
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Video Game Character learning with Artificial Intelligent

Algorithms

Diploma Thesis

Georgios Fragkias

Supervisor: Hariklia Tsalapata

Volos 2023

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Video Game Character learning with Artificial Intelligent

Algorithms

Diploma Thesis

Georgios Fragkias

Supervisor: Hariklia Tsalapata

Volos 2023

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Εκπαίδευση χαρακτήρα ψηφιακού παιχνιδιού μέσω

αλγορίθμων Τεχνητής Νοημοσύνης

Διπλωματική Εργασία

Γεώργιος Φραγκιάς

Επιβλέπων/πουσα: Χαρίκλεια Τσαλαπάτα

Βόλος 2023

v

Approved by the Examination Committee:

Supervisor Hariklia Tsalapata

E.DI.P, Department of Electrical and Computer Engineering,

University of Thessaly

Member Aspassia Daskalopulu

Assistant Professor, Department of Electrical and Computer En

gineering, University of Thessaly

Member Georgios Stamoulis

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Date of approval: 2632021

vii

Acknowledgements

I would like to express my sincere gratitude to my family for their support, as well as,

my professors and friends for their encouragement and guidance through all these years at

the University.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Georgios Fragkias

1722023

x

Abstract

Many of the technological advancements that occur everyday, especially with Artificial

Intelligence has paved the path for rapid evolution in the game industry as well. Different

Artificial intelligence algorithms are being used in each game nowadays adding more to the

engaging, challenging, and personalized aspect of a video game as well as the realism of

serious games. The game developed in this thesis, using the MLAgents toolkit of Unity’s en

gine, offers a valuable perspective on the implementation of Artificial Intelligence algorithms

through the successful training of an agent using deep reinforcement learning methods. The

agent is acquiring the ability to interact with its surroundings in a firefighting setting, honing

its decisionmaking skills and movements according to the positions of the fires and obsta

cles, placing him later to compete against a human player. The successful training of the agent

demonstrates the potential for it to operate with accuracy in realworld scenarios, highlighting

the significance of utilizing Artificial Intelligence algorithms.

xi

Περίληψη

Πολλές από τις τεχνολογικές προόδους που συμβαίνουν καθημερινά, ειδικά στον το

μέα της Τεχνητής Νοημοσύνης, έχουν ανοίξει το δρόμο για την ταχεία εξέλιξη στον τομέα

των ψηφιακών παιχνιδιών. Σχεδόν σε κάθε παιχνίδι στις μέρες μας χρησιμοποιούνται δια

φορετικοί αλγόριθμοι Τεχνητής Νοημοσύνης, προσθέτοντας περισσότερα στην ενεργητική,

προκαλεστική και προσαρμοσμένη πλευρά του βιντεοπαιχνιδιού, καθώς και στην ρεαλιστι

κότητα των σοβαρών παιχνιδιών. Το παιχνίδι που αναπτύχθηκε σε αυτή τη διπλωματική,

χρησιμοποιώντας την εργαλειοθήκη “MLAgents” της μηχανής της “Unity”, παρέχει μια πο

λύτιμη προοπτική για την εφαρμογή αλγορίθμων Τεχνητής Νοημοσύνης μέσω της επιτυ

χούς εκπαίδευσης ενός πράκτορα χρησιμοποιώντας μεθόδους βαθιάς ενισχυτικής μάθησης.

Ο πράκτορας αποκτά την ικανότητα να αλληλεπιδρά με το περιβάλλον του σε ένα σενάριο

πυρόσβεσης, βελτιώνοντας τις δεξιότητες λήψης αποφάσεων και τις κινήσεις του σύμφωνα

με τις θέσεις των πυρκαγιών και των εμποδίων, τοποθετώντας τον αργότερα να ανταγωνιστεί

έναν ανθρώπινο παίκτη.Η επιτυχημένη εκπαίδευση του πράκτορα καταδεικνύει τη δυνατό

τητα να λειτουργεί με ακρίβεια σε σενάρια πραγματικού κόσμου, τονίζοντας τη σημασία της

χρήσης αλγορίθμων Τεχνητής Νοημοσύνης.

xiii

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Aim of the thesis . 2

1.1.1 Contribution . 2

1.2 Structure of the thesis . 3

2 Digital Games 5

2.1 Introduction to interactive computerbased games 5

2.2 Video Game Categories . 6

2.3 Serious Games . 12

2.4 Serious Games Categories . 13

3 Artificial Intelligence and Games 15

3.1 Introduction to Game Artificial Intelligence 15

3.1.1 What is Intelligence . 15

xv

xvi Table of contents

3.1.2 What is Game AI . 15

3.2 Historic View of Game AI . 16

3.3 Importance of Artificial Intelligence in Games 18

3.3.1 Benefits of Artificial Intelligence in Games 18

3.3.2 Artificial Intelligence in Serious Games 20

3.4 Techniques and Algorithms in Game AI 22

3.4.1 RuleBased Model . 22

3.4.2 DecisionTree Model . 23

3.4.3 Machine Learning AI Model . 24

3.5 Machine Learning Models . 26

3.5.1 Deep Learning . 30

3.6 Model of this thesis . 31

4 Unity 33

4.1 Game Engines . 33

4.2 Introduction to Unity Engine . 35

4.3 Reason for picking Unity . 36

4.4 Unity Environment . 37

4.4.1 Unity Scenes . 37

4.4.2 Unity Interface . 38

4.5 Unity Scripting . 39

4.5.1 Conventional and Visual Scripting 39

4.5.2 Key Unity Script Functions . 40

4.5.3 Introduction to Unity Machine Learning Toolkit 41

4.5.4 Agent Class . 42

5 The Game 45

5.1 Game overview . 45

5.1.1 Method Used . 46

5.1.2 Agent Component . 46

5.2 Behavior Parameters . 47

5.2.1 Decision Requester . 48

5.3 Environment . 49

Table of contents xvii

5.3.1 Learning Environment . 49

5.3.2 Testing the Environment . 50

5.3.3 Reward System . 51

5.3.4 Agent’s actions . 52

5.3.5 Hyperparameters . 53

5.4 Training Process . 55

5.4.1 Training Results . 56

5.5 Game Scene . 59

5.5.1 Game Avatar . 59

5.5.2 Game Menus . 59

5.5.3 Gameplay View . 60

6 Conclusion 63

6.1 Summary . 63

6.2 Future work . 64

Bibliography 67

List of figures

3.1 Nim Game [8] . 16

3.2 Space Invaders . 16

3.3 Pong Game . 17

3.4 Pac Man . 17

3.5 Black & White . 17

3.6 Sample of a Decision Tree . 23

3.7 Machine Learning Types [21] . 26

3.8 Deep Learning’s place in Artificial Intelligence [16] 30

3.9 Example of (Deep) Reinforcement learning with a serious game as environ

ment and an artificial neural network as the agent’s action selection compo

nent [23] . 32

4.1 Unity Logo . 35

4.2 Sample of Unity supported platforms. [33] 35

4.3 Unity Editor Interface . 37

4.4 Highlevel view of the MLAgent toolkit [49] 42

5.1 Behavior Parameters script on one of the agents during testing. 48

5.2 Unity’s Decision Requester. 49

5.3 The function to collect observations from the environment 50

5.4 Screenshot of the Heuristic function . 51

5.5 On Action Received function . 53

5.6 Training Mode Environment . 56

5.7 Early training results . 57

5.8 Later at the training results . 57

5.9 Environment / Cumulative Reward Graph 58

xix

xx List of figures

5.10 Losses / Policy Loss Graph . 58

5.11 Losses / Value Loss Graph . 58

5.12 The Avatar and its components . 59

5.13 Game’s Starting Menu . 60

5.14 Screenshot of the game’s result with the Agent being the winner 61

List of tables

5.1 HyperParameters . 54

5.2 Network Settings . 55

5.3 Extrinsic Rewards . 55

xxi

Abbreviations

AI Artificial Intelligence

NPC nonplayer character

RPG RolePlaying Games

MORPG Massively Multiplayer Online RolePlaying Game

ΤRPG Tactical RolePlaying Games

MOBA Mobile Online Battle Area

FPS First Person Shooters

TPS Third Person Shooters

FSM finite state machines

ALE Arcade Learning Environment

ML Machine Learning

DNN Deep Neural Network

DRL Deep Reinforcement Learning

RL Reinforcement Learning

NN neural network

ANN artificial neural network

AR augmented reality

VR virtual reality

SDK software development kit

API Application Programming Interface

PPO Proximal Policy Optimization

xxiii

Chapter 1

Introduction

Digital games, also known as video games, are interactive computerbased games that

are played on a variety of platforms, including PC, console, and mobile devices. They are

typically created for the purpose of entertainment, and they often involve a goal or objective

that the player must achieve. Digital games can be further divided into subcategories, such as

action games, strategy games, and roleplaying games, based on their gameplay mechanics

and themes.

In recent years, digital games have gained increasing popularity, and they have become a

major part of the entertainment industry. The global video gamemarket is expected to surpass

$200 billion in revenue by 2023, and reach over $218 billion in 2024, with mobile games and

console games being the largest segments.

Serious games, on the other hand, are games that are designed for a primary purpose

other than pure entertainment. They are used for a variety of purposes, such as education,

training, health promotion, and policy analysis. Serious games are often designed to be more

interactive and immersive than traditional educational materials, and they can be an effective

way to engage learners and help them retain information.

Artificial intelligence (AI) is becoming an increasingly important aspect of digital and

serious games. AI can be used to create more realistic and engaging gameplay experiences,

as well as to make games more adaptive and personalized to the player. In digital games, AI

can be used for a variety of purposes, such as creating nonplayer characters (NPCs) that have

realistic behaviors and decisionmaking abilities, or to create dynamic and adaptive game

environments. In serious games, AI can be used to provide personalized learning experiences,

to track and analyze player progress, or to provide realtime feedback to players.

1

2 Chapter 1. Introduction

AI can also be used in games to provide more sophisticated game mechanics and to create

new types of games. For example, AI can be used to create intelligent opponents that can

adapt to the player’s style of play, or even to the environment. In addition, AI can be used

to create more advanced virtual reality and augmented reality experiences, which can make

games more immersive and engaging.

The integration of AI in digital and serious games has seen significant growth in recent

years and has become a crucial element for enhancing the overall gaming experience. AI has

the potential to be utilized as an effective tool for learning, persuasion, training, and decision

making.Despite advancements in the field, further research is required to fully comprehend

the efficacy of AI implementation in these types of games and to develop strategies for achiev

ing specific objectives.

1.1 Aim of the thesis

This thesis aims to explore the potential of digital games and serious games as learning

and persuasion tools, and to identify the factors that contribute to their effectiveness. Specif

ically, this thesis will involve the creation of a serious game using the Unity game engine, as

well as the algorithms behind the creation and training of an AI agent and will examine the

impact of this game on players’ learning, adaptability and behavior. Through a review of the

literature and analysis of empirical data, this thesis will examine the current state of Artificial

Intelligence on digital games and serious games, and will seek to identify best practices for

their use and implement them in a digital game.

1.1.1 Contribution

Overall, this thesis will contribute to the growing body of knowledge on digital games and

serious games, especially to the AI in the game industry and will provide insights that will be

useful to researchers, educators, and practitioners working in the field. The development and

analysis of the serious game created in Unity will add to the understanding of the potential

of AI’s use in digital games, and will provide valuable insights for future game developers in

this field.

1.2 Structure of the thesis 3

1.2 Structure of the thesis

The thesis is divided into six chapters. The first chapter is the introduction, describing

the aim of the thesis. The second chapter presents the video games and serious games and

their definitions. The third chapter introduces the Artificial Intelligence in games, their types,

and models which can be used in game development, in addition to which method was used

for the purpose of this game. The fourth chapter introduces the game engines and Unity, the

platform where the development of the game was implemented. The fifth chapter presents

the game and its development. Finally, the last chapter is the conclusion, summarizing the

thesis and presenting the future work.

Chapter 2

Digital Games

2.1 Introduction to interactive computerbased games

Video games and serious games have become an integral part of modern entertainment

and education. They are both interactive computerbased games that are played on a variety

of platforms, including PC, console, and mobile devices. While video games, also known

as digital games, are primarily created for the purpose of entertainment, serious games are

designed with a primary purpose other than pure entertainment such as education, training,

health promotion, and policy analysis. Despite the difference in purpose, both video games

and serious games share similar elements such as gameplay mechanics and interactive ele

ments, and both are enjoyed by a wide audience.

Nowadays, video games are one of the most popular entertainment activities and one of

the largest entertainment industries, with the total number of users increasing every year.

According to Prensky [1], video games consist of certain structural characteristics such as

rules, objectives, representation, interactivity, progression, and competition that contribute

to the overall gaming experience and make it engaging for the user.

1 Rules: set limits and force the player to use specific paths, while making it fair and

causing excitement.

2 Competition: is a key element of the game that make it more interesting and exciting

for the player.

3 Representation: is a fundamental aspect of every video game and it refers to a specific

theme that is present, either directly or indirectly, in the game. This theme is usually

5

6 Chapter 2. Digital Games

portrayed through various narrative elements that are included in the game. Addition

ally, representation also encompasses the use of imagination which is an important

aspect in determining the identity of a game.

4 Progression: helps players to follow their progress and achieve their goals.

5 Goals and objectives: they constitute the driving force of the player and are imple

mented through the observance of the rules. It is an important element of the game, as

as a genre we are ’programmed’ to pursue them [1].

