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YIIEY®OYNH AHAQXH INEPI AKAAHMAIKHX
AEONTOAOI'TAX KAI IINEYMATIKQN AIKAIQCMATQN

Me mAnpn enlyvooT TOV GUVETELOV TOL VOLOL TEPT TVEVUATIKOV SIKOUMOUAT®V, ONADVO
pNTa O6TL M TOPOVG O SITAMUATIKY EPYacia, KaOMS Kol To NAEKTPOVIKA apyeia Kot Tryaiot
KOOIKES TOL AVOTTOYONKOV 1) TPOTOTOMON KAV 6T TAAICIO QLTS TNG EPYOGIOG, ATOTELOVV
OTTOKAEIGTIKA TPOTOV TPOCWOTIKNG LOL £PpYAGiog, OV TPOSPAAAOVY OTOIGONTOTE LOPPNG
JKOLOUOATO SLAVONTIKNG O10KTNGI0G, TPOCOTIKOTNTAG KOl TPOCOTIKAOV OEO0UEVOV TPITOV,
dev TEPIEXOVV EPYO/EIGPOPES TPITMV Y10 TO OO0 ATOLTEITON AOELD TV dNULOLPYDV/
Skaovy®V Kot Ogv givort TPOTOV HEPTIKNG 1) OAKNG AVTILYPOPNS, Ol TNYEG OE TOV
ypnooromdnkav meplropilovtat 6Tig PPAMOYPAPIKES avapOpPES KAl LOVOV KOl TTANPOVY TOVG
KavOVEG TG emotnpovikng mapdbeons. Ta onpeia 6Tov £xm XPNOLOTOMGEL 10£EG, KEIEVO,
apyeio /Kol TNYEC AAA®V CLYYPOPEDY AVOPEPOVTAL EVOLAKPLTO GTO KEILEVO LLE TNV
KOTOAANAN TOPOITOUTY) KOL 1] GYETIKT OVAPOPA TEPIAAUPAVETAL GTO T TOV
BBAOYPUPIK®V 0vOQOPOV e TANPN TEPLYPOEN. ANADOV® emiong OTL TO ATOTEAECUATO, TNG
gpyaciag dev €govv ypnoyorondel yio v amdKTnon GALov TTuyiov. Avarapupdve TAnpg,
OTOUIKE KO TPOCMTIKA, OAEG TIG VOULKES KO OLOTKNTIKEG GUVETEIEG TOV dVVOITOL VO
TPOKVYOLV GTNV TEPIMTM®ON KATA TNV 0Toia amoderyOel, dtoypovikd, OTL M pyacio avTn 1

TUHOL TNG OgV LoV aviKeL 010TL €ivot TPoidv AOYOKAOTNC.

H Aniovoa

Avaotacio Eipnivn Tortcomodviov
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ABSTRACT

Field-programmable gate arrays (FPGAs) are integrated circuits with the ability to be
configured by a designer according to the needs of a specific task. As a result, FPGAs
combine the computational flexibility of a software platform with the advantages that parallel
execution on a hardware platform offers. This combination renders them a valuable tool in
tackling large-scale problems with vast demands in fast execution and limited resources,
leading to their consistent use in various domains, including Bioinformatics, where methods
are characterized by analyses of large and complex datasets of genetic information.

One of these methods, Local Sequence Alignment (LSAL), discovers areas of similarity
between a query and a DNA database. This thesis aims to implement the LSAL algorithm on
an FPGA, with the use of a high-level synthesis (HLS) tool, which offers the ability to
reconfigure the hardware by manipulating a C++ code, and eventually try to achieve a

performance that is comparable with an optimized software implementation.
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HEPIAHYH

O mhaxéteg FPGAs (field-programmable gate arrays) eivot KUKA®UOTO TOL OTTOT0L TOPEYOVLV
OTOV TPOYPOUUUATICTH TNV SVVATOTNTO VO, SIULUOPPDOGEL TNV AELTOVPYIO TOVG GOUPMVOL LLE TIC
avAYKeg EVOC GLYKEKPIUEVOL TTPOPANLaTOg Tpog emilvon. Q¢ amotélespa, ot FPGAs
ovvdvdlovv v eveMéia EvOG GLOTNLOTOG Software L To TAEOVEKTILOTOL TTOV TTPOCPEPEL T
napdAAnAn ektéleon v o hardware. Xdpn o€ avtdv Tov cuvovacuod, ot thakéteg FPGA
amoTEAOVV £va TOAVTIHO £pYyaAeio otV Tpoomdbela exilvong TPoPANUATOV HEYOANG
KMUOKOG, OTTOV TTPOEYEL 1] YPYOPT| EKTEAEST] KOIL 1) OIKOVOLLO G€ VAIKO, TO 01010 00N YEL GTNV
oLVEYT YPNOT TOVG GE O1APOPOVGS TOUELS, OTwg 1 BlomAnpopopikr|. Ot pébodot g
BromAnpo@opikng cuyva xapoktnpilovtol amd avaidcELg LEYAA®MVY KOl TEPITAOK®OV GET
JEdOUEVDV.

M amd avtéc Tic pebddovg, ovopalopevn Local Sequence Alignment (Tomwkn
EvBuypapuon AAnAovyiomv), eviomilel meproyég petald 2 aainiovyiwv DNA 6mov
enpaviCovroat opotdtTeG. AVt N SWTAMUATIKY 6TOYEVEL GTNV LAOTOINGT TOL alyopifpov
LSAL o¢ pa mhaxéto FPGA, pe v gprion evog epyareiov high-level synthesis (HLS), o
omoi{o 01veL GTOV TPOYPALUATIOTH T1 SVVATOTNTO VO, SIOUOPPDOGEL TV AELITOVPYIN TNG
TAOKETOG YPAPOVTOS KOOTKO GE YADCGO TPOYPOLLUUATIGLOD DYNAOD ENUTEOV, Kol €V TEAEL
oV €MiTELEN HOG VAOTOINOTG TOL UTOPEL VO CUVAYOVIGTEL £vav BEATIOTOTOIUEVO KOOTKO

software.
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Chapter 1

1.1 General Overview

1.1.1 FPGAs

A field-programmable gate array (FPGA) is an integrated circuit with the ability to be
configured by a designer according to the needs of a specific task. In contrast with
application-specific integrated circuits (ASIC), FPGAs can be reprogrammed after
manufacturing, thanks to the array of programmable blocks they contain, alongside the
interconnects that wire them together. The designer can guide the reconfiguration of an
FPGA with the use of a hardware description language (HDL). Besides the programmable
logic blocks, FPGAs also contain memory elements, such as flip-flops and complete

memory structures. [1]

