UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ONOS controller compatibility with P4 programming language for Software

Defined Networks

Diploma Thesis

Panagiotis Pavlidis

Supervisor: Athanasios Korakis

February 2023

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ONOS controller compatibility with P4 programming language for Software

Defined Networks

Diploma Thesis

Panagiotis Pavlidis

Supervisor: Athanasios Korakis

February 2023

MANENIZTHMIO OEZzAANIAZ
MOAYTEXNIKH 2XOAH
TMHMA HAEKTPOAOIQN MHXANIKQN KAl MHXANIKQN YNMOAOTIZTQN

Yriootipién tng P4 yAwooag arnod tov ONOS gAeyKTi yla SIKTUwon

KoLOopLOMEVN O AOYLOMLKO

AutAwpatikn Epyacia

Mavaylwtng NauvAidng

EruBAénwv: ABavaolog Kopakng

OePBpoudplog 2023

Approved by the Examination Committee:

Supervisor

Member

Member

Athanasios Korakis
Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Antonios Argiriou
Assistant Professor, Department of Electrical and Computer

Engineering, University of Thessaly

Dimitrios Bargiotas
Assistant Professor, Department of Electrical and Computer

Engineering, University of Thessaly

Vi

YNEYOYNH AHAQZH NEPI AKAAHMAIKHEZ AEONTOAOTIAZ KAI MNEYMATIKQN
AIKAIQMATQN
Me TArpn €Miyvwon TwV CUVETELWVY TOU VOUOU TEPL TIVEUUATIKWY SIKALWUATWY, SNAWVW
pNTA OTL N Mapoloa SUTAWHATIKY gpyacia, KABWGE Kal Ta NAEKTPOVIKA apxela Kot Ttnyaiot
KWOLKEG ToU avamtuxbnkav r Tpomomownkav ota mMAaiola authg tTng epyaciag,
QamoTEAOUV QTOKAELOTIKA TIPOIOV TPOCWTIKAG Hou epyaciag, 6ev mpooBaAiouv
omotacdnmote popdng Skalwpata SlovonTikng OLOKTNOoLOG, TPOCWTIKOTNTAC KoL
TIPOOWTILKWV SeSopévwy Tpitwy, Sev meplEéxouv €pya/slodopéC TPiTwV yla Ta ormola
amatteitol adela Twv dnuioupywv/dikatoUxwyv kot §gv elval mPoidv HEPLIKAG N OALKAG
avtypadng, ot mnyéc e mou xpnowomowBnkav meplopilovrol ot BiBAloypadikeg
avadopEC Kal LOVOV Kal TTANPOUV TOUG KAVOVEC TNG ETILOTNMOVLKAG tapaBeong. Ta onueia
omou £€xw xpnolpormolnoel &€eg, Keipevo, apxeia f/kal mMNYEG AANwv cuyypadEwyv
avadépovial eUSLAKPLTA OTO KEWWEVO HME TNV KATAAANAN TOPOIOUTI) KOl N OXETLKN
avadopd mneplhapfavetal oto TUApa Twv PipAloypadikwy avadopwyv HE TANPEN
nieplypadr. AnAwvw eniong OtL Ta amoteAéopaTa TNG Epyaciag dev €xouv xpnoLdomnolnBet
yla tTnv amnoktnon aAAou mtuxiou. AvaAapBavw MARPWC, ATOULKA KOL TIPOCWTTLKA, OAEC TIC
VOULKEC Kal SLOLKNTIKEC CUVETIELEC TTOU SUvaTaL VoL TPOKUOUV OTNV TEPITITWON KATA TNV
orola anodelyBei, Slaxpovikd, OTL N epyacia auth A THAKA TNG SV Pou avhKeL SLOTL eival

TPOiOV AOYOKAOTIAG.

O AnAwv

MNavaylwtng MauAidng

Vii

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS
Being fully aware of the implications of copyright laws, | expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work /
contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where | have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference is
included in the bibliographic references section. | also declare that the results of the work
have not been used to obtain another degree. | fully, individually and personally undertake
all legal and administrative consequences that may arise in the event that it is proven, in
the course of time, that this thesis or part of it does not belong to me because it is a product

of plagiarism.

The Declarant

Panagiotis Pavlidis

viii

Euxaplotieg

Me tnVv oAokAnpwon NG SUTAWUATIKAG pMou gpyaciag, Ba nBela va guxaplotow Tov
eruBAEnovta kabnyntr pou k. ABavaclo Kopdkn yla Tnv gukalpia Kot TNV EUNLOTOOUVN

TIOU POV £6woe avaBETOVTAG LOU TO GUYKEKPLUEVO BEUQL.

Elpat svyvwpwv otov k. Kwota XoLupa, petadidaktoplkd epeuvnt tou NITOS
gepyaotnpiou, ylo TNV UTIOOTAPLEN TOU Kal TNV €QLPETN EMIKOWVWVIA TTIOU €lYOUE O OAN TN

SLapkeLa TNG SUTAWUATIKAC LoV epyaciag.

Elpat emiong Slaitepa eLyVWUWY yla Toug kKabnyntég Anuntplo Mmopyuwta kot AVIwvio
Apyupiou mou SletéAecav w¢ HEAN TNG €EETOOTIKAG EMITPOMNAG TNG SUTAWUATIKAG HOU

epyaoiag.

Akopa Ba nBsAa va euxaplotriow 6Aoug Toug avBpwroug ou ATav SimAa pou og OAa auta
Ta OLTNTIKA MOoU XPOVIA KOL TIOU HOLPOOTHKOUE OTLYUEG, KOAEG KOl KOKEG, TOU WE

ouvtpodeLouV NN oav AVAUVAOELC KAl EUMELPLEG TOU T peABOVTOC.

TéAog, Ba BeAa va euXapLOTOW TNV OLKOYEVELA LOU, TIOU E OTAPLEE Kal e EVOApPPUVE O€

KB pou anodacn OAa auTd Ta Xpovla.

2€ éva KaAUTEPO Twpa.

Acknowledgements

Upon completion of my thesis, | would like to thank my supervisor, Mr. Athanasios Korakis,

for the opportunity and trust he gave me by assigning me this topic.

| am grateful to Mr. Kostas Choumas for his support and the excellent communication we

had throughout this thesis.

| acknowledge the valuable contributions and guidance of Professors Dimitrios Bargiotas

and Antonios Argiriou, who served as members of my thesis committee

| would also like to thank all the people who were by my side during all my student years
and who shared moments, good and bad, that are already with me like memories and

experiences of the past.

Finally, | would like to thank my family, who supported me and encouraged me in every

decision | made all these years.

To a better now.

NepiAnyn

H taxela mpdodog tng teXvVoAoyiag £xel odnynoel oe auvénon Tou aplBpol Twv
OUVOESEUEVWV CUCKEUWV KOL TOU OYKOU TwV §eS0UEVwV TTou PeTadiSovTal HECow SIKTUWV.
Q¢ anotéAeopa, ta Siktua €xouv yIVeL pLa Kpiown umodoun yla TNV EMIKOWVWVIA KoL TN
peTadopd Se50UEVWV OTOV GNUEPLVO KOGHO. QOTO0O, JUE TNV AUEAVOUEVN TTOAUTTAOKOTNTA
kot tn Suvapkn puon twv Siktuwv, oL tapadootakeg pEBodot Slaxeiplong katL EAEyxou Tou
SIKTUOU €XOUV KATAOTEL AVETOPKEIC. Ma TNV QAVILUETWTILON QUTWV TWV TIPOKANCEWY, N

Alktvwon kaBoplopévn amo Aoylopikod (SDN) €xel eloaxBel wg Avon.

To SDN eival pla opxLtektoviky Siktuou mou Slaxwpilel to eminedo eAéyyou amod To
eminedo 6eSoUEVWY, ETUTPEMOVTOG KEVIPLKO EAEYXO, KAAUTEPN 0PATOTNTA KAl BEATLWEVN
eveli€ia tou Siktuou. Eva amd ta Baocikd mpwtokoAa oto SDN eival to OpenFlow, to
omolo EMUTPENEL TNV emKowwvia HeTafl Tou eTMESOU €A€yXOUu KoL TOU EMUTESOU

S6ebopévwy, xpnolpomolwvtog éva Kald kaboplopévo API.

‘Eva dAAo tpwTtoOkoAAo mou £xeL pokUPeL oto xwpo tou SDN eivat n P4. H P4 sival pla
YAWOOO TIPOYPAUMOTIOUOU SIKTUAKWY CUCKEUWY TIOU ETILTPETIEL TOV QLECO XELPLOUO TNC
ouvuneplpopdg tou emumedov Sedbopévwv tou Slktuou, mapéxovtag uPnAo emimedo
eveli€lag kal mpoypappatiopov. H P4 erutpémnel emiong tnv oxedlaon tng pong aywywv
enefepyaciag makétwy, Kablotwvtag tn €va Wavikod epyaAegio yla TtV ulomoinon VEwv

Aettoupylwv Siktvou oto SDN. OL mapandvw texvoloyieg mephappfdavovtat oto ONOS.

To Asttoupylkd cuotnua ONOS SDN eival évog gUpEwC XPNOLUOTIOLOUUEVOG EAEYKTHG
avolytou kwdika, pe mapandvw and eévav ONOS kOuBoug Kol gival EMEKTACLUOG yla TN
Sloxelplon kot Tov €leyxo SIKTUWV, KaBlotwvtog To pla SnUodtAn emiloyr yla TOUG

XELPLOTEG SIKTUWV.

AuTtn n dlatplpn Ba mapouoLaoEL P cuvtoun eloaywyn oto SDN kat Oa emikevtpwOel otn
HeEAETN NG YAwooag P4 kat tou ONOS. EmumtAéov, peAetd tnv umootnpln tng P4 otnv
mAatdoppa ONOS.

NE€eLc-KAeLdLA: Aiktua Yrmoloylotwy, Aiktua Emopevng Feviag, SDN, Openflow protocol,

P4, ONOS, SDN controller, PARuntime API

Xi

Abstract

The rapid advancement of technology has led to an increase in the number of connected
devices and the amount of data being transmitted over networks. As a result, networks
have become a critical infrastructure for communication and data transfer in today's world.
However, due to the increasing complexity and dynamic nature of networks, traditional
network management and control methods have become inadequate. To address these

challenges, Software Defined Networking (SDN) has been introduced as a solution.

SDN is a network architecture that separates the control plane from the data plane,
allowing for centralized control, better network visibility, and improved network agility.
One of the key protocols in SDN is OpenFlow, which enables communication between

control and data plane, using a well-defined API.

Another protocol that has emerged in the SDN space is P4. P4 is a domain-specific
programming language that allows for direct manipulation of the network data plane
behavior, providing a high level of flexibility and programmability. P4 also lets the design
of packet processing pipelines, making it an ideal tool for implementing new network

functions in SDN. The above technologies are included in ONOS.

The ONOS SDN operating system is a widely used open-source, highly available and scalable
controller for managing and controlling networks making it a popular choice for network

operators.

This thesis will present a brief introduction to SDN and will focus in study of P4 language

and ONOS as well. Moreover, it studies the support of P4 in ONOS platform.

