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Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από τις διατάξεις της παρ. 6 του 
άρθρου 22 του Ν. 1599/1986, δηλώνω ότι: 

1.    Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να τα 
περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη σελίδα. 
Η αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι λογοκλοπή. Πέραν 
της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση εδαφίων από έργα 
άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς και η παράθεση 
στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά στην πηγή. Αναφέρω 
πάντοτε με πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, όπως στα παραθέματα. 

2.    Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται από 
αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι αντιγραφή. 
Η αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν δικαιολογεί 
συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και παρουσίασή 
τους ως δική μου εργασία. 

3.    Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των παραθεμάτων 
που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε μεγάλο παράθεμα (π.χ. 
σε πίνακα ή πλαίσιο, κλπ), προϋποθέτει ειδικές ρυθμίσεις, και όταν δημοσιεύεται 
προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι πίνακες και τα σχέδια 

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής.  

  

Ημερομηνία:   ……/..…/20…… 
  

Ο – Η Δηλ. 

  

  

  

(Υπογραφή) 

(1) «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με έγγραφη 
υπεύθυνη δήλωση του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. 
Εάν ο υπαίτιος αυτών των πράξεων σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό 
όφελος βλάπτοντας τρίτον ή σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών. 
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Abstract 

This work investigates the use of Genetic Algorithms (GAs) to train Convolutional Neural 

Networks (CNNs) in order to improve network’s generalization. Experiments were conducted 

to evaluate the effect of varying training set sizes, random subsets of the training set per 

individual, and the rank of the network tensor of the convolutional layer on the test accuracy 

of the CNN. For this purpose, we constructed a very simple CNN with one convolutional layer 

and two fully connected layers. We used the MNIST dataset for experimentation. In detail, 

first we experimented with the influence of narrowing the training subset for each individual 

of the population, by comparing the training accuracy with the validation/test accuracy during 

the evolution. The results showed that test accuracy decreased from 74% to 67.4% and 64.2% 

when the training set was decreased from 5000 to 200 and 100 images, respectively. We also 

investigated the case of constructing the weight tensors of the convolutional layer with lower 

rank and the results have shown that the rank of the network tensor had no statistically 

significant effect on the test accuracy of the designed CNN. Finally, applying the hybridization 

of GAs with BP by fine tuning the best chromosome of the generations with BP caused quick 

loss of genetic diversity, resulting in overfitting, which was evident in the results, achieving 

100% train accuracy and very poor test accuracy. It is important to mention that no overfitting 

was observed during the GA-training of the CNN, even after 400 generations. These results 

suggest that GAs can be used to train CNNs with improved generalization. 
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1.  Introduction 

Due to the technological advancements that have occurred in the field of artificial intelligence 

and computer information technology over the past few years, the number of new methods 

and techniques that have been developed to solve pattern recognition problems have 

increased. One of these is the Artificial Neural Network (ANN), in the context of deep learning. 

The ANN concept is based on relevant biological activities of the human brain. Currently, 

neural networks are performing well in many areas such as facial recognition, market 

forecasting, and risk assessment. ANN is a term used collectively for traditional architectures, 

such as Multilayered Perceptrons -MLPs-, as well as for deep learning ones, such as 

convolutional neural networks (CNNs).  Backpropagation is the algorithm that dominates the 

training of ANNs, with many variations of the optimization function. Backpropagation (BP) 

involves feedforward of the input training pattern, error computation, and adjustment of 

synaptic weights. BP is a gradient descent optimization method; thus, it is essentially a local 

optimization, despite variations like the introduction of momentum. Currently, this method 

is applied in many fields such as predictive decision-making, orbital placement, and system 

planning. The applicability and good performance of network models in many fields make it a 

hotspot studied by relevant experts and scholars.  

Genetic Algorithms (GAs) on the other hand is a global optimization that uses population 

dynamics, instead of gradient information. The main drawback is the slow convergence, 

however its ability to escape local optima of the fitness function landscape is a great 

advantage. 

A CNN training by GAs (GA-CNN) is designed to be able to evolve a population of CNNs 

encoded into chromosomes, in order to better solve a given problem. This ability to adapt 

and change over time is what makes this type of global optimization so powerful. The aim of 

this work is to delve into the combination of GAs and BP for CNN training. 

Aims and Contributions 

More specifically, we attempt to investigate the role of genetic algorithms in training CNNs 

for image classification, in terms of accuracy, compared to backpropagation. GA is a type of 

artificial intelligence technique that uses evolutionary algorithms in order to evolve solutions 

for a given problem. GA can be used to find the optimal weights for a convolutional neural 

network (CNN) by creating a population of individuals (that contain the network’s weights) 

and then using evolutionary operators to generate new weights from the existing ones. The 

best weights from the population are then selected and used for the CNN. This process can 

be repeated multiple times to find the optimal set of weights that leads to the highest 

accuracy.  

The main contributions of this project are reflected in the following two levels: an optimized 

Genetic Convolution Neural Network (GA-CNN) algorithm and a hybrid genetic-

backpropagation algorithm (GA-BPNN) are proposed and applied for the Digit and Type of 
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Clothing Recognition. The GA-CNN algorithm combines the genetic algorithm with the CNN 

model, allowing effective training to be achieved by optimizing the CNN model. To evaluate 

the performance of the GA-CNN algorithm, the accuracy of the digit and type of clothing 

recognition tasks are compared to the traditional backpropagation algorithm. More specific 

issues are being investigated: 

• the degree of overfitting by the GA-based training, by comparing the training accuracy 

with the validation/test accuracy during the evolution 

• the effect of lowering the rank of the weights of the convolutional layer, in terms of 

the achieved classification accuracy 

• the effect of narrowing the training subset, globally for all individuals of the population 

• the influence of narrowing the training subset, for each individual of the population 

• the role of hybridizing GAs with BP and the effect of the frequency of this hybridization 

The results are produced for a small dataset and presented and discussed in the following 

sections. 
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2.  Background 

2.1 Convolutional Neural Networks 

Feedforward Neural Networks can be used to solve any kind of regression or classification 

problems but lacks in the field of computer vision as the number of parameters to optimize is 

very high. In fully connected layers also ANNs cannot identify the objects in each image. Due 

to these reasons, ANN is not recommended for identifying the object in an image. The usage 

of Convolution Neural Networks in the field of Image classification has achieved remarkable 

success in recent years.  

