilog RTL Representation of the Circuit

Regularity Extraction

Syntax RTL Conversions to Increase Regularity

IsomorphismGreedy

Structure Aware Placement

Custom IO Placement in Bit-Slices

Fixed Cellgroups Legal Placement

Cellgroups Creation

1 Iteration Global Placement for
unclustered cells

Legalisation for flat cells

Detailed Placement for flat cells

Proposed Structured Datapath Flow

Logic Cone
Traversals

Figure 6.1: Structured Datapath Placement Proposed Flow

The proposed SDP flow consists of several key steps to achieve efficient and accu-
rate placement of electronic circuits. Firstly, regularity is extracted using one of three
methods:

• the greedy method,

• the isomorphism method,

53

• the proposed method using logic cones.

Once regularity is established, cellgroups are created and placement is carried out.
The IO placement step involves either custom or automated methods, depending on the
design requirements. Cellgroups are then fixed in legal positions, and a one-iteration
global placement is performed for flat cells. Legalization is then carried out to ensure
that flat cells are placed within legal boundaries. Finally, detailed placement is executed
for flat cells, completing the placement process. By following this proposed SDP flow,
efficient and accurate placement of electronic circuits can be achieved, allowing for optimal
performance and functionality.

Normally, detailed placement consumes a great amount of time due to its complexity.
In this flow, because it is only performed for flat cells, it is significantly fast, while at the
same time better results are achieved.

6.1 Case Studies & their Hierarchical Break-Down
Analysis

The case studies of this report are below:

• Register Files

– 32x32

– 64x64

• 32x32 Booth Multiplier

– Synthetic Adder

∗ 33-bit

∗ 64-bit

– MUX Tree (x16 MUX)

– CSA Tree (x16 CSA)

• DLX Execute Unit

Register files were chosen because of their natural structured behavior to be the first
case study and prove the theory. Booth Multiplier and DLX’s Execute Unit were chosen
due to their massive use from GPUs to microprocessors.

6.2 Regular Placement of Bit-Slices

6.2.1 Register Files
The system being analyzed first, stores and manipulates data using registers orga-

nized in rows and columns. It is regular in structure by nature, making it easily ex-
pandable. To achieve this, the proposed flow includes creating cell groups of registers,
using the 2nd proposed method of the flow step, ordered from 0 to 31, which helps extract
regularity and reach up to 73%. These cell groups are then fixed placed manually using
ECO commands provided by the ASP tool. The flat logic, which makes up 27% of the

54

system, is then addressed through a single iteration global placement, legalization and
finally, detailed placement.

32x32 RF

The regularity measured in ASP tool [7], after the cellgroup creation is:

> INFO: Total Cells = 5660, Total Grouped Cells = 4160, Grouped Cell Ratio = 73%
> INFO: Clustering Complete.
> INFO: Verifying Clustering Result.
> INFO: Clustering Result Verified OK.
> INFO: Top-Level Module Area = 263788.56um^2,
> Total Grouped Cells Area = 217240.13um^2, Grouped Cell Area Ratio = 83%

Figure 6.2: Fix Place Cell-groups row-by-row

Figure 6.3: GP/LG/DP of 32x32 RegFile’s Flat Cells

55

Figure 6.4: Flat VS SDP for 32x32 RegFile

As shown in fig. 6.4, the area and the half perimeter wirelength for the SDP version
compared to the flat one is decreasing. More specifically, the area improvement is
10% and the HPWL improvement is 7%.

64x64 RF

The regularity extraction process, along with the ECO manual placement of the
cellgroups for the 64x64 Register File, follows the same approach with the 32x32. In
fig. 6.5, it is shown how packed the cells are, leading to reduced area and reduced
total wirelength.