Keywords:

Computer networks, Next Generation networks, SDN, Openflow protocol, P4, ONOS, SDN

controller, PARuntime API

Xii

WYl g T 10T/ [=o [=T =T 1 X3 X
TTEPUANIN .eaaeeeeeeeecieieeiieiiseiiiiesseniiessteesssssssssssssssnsssssssssssssssssssssssssnssssssssnsssssssnnsssnns Xi
721 2 X3 1 o o PPN Xii
TADIE Of CONLENLSceueeeeeeeeereeeeeeeeeeieeeeeeeenrereesereneseernsssesasesssssessnsssssassssnsssssnssnssasasens Xiv
CHAPTER 1 INTRODUCTIONccuuuuirveeniiirreenssiirnennssieseeesssisseessssissessssssssssssssssssssssssssssses 1
1.1 MOtIVatioN.....cuu s 1
1.2 TheSiS OULIINEuueeiiiiiiiiiiiiritc e ssass s s e s s s s s sanns 2
CHAPTER 2 SOFTWARE DEFINED NETWORKINGccccuurirreeursirreenssiireennssirreenssseenennnns 3
R 0 =T T 3
2.2 SDN Archit@Ctureueeiiiiiiiiiiiieniiitcciicnrrec s sassrs s sssssss e s e s e s e 3
2.3 OPENTIOW. ..ccuuieeiiiiiiriieirecttierreeeerenereonereasestasesenssesassssessersnssssnsesenssssassssansessnssssnsesenssenen 4
2.4 Challenges inN SDNccceuiiiiiimiiiiienieeiirneeetesneseetesnsssssesnsssssennsssssesnsssssennsssssennssssssnnsnsnns 5
CHAPTER 3 PROGRAMMING PROTOCOL INDEPENDENT LANGUAGE.........cccceuuueissiiierrmenennnsssssnnnnns 7
0 =T TN 7
B0 YL 4 ¢ o 8
e B N ol T =T ot =N 10
KV Y, ' = N 12
3.4.1 Standard Metadata ..o 13

B =] = PPN 13

3.4.3 Ingress Processing and EGress PrOCESSING.......uuuiiiiiiiiiiiiiiieeeeececiitiee e e e e eesitree e e e e e e s esaraaeeeeeeseeannnes 15
3.4.3.1 Table BIOCK....c.ueiiieeeeee e e 15

3.4.3.2 ACtiON BIOCKS ..ot 16

3.4.3.3 APPIY BIOCK .ttt e e 17

Xiv

R DT o -] £ =] PP PP PP PPPPPTPTTTRE 18

3.5 PARUNEIM ..cc ittt ieeiienciecteteatenetesetaserasesassesssesstasssasssnsssnsssnssasssasssnsernsssnsssnssnns 18
3.5.1 PARUNtiME Hands-0N EXAMPIE......uiiiiciiie ettt e et e e e et e e staa e e e sata e e e e nta e e snnaeeesanaeaeans 20
CHAPTER 4 OPEN NETWORK OPERATING SYSTEM.......ccceuueeuireiienienieccsessnssescecssnssnssnnens 24
4.1 OVEIVIEW ..cuuieiiieiiiniiiniieeiteeeineroiseetieesiossiosstsssssssssssssssassrsserssessssssssasssasssnsssnsssnsssnssanssnnes 24
4.2 DeSigN PriNCIPleS....cciivueiiiiiiniiiiiiiiiiinniiiiiniieiiennsietiesmsesienmsiestesssssssessssssssssssssssnssssssnns 24
4.3 System COMPONENTS ...ccieiiiiieiiiiiiiiiiiiiiiieireirettettettattestastestastastassassassassassassassassansans 25
4.4 Network State ConStructionccccciiiieiiiiiiiiiiiiiieiieie e rsenessessensssessensssssaens 29
4.5 DEeViCe SUDSYSTEMcccuuiiiiiiciiiiicerreiicerrenaneeseenaseseenassessennsseseennsssseennssssesnsssssesnnsnnsennn 31
4.6 Device Driver SUDSYSTEMcoiiieiiiiiiecceriieeerreeeeereenneessennseseennsssseennsssssensssssesnnssnsenns 34
4.7 Distributed OpPerationccccciieeeeceiiiieiertenneereennncereennsseseensssessensssessensssssssnsssssssnsssssenns 36
4.7.1 DiStrIDULEA STOTES ..eveeeieieieiieee ettt ettt e e e e e s ba e e e e e e e e s e babeeeeeeeseatsaseeeeeesenanraeeeeeesennnnnnes 36

4.8 INteNnt FramMEWOIKcceeuuiiiiiiiiiiiiecerrttecertenaneeseennseseennssessensseseennsssseennssssesnsssssesnsssssenns 38
4.9 FIOWRUIE SUDSYSTEMiieeeiiiiiicceitiecceteieeeeeenaseeeenanseseennsseseenssssseennsnssesnnssnsesnssnnsenan 39
CHAPTER 5 P4 AND ONOS.......c.ueeeeeieiiieiiniiiiessnsscsessnssssessnssssessmsssssssnsssssssnssssnssasssses 40
5.1 Pipeline Independent FrameWorK........ccccoiveiiieeiieiiiiniiiieneienniieeerenseerencereseresessnsessnnens 40
L3 3 T 1Yol o] 1 | PRt 41
oY B T oT=ToTo]] { Mo Y-To I= OSSR PUTUPUN 42

5.2.2 PIPEINE INtEIPIEEEN ettt st b e st e st e s bt e s bee e sbeesbeeenneeeane 43

T2 TN ST oY= 10 V=T oSSR 45

5.3 USE CASE SCENAIIOS ...ieeriieuniiinnirineisinesieessrenssienssssssssrssssrssssrssssresssssssssrsssssssssssnsssansssanssns 48
5.3.1 DEVICE DISCOVEIY . ciiiiiiieieiiieteeeeeeeeeeee ettt eeeeeeeeaaeaaaans 48

R T =Tl =] A I O TR 49

5.3.3 FIOW RUIE OPEIAtiONSuviiiiiiieeeiiieeecttee e ctte ettt e s tte e e s e e e e st e e e ente e e snaaeeesnsaeeeannseeessnnneeesnreeenns 50
CHAPTER 6 CONCLUSION AND FUTURE WORKcueeeeeeeeeeieeeeieiieeseieieeesesscesssnsscsnnnes 51
REFERENCGEScueuiiiieiieeiiiiiesieiieesinisnssesessssassassssssessnssssssssssssnsssssssssassasssssssssnssnsssssens 52

XV

CHAPTER 1 INTRODUCTION

1.1 Motivation

The emergence of Software Defined Networking architecture (SDN) have made important
changes to the way that networks are configured and operate. First of all, the SDN
architecture defines two layers for the network management and a top layer that
applications are deployed. From bottom to top we have the infrastructure layer (data
plane) that physical network devices are resided and then comes the control plane which
is responsible for the logic of the network in order to operate correctly. At the top layer,
applications exist. Communication between data plane and control plane is made through
the southbound API (SBI) and for the control plane and application layer through
Northbound APl (NBI). The most representative protocol in SDN world until now, is the
Openflow protocol. It defines a standard, open interface, to populate the forwarding tables
in network devices, i.e. switches or routers. The utilization of this interface can make

different switches from different vendors to be controlled from one common control plane.

OpenFlow operates under the assumption that the behavior of switches is fixed and well-
known, as outlined in the documentation of the switch ASIC. Historically, high-performance
switch chips had been supported a specific set of protocols only, as they were directly
implemented with IEEE and IETF standards in silicon. It was not possible to alter the
behavior of these chips or add new protocols or methods for measuring and controlling the
data path. Currently, it takes around four years to integrate a new protocol into a fixed-
function ASIC [[1]]. The emergence of P4 language has been started to provide a solution

for it.

P4 is a domain-specific language that changes the traditional approach of networking,
which is based on the switch’s vendor to determine the limited set of operations it can
perform. Instead, in P4, network architects and programmers instruct the switch about
what it should do and how it should process packets. P4 gives to them capability to define
the headers that switch can recognize, how to match on each header, and actions that

switch should perform on each header.

P4 language offers more flexibility and upgradability compared to other solutions like
traditional fixed-function switches or hardware solutions. With its programmability, it
provides space for innovation in the enterprise networks, like flexibility of the network

stack and the ability to update the software without needing to purchase new switches.

1.2 Thesis Outline

The rest of this thesis are organized as follows: Chapter 2 presents an overview around
SDN, Openflow protocol and its challenges. In chapter 3, the P4 language and P4Runtime
APl is covered to a high extent. In chapter 4, ONQOS SDN controller is described thoroughly.
In chapter 5, the support of P4 in ONOS is presented whereas chapter 6 presents a summary

of the conclusions of the current study and outlines plans for further research.

CHAPTER 2 SOFTWARE DEFINED NETWORKING

2.1 Overview

Before the emerging technology of Software Defined Networking (SDN),
telecommunication networks were complex and difficult to manage. Network devices ran
complex, distributed control software that was closed and proprietary and varied across
vendors [[2]]. On top of that, there was specific configuration interfaces which varied
across vendors or across different products from the same vendor and network devices
should be instructed individually through them to operate correctly. This approach had
made telecommunication networks difficult to manage and innovation on this field was

infeasible.

Software Defined Networking has played an important role in today’s networks. Its scope
is to provide a flexible way for designing and managing networks. To do this, network
control should be decoupled from network infrastructure as well as operate individually
and being directly programmable [3]. This makes an abstraction on the network

infrastructure that can realize its network as a logical unit.

2.2 SDN Architecture

As we stated above, SDN separates the network control which is called control plane from
network infrastructure which is called data plane in a manner that control plane as a whole
is centralized and manages the entire network. To be more specific, control plane decides
how to handle network traffic and installs flow entries in the data plane devices that
controls. On the other hand, data plane is responsible for how to process packets that flow
through the network and forwards them according to flow rules that control plane has

installed to it.

The communication between control plane and data plane is made through well-defined
open source APls that are developed and standardized through the advance of SDN. API
that operates to the connection and communication between control and data plane is

called a Southbound API, while the API that communicates the control plane with SDN

applications that are built on top of that is called Northbound API. The above description

about SDN architecture and the components that makes it alive is illustrated in figure 1.

MP Application 1 Application 2 Application 3

MP: Management plane

1 NB API: REST API

Controllers: OpenDayLight,
ONOS etc.

SDN Controller Control plane

Source

Figure 1 SDN Architecture [4]]

2.3 Openflow

The aspect of software defined networking has been become alive with the aid of Openflow
protocol. It is a standardized protocol by Open Networking Foundation (ONF) and provides
the communication channel between controller and infrastructure device that is called

Openflow switch in terms of OpenFlow protocol.

Controller

*

1
OpenFlow Protocol

4

T
|
Secure | | Group
|
|

Channel Table

Flow Flow
Table [>""">| Table

Pipeline
—
OpenFlow Switch

Figure 2 Components of an Openflow Switch

As shown in the figure 2, Openflow switch consists of one or more flow tables and a group
table which perform packet lookups and forwarding. Also provides a secure communication

channel to communicate with the controller through the Openflow protocol.

It is worth to mention that OpenFlow switch has a pre-existing ASIC design and provides
only the interfaces on which the communication with the controller can be achieved. The
usage of Openflow protocol offers to the controller the ability to add, delete or modify flow
entries in the flow tables of the switch either proactively (before packet injection in the
network) or reactively (in response to packets) [5]. This is achieved due to instruction set

that Openflow provides for controlling the Openflow-enabled switches.