Convolutional Neural Network (CNN) is specialized for image recognition. The CNN 

architecture can be divided into two sections: Feature learning and Classification section. The 

input image enters the feature extraction network. The extracted feature signals enter the 

Classification Neural Network. This section operates based on the features of the image and 

generates the output. The feature extraction neural network consists of the piles of the 

convolutional layer and pooling layer pairs. The convolutional layer, as its name implies, 

converts the image using the convolution operation - it can be thought of as a collection of 

digital filters. The pooling layer combines the neighboring pixels into a single pixel; therefore, 

the pooling layer reduces the dimension of the image. As the primary concern of the CNN is 

the image, the operations of the convolutional and pooling layers are conceptually in a two-

dimensional plane. This is one of the differences between CNN and other neural networks. 

 

 

 
Figure 1: The architecture of a convolution neural network with 1 hidden layer 

 

The convolutional layer generates feature maps from images. The working principle of this 

layer is different from other neural network layers. It does not employ connection weights 

and a weighted sum. Instead, it contains filters that convert images. These filters are called 

Convolutional Filters. The number of Feature maps and the number of convolutional filters is 
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the same. That means, if there are four convolution layers, then it will generate four feature 

maps. 

 

 

Figure 2: Classification Neural network 

 

2.2 Neural Network training using Backpropagation 

The backpropagation algorithm is used to train a neural network. By comparing desired 

outputs to achieved system outputs, the systems are tuned by adjusting connection weights 

to narrow the difference between the two as much as possible. 

As referred to in [Joseph Tarigan, 2017] and [Phil Kim, 2017], the main feature of the 

backpropagation algorithm is the iterative and recursive method of calculating and updating 

the weights based on the error rate of the previous epoch. In detail, the backpropagation 

algorithm works by first calculating the error of the network, then propagating the error 

backwards through the network to adjust the weights of each layer, and finally updating the 

weights to reduce the error. The process is repeated until the error is minimized. This process 

is known as gradient descent (Fig.3). 
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Figure 3: Training of CNN with backpropagation  

 

The speed of the training process and the accuracy of image recognition is affected by two 

variables: learning rate and momentum rate. The learning rate indicates the step size towards 

the minimum value of the loss function when following the gradient descent, whereas the 

momentum weight considers previous weight changes when updating the current weights. 

Furthermore, the optimal learning rate and momentum rate values for one backpropagation 

neural network topology may not be optimal for another backpropagation neural network 

topology. This is because each topology is specific to its domain of use. These two variables 

also influence the tendency of the backpropagation process to fall into the local minimum, 

making the artificial neural network's detection performance suboptimal.  

It also must be mentioned that the number of neurons in the hidden layer also affects the 

speed of the backpropagation process and its accuracy. As expected, the more neurons, the 

more information can be stored, but this affects the speed of the training process. A 

suboptimal number of neurons reduces the ability to generalize, whereas too many hidden 

neurons lead to overfitting problems. In both cases, the artificial neural network yields sub-

optimal performance. 

 

2.3 Neural Network training using Genetic Algorithm 

Evolutionary algorithms have been used for long in the field of image analysis. Artificial 

immune system is an algorithm of this family that has been proposed for classification [K. 

Delibasis et. al., 2008] and finding corresponding points in images [K. Delibasis et. al., 2011]. 

The main representative of evolutionary algorithms is Genetic Algorithms (GAs). GAs is a 

global optimization technique that is known to optimize multidimensional landscape 

functions without the use of derivative information [Goldberg, 1988]. Genetic Algorithm is a 

heuristic search algorithm that is inspired by the biological evolution analogy of crossing over 

the fittest chromosomes to generate superior offspring. This algorithm works by applying 

random changes to current chromosomes (solutions) to create new ones. There are five 
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phases considered in a genetic algorithm: Initialization of the population, Fitness function, 

and Genetic Operators (Selection, Crossover, and Mutation). Each population is made of a 

number of chromosomes (individuals). The fitness function is used to evaluate these 

individuals and to select the best parameters for the genetic operators. Early use of GAs has 

been reported in the field of image processing and filter design [K. Delibasis et. al., 1997] and 

3D image analysis [K. Delibasis et. al., 1994], [K. Delibasis et. al., 1996], [Undrill, 1997]. Several 

advancements have been made to the method of GAs. In [Khalid Jebari et. al. 2013] parent 

selection operators are investigated in the context of the 0-1 Knapsack Problem (KP), a well-

known combinatorial optimization problem that has been studied for many years. Many 

researchers [Khalid Jebari et. al., 2013] are comparing different parameters and methods to 

find the optimal combination for the best results. 

Another population-based optimization technique is Differential Evolution (DE) that uses 

mutation and crossover operations to generate new solutions from existing ones. In detail, 

DE is an evolutionary algorithm that differs from standard genetic algorithms in several ways. 

Instead of relying on probability distributions for mutation, DE uses unit vectors and distance 

and directional information to create a mutation operator. This means that instead of 

crossover being applied before mutation, DE applies mutation before crossover. Additionally, 

DE does not use a probability distribution to create the mutation operator, as standard 

genetic algorithms do, but instead uses unit vectors. This makes DE a unique algorithm that 

is usually more efficient than standard genetic algorithms. 

[David J. Montana and Lawrence Davis] have used a number of statistical tests to measure 

the accuracy of the parameters and the GA performance, such as parameter determines with 

what probability each individual is chosen as a parent (“Parent Scalar”); parameters that 

select a number of the weakest individuals and performs mutation to them in order to get 

fitter, and they use two different subsets of weights in their network. 

Convolutional Neural Networks in the field of Image classification have shown remarkable 

success in recent years. Automating the design of CNNs is required to help some users having 

limited domain knowledge to fine-tune the architecture for achieving desired performance 

and accuracy. The usage of different evolutionary methods such as Genetic Algorithms helps 

in simplifying and automating the architecture of CNNs and improving their performance.  

[Yanan Sun et. al., 2020] propose an automatic CNN architecture design method by using 

genetic algorithms. This method is advantageous in that it does not require users to have 

domain knowledge of CNNs. Instead, it can still provide a promising CNN architecture for 

given images. To validate the proposed algorithm, it is tested on widely used benchmark 

image classification datasets. It is compared to the state-of-the-art peer competitors, which 

include eight manually designed CNNs, seven automatic and manual tuning, and five 

automatic CNN architecture design algorithms. The experimental results show that the 

proposed algorithm outperforms the existing automatic CNN architecture design algorithms 

in terms of classification accuracy, parameter numbers, and computational resources. 

Furthermore, the proposed algorithm is comparable to the best one from manually designed 
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and automatic and manually tuning CNNs in terms of classification accuracy, while consuming 

much less computational resources. 

[Hanxiao Liu, 2018] provides evidence that evolutionary algorithms can be used to discover 

high-performance architectures (such as gradient descent algorithms), and that they can be 

employed effectively in a variety of tasks and domains. 

