
   

  

 

UNIVERSITY OF THESSALY 

 

SCHOOL OF ENGINEERING 
DEPARTMENT OF MECHANICAL ENGINEERING 

 

 

Numerical Calculation of Stress Concentration Factors  

in Shafts with U-Shaped Circumferential Grooves  

and Comparison with Theoretical Results 

 

By  

Angelinas Konstantinos  (AM 1565) 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Diploma  

in Mechanical Engineering at the University of Thessaly   

 

Volos, 2023



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2023 Angelinas Konstantinos 

All rights reserved. The approval of the present  Thesis by the Department of Mechanical Engineering, 
School of Engineering, University of Thessaly, does not imply acceptance of the views of the author (Law 
5343/32 art. 202). 



3 

Approved by the committee of  final examination: 

 

 

Advisor Dr. Sotiria Chouliara,  

 Lab Teaching Personnel, Department of Mechanical Engineering, 

University of Thessaly 

 

Member Dr. Nikolaos Aravas,  

 Professor, Department of Mechanical Engineering, Aristotle 

University of Thessaly 

 

Member Dr. Alexis Kermanidis,  

 Associate Professor, Department of Mechanical Engineering, 

University of Thessaly 

 

 

Date Approved: 28/02/2023 

  



4 

Acknowledgements 

 

Foremost, I would like to express my sincere gratitude to my thesis supervisor Dr. Sotiria 

Chouliara for the continuous support of my graduate study and research, her guidance 

and patience with me. Her encouragement during my research and her willingness to 

help me with the research problems that I confronted, has shown me how to work with 

integrity. From the beginning of the research to the completion Dr. Chouliara has guided 

me and assisted me in appreciation of this topic.  

Besides my advisor, I would also like to thank my professors, Dr. Nikolaos Aravas and Dr. 

Alexis Kermanidis, for willing to participate in the final examination committee and for 

the knowledge they gave me during my studies in the Department of Mechanical 

Engineering at University of Thessaly. 

I am also sincerely thankful to my parents for their encouragement, guidance and 

financial support throughout my studies. Without them, I would not be able to pursue 

my goals and dreams. Last but no least, I would like to thank my friends and my 

girlfriend Anna, who supported me mentally, encouraged me and also proffered many 

consultation that were helpful during my thesis work. 

 

 

 

 

 

 

 

 

 

 

 

 



5 

Numerical Calculation of Stress Concentration Factors 

in Shafts with U-Shaped Circumferential Grooves  

and Comparison with Theoretical Results 

 

Angelinas Konstantinos 

 

Department of Mechanical Engineering, University of Thessaly 

Supervisor: Dr. Sotiria Chouliara 

Lab Teaching Personnel 

 

 

Abstract 

Dimensional changes and discontinuities of a member in a loaded structure, such as 

shoulders, grooves, holes, keyways, threads or cracks, will lead to variations of stress 

and much larger magnitudes of stresses than the average stress over the whole section, 

near these discontinuities. Most of the mechanical structures and components have 

such weak points, and as a result, stress concentration in structural members is a classic 

topic of mechanical engineering and it is strongly associated with machine elements 

such as shafts. 

The purpose of this diploma thesis is the numerical study and calculation of stress 

concentration due to geometric discontinuities. This numerical study especially focuses 

in shafts with U-Shaped circumferential grooves under tension and is accomplished with 

the help of Finite Elements methods (via Abaqus), in order to determine the 

corresponding stress concentration factors (SCF, Kt) considering various parameters. 

Then, the numerical results are compared with theoretical results available by previous 

studies. 
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Chapter 1 

1.1. Introduction  

In theoretical materials science, it is commonly assumed that there aren’t any abnormalities in 

the material of the specimen under tension, torsion or bending, neither any discontinuity on it, 

in order to determine the developing stresses. In reality, things are a lot different.  

In this first chapter of the study, we will make an introduction to the stress analysis of shafts. As 

in this diploma thesis we mainly study the effect of stress concentration on a shaft with U-

Shaped circumferential grooves under tension, we will first study the effect of the geometry of 

the shaft on the stress concentration phenomenon, in general.  

By the term shaft, we usually refer to a relatively long member of round cross section that 

rotates and transmits power. Other members such as gears, pulleys, cams, etc. are attached to 

the shaft by means of pins, keys, splines, snap rings and other devices. These members serve to 

connect the shaft to its source of power or load. 

  

Figure 1 Sketch of a typical gear support shaft [1] 

 

A shaft can also have a nonround cross section and it doesn’t need to rotate. It can be 

stationary and serve to support a rotating member, such as the short shafts that support the 

nondriving wheels of an automobile. The shafts supporting idler gears can be either rotating or 

stationary, depending on whether the gear is attached to the shaft or supported by it through 

bearings. Shafts supporting and driving vehicle wheels are also called axles.  

Shafts and axles that are used as mechanical compartments of more compound constructions, 

are not usually commercially available in the form that want, in order to fulfill their purpose. Of 

course we can find perfectly cylindrical solid or hollow shafts in standard diameters that need 

to be processed in order to be used. Shafts and axles can be machined, on lathes or drilling 
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machines, so that they come into the right shape. Therefore they may not be uniform in their 

entire length. On the contrary, they can obtain gradation in their diameter, form wedges for the 

placement of sprockets, flywheels, cranks, pulleys and gears, or even cut gears or cams on them 

and form a single component, and this serves their main purpose, which is to transmit power or 

motion. 

 

Figure 2 A stepped shaft after machining on a standard diameter commercially 
available cylindrical shaft. [2] 

As a result, dimensional changes and discontinuity of them, lead to variations of stress, so high 

stresses concentrate near these dimensional changes and stress distribution is not uniform 

throughout the cross section, leading to stress concentration regions, at which failure can 

occur.  

This situation of stresses near dimensional changes and discontinuities such as holes, sharp 

corners, cracks, etc. is called stress concentration (SC) and the ratio of peak stress near stress 

raiser to an average stress over the member, is called stress concentration factor (SCF). When 

calculating the shafts in dynamic but also in static loading, this parameter is particularly 

important and must be considered. We will study Stress Concentration and Stress 

Concentration Factor, in more detail, in the next chapter. 

