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ABSTRACT 
 

 

Field-programmable gate arrays (FPGAs) are integrated circuits with the ability to be 

configured by a designer according to the needs of a specific task. As a result, FPGAs 

combine the computational flexibility of a software platform with the advantages that parallel 

execution on a hardware platform offers. This combination renders them a valuable tool in 

tackling large-scale problems with vast demands in fast execution and limited resources, 

leading to their consistent use in various domains, including Bioinformatics, where methods 

are characterized by analyses of large and complex datasets of genetic information.  

One of these methods, Local Sequence Alignment (LSAL), discovers areas of similarity 

between a query and a DNA database. This thesis aims to implement the LSAL algorithm on 

an FPGA, with the use of a high-level synthesis (HLS) tool, which offers the ability to 

reconfigure the hardware by manipulating a C++ code, and eventually try to achieve a 

performance that is comparable with an optimized software implementation. 
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ΠΕΡΙΛΗΨΗ 
 

 

Οι πλακέτες FPGAs (field-programmable gate arrays) είναι κυκλώματα τα οποία παρέχουν 

στον προγραμματιστή την δυνατότητα να διαμορφώσει την λειτουργία τους σύμφωνα με τις 

ανάγκες ενός συγκεκριμένου προβλήματος προς επίλυση. Ως αποτέλεσμα, οι FPGAs 

συνδυάζουν την ευελιξία ενός συστήματος software με τα πλεονεκτήματα που προσφέρει η 

παράλληλη εκτέλεση πάνω σε hardware. Χάρη σε αυτόν τον συνδυασμό, οι πλακέτες FPGA 

αποτελούν ένα πολύτιμο εργαλείο στην προσπάθεια επίλυσης προβλημάτων μεγάλης 

κλίμακας, όπου προέχει η γρήγορη εκτέλεση και η οικονομία σε υλικό, το οποίο οδηγεί στην 

συνεχή χρήση τους σε διάφορους τομείς, όπως η Βιοπληροφορική. Οι μέθοδοι της 

βιοπληροφορικής συχνά χαρακτηρίζονται από αναλύσεις μεγάλων και περίπλοκων σετ 

δεδομένων. 

Μια από αυτές τις μεθόδους, ονομαζόμενη Local Sequence Alignment (Τοπική 

Ευθυγράμμιση Αλληλουχιών), εντοπίζει περιοχές μεταξύ 2 αλληλουχιών DNA όπου 

εμφανίζονται ομοιότητες. Αυτή η διπλωματική στοχεύει στην υλοποίηση του αλγορίθμου 

LSAL σε μια πλακέτα FPGA, με την χρήση ενός εργαλείου high-level synthesis (HLS), το 

οποίο δίνει στον προγραμματιστή τη δυνατότητα να διαμορφώσει την λειτουργία της 

πλακέτας γράφοντας κώδικα σε γλώσσα προγραμματισμού υψηλού επιπέδου, και εν τέλει 

στην επίτευξη μιας υλοποίησης που μπορεί να συναγωνιστεί έναν βελτιστοποιημένο κώδικα 

software.  
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Chapter 1  

  

  

  

1.1 General Overview 
 

 

1.1.1 FPGAs 

 

A field-programmable gate array (FPGA) is an integrated circuit with the ability to be 

configured by a designer according to the needs of a specific task. In contrast with 

application-specific integrated circuits (ASIC), FPGAs can be reprogrammed after 

manufacturing, thanks to the array of programmable blocks they contain, alongside the 

interconnects that wire them together. The designer can guide the reconfiguration of an 

FPGA with the use of a hardware description language (HDL). Besides the programmable 

logic blocks, FPGAs also contain memory elements, such as flip-flops and complete 

memory structures. [1] 

 

As hardware platforms, FPGAs provide great levels of parallel computing. Their parallel 

nature can therefore be taken advantage of in using FPGAs as hardware accelerators to 

perform specific tasks in more efficient ways in terms of time and resources when compared 

to a software platform. As a result, FPGAs are widely used in a number of large-scale 

applications in various domains, Bioinformatics being one of them. 
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1.1.2 Sequence Alignment in Bioinformatics 

 

The field of Bioinformatics is responsible of developing methods and software tools for 

studying and analyzing biological data to better understand evolutionary aspects of molecular 

biology [2]. The rapid expansion of genetic data calls for approaches that rely on parallel 

computing, in order to create tools that are able to handle large and complex biological 

datasets of genetic information as efficiently and fast as possible. The bioinformatics method 

we study in this thesis is sequence alignment, a method of arranging sequences of DNA, 

RNA, or proteins to identify regions of similarity between two sequences, usually using 

databases of large sizes. 

 

Specifically, the algorithm we study is the Smith-Waterman algorithm for Local Sequence 

Alignment, proposed by Temple F. Smith and Michael S. Waterman in 1981 [3]. As a 

dynamic programming algorithm, it is guaranteed to find the optimal alignment with respect 

to the scoring system we empirically choose. The goal of the algorithm is to match two DNA 

(in our case) sequence, a query of size N and a database of size M, with M usually being 

vastly greater than N. Being a local sequence alignment method, matching means the 

algorithm locates segments where the two sequences share similarities. The output produced 

will be a similarity matrix S, a direction matrix D, as well as the index of the largest value in 

the similarity matrix, which are afterwards used in obtaining the optimal alignment. 