6 Interactivity: is achieved at two levels and concerns the relationship of the player with

the computer and the relationship of the player with other players. Through this step,

the social character of the games, which occupies more and more areas that aim at

development is demonstrated.

2.2 Video Game Categories

To this day the universal categorization of the video games has been found to be quite

challenging. As the number of games continues to grow, it becomes clear that a game can

often not be placed in a single category, since there is a wide variety of games that exist,

different characteristics they possess, objectives they aim to achieve, audience they cater to,

and other factors. The first one who tried to classify them was Caillois back in 1958, and

ended up with four primary categories: games of luck, movement, competition and simula

tion.Different categorizations of games have emerged from studies conducted in the field,

including those by game designers and websites with similar content. However, currently

there is no universally accepted classification system for the whole of video games. [1]

By the time of this thesis video games can be categorized in the following:

1 ActionGames: are characterized by fastpaced, physically challenging gameplaywhere

the player is at the center of the action. These types of games are often easy to start

playing and continue to be some of the most popular video games. Examples include

early games like Donkey Kong and Galaga.

2 Adventure Games: are defined by the type of gameplay rather than the story or set

ting. While advancements in technology have allowed for more creative storytelling,

2.2 Video Game Categories 7

the core mechanics of adventure games have remained relatively unchanged from their

textbased origins. These games typically involve players solving puzzles and gather

ing clues to advance the plot or gameplay. Starting back in the eighties with Colossal

Cave Adventure and then followed games such as Monkey Island, Myst, King’ Quest

and Zork.

3 Fighting Games: focus the action on combat, and in most cases, handtohand combat.

Most fighting games feature a stable of playable characters, each one specializing in

their own unique abilities or fighting style. In most traditional fighting games, players

fight their way to the top, taking onmore andmore difficult opponents as they progress.

Some popular titles are Mortal Kombat, Tekken and Street Fighter II.

4 Platformer games: also known as platform games, get their name from the game

play mechanics in which the player’s character interacts with platforms throughout the

game, usually by running, jumping, or falling. These games typically require the player

to maneuver their character across platforms to reach a goal, while confronting enemies

and avoiding obstacles along the way. These games are presented in a side view us

ing twodimensional movement. Platforming gameplay tends to be very dynamic and

challenges a player’s reflexes, timing, and dexterity with controls. A good example of

such games is Super Mario Bros and The Prince of Persia.

5 Survival Games: challenge players to navigate and survive in harsh, inhospitable en

vironments with limited resources. The player must strategize, gather resources, and

fend off threats in order to survive. These games often blend elements of strategy, ac

tion, and roleplaying. This genre has seen a rise in popularity in recent years, with

games like Rust, DayZ, The Forest gaining recognition as legitimate titles.

6 Survival Horror Games: focus on creating a sense of vulnerability and fear for the

player, often by placing them in an actively hostile environment with limited resources.

These games often require the player to solve puzzles and avoid enemies, rather than

engage in combat as in most typical Survival Games. The genre is known for its use of

eldritch monsters and isolation as a theme. Examples of popular survival horror games

include Resident Evil, Silent Hill and Alone in the Dark.

7 Stealth Games: focus on scheming and careful execution to complete objectives, and

8 Chapter 2. Digital Games

while they may have elements of other genres such as firstperson or thirdperson

shooters, the core gameplay revolves around sneaking and avoiding detection. Exam

ples of this include the popular franchise Metal Gear, Thief and Dishonored which

emphasizes covert actions and maneuvers.

8 Interactive Movies: are similar to traditional movies in that they feature animated or

liveaction footage, with a focus on a main storyline. However, the player is given the

opportunity to make choices and take actions that can alter the course of the story, lead

ing to different scenes and outcomes. These choices can lead to “game over” scenarios

or alternate paths in the story. Dragon’s Lair is the most popular game of this genre.

9 RolePlayingGames (RPG): are a popular game genre inwhich the player takes on the

role of a character in a fantastical setting, allowing them to tailor their journey through

the game in unique ways. The genre is also characterized by choices that influence the

final outcome of the game and often have alternate endings. With origins in tabletop

gaming like Dungeons & Dragons, most RPG games feature medieval or fantasy set

tings, but there are also scifi fantasythemed games such as Mass Effect, Fallout, and

Final Fantasy. Cultural differences have also had an impact on the genre, which can be

categorized as Westerninfluenced (WRPGs) or Japaneseinfluenced (JPRGs).

10 Massively Multiplayer Online RolePlaying Game (MMORPG): These types of

games are mostly played online or on platforms that have network capabilities. They

also offer different game modes where players can work together or compete against

each other. Also one of the most popular game genres out there has found success in the

names of: World of Warcraft(WoW), Ever Quest, Lineage, Guild Wars and Star Wars

The Old Republic.

11 Tactical RolePlaying Games (TRPG): feature gameplay that heavily emphasizes

tactics. These games are typically modeled after classic tabletop roleplaying games,

where players and enemies are arranged on a grid and use unique skills to navigate the

environment through turnbased rolls and moves. Due to their origins in tabletop gam

ing, they often have similarities to traditional board games, with turnbased gameplay

taking place on an isometric grid. Players must use careful strategy and manage limited

resources, such as armies and weapons, to overcome battles and enemies. Games like

Banner Saga and Valkyria Chronicles are all such examples.

2.2 Video Game Categories 9

12 Sandbox RPGs: are games where players are given the freedom to explore the game’s

environment and discover new adventures. These games are highly immersive and en

gaging, as they feature a vast number of characters and scenarios that allow developers

to create realistic virtual worlds. Witcher, Red Dead Redemption 2 and No Man’s Sky

are some of the most well known.

13 Strategy Games: focus on the player’s ability to plan, make decisions, and manage

resources in order to achieve a specific goal or set of goals. This can include games

that focus on military strategy, citybuilding, resource management, and more. These

games often require players to think critically and make strategic decisions in order to

succeed. Examples of strategy games include Total War, Civilization, Age of Empires,

and Europa Universalis.

14 Multiplayer Online Battle Arena (MOBA): This genre combines elements of action,

roleplaying, and strategy games and typically involves players controlling a single

character on one of two teams, working together to defeat the opposing team by de

stroying their base. The gameplay often includes the use of computercontrolled units

that attack on predetermined paths to assist players in this task. Dota, Dota2 and League

of Legends are the biggest names of this genre.

15 Tower Defense Games: are intense and challenging, as players must defend their base

from waves of enemy units. Successful players must be able to adapt and make quick

decisions to minimize damage to their base and maximize their efficiency in defending

it. Plants vs Zombies, Kingdom Rush and Bloons TD are some examples.

16 Educational Games: emphasize in learning something. They try to teach the user and

are usually geared towards younger players. There are numerous educational games

and each one aims to improve reading, math skills, and study habits, as well as spark

interest in different subjects. Most popular games of the category are Oregon Trail and

Pictionary.

17 Puzzle Games: also known as logic games, involve solving problems or navigating

challenges on a single screen or playfield in order to progress. This game genre some

times overlaps with educational games and adventure games. These games include

brain training games like Brain Age as well as more casual puzzle games such as Tetris

10 Chapter 2. Digital Games

and Minesweeper.

18 Trivia Games: are often characterized by the need to answer questions within a cer

tain time limit or before another player does. Players are tested on their knowledge of

general or specific subjects in order to score points and win the game. Trivia games

are gaining popularity due to their casual nature, which makes them ideal for mobile

devices. Examples of popular trivia games include Trivia Crack, Trivial Pursuit, and

HQ.

19 BoardGames: provide entertaining gameplay for players of all ages have stood the test

of time,. These types of games are often played in social settings and involve multiple

players competing against each other or working together towards a shared objective.

Games like Cards Against Humanity, Risk and Monopoly are some of the many board

games

20 Sports Games: are a genre of video games that simulate traditional sports such as foot

ball, golf, hockey, basketball, and tennis. Some of these games focus on replicating the

actual gameplay of the sport, while others focus on the strategic elements. Despite

being one of the earliest genres in video games, sports games continue to be popular

and competitive today. They also have various subgenres, as team sport and combat

sports, that highlight specific sports or activities with some even being considered real

istic simulations. Most popular series of such games are NBA2K, FIFA, Pro evolution

soccer and UFC Undisputed.

21 Racing Games: are a genre of video games that involve players participating in a

racing competition, whether it is based on realworld racing leagues or fantastical set

tings, they challenge players to compete against each other or the clock, while driving

cars that can be realistic, modified, or standard. Racing games have evolved from their

arcade origins to become immersive and competitive simulations.Examples of such

games are Gran Turismo, Need for Speed and Mario Kart.

22 Shooter Games: involve players utilizing weapons to participate in gameplay, with the

objective typically being to eliminate opponents or enemy characters. They can further

be categorized by the player perspective, which totally changes the game experience,

in two groups:

2.2 Video Game Categories 11

• First Person Shooters (FPS): is a type of video game that is played from the

perspective of the main character, giving the player an immersive experience as

if they are physically in the game. The gameplay usually involves using weapons

to engage in combat and eliminate enemies or other players. The player’s move

ments are typically mapped to the controller and the view on screen shows what

the protagonist would see in real life. FPS games often include realistic sounds

such as breathing and footsteps to enhance the immersion. CounterStrike, Call

of Duty, Doom and HalfLife are good examples.

• Third Person Shooters (TPS): centers around shooting and allows the player to

see the character onscreen from a thirdperson perspective. Unlike other types

of shooter games, such as shoot ’em ups, the player’s avatar is the main focus

of the camera view. Thirdperson shooters provide a similar level of immersion

as firstperson shooters, but the camera is positioned behind and slightly above

the character, rather than at their eyes.Such examples of games who fall int his

category are Grand Theft Auto, Fortnite and Splatoon.

23 Rhythm Games: are characterized by their focus on challenging a player’s sense of

rhythm through gameplay that simulates the performance of music, such as dancing

or playing instruments. These games typically involve players pressing buttons in a

specific sequence as shown on screen, and often feature multiplayer modes for compe

tition or cooperation in simulating amusical ensemble. Examples include Dance Dance

Revolution, Guitar Hero and Rock Band.

24 Exercise Games: are a type of video game that use specialized controllers or peripher

als to mimic physical activities and exercises. They often include features like fitness

tracking and progress monitoring, as seen in games like Wii Fit. These games aim to

promote healthy lifestyle choices and physical activity through interactive gameplay,

and have become increasingly popular as a tool for weight loss and overall wellness.

They bring a new dimension to video games by providing players with benefits beyond

entertainment such as improving physical and mental wellbeing.

25 Serious Games and Simulation Games: are a new concept of video games that aims

to teach realworld concepts through titles that are all about immersing the player in

the action of simulating a specific activity as realistically as possible. They range from

12 Chapter 2. Digital Games

citybuilding games to life simulations.A sense of realism is emphasized, giving the

player the sensation of actually performing. Citybuilding has the player construct cities

from the ground up. Cities: Skylines and SimCity are great examples of this genre.Life

Sim games allow players to simulate life. Namely, The Sims has the player building

both a family unit and a house for them to live. They are then tasked with controlling

everything from job attendance to bathroom breaks. You are there every step of the

way along with the characters’ lives.

2.3 Serious Games

Serious games are digital games that are used for purposes other than entertainment, such

as training simulations, socialcriticism games, and advergames, which are games created to

promote a product, a service or a company. The term serious games was first coined in 1970

by Clark Abt in his book “Serious Games”, but the idea of using games for nonentertainment

purposes has been around since the publication of the first commercial digital games in the

1980s. However, it wasn’t until the early 2000s that serious games began to gain traction

within the academic community. [2]

The concept of using games for educational purposes has been around for decades, but it

has gained more traction in recent years as research has shown the potential positive impact

of digital games on learning.While serious games were originally usedmainly for specialized

training in fields such as medicine or the military, they are now being used in a wide range

of industries and disciplines, such as language learning and engineering. [3]

The historical development of serious games can be traced back to the early 2000s, when

advancements in processing power and memory formats allowed for the creation of realistic

3D renderings and immersive gaming experiences. The increase in realism and interactiv

ity enabled groups such as the United States Army to release America’s Army in 2002 for

recruitment and marketing purposes. This led to the coining of the term “Computerized Se

rious Games” by Zyda in 2005. The release of America’s Army and the introduction of the

Serious Games Initiative by the WoodrowWilson Center sparked interest in the use of games

for nonentertainment purposes. This marked the beginning of the use of serious games in

various fields including education and military research. [4]

As the concept of serious games has matured, the term has become more specific, refer

2.4 Serious Games Categories 13

ring to games designed to run on personal computers or video game consoles. Assessment

models have been developed for integration into serious games, increasing their usability as

classroom tools. Overall, serious games are designed to achieve specific learning outcomes

through content, cognitive change, and skillbased growth, rather than just isolated skills

alone. [3]

Serious games have come a long way from their origins in specialized domains such as

medicine or military to being used in a variety of fields including language learning, engi

neering, and the workplace. While the use of video games as learning tools is becoming more

prevalent, it is important to understand how video games affect the learning process. With

this deeper understanding, it’s possible to categorize serious games in various ways, such as

by their purpose, their market or the audience.

2.4 Serious Games Categories

It is clear that Serious games can be categorized based on their purpose and market, but

these classification systems have their limitations. They do not provide relevant information

about the structure of the games, and none of them classify “Serious Games” as “games”.