Figure 6.5: RegFile 64x64

56

6.2.2 32x32 Booth Multiplier
Multipliers are commonly used in a variety of computing systems, ranging from GPUs

(Graphics Processing Units) to microprocessors. Multipliers are electronic circuits that
perform the arithmetic operation of multiplication, which is a fundamental operation in
many computational tasks. In GPUs, multipliers are used to perform matrix multiplica-
tion, which is a key operation in graphics rendering and machine learning tasks. Multipli-
ers can be implemented using different techniques such as combinational circuits, sequen-
tial circuits, or pipelined circuits. Depending on the specific application and performance
requirements, different types of multipliers may be used. For example, high-performance
microprocessors may use pipelined multipliers that can perform multiple multiplication
operations in parallel to improve processing speed.

Figure 6.6: Booth Multiplier Block Diagram

The Booth multiplier is one of the first types of multipliers to be analyzed in general,
but the only one in terms of this report, and it consists of four basic blocks. The two
first blocks are two adders, the first one is used to calculate the two’s complement of the
multiplier and the second one, to add the two last outputs from the carry-save adder (CSA)
to obtain the final result. The third block is a tree of 16 multiplexers (MUXs), which are
used to prepare the inputs for the CSA. Finally, the fourth block is a tree of 16 64-bit
CSAs that add the partial products to calculate the final result. The Booth multiplier is
an efficient design for multiplying two signed binary numbers, as it reduces the number of
partial products required for the multiplication operation, resulting in faster computation
times and reduced hardware complexity. Overall, the Booth multiplier is a commonly
used and important component in digital systems, particularly in microprocessors and
other integrated circuits.

Block by block, each one is going to be analyzed and placed in a structured way to
try and achieve better results. The first one will be the 33-bit synthesized adder.

57

33x33 Synthetic Adder

The proposed flow for regularity extraction involves using the method with logic
cones proposed in the previous chapter . As far as the creation of the cellgroups
is concerned, this involves dividing the SUMn signal into two groups. The first group,
called the input group, consists of the cells from the first two levels of the SUMn logic
cone. The second group, called the non-input group, consists of the remaining cells from
levels [length-2] of the SUMn logic cone. By grouping these cells together based on their
logical relationships, we can identify regular patterns in the circuit that can be exploited
to optimize the design. This process can be used to identify areas of the circuit that are
redundant or could be simplified, leading to improved performance and reduced hardware
complexity. Regularity extraction using logic cones is an important technique in digital
design and can be applied to a wide range of circuits, including adders and other arithmetic
circuits.

Regarding the placement flow, it starts with the IO placement. The placement of
input and output (IO) pins is an important aspect of digital design, as it can affect the
performance, reliability, and manufacturability of the circuit. In the proposed flow for IO
placement, the IOs are placed on the west and east side of the core area, respectively, bit
by bit, as shown in the fig. 6.7.

Figure 6.7: Proposed IOs for 33-bit Synthetic Adder

The placement flow consists of several steps. First, the input group is placed row
by row on the east side of the core, depending on where the IOs have been placed. This
placement is fixed and cannot be changed. Next, the non-input group is placed row by

58

row, leaving space for the carry chain, which is used to propagate the carry bit in multi-bit
arithmetic operations.

Figure 6.8: Adder’s Cellgroups Fixed Placement

After the initial placement is complete, a global placement iteration is performed to
optimize the placement of the cells. The placement is then legalized, which ensures that
the cells are placed within the legal constraints of the design rules. Finally, a detailed
placement step is performed, which further refines the placement of the cells to optimize
performance, minimize power consumption, and reduce the area of the circuit.

Figure 6.9: Fix Place Sum Cellgroups & GP/LG/DP for Flat Ones

59

Figure 6.10: Flat VS SDP for 33-bit Synthetic Adder

As shown in fig. 6.10, the half perimeter wirelength for the SDP version compared
to the flat one is decreasing. More specifically, the improvement is 9.24%.

64x64 Synthetic Adder

Figure 6.11: Flat VS SDP for 64-bit Synthetic Adder

60

The proposed flow for the 64-bit synthetic adder is exactly the same, so the results
are in fig. 6.11. The HPWL improvement is 7.81%.