As hardware platforms, FPGAs provide great levels of parallel computing. Their parallel
nature can therefore be taken advantage of in using FPGAs as hardware accelerators to
perform specific tasks in more efficient ways in terms of time and resources when compared
to a software platform. As a result, FPGAs are widely used in a number of large-scale

applications in various domains, Bioinformatics being one of them.
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1.1.2 Sequence Alignment in Bioinformatics

The field of Bioinformatics is responsible of developing methods and software tools for
studying and analyzing biological data to better understand evolutionary aspects of molecular
biology [2]. The rapid expansion of genetic data calls for approaches that rely on parallel
computing, in order to create tools that are able to handle large and complex biological
datasets of genetic information as efficiently and fast as possible. The bioinformatics method
we study in this thesis is sequence alignment, a method of arranging sequences of DNA,
RNA, or proteins to identify regions of similarity between two sequences, usually using

databases of large sizes.

Specifically, the algorithm we study is the Smith-Waterman algorithm for Local Sequence
Alignment, proposed by Temple F. Smith and Michael S. Waterman in 1981 [3]. As a
dynamic programming algorithm, it is guaranteed to find the optimal alignment with respect
to the scoring system we empirically choose. The goal of the algorithm is to match two DNA
(in our case) sequence, a query of size N and a database of size M, with M usually being
vastly greater than N. Being a local sequence alignment method, matching means the
algorithm locates segments where the two sequences share similarities. The output produced
will be a similarity matrix S, a direction matrix D, as well as the index of the largest value in

the similarity matrix, which are afterwards used in obtaining the optimal alignment.

The goal of this thesis is to:
e Study the Smith-Waterman Algorithm for Local Sequence Alignment,
e develop and optimize a software implementation running on an x86 platform, and
e optimize a hardware implementation running on a FPGA, attempting to reach an

execution faster than the software one.
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1.2 The Smith-Waterman Algorithm

Similarity Matrix

Given a query sequence A of length N to be aligned with a database sequence B of length M,
we construct two matrices of size N - M, the similarity and the direction matrix. The
similarity matrix S is filled by scoring each element from left to right, top to bottom, while
making one-to-one comparisons between all components in the two sequences according to

the equation:

(Si-1,j—1 t s(a;, bj)

S + Wil

Si’jzmax4 (OSiSm—l,OSan—l) (11)

I T?E%X{Si,j—l + W}

L

Where:

Si—1,j—1 + s(a;, b;) is the aligning score of the base pair a;, b;, called the northwest value,
Si—k,j + Wy is the score when q; is at the end of a gap of length k, called the north value,

S; j—1 + Wy is the score when b; is at the end of a gap of length [, called the west value.

The value s(al-, b]-) is the similarity score, chosen to be positive in case of a match between q;
and b;, and relatively lower in case of a mismatch. In this version of the algorithm, we choose

the following similarity function:

s@.5) =11 ifavp (1.2)

The parameter W is the gap penalty and k, [ are the gap lengths. Our version of the algorithm

uses W = —1,and k = [ = 1, so Equation (1.1) can be written as:
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Sic1j-1t+ S(Cli'bj)
Sl:—l,j - 1
Sij-1—1

L

When filling the matrix, it is important to take into consideration that the first row should
have northwest and north values of 0 and the first column should have northwest and west

values of 0.
An element with a negative score indicates no similarities (from any direction) between the

sequences up to this particular element. Therefore, the score is set to zero to eliminate

influence from previous alignment.

Direction matrix

While filling the similarity matrix, the direction matrix D is also being constructed, with each
element D; ; being assigned one of four values-directions: north, west, northwest and center,

depending on which of the four values of equation (1.3) was chosen as the maximum for §; ;.

NW, if Sij = Si—1,j-1+s(a;bj)
N, if Sij=Si1;—1
W,  ifS,=S,1-1
| C if S;;=0

In case of a draw between the four competing values for §; ;, the priority followed is C, NW,

N, W.

20



Figure 1.1: Several steps of filling the similarity and the direction matrices

Traceback

As the similarity and direction matrices are being filled, we locate the cell with the largest

similarity score. Starting from this cell, we move following the directions indicated by the

21



direction matrix until we reach a cell of value C in the direction matrix or 0 in the similarity

matrix. This backtracing produces the optimal local sequence alignment.

Figure 1.2: The traceback process and the alignment produced.

Reaching a north or west value on the direction matrix while backtracing introduces a gap
into the alignment result, while reaching a northwest value introduces a match or a mismatch.

In case of multiple highest scores, we use the first one we encounter. [4]

The traceback process, which has a linear complexity of 0(m + n), will not be implemented
within the confines of this thesis, as we focus on accelerating the most demanding parts of the
algorithm in terms of execution time and resources. As a result, our code is limited to
producing the position of the maximum value of the similarity matrix as well as the direction

matrix, so that the traceback can take place at a later step.