So a new classification system was created and it’s called G/P/S (genre/purpose/scope) for

identifying and categorizing serious games. The system is based on three criteria: genre,

which refers to the type of game (e.g. gamebased, simulationbased); purpose, which refers

to the intended outcome or objective of the game (e.g. educational, informative); and scope,

which refers to the market or audience for the game (e.g. education, healthcare). [5]

More specifically we can classify serious games into the following categories:

1 Simulations or Simulation Games: are used to acquire or exercise skills.

2 Edutainment: games that combine education and entertainment.

3 Advergames: games with the purpose of advertising.

4 GamesBasedLearning or ”GameLearning”: is an approach to teaching that utilizes

the engaging elements of games, such as excitement, instant feedback, and competition,

to promote and facilitate learning.

5 Edumarket Games: a combination of Advergames and Edutainment games.

14 Chapter 2. Digital Games

6 Newsgames: newsrelated games, referring to recent events or writing of editorial com

ments.

7 Games for Health: are games that are used for mental or physical therapy, or for the

prevention of diseases.

8 Activism or Art Games: are used for the expression of artistic ideas.

9 Persuasive Games: games that try to change the attitude or behavior of users through

persuasion or other social influences.

10 Organizationaldynamic games: they aim at personal development of players and

building their character and mainly refer to dealing with complex organizational situ

ations.

Chapter 3

Artificial Intelligence and Games

If you have ever played a video game, you have interacted with artificial intelligence (AI).

Regardless of whether you prefer racecar games like Need for Speed, strategy games like

Civilization, or shooting games like Counter Strike, you will always find elements controlled

by AI. AIs are often behind the characters you typically don’t pay much attention to, such as

enemy creeps, neutral merchants, or even animals. [6]

3.1 Introduction to Game Artificial Intelligence

3.1.1 What is Intelligence

The word intelligence is a nebulous term with multiple interpretations. The dictionary

defines it as the capacity to acquire and apply knowledge, but this is a broad definition that

can be interpreted in many ways. Some interpret it literally and suggest that even a thermostat

can be considered intelligent, as it acquires knowledge and applies it. Others suggest that

intelligence encompasses the faculty of thought and reason, but this raises more questions

about the meaning of these terms. The true definition of intelligence is the subject of ongoing

debate and is not fully understood. However, when it comes to game systems, intelligence is

defined as the ability to acquire knowledge about the world and act on it in an effective way,

through building complex plans and making decisions based on game balance and design. [7]

3.1.2 What is Game AI

Game AI refers to the code in a game that controls the computercontrolled elements and

allows them to make decisions that appear smart. Instead of attempting to comprehend how

15

16 Chapter 3. Artificial Intelligence and Games

the system arrived at its judgments, game AI focuses on developing efficient and practical

behaviors. GameAI is resultsoriented and largely focused on how the system behaves, rather

than how it thinks, in contrast to the broader subject of AI. As long as the game is enjoyable

and captivating, players are often not interested about the specific techniques utilized by the

AI. [7]

However, game developers also use the term AI in other ways. Some people refer to the

behavioral mechanics of the game as AI, even if it uses the same mechanism as the human

players. Animation selection, which determines how the decision will be performed visually,

is also sometimes considered AI. Additionally, the algorithms that govern movement and

collision can sometimes fall under this label, especially in games with simple AI require

ments. [7]

It’s important to note that, while some people may think of animation selection or move

ment mechanics as AI, they are actually lower level decision making and not the intelligence

we are talking about. The proof of AI in games is in the pudding as far as game AI goes, how

the system acts, not how it thinks. [7]

3.2 Historic View of Game AI

Figure 3.1: Nim Game [8]

Figure 3.2: Space Invaders

The history of artificial intelligence in video games dates

back to the mid sixties in a game named Nim, which is a math

ematical game of strategy in which two players take turns re

moving objects from distinct heaps or piles. Εach turn, a player

must remove at least one object, and may remove any number

of objects provided they all come from the same heap or pile.

Depending on the version being played, the goal of the game is

either to avoid taking the last object or to take the last object. [8]

Before that, games were either twoplayer, meaning that

there was no computer opponent, or any nonhuman objects

were hardcoded. An example of hardcoded video game ob

jects are the little aliens in Space Invaders that swoop down at

the human player. [9]

3.2 Historic View of Game AI 17

One of the first examples of real AI in gaming was the com

puter opponent in a game named Pong. The computer paddle would do its best to block the

ball from scoring by hitting it back at the player. [9]

Figure 3.3: Pong Game

Figure 3.4: Pac Man

Figure 3.5: Black & White

After that point, games that use sophisticated AI tech

niques like genetic algorithms and neural networks started

to prosper. In the 1980s, games like PacMan introduced

AI patterns to its maze and fighting games started using AI

technology. In the 1990s, formal AI tools like finite state

machines (FSM) were used for new video game genres

like realtime strategy games for pathfinding problems,

making realtime decisions and economic planning. As AI

became more sophisticated, interactive multipleway dia

logues in games like Façade and bottomup AI methods

in games like Creatures and Black & White were used .

The use of AI in sports games also became more prevalent

in the 1980s and 1990s, enabling players to set variables

in the AI to create playerdefined coaching or managerial

strategies. [10]

Video games have a long history of utilizing AI. AI re

searchers initially concentrated on developing computing

systems that could resemble human intelligence in some

ways and attain decisionmaking or problemsolving ca

pacities comparable to those of humans. Early AI exper

iments were frequently focused on games because they

provided a formal, highly constrained, yet complicated

decisionmaking environment. In such early works, NPC

behavior in games was frequently controlled by rulebased

or decisiontree AI. [11]

AI research and game AI implementation both advance over time. AI is employed in a

wide variety of gaming genres nowadays, including strategy and roleplaying games as well

as racing and shooting games. These AIcontrolled NPCs are becoming more and more in

telligent, with the capacity to anticipate player actions, respond in realtime, and even pick

18 Chapter 3. Artificial Intelligence and Games

up on player habits. More intelligent and adaptable NPCs have resulted from the fusion of AI

with video games, but the user experience has also been enhanced. Games have also been sig

nificant in furthering AI research since they offer a natural training environment for assessing

the effectiveness of various AI systems.

The integration of AI to video games has improved player immersion and engagement

while also creating new opportunities for game design and player interactions. Deep learning

and reinforcement learning, two recent developments in AI, have further pushed the limits

of what is achievable in video games. Deep Qlearning is currently being used by simulation

platforms like ViZDoom and the Arcade Learning Environment (ALE) to train AI agents to

superhuman levels using only visual data from the screen. This hasmade it easier to create and

test various Machine Learning (ML) algorithms in settings with observable characteristics

and unique rule sets. [12]

Video games offer a natural training environment for assessing the effectiveness of vari

ous ML algorithms because to their specified rules of interaction, NPCs, and explicitly stated

goals and objectives. As a result, the incorporation of AI into video games has improved

the gaming experience while simultaneously serving as a crucial tool for AI research and

development. [12]

3.3 Importance of Artificial Intelligence in Games

In the past few years, the gaming industry has made incredible strides, with the incorpo

ration of AI playing a crucial role in this development. As we’ve already covered, the use of

AI to games has improved a variety of elements by making them more engaging, responsive,

and adaptive. In this chapter, we’ll go more deeply into the significance of AI in gaming and

examine how it might provide a wealth of additional advantages and creative fixes that might

catapult the gaming sector to new heights.

3.3.1 Benefits of Artificial Intelligence in Games

Creating smarter and more adaptive NPCs is one of the areas where AI can be quite

useful. Neural network technology enables NPCs to customize experiences for each player

in order to enhance their enjoyment, challenge, and participation in the game. The creation

of AIenabled NPCs that are taught by emulating professional gamers is already a primary

3.3 Importance of Artificial Intelligence in Games 19

priority for many gaming businesses. [13, 14]

AI also offers a significant deal of promise to improve the simulation performance in

online games, improve the aesthetics, andmake the games appear and feel more authentic and

genuine. Artificial intelligence (AI) brings up even more intriguing methods to increase the

immersion and interactivity of video games with the incorporation of virtual and augmented

reality technology. For instance, AI upscaling is a useful feature to enhance the graphics of

online games and create representations of realworld objects. [13, 14]

Another area where AI is being used in gaming is in the detection and prevention of

cheating in multiplayer games. Many video game companies use AI to analyze the patterns

of player movements and keys to detect if a user is cheating or not, while cheaters use AI to

cheat in a realistic way similar to humans to avoid getting detected. [13, 14]

AI can also be very important in the areas of player behavior analysis and game customisa

tion. Providing appropriate assistance to game creators generate more individualized gaming

experiences for every player by evaluating data on player preferences, gaming behaviors, and

ingame actions. This can entail adjusting game difficulty settings, making unique game rec

ommendations, or even making ingame adverts relevant to the player’s preferences. [13, 14]

Finally, AI can be applied to player behavior analysis, which can assist game producers in

better understanding how players engage with their products and pinpoint areas for improve

ment. Analyzing player engagement levels, detecting locations where players frequently lose

interest, and spotting player behavior patterns that can be leveraged to enhance the overall

gaming experience are some examples of this. [13, 14]

In conclusion, the integration of AI in gaming has already begun to revolutionize the

industry, providing new and innovative solutions that can enhance the gaming experience

for players and help game developers create more immersive and engaging games. As AI

technology continues to evolve, we can expect to see even more exciting developments in

the future that will take gaming to new heights.

20 Chapter 3. Artificial Intelligence and Games

3.3.2 Artificial Intelligence in Serious Games

Serious games are becoming an increasingly popular method of education and training,

as they offer an engaging and interactive way to acquire knowledge and skills. Artificial

Intelligence plays a crucial role in serious gaming, as it allows for the creation ofmore realistic

and personalized experiences for players. In this chapter, we will explore the various ways in

which AI is used in serious games, and why it is important for the field of serious gaming.

• Emotion Recognition

Since emotions have an impact on memory and behavior, they have a considerable

influence on the learning process. Any instructor would consider the students’ emo

tional moods while teaching. But, because it was difficult, if not impossible to detect,

the student’s mood has been routinely ignored as a learner model variable in computer

based learning. With the development of emotion detection technology, learner models

in serious games can now incorporate the learners’ emotions, enhancing the quality of

individualized instruction and feedback. Also, in games for communication training,

conflict management, or acting training, the participants’ emotions can be incorporated

into the learning material or game situation. Finally, during playtesting, emotion data

can be gathered using emotion recognition. [15]

• Game Balancing

The practice of game balance is largely responsible for games’ ability to be engrossing.

A wellbalanced serious game increases and maintains learner motivation, which is a

key factor of learning, by preventing boredom and frustration and providing manage

able obstacles. According to Vygotsky’s theory of the Zone of Proximal Development,

published in 1978, a realtime adaption of the game’s complexity facilitates a more

seamless learning process. The AI program regulates difficulty so that the player is

pushed to develop new skills or get new knowledge without encountering activities

that are unduly challenging or beyond their level of expertise. Because it continuously

changes task difficulty to the proper degree and iteratively reassesses the player’s skill

proficiency, it results in an optimized learning curve.As a result, learning becomes

extremely efficient: advancement is maximized, and no time is lost on activities that

don’t advance learning. The player or the teacher can utilize ongoing evaluation of the

player’s performance as a type of formative learning analytics to track learning progress

3.3 Importance of Artificial Intelligence in Games 21

and spot potential learning obstacles. The study and optimization of the game’s educa

tional material are also made possible by the game difficulty assessment. [15]

• Stealth Assessment

Games are expressly suited for the acquisition of highly contextualized, tacit knowl

edge and actionbound skills, which are notably hard to capture in formal tests and

exams. Cases in point would be social skills, communication skills, group moderation

skills, but also competencies such as persistence, creativity, selfefficacy, teamwork

and the wider collection of twentyfirst century skills, all of which are deemed essen

tial for successful future careers and presupposing a strong link with concrete action.

Given this tacit knowledge dimension, the assessments should not be administered

solely as separate oral or written assignments, but instead should be directly based on

the activities displayed. Stealth assessment provides an attractive alternative to the ex

isting decontextualized assessment methods by linking the assessment directly to the

practical use of knowledge and skills in relevant situations. Moreover, these situations

should entail scenarios that require the application of various competencies at the same

time. This is exactly what serious games are capable of providing. [15]

• Sentiment Analysis

In the context of serious games, sentiment analysis can be used, for instance, in di

alogues, commonly available either in multiplayer communication or in discussions

with a virtual character. The arising insights about how people feel and interact during

these interactions can then be fed back to the game for further usage in the game sce

nario, or can be provided as feedback for the game development team. Alternatively,

sentiments can be extracted from written free text or spoken assignments in the game,

such as reports, pitches or answers to openended questions. Sentiment analysis can

be a powerful tool in serious games as it allows for a deeper understanding of players’

emotions and interactions during gameplay, which can be used to improve the game’s

design, learning content and personalization. [15]

In conclusion, AI plays a crucial role in serious gaming, as it allows for the creation of

more realistic and personalized experiences for players. By including the learners’ emotions

as a variable in the game, game balancing, stealth assessment and sentiment analysis, seri

ous games can provide more accurate and effective formative assessment and analytics and

22 Chapter 3. Artificial Intelligence and Games

optimize the learning experience. It allows for the inclusion of a wider range of skills and

knowledge, including social, communication and teamwork skills, and it allows for a more

efficient and effective way of assessing learning progress. With the continuous advancement

in AI technology, the potential for serious games to provide even more realistic and effective

learning experiences is limitless.

3.4 Techniques and Algorithms in Game AI

In the previous section, we discussed the value of AI not only in gaming but in serious

games as well. In this part, we will take a closer look at the techniques and algorithms used

to implement AI in games.

AI techniques can be broadly categorized into three main types: rulebased, decisiontree,

and machine learningbased AI.

