

1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ

Genetic Algorithms for low and

full rank Convolutional Neural Network

Training

Fani Tzina

A THESIS

Presented to University of Thessaly

in

Partial Fulfillment of the Requirements for the

Degree of Computer Science and Biomedical Informatics

2023

Supervisor of Thesis

Konstantinos Delibasis,

Associate Professor,

Department of Computer Science and Biomedical Informatics,

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

2

Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από τις διατάξεις της παρ. 6 του
άρθρου 22 του Ν. 1599/1986, δηλώνω ότι:

1. Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να τα
περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη σελίδα.
Η αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι λογοκλοπή. Πέραν
της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση εδαφίων από έργα
άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς και η παράθεση
στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά στην πηγή. Αναφέρω
πάντοτε με πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, όπως στα παραθέματα.

2. Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται από
αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι αντιγραφή.
Η αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν δικαιολογεί
συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και παρουσίασή
τους ως δική μου εργασία.

3. Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των παραθεμάτων
που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε μεγάλο παράθεμα (π.χ.
σε πίνακα ή πλαίσιο, κλπ), προϋποθέτει ειδικές ρυθμίσεις, και όταν δημοσιεύεται
προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι πίνακες και τα σχέδια

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής.

Ημερομηνία: ……/..…/20……

Ο – Η Δηλ.

(Υπογραφή)

(1) «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με έγγραφη
υπεύθυνη δήλωση του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών.
Εάν ο υπαίτιος αυτών των πράξεων σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό
όφελος βλάπτοντας τρίτον ή σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

3

Contents

Abstract ... 4

1. Introduction .. 5

Aims and Contributions 5

2. Background ... 7

2.1 Convolution Neural Networks..……………………………………………………………………………………………..…….7

2.2 Neural Network training using Backpropagation………………………………….………………………………………8

2.3 Neural Network training using Genetic Algorithm 9

2.4 Low-rank matrix and tensor analysis 13

3. Methodology .. 15

3.1 The available dataset……….15

3.2 Convolutional Neural Networks architectures and Parameterization of Basic CNN functions ……………….15

3.2.1 Weight Dimensions……16

3.2.2 Activation Functions……….16

3.3 CNN training using Backpropagation (BP)……………………………………………………………………………………………….18

3.4 Genetic Operators………18

 3.4.1 Calculation of chromosomes’ fitness…………………………………………………………………………………………….18

 3.4.2 Selection Operator………..19

 3.4.3 Crossover………20

 3.4.4 Mutation………20

3.5 Genetic Algorithm implementation for CNN training………………………………………………………………….20

 3.5.1 CNN representation and Population Initialization…………………………………………………………………….20

 3.5.2 The structure of chromosome……..21

 3.5.2.1 Encoding Full-Rank Chromosomes………………………………………………………………………………………….21

 3.5.2.2 Encoding -Rank Chromosomes………………………………………………………………………………………………..22

 3.5.2 Fitness Function………..24

 3.5.3 Parent Selection……….25

 3.5.4 Crossover, Mutation & Termination Condition………………………………………………………………………….25

 3.5.5 GA Hybridization……….26

4. Results and Discussion .. 27

5. Conclusion .. 39

 Future Work………………………………………………………………………………...40

References ... 41

Appendix

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

4

Abstract

This work investigates the use of Genetic Algorithms (GAs) to train Convolutional Neural

Networks (CNNs) in order to improve network’s generalization. Experiments were conducted

to evaluate the effect of varying training set sizes, random subsets of the training set per

individual, and the rank of the network tensor of the convolutional layer on the test accuracy

of the CNN. For this purpose, we constructed a very simple CNN with one convolutional layer

and two fully connected layers. We used the MNIST dataset for experimentation. In detail,

first we experimented with the influence of narrowing the training subset for each individual

of the population, by comparing the training accuracy with the validation/test accuracy during

the evolution. The results showed that test accuracy decreased from 74% to 67.4% and 64.2%

when the training set was decreased from 5000 to 200 and 100 images, respectively. We also

investigated the case of constructing the weight tensors of the convolutional layer with lower

rank and the results have shown that the rank of the network tensor had no statistically

significant effect on the test accuracy of the designed CNN. Finally, applying the hybridization

of GAs with BP by fine tuning the best chromosome of the generations with BP caused quick

loss of genetic diversity, resulting in overfitting, which was evident in the results, achieving

100% train accuracy and very poor test accuracy. It is important to mention that no overfitting

was observed during the GA-training of the CNN, even after 400 generations. These results

suggest that GAs can be used to train CNNs with improved generalization.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

5

1. Introduction

Due to the technological advancements that have occurred in the field of artificial intelligence

and computer information technology over the past few years, the number of new methods

and techniques that have been developed to solve pattern recognition problems have

increased. One of these is the Artificial Neural Network (ANN), in the context of deep learning.