In [Fei Yin et. al., 2011] the GA is used to search for the optimal architecture from a predefined 

range of architectures. Firstly, the initial population of the GA is generated using a random 

selection from the predefined range of architectures. Subsequently, the GA will produce a 

few generations to optimize the architecture of Deep Neural Network (DNN) sub-models. The 

fitness of each architecture is measured based on the predictive performance of the DNN sub-

models over the corresponding group of datasets. Lastly, the best architecture will be selected 

as the optimal architecture for each group of datasets. The training error of each DNN model 

is obtained and treated as the fitness value of the objective function in GA optimization. Such 

procedure is repeated until the preset optimization criteria is met.  

[Junxi Zhang, Shiru Qu, 2021] explore the optimization of the adaptive genetic algorithm 

(AGA) in the backpropagation (BP) neural network (BPNN), applied to shallow Multi-Layer 

Perceptron (MLP) model, in the context of traffic flow prediction. The corresponding 

optimized BPNN includes 18 inputs and 1 output. A single hidden layer is adopted for BPNN 

in this study. The AGA is performed for 200 generations. The results of this study show that 

the optimized adaptive GA in the BP neural network (OAGA-BPNN) algorithm has better 

optimization performance than the AGA-BPNN algorithm. The OAGA-BPNN algorithm uses 

the crossover rate and mutation rate to optimize the parameters of the GA algorithm so that 

the algorithm can be better used for solving problems. The optimized algorithm has a better 

optimization effect and shorter calculation time. The average optimization time of the OAGA-

BPNN algorithm is significantly reduced, and the average error of the optimized result is also 

reduced.  

[Er. Jasmeen Gill, 2010] use GAs to train a shallow MLP with one hidden layer to predict 

weather parameters. They use populations up to 90 individuals evolving for typically 100 

generations. The GAs and BP are compared in terms of accuracy and efficiency. The 

performance of the models is evaluated on a real-time weather forecasting dataset. The 

results indicate that the NN model based on GA has better accuracy and efficiency compared 

to the BPNN model based on gradient descent.  

[Han-Xiong Huang, 2014] tried to improve the classic BP algorithm by initially training using 

fewer epochs and training using fewer learning samples (since data collection is costly and 

time-consuming in their application domain: plastic object design). Then the trained BPNN 

model is passed into a GA that searches in the feasible region to optimize the model. The 

trained BPNN model is used as the fitness function of the GA. This process is iterated until a 

satisfactory solution is found. The results show that the approach is effective, and the 

prediction accuracy of the BPNN model is improved after the optimization. 
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[Parsa Esfahanian et. al., 2019] proposes the use of GAs for CNN training.  They introduced a 

new encoding scheme for the weights of the CNN, which achieves better accuracy and faster 

convergence than the traditional encoding. In addition, this approach was found to be more 

robust to the choice of hyperparameters. However, the reported accuracy of the constructed 

CNN was below 0.45 in the MNIST and CIFR-10 dataset. 

[Lingxi Xie et. al., 2017] discusses the possibility of automatically learning deep network 

structures. We note that due to the exponentially increasing number of possible network 

structures with the number of layers, a genetic algorithm is employed to efficiently traverse 

this large search space. We first propose an encoding method to represent each network 

structure in a fixed-length binary string, which is then used to initialize the genetic algorithm. 

In each generation, standard genetic operations are applied to the population of individuals, 

such as selection, mutation, and crossover, in order to eliminate weak individuals and 

generate more competitive ones. The competitiveness of each individual is identified through 

its recognition accuracy, which is obtained by training the network from scratch and 

evaluating it on a validation set. We also propose an approach to speed up the training 

process by utilizing the information from previous generations. Experimental results 

demonstrate that our automated deep network design approach is able to outperform 

handcrafted networks in both classification and regression tasks. 

[Felipe Petroski Such et. al., 2018] tests the performance of a simple GA on hard deep 

reinforcement learning (RL) benchmarks. This work demonstrates that a simple, gradient-

free, population-based genetic algorithm can scale to very large neural networks and solve 

challenging deep reinforcement learning problems. It also shows that by combining DNNs 

with neuroevolutionary methods such as novelty search, performance can be improved on 

deceptive or sparse reward tasks. Finally, it shows that the Deep GA is faster than popular 

gradient-based algorithms, and enables a state-of-the-art, up to 10,000-fold compact 

encoding technique. 

[Amin Dastanpour (2016)] proposes a model that consists of three layers of ANN, i.e., the 

input layer, the hidden layer, and the output layer. The input layer consists of 41 parameters 

which are extracted from the KDD CPU 99 dataset. The hidden layer consists of 15 neurons 

using the sigmoid activation function and the output layer consists of 2 neurons using the 

softmax activation function. The weights are optimized using the genetic algorithm (GA). The 

GA algorithm is used to optimize the weights of the ANN in order to improve the accuracy of 

the model. The experimental results show that the proposed model achieves better accuracy 

and detection rate compared to the ANN model without GA optimization. The proposed 

model also has a better false alarm rate compared to the ANN model. The results show that 

the proposed model is effective for intrusion detection. 
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2.4 Low-rank matrix and tensor analysis 

Low-rank matrix and tensor analysis have applications in many areas, such as machine 

learning, image processing, natural language processing, and data mining. This subject is a 

branch of mathematics that deals with the analysis and decomposition of low-rank matrices 

and tensors. The goal of the analysis is to find an efficient representation of the underlying 

structure of a matrix or tensor. For instance, low-rank matrix and tensor decompositions have 

been used to extract features from images and audio signals, analyze text documents and 

detect patterns in large datasets. 

The Low-Multilinear Rank Approximation (LMRA) is a form of matrix factorization that aims 

to approximate a given matrix by a low-rank matrix. This is done by decomposing the matrix 

into a product of two or more lower-rank matrices, each of which has fewer columns or rows 

than the original matrix. By doing this, the total number of elements in the matrix is reduced, 

resulting in a more efficient representation of the matrix and a reduced computational 

complexity. The goal is to minimize the reconstruction error, i.e. the difference between the 

original matrix and the reconstructed matrix. This can be achieved by using different 

algorithms such as Singular Value Decomposition (SVD), and Tensor Decomposition. In the 

proposed algorithm, we investigated a higher-order extension of SVD, called “Tucker 

Decomposition” (Fig. 4b). 

SVD is graphically described in Fig. 4a. This method works by decomposing a matrix X as a 

product of table A (with orthogonal columns), a diagonal matrix Σ and B, the transpose of 

another matrix with orthogonal columns. 