 

The goal of this thesis is to: 

 Study the Smith-Waterman Algorithm for Local Sequence Alignment, 

 develop and optimize a software implementation running on an x86 platform, and 

 optimize a hardware implementation running on a FPGA, attempting to reach an 

execution faster than the software one. 
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1.2 The Smith-Waterman Algorithm  
  
  
  
Similarity Matrix 
 
Given a query sequence 𝐴 of length 𝑁 to be aligned with a database sequence 𝐵 of length 𝑀, 

we construct two matrices of size 𝑁 ∙ 𝑀, the similarity and the direction matrix. The 

similarity matrix 𝑆 is filled by scoring each element from left to right, top to bottom, while 

making one-to-one comparisons between all components in the two sequences according to 

the equation: 

 

𝑆 , = max

⎩
⎪
⎨

⎪
⎧

𝑆 , + 𝑠(𝑎 , 𝑏 )

max 𝑆 , + 𝑊

max 𝑆 , + 𝑊

0

   (0 ≤ 𝑖 ≤ 𝑚 − 1, 0 ≤ 𝑗 ≤ 𝑛 − 1)                 (1.1) 

 

Where: 

𝑆 , + 𝑠(𝑎 , 𝑏 ) is the aligning score of the base pair 𝑎 , 𝑏 , called the northwest value, 

𝑆 , + 𝑊  is the score when 𝑎  is at the end of a gap of length 𝑘, called the north value, 

𝑆 , + 𝑊  is the score when 𝑏  is at the end of a gap of length 𝑙, called the west value. 

 

The value 𝑠 𝑎 , 𝑏  is the similarity score, chosen to be positive in case of a match between 𝑎  

and 𝑏 , and relatively lower in case of a mismatch. In this version of the algorithm, we choose 

the following similarity function:  

 

                                𝑠 𝑎 , 𝑏 =
+2   𝑖𝑓 𝑎 = 𝑏

−1   𝑖𝑓 𝑎 ≠ 𝑏
                                                         (1.2) 

 

 

The parameter 𝑊 is the gap penalty and 𝑘, 𝑙 are the gap lengths. Our version of the algorithm 

uses 𝑊 = −1, and 𝑘 = 𝑙 = 1, so Equation (1.1) can be written as: 
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𝑆 , = max

⎩
⎨

⎧
𝑆 , + 𝑠(𝑎 , 𝑏 )

𝑆 , − 1

𝑆 , − 1

0

   (0 ≤ 𝑖 ≤ 𝑚 − 1, 0 ≤ 𝑗 ≤ 𝑛 − 1)                 (1.3) 

 

When filling the matrix, it is important to take into consideration that the first row should 

have northwest and north values of 0 and the first column should have northwest and west 

values of 0. 

 

An element with a negative score indicates no similarities (from any direction) between the 

sequences up to this particular element. Therefore, the score is set to zero to eliminate 

influence from previous alignment. 

 

 

Direction matrix 

 

While filling the similarity matrix, the direction matrix 𝐷 is also being constructed, with each 

element 𝐷 ,  being assigned one of four values-directions: north, west, northwest and center, 

depending on which of the four values of equation (1.3) was chosen as the maximum for 𝑆 , . 

 

𝐷 , =

⎩
⎪
⎨

⎪
⎧

  𝑁𝑊, 𝑖𝑓 𝑆 , = 𝑆 , + 𝑠(𝑎 , 𝑏 )

    𝑁,           𝑖𝑓 𝑆 , = 𝑆 , − 1

   𝑊,          𝑖𝑓 𝑆 , = 𝑆 , − 1

   𝐶,            𝑖𝑓 𝑆 , = 0                

                  (1.4) 

 

In case of a draw between the four competing values for 𝑆 , , the priority followed is C, NW, 

N, W. 
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Figure 1.1: Several steps of filling the similarity and the direction matrices 

 
 

Traceback 

 

As the similarity and direction matrices are being filled, we locate the cell with the largest 

similarity score. Starting from this cell, we move following the directions indicated by the 
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direction matrix until we reach a cell of value C in the direction matrix or 0 in the similarity 

matrix. This backtracing produces the optimal local sequence alignment. 

 
 

Figure 1.2: The traceback process and the alignment produced.  
 

Reaching a north or west value on the direction matrix while backtracing introduces a gap 

into the alignment result, while reaching a northwest value introduces a match or a mismatch. 

In case of multiple highest scores, we use the first one we encounter. [4] 

 

The traceback process, which has a linear complexity of 𝑂(𝑚 + 𝑛), will not be implemented 

within the confines of this thesis, as we focus on accelerating the most demanding parts of the 

algorithm in terms of execution time and resources. As a result, our code is limited to 

producing the position of the maximum value of the similarity matrix as well as the direction 

matrix, so that the traceback can take place at a later step. 

 

Our initial implementation of the Smith-Waterman LSAL algorithm is presented below: 
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Algorithm 1: Smith-Waterman LSAL Algorithm 
Input: string1[N], string2[M];    
Result: similarity_matrix, direction_matrix, max_index 
   max_value = 0; 
   for each i,j: 
      north = northwest = west = 0; 
      if i,j in first row then 
          west = similarity_matrix[i, j-1]; 
      else if i,j in first column then 
          north = similarity_matrix[i-1, j]; 
      else 
          north = similarity_matrix[i-1, j]; 
          northwest = similarity_matrix[i-1, j-1]; 
          west = similarity_matrix[i, j-1]; 
      end 
      match = (string1[j] = string2[i]) ? MATCH : MISMATCH; 
      north += GAP_PENALTY; 
      northwest += match; 
      west += GAP_PENALTY; 
      similarity_matrix[i,j], max_pos = find_max_value(north, northwest, west); 
      direction_matrix [i,j] = max_pos; 
 
      if max_value < similarity_matrix[i,j] then 
          max_value = similarity_matrix[i,j]; 
          max_index = (i,j); 
      end 
   end 

 

Algorithm 2: find_max_value function 
Input: north, northwest, west 
Result: max_value, pos; 
    
   if max(north, northwest, west, 0) = north then 
      max_value = north; 
      pos = N; 
   end 
   if max(north, northwest, west, 0) = northwest then 
      max_value = northwest; 
      pos = NW; 
   end 
   if max(north, northwest, west, 0) = west then 
      max_value = west; 
      pos = W; 
   end 
   if max(north, northwest, west, 0) = 0 then 
      max_value = 0; 
      pos = C; 
   end 
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Chapter 2 
 