The ANN concept is based on relevant biological activities of the human brain. Currently,

neural networks are performing well in many areas such as facial recognition, market

forecasting, and risk assessment. ANN is a term used collectively for traditional architectures,

such as Multilayered Perceptrons -MLPs-, as well as for deep learning ones, such as

convolutional neural networks (CNNs). Backpropagation is the algorithm that dominates the

training of ANNs, with many variations of the optimization function. Backpropagation (BP)

involves feedforward of the input training pattern, error computation, and adjustment of

synaptic weights. BP is a gradient descent optimization method; thus, it is essentially a local

optimization, despite variations like the introduction of momentum. Currently, this method

is applied in many fields such as predictive decision-making, orbital placement, and system

planning. The applicability and good performance of network models in many fields make it a

hotspot studied by relevant experts and scholars.

Genetic Algorithms (GAs) on the other hand is a global optimization that uses population

dynamics, instead of gradient information. The main drawback is the slow convergence,

however its ability to escape local optima of the fitness function landscape is a great

advantage.

A CNN training by GAs (GA-CNN) is designed to be able to evolve a population of CNNs

encoded into chromosomes, in order to better solve a given problem. This ability to adapt

and change over time is what makes this type of global optimization so powerful. The aim of

this work is to delve into the combination of GAs and BP for CNN training.

Aims and Contributions

More specifically, we attempt to investigate the role of genetic algorithms in training CNNs

for image classification, in terms of accuracy, compared to backpropagation. GA is a type of

artificial intelligence technique that uses evolutionary algorithms in order to evolve solutions

for a given problem. GA can be used to find the optimal weights for a convolutional neural

network (CNN) by creating a population of individuals (that contain the network’s weights)

and then using evolutionary operators to generate new weights from the existing ones. The

best weights from the population are then selected and used for the CNN. This process can

be repeated multiple times to find the optimal set of weights that leads to the highest

accuracy.

The main contributions of this project are reflected in the following two levels: an optimized

Genetic Convolution Neural Network (GA-CNN) algorithm and a hybrid genetic-

backpropagation algorithm (GA-BPNN) are proposed and applied for the Digit and Type of

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

6

Clothing Recognition. The GA-CNN algorithm combines the genetic algorithm with the CNN

model, allowing effective training to be achieved by optimizing the CNN model. To evaluate

the performance of the GA-CNN algorithm, the accuracy of the digit and type of clothing

recognition tasks are compared to the traditional backpropagation algorithm. More specific

issues are being investigated:

• the degree of overfitting by the GA-based training, by comparing the training accuracy

with the validation/test accuracy during the evolution

• the effect of lowering the rank of the weights of the convolutional layer, in terms of

the achieved classification accuracy

• the effect of narrowing the training subset, globally for all individuals of the population

• the influence of narrowing the training subset, for each individual of the population

• the role of hybridizing GAs with BP and the effect of the frequency of this hybridization

The results are produced for a small dataset and presented and discussed in the following

sections.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

7

2. Background

2.1 Convolutional Neural Networks

Feedforward Neural Networks can be used to solve any kind of regression or classification

problems but lacks in the field of computer vision as the number of parameters to optimize is

very high. In fully connected layers also ANNs cannot identify the objects in each image. Due

to these reasons, ANN is not recommended for identifying the object in an image. The usage

of Convolution Neural Networks in the field of Image classification has achieved remarkable

success in recent years.

Convolutional Neural Network (CNN) is specialized for image recognition. The CNN

architecture can be divided into two sections: Feature learning and Classification section. The

input image enters the feature extraction network. The extracted feature signals enter the

Classification Neural Network. This section operates based on the features of the image and

generates the output. The feature extraction neural network consists of the piles of the

convolutional layer and pooling layer pairs. The convolutional layer, as its name implies,

converts the image using the convolution operation - it can be thought of as a collection of

digital filters. The pooling layer combines the neighboring pixels into a single pixel; therefore,

the pooling layer reduces the dimension of the image. As the primary concern of the CNN is

the image, the operations of the convolutional and pooling layers are conceptually in a two-

dimensional plane. This is one of the differences between CNN and other neural networks.

Figure 1: The architecture of a convolution neural network with 1 hidden layer

The convolutional layer generates feature maps from images. The working principle of this

layer is different from other neural network layers. It does not employ connection weights

and a weighted sum. Instead, it contains filters that convert images. These filters are called

Convolutional Filters. The number of Feature maps and the number of convolutional filters is

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

8

the same. That means, if there are four convolution layers, then it will generate four feature

maps.

Figure 2: Classification Neural network

2.2 Neural Network training using Backpropagation

The backpropagation algorithm is used to train a neural network. By comparing desired

outputs to achieved system outputs, the systems are tuned by adjusting connection weights

to narrow the difference between the two as much as possible.

As referred to in [Joseph Tarigan, 2017] and [Phil Kim, 2017], the main feature of the

backpropagation algorithm is the iterative and recursive method of calculating and updating

the weights based on the error rate of the previous epoch. In detail, the backpropagation

algorithm works by first calculating the error of the network, then propagating the error

backwards through the network to adjust the weights of each layer, and finally updating the

weights to reduce the error. The process is repeated until the error is minimized. This process

is known as gradient descent (Fig.3).

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

9

Figure 3: Training of CNN with backpropagation

The speed of the training process and the accuracy of image recognition is affected by two

variables: learning rate and momentum rate. The learning rate indicates the step size towards

the minimum value of the loss function when following the gradient descent, whereas the

momentum weight considers previous weight changes when updating the current weights.