3.4.1 RuleBased Model

A rulebased AI system is a model that is solely based on predetermined rules. It is com

posed of a set of humancoded rules that result in predefined outcomes. These systems operate

on the simple yet effective “cause and effect” methodology. They are deterministic by na

ture, meaning they can only perform the tasks and functions they have been programmed for

and nothing else. They require very basic data and information in order to operate success

fully. [16]

In the field of gaming, rulebased AI models are commonly used to control the behavior

of NPCs and provide a basic level of intelligence to the game. These models operate on a set

of fixed rules and use simple “ifthen” statements to determine the actions of NPCs based on

the player’s actions and the game’s environment. They can be used in a wide range of game

genres, from racing and shooting games to strategy and RPGs. [16]

We can also consider Utilitytheorybasedmodels and gametheorybasedmodels as Sub

categories of the ruledbasedmodel, as they also use predetermined rules and decisionmaking

processes.

• Utilitytheorybased models are a subcategory of rulebased models that evaluate the

feasibility of NPC actions based on the utility values of those actions. For example, a

utilitybased model may assign a higher utility value to an NPC taking an action that is

3.4 Techniques and Algorithms in Game AI 23

considered safer or more beneficial to the player, and a lower utility value to an action

that is considered more risky or detrimental. [17]

• Gametheorybasedmodels, on the other hand, take into account the decisions ofmul

tiple NPCs in a competitive situation. These models incorporate the actions of NPCs

in the game as if they are players in a strategic game, with each NPC’s decisions de

pending on the actions of the other NPCs. This type of model can better capture the

dynamic interactions between NPCs in the game, and often have stronger interpretabil

ity and universality compared to other AI models. [17]

In addition, rulebased AI can also be used in educational games, such as math games, to

provide incontext rules and dynamics to attain specific learning goals. These serious rule

based games support and encourage meaningful learning by sharpening critical basic skills

such as arithmetic. [18]

Overall, rulebased AI models are deterministic by nature, meaning they can only per

form the tasks and functions they have been programmed for and require very basic data and

information to operate successfully. They can be quickly improved by adding, deleting, or

updating rules based on domain expert information or recency.

3.4.2 DecisionTree Model

Figure 3.6: Sample of a Decision Tree

Decision tree AI models are commonly used in video games and serious games to pro

vide players with a range of choices and predict the outcome of those choices. These games,

24 Chapter 3. Artificial Intelligence and Games

usually referred to as training or instructional games, are made to teach players certain skills

or give them a learning experience. A branching structure called a decision tree enables play

ers to make decisions that result in distinct and distinct results. By selecting the options they

believe to be the finest, players can so design their own narrative or result. [19]

Decision trees are frequently employed in narrativebased games, allowing players to

design their own plot or resolution by selecting the possibilities they believe to be most ap

propriate. As in the video game Star Wars Jedi: Fallen Order, where the player is given hints

about the protagonist’s past and future based on specific circumstances, these choice trees

might be present in the game but the player may not be aware of them. Decision tree models

are employed in games like The Witcher 3: Wild Hunt to create various endings based on the

player’s choices. [20]

In serious games, these models are used to analyze process data from simulation and

gamebased assessments to classify examinees’ behavior patterns so as to determine their

problemsolving strategies in order to support and encourage meaningful learning. For ex

ample, a serious game developed as a math game can use decision trees to help students learn

about arithmetic and sharpen critical basic skills such as adding, subtracting, multiplying, and

dividing. [19]

Even when players are not aware of decision tree models, they are still making decisions

based on them. For example, when playing a video game, players may subconsciously make

decisions that they believe are beneficial, such as attacking the enemy. This is an example of

following a decision tree, as players weigh the pros and cons of certain actions without even

thinking. [20]

Overall, decision tree AI models are an unavoidable aspect of video games and serious

games, as they provide players with a range of choices and predict the outcome of those

choices. As technology advances, decision tree models are becoming increasingly popular

and practical, and they will likely be incorporated even further into video games and other

industries in the future.

3.4.3 Machine Learning AI Model

Machine learningbased AI, on the other hand, uses algorithms to learn from the player’s

actions and adapt to their behavior. This technique is the most advanced and powerful of the

three, but it also requires more resources and computation power.

3.4 Techniques and Algorithms in Game AI 25

Machine Learning (ML) is a subset of Artificial Intelligence analyzes data or a state and

produces a taught response by using different training methods. The initiative of OpenAI,

made it possible to encourage research across academia and the industry to exchange ideas

and research on AI andML, has contributed to the growing popularity of ML in gaming. As a

result, new concepts, techniques, and study topics have grown exponentially. Developers may

now create agents that can learn from their surroundings and even outperform their human

creators. [21, 22]

The capability of ML to learn and adapt is one of its main features. ML algorithms may

learn directly from data, in contrast to conventional AI techniques that rely on predetermined

rules and models. This enables them to enhance their performance as more data become

accessible over time. For instance, deep learning is a kind of machine learning that makes

use of neural networks to mimic human learning. [21]

MLbased models are being used in the gaming business mostly for the purpose to make

game characters and landscapes more realistic and adaptable. For instance, game designers

can employML algorithms to train nonplayer characters (NPCs) to respond to player actions

in a more convincing and realistic manner. This may result in more dynamic and interesting

gaming experiences. Also, by improving resource utilization and lowering load times, ML

can be utilized to enhance the functionality of game engines. [22]

Another area where ML has been making a big impact is in the realm of game develop

ment tools. A variety of MLbased tools have been developed to help game developers create

better and more efficient games. For example, MLbased level generation tools can automati

cally create new levels that are both challenging and fun to play. Similarly, MLbased anima

tion tools can help developers create more realistic and believable character animations. [22]

ML can be utilized in the development of realistic and adaptable game characters and

environments for serious games. Providing multiple benefits, as its capacity for learning and

adaptation, which enables it to enhance performance over time as new data become available.

Also, a player’s problemsolving techniques or the success of the game can be established by

evaluating and categorizing player behavior. This can help to enhance the design of the game

and to comprehend how players learn. A better and more individualized gaming experience

can be achieved by using ML to create adaptive game scenarios that can adapt to the player’s

skill level. It can also be used to solve the problem of creating NPC behavior in complex

scenarios and to facilitate the creation and adaptation of AI in serious games. [23]

26 Chapter 3. Artificial Intelligence and Games

Machine Learning is so aptly named because it uses various forms of training to analyze

data or state and provide that trained response. These types are worth mentioning and we

will focus on one particular method of learning that is being implemented in my application.

Before we get to that though, let’s breakdown the types of training we frequently see in ML.

3.5 Machine Learning Models

Many cuttingedge applications of artificial intelligence, such natural language process

ing and image identification, are built upon machine learning models. These models are de

veloped by the training of machine learning algorithms on massive data sets, allowing the

program to identify patterns and draw conclusions from data that had not previously been

considered. Model training is the process of teaching a machine learning algorithm, and a

machine learning model is the resulting program with specified rules and data structures. De

pending on the training technique utilized, machine learning algorithms can be divided into

four broad types, each having its own benefits and drawbacks. [24]

Figure 3.7:Machine Learning Types [21]

1 Supervised learning is a typical trainingmethod ofmachine learning. The goal of super

vised learning is to predict the output based on the input data, using a set of labeled data

to train the algorithm. This method of training is widely used in data science MLmeth

ods and is typically used for prediction or classification tasks. The algorithm is given a

small dataset to learn from, which gives it a basic understanding of the problem and the

3.5 Machine Learning Models 27

data points it needs to work with. This training dataset is similar in characteristics to

the final dataset and provides the algorithm with the necessary labeled parameters for

the problem. The algorithm then discovers the relationships between the parameters,

establishing a cause and effect relationship among the variables in the dataset. After

training, the algorithm understands how the data works and the relationship between

the input and output. The solution is then applied to the final dataset, where it continues

to improve and learn from new data. [25]

For problems like binary classification, multiclass classification, regression modeling,

and ensembling, supervised learning approach works efficiently. They can be used to

categorize data into two groups, select among many options, forecast continuous val

ues, and aggregate the forecasts of various machine learning models to come up with

an accurate prediction, in that order. [26]

Popular techniques for supervised learning include Navies Bayes, Knearest neighbors,

Ensemble learning, Random Forest, Linear regression, Support vector regression, etc.

These techniques can be used to solve various supervised learning tasks, depending on

the nature of the given data in a particular problem domain. [16]

For instance, supervised machine learning is widely deployed in image recognition, an

example of this is the Google Inception, which is an image classification ML model

that is trained by millions of images into various classifications. Supervised machine

learning is also used in predicting demographics such as population growth or health

metrics, utilizing a technique called regression. [22]

2 Unsupervised learning is a type of machine learning that does not rely on labeled data.

Instead, the algorithm is trained using an unlabeled dataset and is enabled to predict

the output without any supervision. The goal of unsupervised learning is to group the

unsorted dataset based on the input’s similarities, differences, and patterns. [25]

For example, an unsupervised learning algorithm could be used to group images of a

fruitfilled container into categories based on the objects’ color, shape, or other dif

ferences seen in the input images. The machine learning model would then be able to

predict the output when tested with a test dataset. [21]

Unsupervised machine learning is further classified into two types: Clustering and As

sociation. Clustering refers to grouping objects into clusters based on parameters such

28 Chapter 3. Artificial Intelligence and Games

as similarities or differences between objects. Examples of clustering algorithms in

clude the KMeans Clustering Algorithm, MeanShift Algorithm, Principal Compo

nent Analysis, and Independent Component Analysis. Association learning refers to

identifying typical relations between the variables of a large dataset. Popular algorithms

for association rules include the Apriori Algorithm, Eclat Algorithm, and FPGrowth

Algorithm. [16]

Unsupervised learning is often referred to as a “datadriven method” where the primary

goal is to uncover patterns, structures, or knowledge from unlabeled data. Clustering,

visualization, dimensionality reduction, finding association rules, and anomaly detec

tion are some of the most common. [26]

3 Semisupervised learning is a machine learning approach that can be regarded as a hy

bridization of both supervised and unsupervised learning, as it uses both labeled and

unlabeled data to train a model. In contrast to supervised learning, which demands that

all data be labeled, and unsupervised learning, which only uses unlabeled data, semi

supervised learning reaches a middle ground by combining the advantages of both ap

proaches. Semisupervised learning’s objective is to create algorithms that take use of

the interaction between labeled and unlabeled data to understand how this combination

may alter learning behavior. [21, 16]

One of the key benefits of semisupervised learning is that it can supplement supervised

learning tasks when labeled data is hard to come by or prohibitively expensive. Addi

tionally, given that the majority of the input is unlabeled, semisupervised learning has

the potential to be a quantitative tool for understanding human category learning. Self

training, mixture models, cotraining, multiview learning, graphbased techniques, and

semisupervised support vector machines are a few of the more wellknown semi

supervised learning models. The success of semisupervised learning heavily depends

on the underlying assumptions of each model, each of which has its own mathematical

formulation and set of presuppositions. [27, 28]

Semisupervised learning can be used in various applications such as machine trans

lation, fraud detection, and data labeling. In machine translation, for example, semi

supervised learning can be used to teach algorithms to translate language based on less

than a full dictionary of words. In fraud detection, it can be used to identify cases of

3.5 Machine Learning Models 29

fraud when there are only a few positive examples. And in data labeling, algorithms can

train on labeled data to automatically label new data without human interaction. [26]

4 Reinforcement learning is a machine learning technique that is inspired by how humans

learn from their experiences. It involves a selfimproving algorithm that uses trial and

error to learn from new circumstances. The algorithm in this process is rewarded for

positive outcomes and penalized for negative outcomes.

Reinforcement learning operates by putting the algorithm in a setting with an inter

preter and a reward system, which is based on the psychological idea of conditioning.

The output result from each iteration is delivered to the interpreter, who determines

whether the result was favorable or not. The interpreter promotes the solution by re

warding the algorithm when the program gets the right answer. If the result is unfavor

able, the algorithm must repeat the process until a better conclusion is obtained. [25]

Common applications of reinforcement learning include resource management, video

games, and robotics. The AI component evaluates its environment, takes action, gains

knowledge from its mistakes, and enhances performance through a feedbackbased ap

proach. An environmentdriven approach, in which decisions are made using a reward

function and the environment is often modeled as a Markov decision process, enables

a reinforcement learning agent to see and comprehend its environment, take actions,

and learn through trial and error. This is what Google DeepMind accomplished with its

wellknown AlphaGo program, which defeated the greatest Go player in history and

achieved a feat at the time that was thought to be impossible. [22, 26]

Unlike supervised learning, reinforcement learning does not require labeled data and

agents learn only through experiences. Some common reinforcement learning algo

rithms include Monte Carlo learning, Qlearning, and Deep Q Networks. Applications

of reinforcement learning include trajectory optimization, motion planning, dynamic

pathing, and scenariobased learning policies for highways. [16]

30 Chapter 3. Artificial Intelligence and Games

3.5.1 Deep Learning

As we have seen above, the four main ML models each have their own unique character

istics and applications. However, with the advancements in technology and the availability

of large amounts of data, we are now able to delve even deeper into the realm of machine

learning with the introduction of deep learning. With the ability to process large amounts

of data and perform abstract mathematical calculations, deep learning has the potential to

revolutionize the way we interact with technology and solve problems that were previously

thought impossible.