Our initial implementation of the Smith-Waterman LSAL algorithm is presented below:

22



Algorithm 1: Smith-Waterman LSAL Algorithm

Input: stringl[N], string2[M];
Result: similarity matrix, direction_matrix, max_index
max_value = 0;
for each i,j:
north = northwest = west = 0;
if 1,j in first row then
west = similarity matrix[i, j-1];
else if 1,j in first column then
north = similarity _matrix[i-1, j];
else
north = similarity _matrix[i-1, j];
northwest = similarity_matrix[i-1, j-1];
west = similarity matrix[i, j-1];
end
match = (stringl[j] = string2[i]) ? MATCH : MISMATCH;
north += GAP_PENALTY;
northwest += match
west += GAP_PENALTY;
similarity_matrix[1,j], max_pos = find_max_value(north, northwest, west),
direction_matrix [1,j] = max_pos;

if max_value < similarity_matrix[i,j] then
max_value = similarity matrix[i,];
max_index = (1,);
end
end

Algorithm 2: find max_value function

Input: north, northwest, west
Result: max_value, pos;

if max(north, northwest, west, 0) = north then
max_value = north;
pos = N;

end

if max(north, northwest, west, 0) = northwest then
max_value = northwest;
pos = NW;

end

if max(north, northwest, west, 0) = west then
max_value = west;
pos = W;

end

if max(north, northwest, west, 0) = 0 then
max_value = 0;
pos = C;

end

23



Chapter 2

2.1 Software Implementation

2.1.1 Software Optimization

We begin by executing our initial code on an x86 system with the following resources:
e Intel® Core™ i7-7500U CPU @ 2.70GHz
e Logical CPU Count 4
e Linux Operating System
e 6GBRAM
e L1 Data Cache: 64kB
e LI Instruction Cache: 64kB
e L2 Cache: 512kB
e L3 Cache: 4MB

N M execution time (ms)
32 32768 26,326
32 65536 28,319
32 131072 40,636
64 32768 33,252
64 65536 41,924
64 131072 78,595
128 32768 42,535
128 65536 78,286
128 131072 155,848

Table 2.1: Execution times of the initial code on the x86 system for several pairs of N, M

24



Figure 2.1: Execution times of the initial code on the x86 system for several pairs of N, M (graph)

We want to achieve a faster execution time on the x86 in order to then challenge the
hardware implementation as much as possible. In this attempt, several software optimizations

are applied to the initial code, culminating in the following software implementation:

Algorithm 3: Smith-Waterman LSAL Algorithm - Optimized

Input: string1[N], string2[M];
Result: similarity matrix, direction matrix, max_index
max_value = 0;
for i=1; i<M; i++:
for j=1; j<N; j++:
match = (stringl[j] = string2[i]) ? MATCH : MISMATCH,;
north = similarity_matrix[i-1, j] + GAP_PENALTY;
northwest += similarity _matrix[i-1, j-1];
west = similarity_matrix[i, j-1] + GAP_PENALTY;
similarity _matrix[1,j], max_pos = find_max_value(north, northwest+match, west),
direction_matrix [i,j] = max_pos;

if max_value < similarity_matrix[i,j] then
max_value = similarity matrix[i,];
max_index = (1,);
end
end
end

In this implementation, the values N and M have been augmented by one, so that we have
matrices of size N+1 * M+1, where the first row and column is initialized with zeros. This

eliminates the need for the if-statement in the initial version of the algorithm.
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N M execution time (ms)

32 32768 22,522
32 65536 24,908
32 131072 35,015
64 32768 25,084
64 65536 36,333
64 131072 66,794
128 32768 36,392
128 65536 66,843
128 131072 133,545

Table 2.2: Execution times of the optimized code on the x86 system for several pairs of N, M

Figure 2.2: Comparison between execution times of the initial and the optimized code (graph)

As we can observe in Table 2.2 and Figure 2.2, the final optimized software implementation
succeeds at having a faster execution time, with an average speedup of 1,18 across executions

for different N, M pairs.
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2.1.2 Software Profiling using Roofline Models

Apart from only measuring the execution time for various query and database lengths, it is
useful to also study the roofline model of the LSAL algorithm. The roofline model is a
visualization of performance estimates of an application, used to determine whether the
application is bound by memory bandwidth or computational intensity, as well as show the

maximum performance we can achieve with the current available hardware. [5]

Figure 2.3: A basic roofline model

The roofline plot is derived by the equation:

P < min(Ppeqr, Al - B) (2.1)
Where:
®  Ppeqx represents the maximum performance we can achieve, based on the given

hardware resources, such as number of cores and functional units, etc. Performance is
measured in GINTOPS (Giga Integer Operations per Second).

e The arithmetic intensity (Al) of the application is the following ratio:

# executed operations
Al = P (2.2)

T s bytes transferred between memory & CPU

Al is measured in INTOP/byte.

e [ is the memory bandwidth and depends, as Pp¢qx only on the specific platform onto
the application is being executed.
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The red dot represents the performance an implementation achieves. If the dot falls into the
left, triangle area, the performance is bound by the AI* line, therefore the implementation is
considered to be of low intensity and subsequently, memory bound. Alternatively, if the dot
falls into the right area, the implementation is of high intensity, thus CPU bound, as it is

limited only by the platform resources.

The goal is to push the dot, or the dots, upwards and to the right, toward the horizontal line

P,

veak- AN upwards push translates to better parallelism, while a push to the right translates to

less dependence on memory bandwidth. [6]
The roofline models can be automatically computed using Intel Advisor, a design and
analysis tool by Intel. For several pairs of N and M, we compare the roofline models between

the initial version of the algorithm, which is represented by squares, and the optimized

version, which is represented by dots.

Figure 2.4: Roofline model for N=32, M=32K
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Figure 2.5: Roofline model for N=32, M=64K

Figure 2.6: Roofline model for N=32, M=128K
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Figure 2.7: Roofline model for N=64, M=32K

Figure 2.8: Roofline model for N=64, M=64K
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Figure 2.9: Roofline model for N=64, M=128K

In most of these cases, the performance dot has moved upwards and to the right, closer to the
compute-bound area of the graph and closer to the AI*B line, meaning an increase in

GINTOPS as well.

Furthermore, dots that represent the find max_value function also appear in the roofline
model. The function, which determines which neighboring cell is contributing to each value

of the constructed matrices, appears, as expected, to be mostly compute-bound.
In conclusion, we can argue that we have successfully optimized our LSAL implementation

to a certain extent on a software platform such as the x86, before attempting to reach a better

performance with the FPGA implementation in the next chapter.
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2.2 Execution on Arm

Alongside the programmable logic, the Zedboard provides an Arm Cortex-A9 dual core
processing system with a frequency of 1.0GHz [7] . It is interesting to observe the
performance our code can achieve on this processor as well. However, since the Zedboard is
a low-power embedded platform, it does not provide rich analysis tools. Therefore, we will
settle for a simple measurement of execution time of our code for a number of different pairs

of N and M.