Due to its success to manage the network, it has become widely popular in academia,

research and industry and many SDN controllers have been developed with support of it.
2.4 Challenges in SDN

While SDN continues to be developed, there are also some challenges associated with this
emerging technology that will need to mention. The main challenges that the SDN

technology has, is about reliability, scalability, performance, interoperability and security.
o Reliability

o Due to its centralized architecture, an SDN controller can become a single
point of failure. As a result the entire network which controls may collapse
[6]. To deal with it, the controller should operate as a cluster with more than
one controller instances as a primary-backup scheme. In this case, there
should be a mechanism to maintain consistency with primary and backup

controller’s data.
e Scalability

o The separation between control plane and data plane has established an
individual development for both planes as long as the southbound API
connects them. However, when it comes to scale up one of those planes this

independent development can have drawbacks. For example, when the

network scales up in the number of switches and the number of end hosts,

the SDN control plane (controller) can become a key bottleneck.

e Performance

o The controller is able to response either proactively or reactively to setup
flows. In reactive approach, the setup time to configure a flow in the switch
is not negligible. If the reactive method used for a thousand number of
flows, then it will be created performance issues on the switch during setup

time of them.

e Interoperability

o While SDN emerges, there are still legacy networks that are in live mode.
Thus any new installation of an SDN network should be compatible with

traditional networks and their communication interfaces [7].

e Security

o The controller is a target for threats especially when open to unauthorized
access. Attacks on the controller can cause serious damage to the network,
as it is responsible for controlling the entire network. Authentication and
authorization at the controller-application level are required to support

network protection.

CHAPTER 3 PROGRAMMING PROTOCOL INDEPENDENT LANGUAGE

3.1 Overview

Programming Protocol Independent Language (P4) is a domain specific language that
specifies how network devices process packets in the data plane [8]. These devices can be
hardware and software switches, routers, NPUs, FPGAs, that are called as targets in P4
term. It is designed to overcome the problem that fixed function switches have in terms of
reconfigurability, protocol and target independence [9]. The aforementioned problems of

fixed function switches are the three main goals of P4 that it tries to solve:

e Reconfigurability in the field

o Once a switch is deployed, it should be able to change how to process
packets at any time through the communication channel between his

control plane and itself.

e Protocol independence

o There are no predefined network protocols as opposed to Openflow.
Instead, headers that describe the protocols that will be used to a P4

program should be specified explicitly.

e Target independence

o As a high level domain specific language, it is designed to operate exactly
the same way on every target without take into consideration the
underlying hardware. The translation of the target-independent description

to target specific representation it is made by a compiler.

- Control plane Table mgmt
Traditional Control traffic
switch Packets

Data plane
P4 Program
P4 table mgmt

P4-defined switch

Data plane

Figure 3 Traditional vs P4 switches

The differences between traditional and P4-defined switches in terms of the configuration
of the data plane it can be seen in figure 3. The latter defines the pipeline of the data plane
during initialization phase of the P4 program that is executed. Also it is made clear that the
set of tables that are exist in a P4 switch versus a traditional switch are depended of the P4

program and not of the target’s implementation.

3.2 P4 Workflow

The P4 ecosystem in order to come up live and start working correctly all it needs is a P4
program, a P4 compiler and a P4 target that will run the compiled P4 program. To begin
with P4 compiler, there is a reference compiler called p4c [10]. This compiler provides a
standard front-end and mid-end compiler and can be combined with a target-specific
backend compiler to produce a complete P4 compiler. The compiler takes as input the P4
program that is programmed before and can generate 2 distinct files. A binary
configuration file for switches and a mapping of tables and actions defined in the P4
program in a format that can be consumed by the control plane. This file is called p4info
and provides the means to populate P4 switch’s tables with entries. The above description

of the P4 workflow is depicted clearly in the figure 4.

P4 Program

- m ACL
prog. P4
' W
P4 Compiler .4, ane cor Control Plane
Allocate resources 1o # progpdinfo L=t P4Runtime client
realize the pipeline and
3 arate rur I € TappIr _|
Target-specific
compiler backend o PA4Runtime server

Target
Data Plane Target driver

target_demo.bin Target

Figure 4 P4 workflow compiling process [11]

As for P4 targets, there are many different types of devices that can act be supported. To
demonstrate a concrete example and understanding of the P4 workflow the BMv2 software
switch will be introduced [12]. It is a P4 reference switch that was written in C++11. As it is
described before, the P4 compiler generates a target specific configuration in order to
implement a packet-processing behavior that was defined by a P4 program. In the case of
this software switch, configuration comes in JSON format that it is imported as an input to
it. It is worth to mention that BMv2 is not meant to be a production grade software switch
rather than a tool for prototyping features in P4 that need to be tested. As a result it lacks
of performance in terms of throughput and latency against other software switches that
expected to be production grade. There are many cases that impact the performance of
BMv2, it could be noteworthy a few, regarding the complexity of the P4 program with
respect to the amount of headers that were defined to it, the compiler that was used to

generate the BMv2 JSON file as well as the version of the software switch.

There are a few notable targets like simple_switch, simple_switch_grpc [13]. Basically,
these targets are very similar to P4 features that support but they are different in the way
that communicate with the control plane and the format of control messages that are sent
to the controller. The former accepts TCP connections from a controller with format of the
control messages is defined by a Thrift APl. On the other hand, the latter accepts TCP
connections from a controller using the P4Runtime API for the communication between
control and data plane in a message format that the API recognizes. A last thing to mention,
is that if P4ARuntime API is the selected communication among a switch and a controller,

the simple_switch_grpc should be used as a Bmv2 software switch.

3.3 P4 Architecture

P4 targets have architectural models that describe them in terms of the functional blocks
that exist in the data plane [14]. These architectural models define the P4 programmable
blocks as well as the fixed function blocks that coexist in a target’s data plane. It also
exposes each block’s interfaces and their capabilities. Each target can support multiple
architectures but a P4 program is not portable across different architectures. In case of
targets that support the same architecture, P4 program runs the same for such a target.
There are various P4 architectures that are implemented on different targets such as
SimpleSumeSwitch architecture which is supported by NetFPGA based devices, vimodel
architecture that is supported by software switches like BMv2 and much more that expose
the portability feature of the P4. Except of multiple architectures, P4, as well as its
architectural models, provides data plane interfaces in order a block and other components

of the architecture to communicate with each other.

These interfaces can be expressed by fields that indicate the direction of the information
in the specified block. The code block 1 section specifies a control block with parameters

defined as:

e in = indicates an input value in the block that can only be read

e out = indicates an output value from the block that can be modified and is initially

undefined

10

e inout = indicates that this value acts both as input and output and have the

characteristics of both in and out parameters

control MatchActionPipe(in bit inputPort, inout H parsedHeaders, out bit outputPort);

Code Block 1 P4 interface description

Interface User-defined

tadat Interface
of P4 block #1 ~ metadata of P4 block #2
ntrinsic metadata i’““‘"'\r] L/\ :

Metadata

P4 block #1

]
]
]
]
1
]

4l

Target runtime/hardware

Figure 5 P4 programmable blocks and interfaces

An architecture also provides a set of extern functions and objects that can be used to
interact with a P4 program without knowing the implementation of the provided functions
and objects. This is a known technique similar to the abstract class of an object-oriented
programming model and offered to P4 using P4 extern objects and their functions. An
example of such an extern object and its abstract methods is depicted below for a

checksum operation.

11

extern Checksum16 {

Checksum16(); // constructor

void clear(); // prepare unit for computation

void update(in T data); // add data to checksum

void remove(in T data); // remove data from existing checksum bit

get(); // get the checksum for the data added since last clear

Code Block 2 P4 extern object definition

3.4 V1iModel

This thesis uses the BMv2 software switch which supports the V1Model P4 architecture, in
order to investigate further the P4 language. For a better elaboration in P4 architectures,
this model will be analyzed. It is worth to mention the programmable and fixed function

blocks of a P4 program for the V1Model Architecture which depicted in figure 6.

Parser Checksum Verification / Checksum Update / Deparser
Ingress Match-Action Egress Match-Action
A A

{_L\ 4 \ f

}

Traffic
Manager

L
NIIE

LAAA AL
¥
HERBED

Figure 6 V1model Architecture

Programmable blocks consist of the Parser, Checksum Verification, Ingress Match-Action
tables, Checksum Update, Egress Match-Action tables and Deparser. The Traffic manager
block comes as a fixed function block provided by the manufacturer and is accompanied
with tasks such as queue management, packet scheduling and replication and is out of the
scope of this thesis. The functionality of these blocks and metadata fields that are used in

the V1Model architecture will be described in the following sections of this chapter.

12

3.4.1 Standard Metadata

These fields comes with the V1Model as part of the struct standard_metadata_t and are

associated with a packet.

Some fields that is important to be noted are:

e ingress_port = Aread-only field that specifies the device’s port that a packet comes
from. It is an important field for decisions related to ingress or egress match-action

tables and parser.

e egress_spec -2 This field specifies which output port will be used in order a switch

to forward a packet. It is assigned during the Ingress control processing.

e egress_port = This field is read-only and is used strictly on egress processing which

its value maps to the value of egress_spec that is used in the ingress processing.

e mcast_grp = This field is used on the ingress processing for the multicast feature.
A value of zero defines no multicast, otherwise it should have a valid value of a

multicast group that is defined to the bmv2 runtime interfaces.

3.4.2 Parser

The job of a Parser is to signify how headers of a packet will be parsed. It can be expressed
as a finite state machine as depicted in figure 7. It consists of states that identifies the
parsed headers and assign to the parsed header struct the runtime variables that can

exclude from packet headers while parsing.

The parser always starts with the start state and ends with either accept or reject state.
From the starting and ending state, there are many transition states as defined in the P4
program that programs the Parser. For each intermediate transition the parsed header
values are assigned to the respective header struct. These data are extracted using an
extern object called packet_in, that represent incoming network packets. Moreover, it has
various methods for data extraction and lookahead operations in a packet level
manipulation. A P4 parser implementation with transition and select features for various

headers is depicted in the code block 3.

13

() (o)

Figure 7 Parser FSM visualization

parser MyParser (packet in packet,

out headers hdr,
inout metadata meta,
inout standard metadata t standard metadata) {

state start {
transition select(standard metadata.ingress port) {
CPU_PORT: parse packetOut;
default: parse ethernet;
}
}

state parse packetOut {
packet.extract (hdr.pktOut) ;
transition parse ethernet;

}

state parse ethernet {
packet.extract (hdr.ethernet) ;
transition select (hdr.ethernet.etherType) {
TYPE IPV4: parse ipvé4;
default: accept;

}

state parse_ ipvé4 {
packet.extract (hdr.ipv4) ;
transition accept;

Code Block 3 A P4 parser implementation

14

3.4.3 Ingress Processing and Egress Processing

The ingress processing performs packet modifications and decides the output port to
forward the packet. After ingress processing has completed, there is another one match-
action pipeline that is called egress processing. There can be implemented various
modifications in the headers’ fields. Moreover, it is important to be noticed that the output
port can only be read and not changed at all, in the egress pipeline. The packet’s processing,
either on ingress or egress, is performed through match-actions operations which are done
from blocks called tables and actions respectively. Also, there is an apply block in order to

control the order that those match-action tables will be initiated and executed.