Figure 3.8: Deep Learning’s place in Artificial Intelligence [16]

Deep learning is a subset of machine learning that is based on artificial neural networks,

designed to imitate how humans think and learn. These networks, comprising many layers,

drive deep learning and are known as Deep Neural Networks (DNNs). DNNs are able to

perform complex operations such as representation and abstraction thatmake sense of images,

sound, and text. [29]

Deep learning has recently found use in the gaming sector as well, where it is being used

to produce more immersive and realistic game experiences. In the field of game AI, where

it is utilized to build more perceptive and adaptable NPCs, deep learning is one of the most

significant uses in games. Deep learning is being used by game developers to teach NPCs to

respond to player events and make decisions more realistically. As a result, gaming can be

more dynamic and interesting. [30]

Moreover, deep learning is being used to improve the graphics and visual effects in games,

3.6 Model of this thesis 31

making them more lifelike and immersive. With the use of deep learning, game developers

can create more realistic lighting and shading effects, as well as more detailed and accu

rate textures. This improves the overall gaming experience and makes it more engaging for

players.

In addition to traditional video games, deep learning is also being applied in the field of

serious games. These games can be used for training, education, or even therapy. For example,

deep learning has been used to develop a game that helps children with autism improve their

social skills. [30]

3.6 Model of this thesis

In this thesis, a combination of both Reinforcement Learning, and Deep Learning, which

is known as Deep Reinforcement Learning(DRL), will be utilized to train an AI agent to cope

with a serious game scenario. By using DRL, the AI agent will be able to adapt to different

scenarios within the game and learn from its mistakes, making it a powerful tool for training

purposes.

An enhanced kind of reinforcement learning called deep reinforcement learning makes

use of deep neural networks to enhance an AI agent’s capacity for decisionmaking. DRL

models educate AI agents to carry out complicated tasks in dynamic situations using a com

bination of deep neural networks and reinforcement learning approaches. These models are

able to learn from unprocessed sensory data and can instantly adjust to changing environ

mental conditions. [23]

DRL has been used to train AI agents to play a variety of games, including classic arcade

games, board games, and even modernday video games. The reason for this is that DRL

models can learn to play games by trial and error, similar to how humans learn. Additionally,

DRL models can learn to optimize their performance by receiving feedback in the form of

rewards or punishments.

Deep machine learning is used in DRL to overcome the dimensionality curse in RL, and

it is influenced by research on the structure and information processing of the neocortex. In

conventional RL, all stateaction pairings and learnt rewards are stored in a table. Never

theless, in DRL, a deep artificial neural network takes the place of this table (ANN). This

strategy captures the hierarchical characteristics of the issue and is more condensed. It also

32 Chapter 3. Artificial Intelligence and Games

generalizes better to unknown conditions. [23]

Moreover, DRL can function in settings with sparse rewards, which is a prevalent issue in

serious games. Also, DRLmay learn to strike a balance between exploitation and exploration,

which is crucial in serious games where the agent must pick up new skills while completing

objectives. Examples of DRL’s usefulness include the several Atari games that use it to suc

cess and computer Go. When used in a serious game, the environment is provided by the

game, and the agent is given a visual depiction of the game’s current state as well as a reward

value. The agent can then choose the right action based on the current state representation

and learnt behavior by using a deep ANN as its decisionmaking component. [23]

In conclusion, DRL is an ideal model to use in this thesis due to its ability to learn from

trial and error, adapt to changing conditions, and handle highdimensional and continuous

state spaces to achieve the desired learning outcomes.

Figure 3.9: Example of (Deep) Reinforcement learning with a serious game as environment

and an artificial neural network as the agent’s action selection component [23]

Chapter 4

Unity

4.1 Game Engines

Game engine is a piece of software that enables the creation of video games, which is also

referred to as a “game architecture” or “game framework,” with settings and configurations

that optimize and simplify the development of video games across a variety of programming

languages. Typically, a game engine includes the bellow features: [31].

1. A rendering engine that can handle several import formats for 2D or 3D visuals.

2. Handling of input from a keyboard, mouse, touch screen, or other hardware.

3. Game loop. (internal process that updates game events each frame)

4. Physics engine that simulates realworld activities such as collision detection and re

sponse.

5. Sound engine that controls sound effects.

6. A scene graph, which controls the relationships between graphic objects on the screen.

7. Animation for 2D sprites or 3D models.

8. Process threading enables numerous parallel processes.

33

34 Chapter 4. Unity

Other features could involve:

1. Scripting.

2. Artificial intelligence (AI) that automatically responds to the player’s actions.

3. Networking.

4. Streaming.

5. Localization support.

6. Multiplatform publishing.

The main reason for the creation of the game engines lies on the early video games them

selves, which were developed with their own rendering engines, each specifically designed

for one game. Over time, game engines evolved from proprietary, inhouse engines to com

mercially developed engines that are widely available today. Game developers, can simplify

and speed up the game development process by using commercially developed game engines

to produce new games or to extend existing games to additional platforms.

In fact the exact features and workflow will vary from one system to another. As we have

seen, some industrylevel game engines have grown to be so powerful and flexible that any

kind of game can be developed therein. Other are purposely kept simpler and with a narrower

scope, either in their target user group or in their supported game mechanics. A few of them

do not even require prior programming knowledge. Targeting full fledged game developers,

or even amateurs. Some of the game engines are the following:

1. Unity

2. Unreal Engine

3. Godot

4. PHASER

5. Armory

6. CryEngine

7. Defold

4.2 Introduction to Unity Engine 35

4.2 Introduction to Unity Engine

Figure 4.1: Unity

Logo

Unity, which is crossplatform game engine, was first intro

duced at Apple’s Worldwide Developers Conference in 2005, and

since then, it has caused significant changes in the video game in

dustry. The engine has now been expanded and made available on

more than 25 platforms. This engine can be used to create simu

lations, games, and other training materials. Several industries than

video games, including as film, architecture, automotive, construction, and engineering, have

also embraced it. [32]

Figure 4.2: Sample of Unity supported platforms. [33]

Unity is a highly popular crossplatform game engine, with a community of over 2.5

million registered developers. In addition to 3D games, Unity also offers tools and features

for creating 2D games since 2013, making it a versatile platform for creating games in a

variety of genres and styles. When it comes to mobile gaming, Unity is the leading choice for

over half of the market. Its crossplatform capabilities and robust set of tools for optimizing

performance on mobile devices make it a popular choice. Unity is also a popular choice

for augmented reality(AR) and virtual reality(VR) development, with more than 60% of the

content being developed using the engine, making it a top choice for creating immersive and

interactive experiences. [34]

The fact that Unity has a free version available to everyone with an interest in developing

games is one of its key attractions. Because of this, small, independent developers can fol

low their creative passions and have access to a variety of tools and methods to make their

concepts a reality. Unity also offers a Pro Business subscription for $150 per month, which

includes priority customer assistance, for people who need extra functionality.

Because to its highly flexible rendering technique and userfriendly tools, Unity is also

36 Chapter 4. Unity

renowned for its superior graphics and cuttingedge visual effects. Developers of 3D games

have the ability to make objects move smoothly and naturally, and there are numerous tu

torials available to assist them. Unity supports C#, JavaScript, and Boo, so even those with

little to no coding experience or understanding can use it. But, it is also possible to develop

an entire game without writing any code. Those who do have coding abilities can take full

advantage of the game engine with the aid of instructional resources and documentation.

One of Unity’s key features is the Unity Asset Store, a digital marketplace that offers

a wide range of assets for game development. These assets include sounds, 3D structures,

patterns, textures, and animations, as well as complete game templates and other tools. The

Asset Store is a great resource for developers looking to save time and effort in their game

development process, as it allows them to access highquality assets that they can use in their

projects. Additionally, it offers both free and paid assets, giving developers the flexibility to

choose the resources that best fit their needs and budget. The Asset Store also provides an

opportunity for designers to sell their own assets and earn a percentage of the revenue.

The Unity community is large and supportive, making it easy for developers to ask ques

tions and find solutions to their issues. The annual Unity conference, where developers can

share experiences, exchange ideas, and connect with each other, further strengthens the sense

of community. Overall, Unity is a friendly and supportive environment that is accessible to

both beginner and experienced developers. [35]

4.3 Reason for picking Unity

The Unity game engine was used for the implementation of this thesis project. The free

availability of the game engine and the ease of use are the main reasons that led me to choose

this particular platform. Furthermore, Unity is accompanied with a prodigious Community

support system that can provide solutions to many problems, combining that with many tuto

rials and ample support materials that are available online . In addition, the wide availability

of the free assets and models in the Asset Store which were used in this application were

pivotal. Finally, through the MLAgents package that Unity provides it was possible for me

to implement the AI model and make this application complete.

4.4 Unity Environment 37

4.4 Unity Environment

The Unity editor environment is a graphical user interface (GUI) that provides tools and

features to create, design, and develop Unity projects. It is highly customizable, allowing

users to rearrange and resize windows, as well as create custom editor layouts to suit their

needs.

Figure 4.3: Unity Editor Interface

4.4.1 Unity Scenes

Projects in Unity Editor are organized into scenes, which are containers for everything

in the experience you are creating. A scene is a selfcontained environment that represents a

specific location or moment in your game or application. One way to think about scenes

is as discrete experiences. For example, each level in a game could be a separate scene,

and the game’s main menu could be another scene. A Unity project can have one scene or

more than a hundred, depending on its scope and complexity. There aren’t strict rules about

exactly how you should organize aUnity project into scenes, except that a project must have at

least one scene. You can create and manage scenes in the Unity editor using the Scene view,

the Hierarchy window, and the Inspector window. You can use the Scene view to design

and arrange the objects in your scene, the Hierarchy window to organize the objects into

a hierarchy, and the Inspector window to configure the properties and components of the

38 Chapter 4. Unity

objects. By working with scenes in the Unity editor, you can create and refine the different

locations and experiences in your game or application.

4.4.2 Unity Interface

There are five key areas of the basic Unity Editor interface as it’s portrayed in Figure 4.3,

the Scene view and Game view, the Hierarchy window, the Project window, the Inspector

window, and the Toolbar.

• The Scene View and Game view are two of the main viewports in the Unity editor

that allow you to view and manipulate the objects in your scene and test and debug

your game. The Scene view is an interactive 3D window for designing and arranging

objects, while the Game view is a live preview of how the game will play. The Scene

view is located in the center of the default Unity layout and is an interactive window

that allows you the view and manipulation of objects in 3D space. The Game view is

also located in the center of the layout and is a live preview of the game that updates

in realtime as you make changes to the scene. You can use the Scene view and Game

view to design, test, and debug your game. [36, 37]

• The Hierarchy window is a panel that displays a list of all the GameObjects in the

current scene and allows you to organize and manage them. You can use the Hierarchy

window to create, rename, and delete GameObjects, as well as arrange them in a hier

archy with parentchild relationships. The Hierarchy window also provides a number

of other features and options for filtering, searching, and accessing various settings and

options for the objects in your scene. [38]

• The Inspector window is a panel that displays detailed information about the selected

GameObject or asset in your project. It shows the components that make up the object,

as well as other properties such as its name, tag, and layer. You can use the Inspec

tor window to view and edit the properties of a component, add or remove components

from theGameObject, and customize various other properties of the object. The Inspec

tor window is a useful tool for finetuning the appearance and behavior of GameObjects

in your scene. [39]

• The Projectwindow is a panel that displays the assets available for use in your project,

organized in folders. It allows you to access and manage the assets in your project,

4.5 Unity Scripting 39

whether you use them in the current scene or not. You can use the Project window to

browse and locate the assets you need, as well as import new assets into your project. To

use an asset in your scene, you can drag it from the Project window into the Scene view

or the Inspector window. The Project window is different from the Hierarchy window,

which only shows the assets being used in the current scene. The Project window shows

all the assets available to your entire project. [40]

• The Toolbar is located at the top of the Unity interface and contains buttons for chang

ing your point of view in the scene and starting and stopping Play Mode. It also in

cludes scene navigation functions that allow you to move, rotate, and scale your se

lected GameObjects. [41]

4.5 Unity Scripting

4.5.1 Conventional and Visual Scripting

In most Unity applications, scripts play an integral role in enabling responses to player

input, triggering gameplay events, and generating a wide range of effects and behaviors. Al

though only C# is utilized in this thesis, Unity supports a variety of programming languages,

some of them are Boo and UnityScript. By leveraging Unity scripting, it is possible to de

velop custom scripts that can be linked to both GameObjects and components in your scene,

providing greater control over diverse aspects of your game. For instance, Unity scripting

can be used to devise personalized controls for a player character, like movement and jump

ing. Additionally, scripting can be employed to create visual effects like particle systems

and shaders, as well as to manage the physical behavior of objects, including collisions and

rigidbody dynamics. Furthermore, scripting can be harnessed to create AI systems tailored to

individual characters in your game, for instance, enemy behavior or NPC dialogue. All in all,

Unity scripting is a powerful tool that empowers you to design custom behavior, enriching

your projects with interactivity and depth. [42]

Unity also features Visual Scripting, which is a valuable tool for creating a variety of

behaviors, interactive systems, and gameplay mechanics in Unity applications without writ

ing conventional code. Instead of writing code, Visual Scripting employs visual nodes and

connections to devise logic and define game behavior. It is particularly useful for design

40 Chapter 4. Unity

ers, artists, and other nonprogrammers who seek to create custom behavior in Unity. Visual

Scripting presents a visual representation of your game’s logic and flow, which can be easier

to comprehend and modify than traditional code. With Unity Visual Scripting, it is possi

ble to develop a diverse range of behaviors, including character movement, animation, AI,

audio, and particle effects. Furthermore, it can be used to construct interactive systems like

dialogue trees, inventory systems, and level progression. Ultimately, Unity Visual Scripting

is a powerful tool that enables users to generate custom behavior in Unity, even without cod

ing expertise. It makes it easier for a wider range of users to develop logic and define game

flow by offering a visual interface. [43]

4.5.2 Key Unity Script Functions

In Unity, scripts communicate with the engine by implementing a class that is a descen

dant of the defaultMonoBehaviour class. The construction of a newComponent type that may

be affixed to GameObjects is facilitated by this class. A new instance of the classdefined ob

ject is created when a script component is attached to a game object. The name of the file in

which the script is stored serves as the basis for the class name. The class name and file name

must coincide for the script component to be properly assigned to a GameObject.Two of the

most basic functions that are defined inside the class are Start and Update. [44]

In addition, FixedUpdate and Awake will also be used in this application since they pro

vide additional utility to the above two functions deficiencies.