N M execution time (ms)
32 32 62,952

32 64 125,489

32 128 250,638

64 32 126,584

64 64 252,611

64 128 505,353

128 32 252,625

128 64 505,153

128 128 1013,249

Table 2.3: Execution times of the optimized code on the Arm CPU for several pairs of N, M

Figure 2.10: Comparison between execution on the x86 system and the Arm CPU
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Figure 2.11: Ratio of Arm to x86 execution times

It is clear that the Arm processor is not particularly powerful compared to the x86 system.
Specifically, the Arm processor is around 7.5 times slower than the x86 when we run examples of

larger databases and queries, thus larger N*M matrices.
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Chapter 3

3.1 Hardware Optimizations

Moving from a software implementation to a hardware design on the FPGA means we are
expected to apply a different approach in any further development of this application.
FPGAs provide great flexibility, similar to a software platform, due to the fact that their
functionality can be customized by the designer every time a particular task needs to be
implemented, according to the task’s specific needs. This is achieved by having an array of
logic blocks that can be reconfigured as specified by a hardware description language (HDL)
such as Verilog or VHDL.

However, in order to provide a higher level of abstraction to the designer, high-level
synthesis (HLS) tools are commonly used. The programmer writes code in a high-level
language, such as C/C++, which we use in this thesis, while the HLS tool analyzes the code,
and subsequently handles creating the register-transfer level (RTL) design in an HDL, as well

as the synthesis to the gate level. The HLS tool used here is Vitis HLS by Xilinx.
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Figure 3.1: Vitis HLS Screenshot

FPGAs are widely used in applications with large sections of parallel computing and
moreover provide the advantage of using the optimal amount of resources.

The FPGA used in this thesis is part of the Zedboard Zyng-7000 Development Board by
Diligent. It provides 140 units of block RAM, 106400 flip-flops (registers) and 53200 Look
Up Tables. [7]

Figure 3.2: The Zedboard Zynq-7000 Development Board [§]
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The code we developed in software will now be our kernel code, which will be mapped into
hardware and accelerated in the FPGA. In addition to this we develop a testbench file which
handles the initializations. the input/output to and from the kernel, as well as the verification

of a correct hardware result.

It is expected that software and hardware optimizations differ vastly, for a number of reasons.
For instance, the FPGA is not equipped with caches, contrary to a software platform, so it is
not possible to preemptively fetch data we expect to reuse in blocks alongside the data we
request. Fetching data should be done efficiently and in an inexpensive way. Additionally, the
code might need to be re-written to expose patterns of parallelism that can be taken advantage
of in a platform that can support a great degree of computational parallelism, such as the
FPGA. In conclusion, software optimizations are not guaranteed to yield a satisfactory result

when applied on hardware.

3.1.1 Baseline code & First directives

Before we begin applying hardware optimizations, it is important to observe how the initial
software code performs on the FPGA. Initially we choose a query length of N=32 and a
database length of M=65536 to showcase the results of each incrementally applied

optimization.
Modules & Loops Issue Type Slack Latency Latency Iteration Interval Trip
(cycles) Latency Count
compute_matrices - 620167239 6.202 s - 620167240 | -
Outer loop - 620167168 6.202 s - - 65536
Resources BRAM FF LUT
Utilization 30 10795 | 17654
(10%) (10%) (33%)
Timing Estimation  Target Estim. Uncertainty

10.00ns 7.30ns 2.70ns

Table 3.1: Vitis HLS baseline code results for N=32, M=65536
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As expected, the baseline code is not adequately efficient as a hardware accelerator.

HLS UNROLL

By unrolling a loop, multiple of its iterations are able to be executed together. Applying the
directive creates multiple instances of the loop body and its instructions that can then be
scheduled independently, allowing Vitis HLS to aim for more aggressive optimization and

reduce the latency of each loop iteration. [9]

Modules & Loops Issue Slack Latency Latency Iteration Interval Trip
Type (cycles) Latency Count

compute_matrices -1.10 598016142 5.980s - 598016143 @ -
Outer - 598016000 @ 5.980s 9125 - 65536

Resources BRAM FF LUT

Utilization 30 104132 325638

(10%) (97%) (612%)

Timing Estimation  Target Estim. Uncertainty

10.00ns 8.396ns | 2.70ns
Table 3.2: Vitis HLS inner loop unroll results for N=32, M=65536

This solution is discarded due to excessively high utilization of lookup tables that is beyond

the Zedboard resources.

HLS PIPELINE

Loop pipeline allows iterations of a loop to happen concurrently instead of strictly
sequentially. Each iteration can begin before the previous one has completed all operations.
By specifying the initiation interval II, we set the target number of cycles after which the
hardware will attempt to begin the next execution of a loop iteration. In Vitis HLS, the 11
defaults to 1. Additionally, all nested loops inside a loop or function in which pipelining is

applied will be automatically unrolled. [10]
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Figure 3.3: Pipelining of a simple 3-instruction loop. Pipelining directly results in overlapped

execution of iterations, which reduces the overall execution time. [10]

First, we attempt to pipeline the inner loop.

Modules & Loops

compute_matrices
Outer

Inner

Resources

Utilization

Timing Estimation

Issue Type

Il Violation

Il Violation

BRAM
30
(10%)

Target
10.00ns

Slack

FF
10770
(10%)

Estim.
7.3ns

Latency

(cycles)
320471111
320471040

4674

LUT
17327
(32%)

Uncertainty
2.70ns

Latency

3.205s
3.205s

4674 ns

Iteration
Latency

4890

149

Interval

320471112

146

Table 3.3: Vitis HLS inner loop pipeline results for N=32, M=65536

Trip
Count

65536

32

As stated earlier, unrolling the inner loop results in a solution that cannot be implemented due

to lack of resources. Therefore, it is unnecessary to test a solution pipelining the outer loop,

which would unroll the inner loop automatically.
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3.1.2 Rewriting the code to expose parallelism

The software implementation constructs the N*M similarity and direction matrices by
scanning all cells sequentially. To calculate a cell [i,j] we need to access its north and
northwest neighboring cells, which lie on the previous row i-1, and the west neighboring cell,
belonging in the same row as cell [1,j]. Each time the west cell needs to be updated before its

next one, which causes data dependency.