 
 

2.1 Software Implementation 
  
 
 

2.1.1 Software Optimization 
 
 

We begin by executing our initial code on an x86 system with the following resources: 

 Intel® Core™ i7-7500U CPU @ 2.70GHz 

 Logical CPU Count 4 

 Linux Operating System 

 6GB RAM 

 L1 Data Cache: 64kB 

 L1 Instruction Cache: 64kB 

 L2 Cache: 512kB 

 L3 Cache: 4MB 
 
 

N M execution time (ms) 
32 32768 26,326 
32 65536 28,319 
32 131072 40,636 
64 32768 33,252 
64 65536 41,924 
64 131072 78,595 

128 32768 42,535 
128 65536 78,286 
128 131072 155,848 

 
Table 2.1: Execution times of the initial code on the x86 system for several pairs of N, M 
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Figure 2.1: Execution times of the initial code on the x86 system for several pairs of N, M (graph) 

 
 

We want to achieve a faster execution time on the x86 in order to then challenge the 

hardware implementation as much as possible. In this attempt, several software optimizations 

are applied to the initial code, culminating in the following software implementation: 

 
Algorithm 3: Smith-Waterman LSAL Algorithm - Optimized 
Input: string1[N], string2[M];    
Result: similarity_matrix, direction_matrix, max_index 
   max_value = 0; 
   for i=1; i<M; i++: 
      for j=1; j<N; j++: 
         match = (string1[j] = string2[i]) ? MATCH : MISMATCH; 
         north = similarity_matrix[i-1, j] + GAP_PENALTY; 
         northwest += similarity_matrix[i-1, j-1]; 
         west = similarity_matrix[i, j-1] + GAP_PENALTY; 
         similarity_matrix[i,j], max_pos = find_max_value(north, northwest+match, west); 
         direction_matrix [i,j] = max_pos; 
 
         if max_value < similarity_matrix[i,j] then 
             max_value = similarity_matrix[i,j]; 
             max_index = (i,j); 
         end 
      end 
   end 

 
In this implementation, the values N and M have been augmented by one, so that we have 

matrices of size N+1 * M+1, where the first row and column is initialized with zeros. This 

eliminates the need for the if-statement in the initial version of the algorithm. 
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N M execution time (ms) 

32 32768 22,522 

32 65536 24,908 

32 131072 35,015 

64 32768 25,084 

64 65536 36,333 

64 131072 66,794 

128 32768 36,392 

128 65536 66,843 

128 131072 133,545 

 

Table 2.2: Execution times of the optimized code on the x86 system for several pairs of N, M 

 

 

Figure 2.2: Comparison between execution times of the initial and the optimized code (graph) 

 

 

As we can observe in Table 2.2 and Figure 2.2, the final optimized software implementation 

succeeds at having a faster execution time, with an average speedup of 1,18 across executions 

for different N, M pairs. 
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2.1.2 Software Profiling using Roofline Models 

 

 

Apart from only measuring the execution time for various query and database lengths, it is 

useful to also study the roofline model of the LSAL algorithm. The roofline model is a 

visualization of performance estimates of an application, used to determine whether the 

application is bound by memory bandwidth or computational intensity, as well as show the 

maximum performance we can achieve with the current available hardware. [5] 

 

 
Figure 2.3: A basic roofline model  

 
The roofline plot is derived by the equation: 

𝑃 ≤  min(𝑃 , 𝐴𝐼 ∙ 𝛽)          (2.1) 

Where: 

 𝑃  represents the maximum performance we can achieve, based on the given 

hardware resources, such as number of cores and functional units, etc. Performance is 

measured in GINTOPS (Giga Integer Operations per Second). 

 The arithmetic intensity (AI) of the application is the following ratio: 

𝐴𝐼 =
#  

#     & 
                                                (2.2) 

AI is measured in INTOP/byte. 

 𝛽 is the memory bandwidth and depends, as 𝑃  only on the specific platform onto 

the application is being executed. 



  
 

 28 
 

 

The red dot represents the performance an implementation achieves. If the dot falls into the 

left, triangle area, the performance is bound by the AI*β line, therefore the implementation is 

considered to be of low intensity and subsequently, memory bound. Alternatively, if the dot 

falls into the right area, the implementation is of high intensity, thus CPU bound, as it is 

limited only by the platform resources. 

 

The goal is to push the dot, or the dots, upwards and to the right, toward the horizontal line 

𝑃 . An upwards push translates to better parallelism, while a push to the right translates to 

less dependence on memory bandwidth. [6] 

 

The roofline models can be automatically computed using Intel Advisor, a design and 

analysis tool by Intel. For several pairs of N and M, we compare the roofline models between 

the initial version of the algorithm, which is represented by squares, and the optimized 

version, which is represented by dots. 

 
 
 

Figure 2.4: Roofline model for N=32, M=32K 
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Figure 2.5: Roofline model for N=32, M=64K 
 
 
 
 

Figure 2.6: Roofline model for N=32, M=128K 
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Figure 2.7: Roofline model for N=64, M=32K 
 
 

Figure 2.8: Roofline model for N=64, M=64K 
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Figure 2.9: Roofline model for N=64, M=128K 

 
 
In most of these cases, the performance dot has moved upwards and to the right, closer to the 

compute-bound area of the graph and closer to the AI*β line, meaning an increase in 

GINTOPS as well. 

 

Furthermore, dots that represent the find_max_value function also appear in the roofline 

model. The function, which determines which neighboring cell is contributing to each value 

of the constructed matrices, appears, as expected, to be mostly compute-bound. 