 

Figure 3 Shaft with shoulders, fillets and retention features [1] 

Theoretical and experimental research about the influence of notches of all kind on the stress 

concentration has not yet been completed, as the strain of the shafts corresponds to a complex 

load and is very difficult to be determined. Although, the hitherto known results of this 

research have led to the formation of a clear picture of the stresses developing in the area of 

the notch. 
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There are practically three categories of methods used in order to perform a stress analysis on 

a specimen and calculate the SCF, and these are the following: 

i) Experimental methods  

There are many cases in which the SCF for different kinds of notches has been determined with 

experimental methods, but the results are only valid for the elastic area of materials. The most 

common experimental method, among others is the photoelasticity stress analysis. This 

method utilizes a birefringent model of the actual structure to view the stress contours due to 

external loading or residual birefringence. When white light is used for illumination, a colourful 

fringe pattern reveals the stress/strain distribution in the part.  Using monochromatic light 

enable better definition of fringes especially in areas with dense fringes as at stress 

concentration points. [3] 

 

Figure 4 Stress Concentration of tension bar by notches (Doz Dr-ing habil K. Fethke, Universitat Rostock) 
[4] 

Another experimental method for the determination of the SCF is with the use of 

extensometers. Extensometers, also called strain transducers or strain sensors, are measuring 

devices used in materials testing to measure the change in length or width, directly on the 

specimen. The strain is determined on the basis of the deformation of the material. As 

technology is developing, modern extensometers can provide very accurate results and 

accurate approximations of the SCF. 
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ii) Analytical methods  

Theoretical calculation results for the stress distribution can also be gained by the solutions of 

equations available in literature. Although experimental methods give the most reliable results 

as a procedure, it is very costly and it requires special equipment, testing facilities, etc. The first 

mathematical study on stress concentration was published in the first decade of 20th century 

and studies are published until today for different geometries, considering different parameters 

such as the notch radius, shape, depth etc., although analytical solution of every problem is 

almost impossible, due to complex boundary conditions and shapes. 

iii) Numerical Methods 

In recent years engineers have started using computer simulations based on finite elements 

analysis. The numerical methods have become the ultimate choice by the researchers in the 

last few decades, due to the galloping improvement of computing machines and programs and 

also due to the disadvantages of experimental and analytical methods that we referred 

previously.  

We will examine analytical methods and FEM analysis, in more detail, in later chapters.  

 

1.2. Shaft Materials 

The selection of materials and the processes used in fabrication are integral parts of the design 

of any machine component. The materials used for manufacturing shafts vary, depending on 

their geometric characteristics and the loads they carry. In general, they must have the 

following properties: 

1. High strength 

2. Good machinability 

3. Desired heat treatment properties 

4. High wear resistance 

Shafts are usually made of low carbon, cold drown or hot-rolled steel such as AISI 1020-1050 

steels. Treatments like cold working and heat treatment are followed to give low carbon steels 

the necessary strength to resist loading stresses. The AISI 1020-1050 strength characteristics 

are given below in Table 1. 
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Table 1 Tensile and yield strength for AISI 1020-1050 hot-rolled (HR) and cold-drawn (CD) low carbon 
steels. [5] 

Although, heat treatment and high alloy content sometimes doesn’t ensure significant 

strengthening.  Fatigue failure is reduced moderately by increase in strength and only to a 

certain level, before adverse effects in endurance limit and notch sensitivity begin to counteract 

the benefits of higher strength. A good practice is a preliminary choice with inexpensive, low or 

medium carbon steel for the initial time through the design calculations. If strength 

considerations turn out to dominate over deflection, then a higher strength material should be 

tried. Nickel, nickel-chromium or chromium-vanadium alloys are often used for this purpose. 

This will allow the shaft sizes to be reduced until excess deflection becomes an issue. In this 

case, the cost of the material and its processing should be taken under consideration.  When 

warranted, typical alloy steels for heat treatment include AISI 1340-50, 3140-50, 4140, 4340, 

5140, and 8650. Shafts usually do not need to be surface hardened unless they serve as the 

actual journal of a bearing surface. Typical material choices for surface hardening include 

carburizing grades of AISI 1020, 4320, 4820, and 8620. 

Cold drawn steel is usually used for diameters under about 3 inches. The nominal diameter of 

the bar can be left unmachined in areas that do not require fitting of components. Hot rolled 

steel should be machined all over. For large shafts requiring much material removal, the 

residual stresses may tend to cause warping. If concentricity is important, it may be necessary 

to rough machine, then heat treat to remove residual stresses and increase the strength, then 

finish machine to the final dimensions. In approaching material selection, the amount to be 

produced is a salient factor. For low production, turning is the usual primary shaping process. 

An economic viewpoint may require removing the least material. High production may permit a 

volume conservative shaping method (hot or cold forming, casting), and minimum material in 
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the shaft can become a design goal. Cast iron may be specified if the production quantity is 

high, and the gears are to be integrally cast with the shaft. 

Properties of the shaft locally depend on its history-cold work, cold forming, rolling of fillet 

features, heat treatment, including quenching medium, agitation, and tempering regimen. 

Stainless steel may be appropriate for some environments [5]. 

 

1.3. Shaft Design for Stresses 

Since shafting is so widely found in all types of machinery and mechanical equipment, its design 

may be the most frequently encountered task. In order to design a shaft, a mechanical engineer 

must take under consideration of the stress developing in shafts. There are always some 

locations in the shaft, which are prone to high stresses and therefore to failure (static or 

dynamic). Those usually appear on the outer surface at axial locations, where the bending 

moment is large and the torque is present and are called critical locations. The critical locations 

should be identified in order to avoid stress concentration factors. Therefore, the best way to 

identify the critical locations and design a shaft is to perform a stress analysis (by using one of 

the methods referred in the previous paragraph) and compare various points throughout the 

length of the shaft.  

Most shafts transmit torque through a portion of their length. Typically, the torque comes into 

the shaft at one gear and leaves the shaft at another gear. A free body diagram of the shaft 

allows the torque at any section to be determined. The torque is often relatively constant at 

steady state operation, so that the shear stress due to the torsion takes its maximum values on 

outer surfaces. 