Furthermore, the optimal learning rate and momentum rate values for one backpropagation

neural network topology may not be optimal for another backpropagation neural network

topology. This is because each topology is specific to its domain of use. These two variables

also influence the tendency of the backpropagation process to fall into the local minimum,

making the artificial neural network's detection performance suboptimal.

It also must be mentioned that the number of neurons in the hidden layer also affects the

speed of the backpropagation process and its accuracy. As expected, the more neurons, the

more information can be stored, but this affects the speed of the training process. A

suboptimal number of neurons reduces the ability to generalize, whereas too many hidden

neurons lead to overfitting problems. In both cases, the artificial neural network yields sub-

optimal performance.

2.3 Neural Network training using Genetic Algorithm

Evolutionary algorithms have been used for long in the field of image analysis. Artificial

immune system is an algorithm of this family that has been proposed for classification [K.

Delibasis et. al., 2008] and finding corresponding points in images [K. Delibasis et. al., 2011].

The main representative of evolutionary algorithms is Genetic Algorithms (GAs). GAs is a

global optimization technique that is known to optimize multidimensional landscape

functions without the use of derivative information [Goldberg, 1988]. Genetic Algorithm is a

heuristic search algorithm that is inspired by the biological evolution analogy of crossing over

the fittest chromosomes to generate superior offspring. This algorithm works by applying

random changes to current chromosomes (solutions) to create new ones. There are five

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

10

phases considered in a genetic algorithm: Initialization of the population, Fitness function,

and Genetic Operators (Selection, Crossover, and Mutation). Each population is made of a

number of chromosomes (individuals). The fitness function is used to evaluate these

individuals and to select the best parameters for the genetic operators. Early use of GAs has

been reported in the field of image processing and filter design [K. Delibasis et. al., 1997] and

3D image analysis [K. Delibasis et. al., 1994], [K. Delibasis et. al., 1996], [Undrill, 1997]. Several

advancements have been made to the method of GAs. In [Khalid Jebari et. al. 2013] parent

selection operators are investigated in the context of the 0-1 Knapsack Problem (KP), a well-

known combinatorial optimization problem that has been studied for many years. Many

researchers [Khalid Jebari et. al., 2013] are comparing different parameters and methods to

find the optimal combination for the best results.

Another population-based optimization technique is Differential Evolution (DE) that uses

mutation and crossover operations to generate new solutions from existing ones. In detail,

DE is an evolutionary algorithm that differs from standard genetic algorithms in several ways.

Instead of relying on probability distributions for mutation, DE uses unit vectors and distance

and directional information to create a mutation operator. This means that instead of

crossover being applied before mutation, DE applies mutation before crossover. Additionally,

DE does not use a probability distribution to create the mutation operator, as standard

genetic algorithms do, but instead uses unit vectors. This makes DE a unique algorithm that

is usually more efficient than standard genetic algorithms.

[David J. Montana and Lawrence Davis] have used a number of statistical tests to measure

the accuracy of the parameters and the GA performance, such as parameter determines with

what probability each individual is chosen as a parent (“Parent Scalar”); parameters that

select a number of the weakest individuals and performs mutation to them in order to get

fitter, and they use two different subsets of weights in their network.

Convolutional Neural Networks in the field of Image classification have shown remarkable

success in recent years. Automating the design of CNNs is required to help some users having

limited domain knowledge to fine-tune the architecture for achieving desired performance

and accuracy. The usage of different evolutionary methods such as Genetic Algorithms helps

in simplifying and automating the architecture of CNNs and improving their performance.

[Yanan Sun et. al., 2020] propose an automatic CNN architecture design method by using

genetic algorithms. This method is advantageous in that it does not require users to have

domain knowledge of CNNs. Instead, it can still provide a promising CNN architecture for

given images. To validate the proposed algorithm, it is tested on widely used benchmark

image classification datasets. It is compared to the state-of-the-art peer competitors, which

include eight manually designed CNNs, seven automatic and manual tuning, and five

automatic CNN architecture design algorithms. The experimental results show that the

proposed algorithm outperforms the existing automatic CNN architecture design algorithms

in terms of classification accuracy, parameter numbers, and computational resources.

Furthermore, the proposed algorithm is comparable to the best one from manually designed

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

11

and automatic and manually tuning CNNs in terms of classification accuracy, while consuming

much less computational resources.

[Hanxiao Liu, 2018] provides evidence that evolutionary algorithms can be used to discover

high-performance architectures (such as gradient descent algorithms), and that they can be

employed effectively in a variety of tasks and domains.

In [Fei Yin et. al., 2011] the GA is used to search for the optimal architecture from a predefined

range of architectures. Firstly, the initial population of the GA is generated using a random

selection from the predefined range of architectures. Subsequently, the GA will produce a

few generations to optimize the architecture of Deep Neural Network (DNN) sub-models. The

fitness of each architecture is measured based on the predictive performance of the DNN sub-

models over the corresponding group of datasets. Lastly, the best architecture will be selected

as the optimal architecture for each group of datasets. The training error of each DNN model

is obtained and treated as the fitness value of the objective function in GA optimization. Such

procedure is repeated until the preset optimization criteria is met.