 

In conclusion, we can argue that we have successfully optimized our LSAL implementation 

to a certain extent on a software platform such as the x86, before attempting to reach a better 

performance with the FPGA implementation in the next chapter. 
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2.2 Execution on Arm 
 
 
Alongside the programmable logic, the Zedboard provides an Arm Cortex-A9 dual core 

processing system with a frequency of 1.0GHz [7] . It is interesting to observe the 

performance our code can achieve on this processor as well. However, since the Zedboard is 

a low-power embedded platform, it does not provide rich analysis tools. Therefore, we will 

settle for a simple measurement of execution time of our code for a number of different pairs 

of N and M. 

 

N M execution time (ms) 
32 32 62,952 
32 64 125,489 
32 128 250,638 
64 32 126,584 
64 64 252,611 
64 128 505,353 

128 32 252,625 
128 64 505,153 
128 128 1013,249 

Table 2.3: Execution times of the optimized code on the Arm CPU for several pairs of N, M 

 

 

Figure 2.10: Comparison between execution on the x86 system and the Arm CPU 
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Figure 2.11: Ratio of Arm to x86 execution times 

 

It is clear that the Arm processor is not particularly powerful compared to the x86 system. 

Specifically, the Arm processor is around 7.5 times slower than the x86 when we run examples of 

larger databases and queries, thus larger N*M matrices. 
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Chapter 3 
 
 
 

3.1 Hardware Optimizations 
 
 

Moving from a software implementation to a hardware design on the FPGA means we are 

expected to apply a different approach in any further development of this application. 

FPGAs provide great flexibility, similar to a software platform, due to the fact that their 

functionality can be customized by the designer every time a particular task needs to be 

implemented, according to the task’s specific needs. This is achieved by having an array of 

logic blocks that can be reconfigured as specified by a hardware description language (HDL) 

such as Verilog or VHDL. 

 

However, in order to provide a higher level of abstraction to the designer, high-level 

synthesis (HLS) tools are commonly used. The programmer writes code in a high-level 

language, such as C/C++, which we use in this thesis, while the HLS tool analyzes the code, 

and subsequently handles creating the register-transfer level (RTL) design in an HDL, as well 

as the synthesis to the gate level. The HLS tool used here is Vitis HLS by Xilinx. 
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Figure 3.1: Vitis HLS Screenshot 

 
FPGAs are widely used in applications with large sections of parallel computing and 

moreover provide the advantage of using the optimal amount of resources. 

The FPGA used in this thesis is part of the Zedboard Zynq-7000 Development Board by 

Diligent. It provides 140 units of block RAM, 106400 flip-flops (registers) and 53200 Look 

Up Tables. [7] 

 
Figure 3.2: The Zedboard Zynq-7000 Development Board [8] 
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The code we developed in software will now be our kernel code, which will be mapped into 

hardware and accelerated in the FPGA. In addition to this we develop a testbench file which 

handles the initializations. the input/output to and from the kernel, as well as the verification 

of a correct hardware result. 

 

It is expected that software and hardware optimizations differ vastly, for a number of reasons. 

For instance, the FPGA is not equipped with caches, contrary to a software platform, so it is 

not possible to preemptively fetch data we expect to reuse in blocks alongside the data we 

request. Fetching data should be done efficiently and in an inexpensive way. Additionally, the 

code might need to be re-written to expose patterns of parallelism that can be taken advantage 

of in a platform that can support a great degree of computational parallelism, such as the 

FPGA. In conclusion, software optimizations are not guaranteed to yield a satisfactory result 

when applied on hardware. 

 

 

3.1.1 Baseline code & First directives 
 

Before we begin applying hardware optimizations, it is important to observe how the initial 

software code performs on the FPGA. Initially we choose a query length of N=32 and a 

database length of M=65536 to showcase the results of each incrementally applied 

optimization. 

 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices  - 620167239 6.202 s - 620167240 - 

Outer loop  - 620167168 6.202 s 
 

- - 65536 

        

Resources BRAM FF LUT     

Utilization 30 10795 17654     

 (10%) (10%) (33%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.30ns 2.70ns     

 
Table 3.1: Vitis HLS baseline code results for N=32, M=65536 
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As expected, the baseline code is not adequately efficient as a hardware accelerator. 

 

 

HLS UNROLL 

By unrolling a loop, multiple of its iterations are able to be executed together. Applying the 

directive creates multiple instances of the loop body and its instructions that can then be 

scheduled independently, allowing Vitis HLS to aim for more aggressive optimization and 

reduce the latency of each loop iteration. [9] 

 
 

Modules & Loops Issue 
Type 

Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices  -1.10 598016142 5.980 s - 598016143 - 

Outer  - 598016000 5.980 s 
 

9125 - 65536 

        

Resources BRAM FF LUT     

Utilization 30 104132 325638     

 (10%) (97%) (612%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 8.396ns 2.70ns     

 
Table 3.2: Vitis HLS inner loop unroll results for N=32, M=65536 

 
This solution is discarded due to excessively high utilization of lookup tables that is beyond 

the Zedboard resources. 

 

 

HLS PIPELINE 

Loop pipeline allows iterations of a loop to happen concurrently instead of strictly 

sequentially. Each iteration can begin before the previous one has completed all operations. 

By specifying the initiation interval II, we set the target number of cycles after which the 

hardware will attempt to begin the next execution of a loop iteration. In Vitis HLS, the II 

defaults to 1. Additionally, all nested loops inside a loop or function in which pipelining is 

applied will be automatically unrolled. [10] 
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Figure 3.3: Pipelining of a simple 3-instruction loop. Pipelining directly results in overlapped 

execution of iterations, which reduces the overall execution time. [10] 

 
 
First, we attempt to pipeline the inner loop. 
 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 320471111 3.205 s - 320471112 - 

Outer  - 320471040 3.205 s 
 

4890 - 65536 

Inner II Violation - 4674 4674 ns 149 146 32 

        

Resources BRAM FF LUT     

Utilization 30 10770 17327     

 (10%) (10%) (32%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.3: Vitis HLS inner loop pipeline results for N=32, M=65536 

 

 
As stated earlier, unrolling the inner loop results in a solution that cannot be implemented due 

to lack of resources. Therefore, it is unnecessary to test a solution pipelining the outer loop, 

which would unroll the inner loop automatically. 
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3.1.2 Rewriting the code to expose parallelism 
 
 

The software implementation constructs the N*M similarity and direction matrices by 

scanning all cells sequentially. To calculate a cell [i,j] we need to access its north and 

northwest neighboring cells, which lie on the previous row i-1, and the west neighboring cell, 

belonging in the same row as cell [i,j]. Each time the west cell needs to be updated before its 

next one, which causes data dependency. 