3.4.3.1 Table Block
Tables provide the match-action utility upon the parsed headers’ struct in order to take an
action for a specific behavior, for example defining a multicast group or an output port. For

illustration purposes take a look on the code block 4.

table mac_table ({
key = {
hdr.ethernet.dstAddr : exact;
}
actions = {
mac_to port;
send to cpu;
broadcast;
}
size = ;
default action = send to cpu();

Code Block 4 A P4 table

A table with the name mac_table is defined. Each table consist of a key or a set of keys
which are the match interface. Furthermore, it consists of an action or a set of actions based
on the key’s output result which is called a table hit or a miss. These two kind of contents
can be manipulated either asynchronously using the control plane to write / read entries

to / from the table or statically when the P4 program is initiated and executed in the BMv2

15

switch. The key attribute has two parts. A field of the parsed headers that recognized by
the parser and a match kind field that describe the algorithm that will be used to look up
in the table entries to see if there is a match with the parsed header field. This match kind
can take 3 values in all architectures which are exact, ternary and Ipm (longest prefix
method). In vimodel we have 3 additional options the range, optional and selector values.
Also there is an option to define the size of table entries that a table can have with the size
parameter. There is a default action too, that it is performed in case of none of the actions
defined in the actions’ set are not matched with the corresponding result of the keys’ set.
This default action should be declared in the actions’ set as well. In case it is not, then

implicitly the primitive action NoAction acts as a default action by the compiler.

3.4.3.2 Action Blocks

Actions provide a way to read or write data that are being processed. They have the ability
to change the behavior of the data plane, using a dynamic approach, with the aid of the
control plane which action data of an action are provided through it. An action can be
executed either from a table match or by other actions. The code block 5 section illustrates

various action blocks.

1) action drop() {
mark to drop(standard metadata);

}

2) action mac_to port(egressSpec t port) {
standard metadata.egress spec = port;

}

3) action broadcast (McastGrp t mgrp) {
standard metadata.mcast grp = mgrp;

}

4) action send to cpu() {
standard metadata.egress spec = CPU PORT;
}

Code Block 5 Multiple actions implementation

16

In the first action block, a simple drop action is depicted that uses the primitive action block
mark_to_drop which provided from the core library of P4. Also, a common action that is
used to P4 programs is the mac_to_port. In this case, the action data (port) are populated
from the control plane, either dynamically or statically (when the P4 program is loaded in
the BMv2), provide an output port for the packet being processed. A more comprehensive
action is the broadcast action, which forwards a packet in all interfaces that have been
assigned to a multicast group and defined through the control plane. After population of
the action data (mgrp), P4 should assign these data to standard_metadata.mcast_grp field
to perform the broadcast action. The last action is placed in order to provide information
about communication between the control plane and the data plane that will be introduced
in next sections and should define a specific cpu_port for that communication while BMv2

program is running.

3.4.3.3 Apply Block

Apply block section is responsible for invoking tables and their corresponding actions inside
the Ingress or Egress control Block. Logic for when and with what order each table is
invoked in order to implement the appropriate result. An apply block that implements a
mechanism to process a packet if it is received from the control plane is described in code

block 6.

apply {
if (standard metadata.ingress port == CPU PORT) {

temp port = (bit<9>)hdr.pktOut.egress port[5:3];
mcast = (bit<7/>)hdr.pktOut.egress port[0:0];
if (mac_table check.apply() .miss) {
if (mcast == 1) {
standard metadata.mcast grp = (bit<l16>) mcast;
standard metadata.ingress port = temp port;
}
}
else {
if (standard metadata.mcast grp == 1) {
standard metadata.ingress port = temp port;

}

}
hdr.pktOut.setInvalid() ;

Code Block 6 Apply block implementation

17

3.4.4 Deparser

Deparser comes as the last control block of a P4 program and has the responsibility to
construct the modified packet in order to be forwarded across the network. To do this, it
uses an extern object called packet_out which has an emit function that appends the data
to an output packet with a LIFO like formation of the packet headers. Below it is depicted

a Deparser of a switch network device that propagates packets across the network.

control MyDeparser (packet out packet, in headers hdr) {
apply {
packet.emit (hdr.pktIn);
packet.emit (hdr.ethernet);
packet.emit (hdr.ipv4) ;

Code Block 7 Deparser implementation

3.5 P4Runtime

The P4Runtime API is a control plane specification for controlling the behavior of the data
plane of a device that is defined by a P4 program [15]. A combination with the P4 language
makes it a target, protocol and pipeline independent API. That’s because it works with
different switches from different vendors, allows the control of any protocol that could be
implemented and of many pipelines that have been specified as well. It uses protocol
buffers for serialization and deserialization of the data and gRPC for the implementation of

communication channels.

Protocol buffers are an open source project that define a data format, which is language
and platform neutral with the ability of serializing or deserializing structured data into
.proto files [16]. After creation of such files, a protoc compiler can generate code to
manipulate messages that are described in a protobuf file in many general purpose
programming languages. The generated code consists of simple accessors for each field and

methods to serialize and parse the whole structure to and from raw bytes.

gRPC is another open source project which defines a Remote Procedure Call (RPC)

framework that can run in any platform. Like many RPC systems, gRPC is based around the

18

idea of defining a service, signifying the functions that can be called remotely with their
parameters and their return types [17]. It uses protocol buffers as an Interface Definition

Language and message format communication as well.

Figure 8 depicts P4Runtime as an independent API that is written in protobuf file format
[18]. It consists of a service that defines methods that could be called from a P4Runtime

client (or stub) to the P4Runtime server in the form of request-reply actions.

service P4Runtime {
/! Update one or more P4 entities on the target.
rpc Write(WriteRequest) returns (WriteResponse) {
}
/! Read one or more P4 entities from the target.

rpc Read(ReadRequest) returns (stream ReadResponse) {

}

/[Sets the P4 forwarding-pipeline config.

rpc SetForwardingPipelineConfig(SetForwardingPipelineConfigRequest)
returns (SetForwardingPipelineConfigResponse) {

}

f/ Gets the current P4 forwarding-pipeline config.

rpc GetForwardingPipelineConfig(GetForwardingPipelineConfigRequest)

returns (GetForwardingPipelineConfigResponse) {

/[Represents the bidirectional stream between the controller and the

// switch (initiated by the controller), and is managed for the following
f// purposes:

// - connection initiation through client arbitration

f/ - indicating switch session liveness: the session is live when switch

/i sends a positive client arbitration update to the controller, and is
ff considered dead when either the stream breaks or the switch sends a

fr negative update for client arbitration

/I - the controller sending/receiving packets to/from the switch

f/ - streaming of notifications from the switch

rpc StreamChannel(stream StreamMessageRequest)

returns (stream StreamMessageResponse) {

rpc Capabilities(CapabilitiesRequest) returns (CapabilitiesResponse) {

}

Figure 8 P4Runtime service API

19

As it is stated in the P4 compiler section, during compilation, a p4info file is generated that
describes the P4 program in protobuf format. This p4info is used from the controller to
control the entities defined to the P4 program. Combined with P4Runtime protobuf file,
the communication of the control plane (p4runtime client) with the data plane (p4runtime

server) can be controlled. This workflow is depicted in figure 9.

-
]

Q p4c-bm2-ss
; (compiler) | Control plane

s
—H—

test.p4info

-
K]
.]
1
v 1

P4Runtime server

p4runtime.proto

BMv2 driver | '

simple_switch

Figure 9 P4Runtime Workflow
It is worth to mention that someone in order to write control plane software it only needs
to have access to P4info file for a P4 program. If that’s the case, it can derive the structure
of the P4 program from the metadata that are described in this file but a P4 program for
that P4info, ideally, should be available. Furthermore, P4Runtime supports the use of
multiple controllers, either remote or local, so it can serve as a High availability service (HA)

if it has at least one backup controller, which is crucial nowadays.

3.5.1 P4Runtime Hands-on Example

This section refers to a P4Runtime control plane application that has been developed in

order to learn and experiment with P4 and P4Rutnime API during this thesis.

First of all, let’s introduce the architecture that it was used for this thesis in figure 10. A P4
Target is defined that is controlled by a remote controller which uses the P4Runtime API

for connection establishment between the control plane software (p4runtime client) and

20

data plane (p4runtime server). To be able a controller to send or receive packets to the
data plane or from the data plane should configure a control plane port that will be used

and data plane should specify two headers for packetln and packetOut respectively.

gRPC Client

P4Runtime

Platform Drivers

Config
P4 Pipeline

P4 Target

Figure 10 lllustration of the controller use-case.

As part of the P4 program the modifications that should be made to enable the packet | /
O operations are displayed in code block 8. Also it needs to be defined a constant variable

like CPU_PORT that should have the port that will be used from the device to communicate

with the control plane.

@controller_header("packet_in")
header PacketIn_t {
bit<16> ingress_port;
macAddr_t srcAddr;

@controller_header("packet out™)
header PacketOut_t {
bit<16> egress_port;

Code Block 8 packet | / O headers’ definition

21

As a next step, the program that instantiate a p4runtime device should be configured to
have the above cpu-port either programmatically in the device’s Class as a member field or
as a flag in the command that is executed in a terminal or a combination of them, according

to the case. After that, it is possible for the control plane to send or receive packets.

Before move into the control plane description, a P4info file for a P4 program that is
generated from the compiler is depicted in figure 11. The mapping between the P4 program
and the P4info can be concluded clearly.

actions {

id: 16786453

R) : "ipva_f d"
action ipv4_forward(bit<48> dstAddr, il el

params {
bit<9> port) { sd: 1
eth.dstAddr = dstAddr; name: "dstAddr"
metadata.egress_spec = port; bitwidth: 48
ipv4.ttl = dipv4.ttl - 1; A

}

name: "port"

= bitwidth: 9
) O
% }

table ipv4_lpm { tabl {
a es

key = { . N
A id: 33581985
hdr.ipv4.dstAddr: Llpm; P4 compller name: "ipv4_lpm"
+ match_fields {
actions = { qid: 1
1pv4 forward; name: "hdr.dipv4.dstAddr"
- bitwidth: 32
} match_type: LPM
6800 action_ref_id: 16786453
H 1

Figure 11 P4info visualization

A controller should make some basic operations on the P4 network devices that will control
before it actually starts to control flows. Firstly, it will acquire the P4info from the path that
is located and modified it with a helper function in order to be able to consume it. Then, it
will open connections to the P4 network devices that want to control using an incremental
port and an IP that these devices operate. After that, it will send a
MasterArbitrationMessage request. This will make the controller instance to act as a
primary controller (master controller) of these network devices before performing any
other write operations. Furthermore, it will integrate the P4 program on the switches using
the SetForwardingPipelineConfig request. This takes as an argument the device config file,
which in case of this thesis is the BMv2 JSON file and the P4info file as well. When these

steps are completed, the controller is able to perform write requests to switches using

22

multithreading programming to control each stream connection separately. The described

process is displayed in the below code fragments.

p4info_helper_router p4runtime_lib.helper.P4InfoHelper(p4info_file_path[@])
p4info_helper switch p4runtime_lib.helper.P4InfoHelper(p4info file path[1])

sl = pd4runtime_lib.bmv2.Bmv2SwitchConnection(

name="'sl',

address="'127.0.0.1:50051",

device_id=0,
proto_dump_file='logs/sl-p4runtime-requests.
= p4runtime_lib.bmv2.Bmv2SwitchConnection(
name="'s2",

address="'127.0.0.1:50052",

device_id=1,
proto_dump_file='logs/s2-p4runtime-requests.

s3 = p4runtime_lib.bmv2.Bmv2SwitchConnection(

name='s3",

address="'127.0.0.1:50053",

device_id=2,
proto_dump_file="'logs/s3-p4runtime-requests.
= p4runtime_lib.bmv2.Bmv2SwitchConnection(
name='s4",

address='127.0.0.1:50054",

device_id=3,
proto_dump_file='logs/s4-p4runtime-requests.