 
Figure 4a: SVD is a technique used for the reduction or compression of data 

 

On the other hand, Tucker decomposition is essentially a higher-order extension of SVD, 

where we find the best rank approximation of it (Fig. 4b). Practically, we can decompose a 3-

way tensor into: 

• Core Tensor (G): dense tensor of interactions between factor matrices, 

• Factor matrices (A, B, C): each one of them represents a different core scaling along 

each mode. 
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More details are described by Tamara G. Kolda et. al. (2009), Laurent Sorber et. al. (2014), 

Alex P. da Silva et. al., and in section 3.5.2.2.  

 

 
Figure 4b: Tucker Decomposition for a 3-way tucker 
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3.  Methodology 

3.1 The available dataset  

Here, we implement the neural network using  database. It contains 70,000 images, 

from which 60,000 are often used for training and 10,000 for validation. Each of these images 

is a  pixel binary image, as seen in Fig. 5. However, training a neural network using 

60,000 images is time-consuming. In our case, we describe the process using 6,000 images, 

where 5,000 images are used for training and 1,000 for validation. 

 

 
Figure 5: Samples of MNIST and Fashion MNIST dataset 

 

3.2  Convolutional Neural Network architectures and 

Parameterization of Basic CNN functions 

We used a CNN containing one Convolutional layer, ReLU and Softmax activation functions, 

and one Mean Pooling layer. Our CNN’s architecture consists of an input layer, one hidden 

layer, and the output layer. The input layer has , including 

 representing the pixel count of the input image, and

. We use a single convolution layer with  filters. Each output of 

the convolution filter (20×20×20) will be passed through the ReLU and Pool function; we use 

 submatrices for Pooling Layer. That was the Feature Learning Section of our CNN.  

The outcome of this section is a 10×10×20 matrix which is flattened and passed into the 

Classification Section of our neural network. In detail, the flattened matrix passes through a 

ReLU function and then through the 10×1 output layer of our CNN, with Softmax as the 

activation function which leads to a matrix corresponding to the probabilities of each class of 

the dataset. 
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3.2.1 Weight Dimensions 

In , the implemented architecture of the neural network is shown. There are many 

layers, but only three of them contain weight matrices. Hence, these three layers require 

training.  

 

Figure 6: The architecture of our CNN 

As seen above,  is the weight of the convolutional layer: it is used by the convolution filters 

for image processing·  and  contain the connection weights of the classification layers. 

Note that, in the first fully-connected (FC) layer, there are 2000 green-squared nodes, which 

represent the layer that transforms a  image into a vector (flattening) and does not 

participate in the training process. According to that,  represents the   filters 

and has length equal to   -1620- weights· W5 connects the flattened outcome of 

the Feature learning section with the ReLU activation function of the Classification section 

and so its length is equal to . Finally,  is the weight matrix that connects the 

output layer (10 neurons) to the previous FC layer. Hence, the dimension of Wo is . 

 

3.2.2 Activation Functions 

The layer between the convolution filter and feature map is the Activation function. In CNN, 

a commonly used activation function is Rectified Linear Unit, in short, ReLU function. The 

ReLU function is used to calculate the activation values in our CNN. Mathematically, it is 

expressed as 

  

where  : the input value of each neuron and  : is the feature map of input images. 
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In summary, ReLU is a nonlinear function -or piecewise linear function- that will output the 

input directly if it is positive, otherwise, it will output zero, as seen on . 

 

 

Figure 7: ReLU is used in the hidden layer to avoid the vanishing gradient problem and better 

computation performance. 

 

Note that the activation function is an integral part of a neural network. Without an activation 

function, a neural network is a simple linear regression model. This means the activation 

function gives non-linearity to the neural network. 

The Softmax function is an activation function before the output layer and returns the 

probability of each class. It can be mathematically expressed as 

 

 

 

where : the values from the neurons of the output layer, k: number of classes on the output 

layer (here, ),  : the standard exponential function for every input of softmax 

function ( ). The nominator is positive, with low value for negative and great value for 

positive zi, but it is still not fixed in the range [0, 1]. The normalization term  

guarantees that the Softmax output values will all add up to 1 and fall within the range (0, 1), 

forming a valid probability distribution. 
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3.3 CNN training using Backpropagation (BP) 

A simple version of BP for a CNN with only one convolutional layer and two fully connected 

(FC) layers has been implemented in this work, based on [Phil Kim, 2017]. Note that we define 

 as the learning rate of training, which determines the speed at which learning takes 

place. The momentum coefficient is set . Using the mini-batch method, the mini-

batch size was set as , we select a subset of data with which the neural network 

is trained on these selected data. More mathematical quotations about BP are described by 

[Phil Kim, 2017]. 

We have not implemented early stopping, instead we allow the BP to evolve for a number of 

 epochs and study the evolution of train accuracy and test accuracy. 

 

3.4 Genetic Operators 

Genetic operators (also known as genetic variation operators) are functions used in genetic 

algorithms to manipulate the chromosomes of the population in the evolutionary process. 

They are used to produce new and different chromosomes from the existing ones in the 

population. Common genetic operators include Evaluation of chromosomes, Selection, 

Crossover, and Mutation. 

 

 

Figure 8: The flowchart of Genetic Algorithm 

 

3.4.1 Calculation of chromosomes’ fitness 

The fitness function is the most computational but indispensable element of GAs. It is a 

measure of the quality of a solution. Essentially, GA follows the fitness function in its search 

for the optimal solution. The fitness function helps to decide which individuals can progress 

to the subsequent generation of solutions. Each GA operator is designed to increase the 

fitness of the population. Thus, assigning fitness to each chromosome (individual) is of 

paramount importance for GAs. In the case of CNN training using GAs, the fitness function is 

defined in subsection  . 
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3.4.2 Selection Operator 

After calculating the fitness of every chromosome in the population, selection operator (or 

parent selection) is used to determine which of the individuals in the population will be 

chosen to reproduce and create the offspring that form the next generations.  

GA is based on Darwin’s theory of “Survival of the fittest ''. Our goal in this operator is to pick 

the fittest chromosomes to pass their good (fit) genes to the next generation and so, evolve 

a fitter population after each iteration. The probability of choosing an individual depends 

directly on their fitness evaluation: fitter individuals have a higher chance of being chosen and 

propagating their features to the next generation.  

The Roulette Wheel Selection is used as the parent selection mechanism. The wheel is divided 

into  portions, where  is the number of individuals in the population; each portion of 

the wheel represents the fitness value of each chromosome. A fixed point  is chosen 

randomly on the wheel and we spin the roulette wheel 2 times to get our couple of parents. 

The portion that comes in front of this point is chosen as the parent. This fixed point is a 

random number between 0 and the sum of fitness for the whole population. More formally, 

let  be the fitness of individual , with . Then an individual is selected with a 

probability according to its fitness as follows: a random number  is 

generated. For a given value of , the individual  is selected such that  and 

. The concept of selection is graphically depicted in . 