 
 
 

 
Figure 3.4: Data dependencies in a similarity matrix of N=4 and M=6, inside each cell its index is 

depicted. Arrows show the cells needed to calculate the cell of the same color. 
All cells in a row cannot be updated at the same time since each cell requires the previous one to have 

already been updated.  
 

To solve this problem, we will scan the similarity matrix (anti-)diagonally, calculating one 

antidiagonal before moving onto the next. 
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Figure 3.5: Left: scanning the similarity matrix in antidiagonals. Right: data dependencies in the 
produced similarity matrix where each row corresponds to an antidiagonal of the initial matrix. 

After restructuring the code, all elements in a row can be calculated concurrently, since all required 
cells belong in previous rows and have already been updated in previous iterations.  

 
 
This rewriting of the code introduces a new problem that needs to be addressed: The first N-1 

and last N-1 iterations of the outer loop are of varying length. This will not be optimal for a 

hardware implementation, due to the fact that variable bounds loops cannot be unrolled, 

therefore preventing successful pipelining of the loop. 

 

We can solve that by padding the upper left and lower right triangles of the new matrix to 

ensure that each anti-diagonal has the same length of N. To achieve this, padding is applied 

accordingly to the database string2 array, by adding N-1 “invalid” cells in its beginning and 

end. We choose values that will produce a mismatch with the query. 
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Figure 3.6: Left: the padded database has a size of MM = M+2*(N-1). The algorithm begins at anti-
diagonal N-1 and ends at anti-diagonal MM. Right: The M+N-1 antidiagonals as calculated and stored 
in memory by each iteration of the outer loop. Thanks to the padded areas, all antidiagonals have the 

same length N. 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 306329244 3.063 s - 306329245 - 

Outer_Inner II Violation - 306329100 3.063 s 150 146 2098144 

        

Resources BRAM FF LUT     

Utilization 16 5673 12425     

 (5%) (5%) (23%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.4: Vitis HLS restructured code results for N=32, M=65536 
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3.1.3 Burst accesses to memory 
 
 

Right now, all the required data resides in the main memory of the Zedboard. Every access of 

an array element in the code corresponds to fetching one element at the time from the main 

memory to an internal block ram. Each one of these transactions requires tens of cycles. 

 
 

 
Figure 3.7: The FPGA provides a series of internal block RAMs, which allow data transferring in 

bursts, thus obscuring the memory access latency and improving bandwidth usage. 
 
 
 
We can create local copies in the BRAMs and access them avoiding this large latency. In 

C/C++ code, this can be achieved by using the memcpy function, which is equivalent to 

pipelined accesses in a for-loop, in order to copy the kernel parameters into local arrays. 

 

Now memory access will be done in bursts, which means it is possible to transfer multiple 

data in a single transaction, with only the first transfer being costly and all subsequent ones 

requiring one cycle each. [11] 
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Figure 3.8: How the AXI protocol works. [11] 

 
 
 
Regarding the output matrices, the naive approach would be to keep whole copies of them in 

Block RAMs and copy them all at once back to the main memory when all computations are 

finished. This will not fit into the available BRAMs for larger values of N,M.  

 

Instead, since to compute one row of the similarity matrix only the two previous ones are 

needed, a BRAM array of 3*N will suffice. Similarly, the direction matrix can be replaced by 

a smaller array of size N. 

 
int small_sim[N*3]; 
short small_dir[N]; 
… 
//i: row index in sim_matrix 
//di: row index in dir_matrix 
//bram_index: row index in small_sim 
Outer loop{ 
    Inner loop{ … } 
    memcpy(similarity_matrix+(i*N), small_sim+(bram_index*N), N*sizeof(int)); 
    memcpy(direction_matrix+(di*N), small_dir, N*sizeof(short)); 
} 

 
Figure 3.9: Using the memcpy function. 

When an anti-diagonal has been completed, the resulting row of size N is copied back to the main 
memory array. 
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We can also retry applying the pipeline directive to the outer loop. 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II & Timing 
Violation 

-0.38 26915583 0.269 s - 26915584 - 

Outer  - 26882470 0.269 s 410 - 65567 
Inner II & Timing 

Violation 
- 202 2020 ns 79 4 32 

        

Resources BRAM FF LUT     

Utilization 96 5356 9637     

 (34%) (5%) (18%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.683ns 2.70ns     

 
Table 3.5: Vitis HLS BRAMS & inner pipeline results for N=32, M=65536 

 
 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II & Timing 
Violation 

-0.38 6327647 63.276 ms - 6327648 - 

Outer II & Timing 
Violation 

- 6294533 62.945 ms 172 96 65567 

        

Resources BRAM FF LUT     

Utilization 96 11556 27120     

 (34%) (10%) (50%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.683ns 2.70ns     

 
Table 3.6: Vitis HLS BRAMS & outer pipeline results for N=32, M=65536 

 
 
 
The resulting speed up is satisfactory, but now a timing violation is introduced to the design. 
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3.1.4 Inlining the find_max_value function by hand 
 
 

In an attempt to reach a solution without a timing violation, we will try to replace the 

find_max_value function with code inside the kernel body. 

 

This is called inlining and it allows the components within the function to be 

better shared or optimized more effectively along with the logic in the main kernel function. 