The ‘‘equivalent’’ moments on a shaft can be determined by two-dimensional shear and 

bending moment diagrams [6], since most shaft problems incorporate gears or pulleys that 

introduce forces in two planes. Resultant moments are obtained by summing moments as 

vectors at points of interest along the shaft. The phase angle of the moments is not important 

since the shaft rotates, and this makes the problem a ‘‘fully-reversed’’ load case. This term 

means that a steady bending moment will produce a completely reversed moment on a 

rotating shaft, as a specific stress element will alternate from compression to tension in every 

revolution of the shaft. The normal stress due to bending moments will be greatest on the 

outer surfaces. In situations where a bearing is located at the end of the shaft, stresses near the 

bearing are often not critical since the bending moment is small.  

Axial stresses on shafts due to the axial components transmitted through helical gears or 

tapered roller bearings will almost always be negligibly small compared to the bending moment 

stress. They are often also constant, so they contribute little to fatigue. Consequently, it is 

usually acceptable to neglect the axial stresses induced by the gears and bearings when 
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bending is present in a shaft. If an axial load is applied to the shaft in some other way, it is not 

safe to assume it is negligible without checking magnitudes. [5] 

 

1.4. Shaft Stresses  

Bending, torsion and axial stress may be present together in both midrange and alternating 

components. To calculate the stresses and perform a stress analysis, it is simply enough to 

combine the different types of stresses by Von Mises. Axial loads are usually very small at 

critical locations, because bending and torsion are dominate, so they are not taken into 

consideration. The stresses due to bending and torsion are given by the following equations: 

        Eq. 1                   Eq. 3

           Eq. 2                     Eq. 4

a m

f m f

a m
fs m fs

M c M c
K K

I I

T r T r

J J





 

 

 

   

 

                                 

Where Mm and Ma   are the midrange and alternating bending moments, Tm and Ta   are the 

midrange and alternating torques, and Kf and Kfs are the fatigue stress-concentration factors for 

bending and torsion, respectively.  

Assuming for a solid shaft with round cross section, appropriate geometry terms can be 

introduced for c, I, r and J resulting in: 

      
    

     Eq. 5                   
    

         Eq. 7 

       
    

     Eq. 6                               
    

   
          Eq. 8 

  

 

Note that for a rotating shaft with constant bending and torsion, the bending stress is 

completely reversed and the torsion is steady. So, the equations above can be simplified by 

setting Mm and Ta equal to 0, which simply drops out some of the terms. [5] 

 

1.5. Stress raisers and relief grooves 

Most service failures in shafts are attributable largely to some condition that causes stress 

intensification. An apparently insignificant imperfection such as a small surface irregularity may 
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severely reduce the strength of a shaft, if the stress level at the imperfection is high. The most 

vulnerable zone in torsional and bending fatigue is the shaft surface, an abrupt change of 

surface configuration may have a damaging effect, depending on the orientation of the 

discontinuity to the direction of stress. 

Stress-raisers are sharp corners, grooves, notches, or acute changes of cross-section that cause 

stress concentrations under normal loadings. As general rule, stress should be transmitted 

among the element without breaking some critical values and as smoothly as possible. 

“Predicting” the stress flow in mechanical structures can help avoiding such fatal damages. 

 

Figure 5 (a) A smooth stress flow  (b) Sharp change in the stress flow that can cause higher stress 
allocation 

In the circumstances where the stress raisers are necessitated by the functional requirements, 

the geometrical discontinuities should be placed in areas where the nominal stress load in the 

minimum. In Figure 5 (a) A smooth stress flow  (b) Sharp change in the stress flow that can cause 

higher stress the stress flow is highly affected by the sharp changes of the geometry. Both parts 

have the same shape but totally different stress levels. 

In cases where it is necessary, sharp transitions should be removed from the surface of the 

element in order to ensure a uniform stress flow. Stress concentrations at notches and grooves 

can be reduced by the "metal removal – stiffness reduction" technique utilizing any procedure 

which improves the stress flow, e.g. multiple notches of U grooves and selected hole drilling as 

shown in Figure 6Figure 6 Various procedures for the reduction of stress concentrations at notches or 

grooves , or shoulders, large radius undercuts and relief grooves as shown in Figure 7 Large 

radious undercuts, shoulders and notches used to achieve a smoother stress Figure 7. Therefore, 

reductions of the order of 30% can be obtained. 
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Figure 6 Various procedures for the reduction of stress concentrations at notches or grooves [7] 

 

 

Figure 7 Large radious undercuts, shoulders and notches used to achieve a smoother stress [5] 

Note that additional notches, like those shown in Figure 6, should be placed in series and not in 

parallel, otherwise the results in stress concentration may be the opposite of the expected. 
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Chapter 2 

2.1 Stress Concentration Factor 

Stresses at or near a discontinuity, such as a sharp groove on a shaft, a shoulder on a shaft or a 

hole in a bar (as shown in Figure 8), are higher than if the discontinuity does not exist. Any such 

discontinuity alters the stress distribution, so that the elementary stress equations no longer 

describe the stress in the part. Therefore, failure will first occur at the discontinuity, which we 

generally call a stress raiser, as it will be the first part of the structure where concentrated 

stresses can exceed the material’s strength. It should be noted that the real fracture strength of 

a material is always lower than the theoretical value, because most structural components 

contain discontinuity in geometry or joints which induces the stress concentration.   

 

 

Figure 8 Stress distribution in plate with a hole subjected to axial loading [8] 

 

The stress concentration is the region on a part where stress raisers are present and can be 

measured by the Stress Concentration Factor (SCF). In more detail, the stress concentration 

factor, Kt, is the factor used to relate the actual maximum stress at the discontinuity to the 

average of the nominal stress. SCF characterizes as a function of; a geometry or shape of the 

part but not its size or material, type of loading applied to the part (axial, bending and 

torsional), specific geometric raiser on the part (fillet radius, notch or hole) and always defined 

with respect to a particular nominal stress and assumes a linear, elastic, homogenous, isotropic 

material. [5] 

The SCF allows consideration of stress raisers without excessively complicating the 

mathematics. The value of Kt is usually determined by some experimental method, such as 

photoelastic analysis of the plastic model of a part, or by analytical or numerical simulation of 

the stress field, as we already have discussed in Chapter 1. 
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2.2 Selection of Nominal Stresses 

 

As shown by the definition of Kt, SCF is dimensionless and it is defined as the ratio of the peak 

stress in the body to some other stress taken as a reference normal stress. 