MUX

Figure 6.12: Fix Place Input Cell-groups & GP/LG/DP for Flat Cells

The second block is the MUX tree, a tree of 16 33-bit 8 to 1 MUX. The proposed flow
refers to only the one of them and involves using the logic cone method, proposed
in the previous chapter, to extract regularity and create cell groups. The cell groups
are then manually fixed in place using an engineering change order (ECO) process. After
the cell groups are fixed in place, the flat logic is placed using GP/LG/DP for the select
and output signals. This process may help to simplify the design of the MUX tree and
improve its overall efficiency and functionality.

Figure 6.13: Flat VS SDP for 33-bit 8 to 1 Synthetic MUX

61

As shown in fig. 6.13, the half perimeter wirelength for the SDP version compared
to the flat one is decreasing. More specifically, the improvement is 8.16%.

CSA Core - 16xCSA

The proposed flow for the tree of 16 CSAs involves several steps. First, regularity
extraction and cell group creation will be done using the 1st and 2nd proposed methods
of the RTL techniques flow. Then, the primary inputs are placed, with the first half
on top (south of the core) and the other half on the bottom (north of the core). Next,
the placement of register cell groups will be done manually, with multiple combinations
based on their connections. In this report, only one of those combinations will be shown,
the one in fig. 6.14, but there were over 100 of them tried. The process of finding the best
one is hard and complex, and one of the main projects of the future work.

Figure 6.14: Cell-groups Fixed Placement for the Right Combination

Finally, flat cells will be placed using 1 iteration of global placement, local placement,
and detailed placement. This process aims to create an efficient and organized tree of
16 CSAs with a 64-bit structure, while also ensuring the connections between cells are
optimized for optimal functionality.

In fig. 6.15, there is the first attempt of cellgroups’ placement with the combinations
shown in fig. 6.14. As it seems, the HPWL in the flat placement is lower than the SDP
one. This may be happening for a lot of reasons, with the first and most likely one to
be that the combination is not optimal. Another one maybe the primary inputs/outputs
placement. This placement results in 18.2% HPWL worsening.

62

Figure 6.15: Flat VS SDP for CSA Tree (Attempt 1)

By examining the measurements, the IO HPWL is approximately 30000 more in
the SDP version, while the Internal HPWL is around 12000 more in the SDP. So,
another approach would be to try and decrease the IO HPWL, by leaving the cellgroups
connected to the primary inputs, to be treated as flat cells. By doing that, the IOs will
pull closer to them the cells that they connect, leading to lower IO HPWL. The results are
in fig. 6.16, where IO HPWL is approximately 25000 lower in SDP than in the flat one.
At the same time, the internal HPWL is approximately 19000 more in the SDP than
in the flat, leading to results very close to one another. The total HPWL improvement
here, though, is 3%.

Figure 6.16: Flat VS Semi-SDP for CSA Tree (Attempt 2)

63

Booth Multiplier - Combining Previous Modules

Finally, after examining and analyzing every module separately, the time has come
to combine all of them. The proposed flow here involves ml clusters and more specifically
creating several of them, for different components, namely the 33-bit adder, all 16 MUXs,
the whole CSA core, and the 64-bit adder. Once the clusters are created, the next step
is to place them on a global ML grid and fill them in with their relative positions. This
process is essential to ensure that the clusters are positioned correctly and do not overlap
with one another. Finally, the clusters’ placement is legalized, which means that any
potential violations of the design rules are identified and resolved. This process ensures
that the design is functional and can be fabricated correctly.

In fig. 6.17, there is the first attempt of the flow. The primary inputs are all placed on
the west of the core, while the primary outputs are on the east. The way the ml clusters
are positioning here, is custom and designed regarding the booth structure.

Figure 6.17: Booth Multiplier Flat VS SDP (Attempt 1)

As shows in fig. 6.17, the SDP version is approximately 2x the flat one.