Function inlining is also performed automatically by Vitis HLS but we can test whether it is 

possible to achieve a better result by replacing the function with code inside the kernel. 

 
 
small_sim[bram_index*N + ii] = west; 
small dir[ii] = WEST; 
 
if (north >= 0 && north >= test_val && north >= west){ 
    small_sim[bram_index*N + ii] = north; 
    small_dir[ii] = NORTH; 
} 
if (test_val >= 0 && test_val >= north && test_val >= west){ 
    small_sim[bram_index*N + ii] = test_val; 
    small_dir[ii] = NORTH_WEST; 
} 
if (0 >= test_val && 0 >= north && 0 >= west){ 
    small_sim[bram_index*N + ii] = 0; 
    small_dir[ii] = CENTER; 
} 

 
Figure 3.10: the function code inside the main body of the kernel. We aim for the least amount of 

conditional statements as to obtain the most straightforward hardware implementation. 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 8425821 84.258 ms - 8425822 - 

Outer II Violation - 8392707 83.927 ms 202 128 65567 
        

Resources BRAM FF LUT     

Utilization 96 7428 25096     

 (34%) (6%) (47%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.7: Vitis HLS inlined function results for N=32, M=65536 
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A little speedup is lost but the timing violation is successfully avoided. 
 

 

3.1.5 Replacing 1 BRAM matrix with 3 separate ones 
 
 
Using one 3*N BRAM array as a substitute to the entire similarity matrix adds a fair amount 

of algorithmic complexity to our code, since calculations are now introduced to define  

which rows should each outer loop iteration write to and read from. 

 
 
Outer loop{ 
    if (bram_index == 0){ 
        prev = 2; 
        prev_prev = 1; 
    } 
    else if (bram_index == 1){ 
        prev = 0; 
        prev_prev = 2; 
    } 
    else if (bram_index == 2){ 
        prev = 1; 
        prev_prev = 0; 
    } 
    … 
    if (bram_index == 0 || bram_index == 1){ 
        bram_index++; 
    } 
    else if (bram_index == 2){ 
        bram_index = 0; 
    } 
} 

 
Figure 3.11: Segment from the previous version of our code. 

We define the index names: bram_index: the row we calculate in an outer loop iteration; prev: the 
previous row containing the north and west values; prev_prev: the row containing the northwest 

value. These values change in a cyclic way from 0 to 2. 
 
 
This can be easily avoided by using instead 3 separate block RAMs defined as to correspond 

to the rows of the small_sim array. 
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memcpy(prev_prev_sim,           prev_sim, N*sizeof(int)); 
memcpy(prev_sim,                bram_sim, N*sizeof(int)); 
memcpy(similarity_matrix+(i*N), bram_sim, N*sizeof(int)); 
 

 
Figure 3.12: At the end of each outer loop iteration, we copy the elements from one array to the other 

in order to free the writing array bram_sim. 
 

 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 1082158 10.822 ms - 1082159 - 

Outer II Violation - 1049143 10.491 ms 88 16 65567 
        

Resources BRAM FF LUT     

Utilization 94 9963 22385     

 (33%) (9%) (42%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.8: Vitis HLS three BRAM arrays results for N=32, M=65536 

 
 
The initiation interval has dropped to 16. The solution is run for additional pairs of N, M 
lengths. 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 2132287 21.323 ms - 2132288 - 

Outer II Violation - 2099240 20.992 ms 105 32 65599 

        

Resources BRAM FF LUT     

Utilization 94 15466 38836     

 (33%) (14%) (73%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
 

Table 3.9: Vitis HLS three BRAM arrays results for N=64, M=65536 
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Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 1067327 10.673 ms - 1067328 - 

Outer II Violation - 1050664 10.507 ms 105 32 32831 

        

Resources BRAM FF LUT     

Utilization 62 15452 38690     

 (22%) (14%) (72%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.10: Vitis HLS three BRAM arrays results for N=64, M=32768 

 
 
It becomes clear now that the iteration interval II drops to a value of N/2. We will study the 

analysis view tab of the Vitis HLS shortly, in order to better understand how to further 

decrease the II. 

 

 

3.1.6 Using N elements from the database string in each iteration 
 
 
The length MM = M+2*N-2 of the padded database string might not fit in our FPGA for 

large values of M. 

 
Modules & Loops Issue Type Slack Latency 

(cycles) 
Latency Iteration 

Latency 
Interval Trip 

Count 
compute_matrices II Violation - 4326190 43.262 ms - 4326191 - 

Outer II Violation - 4194871 41.949 ms 88 16 262175 
        

Resources BRAM FF LUT     

Utilization 286 9989 22539     

 (102%) (9%) (42%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.11: Vitis HLS three BRAM arrays results for N=32, M=256K 

 
 
Indeed, we get a 102% usage of BRAM for N=32, M=256K. 
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Fortunately, to calculate one row (or anti-diagonal) of N elements we do not need immediate 

access to the entire (padded) database of MM; only N elements are required each time. 

 
 

 
 

Figure 3.13: Substituting the database array string2[MM] with the array small_db[N]. After 
calculating one row in the outer loop, the database window small_db shifts one value downwards in 

the database. 

 
 
Outer loop{ 
    Inner loop{ 
    . . . 
    } 
    memcpy(small_db, small_db+1, (N-1)*sizeof(char)); 
    small_db[N-1] = string2_main[i+1]; 
} 

 
Figure 3.14: Fetching the next database value from the global memory to the block RAM. 
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Modules & Loops Issue Type Slack Latency 

(cycles) 
Latency Iteration 

Latency 
Interval Trip 

Count 
compute_matrices II Violation - 12322493 0.123 s - 12322494 - 

Outer II Violation - 12322318 0.123 s 141 47 262175 

        

Resources BRAM FF LUT     

Utilization 31 10546 23854     

 (11%) (9%) (44%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.12: Vitis HLS database window results for N=32, M=256K 

 
 
The design with N=32, M=256K now fits on the Zedboard with an estimated BRAM 

utilization of 11%, since it only depends on the query length N. 