 

 t   
 max

 nominal

                                        

Eq. 9 

 ts  
 max

 nominal

                            

Eq. 10 

In the cases of a bar with circular cross section with u-shaped groove subjected to tension, bending 

and torsion, like the cases shown in Figure 9 the nominal stresses are given by the following equations 

relatively: 

 

      
   

         
                     

Eq. 11 

 

      
    

         
                      

Eq. 12 

 

     
    

         
                        

Eq. 13 
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Figure 9 Bar of circular cross section with u-shaped groove subjected to tension and bending [9] 

Therefore, it is well understood that the expression of the reference stresses ςnom that is used 

depends on the respective problem and it is very important for the engineer to be able to 

properly identify the reference stress for the purpose of calculating the stress concentration 

factor. The example below should help to explain the selection of the nominal stress.  

 

Example 1 Tension bar with a groove [4] 

A bar of circular cross section, with a U-shaped circumferential groove, is subjected to an 

applied torque T. The diameter of the bar is D, the radius of the groove is r, and the depth of 

the groove is t. The stress distribution for the cross section at the groove is shown in Figure 10, 

with the maximum stress occurring at point A at the bottom of the groove. The reference stress 

could be defined in the following ways: 

(1) Use the stress at the outer surface of the bar cross section Β’-Β’, which is far from the 

groove, as the reference stress. According to basic strength of materials (Pilkey 2005), 

the shear stress is linearly distributed along the radial direction and    

        
   

          

Eq. 14 

 

(2) Consider point A’ in the cross section B’-B’. The distance of A’ from the central axis is 

same as that of point A, that is, d = D - 2t. If the stress at A’ is taken as the reference 

stress, then 

     
    

          

Eq. 15 

(3) Use the surface stress of a grooveless bar of diameter d = D – 2t as the reference stress. 

This corresponds to a bar of cross section measured at A-A of Figure 10. For this area 

πd2/4, the maximum torsional stress taken as a reference stress would be  
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Eq. 16 

In fact this stress based on the net area is an assumed value and never occurs at any point of 

interest in the bar with a U-shaped circumferential groove. However, since it is intuitively 

appealing and easy to calculate, it is used more often than the other two reference stresses.  

 

 

Figure 10 Example of determining nominal stress (bar with u-shaped groove subjected to torsion) 

 

2.3 Theoretical Stress Concentration Factor  

The first mathematical treatments of stress concentration were published shortly after 1900. 

Experimental methods for measuring high localized stresses were developed and used, in order 

to handle other than very simple cases. Nowadays, finite element studies with the help of 

modern computing machines have also been employed. The results of many of these previous 

studies are available thanks to R.E. Peterson who compiled them in form of tables and 

published graphs, such as the following Figure 11. Peterson also developed the style of 

presentation in which the stress concentration factor Kt is multiplied by the nominal stress ςnom, 

in order to estimate the magnitude of the maximum stresses in the specimen. 
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Figure 11 Typical graph for a shaft with u-shaped groove under axial loading [10] 

 

At this point, it should be emphasized that the stress concentration factors given in graphs are 

theoretical or, even better, geometric factors based on a theoretical homogeneous, isotropic 

and elastic material. Real materials and real mechanical parts have microscopic irregularities 

(from processing and use) that can be considered as extremely small notches and causing a 

certain nonuniformity of microscopic stress distribution.  

More present mathematical models can also give a good approximation of the theoretical 

stress concentration factor, like the expression below:  

 t   C    C2 (
  

 
) C  (

  

 
)
 
    (

  

 
)
 

   [9] 

Eq. 17 

where, for tension, 

C                  √  ⁄                                                                                   Eq. 18 

C2    -      -       √  ⁄                                                                                 Eq. 19 

 C                   √  ⁄  –                                                                                Eq. 20 

C4    -      -       √  ⁄                                                                 Eq. 21 
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Considering the geometry of the problem, it appears that   
   

 
 and this leads to t/r=1. 

Therefore the values of C1, C2, C3 and C4 are: 

C1= 3.004, C2= 7.393, C3= -6.071, C4= -2.893  

 

2.4 Notch Sensitivity 

 

As already referred, the theoretical stress concentration factors apply mainly to ideal elastic 

materials and depend on the geometry of the body and the loading, yet there are cases where 

a more realistic model is needed. When the applied loads reach a certain level, plastic 

deformations may be involved and the actual strength of structural members may be quite 

different from that derived using theoretical stress concentration factors, especially for the 

cases of impact and alternating loads. Therefore, it is reasonable to introduce the concept of 

the effective stress concentration factor Ke, also referred as the notch rupture strength ratio. 

The magnitude of Ke is obtained experimentally. For instance, Ke  for a round bar with a 

circumferential groove subjected to a tensile load 
'P  (Figure 12) is obtained as follows: 

 

1. Two sets of specimens of the actual material, the round bars of the first set having 

circumferential grooves, with d as the diameter at the root of the groove (Figure 12a). The 

round bars of the second set are of diameter d without grooves (Figure 12b). 

 

2. In a tensile test for the two sets of specimens, the rupture load for the first set is 
'P , while the 

rupture load for second set is P . 

 

3. The effective stress concentration factor is defined as: 

                                                  'e

P
K

P
                                                         Eq. 22 
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Figure 12 Specimens for obtaining Ke 

 

In general, 
'P P  so that 1eK  . The effective stress concentration factor is a function not 

only of geometry but also of material properties. Some characteristics of eK  for static loading 

of different materials are discussed briefly below. 

 

1. Ductile material. A tensile loaded plane element with a V-shaped notch. The material law 

for the material is sketched in Figure 13. If the maximum stress at the root of the notch is 

less than the yield strength max y    the stress distributions near the notch would 

appear as in curves 1 and 2 in Figure 13. The maximum stress value is: 

max t nomK 
 

 

Figure 13 Stress distribution near a notch for a ductile material. [4] 
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As the max
 
exceeds y , the strain at the root of the notch continues to increase but the 

maximum stress increases only slightly. The stress distributions on the cross section will be of 

the form of curves 3 and 4 in Figure 13, so the equation above no longer applies to this case. As 

nom   continues to increase, the stress distribution at the notch becomes more uniform and the 

effective stress concentration factor eK   is close to unity. 