• MonoBehaviour.Start():When a script is activated, theMonoBehaviour class inUnity

automatically runs the Start function right before any Update calls are performed. This

makes it the perfect location for carrying out any initialization or setup that must be

completed before the script can start running, such as setting up references to other

objects in the scene, initializing variables, or establishing links with other components

or systems. [45]

• MonoBehaviour.Awake():When a script is activated, immediately after the object is

created, the Awake method is invoked. The Awake method is the best place to carry

out any initialization or setup that needs to happen as soon as the object is formed,

in contrast to the Start function, which is called before the script. The Start function

only executes on scripts that are enabled, whereas the Awake function executes on

4.5 Unity Scripting 41

all scripts, whether they are enabled or disabled. There is another distinction between

the Start and Awake functions. Because of this, if you have a script that is by default

disabled, the Awake function will still be called when the object is created but the Start

function won’t be until the script is enabled. [46]

• MonoBehaviour.Update(): The Update function is called every frame during game

play. It is an ideal place to put code that handles framebyframe updates, such as

movement, triggering actions, and responding to user input.

• MonoBehaviour.FixedUpdate(): The FixedUpdate on the other hand, is called a fixed

number of times per second, regardless of the frame rate. It is an ideal place to put

code that handles physics updates, such as applying forces or calculating collisions.

The FixedUpdate function is often used in conjunction with the Update function, with

the Update function handling framebyframe updates and the FixedUpdate function

handling physics updates. [47]

4.5.3 Introduction to Unity Machine Learning Toolkit

The Unity Machine Learning Toolkit (MLAgent Toolkit) is a powerful tool designed for

the creation of intelligent agents in simulated environments. The toolkit provides a Python

API that interacts with the Unity Editor and a software development kit (SDK) that contains

core functionality for creating training environments within Unity. The MLAgents SDK

consists of three key entities: Sensors, Agents, and the Academy. [48]

Agents are GameObjects in Unity that indicate the presence of agent components in the

scene. These agents collect observations from various sensors, such as rendered images, ray

casts, or arbitrary length vectors. The agents then take actions based on policies, which can

reference different decisionmaking mechanisms such as player inputs or neural network

models. Finally, the agents receive rewards through a reward function, which serves as a

learning signal to facilitate desired behavior. [48]

The Academy is responsible for managing agents and keeping track of the number of

steps taken during simulation. It also holds environmental parameters, which enables the

application of training methods like Curriculum Learning. The toolkit contains a number of

highlevel components, including the Learning Environment, which contains the scene and

all GameObjects connected to the learning process, the Python API, which is responsible for

42 Chapter 4. Unity

interacting and manipulating the Learning Environment through a lowlevel interface, the

Communicator, which connects the lowlevel Python API with the Learning Environment,

and the Python Trainers, which hold machine learning algorithms that enable the training of

agents. [12]

In conclusion, the Unity MLAgent Toolkit is a comprehensive toolkit for creating intel

ligent agents in simulated environments. It provides a powerful Python API, a robust SDK,

and a range of highlevel components that make it easy for developers to create intelligent

agents that can learn and adapt in simulated environments. The toolkit offers a flexible and

scalable solution for developing and training intelligent agents, making it an important tool

for researchers and developers in the field of machine learning and artificial intelligence.

Figure 4.4: Highlevel view of the MLAgent toolkit [49]

4.5.4 Agent Class

The Agent class is an important component of the Unity Machine Learning Agents (ML

Agents) toolkit, which is used to build intelligent agents for training in simulated environ

ments. Derived from theMonoBehaviour class, the Agent class can be attached to a GameOb

ject in a Unity scene and can receive updates in the game loop. This makes it a powerful tool

for creating agents that can learn and adapt in simulated environments.

One of the key features of the Agent class is its ability to access andmodify the state of the

agent. The Agent class provides a number of properties that you can use to get information

about the agent’s current reward, available actions, and other important parameters, we will

4.5 Unity Scripting 43

discuss more about this topic in the later chapter. This allows you to build agents that can

make decisions based on their current state and the environment they are in.

In addition to its staterelated properties, the Agent class also provides a number of meth

ods that you can use to control the behavior of the agent. For example, you can use the Agent

class to send actions to the agent, request decisions from the agent, or reset the agent’s state.

This makes it easy to build agents that can learn and adapt to changing conditions in a simu

lated environment.

Overall, the Agent class is a powerful component of the MLAgents toolkit that allows

you to build intelligent agents that can learn and adapt in simulated environments. Whether

you are creating a game AI, a robot simulation, or some other kind of intelligent agent, the

Agent class provides the tools you need to build agents that can learn and adapt to their

environment.

Chapter 5

The Game

5.1 Game overview

This chapter focuses on the development of a firefighter agent using deep reinforcement

learning utilizing Unity’s MLAgent Toolkit. I will create a virtual environment in Unity to

simulate a firefighter’s task of putting out fires. The environment will consist of different fire

sources spread at different places of the scene and the firefighter agent. The goal of the agent

will be to reach the fire source and put it out, while avoiding obstacles along the way. The

agent will receive rewards for putting out the fire and penalties for colliding with obstacles.

The Unity simulation environment provides a realistic firefighting scenario for the agent

to interact with and learn from.The training of the firefighter agent involved using deep re

inforcement learning techniques to iteratively adjust its behavior based on the outcomes of

its actions and the rewards it received. The agent interacts with its environment and receives

a reward signal for each action it takes. The training process was based on trial and error,

allowing the agent to gradually improve its performance as it gained more experience. The

agent’s behavior is shaped by a deep neural network that processes highdimensional obser

vations and outputs decisions. The algorithm takes in the state of the environment and outputs

an action for the agent to take. The agent then performs the action, the environment updates,

and the process repeats. Over time, the agent will learn the optimal policy for putting out fires

by maximizing the reward received. At the end of the training process, the trained firefighter

agent will be tested against a human player to assess its effectiveness.

45

46 Chapter 5. The Game

5.1.1 Method Used

The MLAgent Toolkit as mentioned in the previous chapter is comprehensive and con

tains many features of interest, but due to time and scope limitations, it is not feasible to

study the entire toolkit. Instead, the project will limit its evaluation to only one of the rein

forcement learning techniques supplied by the toolkit, Proximal Policy Optimization (PPO).

PPO was chosen because it is a more general purpose and stable algorithm compared to the

other options, and has been widely used in many projects. [50]

The approach of the project is to train agents using PPO with different configurations

of the reward function, observable traits, and hyperparameters. Each produced model is re

evaluated by testing it against the training data, and promising models are further tested with

new test data. The training is conducted by running 8 learning agents simultaneously in a

training environment. There is potential to run even more but the performance of mymachine

will drop significantly and terminate the training. The training process will continue until

a high enough mean reward is calculated, or until ten million steps have been reached. If

a training configuration fails to complete before the maximum number of steps, it will be

considered insufficient.

5.1.2 Agent Component

The Agent class that was mentioned earlier is a component that enables game objects to

participate in reinforcement learning. The component contains the definition of several key

learning methods that are used to train the agent, including:

1 Initialize: A method which is called when the Agent object is first created, and its

purpose is to set the initial conditions for the Agent’s learning process. During the

Initialize method, the Agent’s initial state, or starting point, can be defined, along with

any other relevant parameters that will be used throughout the learning process. The

Initialize method provides a way to configure the Agent and set it up for training or

inference. It is an essential step in preparing the Agent for its learning task, and it is

typically called before the learning process begins.

2 OnEpisodeBegin: This method is called at the start of each episode of training. It is

used to reset the state of the agent and set it up for the next episode. The method can be

5.2 Behavior Parameters 47

used to initialize any variables or perform any setup that is required to begin the next

episode.

3 CollectObservations: This method is used to collect data from the environment that

is used to make decisions. The method typically defines what information the agent

should observe and provide to the reinforcement learning algorithm. This information

is used by the algorithm to determine the next action to take.

4 OnActionReceived: This method is called when the agent has received an action from

the reinforcement learning algorithm. Themethod is responsible for taking the action in

the environment and observing the results. The results of the action are used to update

the agent’s state and provide feedback to the reinforcement learning algorithm.

5 Heuristic function: is a function that can be used to specify how the agent should

behave when it is not being trained. The function can be used to define a set of rules or

conditions that determine the agent’s behavior in certain situations. The function can

be used to allow the agent to make decisions based on the state of the environment,

even when it is not being trained.

5.2 Behavior Parameters

An essential part of determining agent behavior in a scene is the Behavior Parameters

script, commonly known as the brain. It acts as a communication channel between the agent

and the behavior that will be employed during training and is associated to each agent’s

GameObject in the scene.

The Behavior Parameters script includes several important parameters that determine the

behavior of an agent. These include:

• Behavior Name: This refers to the name of a set of hyperparameters used by a training

algorithm.

• Vector Observation: The Space Size parameter determines the number of variables

observed from the training environment, while Stacked Vectors refers to the number

of sampled vectors used before calculation.

48 Chapter 5. The Game

Figure 5.1: Behavior Parameters script on one of the agents during testing.

• Actions: The type and number of available actions that the agent can take are defined

by this parameter. The type of action can be either Continuous, which represents a

floatingpoint value between 0.0 and 1.0, or Discrete, which translates to either 1 or 0.

In my case, Continuous actions were chosen as it’s smoothing the movements of the

agent. And the three actions represent the moving forwardbackward, rightleft and

rotating right and left.

• Model: This parameter references a produced Neural Network (NN) model that will

be produced after successfully training the agent and will be used to determine actions

during inference. You also have the option to decide between the CPU and the GPU to

perform the training.

• Behavior Type: This parameter determines how the brain chooses to interpret action

selection. There are three types of behaviors: Inference, where selected actions are

decided by an existing NN model, Heuristic, where selected actions are manually de

termined through code logic inside the heuristic function and Default, where actions

are selected by a NN model during training.

5.2.1 Decision Requester

Another element of the MLAgents toolset is the Decision Requester script, which is used

to ask the trained AI agents for decisions. For the agent to do training in Unity, the Decision

Requester script is essential since it enables the AI agents to make decisions based on the

5.3 Environment 49

observations they gather from their surroundings.

Figure 5.2: Unity’s Decision Requester.

The “Take Actions Between Decisions” flag indicates whether the agent should be taking

actions in between decision requests or not. If it’s enabled, the agent will continuously take

actions at the specified frequency. The “Decision Period” parameter sets the frequency of

the decision requests. In this case, checking the “Take Actions Between Decisions” flag and

having a “Decision Period” of 5 means that the agent will take actions at a frequency of once

every 5 seconds.

5.3 Environment

The agent environment consists of a firefighter actor in a backyard different obstacles, and

the fires he is supposed to extinguish. The agent’s goal is to navigate through the backyard

in order to reach the fireplaces by using a defined set of actions in as short a time as possible,

while avoiding different obstacles along the way.

5.3.1 Learning Environment

For the agent to effectively learn and respond to its surroundings, it needs to have input

to observe during its training process. At the start of each step, the sensor collects observa

tions and passes them to the trainer for interpretation. Based on the observations, the trainer

generates a decision response, which is then sent back to the brain to execute the appropri

ate action. This cycle of observation and action is crucial in learning the optimal policy for a

specific problem. It is important that the data collected through observation is comprehensive

enough for the agent to arrive at a viable solution.

In this case, the information our Agent collects includes the agent’s local rotation (4 ob

servations), a normalized vector pointing to the nearest fire (3 observations), a dot product

that indicates whether the gun tip is in front of the fire (1 observation), a dot product that in

dicates whether the gun is pointing towards the fire (1 observation), and the relative distance

50 Chapter 5. The Game

from the gun tip to the fire (1 observation). This results in a total of 10 observations. This

helps the Agent learn to control its speed as well as his position in the environment.

Following is the code used to collect the observations needed for the agent’s training:

Figure 5.3: The function to collect observations from the environment

5.3.2 Testing the Environment

Before moving to the process of training the agent, firstly a check to ensure the right

interaction with the environment was made. It can be done by extending the “Heuristic()”

method in the Firefighter class. This method maps the values of the Horizontal and Vertical

input axis to corresponding actions for the agent. To use the heuristic, you need to set the

Behavior Type to “Heuristic Only” in the Behavior Parameters of the Firefighter agent in

Unity’s Inspector window. Then, by pressing the play button, you can run the scene and

use the fixed keys to move the agent around the platform. Ensuring this way that there are no

errors displayed in the Unity Editor Console window and that the avatar interacts successfully

with the fires.

5.3 Environment 51

Figure 5.4: Screenshot of the Heuristic function

5.3.3 Reward System

The reward system is a crucial component of reinforcement learning. It provides the agent

with feedback on its actions and helps the learning algorithm determine the optimal behavior

policy. Rewards can be positive or negative, serving to either reinforce or penalize certain

actions. Throughout the training process, rewards are accumulated with each step through

either increments or decrements. The final reward is given at the end of an episode, which

can end with the agent reaching its goal, crashing, or not moving far enough within a spec

ified time frame. By providing appropriate rewards, the agent is guided towards the desired

behavior and can learn to complete the assigned task efficiently.