 

 

 

Figure 9: Roulette Wheel Selection  
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As seen above, the fitter an individual is, the bigger portion they have on the wheel, and they 

are more likely to land in front of the fixed point when the wheel is rotated.  

 

3.4.3 Crossover 

Crossover is a genetic operator used to vary the genotype of chromosomes from one 

generation to the next. In other words, the crossover is the reproduction in our population. 

Two chromosomes (“parents”) are selected using the roulette wheel, from the mating pool 

to crossover and produce offspring. 

Here, we use Uniform Crossover. This operator takes two parents as input and creates two 

children by randomly selecting genes from either parent. Each gene has an equal probability 

of being selected from either parent. This allows for a more balanced combination of genetic 

material from the two parents. A random variable generated according to the Uniform 

distribution , called , has the same length as parents do, and shows us which 

parts of each parent will be passed to the offspring. Mathematically: 

 

 

 

 

Figure 10: Uniform Crossover where “Mask” illustrates the variable alpha 

 

3.4.4 Mutation 

Mutation Operation is defined as a random tweak in the genotype of chromosomes to get a 

new individual. Its purpose is to introduce and maintain diversity in the population and is 

usually applied with a low probability per gene , usually set to .  

For each gene, a random number is generated according to the Uniform distribution,  

and if it exceeds  then the gene is mutated. In our proposed algorithm, we choose to apply 

mutation only to children. A gene with a value  is mutated to a new value 

. 
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Figure 11: Mutation operator 

 

3.5 Genetic Algorithm implementation for CNN training 

Using a genetic algorithm to optimize a convolutional neural network (CNN) involves creating 

a fitness function that measures the performance of the CNN and then applying genetic 

operators (selection, crossover, and mutation) to the fitness function to optimize the 

network. Hence, fitness function should measure the accuracy of the network on a dataset, 

and the genetic operators should be applied to the weights and parameters of the network 

in order to optimize them. The goal of the optimization process is to find the set of weights 

for given GA settings (number of iterations/populations/genes, mutation percentage, etc.) 

that maximize the accuracy of the CNN on the dataset. After the optimization process is 

complete, the resulting CNN should be able to generalize better to unseen data (test set) and 

achieve higher accuracy overall. 

 

 
 

Figure 12: Genetic CNN 
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3.5.1 CNN representation and Population Initialization 

The CNN we implemented in the proposed work is described in . 

 

Population Initialization 

This process begins with a set of individuals (chromosomes) which is called a population. Each 

chromosome is a solution to the problem we want to solve and is practically characterized by 

a set of variables known as genes. So, each chromosome encodes the CNN. Therefore, when 

it comes to training a CNN using GAs, chromosomes represent the weights of our CNN. The 

weights are initialized randomly as follows:  

,    and   . 

In the case of low-rank convolutional tensor, the relevant initialization is modified: 

, where  and  stand for the uniform and normal distribution. 

 

 

Figure 13: Genetic Algorithm terms 

 

In Genetic Algorithm, the population size is an important parameter that directly influences 

the ability to search for an optimum solution in the search space. It is generally known that 

having a large population leads to the accuracy of getting an optimal solution. Here, we set 

the population size  equal to .  

The following process is employed to generate the 1st generation:  individuals are 

generated, and their fitness is evaluated. The fittest 20% individuals are saved, and the rest 
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are discarded. The above steps are repeated 5 times, thus a total of  individuals are saved 

that are expected to have above random average fitness. These individuals serve as the 1st 

generation. 

 

3.5.2 The structure of a Chromosome 

3.5.2.1 Encoding Full-Rank Tensors 

Here, the weights of all layers are structured as full-rank tensors that are initialized randomly, 

in order to form the chromosomes of each population.  

We create uniformly distributed weight matrices that contain random numbers, where  

has length equal to  ,   length is equal to  and    has length 

equal to , as described in [ ]. Then, these three weight matrices are flattened 

into one variable called the Chromosome or Individual of the population. According to the 

perspective of Full Rank matrices, the length of each chromosome is equal to  

 

 
 

 

Figure 14: Structure of chromosome (Full Rank Version) 

 

3.5.2.2 Encoding Low-rank Tensors 

Here, as we know, matrix W1 captures the weights of convolution layers (size: ), 

but in this case, it is considered as a 3D Tensor that is decomposed to   (Core Tensor), , 

, and  (factor matrices). According to section , the sizes of these four matrices are shown 

below: 
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Figure 15: Chromosome initialization based on low-rank matrices 

 

As seen in , W1 is a  tensor composed by , ,  

and , where : the rank of W1 that we choose in every experiment. In the 

proposed algorithm, the core tensor is equal to 1 and so W1 is the outer product of our factor 

matrices. Eventually, the length of W1 is equal to . 

More details are described in Table 1. 

 

Table 1: Total Genes in our CNN’s weights for full-rank and low-rank 

Rank Total Genes (Size of 

chromosome) 

Genes in 

convolutional Tensor 

(W1) 

Genes in hidden 

layer (W5) 

Genes in 

output layer 

(Wo) 

5 201,190 190 100x2000 10x100 

7 201,266 266 100x2000 10x100 

11 201,418 418 100x2000 10x100 

Full 202,620 1620 100x2000 10x100 

 

3.5.3 Fitness Function 

The most challenging yet essential concept of GAs is the fitness function. In the proposed 

work, fitness function is a measure of the fraction of correct image classifications for the 

training set that a given chromosome (individual) produces. The higher the value of the fitness 

function, the better the solution. 
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Initially, the available dataset of images is divided into training and testing subsets. It is 

important to mention that the training set is randomly shuffled so that the neural network 

will have a better generalization. The main steps for fitness calculation are as follows: 

1. The chromosome is decoded and the corresponding CNN is constructed. The decoding 

is the inverse process of chromosome encoding that has been described in the 

subsection – above, both for the full-rank and the low-rank case. 

2. The images of the training set are forward-passed into the constructed chromosome. 

The CNN’s predictions are compared to the true labels of the images and the accuracy 

is calculated. The fitness is set equal to the accuracy. 

The accuracy of the test subset is also calculated, solely for the purpose of measuring the 

CNN’s ability to generalize (equivalently quantify the overfitting) and it is not used for the 

training process. 

 

3.5.4  Parent Selection 

The   is used as the parent selection mechanism, as described 

in paragraph . 

 

3.5.5  Crossover, Mutation & Termination Condition 

Here, we use Uniform Crossover. According to , each gene of each offspring is a random 

linear combination of the corresponding genes of the two parents. This way, the resulting 

chromosomes will be more diverse and may contain better solutions than the original 

parents. 