 

2. Brittle material. Most brittle materials can be treated as elastic bodies. When the applied 

load increases, the stress and strain retain their linear relationship until damage occurs. 

The effective stress concentration factor eK   is the same as tK  . 

 

3. Gray cast iron. Although gray cast irons belong to brittle materials, they contain flake 

graphite dispersed in the steel matrix and a number of small cavities, which produce 

much higher stress concentrations than would be expected from the geometry of the 

discontinuity. In such a case the use of the stress concentration factor tK   may result in 

significant error and eK   can be expected to approach unity, since the stress raiser has a 

smaller influence on the strength of the member than that of the small cavities and flake 

graphite. 

 

It can be reasoned from these three cases that the effective stress concentration factor 

depends on the characteristics of the material and the nature of the load, as well as the 

geometry of the stress raiser. Also 1 e tK K   . The maximum stresses at rupture can be 

defined to be: 

max e nomK                                      Eq. 23 

 

 

To express the relationship between  fK   and tK  , introduce the concept of notch sensitivity  

(Boresi 1993): 

1
 

1

e

t

K
q

K





                                                    Eq. 24 

                          

Or 

( 1) 1e tK q K                                      Eq. 25 
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And the  can be defined as:  

 

 max ( 1) 1t nomq K                               Eq. 26 

 

 

 If 0q  , then, Ke = 1 meaning that the stress concentration does not influence the strength of 

the structural member. If 1q   , then e tK K  implying that the theoretical stress 

concentration factor should be fully invoked. The notch sensitivity is a measure of the 

agreement between  eK  and tK  . The concepts of the effective stress concentration factor and 

notch sensitivity are used primarily for fatigue strength design. For fatigue loading: 
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Where fK   is the fatigue notch factor for normal stress and  fsK  is the fatigue notch factor for 

shear stress, such as torsion. The notch sensitivities for fatigue become: 
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The values of q  vary from 0q    for no notch effect ( 1fK  ) to 1q   for the full theoretical 

effect ( f tK K ). 
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Figure 14 Average fatigue notch sensitivity [10]. 

Where tfK  is the estimated fatigue notch factor for normal stress, a calculated factor using an 

average q   value obtained from Figure 14 or a similar curve, and tsfK  is the estimated fatigue 

notch factor for shear stress. 

 

 

2.5 Influence of Poisson’s Ratio on Kt 

In general stress concentration factors will change with different materials. Poisson’s ratio ν is 

often involved in a three-dimensional stress concentration analysis and modern charts for three 

dimensional stress concentration problems not only list the body shape and load, but also 

specify the Poisson’s ratio ν for the case. Althought, many original charts made from 

photoelastic expirements do not include the value of ν.  

The influence of Poisson’s ratio on the SCF varies with the configuration. For example, in the 

case of a circumferential groove in a round bar under torsional load the stress distribution and 

concentration factor do not depend on ν. This is because the shear deformation due to torsion 

does not change the volume of the element, namely the cross-sectional areas remain 

unchanged. 
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Figure 15 Round bar with a circumferential groove under torsion 

 

In Dally & Riley (1991) it is stated that the influence from Poisson ratio on the result is usually 

small, meaning less than 7%. There isn’t much information found in literature for the influence 

of Poisson’s ratio on Kt for a shaft with a U-shaped circumferential groove under tension, but in 

general the influence of ν increases for the low values of r/d and is smaller as the r/d ratio 

decreases. 

In the previous part of the paper when not specified and in the remaining part of the paper we 

will assume that 0,3v    corresponding to the normal value for a steel shaft. 
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Chapter 3 

3.1  Finite Elements Method  

Finite Elements Method (FEM) is the fastest and most effective method that engineers use 

nowadays in order to analyze and solve a wide range of problems, both linear and non-linear 

problems (strain-displacement) of continuous parts. While it is difficult to quote a date of the 

invention of the finite element method, the method originated from the need to solve complex 

elasticity and structural analysis problems in civil and aeronautical engineering. Engineering 

structures that have complex geometry and loads, are either very difficult to analyze or have no 

theoretical solution. However, in FEA, a structure of this type can be easily analyzed and the 

user can solve a complex engineering problem without knowing the governing equations or the 

mathematics; the user is required only to know the geometry of the structure and its boundary 

conditions.  

Finite element analysis (FEA) involves solution of general field engineering problems, like 

elasticity, fluid flow, heat transfer problems, etc. using various professional programs, such as 

Abaqus, ANSYS, ALGOR and NASTRAN. In this technique the structure is divided into very small 

but finite size elements (hence the name finite element analysis). Individual behavior of these 

elements is known and, based on this knowledge the behavior of the entire structure can be 

determined (Figure 16). The relationships that are used and the properties of the materials are 

considered on these elements and are expressed in terms of uknown values in their angles 

which respond in relation to the finite element and are colled its nodes. 

 

Figure 16 The frame of a car divided into finite elements [11] 

Numerical stress analysis with the Finite Elements Method can give accurate results of stresses 

developing in discontinuity and as a result, the use of SCF is nowadays unnecessary. Although, 

we can first calculate the SCF with the help of the numerical study and use it later for the design 

of mechanical structures with more classical methods.  
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3.2 FEM Modeling Shafts 

Static strength evaluation of components and machine elements (such as shafts) makes the 

modelling and estimation of stress concentrations very important. This evaluation demands a 

high number of FEM meshing nodes on the boundary shape where the stress concentration is 

present. For a given design, the position of high stress can be found and the element 

refinement can be done locally at this specific position, reducing the need for overall mesh 

refinement considerably. In optimization, where the reduction of maximum strenght is the 

purpose, the point of maximum stress is not known but is a function of the design. In fact, the 

optimality criterion for minimum stress on the surface is that the stress is constant on the 

surface, which will increase the number of nodes on the boundary since we need to evaluate 

the stress over a larger area.  