Figure 3.4: Data dependencies in a similarity matrix of N=4 and M=6, inside each cell its index is
depicted. Arrows show the cells needed to calculate the cell of the same color.
All cells in a row cannot be updated at the same time since each cell requires the previous one to have
already been updated.

To solve this problem, we will scan the similarity matrix (anti-)diagonally, calculating one

antidiagonal before moving onto the next.

39



Figure 3.5: Left: scanning the similarity matrix in antidiagonals. Right: data dependencies in the
produced similarity matrix where each row corresponds to an antidiagonal of the initial matrix.
After restructuring the code, all elements in a row can be calculated concurrently, since all required
cells belong in previous rows and have already been updated in previous iterations.

This rewriting of the code introduces a new problem that needs to be addressed: The first N-1
and last N-1 iterations of the outer loop are of varying length. This will not be optimal for a
hardware implementation, due to the fact that variable bounds loops cannot be unrolled,

therefore preventing successful pipelining of the loop.

We can solve that by padding the upper left and lower right triangles of the new matrix to
ensure that each anti-diagonal has the same length of N. To achieve this, padding is applied
accordingly to the database string2 array, by adding N-1 “invalid” cells in its beginning and

end. We choose values that will produce a mismatch with the query.
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Figure 3.6: Left: the padded database has a size of MM = M+2*(N-1). The algorithm begins at anti-
diagonal N-1 and ends at anti-diagonal MM. Right: The M+N-1 antidiagonals as calculated and stored
in memory by each iteration of the outer loop. Thanks to the padded areas, all antidiagonals have the

Modules & Loops  Issue Type

compute_matrices |l Violation

Outer_Inner Il Violation
Resources BRAM
Utilization 16

(5%)

Timing Estimation Target
10.00ns

Slack

FF
5673
(5%)

Estim.
7.3ns

same length N.

Latency Latency Iteration
(cycles) Latency
306329244  3.063s -

306329100 @ 3.063s 150

LUT
12425
(23%)

Uncertainty
2.70ns

Interval Trip
Count
306329245 | -
146 2098144

Table 3.4: Vitis HLS restructured code results for N=32, M=65536
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3.1.3 Burst accesses to memory

Right now, all the required data resides in the main memory of the Zedboard. Every access of
an array element in the code corresponds to fetching one element at the time from the main

memory to an internal block ram. Each one of these transactions requires tens of cycles.

Figure 3.7: The FPGA provides a series of internal block RAMs, which allow data transferring in
bursts, thus obscuring the memory access latency and improving bandwidth usage.

We can create local copies in the BRAMs and access them avoiding this large latency. In
C/C++ code, this can be achieved by using the memcpy function, which is equivalent to

pipelined accesses in a for-loop, in order to copy the kernel parameters into local arrays.
Now memory access will be done in bursts, which means it is possible to transfer multiple

data in a single transaction, with only the first transfer being costly and all subsequent ones

requiring one cycle each. [11]
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Figure 3.8: How the AXI protocol works. [11]

Regarding the output matrices, the naive approach would be to keep whole copies of them in
Block RAMs and copy them all at once back to the main memory when all computations are

finished. This will not fit into the available BRAMs for larger values of N,M.

Instead, since to compute one row of the similarity matrix only the two previous ones are
needed, a BRAM array of 3*N will suffice. Similarly, the direction matrix can be replaced by

a smaller array of size N.

int small sim[N*3];
short small dir[N];

//i: row index in sim_matrix

//di: row index in dir_matrix

//bram_index: row index in small_sim

Outer loop{
Inner loop{ .. }
memcpy (similarity_matrix+(i*N), small_sim+(bram_index*N), N*sizeof(int));
memcpy (direction_matrix+(di*N), small_dir, N*sizeof(short));

Figure 3.9: Using the memcpy function.
When an anti-diagonal has been completed, the resulting row of size N is copied back to the main
memory array.
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We can also retry applying the pipeline directive to the outer loop.

Modules & Loops Issue Type Slack Latency Latency Iteration Interval Trip
(cycles) Latency Count
compute_matrices | Il & Timing @ -0.38 26915583 0.269s - 26915584 | -
Violation
Outer - 26882470 0.269s 410 - 65567
Inner Il & Timing - 202 2020 ns 79 4 32
Violation
Resources BRAM FF LUT
Utilization 96 5356 9637
(34%) (5%) (18%)
Timing Estimation  Target Estim. Uncertainty
10.00ns 7.683ns | 2.70ns

Table 3.5: Vitis HLS BRAMS & inner pipeline results for N=32, M=65536

Modules & Loops Issue Type Slack Latency Latency Iteration Interval Trip
(cycles) Latency Count
compute_matrices Il & Timing  -0.38 6327647 63.276 ms | - 6327648 -
Violation
Outer Il & Timing - 6294533 62.945ms 172 96 65567
Violation
Resources BRAM FF LUT
Utilization 96 11556 27120
(34%) (10%) (50%)
Timing Estimation  Target Estim. Uncertainty
10.00ns 7.683ns | 2.70ns

Table 3.6: Vitis HLS BRAMS & outer pipeline results for N=32, M=65536

The resulting speed up is satisfactory, but now a timing violation is introduced to the design.
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3.1.4 Inlining the find_max_value function by hand

In an attempt to reach a solution without a timing violation, we will try to replace the

find max_value function with code inside the kernel body.