Code Block 9 Parsing P4info and connection establishment to switches

Send master arbitration update message to establish this controller as
master (required by P4Runtime before performing any other write

sl.MasterArbitrationUpdate()
s2.MasterArbitrationUpdate()
s3.MasterArbitrationUpdate()
s4.MasterArbitrationUpdate()

sl.SetForwardingPipelineConfig(p4info=p4info_helper_switch.p4info,
bmv2_json_file path=bmv2_file_path[1])
print("Installed P4 Program using SetForwardingPipelineConfig on s1")
s2.SetForwardingPipelineConfig(p4info=p4info_helper_switch.p4info,
bmv2_json_file path=bmv2_file_path[1])
print("Installed P4 Program using SetForwardingPipelineConfig on s2")
s3.SetForwardingPipelineConfig(p4info=p4info_helper_router.p4info,
bmv2_json_file_path=bmv2_file_path[0])
print("Installed P4 Program using SetForwardingPipelineConfig on s3")
s4.SetForwardingPipelineConfig(p4info=p4info_helper_router.p4info,
bmv2_json_file path=bmv2_file path[@])
print("Installed P4 Program using SetForwardingPipelineConfig on s4")

Code Block 10 Mastership request and load pipeline to switches

23

CHAPTER 4 OPEN NETWORK OPERATING SYSTEM

4.1 Overview

Open Network Operating System (ONOS) is an open source SDN network operating system
and controller that provides services like high availability (HA), scale-out and performance
that are required by current telecommunication networks [19]. It also acts as a foundation
of managing and building next-generation networks with the evolution of network
programmability and cloud computing. The main features that make ONOS the leading SDN

controller, not only in research but also in the industry, are:

e The support of managing the entire network and network components such as
switches and links with CLI and GUI configuration options and using software

applications as well.

e The ability to install / load / run software applications or modules on top of the
ONOS core using well defined APIs in northbound as well as in southbound
interfaces that consist of customized communication routing, management, or

monitoring services for software-defined networks.

e ONOS platform and applications act as an extensible, modular, distributed SDN

controller.

4.2 Design Principles

ONOS is designed as a multi-module project whose modules can be loaded dynamically and
managed as OSGi bundles. The ONOS kernel and core services, as well as ONOS
applications, are written in Java and can be installed in a single JVM due to OSGi bundles’

definitions [20]. Its design is based on four principles:
e Code Modularity = It is possible to add new functionalities independently.

e Configurability = It provides static or dynamic loading and unloading of modules

using apache Karaf as its OSGi framework.

24

e Separation of Concern = each subsystem should have distinct boundaries to

facilitate modularity. ONOS has been partitioned into:
o Protocol-aware network-facing modules (southbound API).
o Protocol-agnostic system core that keeps track the network state.

o Applications that consume information provided by the core to implement

their desired functionality.

e Protocol agnosticism = its core and its applications should not be bounded to any
protocol specificimplementation. Instead, a new network plugin should be created
in southbound API that will provide the desired information to the core without

any modifications to other ONOS system components.
4.3 System Components

ONOS architectural design consists of tiers that contain a specific functionality. Figure 12

depicts this tier-level architecture of ONOS with its core in the middle.

Apps
NB (Consumer) AP |

Core
(Device, Host, Link, Topology, Path, Flow, Intent, Network, ...)

SB (Provider) API

Protocols

Network Elements

Figure 12 ONOS Tier architecture

A service, in ONOS terms, is a vertical slice of multiple components that offers a piece of
functionality from this tier-level architecture. The set of multiple components that make

up a service is called a subsystem. The basic primary subsystems of ONOS are:

25

e Device Subsystem — Management of physical devices.
e Link Subsystem - Management of physical links.

e Host Subsystem - Management of end-station hosts and their positions within the

network.

e Topology Subsystem - Management of snapshots of the network's graphical

representation taken in chronological order.

e PathService — Calculating / determining routes between network devices or

endpoints using the most recent network layout snapshot.

e FlowRule Subsystem - Manages the match / action flow rules installed on physical

devices and provides flow analytics.

e Packet Subsystem - Enables applications to monitor data packets received from
network devices and transmit data packets out through the network using one or

more network devices.

The basic subsystems that are part of ONOS are illustrated in the figure 13.

ET T e T
T T T T

I | OpenFlow NetConf OVSDB _

Figure 13 ONOS subsystems overview

It is worth to note, how the information from the infrastructure devices is propagated
through ONOS to the applications that run on top of it and vice versa, as well as the
structure that provides the communication interfaces of the various components.

According to it, figure 14 shows the relationship between the components of a subsystem.

26

As we move from bottom to top we come across with the Provider Component. Provider

Component and its interfaces are responsible for providing not only the abstraction of

network infrastructure to the above layers but also the protocol specific communication

with the network devices. From Provider’s perspective, there is an interface called Provider

that interprets every command or information from the core into network specific

protocols to talk to the underline network environment and vice versa. Furthermore, each

Provider has a providerld that links itself with devices that manages.

App

Component

App
Component

command

query &
command

query &
command

command

%add & remove
notify

Provider

Manager P Manager
Component Component

Component

sync & persist

command
register & unregister

Provider
Component

Protocols

Figure 14 Relationship between subsystems' components [21]

In the middle of the figure 14, we can see a component called Manager. It resides in the

ONOS core and acquires information from Provider and pass it to applications and other

services. As for the manager-provider communication, there are two interfaces that co-

exist and communicate with the Provider interface. Those are:

e ProviderService

o

This interface is responsible for creating a service through which providers

would inject information of network environment to the core.

27

e ProviderRegistry

o This interface acts as a common registry where providers can interact with
the Manager and offers functionality like registration of a provider to the
Manager or deregistration of a provider from the Manager. Also provides

retrieval of existing registered providers.

Except from the above interfaces, Manager’s component has two additional interfaces that
are exposed to the application-manager communication which are: AdminService and

Service Interface.

e AdminService

o It is responsible for administration of the network state or system using

administrator commands.

e Service

o It offers to the ONOS applications or other ONOS core components

information about aspects of the network status.

Moreover, applications or consumers of Service interface can either obtain information by
requesting it from the service in a synchronous manner or implement an EventListener
which will query a specific information of the Manager’s service interface if the event that

will be monitored gets triggered.

Furthermore, inside the ONOS core and very closely to the Manager component resides
the Store. It is responsible for organizing, saving, and keeping updated the information
collected by the Manager, guaranteeing its accuracy and stability when there are multiple
ONOS instances. This is accomplished through direct communication with the Stores on

other ONOS instances.

At the top layer of the figure, we have the applications that consume the information from
Manager to implement various functionalities such as displaying network topology in the
ONOS GUI or routing the network traffic. Like Provider, applications have unique

application ID in order to track application-related context.

28

In ONQOS, the information units consists of events and descriptions. Each of these cannot
be changed once created and associated with specific network entities. Descriptions are
used to distribute information about entities that comes from southbound API. On the
other hand, events are generated through the Store in the Manager component in order
to notify Applications’ Listeners or other Manager Components in a distributed manner.
Once the event is generated, the Manager uses the storeDelegate interface to take the
event out of the Store. Then, passes it to the EventDeliveryService that resides in Manager
for distributing the event to the interested listeners that implements the EventListener
interface either as an internal class of a Manager or an application component. The above

description is depicted in figure 15.

Service 2 Service 1
Application
EventListener
Tmsl() l
EventListener Event *Service I
Delivery

Service

Event
Generation

Manager

Figure 15 Information Units workflow

4.4 Network State Construction

A very important information that a control plane should keep is the network state. When
control plane collects this information can make it available to the applications for further
use as a protocol agnostic topology. To make it possible, ONOS uses mechanisms like
network discovery and configuration instructed by ONOS itself and applications or

operators, respectively.

29

ONOS has two representations of network elements that controls. One of them is the
Model Object representation which is a protocol agnostic construct of network elements
used by applications and core components. The other representation is a protocol specific
reference of network elements that a provider makes use of it. For example, components
of the Device Subsystem, such as DeviceStore, DeviceManager and Devicelistener refers to
a network device as Device construct while OpenflowDeviceProvider sees this network

element as OpenflowSwitch.

There are various types for representing a Model Object across different functionalities of
ONOS. Network Topology, Network Control and Network Packets representations are some
of them. Each network infrastructure element is described with a corresponding Model

Object name and makes up the Network Topology representation, which is depicted in

EdgelLink Topology

Figure 16 Model Object names of network topology

figure 16.

Furthermore, the network control uses a match-action approach that in ONOS terms is
called Criteria-Treatment respectively, regarding applications’ space. The network can be
controlled either with a high level FlowRule approach that represents match-action pairs
or with a FlowObject approach which is used by protocol agnostic applications. Moreover,
there is the Intent approach that simply allows applications to specify what they want to
happen rather than how to happen and let ONOS do the rest. Lastly, network Packets in
ONOS are represented as OutboundPackets when packets will be emitted to the network

and InboundPackets when packets are received by ONOS from a network device.

30

4.5 Device Subsystem

The Device subsystem manages the network devices, including tracking and control of
them. This subsystem is crucial for many of the core functions in ONOS and is used by
operators and applications to interact with the network. This subsystem or its provider
creates and maintains the Device and Port model objects which are meaningful for most

ONOS’s core subsystems.
The Device subsystem follows a specific architecture and includes:

e The DeviceManager which is able to connect with more than one providers at the
same time, through the DeviceProviderService interface and with more than one

listeners as well, through the DeviceService interface.

e The DeviceProviders, which supports network protocol libraries or ways to connect

to the network related to their Device’s specifications.

e The DeviceStore that is able to track Device model objects and produce

DeviceEvents.

One meaningful DeviceProvider is the OpenFlowDeviceProvider. ONOS uses it when should
communicate with Openflow networks. Before proceeding with a description of the
Openflow subsystem and consequently with device subsystem, it is important to recall that
the network representation in ONOS. As it is stated before, network representation is
visualized differently in the core tier which uses protocol agnostic models and in the
provider tier which uses protocol specific models. Having said that, table 1 illustrates the
mapping of objects between core and provider tier for the Openflow related network

components and properties.

31

DeviceManager OpenFlowDeviceProvider

Device OpenFlowSwitch
Deviceld/Elementld Dpid
Port OFPortDesc
MastershipRole RoleState

Table 1 Object Mapping between Manager tier and Provider tier for Openflow

The OpenFlow southbound includes two components: OpenFlowDeviceProvider and
OpenFlow driver. Although these components should not be referred as an ONOS
subsystem with its strictly meaning, we will refer to them as the OpenFlow subsystem. This

subsystem implements the OpenFlow protocol on the controller side using Java bindings

created with Loxi [22].

To OFSwitchAgent

OFDevice
Provider
: : OFSwitch ports
OF SwitchListener
I))
OFSwitchimpl*®
)
_| OFMessage |[OFSwitch | Channel OFSwitchDriver
Handler Agent
device » < | Switch map
information _."
r Dpid | OFSwitch To Network
OFControlier switch maps Dpid | OFSwitch Device

channel -~
references o~

To Network Device(s)

Figure 17 Southbound API of Openflow protocol interfacing with Provider

The blue and green blocks in figure 17 represent the Provider Component and Provider

interface respectively. The block that are red and pink in color, as well as those that have

32

red outlines signify the components that make up the "Protocols" block, which is shown in
red in the above figure as well. These are responsible for communication with the physical

devices using TCP protocol.