 

 

Figure 17 Definitions of forces and moments on a beam cross section 

 

In Figure 17 the possible forces and moments on a shaft are shown, axial load  Fx , torsional load Mx. The 

bending moment is    √       . The total shear force    √         is normally not 

accounted for because the shear stress associated with this force is zero at the point of maximum 

normal stress due to the bending moment. The shaft geometry is axisymmetric and only the axial load is 

also axisymmetric. FEM modeling of the shaft can be done in many ways. For the axial load the simplest 

modeling is to use a standard axisymmetric model. For torsional load, the loading is out-of-plane relative 

to the plane of a 2D axisymmetric model, and this cannot be done with standard axisymmetric 

modeling. A full 3D shaft modeling can of course be used but due to the symmetry we can reduce the 3D 

model to a sector of a circle where the central angle in principle can go to zero, but this will be limited 

by the resulting FEM mesh quality. [12] 
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3.3 Diploma Thesis 

 

A common problem in any mechanical construction is the determination of the stress load that 

develops, as well as the definition of the critical values that can cause a possible failure. Almost 

every mechanical structure consists of shafts which are designed with geometrical 

discontinuities that receive the highest values of stresses. A common type of discontinuity  is 

the circumferential grooves or notches, particularly U-shaped notches, that occur frequently in 

engineering design in such applications as C-ring retainer grooves, oil grooves, shoulder or 

grinding relief grooves, seal retainers, etc. [7]. We consider a shaft that the initial diameter D 

decreases to a smaller diameter d due to a U-shaped circumferential groove with radius r. 

 

 

Figure 18 Diploma thesis shaft 

These geometrical discontinuity causes stress concentration in discontinuous regions. The 

stress concentration factor Kt, as discussed in the previous chapter, is the only parameter can 

be used in order to determine the stress load. The stress concentration factor is affected by a 

unique parameter and that is the geometry of the specimen. To be more specific, Kt is affected 

by the fraction of the groove radius to the inner diameter d (r/d). The calculation of the stress 

concentration factor with the Finite Elements Method and the comparison with the theoretical 

results found in literature is the main purpose of this project. For this experiment, it is assumed 

that the specimens are under tensile loads and the same procedure will be applied to four 

different geometries with the same length of 180 mm shown in the table below (Table 2). This 

will also prove the dependence of the stress concentration factor to the fraction of r/d. 

Specimen D (mm) d (mm) r (mm) D/d r/d 

3005 40 36.4 1.8 1.1 0.05 
3075 40 34.7826 2.6087 1.15 0.075 
3015 40 30.7692 4.6154 1.3 0.15 
3025 40 26.6666 6.6667 1.5 0.25 

 

Table 2 Geometrical features of the examined specimens 
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3.4 Defining the Two-Dimensional Axisymmetric Problem in Abaqus 

This project is analyzed in the Abaqus environment.  As the specimen has a cylindrical body, 

then cylindrical coordinates can be used (Figure 19). The body of the specimen possesses two 

axis of symmetry and the problem solution is independent of angle θ. Therefore the problem 

can be defined as axisymmetric and besides it is a three-dimensional problem, it can be 

“converted” to a two-dimensional one.  

 

Figure 19 Cylindrical coordinates on a cylindrical body 

The first step in order to design the specimens in Abaqus is to design the 2D problem by 

exploiting the double symmetry of the specimen and designing the ¼ of the specimen. Because 

both the geometry and loads are symmetric, the numerical simulation can be performed on 

only a portion of the whole model to reduce computation. Then, the border conditions and the 

loads will be applied. To be more specific, a tensile load will be applied to one end, while the 

other one will be anchored. In the last step the 3D domain will be designed by revolving the 

two-dimensional sketch around the axis of symmetry by 360 degrees. 

 

 

 

 

 

 

 

 
Figure 20 Axisymmetric part and 3D part of specimen 3015 
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3.5 Modeling the Axisymmetric Problem in Abaqus 

 

3.5.1 Border Conditions 

 

The simulation of border (or boundary) conditions and other forms of constraint is probably the 

single most difficult part of the accurate modelling of a structure for the Finite Element 

Analysis. Border conditions can be used to specify the values of all basic solution variables 

(displacements, rotations, warping amplitude, fluid pressures, pore pressures, temperatures, 

electrical potentials, normalized concentrations, acoustic pressures, or connector material flow) 

at nodes. In specifying constraints, it is relatively easy to make mistakes of omission or 

misrepresentation. It may be necessary for the analyst to test different approaches to model 

esoteric constraints such as bolted joints, welds, which are not as simple as the idealized pinned 

or fixed joints. Testing should be confined to simple problems and not to a large, complex 

structure. Sometimes, when the exact nature of a boundary condition is uncertain, only limits 

of behavior may be possible. For example, shafts with bearings have been modeled as being 

simply supported. It is more likely that the support is something between simply supported and 

fixed, and we could analyze both constraints to establish the limits. However, by assuming 

simply supported, the results of the solution are conservative for stress and deflections. That is, 

the solution would predict stresses and deflections larger than the actual.  

 

Multipoint constraint equations are quite often used to model boundary conditions or rigid 

connections between elastic members. When used in the latter form, the equations are acting 

as elements and are thus referred to as rigid elements. Rigid elements can rotate or translate 

only rigidly, while boundary elements are used to force specific nonzero displacements on a 

structure. [5] 

 

 

Figure 21 Displacements on all three direcrions 

In Abaqus, boundary conditions correspond to specific degrees of freedom that are restrained. Except 

for axisymmetric elements, the degrees of freedom that are related to displacement and rotation in 

Abaqus, are referred  to as follows : 
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1. Displacement in the 1 - axis (U1) 

2. Displacement in the 2 - axis (U2) 

3. Displacement in the 3 - axis (U3) 

4. Rotation about the 1 - axis (UR1) 

5. Rotation about the 2 - axis (UR2) 

6. Rotation about the 3 - axis (UR3) 

 

Axisymmetric elements use only four of the degrees of freedom above (U1, U2, UR2 and UR3). 

 

Therefore, for this project specifically, the boundary conditions can be shown in Figure 22 in the 

next paragraph and are the following: 

 

 The first border condition is applied at the axis of symmetry in the 1-direction. 

U1 = 0                                            Eq. 31 

 

 The second border condition is applied on the “top” of the specimen. 