This is called inlining and it allows the components within the function to be
better shared or optimized more effectively along with the logic in the main kernel function.
Function inlining is also performed automatically by Vitis HLS but we can test whether it is

possible to achieve a better result by replacing the function with code inside the kernel.

small sim[bram_index*N + ii] = west;
small dir[ii] = WEST;

if (north >= © && north >= test val && north >= west){
small_sim[bram_index*N + ii] = north;
small dir[ii] = NORTH;

}

if (test_val >= 0 && test_val >= north && test_val >= west){
small sim[bram_index*N + ii] = test_val;
small dir[ii] = NORTH_WEST;

}

if (0 >= test_val & & © >= north && 0 >= west){
small _sim[bram_index*N + ii] = ©;
small dir[ii] = CENTER;

Figure 3.10: the function code inside the main body of the kernel. We aim for the least amount of
conditional statements as to obtain the most straightforward hardware implementation.

Modules & Loops Issue Type  Slack Latency Latency Iteration Interval Trip
(cycles) Latency Count
compute_matrices Il Violation @ - 8425821 84.258 ms | - 8425822 -
Outer Il Violation = - 8392707 83.927 ms | 202 128 65567
Resources BRAM FF LUT
Utilization 96 7428 25096
(34%) (6%) (47%)
Timing Estimation  Target Estim.  Uncertainty

10.00ns 7.3ns 2.70ns

Table 3.7: Vitis HLS inlined function results for N=32, M=65536
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A little speedup is lost but the timing violation is successfully avoided.

3.1.5 Replacing 1 BRAM matrix with 3 separate ones

Using one 3*N BRAM array as a substitute to the entire similarity matrix adds a fair amount
of algorithmic complexity to our code, since calculations are now introduced to define

which rows should each outer loop iteration write to and read from.

Outer loop{
if (bram_index == 0){
prev = 2;
prev_prev = 1;

}

else if (bram_index == 1){
prev = 0;
prev_prev = 2;

}

else if (bram_index == 2){
prev = 1;
prev_prev = 0;

}

if (bram_index == @ || bram_index == 1){
bram_index++;

}

else if (bram_index == 2){
bram_index = 0;

}

Figure 3.11: Segment from the previous version of our code.
We define the index names: bram_index: the row we calculate in an outer loop iteration; prev: the
previous row containing the north and west values; prev_prev: the row containing the northwest
value. These values change in a cyclic way from 0 to 2.

This can be easily avoided by using instead 3 separate block RAMs defined as to correspond

to the rows of the small sim array.
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memcpy (prev_prev_sim,

memcpy (prev_sim,

prev_sim, N*sizeof(int));
bram_sim, N*sizeof(int));

memcpy(similarity matrix+(i*N), bram_sim, N*sizeof(int));

Figure 3.12: At the end of each outer loop iteration, we copy the elements from one array to the other
in order to free the writing array bram_sim.

Modules & Loops

compute_matrices
Outer

Resources

Utilization

Timing Estimation

Issue Type

Il Violation

Il Violation

BRAM
94
(33%)

Target
10.00ns

Slack

FF
9963
(9%)

Estim.
7.3ns

Iteration
Latency

Latency Latency
(cycles)
1082158

1049143

10.822 ms | -
10.491 ms 88

LUT
22385
(42%)

Uncertainty
2.70ns

Interval Trip
Count
1082159 -
16 65567

Table 3.8: Vitis HLS three BRAM arrays results for N=32, M=65536

The initiation interval has dropped to 16. The solution is run for additional pairs of N, M

lengths.

Modules & Loops

compute_matrices
Outer

Resources

Utilization

Timing Estimation

Issue Type

Il Violation

Il Violation

BRAM
94
(33%)

Target
10.00ns

Slack

FF
15466
(14%)

Estim.
7.3ns

Latency Latency
(cycles)
2132287

2099240

Latency
21.323 ms | -
20.992 ms | 105

LUT
38836
(73%)

Uncertainty
2.70ns

Iteration

Interval Trip
Count
2132288 -
32 65599

Table 3.9: Vitis HLS three BRAM arrays results for N=64, M=65536
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Modules & Loops

compute_matrices
Outer

Resources

Utilization

Timing Estimation

Issue Type

Il Violation

Il Violation

BRAM
62
(22%)

Target
10.00ns

Slack

FF
15452
(14%)

Estim.
7.3ns

Latency Latency Iteration Interval Trip
(cycles) Latency Count
1067327 10.673 ms | - 1067328 -

1050664 10.507 ms | 105 32 32831

LUT
38690
(72%)

Uncertainty
2.70ns

Table 3.10: Vitis HLS three BRAM arrays results for N=64, M=32768

It becomes clear now that the iteration interval II drops to a value of N/2. We will study the

analysis view tab of the Vitis HLS shortly, in order to better understand how to further

decrease the I1.

3.1.6 Using N elements from the database string in each iteration

The length MM = M+2*N-2 of the padded database string might not fit in our FPGA for

large values of M.

Modules & Loops

compute_matrices
Outer

Resources

Utilization

Timing Estimation

Issue Type

Il Violation

Il Violation

BRAM
286
(102%)

Target
10.00ns

Slack

FF
9989
(9%)

Estim.
7.3ns

Latency Latency Iteration Interval Trip
(cycles) Latency Count
4326190 43.262 ms - 4326191 -

4194871 41949 ms 88 16 262175

LUT
22539
(42%)

Uncertainty
2.70ns

Table 3.11: Vitis HLS three BRAM arrays results for N=32, M=256K

Indeed, we get a 102% usage of BRAM for N=32, M=256K.
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Fortunately, to calculate one row (or anti-diagonal) of N elements we do not need immediate

access to the entire (padded) database of MM; only N elements are required each time.

Figure 3.13: Substituting the database array string2[MM] with the array small db[N]. After
calculating one row in the outer loop, the database window small db shifts one value downwards in
the database.