The OpenFlowController coordinates the functions of OpenFlow. It creates a correlation
between the DPIDs of switches and the objects they reference in OpenFlowSwitch and
produces events that can be accessed by providers as listeners through subscription. These

listeners include:

e OpenFlowSwitchListener: listens to switch events such as switch connections and
disconnections. Examples include OpenFlowDeviceProvider and

OpenFlowLinkProvider.

e OpenFlowEventListener: listens to OpenFlow messages, like

OpenFlowRuleProvider.

e PacketlListener: listens to packets destined to the controller from the network
(Packetlns). Such providers are OpenFlowPacketProvider, OpenFlowLinkProvider,

and OpenFlowHostProvider.

The OpenFlowController also manages and establishes communication pathways between
each Switch object. It establishes connections and monitors the status of every switch that
is connected, through the OpenFlowSwitchAgent. When a connection is made, the
Controller creates a Switch object and associates it with a TCP OpenFlow channel (the

OFChannelHandler) with a correlation to the TCP connection (labeled Channel in figure 17).

The OpenFlow Switch object symbolizes a network device that is part of the OpenFlow
system and comprises ports, a unique identifier, information about the device, and a link
to the physical device that is connected through a communication channel. Each Switch

object corresponds to a single OpenFlow connection that is coming from the network.

The Switch object has two different kinds of interfaces:

e OpenFlowSwitch: which faces north towards Providers

e OpenFlowSwitchDriver: which faces south towards the channel and Controller

33

The OpenFlowSwitch enables providers and other components of the ONOS to engage with
the Switch object. The OpenFlowSwitchDriver is responsible for managing the specific
protocol intricacies that necessitate minimal or no interference from the remainder of the
system. These intricacies encompass elements of the OpenFlow handshake that are specific
to various types of switches, and the implementation of certain verifications on incoming

and outgoing messages.

4.6 Device Driver Subsystem

The main goal of this subsystem is to keep device-specific code apart from other parts of
the system. This subsystem provides a method to manage and allow applications to interact
with the device-specific code that will be required for an extended period of time, through
abstractions that are not dependent on specific devices or protocols. Also, as devices are
updated and replaced at different times than network control and management systems,
this subsystem enables the dynamic loading of device-specific code asynchronously. ONOS
uses a driver mechanism that allows for selective support of features and avoids a
monolithic driver approach. This is because different families of devices may have shared
and device-only features. The driver mechanism separates various aspects of behavior,
enabling features to potentially originate from different sources and to be shared through

inheritance within a product line with similar characteristics.
In ONQS, a driver is described as a group of related devices or a single device with:
® a3 unique name
e support of multiple Behaviors classes
e shared behaviors from other drivers
The Delivery Mechanism of the driver functionality, in ONOS, comes with two interfaces:
e DriverProvider: responsible for providing device drivers and their behaviors

o Set<Driver> getDrivers()

34

e DriverAdminService: responsible for tracking and managing device drivers by

administrating driver providers through:

o Set<DriverProvider> getProviders()

o registerProvider(DriverProvider)

o unregisterProvider(DriverProvider)

Also, there is a Lookup Mechanism for the device drivers that is based in the DriverService.
Apps and other ONOS subsystems can use it in order to find suitable drivers for the device

through searching:

by driver name

by device manufacturer, H/W version & S/W version

by supported Behaviour

by device ID

If there is no connection to a device but still someone wants to talk about a device and its
information one can acquire access to DriverData, which contains data learned from

previous interactions with a device. As DriverData’s functionality is that:

e provides Behaviors for spread information about a device

e has parent Driver

Except from that, if someone wants to interact directly with a device requires a

DriverHandler context that:

e provides Behaviors for communicating with a device

e has DriverData

e has parent Driver

35

4.7 Distributed Operation

ONOS has been created from the beginning as a ground-up distributed SDN operating
system. Thus, can be instantiated as a multi-node (multiple servers) system in order to
construct a cluster that each node should communicate with the other nodes of the cluster.
The existence of more than one ONOS instances provides fault-tolerance and resilience to
the system when an individual instance of ONOS fails. Moreover, it provides scalability due
to the fact that ONOS as a cluster can handle higher workloads than a single instance

deployment could.

A multi-instance ONOS deployment is a group of one or more ONOS instances, also known
as nodes, each of which has a unique Nodeld. Each node in the cluster is responsible for
maintaining and sharing information about a specific part of the network. This information
is shared with the other nodes in the cluster through events that are generated in the Store
and distributed through it via distributed mechanisms. Except for sharing data across
nodes, an ONOS cluster must also manage the addition and removal of nodes and delegate
control over devices to ensure that each device has a primary controller. The Cluster

subsystem is responsible for managing these tasks.
4.7.1 Distributed Stores

The distribution of the information between nodes as a part of the distribution mechanism
that should be used depends upon service’s requirements such as strongly consistent or

eventually consistent models.

Two different nodes synchronize their subsystems directly through the Store. The Store
only synchronizes the state of a subsystem that is a part of. For example, a DeviceStore only
knows about the state of devices and does not track host or link information. Figure 18

shows two nodes and a subsystem "A" that is present in both nodes.

36

ONOS Instance 1 ONOS Instance 2
(Subsystem A) (Subsystem A)
App App
Component(s) Component{s)
1 . Listener 1 . Listener
AdminService H Service AdminService H Service

Service A Manager Service A Manager

Provider Provider
Compaonent(s) Component(s)

Figure 18 Subsystem's synchronization in ONOS cluster

During the development of ONOS have been made 2 main changes according data
coordination architectural concepts. In prior release and specifically in version 1.4 of ONOS,
Atomix framework [23] is used instead of the existing Hazelcast’s distributed structures
that were used as a strongly consistent backend. This was embedded inside the ONOS
node. But in the version 1.14 of ONOS and after, a new architecture introduced that
decoupled cluster management, service discovery and persistent data storage from the
ONOS node and moved it to a distinct Atomix cluster. Before this change, the embedded
Atomix nodes within ONOS instances were used to create Raft clusters, replicate state and
coordinate state changes. In ONOS 1.14 and after, an Atomix cluster should be initiated
first and then ONOS nodes should connect to Atomix nodes to form the cluster. This new

architecture of ONOS-Atomix is depicted to figure 19.

37

Atomix Atomix Atomix

W
Z N

ONOS ONOS ONOS ONOS ONOS

Figure 19 ONOS 1.14 and after cluster architecture

4.8 Intent Framework

The Intent Framework is a subsystem that allows applications to control the network in the
form of policy, called Intents, rather than specific mechanisms. The ONOS core processes
Intents and translates them into actionable operations on the network environment
through a process called Intent compilation. These operations, called installable Intents,
are then carried out by the Intent installation process, which can result to changes in
network environment such as provisioning tunnel links, installing flow rules on a switch or
reserving optical wavelengths. The Intent Framework has been architected to be
extensible, which enables the incorporation of additional Intents, as well as their
corresponding compilers and installers, to ONOS dynamically during runtime. This feature
allows for the expansion of the default set of connectivity and policy-based Intents that are

available within ONOS.

An Intent is an object model that is immutable, which represents a request from an
application to the ONOS core to modify the network's behavior. It is composed of several
elements: Network Resource, Constraints, Criteria, and Instructions. The Network Resource
is a collection of object models, such as links, that are impacted by the Intent. Constraints
are weights applied to a collection of network resources, such as bandwidth, optical
frequency, and link type. Criteria are packet header fields or patterns that illustrate a

segment of traffic, and are represented by the Intent's TrafficSelector as a batch of objects

38

that implement the Criterion interface. Instructions are actions that are applied to a
segment of traffic, such as header field modifications or setting egress traffic through
specific ports and are represented by the Intent's TrafficTreatment as a collection of objects
that implement the Instruction interface. Furthermore, every Intent is identified by a
unique Intentld generated at the time of creation and the Applicationld of the application

that submitted it.
4.9 FlowRule Subsystem

The FlowRule subsystem manages the flow rules in the system and installs them on the
devices that are present in the network. It employs a distributed authoritative flow table,
where the primary copy of the flow rules is retained by the controller and propagated to
the devices. This approach ensures that it does not attempt to gather information from the
network or integrate flows that are already present on devices. In the event that ONOS
identifies a flow on a device that is not in accordance with its authoritative flow table, it
will eliminate that flow. The FlowRuleService API is used to add flows into the FlowRule
subsystem and they can exist to one of several states: PENDING_ADD, ADDED,
PENDING_REMOVE, REMOVED, or FAILED.

The PENDING_ADD status suggests that the FlowRule subsystem has received a request
from the application to install a flow rule, yet has not yet detected the flow on the device.
The request is then forwarded to the node that holds the master copy of the device in
qguestion, which employs the appropriate FlowRuleProvider to install the flow on the
device. Once the FlowRule subsystem detects the flow on the device, it moves to the
ADDED state. Similarly, the PENDING_REMOVE state signifies that the FlowRule subsystem
has received a request from the application to remove the flow, but has not yet received
confirmation that the flow has been removed from the device. The FlowRuleProvider is
instructed to remove the flow from the device and once confirmation is received, the flow
is transitioned to the REMOVED state. In case the device indicates that the flow rule

installation has failed, the flow is transitioned to the FAILED state.

39

CHAPTER 5 P4 AND ONOS

5.1 Pipeline Independent Framework

ONOS was initially designed to operate around Openflow and fixed-function switches [24].
As P4 was emerging, ONOS should be extended to support P4 programs and dynamically
configured pipelines. Before P4 was able to be supported to ONOS, there were pipeline
agnostic apps in ONOS for the Openflow and legacy switches. There should be a way to
reuse these apps with P4 programs as well. The solution to it was given by a new horizontal
subsystem extension of ONOS core, the Pipeline Independent (PI) framework as depicted

to figure 20.

P4 support in ONOS PD. = prototok-dependent

Pl = protocol-independent

Pipeline-agnostic Pipeline-aware | bbb '

applications application : Future Work '
_w
PD APIs
”,__fuu‘r PI APIs Q Pipeconf
Flow Objectives Events Pipcline spedfic (.0ar)
Intents (Packet, Topology, etc.) entities
Pi Fromework
PD-to-Pl translation serv.
{flow rule, groups, etc.)
.............. o
t Other protocols i
Painfo
w | binison
Device (Tofino, BMv2, etc.) | o=

Figure 20 P4 support in ONOS [25]

Pl framework was designed to represent the characteristics that P4 has around protocol,
program and pipeline independent facilities [26]. This framework enables ONOS to control

devices related to P4 and P4Runtime API. It consists of 3 important modules:

e Pl module

e FlowRule translation service

e Pipeconf

40

If ONOS wants to control a P4 device, it needs to write a Pipeconf application.

Pl module contains Java classes and interfaces to model and control a programmable data
plane. The design of this module is derived from the abstraction that is provided from the
protobuf files of P4Info and P4Runtime API. As a result, there is a Pl model package on the
ONOS core codebase which is based to p4info.proto file and a Pl runtime package as well,
that is based to p4runtime.proto file. Also, there is a Pl service package for services-related
functionalities such as Pipeconf management and control. In general, this module models

everything around P4 scope.