U2 = 0                                              Eq. 32 

UR3 = 0                                           Eq. 33 

 

3.5.2 Tensile Load 

 

One aspect that needs to be taken under consideration for applying loads is related to Saint-

Venant’s principle. This means that the method in which the load is applied does not affect the 

stresses at a sufficient distance away from the load application location. So, if one is not 

concerned about the stresses near points of load application, there is no need to attempt to 

distribute the load very precisely. On the opposite, the analyst should not be impressed or 

concerned, when reviewing the results and the values of the stresses in the vicinity of the load 

application are found to be very large. 

 

According to what is described above and for the geometry of the specimens examined in this 

project, if the load is applied at the top of the specimen which is very close to the region of 

interest (groove), then the calculations of the stress distribution turn out to be wrong. This can 

be fixed easily by applying the tensile load at the bottom of the specimen and border 

conditions at the top.  
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The value of the distributed tensile load is 100 MPa. The first reason for that is that the 

calculations of Kt are easier, but the main reason should be considered to be for purposes of 

not reaching the critical value of the material.  

 

 

Figure 22 Border conditions and tensile load 

 

3.5.3 Partitions and Meshing 

 

The Finite element model in Abaqus is based both on nodes and elements that form a grid. That 

grid, or in other words, the network of nodes and elements that discretize a region of the 

model, is usually referred to as a mesh and all the users of programs like Abaqus must have a 

good knowledge and understanding about the mesh module’s tools and settings in order to 

perform a stress analysis. There are three basic ways to generate an element mesh; manually, 

semi manually and automatically. For the specimens of this project the mesh construction 

became a semi-manually procedure, after many attempts. 

 

Before meshing a part, it must be partitioned if needed. In the mesh module of Abaqus there 

are several kinds of tools for partitioning 2D and 3D parts. Note that meshing 3D parts is much 

more complex than partitioning 3D parts and needs more experience and that is the main 

reason of analysing the two dimensional model and then revolving it, as it was refered in the 

previous paragraph. The main reason for which the analyst creates partitions, is in order to 

have better control on the mesh pattern and the size of elements. This means that it is 

necessary for the mesh to be finer in the important regions (stress raisers including grooves, 

holes, cracks, fillets etc.), while there is no need for small elements in regions far from the 

stress raisers in order to get more accurate results, as seen in Figure 23 below. The partitions of 

the specimen are shown also shown in the same Figure 23. 
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Figure 23 Partitions and meshing of specimen 3015 

 

Also, the number of elements has an important effect on the simulation. Increasing the number 

of elements leads also to the increase of the simulation time and many times without any 

different result. Therefore, there is a great need for optimization of the mesh, meaning that the 

density of the mesh must be such that it is possible to approach accurate results with the least 

possible elements. This has a large effect on the simulation time. For example by optimizing the 

number of elements in large complicated models, the simulation time can be decreased from 

one day to several hours.  

 

From the tests performed until the correct grid was achieved for the specimens of this project, 

it was observed that with the increase of the elements in the r direction we have a faster 

convergence towards the exact solution than if the elements in the θ direction increase (see 

Figure 24). In addition, the right size of the elements in the notch should be about one twentieth 

of the radius (r) of the curvature.  

 

Figure 24 Possible directions of increasing the mesh density 

 

It should also be mentioned that there was a need of designing a different grid for each 

specimen (therefore the whole procedure of meshing occurred semi-manually) and it was not 
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possible to use the same grid for all specimens. This is due to the fact that each specimen has a 

different radius of curvature resulting in an increase or decrease in the density of the grid in 

that area, giving wrong results and bad approximations of Kt. There was also no need of using 

the same number of elements for all the specimens, as this results to only a slightly different 

amount of time for each simulation.  

 

3.6 Finite Elements in Abaqus – CAX4 Elements 

Many geometric shapes of elements are used in Finite Analysis for specific applications. Abaqus 

utilizes an extensive element library to provide a powerful set of tools suitable for solving many 

different problems. Each element type has it’s own advantages and limitations and selecting 

the appropriate element type is vitally important for obtaining accurate results. 

In general, there are five aspects of an element that characterize its behavior in Abaqus and 

that one should consider when determining the optimal Abaqus element formulation for a 

given analysis: 

 Family 

 Degrees of freedom 

 Number of nodes 

 Formulation 

 Integration 

 

The Element Family, several of which are shown below (Figure 25), is used to describe the type 

of element and hint at applications for which it may be suitable. The major distinction between 

element families is the geometry type that each family assumes. 

 
Figure 25 Commonly used element families 

 

In addition, the Number of nodes that an element contains directly impacts the total Degrees of 

freedom and therefore has a significant impact on the element’s ability to deform. Perhaps 

more importantly, the number of nodes an element has, dictates the strategy that will be used 

to interpolate the degrees of freedom calculated at the nodes to the rest of the element. 
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Within Abaqus, there are two available orders of interpolation: linear (elements that have 

nodes only at their corners) and quadratic (elements that have corner nodes and mid-side 

nodes). 

 
Figure 26 Linear and Quadratic elements 

The Formulation of an element dictates the underlying mathematical algorithms governing 

element behavior. Fundamentally, there are two distinct types of elemental behavior: 

Lagrangian and Eulerian. The Langrangian model describes elements which deform with the 

material (appropriate for stress/displacement analyses), whereas Eulerian elements are fixed in 

space and allow material to flow through them (more suitable for representing fluid 

mechanics). 

 

Last but no least, Abaqus uses Integration to determine various quantities throughout the 

volume of an element. The material response is evaluated at each of the integration points. 

Because each integration point requires mathematical resolution, it logically follows that 

elements with more integration points are computationally more expensive than those with 

fewer. To that end, several Abaqus element families provide a “Reduced Integration” option 

which uses fewer integration points than the standard element formulation. When used 

appropriately, reduced integration elements can substantially improve model efficiency and 

solver runtime. However, it must be noted that reduced integration elements have limitations 

which can lead to inaccurate results if used incorrectly. 

According to the above and as found in Abaqus manual [13], the CAX4 Elements are the most 

suitable elements for modelling axisymmetric problems like the one in the present project. 