In fig. 6.18, on the other hand, a different approach is followed as far as the top level
floorplan is concerned. The core box is rotated and the MUX clusters are placed in a
way that they are closer to the CSA cellgroups they are connected to. Nonetheless, the
HPWL of the SDP version is still more than the flat one.

64

Figure 6.18: Booth Multiplier Flat VS SDP (Attempt 2)

Figure 6.19: Booth Multiplier Flat VS SDP (Attempt 3)

In fig. 6.19, there has been an attempt to reduce the IO HPWL by gathering in the
top left corner all the primary inputs and, that is, the MUX clusters they are connected

65

too. Still not the wanted results, though.
After all these unsuccessful attempts to place the clusters, the conclusion is one. The

fact that each module is placed optimally for itself, with reduced HPWL connections, does
not mean that the combination of them will be optimal too. The fact that the internal
connections are reduced, creates a bigger possibility for the outer connections to be more
dense, that is, the connections from cluster to cluster.

For the final attempt shown, the CSA core cluster (highlighted one) is flattened. This
cluster is the more difficult to be placed due to its size and dimensions. By making it
flat, it gives the placer the freedom to examine better positions for the CSA cells that are
connected to the MUXs and could be near them, due to the restrictions of the box. As
shown in fig. 6.20, the total HPWL is still more in the SDP version than in the flat one,
but significantly better.

Figure 6.20: Booth Multiplier Flat VS SDP (Attempt 4)

6.2.3 DLX Execute Unit
For the last case study, the DLX’s Execute Unit, the proposed flow involves several

steps. Firstly, the regularity of the design is extracted, and cell groups are created using
the third proposed method from the RTL changes flow. This process ensures that
the design is optimally structured and arranged for efficient placement. Secondly, the IO
is placed using a default configuration, provided by the ASP tool. This step ensures that
the input and output interfaces are correctly positioned for the design’s functionality.

The next step is the placement phase, which could be done with two possible ways.
The first one, involves placing the ML clusters using the same flow as with the Booth
algorithm from before. This process ensures that the ML clusters are correctly positioned
and connected for efficient operation. The second one is the automated ASP SDP place-
ment. This process ensures fast results, without any custom action, while at the same

66

time adheres to the design rules and any potential violations are identified and corrected.

Figure 6.21: Flat VS Clustered SDP (1stapproach) VS Automated SDP (2ndapproach)

In fig. 6.21 there is the comparison between the flat version, the clustered SDP and
the automated SDP, ordered from better to worse.

67

Chapter 7

Conclusions & Future Work

7.1 Conclusions
To conclude, in this thesis we proposed three flows. The first one consists of three

techniques that could be applied in verilog RTL level and help increase regularity, namely
module separation, cell-groups creations and finally reusage of already regular modules.
The second one applies in circuits that the RTL implementation is not available, or the
designer simply wants to let the synthesis tool maximize the optimizations and involves
using logic cones to identify the cell-groups and extract the regularity. The last proposed
flow is a structured data path one, and it combines regularity extraction, with either
one of the structured clustering algorithms, or the logic cones flow proposed before, and
structure aware placement, either custom or automated.

The results shown in this thesis were promising enough, a reduction in total wire-
length and area has been achieved, while at the same time physical design process has been
accelerated. However, a drawback of the proposed methodology the lack of automation
because of the strong association between the designer and each step of each presented
flow. The RTL implementation has a strong impact at the final results. Therefore, this
association is crucial, making the proposed methodologies sometimes inefficient because
of the required designer-procedure interaction. The reduction of this necessary interaction
is part of the future work discussed in the following section.

7.2 Future Work
One way to improve the efficiency of the proposed methodologies is by introducing

more automation into the flow. This can be achieved by reducing the essential interaction
between the designer and the procedure. One approach to increase automation is to
formulate the problem as a linear equation Ax = b, which can be solved using algorithms
that require less human intervention. By introducing cell properties in the flow, more
specifically, in the table A formulation, may help find the best solution and, at the same
time, reduce the amount of time spent on manual tasks.