As for the FlowRule translation service, together with the aid of the Pipeconf service, that
is described later, translate pipeline-specific entities from protocol-dependent
representations to Pl ones. It has the option to validate the translated entities using the

P4Info that is loaded from the Pipeconf as illustrated in figure 21.

FlowRule Group Meter

:

) Translation service
Pipecont L__g,| with validation
(based on P4Info-derived pipeline model)

' v v

PiTableEntry PiActionGroup PiMeterCellConfig
PiMulticastGroupEntry

Figure 21 Translation service example

5.2 Pipeconf

Pipeconf is the way that ONOS use, in order to control and manage a P4 device. It is an
ONOS app (.oar, ONOS app archive) which includes some required Java files, the P4Info and
the BMv2 JSON that are produced after compilation of P4 for BMv2 software switch. It

mainly consists of 3 things:
e Pipeline model

o ltisderived automatically from P4Info and describes the pipeline that ONOS

should control.

41

e Target specific binaries to deploy the pipeline to the correspondent device

o Inour case the bmv2 JSON as an output of p4c.

e Pipeline-specific driver behaviors

o E.g. mapping of ONOS flow programming API to P4 pipeline entities through

Pipeliner implementation

5.2.1 PipeconfLoader

These functionalities, which a pipeconf provides, have a one to one mapping with Java
classes that implement them. The first thing to do with a pipeconf is to load it. This can be
done with PipeconflLoader.java that will register the pipeconf through PiPipeconfService.
By doing it, the pipeconf will be available for the other subsystems. In the
PipeconflLoader.java file, it is described everything that a pipeconf have packaged such as

pdinfo, target-specific binaries, added behaviors like Pipeliner or Pipelinelnterpreter.

@Activate
public void activate() {

// Registers the pipeconf at comp

if (pipsconfiervice.g

removePipeconfDrivers(};

try {
pipeconfService.register(buildPipeconf());

} catch (P4InfoParserException e) {

log.error("Unable to register " + PIPECONF_ID, e

private PiPipeconf buildPipeconf() throws P4InfoParserException {
final URL p4Infolrl = Pipeconfloader.class.geth (PAINFO_PATH);

_JSON_PATH);

pdInfolrl);

final URL bmv2JsonUrlUrl = Pipeconfloader.class.g

final PiPipelineModel pipelineModel = P4InfoParser.par:

return DefaultPiPipeconf.builder{)
.withId{PIPECONF_ID)

neModel(pipelineModel)

ur{PiPipelineInterpreter.class, InterpreterImpl.clsss)
viour(Pipeliner.class, PipelinerImpl.class)

tension{P4_INFO_TEXT, pd4InfoUrl)

nsion(BMV2_JS0N, bmv2lsenUrlUrl})

Figure 22 Pipeconf creation and loading Error! Reference source not found.

42

5.2.2 Pipeline Interpreter

Another component that a pipeconf may contain is the Interpreter. The Interpreter maps
ONOS internal data structures to Pl structures that represent the Pl framework [28]. By this
way, information is abstracted and can be mapped to P4 program-specific entities. This
functionality have many use cases like flow rule operation and packet I/O operations with
a P4 device. To be more specific, the Java interface class is called PiPipelinelnterpreter.java

and it provides:

e mapCriterionType: maps ONOS Criterion type to Pl match field id

e mapFlowRuleTableld: maps ONOS numeric table id to Pl table id

e mapTreatment: maps ONOS treatment to an action on a Pl pipeline

e mapOutboundPacket: maps ONOS outbound packet to Pl packet operations

e maplnboundPacket: maps Pl packet-in operation to ONOS inbound packet

e maplogicalPort: maps ONOS port number to similar data plane port id

Figures 23 and 24 represents an implementation of Interpreter for mapOutboundPacket

alongside with the helper function of buildPacketOut that was examined during this thesis.

43

@0verride
public Collection<PiPacketOperation> maplutboundPacket({OutboundPacket packet)
throws PilnterpreterException {

TrafficTreatment treatment = packet.treatment();

// Packet-out in main.p4 supports only setting the output port,
/f i.e. we only understand OUTPUT instructions.
List<OutputInstructiony outInstructions = treatment

.allInstructions()

.stream()

Filter{i -> i.type().equals(OUTPUT))

.map{i -» (OutputInstruction) i)

.collect(tolist());

if (treatment.zllInstructions().size() != outInstructions.size()) {
/f There are other instructions that are not of type OUTPUT.

throw new PilnterpreterException{"Treatment not supported: + treatment);

Immutablelist.Builder<PiPacketOperation> builder = Immutablelist.builder();
for (OutputInstruction outInst : outInstructions) {
if (outInst.port().islogical() && l!outInst.port(}.equals(FLOOD)} {
throw new PiInterpreterException{format{
"Packet-out on logical port '¥s' not supported”
outInst.port(}));
T else if (outInst.port().equals{FLOOD)) {
// To emulate flooding, we create a packet-out operation for
// each switch port.
final DeviceService deviceService = handler(}.get{DeviceService.class);
for {Port port : deviceService.getPorts{packet.sendThrough(})) {
builder.add(buildPacketOut(packet.data(), port.number().toLong()));
H
} else {
/{ Create only one packet-out for the given OUTPUT instruction
builder.zdd(buildPacketOut(packet.data(), outInst.port().tolong(}));

H

return builder.build();

Figure 23 implementation of the mapOutboundPacket function [29]

private PiPacketOperation buildPacketOut(ByteBuffer pktDataz, long portlumber)

throws PiInterpreterException {

/f Make sure port number can fit in vimodel port metadata bitwidth.
finzl ImmutableByteSeguence portBytes;
try {
portBytes = copyFrom(porthumber).fit{V1MODEL_PORT_BITWIDTH);
¥ catch (ImmutzbleByteSeguence.ByteSequenceTrimException &) {
throw new PiInterpreterException(format(

"Port number %d too big, %s", porthumber, e.getMessage()));

// Create metadata instance for egress port.
J/ #** TODO EXERCISE 4: modify metadata names to match P4 program

ff ---- START SOLUTION ----
final String outPortMetadatalame = "egress_port”;
ff ---- END SOLUTION ----

final PiPacketMetadata outPortMetadata = PiPacketMetadata.builder()
.withId({PiPacketMetadatald.of (outPortMetadatalame))
LwithValue(portBytes)
Lbuild();

/7 Build packet out.

return PiPacketOperation.builder()
LwithType{PACKET_OUT)
.withData{copyFrom(pktData))
LwithMetadata(outPortMetadata)
Lbuild();

Figure 24 BuildPacketOut implementation

44

It is also possible to not provide an interpreter implementation in the pipeconf. In this case,
the code will not be easily maintained and apps would not be compatible with the
underlying pipeline. The translation service uses the pipeliner’s functionality to implement

the translation to Pl framework for the flow rules.

5.2.3 Pipeliner

The pipeline-agnostic apps use the FlowObjective service in order to program the network.
To support P4, FlowObjective should be transformed to one or many flow rules in order to
control the network. Then using the Interpreter can map the flow rules to the abstraction
the PI framework provides, for interaction with P4 target-specific entities. The transition
from Flow Objectives to flow rules is being made available through the Pipeliner interface.

This interface provides:

e init: initialization environment like device’s id exposure and FlowRule and Group

Service.

e Filter: indicates rules that allow or block packets from entering the Pipeliner

e Forward: describes how packets need to be processed and maps them into flow rule

and group

e Next: installs the next hop elements in the device

Figures 25 and 26 represents a Pipiliner interface alongside with an implementation of the

Forward method.

45

public inmterface Pipeliner extends HandlerBehaviour {

lfi-nt
* Accumulator enabled property. Determines whether the accumulator is enabled.

#* The accumulator is assumed to be disabled if this property is undefined.

*

* If enabled, the pipeliner will try to accumulate objectives and create

* batches of flow rules when possible.

*
*
String ACCUMULATOR_EMABLED = "accumulatorEnabled”;

lfi-ut

* Initializes the driver with context required for its operation.

*

* @param deviceld the deviceld

* @param context processing context
*/

void init{Deviceld dewviceld, Pipelinerfontext context);

Fhid

* Installs the filtering rules onto the device.

*®
* @param filterObjective a filtering objective
*f

vold filter{FilteringObjective filterObjectivel;

FEid

* Installs the forwarding rules onto the device.

*
@param forwardObjective a forwarding objective
*

vold forward(ForwardingObjective forwardObjective);

[*®

#* Installs the next hop elements into the device.

*
* @param nextCbjective a next cbjectives
=

void next{NextObjective nextObjective);

Figure 25 Pipeliner Interface

46

public veld forward(ForwardingObjective obj) |

if {obj.treatment() == null} {
obj.context(). ifPresent{c -» c.onError{obj, ObjectiveError.UNSUPPORTED))

fJ Whether this objective specifies an OUTPUT:CONTROLLER instructios.
tinal boolean hasCloneTolpulction = obj.treatment()
LallInstructions(}.straan()
Filter (i -» L.typel).equals(OUTPUT))
.map(l - (Instrections OutputInstruction) L)
anyMatch(l -» i.port().equals(Porthumber. CONTROLLER)) ;

it {!hasCloneToCpudction) {
#f We support only objectives for clone Lo CPU behaviowrs (e.g. for
A host and link discowvery)
obj.context(). ifPresent{c -» c.onError{ob]j, ObjectiveError.UNSUPPORTED))

#f Create an eguivalent FlowRule with seme selector and clome to_cpu action.
+inal Pidction cloneTelpudction = PEAction.bullder()
withId(PLActionId.of{CLONE_TO_CPU))
SBulld();

Final FlowRule.Bullder ruleBuilder = DefaultFlowRule. bullder()
JForTable(PiTableTd. of (ACL_TABLE))
JForDevice|deviceld)
.withselector{ob].salector())
Sfromépplobj.appId())
JWithPriority{eb].pricrity())
swWithTreatment(DefaultTrafficTreatment. bullder()

.piTabledction{cloneToCpusction) . build()};

if (obj.pernanent()) {
rulefuilder.makePermanent();

toelse {
ruleBuilder.makeTemporary(obj. timeout{));

Final GroupDescription cloneGroup = Utils.buildCloneGroup(
obj.appld(),
dewiceld,
CPU_CLONE_SESSI0OM_ID,
#f Ports where to clone the packet.
AF Just contraller in thizs case.
Collections. singleton(Porthunber . CONTROLLER)) ;

switch (ebf.op()) {

case ADD:
FlowRuleService. apgplyF lowRules (ruleBulilder build()}};
groupservice. addGroup(cloneGroup) ;
break ;

case REMOVE:
FlowRuleService. removeF lowRules{ rulefuilder bulld());
#F Do not remove the clone group as other flow rules might be
#f pointing te it.
break;

default:
log.warn("Unknown operation {37, obj.op(}):

obj.context(). ifPresent{c -» C.onSuccess{obj)l;

Figure 26 Pipeliner Implementation

47

5.3 Use case scenarios

In order to demonstrate the above concepts, some use case scenarios will be analyzed

including device discovery mechanism, packet I/O operations and flow rule operations.
5.3.1 Device Discovery

To a better demonstration of how Pl architecture, as an intermediate, interacts with ONOS
and P4Runtime APl as well as P4 devices, a following device discovery example is used. This
example illustrates the initial part of a connection establishment from pipeconf compilation
and loading to ONOS to connection establishment and set up pipeline in a P4 device. Figure

27 represents the device discovery process.