 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 3081917 30.819 ms - 3081918 - 

Outer II Violation - 3081742 30.817 ms 141 47 65567 
        

Resources BRAM FF LUT     

Utilization 31 10524 23722     

 (11%) (9%) (44%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.13: Vitis HLS database window results for N=32, M=65536 

 
Checking back on the results for N=32, we can see that the addition of the small database 

sliding window slows down our code by a factor of almost 3. To amend this, we can attempt 

partitioning the new array. 

 

 

HLS ARRAY_PARTITION 

The Zedboard block RAMs provide 2 access ports for writing and reading. This is restrictive 

since all the elements of an array cannot be accessed simultaneously, decreasing the 
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achievable level of parallelism and limiting the accelerator’s performance. Using the 

ARRAY_PARTITIONING directive we can split a block RAM array into multiple smaller 

ones, or even into multiple registers, allowing scheduling that utilizes more or all array 

elements in one cycle. Here we apply complete array partitioning, meaning that we split the 

small_db array into registers. Larger register and LUT utilization is traded off for improved 

bandwidth and faster execution. [12] 

 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 1049340 10.493 ms - 1049341 - 

Outer II Violation - 1049196 10.492 ms 141 16 65567 
        

Resources BRAM FF LUT     

Utilization 30 10018 23324     

 (10%) (9%) (43%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.14: Vitis HLS partitioning small_db results for N=32, M=65536 

 

 

3.1.7 Unroll max index calculation 
 
 
Looking at the analysis view tab it is possible to detect the II violation is caused by the if-

statements that compute the max index. Remember from chapter 2, max index is the index of 

the maximum value in the similarity matrix. An inner loop iteration, while completing a row 

of both matrices, detects the max value of said row. The outer loop iteration will compare the 

max values of each row to detect the max value of the entire similarity matrix. 
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Figures 3.15, 3:16: Above: II Violation on the Vitis HLS Analysis view tab; 
Below: Where in the code Vitis HLS detects the II Violation occurs 

 

 
  
Similarly to the manual inlining of the function we applied earlier, it might be a good idea to 

help the HLS with some manual unrolling of the code we have found to be problematic. 
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Figure 3.17: Separating the max index calculation into four parts. 

 

We split each row into four parts and detect the max value of each part, each value stored in a 

different variable. Now the outer loop executes four sets of comparisons between these 

variables in-between iterations. A final comparison between the four winners is done at the 

end of the kernel function to obtain the maximum similarity value. 

 
 

Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 262550 2.626 ms - 262551 - 

Outer II Violation - 262405 2.624 ms 141 4 65567 
        

Resources BRAM FF LUT     

Utilization 30 9541 24010     

 (10%) (8%) (45%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.15: Vitis HLS unrolled max_index results for N=32, M=65536 

 
We have achieved an II of just 4 cycles now, or N/8 for N=32, four times less than before, 

just as we expected. We can also observe this on the Analysis tab. 
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Figure 3.18: Vitis HLS Analysis Tab for unrolled max_index for N=32, M=65536 

 
At this point, it is important to note that throughout the optimization experiments, we could 

not achieve an implementable solution for N=128, as this query length consistenly required a 

greater number of look up tables than the Zedboard can provide. 

 

 

3.1.8 Experimenting with different array types 
 
 
The software code uses an int array for the similarity matrix and a short array for the 

direction matrix. Unfortunately, the FPGA resources are limited, so it is wise to aim for an 

implementation that reduces the area of the design.  

 

The values of the similarity matrix are directly related to the value of N. The maximum 

similarity value occurs in the case of every base of the query string1 matching with every 

base of the database string2. 
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Figure 3.19: Software simulation of a total match between query and database, of lengths N=4, M=8 

(left) and N=8, M=16 (right). 

 
 
We observe that the largest similarity value is 2*N and appears in the last cell of each row, 

since in every row we begin with a score of zero to which we keep adding the match score, 

equal to 2. 

For N=32, max similarity value <= 64. 

For N=64, max similarity value <= 128. 

For N=128, max similarity value <= 256. 

 

With an unsigned char type, it is possible to store numbers up to 255, so given that the 

maximum value 256 is practically impossible, for a design with a query length N<=128, a 

similarity array of type unsigned char will suffice.  

 

Meanwhile, direction matrix cells can only have one of four possible values (0,1,2,3 for C, N, 

NW, W accordingly), so we can change the type from short in the software implementation to 

char as well. 
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Modules & Loops Issue Type Slack Latency 
(cycles) 

Latency Iteration 
Latency 

Interval Trip 
Count 

compute_matrices II Violation - 262549 2.626 ms - 262550 - 

Outer II Violation - 262404 2.624 ms 141 4 65567 
        

Resources BRAM FF LUT     

Utilization 17 6185 17794     

 (5%) (5%) (33%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.16: Vitis HLS unsigned char results for N=32, M=65536 

 
Although additional speedup is not gained, a decrease in resources utilization is achieved for 

all resource types. 

 

 

3.1.9 Arbitrary precision types 
 
 
Generally, the C/C++ data types might have a larger bitwidth than what will be needed for 

several variables in the HLS code, leading to synthesis of an RTL design that wastes FPGA 

resources. To combat this, Vitis HLS provides arbitrary precision types of a bit length that 

can be specified by the developer according to the design’s needs. [13] 

 

In the Smith-Waterman algorithm, the query and database strings are sequences of the four 

DNA bases: A, C, G, T. Therefore, they can be represented by just two bits instead of the 8 

bits provided by the char type. 

 

We can substitute the strings with arrays of arbitrary type ap_int<2>. 