[Junxi Zhang, Shiru Qu, 2021] explore the optimization of the adaptive genetic algorithm

(AGA) in the backpropagation (BP) neural network (BPNN), applied to shallow Multi-Layer

Perceptron (MLP) model, in the context of traffic flow prediction. The corresponding

optimized BPNN includes 18 inputs and 1 output. A single hidden layer is adopted for BPNN

in this study. The AGA is performed for 200 generations. The results of this study show that

the optimized adaptive GA in the BP neural network (OAGA-BPNN) algorithm has better

optimization performance than the AGA-BPNN algorithm. The OAGA-BPNN algorithm uses

the crossover rate and mutation rate to optimize the parameters of the GA algorithm so that

the algorithm can be better used for solving problems. The optimized algorithm has a better

optimization effect and shorter calculation time. The average optimization time of the OAGA-

BPNN algorithm is significantly reduced, and the average error of the optimized result is also

reduced.

[Er. Jasmeen Gill, 2010] use GAs to train a shallow MLP with one hidden layer to predict

weather parameters. They use populations up to 90 individuals evolving for typically 100

generations. The GAs and BP are compared in terms of accuracy and efficiency. The

performance of the models is evaluated on a real-time weather forecasting dataset. The

results indicate that the NN model based on GA has better accuracy and efficiency compared

to the BPNN model based on gradient descent.

[Han-Xiong Huang, 2014] tried to improve the classic BP algorithm by initially training using

fewer epochs and training using fewer learning samples (since data collection is costly and

time-consuming in their application domain: plastic object design). Then the trained BPNN

model is passed into a GA that searches in the feasible region to optimize the model. The

trained BPNN model is used as the fitness function of the GA. This process is iterated until a

satisfactory solution is found. The results show that the approach is effective, and the

prediction accuracy of the BPNN model is improved after the optimization.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

12

[Parsa Esfahanian et. al., 2019] proposes the use of GAs for CNN training. They introduced a

new encoding scheme for the weights of the CNN, which achieves better accuracy and faster

convergence than the traditional encoding. In addition, this approach was found to be more

robust to the choice of hyperparameters. However, the reported accuracy of the constructed

CNN was below 0.45 in the MNIST and CIFR-10 dataset.

[Lingxi Xie et. al., 2017] discusses the possibility of automatically learning deep network

structures. We note that due to the exponentially increasing number of possible network

structures with the number of layers, a genetic algorithm is employed to efficiently traverse

this large search space. We first propose an encoding method to represent each network

structure in a fixed-length binary string, which is then used to initialize the genetic algorithm.

In each generation, standard genetic operations are applied to the population of individuals,

such as selection, mutation, and crossover, in order to eliminate weak individuals and

generate more competitive ones. The competitiveness of each individual is identified through

its recognition accuracy, which is obtained by training the network from scratch and

evaluating it on a validation set. We also propose an approach to speed up the training

process by utilizing the information from previous generations. Experimental results

demonstrate that our automated deep network design approach is able to outperform

handcrafted networks in both classification and regression tasks.

[Felipe Petroski Such et. al., 2018] tests the performance of a simple GA on hard deep

reinforcement learning (RL) benchmarks. This work demonstrates that a simple, gradient-

free, population-based genetic algorithm can scale to very large neural networks and solve

challenging deep reinforcement learning problems. It also shows that by combining DNNs

with neuroevolutionary methods such as novelty search, performance can be improved on

deceptive or sparse reward tasks. Finally, it shows that the Deep GA is faster than popular

gradient-based algorithms, and enables a state-of-the-art, up to 10,000-fold compact

encoding technique.

[Amin Dastanpour (2016)] proposes a model that consists of three layers of ANN, i.e., the

input layer, the hidden layer, and the output layer. The input layer consists of 41 parameters

which are extracted from the KDD CPU 99 dataset. The hidden layer consists of 15 neurons

using the sigmoid activation function and the output layer consists of 2 neurons using the

softmax activation function. The weights are optimized using the genetic algorithm (GA). The

GA algorithm is used to optimize the weights of the ANN in order to improve the accuracy of

the model. The experimental results show that the proposed model achieves better accuracy

and detection rate compared to the ANN model without GA optimization. The proposed

model also has a better false alarm rate compared to the ANN model. The results show that

the proposed model is effective for intrusion detection.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

13

2.4 Low-rank matrix and tensor analysis

Low-rank matrix and tensor analysis have applications in many areas, such as machine

learning, image processing, natural language processing, and data mining. This subject is a

branch of mathematics that deals with the analysis and decomposition of low-rank matrices

and tensors. The goal of the analysis is to find an efficient representation of the underlying

structure of a matrix or tensor. For instance, low-rank matrix and tensor decompositions have

been used to extract features from images and audio signals, analyze text documents and

detect patterns in large datasets.