52 Chapter 5. The Game

The calculation of the positive reward (5.1)involves two parts: a constant bonus reward

of 0.02 and the additional reward that is based on the angle between the agent’s forward

direction (f) and the direction towards the nearest fire (u). The bonus reward is calculated

as 0.02 times the result of the dot product between the normalized forward direction of the

agent and the normalized direction towards the nearest fire. Rewarding the agent as long as

he interacts successfully with the fire and later giving him a bonus for putting it out.

As for the negative reward (5.2)it can be based on a flat number of 0.5 or 0.05 when the

agent is either colliding with the boundaries of the environment or with the fire, teaching him

on one side to avoid unnecessary interaction with the boundaries and different obstacles, and

on the other side, punish him touching the fire with high enough points to prevent him collide

all the way with the fire to get the reward from it, but at the same time not to overwhelm the

reward of putting it out.

reward = a+ b ·min(1,
f · −u

|f | · |u|
) (5.1)

reward =

−0.5

−0.05

(5.2)

5.3.4 Agent’s actions

Now that observations and reward logic is completed, we can proceed with the OnAc

tionReceived function which is used to receive and process action requests from the decision

making agent. The OnActionReceived function is called whenever the agent receives a new

set of actions from the behavior parameters script.

The action received by this function can be used to control the agent’s movements and

animations. The function is responsible for taking the action received from the behavior pa

rameters script, interpreting it, and applying it to the agent.

In this case, the actions received is a set of continuous values representing the movements

and rotation of the agent, updating the agent’s position based on the received values. This can

be done by using a physics engine to simulate his movement, applying the necessary force to

rotate and and move in the environment.

A screenshot of OnActionReceived function is following bellow:

5.3 Environment 53

Figure 5.5: On Action Received function

5.3.5 Hyperparameters

The toolkit’s documentation states that changing the Hyper Parameters can have a big im

pact on how well the agent trains. Several setup options from example projects were assessed

to find a good place to start. Many of these settings in this game scenario proved insufficient

for the agent to learn a useful policy. [51]

It was observed that, in contrast to the other parameters, raising the batch size, buffer size,

hidden units, time horizon, number of layers, and maximum steps appeared to significantly

alter and improve training outcomes. As a result, the majority of parameters were left alone,

while the latter could be looked into more thoroughly.

• time horizon:The number of experience steps collected per agent before adding to the

experience buffer determines the expected reward estimate from the agent’s current

state.

• batch size: Is the number of experiences used in each iteration of gradient descent in

54 Chapter 5. The Game

reinforcement learning,

• buffer size: Is the number of experiences collected before updating the policy model

and should always be multiple times bigger than the batch size.

• hidden units:The number of units in each hidden layer of the neural network, repre

senting how complex the interaction between observation variables is in determining

the action.

• number of layers:The count of layers concealed within the neural network, indicating

the quantity of layers that exist following the input observations.

• max steps: Is the maximum number of steps that will be performed before the training

stops

Table 5.1: HyperParameters

Trainer Type PPO

Batch Size 2048

Buffer Size 20480

Learning Rate 0.0003

Beta 0.005

Epsilon 0.2

Lambd 0.95

Num Epoch 3

Learning Rate Schedule Linear

Keep Checkpoints 5

Checkpoint Interval 500000

Max Steps 10000000

Time Horizon 128

Summary Freq 10000

Threaded false

5.4 Training Process 55

Table 5.2: Network Settings

Normalize false

Hidden Units 256

Num Layers 2

Vis encode type Simple

Goal conditioning type Hyper

Table 5.3: Extrinsic Rewards

Gamma 0.99

Strength 1.0

Normalize False

Hidden Units 128

Num Layers 2

Vis encode type Simple

Goal conditioning type hyper

5.4 Training Process

The training process is composed of separate episodes that involve the agent taking steps

in each frame, which are tracked by the Academy. During these episodes, the following events

take place:

• At every step of the episode, each agent selects one action from its set of available

actions.

• The training algorithm uses the information gathered from the state observations, se

lected actions, and obtained rewards to optimize its policy and pick the best sequence

of actions to maximize the rewards received from the environment.

• The information gathered during training is saved for later analysis, with each step

being recorded frame by frame.

• The state variables are updated based on the effects of the actions performed by the

agents.

56 Chapter 5. The Game

The episode begins when the Academy invokes the OnEpisodeBegin function, which

restarts all the multiple environments to their starting position, by placing the agents at their

predetermined positions, resetting every fire that the agent ended up extinguishing in that

episode and setting the environment variables and specific agent values. Throughout the

episode, the agents make their selections and take actions in a framebyframe fashion until

the episode concludes.

The snapshot below showcases the training environment of 8 different agents trying to

extinguish fires, during a specific episode. It’s showcasing an episode where each agents has

succesfully put out a number of fires. The agents are trained simultaneously, providing a rich

and diverse learning experience. This approach can help the agents generalize better to a

wider range of situations and improve the overall efficiency of the training process.

Figure 5.6: Training Mode Environment

Bellow we can also see that at the beginning of the training the agents are not yet familiar

with the world, so the actions they do accumulate negative rewards since they either collide

with the boundaries or hitting the fires with their bodies. But after enough episodes passed

they started collecting a decent amount of positive rewards.

5.4.1 Training Results

The MLAgents Toolkit provides a useful TensorFlow utility to monitor the training

progress of the agents, named TensorBoard that allows to view statistics from your train

5.4 Training Process 57

Figure 5.7: Early training results

Figure 5.8: Later at the training results

ing sessions. Bellow are the results of the agents training after five million and ten million

steps, showing the importance of the steps that were required to achieve a convincing result.

Presenting the three key metrics, Environment/Cumulative Reward, Losses/Policy Loss

and Losses/Value Loss. The Environment/Cumulative Reward displays the mean cumulative

episode reward over all agents, and should increase during a successful training session. As

in this case showing a continuous growth till the eighth million step and after that starting to

stabilize. The Losses/Policy Loss indicates the mean magnitude of the policy loss function,

which shows howmuch the policy is changing. It should decrease during a successful training

session, as the agents has been accustomed to the actions that will add up the negative reward

and will start avoid them. The Losses/Value Loss shows the mean loss of the value function

update, which is an indication of howwell the model predicts the value of each state. It should

increase while the agent is learning and decrease once the reward stabilizes.

58 Chapter 5. The Game

Figure 5.9: Environment / Cumulative Reward Graph

Figure 5.10: Losses / Policy Loss Graph

Figure 5.11: Losses / Value Loss Graph

The conclusion of the training process results in a saved “.onnx” file of the neural network.

This NN can then be integrated into the Unity project by placing it in the “Model” box in the

Behavior Parameters script. To test the performance of the NN, all but one environment is

deleted and the agent is tested in real time. This is the result of the best performing NN from

all training runs, and thus is selected to proceed for the completion of the game.

5.5 Game Scene 59

5.5 Game Scene

5.5.1 Game Avatar

In the bellow figure the avatar used in this game for both the agent and the human player

can be noticed, as well as all his components. The avatar includes a “Rigidbody”, which is

a solid body that assists the movements in the environment, two colliders, one for his body

and one for the hose he wields, that are essential parts for the interaction with the flames and

the obstacles. He also contains Ray Perception Sensors which are used to detect obstacles,

measure distances, or detect specific objects of interest in the game environment in this case

the fires, by casting rays in specific directions. Finally it contains the necessary scripts for

the agent to move, observe, and decide the actions to take in the environment, whose major

functionalities were discussed above.

Figure 5.12: The Avatar and its components

5.5.2 Game Menus

The main menu of the game is the point of contact for the user when they start playing.

There is background music playing while the user is in this scene, and also throughout the

entire game. In this scene, there is a background of the game environment, the Start and Exit

buttons. The world consists of simple graphics and objects, to balance the training experience

of the agent with the player’s gaming experience. The camera model provides a firstperson

view of the game to the player giving a more realistic feeling and increase the sense of pres

ence in the game world.

60 Chapter 5. The Game

Figure 5.13: Game’s Starting Menu

After the Start button is pressed the game ready to begin. The player is placed next to a

fire ready to compete against the trained agent. The game provides a simple timer of “3, 2,

1, Go!” giving a short time for the player to prepare before he begins to extinguishing fires.

Fires will begin to spawn at different places of the environment which both of them have to

extinguish.

5.5.3 Gameplay View

During the game time at the top of the screen there is a bar that indicates how many fires

each one has put out. The movement of the player’s avatar is with the “W, A, S, D” buttons

plus the left and right arrow keys to help the avatar turn either left or right, The player has to

be flexible, fast and observant as he has to decide the best possible paths he is going to take for

each fire, since the agent is also trained to get to the fire’s place in an optimal way. Each time

a fire is extinguished a smoke signal will begin to appear marking the end of the individual

flame, collecting a point and reminds you to continue with the next remaining fires.

5.5 Game Scene 61

Figure 5.14: Screenshot of the game’s result with the Agent being the winner

The game concludes with a message of “Agent wins!” or “YouWin!” based on who ended

up extinguishing the most fires, the number of fires is set to an odd number, to prevent the

draw scenarios.

Chapter 6

Conclusion

This section of the thesis provides an overview of the research that has been conducted,

summarizing the key findings and conclusions reached. This section is also devoted to dis

cussing potential future directions and applications of DRL within the Unity engine. The aim

is to provide insight into the potential future developments and advancements that can be

made in this field, deepening our understanding and capabilities within the realm of DRL.

6.1 Summary

Artificial Intelligence is one of the most rapidly growing fields of technology that has rev

olutionized many industries, including the gaming industry. AI algorithms are increasingly

being used in video games to make them more engaging, challenging, personalized, and real

istic. The use of AI algorithms in games has improved the overall gaming experience, making

games more interactive and engaging for players.

Deep Reinforcement Learning has become a crucial part of the gaming industry due to

its ability to provide realistic and interactive gaming experiences. In video games, the AI

agents can now interact with their environment in realtime and make decisions based on the

positions of objects and obstacles. This has improved the overall gaming experience and has

made the games much more challenging and entertaining for players. Using the Unity engine

and its MLAgents toolkit, this thesis showcases the potential of DRL by successfully training

an AI agent to interact with its surroundings in a firefighting setting andmake decisions based

on the positions of fires and obstacles.The successful training of an AI agent using DRL in the

game developed in this thesis, as the agent is capable of competing at even grounds with a hu

63

64 Chapter 6. Conclusion

man player, or even outperforming him, highlights the significance of utilizing AI algorithms

and the potential for these algorithms to operate with accuracy in realworld scenarios.

On a final note this thesis tries to show the capabilities of a trained AI agents in reallife

applications beyond the game environment. For example, in a firefighting scenario, as in this

case, a trained AI agent can be deployed to make quick and effective decisions, as well as

move efficiently in order to put out the fires. Similarly, in an earthquake scenario, a trained AI

agent can be used to navigate through the rubble andmake decisions on themost effectiveway

to rescue trapped individuals. In these realworld situations, the decisionmaking abilities and

efficiency of a trained AI agent can greatly improve response times and potentially save lives.

The significance of successfully training an AI agent in as realistic simulated environments

as possible, further highlights the potential for using these algorithms in realworld scenarios,

making it a significant development in the field of Artificial Intelligence.

Here is the link, where the code implemented during the present work is uploaded to

GitHub. (https://github.com/gfragkias/Thesis)

6.2 Future work

The current game application provides a strong base for additional research in the field

of AI. The success of training an AI agent in a realistic simulated environment highlights the

potential for these algorithms to be applied in realworld scenarios. However there are still

some aspects of this application to be improved.

One key area where it possibly will provide with even better results, is a more in depth

study of the hyperparameters the agent is using, to make an even stronger NN for the agent,

thus enhancing even more the training results.

One of the priorities is to expand the environment to include even more realistic and com

plex scenarios, to create an even more decisive and up to realworld trained agent. An exam

ple of this could be incorporating a spreading time for the fires, determined by the amount of

time it takes for the AI agent to extinguish each one. Or even give bigger interaction space

the agent has to put out each fire, as depending on the fire scale it will be more difficult to

approach it.

Finally, without missing the game aspect of this application, in order to compete in the

crowded market the current game can be further developed and improved with a focus on

https://github.com/gfragkias/Thesis

6.2 Future work 65

both the visual graphics and gameplay mechanics. Making it more engaging for someone to

play the game.

Bibliography

[1] M Prensky. Μάθηση Βασισμένη στο Ψηφιακό Παιχνίδι. Επιστημονική επιμέλεια: Μεϊ

μάρης Μ. Μεταίχμιο, Αθήνα, 1 edition, 2009.

[2] D. Djaouti, J. Alvarez, JP. Jessel, and O. Rampnoux. Origins of Serious Games. In

Serious Games and Edutainment Applications. Springer, London, London, 1 edition,

2011. https://doi.org/10.1007/9781447121619_3.

[3] Manuel Freire, Ángel SerranoLaguna, Borja Manero, Ivan MartinezOrtiz, Pablo

Moreno Ger, and Baltasar FernándezManjón. Game learning analytics: Learning ana

lytics for serious games. pages 1–29, 04 2016. doi:10.1007/9783319177274_211.