Outer loop{
Inner loop{

}
memcpy(small db, small db+1l, (N-1)*sizeof(char));

small db[N-1] = string2_main[i+l];

Figure 3.14: Fetching the next database value from the global memory to the block RAM.
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Modules & Loops Issue Type  Slack Latency Latency Iteration Interval Trip

(cycles) Latency Count
compute_matrices |l Violation | - 12322493 0.123s - 12322494 -
Outer Il Violation | - 12322318 0.123s 141 47 262175
Resources BRAM FF LUT
Utilization 31 10546 @ 23854
(11%) (9%) (44%)
Timing Estimation  Target Estim.  Uncertainty

10.00ns 7.3ns 2.70ns

Table 3.12: Vitis HLS database window results for N=32, M=256K

The design with N=32, M=256K now fits on the Zedboard with an estimated BRAM
utilization of 11%, since it only depends on the query length N.

Modules & Loops Issue Type  Slack Latency Latency Iteration Interval Trip
(cycles) Latency Count
compute_matrices Il Violation | - 3081917 30.819ms | - 3081918 -
Outer Il Violation = - 3081742 30.817ms | 141 47 65567
Resources BRAM FF LUT
Utilization 31 10524 23722
(11%) (9%) (44%)
Timing Estimation  Target Estim.  Uncertainty

10.00ns 7.3ns 2.70ns
Table 3.13: Vitis HLS database window results for N=32, M=65536

Checking back on the results for N=32, we can see that the addition of the small database
sliding window slows down our code by a factor of almost 3. To amend this, we can attempt

partitioning the new array.

HLS ARRAY PARTITION

The Zedboard block RAMs provide 2 access ports for writing and reading. This is restrictive

since all the elements of an array cannot be accessed simultaneously, decreasing the
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achievable level of parallelism and limiting the accelerator’s performance. Using the
ARRAY PARTITIONING directive we can split a block RAM array into multiple smaller
ones, or even into multiple registers, allowing scheduling that utilizes more or all array
elements in one cycle. Here we apply complete array partitioning, meaning that we split the
small db array into registers. Larger register and LUT utilization is traded off for improved

bandwidth and faster execution. [12]

Modules & Loops Issue Type  Slack Latency Latency Iteration Interval Trip
(cycles) Latency Count
compute_matrices Il Violation | - 1049340 10.493 ms - 1049341 -
Outer Il Violation = - 1049196 10.492 ms 141 16 65567
Resources BRAM FF LUT
Utilization 30 10018 23324
(10%) (9%) (43%)
Timing Estimation  Target Estim.  Uncertainty

10.00ns 7.3ns 2.70ns

Table 3.14: Vitis HLS partitioning small_db results for N=32, M=65536

3.1.7 Unroll max index calculation

Looking at the analysis view tab it is possible to detect the II violation is caused by the if-
statements that compute the max index. Remember from chapter 2, max index is the index of
the maximum value in the similarity matrix. An inner loop iteration, while completing a row
of both matrices, detects the max value of said row. The outer loop iteration will compare the

max values of each row to detect the max value of the entire similarity matrix.
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Figures 3.15, 3:16: Above: II Violation on the Vitis HLS Analysis view tab;
Below: Where in the code Vitis HLS detects the II Violation occurs

Similarly to the manual inlining of the function we applied earlier, it might be a good idea to

help the HLS with some manual unrolling of the code we have found to be problematic.
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Figure 3.17: Separating the max index calculation into four parts.

We split each row into four parts and detect the max value of each part, each value stored in a
different variable. Now the outer loop executes four sets of comparisons between these
variables in-between iterations. A final comparison between the four winners is done at the

end of the kernel function to obtain the maximum similarity value.

Modules & Loops Issue Type  Slack Latency Latency Iteration Interval Trip
(cycles) Latency Count
compute_matrices Il Violation | - 262550 2.626 ms - 262551 -
Outer Il Violation | - 262405 2.624 ms 141 4 65567
Resources BRAM FF LUT
Utilization 30 9541 24010
(10%) (8%) (45%)
Timing Estimation  Target Estim.  Uncertainty

10.00ns 7.3ns 2.70ns
Table 3.15: Vitis HLS unrolled max_index results for N=32, M=65536

We have achieved an II of just 4 cycles now, or N/8 for N=32, four times less than before,

just as we expected. We can also observe this on the Analysis tab.
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Figure 3.18: Vitis HLS Analysis Tab for unrolled max_index for N=32, M=65536

At this point, it is important to note that throughout the optimization experiments, we could
not achieve an implementable solution for N=128, as this query length consistenly required a

greater number of look up tables than the Zedboard can provide.

3.1.8 Experimenting with different array types

The software code uses an int array for the similarity matrix and a short array for the
direction matrix. Unfortunately, the FPGA resources are limited, so it is wise to aim for an

implementation that reduces the area of the design.
The values of the similarity matrix are directly related to the value of N. The maximum

similarity value occurs in the case of every base of the query string]l matching with every

base of the database string2.
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Figure 3.19: Software simulation of a total match between query and database, of lengths N=4, M=§
(left) and N=8, M=16 (right).

We observe that the largest similarity value is 2*N and appears in the last cell of each row,
since in every row we begin with a score of zero to which we keep adding the match score,
equal to 2.

For N=32, max similarity value <= 64.

For N=64, max similarity value <= 128.

For N=128, max similarity value <= 256.

With an unsigned char type, it is possible to store numbers up to 255, so given that the
maximum value 256 is practically impossible, for a design with a query length N<=128, a

similarity array of type unsigned char will suffice.
Meanwhile, direction matrix cells can only have one of four possible values (0,1,2,3 for C, N,

NW, W accordingly), so we can change the type from short in the software implementation to

char as well.
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Modules & Loops Issue Type  Slack Latency Latency Iteration Interval Trip

(cycles) Latency Count
compute_matrices Il Violation | - 262549 2.626 ms - 262550 -
Outer Il Violation = - 262404 2.624 ms 141 4 65567

Resources BRAM FF LUT
Utilization 17 6185 17794
(5%) (5%) (33%)
Timing Estimation  Target Estim.  Uncertainty

10.00ns 7.3ns 2.70ns
Table 3.16: Vitis HLS unsigned char results for N=32, M=65536

Although additional speedup is not gained, a decrease in resources utilization is achieved for

all resource types.