The mutation operator was implemented as follows. First, the genes of each chromosome 

that will be mutated are randomly selected. As referred in subsection , the mutation is 

performed on each gene of the offsprings with a probability of  . 

The termination condition is the number of generations  that is limited to , after 

which the parameters of the fittest individual will be used to build the final CNN. 

 

Creation of new generation 

The crossover between two good chromosomes (solutions) may not always yield a fitter 

solution. However, since parents are selected according to fitness, the probability of the child 

being fit is high. Once the offspring are created, they are joined with the existing individuals 

(parents) in the population, and then altogether get sorted in descending order by their 

fitness. Note that our population now consists of both parents and children. Our purpose is 
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to keep the fittest members and maintain the size of our population stable. Hence, the low-

fitness chromosomes will be removed from the population at the end of each iteration and 

the remaining  chromosomes will form the new generation. 

 

3.5.6 GA Hybridization 

It is common practice to hybridize a global optimization method with a local one. The main 

strategy of this approach is that every few generations a number of the fitter individuals 

undergo local optimization and then are inserted back in the population. In detail, the BP is 

performed every X generations and fine-tunes the weights of the fittest Chromosome of the 

Xth generation; BP is allowed to repeat for a number of epochs using the training set. Once 

the best set of weights is found using BP, the fine-tuned chromosome is encoded and replaces 

the corresponding chromosome in the population of the current generation. 
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4. Results and Discussion 

 

GA settings 

For GA, we initialize a population containing 50 chromosomes (individuals). For the initial 

generation, we generate  populations in order to create the gene pool. Gene pool contains 

the  fittest chromosomes of these  populations. The Roulette-Wheel Selection during its 

first iteration (3.5.1). GA evolves for maximum number of , 

performing Evaluation (Fitness Function), Selection, Crossover, and Mutation, and at the end 

of each generation, our chromosomes are sorted according to their fitness value and moved 

to the next generation, while the chromosome with the highest fitness (accuracy) is saved to 

perform GA hybridization in . Furthermore, it is important to mention that 

Crossover is always performed to its input individuals, while the performance of Mutation 

depends on . For more GA settings, see  and .  

 

Table 2: Genetic settings 

GA parameters Value 

Chromosomes (population size) 50 

Genes (size of individual) 202,620 (Full-Rank),  

201,190 (R=5),  

201,266 (R=7),  

201,418 (R=11) 

Maximum iterations 400 

Selection Type Roulette Wheel 

Crossover Type Uniform 

Mutation probability 0.001 

Sigma (Mutation) 1 
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Training Images [500, 1000, 2500, 5000] 

Test Images the last 1000 of 60,000 

 

 

Using the above settings, we implemented four experiments. 

 

1. Train CNN with GA using the training subsets, globally for all individuals of the 

population.  

When training with GA, the parameters can be adjusted globally for all individuals of the 

population, which can further improve accuracy. In this experiment we investigated the effect 

of the size of the training set. Additionally, we executed the BP on the best individual of the 

last generation of the GAs. In , we can see that our experiment worked pretty well 

resulting in satisfactory validation accuracy with a mean percentage of 72%. The results of 

this experiment are shown below in figures .  

 

 

Table 3: Achieved accuracy of the GA-CNN for different size of the training set. 

Dataset  
Tensor 

rank 

 
BP 

during 
GAs 

Accuracy  
GA % 

Accuracy % 
BP after 

GA 

Train test train / 
chrom. 

Train Test Train Test 

1-5000 last 1000 all full Never 69.54 71.1 100 96.8 

1-500 last 1000 all full Never 76 67.4 100 86.8 

1-1000 last 1000 all full Never 73.10 75.6 100 93.1 

1-2500 last 1000 all full Never 72.04 74 100 96.2 
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Figure 16a: Accuracy of our GA-CNN with 5000 training images. After 400 generations we performed 

BP to our model to upgrade the accuracy  

 

 

 

 

Figure 16b1: Accuracy of the proposed GA-CNN with 500 training images  
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Figure 16b2: Accuracy of the proposed GA-CNN with 500 training images AFTER applying BP 

 

 

 

 

 
Figure 16c1: Accuracy of our GA-CNN with 1000 training images  
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Figure 16c2: Accuracy of our GA-CNN with 1000 training images. After 400 generations we performed 

BP to our model to upgrade the accucacy  

 

 

 
Figure 16d: Accuracy of our GA-CNN with 2500 training images  
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• Train our CNN with Backpropagation  

In this chapter, we present the performance of our CNN when optimized with the traditional 

BP algorithm. The following figures ( ) work as our baseline in order to compare the 

efficiency of our proposed algorithm with the BPNN. 

 

Table 4: CNN training and test accuracy of the traditional BP  

Dataset 
 

 

Tensor rank 

 

Epochs 

Accuracy % 

train Test train / chrom Train  Test  

1-500 last 1000 All full 100 98 89.1 

1-5000 last 1000 All full 50 99.99 97.4 

1-5000 last 1000 All full 100 100 97.6 

 

 

Backpropagation is a quick, easy and efficient algorithm to train CNNs. In this experiment, we 

tried to evaluate BP’s performance by using two different sizes of training sets and by 

increasing the number of epochs. According to , BP worked very well: the weights of 

our CNN are well optimized, and our model becomes more accurate. Although, a large 

number of epochs can lead to fluctuations in backpropagation, as seen in Fig. 17b. 

Additionally, the longer the training period, the more likely it is that overfitting will occur, 

which can also cause fluctuations in backpropagation. However, in these experiments, not 

significant overfitting was observed, since the test accuracy did not deteriorate with the 

number of epochs. 
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(a): BP performed to 500 images with 100 epochs (b): BP performed with 5000 training images and  

100 epochs 

Figure 17: Training and Test accuracy of BPNN 

 

 

2. CNN training with GA using training subset for each individual. 

Here, the training process of CNN with GA is the same as in , by using a random 

subset of the training set to calculate the fitness of each chromosome. The effect of the size 

of the random subset is investigated, using as few as 200 random images per fitness 

evaluation. During the training process, the same chromosome decoding process is applied 

to the updated chromosome to construct the updated CNN. 

According to , reducing the size of the training subset can reduce the accuracy of the 

CNN model. We referred in 3.5.2 that the fitness function is the most challenging operation 

in GA-CNN, meaning that it is the most time-consuming/computationally expensive 

procedure since it evaluates the accuracy of our model. Hence, when we train our CNN with 

a smaller training set, the fitness function becomes quicker. But, in this case, our model may 

not be able to learn the features of the dataset well enough, resulting in a decrease in 

accuracy. As seen in ,  and , the subset is reduced by   where we can notice 

that the average validation accuracy is , while in the other two cases where the 

percentage decrease of our dataset is smaller, the average validation accuracy is . 