In recent years, many authors have stated that the use of Artificial intelligence (AI)
is becoming increasingly important in the design process. Exploiting the power of AI
and Machine Learning could help automate tasks and improve the efficiency of the design
flow. For example, Verilog analysis and regularity extraction, as well as the placement

68

of cell groups can be accomplished with the help of introduced intelligence in the flow.
Additionally, AI can be used to analyze and optimize the performance of a design, leading
to better results and a more efficient design process.

Another approach to improve the design process is to modify placement and floorplan
steps to be top level aware. By taking a holistic approach to the design, designers can
ensure that each element of the design is optimized for performance and efficiency. By
considering the top-level layout during placement and floorplan steps, designers can avoid
potential problems that may arise, from the hierarchical approach, later in the design
process. This approach can help to minimize the number of design iterations needed,
saving time and improving the overall quality of the design.

69

Bibliography

[1] C.-C. Huang, B.-Q. Lin, H.-Y. Lee, Y.-W. Chang, K.-S. Wu, and J.-Z. Yang,
“Graph-based logic bit slicing for datapath-aware placement,” in Proceedings
of the 54th Annual Design Automation Conference 2017, ser. DAC ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3061639.3062254

[2] C. P. Sotiriou, N. Sketopoulos, A. Nayak, and P. I. Pénzes, “Extraction of structural
regularity for random logic netlists,” 2019 Panhellenic Conference on Electronics &
Telecommunications (PACET), pp. 1–7, 2019.

[3] H. Xiang, M. Cho, H. Ren, M. Ziegler, and R. Puri, “Network flow based datapath
bit slicing,” in Proceedings of the 2013 ACM International Symposium on Physical
Design, ser. ISPD ’13. New York, NY, USA: Association for Computing Machinery,
2013, p. 139–146. [Online]. Available: https://doi.org/10.1145/2451916.2451954

[4] A. Chowdhary, S. Kale, P. Saripella, N. Sehgal, and R. Gupta, “Extraction of func-
tional regularity in datapath circuits,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 18, no. 9, pp. 1279–1296, 1999.

[5] Arikati and Varadarajan, “A signature based approach to regularity extraction,” in
1997 Proceedings of IEEE International Conference on Computer Aided Design (IC-
CAD), 1997, pp. 542–545.

[6] “GENUS (Synthesis Solution) Tool.”

[7] “ASP (Automated Structured Placement) Tool.”

[8] “TCL (Tool Command) Language.”

70

https://doi.org/10.1145/3061639.3062254
https://doi.org/10.1145/2451916.2451954

	Introduction
	Theoretical Background
	EDA & Physical Design Background
	Introduction to EDA
	Physical Design
	Placement

	Structured Datapath Background

	Regularity Extraction & Measurements
	Existing Work on Regularity Extraction
	Graph Traversals and Matching Approaches
	Template-based Approaches
	Signature-based Methods
	Structured Clustering Algorithms

	Verilog RTL Impact on Regularity
	The Power of Designer's Verilog Knowledge
	What is Verilog?
	Synthesis Process

	Techniques that Improve Netlist's Regularity
	First Flow Step - Module Separation
	Second Flow Step - Additional Cellgroups Creation
	Third Flow Step - Reuse of Regular Modules

	Regularity Extraction & Measurements using Logic Cones
	What happens in case of an Agnostic Designer?
	Case Studies
	33-bit Synthesized Adder
	8-to-1 Synthesized Multiplexer

	Bit Slicing Regular Datapath Placement Flow
	Case Studies & their Hierarchical Break-Down Analysis
	Regular Placement of Bit-Slices
	Register Files
	32x32 Booth Multiplier
	DLX Execute Unit

	Conclusions & Future Work
	Conclusions
	Future Work