3.1.9 Arbitrary precision types

Generally, the C/C++ data types might have a larger bitwidth than what will be needed for
several variables in the HLS code, leading to synthesis of an RTL design that wastes FPGA
resources. To combat this, Vitis HLS provides arbitrary precision types of a bit length that
can be specified by the developer according to the design’s needs. [13]

In the Smith-Waterman algorithm, the query and database strings are sequences of the four
DNA bases: A, C, G, T. Therefore, they can be represented by just two bits instead of the 8

bits provided by the char type.

We can substitute the strings with arrays of arbitrary type ap_int<2>.

const ap_uint<2> CENTER = ap_uint<2>("ebee", 2);
const ap_uint<2> NORTH = ap_uint<2>("ebe1l", 2);
const ap_uint<2> NORTH_WEST = ap_uint<2>("eble", 2);
const ap_uint<2> WEST = ap_uint<2>("eb1l1", 2);

Figure 3.20: substituting the 0,1,2,3 values with the unsigned 2-bit values 00,01,10,11
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Modules & Loops Issue Type  Slack Latency Latency Iteration Interval Trip

(cycles) Latency Count
compute_matrices Il Violation = - 262704 2.627 ms - 262705 -
Outer Il Violation = - 262404 2.624 ms 141 4 65567
Resources BRAM FF LUT
Utilization 17 6611 19901
(6%) (6%) (37%)
Timing Estimation  Target Estim.  Uncertainty

10.00ns 7.3ns 2.70ns

Table 3.17: Vitis HLS arbitrary types results for N=32, M=65536

3.1.10 Conclusion

As demonstrated, the optimal solution is the one achieved in section 3.1.8, where the integer
and short type matrices are substituted by the more area-efficient char type ones. This is the

version that will be compiled for and run on the Zedboard.

The following graphs constitute an overall comparison between all execution times and usage

of FPGA resources across all solutions.

Figure 3.21: Execution time comparison of all solutions
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Execution time comparison for N=32, M=64K
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Figure 3.22: A better look at execution time of solutions from section 3.1.3 onwards

In Figure 3.22 we see a complete overview of the execution times since we brought the data
into the block RAMs, where we achieve the first significant speedup. Above the execution
time label, in each optimization we applied we see the speedups S1/S2, with S1 being the
speedup with regard to the x86 time and S2 the speedup with regard to the previous

optimization.

Figure 3.23: Block RAM, Flip-Flop and Look-Up Table percentage utilization across solutions.
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3.2 Execution on the FPGA

The LSAL application we have developed is comprised of two files: the kernel code and the
host application. The host program runs on the Arm CPU of the Zedboard and is similar to
the testbench used during the hardware optimization process. Additionally, it incorporates
API abstractions like OpenCL, which is a framework that manages interactions between the

software host (Arm) and the hardware accelerator.

The kernel file we developed in section 3.1 is compiled with the Vitis compiler v++ into an
RTL design. The output is a binary file which runs on the programmable logic region of the
board.

Figure 3.24: Build process for the Host and Kernel executable files

We test the performance of our application for the query and database lengths used
throughout this chapter. For N=32, M=65536 the execution time is 6,322 ms, almost 3x
slower than the 2,626 ms time predicted by Vitis HLS. This is considered an expected and
normal divergence between the hardware simulation Vitis HLS performs and the execution

on the actual hardware platform.
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Figure 3.25: Comparison between LSAL execution times across all platforms, for N=32, M=65536

Figure 3.26: Comparison between LSAL execution times across all platforms, for N=64, M=65536

We have successfully managed to achieve a hardware implementation that is indeed faster
than the optimized code which runs on the x86 processor. The overall speedup is x3,94 for
N=32, M=65536 and x 2,87 for N=64, M=65536: the two pairs of sequence lengths we

studied more specifically in this chapter.
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Chapter 4

4.1 Conclusion

In conclusion, we were successful in developing a hardware implementation of the Smith-
Waterman local sequence alignment algorithm for the Zedboard Zynq-7000 development kit,
which achieved a faster execution time than the software implementation we developed,
optimized and run on a x86 system. Rewriting the LSAL code to expose parallelism patterns,
the use of the internal block RAM which significantly increase the memory bandwidth, as
well as thoroughly understanding and making good use of the HLS directives that ensure a
higher degree of parallel execution, were crucial to the success of this project. The final
overall speedup, despite not achieving a change in order of magnitude, can nonetheless be a

good starting point for further development and optimizing on the FPGA.

4.2 Future Work

In the world of optimizing hardware there is always room for further development and
improvement of the already achieved performance. These are a few ways this thesis could

potentially be further expanded:

First and foremost, using a larger FPGA which will provide more hardware resources would
be a good place to start. Having more look-up tables available can allow for more flexibility
with our code rewrites, and thus more room for experimenting with more optimizing

techniques, since with more LUTs we can increase the computational complexity of the
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application. This, along with a larger number of registers, means that we can also experiment

more with partitioning the arrays we use in our code.

Additionally, we could look further into taking advantage of the full 512-bit length of the
AXI bus between the global memory of the board and the internal block RAM of the FPGA.
By using standard C/C++ data types for the kernel inputs and outputs, the bus is being
underutilized since the native types are quite smaller than 512 bits long. To maximize the
memory throughput by using the full width of the AXI bus, 512-bit array elements should be
used for the kernel parameters. This is possible due to the arbitrary precision types the Vitis

HLS provides, with which we became familiar in chapter 3.

Specifically, arrays of arbitrary type ap_uint<512> would be used for the similarity and the
direction matrix. To avoid more memory transactions, we could also choose to completely
discard the similarity matrix and not pass it back to the host, since the direction matrix and

the max_index are a sufficient output in order to begin the back-tracing process.

Moreover, going back to eq. 1.1, we could expand the usage of the algorithm by developing
solutions for larger gap lengths k, 1, attempt to work around the data dependencies that will

appear and study how to expose potential patterns of parallelism.
Finally, this thesis could be additionally expanded by constructing roofline models for the

hardware implementations running on the FPGA, for a better insight into the bottlenecks of

the application and how to handle them.
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