More details in . 
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Table 5: GA-CNN Settings for Experiment 2 

Dataset Tensor 

rank 

BP during 

GAs 

Accuracy 

Train Test Train/chrom. Train Test 

1-5000 Last 1000 all full Never 69.54 71.1 

1-2500 Last 1000 1000 full Never 69.1 68.5 

1-5000 Last 1000 200 full Never 51 43.7 

1-5000 Last 1000 500 full Never 68.2 64.2 

1-5000 Last 1000 1000 full Never 68.9 65.1 

1-5000 Last 1000 2500 full Never 69.2 69.6 

 

 

 

 

 

Figure 18a: Train and Test accuracy of our CNN optimized with 200 training subset (initial size: 5000) 
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Figure 18b: Train and Test accuracy of our CNN optimized with 500 training subset (initial size: 5000) 

 

 

 
Figure 18c: Train and Test accuracy of our CNN optimized with 1000 training subset (initial size: 5000) 
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Figure 18d: Train and Test accuracy of our CNN optimized with 1000 training subset (initial 

size: 2500) 

 

 
Figure 18e: Train and Test accuracy of our GA-CNN optimized with 2500 training subset (initial size: 

5000) 

 

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113



 

37 
 

 

3. Apply low-rank weights to the convolutional layer and then optimize our 

CNN only with GA. 

Here, we tried to investigate the influence of low-rank matrices on our GA-CNN model. The 

training process is similar to the process described above ( ), with the only 

difference being that some parts of our chromosomes are encoded according to . 

What is remarkable in this experiment is the fact that our GA-CNN is optimized more 

effectively when it has 190/266/418 weights in the convolutional layer compared to when it 

has 1690 weights. This is due to the fact that having a lower number of weights allows the 

model to reduce the complexity of the model, thus making it easier to optimize and achieve 

better performance. Hence, low-rank weights can reduce the number of parameters in the 

network, resulting in faster training and improved model performance. Additionally, low-rank 

weights can help reduce overfitting, as they encourage the model to focus on important 

features and ignore irrelevant ones. In conclusion, the accuracy of the model can be improved 

by applying low-rank weights to the convolutional layer, as seen in Table 6.  

According to  and , the accuracy of the model can be improved by applying low-rank 

weights to the convolutional layer. Low-rank weights can reduce the number of parameters 

in the network, resulting in faster training and improved model performance. Additionally, 

low-rank weights can help reduce overfitting, as they encourage the model to focus on 

important features and ignore irrelevant ones. To apply low-rank weights to the convolutional 

layer, the genetic algorithm can be used to search for the best combination of weights that 

results in the highest accuracy. Once the optimal weights are found, they can be applied to 

the convolutional layer and the accuracy of the model can be evaluated. 

Table 6: Low-rank GA-CNN training results 

Dataset  
Tensor 

rank 

 
BP  

Genes in convolutional 
Tensor (W1) 

Accuracy % 

Train test train/ chrom Train  Test   

1-
5000 

last 
1000 

all Full never 190 69.54 71.1 

1-
5000 

last 
1000 

all 7 never 266 70.90 73.60 

1-
5000 

last 
1000 

all 5 never 418 72.32 73.70 

1-
5000 

last 
1000 

all 11 never 1620 57.20 73.70 
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Figure 19a: Training and Validation accuracy of Low-rank GA-CNN (R=7) 

 

 

 

Figure 19b: Training and Validation accuracy of Low-rank GA-CNN (R=5) 
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Figure 19c: Training and Validation accuracy of Low-rank GA-CNN (R=11) 
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4. Train CNN with a hybrid GA-BP algorithm.  

The training process of CNN with the hybrid GA-BP algorithm is described in . Further 

details about our experiment are shown in . 

 

Table 7: BP settings for the GA-CNN model 

BP parameters Value 

Epochs [50, 100, 500] 

Learning Rate 0.01 

Momentum 0.95 

Batch Method Mini Batch Method 

Batch size 100 

Training Images per chromosome [500, 1000, 2500, 5000] 

Test Images the last 1000 of 60,000 

Number of updates of the weights [5, 10, 25, 50] 

Initialization of weights [random, the fittest chromosome] 

Hidden Layer 1 

Activation Functions ReLU, Softmax 

Pooling Mean pooling 

 

The results from this experiment are remarkable since the hybrid GA-BP algorithm scored 

100% in training accuracy while test accuracy did not overcome 20% no matter how many 

iterations we performed. This is due to the fact that genetic variability is lost because of BP. 

In other words, BP is used here to make our chromosomes optimal. After a number of 

iterations, more and more optimal individuals are added to the population. Genetic operators 
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see these optimal individuals as the goal-the type of chromosomes that the rest of the 

population should look like in order to get a high accuracy of our model, and eventually we 

reach a point where we have exactly the same individuals in the next generations. 

 

Table 8: Train and Validation accuracy of the hybrid GA-BP algorithm 

Dataset 
 

  

Tensor rank 

 

BP every gen 

Accuracy % 

train test train per chrom  Train  Test  
 

1-5000 last 1000 All  full 1 100 10.1 

1-5000 last 1000 all  full 5 100 12.3 

1-5000 last 1000 all  full 10 100 15.7 

1-5000 last 1000 all  full 20 100 20 

 

Based on our experiments, we can realize that GAs requires a large amount of data, iterations 

and time to train our CNN satisfactorily, while BP can quickly and accurately identify 

handwritten digits after a few training epochs. For example, when training our model with 

 training images, GA-CNN has accuracy equal to 71.1% after 400 iterations and BPNN’s 

accuracy is equal to  after only  . After performing , we come 

to the conclusion that the accuracy of the model is also relatively consistent across different 

training datasets. In , we notice that whether the training subset is minor or almost 

half of the original training set  , the accuracy of our model is almost equal 

to . 

During our research, we came across two surprising conclusions: training our GA-CNN model 

with low-rank weights leads to better optimization results in contrast with full-rank weights. 

Here, the average accuracy is equal to  which is greater than the accuracies we got on 

the first two experiments and, is a satisfactory value to compare it with BP. The second 

unexpected conclusion is the poor performance of our proposed hybrid GA-BPNN model. In 

theory, this model works by combining the best features of both algorithms, such as the GA’s 

ability to search for an optimal solution and the BPNN’s ability to quickly find a local minimum 

and creates a more powerful and robust predictive model in comparison to traditional 

algorithms. Yet the efficiency of BP creates a super-fit individual that when inserted into the 

population eliminates the genetic diversity in just few generations. 
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5. Conclusions and future work 

In this paper, we investigated the training of a deep learning CNN by an evolutionary 

algorithm, namely GAs. The proposed approach is evaluated on the MNIST dataset.  