The Low-Multilinear Rank Approximation (LMRA) is a form of matrix factorization that aims

to approximate a given matrix by a low-rank matrix. This is done by decomposing the matrix

into a product of two or more lower-rank matrices, each of which has fewer columns or rows

than the original matrix. By doing this, the total number of elements in the matrix is reduced,

resulting in a more efficient representation of the matrix and a reduced computational

complexity. The goal is to minimize the reconstruction error, i.e. the difference between the

original matrix and the reconstructed matrix. This can be achieved by using different

algorithms such as Singular Value Decomposition (SVD), and Tensor Decomposition. In the

proposed algorithm, we investigated a higher-order extension of SVD, called “Tucker

Decomposition” (Fig. 4b).

SVD is graphically described in Fig. 4a. This method works by decomposing a matrix X as a

product of table A (with orthogonal columns), a diagonal matrix Σ and B, the transpose of

another matrix with orthogonal columns.

Figure 4a: SVD is a technique used for the reduction or compression of data

On the other hand, Tucker decomposition is essentially a higher-order extension of SVD,

where we find the best rank approximation of it (Fig. 4b). Practically, we can decompose a 3-

way tensor into:

• Core Tensor (G): dense tensor of interactions between factor matrices,

• Factor matrices (A, B, C): each one of them represents a different core scaling along

each mode.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

14

More details are described by Tamara G. Kolda et. al. (2009), Laurent Sorber et. al. (2014),

Alex P. da Silva et. al., and in section 3.5.2.2.

Figure 4b: Tucker Decomposition for a 3-way tucker

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

15

3. Methodology

3.1 The available dataset

Here, we implement the neural network using database. It contains 70,000 images,

from which 60,000 are often used for training and 10,000 for validation. Each of these images

is a pixel binary image, as seen in Fig. 5. However, training a neural network using

60,000 images is time-consuming. In our case, we describe the process using 6,000 images,

where 5,000 images are used for training and 1,000 for validation.

Figure 5: Samples of MNIST and Fashion MNIST dataset

3.2 Convolutional Neural Network architectures and

Parameterization of Basic CNN functions

We used a CNN containing one Convolutional layer, ReLU and Softmax activation functions,

and one Mean Pooling layer. Our CNN’s architecture consists of an input layer, one hidden

layer, and the output layer. The input layer has , including

 representing the pixel count of the input image, and

. We use a single convolution layer with filters. Each output of

the convolution filter (20×20×20) will be passed through the ReLU and Pool function; we use

 submatrices for Pooling Layer. That was the Feature Learning Section of our CNN.

The outcome of this section is a 10×10×20 matrix which is flattened and passed into the

Classification Section of our neural network. In detail, the flattened matrix passes through a

ReLU function and then through the 10×1 output layer of our CNN, with Softmax as the

activation function which leads to a matrix corresponding to the probabilities of each class of

the dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=MNIST#0
https://www.codecogs.com/eqnedit.php?latex=28%5Ctimes28#0
https://www.codecogs.com/eqnedit.php?latex=784%20%24%20%24neurons#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=784%20%24%20%24input%20%24%20%24nodes%20%24%20%7B(28%5Ctimes28)%7D#0
https://www.codecogs.com/eqnedit.php?latex=0%20%24%20%24bias%20%24%20%24neurons#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=20%2C%20%20%24%20%7B(9%5Ctimes9)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=2%5Ctime2#0

16

3.2.1 Weight Dimensions

In , the implemented architecture of the neural network is shown. There are many

layers, but only three of them contain weight matrices. Hence, these three layers require

training.

Figure 6: The architecture of our CNN

As seen above, is the weight of the convolutional layer: it is used by the convolution filters

for image processing· and contain the connection weights of the classification layers.

Note that, in the first fully-connected (FC) layer, there are 2000 green-squared nodes, which

represent the layer that transforms a image into a vector (flattening) and does not

participate in the training process. According to that, represents the filters

and has length equal to -1620- weights· W5 connects the flattened outcome of

the Feature learning section with the ReLU activation function of the Classification section

and so its length is equal to . Finally, is the weight matrix that connects the

output layer (10 neurons) to the previous FC layer. Hence, the dimension of Wo is .

3.2.2 Activation Functions

The layer between the convolution filter and feature map is the Activation function. In CNN,

a commonly used activation function is Rectified Linear Unit, in short, ReLU function. The

ReLU function is used to calculate the activation values in our CNN. Mathematically, it is

expressed as

where : the input value of each neuron and : is the feature map of input images.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Fig.%20%24%206#0
https://www.codecogs.com/eqnedit.php?latex=W1#0
https://www.codecogs.com/eqnedit.php?latex=W5#0
https://www.codecogs.com/eqnedit.php?latex=Wo#0
https://www.codecogs.com/eqnedit.php?latex=2D#0
https://www.codecogs.com/eqnedit.php?latex=W1#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=20%2C%20%24%20%7B(9%5Ctimes9)%7D#0
https://www.codecogs.com/eqnedit.php?latex=9%5Ctimes9%5Ctimes20#0
https://www.codecogs.com/eqnedit.php?latex=100%5Ctimes2000#0
https://www.codecogs.com/eqnedit.php?latex=Wo#0
https://www.codecogs.com/eqnedit.php?latex=10%5Ctimes100#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20ReLU(z)%20%3D%20%5Cbegin%7Bcases%7D%200%2C%20%20%24%20for%20z%3D0%2C%5C%5C%5C%5C%20%24z%20%2C%20%24%20for%20%24z%20%3E%200%20%20%5Cend%7Bcases%7D%20%24%7B(1)%7D#0
https://www.codecogs.com/eqnedit.php?latex=z#0
https://www.codecogs.com/eqnedit.php?latex=ReLU%7B(z)%7D#0

17

In summary, ReLU is a nonlinear function -or piecewise linear function- that will output the

input directly if it is positive, otherwise, it will output zero, as seen on .