CAX4 is a 4-node bilinear, axisymmetric and solid (continuum) element, suitable for stress 

analysis as seen in Figure 27. The (r) and (θ) directions coinside with the global X and Y axis 

respectively. The structure is symmetric about the (z) axis. The concentrated loads are defined 

as the total loads integrated around the circumference, while the distributed loads should be 

provided as loads per unit of surface area. CAX4R (Reduced Integration) elements could be also 

suitable for this project but better approximations of Kt were achieved with the use of CAX4 

elements. 
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Figure 27 Axisymmetric element CAX4 

  

 

 

 

3.7 Final Mesh and Stress Distribution 

After the finite element analysis is completed with the help of Abaqus software, we can obtain 

a clear picture of the stress distribution on each one of the specimens. As we can observe from 

the following Figure 28 (28-31) of the 2D specimens, the location of the maximum stresses 

appears at the bottom of the u-shaped groove. 

 

 

Figure 28 Stress distribution across the 3005 element in Abaqus CAE 
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Figure 29 Stress distribution across the 3075 element in Abaqus CAE 

 

 

 

 

 

 

Figure 30 Stress distribution across the 3015 element in Abaqus CAE 
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Figure 31 Stress distribution across the 3025 element in Abaqus CAE 

 

By rotating the 2-D specimen by 360 degrees, we can obtain a 3-D view of the entire specimen. 

The results of the 3-D analysis are the same, meaning that the peak stresses appear at the 

bottom of the groove, as we can see in the following Figure 32. 

 

 

 

Figure 32 Stress distribution across the 3-D model of specimen 3005  in Abaqus environment 
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Chapter 4 

4.1 FEM Analysis Results 

As presented in the previous paragraph, after finishing the FEM analysis via Abaqus, the 

program gives the user the magnitudes of stresses across the whole model. The maximum 

value obtained can be used in order to calculate the stress concentration factor Kt from the 

following expression,  

 t   
 max

 nominal

 

Eq. 34 

Note that, as the same tensile load σ=100MPa is applied at the end of each specimen, then 

ςnominal at the inner diameter (d) of each specimen and in the center of the notch can be 

calculated as  

           
  

  
 

 Eq. 35 

The results for the four specimens, taken from the procedure described previously, are given 

accurately in the table below (Table 3) and their values can be compared with the values of Kt, 

as they are given by Peterson’s diagrams.  

 

Specimen σnominal (MPa) σ22,max (MPa) Kt Peterson Kt FEM Error % 

3005 120.7584 311.7 2.6 2.581188 0.7236 
3075 132.2501 320.3 2.47 2.421927 1.9463 
3015 169.0003 345.5 2.08 2.044375 1.7128 
3025 225.0011 393.7 1.78 1.749769 1.6984 

 
Table 3 Abaqus results and stress comparison for specimens under examination 

 

Note that there is an inverse relationship between the stress concentration factor Kt and the 

r/d ratio’s value, while the relationship between Kt and the values of D/d ratios is positive. 

The following Figure 33 shows the stress distribution (ς22) for the specimen 3025 at the 

intersection made between the two antidiametric points located at the bottom of the notch. 

The red curve shows the stress distribution when the specimen of circular cross section has a 

constant diameter D=26,666 mm (without any groove) and the blue one shows the stress 

distribution for a shaft of round cross-section with outer diameter D=40 mm and a u-shaped 
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notch groove that reduces the diameter to its minimum value, which is d=26,666 mm. The 

horizontal axis shows the distance from the center of the intersection. 

 

 

Figure 33 Stress distribution along cross-section with minimum diameter d 

 

From the Figure 33 above it is clear that there is not any kind of stress concentration all over the 

diameter of the unnotched shaft and its maximum stress value is constant and equal to 100 

MPa, whereas the notched shaft appears a stress increase in the outer face. 

The stress distribution for the other specimens would be similar to this one, so there is no need 

for presenting them. 

 

4.2 Graphic Comparison of Kt  

The exact calculation of Kt with theoretical values can be supported by Shigley’s (Figure 34) and 

Peterson’s (Figure 35) results found in literature and then, can be compared with the numerical 

results obtained from Abaqus.  
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Figure 34 Shigley’s chart results for Kt referring to a shaft in tension with a U-shaped groove [5] 
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Figure 35 Peterson’s stress concentration factors Kt for a shaft in tension with a U-shaped groove [4] 

The next figure (Figure 36) shows the graphical comparison between the values of the stress 

concentration factor as shown in the Peterson’s charts above and the ones obtained by the 

finite elements method.  
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Figure 36 Graphic comparison of Kt values 

 

4.3 Conclusion and comments on results 

Most mechanical structures and compartments present various geometrical discontinuities in 

their shape as well as microstructural discontinuities. Therefore, the determination of the 

Stress Concentration Factor (Kt) proves to be a major subject for the mechanic engineering 

industry, serving the purpose of designing safe mechanical structures and obviating structural 

failures.  

Nowadays, the Finite Analysis Method is a useful tool for mechanical engineering that gives the 

opportunity of analyzing complicated geometries by the help of discretization technique. The 

effectiveness of this method in calculating quickly and accurately the stress concentration 

factor Kt is proved by the comparison with values existing in literature. As shown in Table 3, the 

results obtained from the FEM analysis are quite accurate, with a maximum error of about 1.9 

%. The results can be improved even more by improving the mesh and the density of the grid 

near the area of interest. Those low deviations prove that the Finite Element Method is an 

accurate way of studying the stress concentration phenomenon and prevent failures, and also 

can help avoiding errors made from incorrect diagram reading.  

However, both theoretical and computational methods of calculating the stress concentration 

factor are not entirely accurate and can often mislead about the real situation happening in the 
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critical areas of mechanical structures. Both methods are based on assumptions such as that 

the material is homogeneous and isotropic, an assumption that is almost never accurate. As a 

result, engineers and researchers should evaluate in deeper dimensions the characteristics of 

these problems and study different geometries, dimensions and combination of notches 

furthermore, in order to overcome any doubtful cases and conclude to more steady results. For 

example new researches prove that other types of grooves (such as the elliptic ones) can 

produce reduced stress concentration compared with the semicircular ones [14]. In the last 

decades, it is safe to claim that the stress concentration analysis is improving with great steps 

and this will lead to a clearer picture about stress concentration and improving of the 

mechanical behavior of materials.  
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APPENDIX 

 

The input files from specimen 3005 created by Abaqus environment. Only a portion of the input 

file is presented here in order to save space and reduce the size of the text. 
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The nodes range between (1 – 5956) and the elements range between (1 – 5742). 
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