 
 
const ap_uint<2> CENTER  
const ap_uint<2> NORTH 
const ap_uint<2> NORTH_WEST 
const ap_uint<2> WEST          

= ap_uint<2>("0b00", 2); 
= ap_uint<2>("0b01", 2); 
= ap_uint<2>("0b10", 2); 
= ap_uint<2>("0b11", 2); 

 

Figure 3.20: substituting the 0,1,2,3 values with the unsigned 2-bit values 00,01,10,11 
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Modules & Loops Issue Type Slack Latency 

(cycles) 
Latency Iteration 

Latency 
Interval Trip 

Count 
compute_matrices II Violation - 262704 2.627 ms - 262705 - 

Outer II Violation - 262404 2.624 ms 141 4 65567 
        

Resources BRAM FF LUT     

Utilization 17 6611 19901     

 (6%) (6%) (37%)     

        

Timing Estimation Target Estim. Uncertainty     

 10.00ns 7.3ns 2.70ns     

 
Table 3.17: Vitis HLS arbitrary types results for N=32, M=65536 

 
 
 

3.1.10 Conclusion 
 
 
As demonstrated, the optimal solution is the one achieved in section 3.1.8, where the integer 

and short type matrices are substituted by the more area-efficient char type ones. This is the 

version that will be compiled for and run on the Zedboard. 

  

The following graphs constitute an overall comparison between all execution times and usage 

of FPGA resources across all solutions. 

 

 
Figure 3.21: Execution time comparison of all solutions 
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Figure 3.22: A better look at execution time of solutions from section 3.1.3 onwards 
 

In Figure 3.22 we see a complete overview of the execution times since we brought the data 

into the block RAMs, where we achieve the first significant speedup. Above the execution 

time label, in each optimization we applied we see the speedups S1/S2, with S1 being the 

speedup with regard to the x86 time and S2 the speedup with regard to the previous 

optimization. 

 
 

Figure 3.23: Block RAM, Flip-Flop and Look-Up Table percentage utilization across solutions. 
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3.2 Execution on the FPGA 
 
 
 

The LSAL application we have developed is comprised of two files: the kernel code and the 

host application. The host program runs on the Arm CPU of the Zedboard and is similar to 

the testbench used during the hardware optimization process. Additionally, it incorporates 

API abstractions like OpenCL, which is a framework that manages interactions between the 

software host (Arm) and the hardware accelerator. 

 

The kernel file we developed in section 3.1 is compiled with the Vitis compiler v++ into an 

RTL design. The output is a binary file which runs on the programmable logic region of the 

board. 

 

Figure 3.24: Build process for the Host and Kernel executable files 

 
 
We test the performance of our application for the query and database lengths used 

throughout this chapter. For N=32, M=65536 the execution time is 6,322 ms, almost 3x 

slower than the 2,626 ms time predicted by Vitis HLS. This is considered an expected and 

normal divergence between the hardware simulation Vitis HLS performs and the execution 

on the actual hardware platform. 
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Figure 3.25: Comparison between LSAL execution times across all platforms, for N=32, M=65536 

 

 

Figure 3.26: Comparison between LSAL execution times across all platforms, for N=64, M=65536 

 

We have successfully managed to achieve a hardware implementation that is indeed faster 

than the optimized code which runs on the x86 processor. The overall speedup is x3,94 for 

N=32, M=65536 and x 2,87 for N=64, M=65536: the two pairs of sequence lengths we 

studied more specifically in this chapter. 
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Chapter 4 
 
 
 

4.1 Conclusion 
 
 

In conclusion, we were successful in developing a hardware implementation of the Smith-

Waterman local sequence alignment algorithm for the Zedboard Zynq-7000 development kit, 

which achieved a faster execution time than the software implementation we developed, 

optimized and run on a x86 system. Rewriting the LSAL code to expose parallelism patterns, 

the use of the internal block RAM which significantly increase the memory bandwidth, as 

well as thoroughly understanding and making good use of the HLS directives that ensure a 

higher degree of parallel execution, were crucial to the success of this project. The final 

overall speedup, despite not achieving a change in order of magnitude, can nonetheless be a 

good starting point for further development and optimizing on the FPGA. 

 
 

4.2 Future Work 
 
 

In the world of optimizing hardware there is always room for further development and 

improvement of the already achieved performance. These are a few ways this thesis could 

potentially be further expanded: 

 

First and foremost, using a larger FPGA which will provide more hardware resources would 

be a good place to start. Having more look-up tables available can allow for more flexibility 

with our code rewrites, and thus more room for experimenting with more optimizing 

techniques, since with more LUTs we can increase the computational complexity of the 
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application. This, along with a larger number of registers, means that we can also experiment 

more with partitioning the arrays we use in our code. 

 

Additionally, we could look further into taking advantage of the full 512-bit length of the 

AXI bus between the global memory of the board and the internal block RAM of the FPGA. 

By using standard C/C++ data types for the kernel inputs and outputs, the bus is being 

underutilized since the native types are quite smaller than 512 bits long. To maximize the 

memory throughput by using the full width of the AXI bus, 512-bit array elements should be 

used for the kernel parameters. This is possible due to the arbitrary precision types the Vitis 

HLS provides, with which we became familiar in chapter 3.  

 

Specifically, arrays of arbitrary type ap_uint<512> would be used for the similarity and the 

direction matrix. To avoid more memory transactions, we could also choose to completely 

discard the similarity matrix and not pass it back to the host, since the direction matrix and 

the max_index are a sufficient output in order to begin the back-tracing process. 

 

Moreover, going back to eq. 1.1, we could expand the usage of the algorithm by developing 

solutions for larger gap lengths k, l, attempt to work around the data dependencies that will 

appear and study how to expose potential patterns of parallelism. 

 

Finally, this thesis could be additionally expanded by constructing roofline models for the 

hardware implementations running on the FPGA, for a better insight into the bottlenecks of 

the application and how to handle them. 
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