Figure 7: ReLU is used in the hidden layer to avoid the vanishing gradient problem and better

computation performance.

Note that the activation function is an integral part of a neural network. Without an activation

function, a neural network is a simple linear regression model. This means the activation

function gives non-linearity to the neural network.

The Softmax function is an activation function before the output layer and returns the

probability of each class. It can be mathematically expressed as

where : the values from the neurons of the output layer, k: number of classes on the output

layer (here,), : the standard exponential function for every input of softmax

function (). The nominator is positive, with low value for negative and great value for

positive zi, but it is still not fixed in the range [0, 1]. The normalization term

guarantees that the Softmax output values will all add up to 1 and fall within the range (0, 1),

forming a valid probability distribution.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Fig.%20%24%207#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Softmax%7B(z_i)%7D%20%3D%20%5Cfrac%7B%5C%20e%5E%7Bz_i%7D%7D%7B%5Csum_%7Bj%3D1%7D%5E%7Bk%7D%20%5C%20e%5E%7Bz_j%7D%7D%20%24%20%24%20%24(2)%20#0
https://www.codecogs.com/eqnedit.php?latex=z_i%20#0
https://www.codecogs.com/eqnedit.php?latex=k%20%3D%2010#0
https://www.codecogs.com/eqnedit.php?latex=e%5E%7Bz_i%7D#0
https://www.codecogs.com/eqnedit.php?latex=z_i#0
https://www.codecogs.com/eqnedit.php?latex=%7B%5Csum_%7Bj%3D1%7D%5E%7Bk%7D%20%5C%20e%5E%7Bz_j%7D%7D#0

18

3.3 CNN training using Backpropagation (BP)

A simple version of BP for a CNN with only one convolutional layer and two fully connected

(FC) layers has been implemented in this work, based on [Phil Kim, 2017]. Note that we define

 as the learning rate of training, which determines the speed at which learning takes

place. The momentum coefficient is set . Using the mini-batch method, the mini-

batch size was set as , we select a subset of data with which the neural network

is trained on these selected data. More mathematical quotations about BP are described by

[Phil Kim, 2017].

We have not implemented early stopping, instead we allow the BP to evolve for a number of

 epochs and study the evolution of train accuracy and test accuracy.

3.4 Genetic Operators

Genetic operators (also known as genetic variation operators) are functions used in genetic

algorithms to manipulate the chromosomes of the population in the evolutionary process.

They are used to produce new and different chromosomes from the existing ones in the

population. Common genetic operators include Evaluation of chromosomes, Selection,

Crossover, and Mutation.

Figure 8: The flowchart of Genetic Algorithm

3.4.1 Calculation of chromosomes’ fitness

The fitness function is the most computational but indispensable element of GAs. It is a

measure of the quality of a solution. Essentially, GA follows the fitness function in its search

for the optimal solution. The fitness function helps to decide which individuals can progress

to the subsequent generation of solutions. Each GA operator is designed to increase the

fitness of the population. Thus, assigning fitness to each chromosome (individual) is of

paramount importance for GAs. In the case of CNN training using GAs, the fitness function is

defined in subsection .

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=%5Calpha%3D0.01#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%3D0.95#0
https://www.codecogs.com/eqnedit.php?latex=batch%3D100#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=N#0
https://www.codecogs.com/eqnedit.php?latex=3.5.2#0

19

3.4.2 Selection Operator

After calculating the fitness of every chromosome in the population, selection operator (or

parent selection) is used to determine which of the individuals in the population will be

chosen to reproduce and create the offspring that form the next generations.

GA is based on Darwin’s theory of “Survival of the fittest ''. Our goal in this operator is to pick

the fittest chromosomes to pass their good (fit) genes to the next generation and so, evolve

a fitter population after each iteration. The probability of choosing an individual depends

directly on their fitness evaluation: fitter individuals have a higher chance of being chosen and

propagating their features to the next generation.

The Roulette Wheel Selection is used as the parent selection mechanism. The wheel is divided

into portions, where is the number of individuals in the population; each portion of

the wheel represents the fitness value of each chromosome. A fixed point is chosen

randomly on the wheel and we spin the roulette wheel 2 times to get our couple of parents.

The portion that comes in front of this point is chosen as the parent. This fixed point is a

random number between 0 and the sum of fitness for the whole population. More formally,

let be the fitness of individual , with . Then an individual is selected with a

probability according to its fitness as follows: a random number is

generated. For a given value of , the individual is selected such that and

. The concept of selection is graphically depicted in .