E My
i pipeconf.oar |

DevicelD: bmv2:1

Get pipeconf

Bind pipeconf+device driver P4Runtime

- Server addr: 192.168.56.1
- Port: 5001

Pipeconf ID: my-pipeconf

Driver: bmv2

G Deploy pipeconf \/_

BMv2 PI Pipeline Progra 'BMv2 Device Hands netcfg.json /
mmable haker

REST API
Set pipeline conﬁg\/—/open TCP socket to gRPC
B oNOS Core (BMv2 JSON + P4info) Sarvi

Connect device

Device Driver
—» Pipeconf

ONOS GNTC 2017 - Jianwei Mao 27

Figure 27 Device discovery process through Pl framework

As it can be seen, first step is to compile the pipeconf into the appropriate form (as an
ONOS app) and then loaded it to ONOS [30]. When pipeconf is loaded, it will register in the
PiPipeconfService of the Pl framework using the PipeconfLoader.java class. Using the
General device Provider, PiPipeconfService will get the pipeconf and bind it with device
drivers as well using a device ID that is provided on the pipeconf. Then again, the general

device provider will establish a connection with the device using the BMv2 Device

48

Handshaker and will set the pipeline of the device (using P4Info and BMv2 JSON) as it is

described in pipeconf.

5.3.2 Packet1 /0O

A great use case for interpreter is the packet input / output operations. Apps send or
receive packets through PacketRequest or PacketManager service that side in the core tier
of ONOS. In case of packet emissions to a P4 device, when a packet is in one of the above
services, it will be sent out to the P4Runtime Packet Provider in order to forward to the
device Driver of the PARuntime Packet Programmable. In this step, interpreter logic is used
to abstract the internal packet representation to Pl framework representation. So after
that, the packet is no longer of type OutboundPacket that ONQOS internally use, but as
PiPacketOperation and then is propagated to the P4Runtime Protocol implementation,
which is the P4RuntimeClientlmpl.java in the protocols package. In this phase, the
PiPacketOperation is transformed, using the P4Info from the loaded pipeconf, to the actual
P4 representation entity which is PacketOut and through StreamClientimpl.java is sent it to
the corresponding device with the appropriate encoding. Figure 28 illustrates the above

description.

App

Packet-in event
Packet-out

Packet Request/Manager Service

P4Runtime Packet Provider

Inbound Packet
Outbound Packet

Pl Packet Operation

P4RuntimeClient

P4Runtime I ONOS Core
protobuf msg !)
Device Driver

B Pipeconf

Figure 28 Packet | / O internal information flow

49

5.3.3 Flow Rule Operations

As a last use case for illustrating pipeconf operations with the other subsystems is flow Rule
Operations. At first, there are apps either pipeline-agnostic or pipeline-aware. The former,
will use the pipeliner that is provided through the pipeconf in order to translate the Flow
Objectives that a pipeline-agnostic app uses to FlowRule. In the case of pipeline-aware
apps, the FlowRule service is used directly. After its wusage, the
P4RuntimeFlowRuleProgrammable.java takes up to translate the ONOS internal data
structures to Pl architecture structures. This is achieved using the Pl FlowRuleTranslation
service with the aid of interpreter implementation that a pipeconf provides. The entry point
for that is through the P4RuntimeFlowRuleProgrammable.java that will propagate the
abstraction of related entities to the P4Runtime client using the WriteRequestimpl.java.
Using the P4Info that is provided from the pipeconf, the encoding to valid protobuf
messages will be done and the request will be sent to the specific P4 device. Figure 29

visualizes the above description.

Pipeline-agnostic Pipeline-aware
App App

Flow Objective

Flow Rules
(many)

Table Entry

P4Runtime protobuf
messages

Figure 29 Flow Rule operations path

50

CHAPTER 6 CONCLUSION AND FUTURE WORK

In this thesis, the SDN solution was presented which seems to gain a great part of today’s
business networks. To this way, the Openflow protocol was presented to a high level and
new concepts concerning P4 programming language as well as P4Runtime API described
thoroughly. Furthermore, ONOS controller was pointed out which plays a key role to
industry as a good option for production-grade controllers to help the transition to the SDN
world. To this part, the P4 compatibility in ONOS was mentioned in order to better
understanding the steps that should be made to talk to P4 switches from the ONOS
perspective. Moreover, this thesis aimed to provide more documented information, either
in P4 or ONOS, to make it possible to future researchers find related information on these

topics.

Future plans include investigation on other ONF projects that include both technologies
and steering innovation like SD-RAN and SD-Fabric for 5G related topics. At last, a study
and contribution to micro-onos can be made having as a base the monolithic ONOS
implementation that this thesis is based, while trying to make it a cloud-native SDN

controller.

51

REFERENCES

[1] P4.org. (2016, May 18). Clarifying the differences between P4 and OpenFlow.
Retrieved January 14, 2023, from Open Networking Foundation website:

https://opennetworking.org/news-and-events/blog/clarifying-the-differences-

between-p4-and-openflow/

[2] Feamster, N., Rexford, J., & Zegura, E. (2014). The road to SDN: An intellectual
history of programmable networks. ACM SIGCOMM Computer Communication
Review, 44(2), 87-98. https://doi.org/10.1145/2602204.2602219

[3] Sloane, T. (2013, May 2). Software-defined networking: The new norm for

networks. Retrieved January 15, 2023, from Open Networking Foundation website:
https://opennetworking.org/sdn-resources/whitepapers/software-defined-
networking-the-new-norm-for-networks/

[4] Ali, J., Lee, G., Roh, B., Ryu, D. K., & Park, G. (2020). Software-defined
networking approaches for link failure recovery: A survey. Sustainability, 12(10),
4255. https://doi.org/10.3390/su12104255

[5] ONF. (2012). OpenFlow Switch Specification. ONF. Retrieved from
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf

[6] Jammal, M., Singh, T., Shami, A., Asal, R., & Li, Y. (2014). Software defined
networking: State of the art and research challenges. Computer Networks, 72, 74—
98. https://doi.org/10.1016/j.comnet.2014.07.004

[7] Abigail O. Jefia, Segun I. Popoola, & Aderemi A. Atayero. (2018, September 27).
Software-Defined Networking: Current Trends, Challenges, and Future Directions.
Presented at the Industrial Engineering and Operations Management, Washington
DC, USA. Washington DC, USA.

[8] P4~16~ language specification. Retrieved January 15, 2023, from https://p4.org/p4-

spec/docs/P4-16-v-1.2.3.html

52

https://opennetworking.org/news-and-events/blog/clarifying-the-differences-between-p4-and-openflow/
https://opennetworking.org/news-and-events/blog/clarifying-the-differences-between-p4-and-openflow/

[9] Bosshart, P., Daly, D., Gibb, G., 1zzard, M., McKeown, N., Rexford, J., Walker, D.
(2014). P4: Programming protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review, 44(3), 87-95.

https://doi.org/10.1145/2656877.2656890

[10] p4lang /p4c: P4_16 reference compiler. Retrieved from
https://github.com/p4lang/p4c

[11] P4 — language consortium. Retrieved January 15, 2023, from https://p4.org/

[12] p4lang / behavioral-model: The reference P4 software switch. Retrieved from
https://github.com/p4lang/behavioral-model

[13] The BMv2 Simple Switch target. Retrieved from
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md

[14] Kaur, S., Kumar, K., & Aggarwal, N. (2021). A review on P4-Programmable data
planes: Architecture, research efforts, and future directions. Computer
Communications, 170, 109-129. https://doi.org/10.1016/j.comcom.2021.01.027

[15] P4runtime specification. Retrieved January 15, 2023, from https://p4.org/p4-
spec/p4runtime/v1.3.0/P4Runtime-Spec.html

[16] Overview | protocol buffers. Retrieved January 15, 2023, from Google Developers
website: https://developers.google.com/protocol-buffers/docs/overview

[17] Core concepts, architecture and lifecycle. Retrieved January 15, 2023, from
GRPC website: https://grpc.io/docs/what-is-grpc/core-concepts/

[18] p4lang / p4runtime: P4runtime.proto. Retrieved from
https://github.com/p4lang/p4runtime/blob/main/proto/p4/v1/p4runtime.proto

[19] Introducing ONOS - a SDN network operating system for Service Providers.
Retrieved from https://stordirect.com/wp-content/uploads/woocommerce-products-

data/product_documents/Open-Network-Operating-System-ONOS_Whitepaper.pdf

53

https://doi.org/10.1145/2656877.2656890

[20] Open network operating system (Onos) sdn controller for sdn/nfv solutions.
Retrieved January 15, 2023, from Open Networking Foundation website:
https://opennetworking.org/onos/

[21] Architecture and internals guide—Onos—Wiki. Retrieved January 15, 2023, from
https://wiki.onosproject.org/display/ONOS/Architecture+and+Internals+Guide

[22] OpenFlowd Loxi - floodlight/loxigen Wiki. Retrieved January 15, 2023, from
GitHub website: https://github.com/floodlight/loxigen

[23] Atomix. Retrieved January 15, 2023, from https://atomix.io/

[24] Security & performance analysis brigade—ONOS - Wiki. Retrieved January 15,
2023, from
https://wiki.onosproject.org/pages/viewpage.action?pageld=12422167&preview=/1
2422167/72253443/ON0OS%2BP4%20SecPerf%20Workshop%20%40%20TMA%
202019.pdf

[25] Onos support for p4 runtime. Retrieved January 15, 2023, from Speaker Deck
website: https://speakerdeck.com/pichuang/onos-support-for-p4-runtime?slide=14

[26] Yi Tseng. (2017, September). 20170925 onos and p4. Retrieved from

https://www.slideshare.net/YiTseng/20170925-onos-and-p4

[27] Ngsdn-tutorial/app/src/main/java/org/onosproject/ngsdn/tutorial/pipeconf/PipeconfLoader.java.

Retrieved from https://github.com/opennetworkinglab/ngsdn-

tutorial/blob/advanced/app/src/main/java/org/onosproject/ngsdn/tutorial/pipeconf/PipeconfLoade

r.java
[28] Manzanares-Lopez, P., Muiioz-Gea, J. P., & Malgosa-Sanahuja, J. (2021). P4-kbr:
A key-based routing system for p4-programmable networks. Electronics, 10(13),

1543. https://doi.org/10.3390/electronics10131543

54

https://github.com/opennetworkinglab/ngsdn-tutorial/blob/advanced/app/src/main/java/org/onosproject/ngsdn/tutorial/pipeconf/PipeconfLoader.java
https://github.com/opennetworkinglab/ngsdn-tutorial/blob/advanced/app/src/main/java/org/onosproject/ngsdn/tutorial/pipeconf/PipeconfLoader.java
https://github.com/opennetworkinglab/ngsdn-tutorial/blob/advanced/app/src/main/java/org/onosproject/ngsdn/tutorial/pipeconf/PipeconfLoader.java

[29] Ngsdn-tutorial
/solution/app/src/main/java/org/onosproject/ngsdn/tutorial/pipeconf/Interpreterimpl
Java/. Retrieved from https://github.com/opennetworkinglab/ngsdn-
tutorial/blob/advanced/solution/app/src/main/java/org/onosproject/ngsdn/tutorial/pi
peconf/Interpreterimpl.java

[30] Yang, p4 runtime in the onos architecture—Programmer sought. Retrieved

January 15, 2023, from https://programmersought.com/article/61418255779/

55