1. Considering the ability of GAs to train a CNN with increased generalization, we used a 

constant subset of 1000 images as the test set, whereas varying the train set from 

5000 images to 200 images. Each individual was trained with the same train set. 

Results showed a deterioration of test accuracy from  to  respectively. If BP 

is applied afterwards with only   the values of accuracy become  and 

 respectively. 

2. The novel idea of allowing each chromosome to train with a random subset of the 

available training set is also explored. In these experiments, we allowed the training 

set per chromosome to vary from 5000 images (the whole training set) to 200 images. 

Results showed a deterioration of test accuracy from 74% to  respectively.  

3. The effect of the rank of the  tensor was also studied. To this end, the 

chromosomes encoded tensors with rank equal to ,    and , using the inverse 

canonical polyadic decomposition (CPD). The achieved test accuracy was effectively 

constant, which is a remarkable result. 

4. The hybridization of GAs with BP was studied next, with striking results. Fine tuning 

the best chromosome of the generation with BP using just , dominates the 

population, causing quick loss of genetic diversity and resulting in overfitting, 

achieving  train accuracy and very poor test accuracy:  if BP is executed  

every generation and just over  if BP is invoked .  

5. It is also interesting to note that overfitting does not occur even after  

. This is evident, since the test accuracy does not seem to decrease, throughout the 

evolution. 

Considering the arithmetic complexity of the GA-training of CNN, one epoch of the BP is equal 

to the forward pass of the full training set of   images, thus:  

.  

In the above expression one should add the computational cost of adjusting the network’s 

weights. On the other hand, the GA-training requires  

. 

Thus, if  then  can become comparable to the arithmetic 

complexity of BP, . 
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Although a few novel ideas have been explored in this work, the results presented are 

considered initial. First, the CNN used for experimentation is very simple. The dataset also 

consists of very small images of 10 classes. These limitations were necessary to conclude the 

thesis within the available time frame and with the available computer hardware. Future work 

includes applying GAs to train more complicated CNNs, with larger datasets. The use of more 

difficult classification tasks may reveal the superiority of the GAs versus BP, which is still a 

remaining issue after this work. The BP may also be modified to be applied to low rank tensors 

of the convolutional layers. 

We believe that our proposed approach is an effective way to improve the accuracy of deep 

learning classifiers. We also observe that the proposed approach can be used for other deep 

learning tasks, such as object detection and image segmentation. We are currently exploring 

ways to further improve our approach by incorporating more advanced evolutionary 

algorithms and other optimization techniques. 
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Appendix 

Implementation details 

Genetic algorithm uses the fitness function to evaluate the individuals in a population. 

Initially, for a constant number of populations, our model will randomly generate the weights 

of all layers -that need training- for each population. Next, the training set will be fed into the 

neural network and the predicting process begins. It is important to mention that the training 

set is deliberately shuffled so that the neural network will have a better generalization. After 

the fitness calculation, which compares the true output and the predicted output, the 

program will update the maximum fitness value for the final training since its weights are the 

optimal ones and could likely yield higher accuracy in the final training stage. This process will 

continue going on until the maximum generation (iteration) is met. 

 

Figure 20: Convolution, ReLU and Pooling of one MNIST image  

 

For the training of Convolutional Neural Networks (CNNs), we need convolutional filters 

(masks) and the training and testing subsets of the available dataset. There are three ways to 

train a CNN that refer to the convolutional layer:  

1. apply conv function to all your training images and convolutional filters.  

2. apply conv function to each training image and the convolutional filters, using a for-

loop from 1 to size of your training subset. 

3. apply conv function to the training subset and each convolutional filter using a for-

loop from 1 to the size of the convolutional filters. 

In this project, we implemented the third option (Plot No3), where we have 5000 training 

images and 20, 9×9 convolutional filters. 

 

Creating Fitness Function 

Full-Rank 

Accuracy is a metric that generally describes how the model performs across all classes. 

According to 3.5.2.1, the chromosome is the flattened combination of weight matrices W1, 

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113



 

48 
 

W5, and Wo. The script for calculating chromosomes’ fitness has three input variables: the 

chromosome, the images and labels of the training set. We need to get the weights that are 

going to optimize the CNN. Hence, the chromosome is decoded into three parts that have the 

same dimensions as W1, W5, and Wo. In section 3.2.1, it is explained that W1 represents the 

weight values of the convolutional layer (size = 1690 or 9×9×20) and this variable is convoluted 

with the training images. The output of this function is then passed into the ReLU activation 

function (new size = 20×20×20) and later, to the Mean pooling layer (size = 10×10×20). 

According to Plot No3, this process is repeated 20 times and the output of each iteration is 

stored in a variable called Y4 (Fig. 21a). Y4 is a 2000×5000 matrix that passes into the 

Classification section of our CNN. There, Y4 is multiplied by W5 and their product (size: 

100×5000) passes through another ReLU function (new size: 100×1000) (Fig. 21b). Eventually, 

this product is multiplied by Wo and the product passes into the Softmax function. The output 

of the Softmax function is a matrix sized 10×5000 and shows our training images’ probabilities 

for classes 0-9. 

 

 
Figure 21a: here there are 5000, 28×28 training images (I1-I5000) that are convoluted with each filter 

of the convolutional layer (Φ1-Φ20); each result is passed through ReLU and mean-pool functions and 

then, it is flattened into a short and fat matrix (Y4.1-Y4.20). These matrices are put together to form 

Y4. 
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Figure 21b: Y4 is multiplied with W5 and passed through the ReLU function, whose result is then 

multiplied with Wo; their product is a matrix that contains each image’s probability of recognizing 

classes 0-9. 

 

Low-Rank 

The process of calculating the fitness of low-rank chromosomes is the same as described 

above. There is only one difference between the two scripts which is the decoding of the 

chromosomes. In details, this script has four input variables: the chromosome, the images 

and labels of the training set and the Rank of the tensors. In the proposed work, we choose 

to turn W1 into a low-rank tensor. Hence, we need to fix its sub-matrices accordingly.  

W1 is composed of the Core tensor Σ and the factor matrices: A, B, C, as mentioned in section 

2.4. Here, da Silva et. al.’s functions were used in order to build the fitness function for the 

low-rank chromosomes. In details, W1 is decomposed to the corresponding three factor 

matrices and, we create a variable, called alpha, that works as a measure value for the 

decomposition of our input chromosome. Then, our CNN is trained and its accuracy is 

calculated by comparing the true output and the predicted output of our model. 
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