Figure 9: Roulette Wheel Selection

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=n_C#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=n_C#0
https://www.codecogs.com/eqnedit.php?latex=%5Cxi#0
https://www.codecogs.com/eqnedit.php?latex=f_i#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=i%3D1%2C2%2C%20%5Cldots%2Cn_C#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cxi%20%5Csim%20%5Ccup(0%2C%5Csum_%7Bj%3D1%7D%5E%7Bn_c%7D%7Bf_i%7D%20%24%20)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cxi#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cxi%20%5Cleq%20%5Csum_%7Bj%3D1%7D%5E%7Bk%7D%7Bf_j%7D%20%24%20%7B(3)%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cxi%20%3E%20%5Csum_%7Bj%3D1%7D%5E%7Bk%2B1%7D%7Bf_j%7D%20%24%20%7B(4)%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Fig.%20%24%209#0

20

As seen above, the fitter an individual is, the bigger portion they have on the wheel, and they

are more likely to land in front of the fixed point when the wheel is rotated.

3.4.3 Crossover

Crossover is a genetic operator used to vary the genotype of chromosomes from one

generation to the next. In other words, the crossover is the reproduction in our population.

Two chromosomes (“parents”) are selected using the roulette wheel, from the mating pool

to crossover and produce offspring.

Here, we use Uniform Crossover. This operator takes two parents as input and creates two

children by randomly selecting genes from either parent. Each gene has an equal probability

of being selected from either parent. This allows for a more balanced combination of genetic

material from the two parents. A random variable generated according to the Uniform

distribution , called , has the same length as parents do, and shows us which

parts of each parent will be passed to the offspring. Mathematically:

Figure 10: Uniform Crossover where “Mask” illustrates the variable alpha

3.4.4 Mutation

Mutation Operation is defined as a random tweak in the genotype of chromosomes to get a

new individual. Its purpose is to introduce and maintain diversity in the population and is

usually applied with a low probability per gene , usually set to .

For each gene, a random number is generated according to the Uniform distribution,

and if it exceeds then the gene is mutated. In our proposed algorithm, we choose to apply

mutation only to children. A gene with a value is mutated to a new value

.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=U(0%2C1)#0
https://www.codecogs.com/eqnedit.php?latex=alpha#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=child_1%20%3D%20%24%20%24alpha%5Ctimes%20%24parent_1%20%24%20%2B%20%24%20%24%7B(1-%24alpha)%7D%5Ctimes%20%24parent_2%20%24%20%24%20%24%20%24%20%7B(5)%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=child_2%20%3D%20%24%20%24alpha%5Ctimes%20%24parent_2%20%24%20%2B%20%24%20%24%7B(1-%24alpha)%7D%5Ctimes%20%24parent_1%20%24%20%24%20%24%20%24%20%7B(6)%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7B(p_m)%7D#0
https://www.codecogs.com/eqnedit.php?latex=0.001#0
https://www.codecogs.com/eqnedit.php?latex=U(0%2C1)#0
https://www.codecogs.com/eqnedit.php?latex=p_m#0
https://www.codecogs.com/eqnedit.php?latex=a#0
https://www.codecogs.com/eqnedit.php?latex=a%20%5Cleftarrow%20a%2B%20%5Csigma%20%5Cxi%2C%20%5Ctext%7B%20%7D%20%5Cxi%5Csim%20%20%5Cmathcal%7BN%7D%20(0%2C1)%20%24%20%24%20%24%20%24%20%7B(7)%7D#0

21

Figure 11: Mutation operator

3.5 Genetic Algorithm implementation for CNN training

Using a genetic algorithm to optimize a convolutional neural network (CNN) involves creating

a fitness function that measures the performance of the CNN and then applying genetic

operators (selection, crossover, and mutation) to the fitness function to optimize the

network. Hence, fitness function should measure the accuracy of the network on a dataset,

and the genetic operators should be applied to the weights and parameters of the network

in order to optimize them. The goal of the optimization process is to find the set of weights

for given GA settings (number of iterations/populations/genes, mutation percentage, etc.)

that maximize the accuracy of the CNN on the dataset. After the optimization process is

complete, the resulting CNN should be able to generalize better to unseen data (test set) and

achieve higher accuracy overall.

Figure 12: Genetic CNN

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

22

3.5.1 CNN representation and Population Initialization

The CNN we implemented in the proposed work is described in .

Population Initialization

This process begins with a set of individuals (chromosomes) which is called a population. Each

chromosome is a solution to the problem we want to solve and is practically characterized by

a set of variables known as genes. So, each chromosome encodes the CNN. Therefore, when

it comes to training a CNN using GAs, chromosomes represent the weights of our CNN. The

weights are initialized randomly as follows:

, and .

In the case of low-rank convolutional tensor, the relevant initialization is modified:

, where and stand for the uniform and normal distribution.

Figure 13: Genetic Algorithm terms

In Genetic Algorithm, the population size is an important parameter that directly influences

the ability to search for an optimum solution in the search space. It is generally known that

having a large population leads to the accuracy of getting an optimal solution. Here, we set

the population size equal to .