[4] Richard L. Lamb, Leonard Annetta, Jonah Firestone, and Elisabeth Etopio. A meta

analysis with examination of moderators of student cognition, affect, and learning out

comes while using serious educational games, serious games, and simulations. Com

puters in Human Behavior, 80:158–167, 03 2018.

[5] Damien Djaouti, Julian Alvarez, and JeanPierre Jessel. Classifying serious games: the

g/p/s model. Handbook of Research on Improving Learning and Motivation through

Educational Games: Multidisciplinary Approaches, 01 2011.

[6] Ai in video games: Toward a more intelligent game. 2017. https:

//sitn.hms.harvard.edu/flash/2017/aivideogamestoward

intelligentgame/. accessed: 16 Jan 2023.

[7] Schwab B. AI Game Engine Programming. Course Technology, Boston, MA, 2 edition,

2009.

67

https://sitn.hms.harvard.edu/flash/2017/ai-video-games-toward-intelligent-game/
https://sitn.hms.harvard.edu/flash/2017/ai-video-games-toward-intelligent-game/
https://sitn.hms.harvard.edu/flash/2017/ai-video-games-toward-intelligent-game/

68 Bibliography

[8] Wikipedia contributors. Nim — Wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=Nim&oldid=1126742498,

2022. accessed: 16 Jan 2023.

[9] J. Wexler. Artificial intelligence in games. https://www.cs.rochester.edu/

~brown/242/assts/termprojs/games.pdf, May 2002.

[10] History of ai use in video game design. https://bigdataanalyticsnews.

com/historyofartificialintelligenceinvideogames/,

2021. accessed: 16 Jan 2023.

[11] Julian Togelius Georgios N. Yannakakis. Artificial Intelligence and Games. Springer,

Cham, 1 edition, 2018. http://gameaibook.org.

[12] Pontus Andersson. Futureproofing video game agents with reinforced learn

ing and unity mlagents. Degree Project, Luleå University of Technology,

2021. https://www.divaportal.org/smash/get/diva2:1605238/

FULLTEXT01.pdf.

[13] Darbinyan R. How artificial intelligence can empower the future of the gam

ing industry. Forbes Magazine, https://www.forbes.com/sites/

forbestechcouncil/2022/07/13/howartificialintelligence

canempowerthefutureofthegamingindustry/, 2022. accessed:

16 Jan 2023.

[14] E. Eliaçık. Ai in gaming: A complete guide. https://dataconomy.com/2022/

04/artificialintelligencegames/, 2022. accessed: 16 Jan 2023.

[15] Wim Westera, Rui Prada, Samuel Mascarenhas, Pedro Santos, João Dias, Manuel

Guimarães, Konstantinos Georgiadis, Enkhbold Nyamsuren, Kiavash Bahreini, Zer

rin Yumak, Chris Christyowidiasmoro, Mihai Dascalu, Gabriel GutuRobu, and Ste

fan Ruseti. Artificial intelligence moving serious gaming: Presenting reusable game ai

components. Education and Information Technologies, 25, Jan. 2020.

[16] Iqbal H. Sarker. Aibased modeling: Techniques, applications and research issues to

wards automation, intelligent and smart systems. SN Computer Science, 3, Feb. 2022.

https://en.wikipedia.org/w/index.php?title=Nim&oldid=1126742498
https://en.wikipedia.org/w/index.php?title=Nim&oldid=1126742498
https://www.cs.rochester.edu/~brown/242/assts/termprojs/games.pdf
https://www.cs.rochester.edu/~brown/242/assts/termprojs/games.pdf
https://bigdataanalyticsnews.com/history-of-artificial-intelligence-in-video-games/
https://bigdataanalyticsnews.com/history-of-artificial-intelligence-in-video-games/
http://gameaibook.org
https://www.diva-portal.org/smash/get/diva2:1605238/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1605238/FULLTEXT01.pdf
https://www.forbes.com/sites/forbestechcouncil/2022/07/13/how-artificial-intelligence-can-empower-the-future-of-the-gaming-industry/
https://www.forbes.com/sites/forbestechcouncil/2022/07/13/how-artificial-intelligence-can-empower-the-future-of-the-gaming-industry/
https://www.forbes.com/sites/forbestechcouncil/2022/07/13/how-artificial-intelligence-can-empower-the-future-of-the-gaming-industry/
https://dataconomy.com/2022/04/artificial-intelligence-games/
https://dataconomy.com/2022/04/artificial-intelligence-games/

Bibliography 69

[17] G. Chen, W.and Ren, Q. Cao, J. Song, Y. Liu, and C. Dong. A gametheorybased

approach to modeling lanechanging interactions on highway onramps: Considering

the bounded rationality of drivers. Mathematics, 11, Jan. 2023.

[18] MarínVega, Humberto Giner AlorHernández, Luis Omar ColomboMendoza,

Cuauhtémoc SánchezRamírez, Jorge Luis GarcíaAlcaraz, and Liliana AvelarSosa.

Zeus – a tool for generating rule�based serious games with gamification techniques.

IET Software, 14:88–97, Apr. 2020.

[19] Jianbin Fu, Diego Zapata, and EliaMavronikolas. Statistical methods for assessments in

simulations and serious games. ETS Research Report Series, 2014(2):1–17, Jul. 2014.

[20] Brandon Antonette. Decision trees in video games. https://medium.com/

@antoneb/decisiontreesinvideogames3ea3f251f96e, 2019.

accessed: 16 Jan 2023.

[21] Vijay Kanade. What is machine learning? definition, types, applications, and

trends for 2022. https://www.spiceworks.com/tech/artificial

intelligence/articles/whatisml/, 2022. accessed: 16 Jan 2023.

[22] Michael Lanham. Learn unity MLagents fundamentals of unity machine learning: In

corporate New Powerful ML algorithms such as deep reinforcement learning for games.

Packt Publishing Ltd., Birmingham, UK, 1 edition, 2018.

[23] Aline Dobrovsky, Uwe M. Borghoff, and Marko Hofmann. Applying and augmenting

deep reinforcement learning in serious games through interaction. Periodica Polytech

nica Electrical Engineering and Computer Science, 61(2):198–208, Mar. 2017.

[24] What are machine learning models? https://www.databricks.com/

glossary/machinelearningmodels, 2022. accessed: 16 Jan 2023.

[25] What is machine learning: Definition, types, applications and examples.

https://www.potentiaco.com/whatismachinelearning

definitiontypesapplicationsandexamples/, 2019. accessed: 16

Jan 2023.

https://medium.com/@antoneb/decision-trees-in-video-games-3ea3f251f96e
https://medium.com/@antoneb/decision-trees-in-video-games-3ea3f251f96e
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-ml/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-ml/
https://www.databricks.com/glossary/machine-learning-models
https://www.databricks.com/glossary/machine-learning-models
https://www.potentiaco.com/what-is-machine-learning-definition-types-applications-and-examples/
https://www.potentiaco.com/what-is-machine-learning-definition-types-applications-and-examples/

70 Bibliography

[26] What is machine learning and why is it important? https://www.techtarget.

com/searchenterpriseai/definition/machinelearningML, 2021.

accessed: 16 Jan 2023.

[27] Yinglin Duan, Tianyang Shi, Zhengxia Zou, Jia Qin, Yifei Zhao, Yi Yuan, Jie Hou,

Xiang Wen, and Changjie Fan. Semisupervised learning for ingame expertlevel

musictodance translation. CoRR, Sep 2020. https://arxiv.org/abs/2009.

12763.

[28] Xiaojin Zhu and Andrew B. Goldberg. Introduction to semisupervised learning. Syn

thesis Lectures on Artificial Intelligence and Machine Learning, 3(1):1–130, 2009.

[29] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–44, 05

2015.

[30] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep learning for

video game playing, 2017.

[31] A. Andrade. Game engines: a survey. EAI Endorsed Transactions on GameBased

Learning, 2:150615, Nov. 2015.

[32] Afzal Hussain, Haad Shakeel, Faizan Hussain, Nasir Uddin, and Turab Ghouri. Unity

game development engine: A technical survey. University of Sindh Journal of Infor

mation and Communication Technology, 4, Oct. 2020.

[33] Unity compatible platforms. retrieved from. https://unity.com/. accessed: 22

Dec 2022.

[34] M. Foxman. United we stand: Platforms, tools and innovation with the unity game

engine. Social Media + Society, 5, Nov. 2019.

[35] What makes unity so popular in game development? https://www.arnia.com/

whatmakesunitysopopularingamedevelopment/. accessed: 22

Dec 2022.

[36] The scene view. https://docs.unity3d.com/Manual/

UsingTheSceneView.html. accessed: 22 Dec 2022.

https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
https://arxiv.org/abs/2009.12763
https://arxiv.org/abs/2009.12763
https://unity.com/
https://www.arnia.com/what-makes-unity-so-popular-in-game-development/
https://www.arnia.com/what-makes-unity-so-popular-in-game-development/
https://docs.unity3d.com/Manual/UsingTheSceneView.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html

Bibliography 71

[37] The game view. https://docs.unity3d.com/Manual/GameView.html.

accessed: 22 Dec 2022.

[38] The hierarchy window. https://docs.unity3d.com/Manual/Hierarchy.

html. accessed: 22 Dec 2022.

[39] The inspector window. https://docs.unity3d.com/Manual/

UsingTheInspector.html. accessed: 22 Dec 2022.

[40] The project window. https://docs.unity3d.com/Manual/

ProjectView.html. accessed: 22 Dec 2022.

[41] The toolbar window. https://docs.unity3d.com/Manual/Toolbar.

html. accessed: 22 Dec 2022.

[42] Unity scripting. https://docs.unity3d.com/Manual/

ScriptingSection.html. accessed: 22 Dec 2022.

[43] Unity visual scripting. https://docs.unity3d.com/Manual/com.unity.

visualscripting.html. accessed: 22 Dec 2022.

[44] Script creation and controll. https://docs.unity3d.com/Manual/

CreatingAndUsingScripts.html. accessed: 22 Dec 2022.

[45] Monobehaviour.start() function. https://docs.unity3d.com/

ScriptReference/MonoBehaviour.Start.html. accessed: 22 Dec

2022.

[46] Monobehaviour.awake() function. https://docs.unity3d.com/

ScriptReference/MonoBehaviour.Awake.html. accessed: 22 Dec

2022.

[47] Monobehaviour.fixedupdate() function. https://docs.unity3d.com/

ScriptReference/MonoBehaviour.FixedUpdate.html. accessed: 22

Dec 2022.

[48] Arthur Juliani, VincentPierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper,

Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, and Danny Lange.

https://docs.unity3d.com/Manual/GameView.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/ProjectView.html
https://docs.unity3d.com/Manual/ProjectView.html
https://docs.unity3d.com/Manual/Toolbar.html
https://docs.unity3d.com/Manual/Toolbar.html
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/Manual/com.unity.visualscripting.html
https://docs.unity3d.com/Manual/com.unity.visualscripting.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html

72 Bibliography

Unity: A general platform for intelligent agents. arXiv preprint arXiv:1809.02627,

2020.

[49] Kaan Baris Jari Hanski, Biçak. An evaluation of the unity machine learning agents

toolkit in dense and sparse reward video game environments. Bachelor Thesis, Uppsala

University Department of Game Design, 2021. https://www.divaportal.

org/smash/get/diva2:1563588/FULLTEXT01.pdf.

[50] Lucas A.E Pineda Metz. An evaluation of unity mlagents toolkit for learning boss

strategies. Master’s thesis, Master’s Degree Project, Reykjavík University, 2020.

http://hdl.handle.net/1946/37111.

[51] Unitytechnologies. training mlagents. https://github.com/Unity

Technologies/mlagents/blob/release_20_branch/docs/

TrainingMLAgents.md#trainingwithmlagentslearn, 2022.

accessed: 28 Jan 2023.

https://www.diva-portal.org/smash/get/diva2:1563588/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1563588/FULLTEXT01.pdf
http://hdl.handle.net/1946/37111
https://github.com/Unity-Technologies/ml-agents/blob/release_20_branch/docs/Training-ML-Agents.md#training-with-mlagents-learn
https://github.com/Unity-Technologies/ml-agents/blob/release_20_branch/docs/Training-ML-Agents.md#training-with-mlagents-learn
https://github.com/Unity-Technologies/ml-agents/blob/release_20_branch/docs/Training-ML-Agents.md#training-with-mlagents-learn

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Aim of the thesis
	Contribution

	Structure of the thesis

	Digital Games
	Introduction to interactive computer-based games
	Video Game Categories
	Serious Games
	Serious Games Categories

	Artificial Intelligence and Games
	Introduction to Game Artificial Intelligence
	What is Intelligence
	What is Game AI

	Historic View of Game AI
	Importance of Artificial Intelligence in Games
	Benefits of Artificial Intelligence in Games
	Artificial Intelligence in Serious Games

	Techniques and Algorithms in Game AI
	Rule-Based Model
	Decision-Tree Model
	Machine Learning AI Model

	Machine Learning Models
	Deep Learning

	Model of this thesis

	Unity
	Game Engines
	Introduction to Unity Engine
	Reason for picking Unity
	Unity Environment
	Unity Scenes
	Unity Interface

	Unity Scripting
	Conventional and Visual Scripting
	Key Unity Script Functions
	Introduction to Unity Machine Learning Toolkit
	Agent Class

	The Game
	Game overview
	Method Used
	Agent Component

	Behavior Parameters
	Decision Requester

	Environment
	Learning Environment
	Testing the Environment
	Reward System
	Agent's actions
	Hyperparameters

	Training Process
	Training Results

	Game Scene
	Game Avatar
	Game Menus
	Gameplay View

	Conclusion
	Summary
	Future work

	Bibliography