The following process is employed to generate the 1st generation: individuals are

generated, and their fitness is evaluated. The fittest 20% individuals are saved, and the rest

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=3.2#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=w_1%20%5Csim%20%20%5Ccup(-2%2C%20%2B2)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=w_5%20%5Csim%20%20%5Ccup(-0.05%2C%20%2B0.05)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=w_o%20%5Csim%20%20%5Ccup(-0.2%2C%20%2B0.2)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=w_1%20%5Csim%20%20%5Cmathcal%7BN%7D%20%24%20(0%2C1)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Ccup#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Ccal%7BN%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=n_C#0
https://www.codecogs.com/eqnedit.php?latex=50#0
https://www.codecogs.com/eqnedit.php?latex=n_C#0

23

are discarded. The above steps are repeated 5 times, thus a total of individuals are saved

that are expected to have above random average fitness. These individuals serve as the 1st

generation.

3.5.2 The structure of a Chromosome

3.5.2.1 Encoding Full-Rank Tensors

Here, the weights of all layers are structured as full-rank tensors that are initialized randomly,

in order to form the chromosomes of each population.

We create uniformly distributed weight matrices that contain random numbers, where

has length equal to , length is equal to and has length

equal to , as described in []. Then, these three weight matrices are flattened

into one variable called the Chromosome or Individual of the population. According to the

perspective of Full Rank matrices, the length of each chromosome is equal to

Figure 14: Structure of chromosome (Full Rank Version)

3.5.2.2 Encoding Low-rank Tensors

Here, as we know, matrix W1 captures the weights of convolution layers (size:),

but in this case, it is considered as a 3D Tensor that is decomposed to (Core Tensor), ,

, and (factor matrices). According to section , the sizes of these four matrices are shown

below:

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=n_C#0
https://www.codecogs.com/eqnedit.php?latex=W1#0
https://www.codecogs.com/eqnedit.php?latex=9%5Ctimes9%5Ctimes20#0
https://www.codecogs.com/eqnedit.php?latex=W5's#0
https://www.codecogs.com/eqnedit.php?latex=100%5Ctimes2000#0
https://www.codecogs.com/eqnedit.php?latex=Wo#0
https://www.codecogs.com/eqnedit.php?latex=10%5Ctimes100#0
https://www.codecogs.com/eqnedit.php?latex=3.1.1#0
https://www.codecogs.com/eqnedit.php?latex=9%5Ctimes9%5Ctimes20%20%24%20%2B%20%24%20100%5Ctimes2000%20%24%20%2B%20%24%2010%5Ctimes100%20%3D%20202%2C620%20%24%20%24genes%20%20%24%20%24%20%24%20%24%20%7B(8)%7D#0
https://www.codecogs.com/eqnedit.php?latex=9%5Ctimes9%5Ctimes20#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=B#0
https://www.codecogs.com/eqnedit.php?latex=C#0
https://www.codecogs.com/eqnedit.php?latex=2.4#0

24

Figure 15: Chromosome initialization based on low-rank matrices

As seen in , W1 is a tensor composed by , ,

and , where : the rank of W1 that we choose in every experiment. In the

proposed algorithm, the core tensor is equal to 1 and so W1 is the outer product of our factor

matrices. Eventually, the length of W1 is equal to .

More details are described in Table 1.

Table 1: Total Genes in our CNN’s weights for full-rank and low-rank

Rank Total Genes (Size of

chromosome)

Genes in

convolutional Tensor

(W1)

Genes in hidden

layer (W5)

Genes in

output layer

(Wo)

5 201,190 190 100x2000 10x100

7 201,266 266 100x2000 10x100

11 201,418 418 100x2000 10x100

Full 202,620 1620 100x2000 10x100

3.5.3 Fitness Function

The most challenging yet essential concept of GAs is the fitness function. In the proposed

work, fitness function is a measure of the fraction of correct image classifications for the

training set that a given chromosome (individual) produces. The higher the value of the fitness

function, the better the solution.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=ABC%20%3D%209%5Ctimes%20%24R%20%24%20%2B%20%24%20%209%5Ctimes%20%24R%20%2B%2020%5Ctimes%20%24R%20%24%20%24%20%24%20%7B(9)%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=ABC%20%3D%209%5Ctimes%20%24R%20%24%20%2B%20%24%20%209%5Ctimes%20%24R%20%2B%2020%5Ctimes%20%24R%20%24%20%24%20%24%20%7B(9)%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Fig.%20%24%2015#0
https://www.codecogs.com/eqnedit.php?latex=3D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=G%20%3D%20%24%20%24R%20%5Ctimes%20%24R%20%5Ctimes%20%24R%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=A%20%3D%209%20%5Ctimes%20%24R#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=B%20%3D%209%20%5Ctimes%20%24R%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=C%20%3D%2020%20%5Ctimes%20%24R%20#0
https://www.codecogs.com/eqnedit.php?latex=R#0

25

Initially, the available dataset of images is divided into training and testing subsets. It is

important to mention that the training set is randomly shuffled so that the neural network

will have a better generalization. The main steps for fitness calculation are as follows:

1. The chromosome is decoded and the corresponding CNN is constructed. The decoding

is the inverse process of chromosome encoding that has been described in the

subsection – above, both for the full-rank and the low-rank case.

2. The images of the training set are forward-passed into the constructed chromosome.

The CNN’s predictions are compared to the true labels of the images and the accuracy

is calculated. The fitness is set equal to the accuracy.

The accuracy of the test subset is also calculated, solely for the purpose of measuring the

CNN’s ability to generalize (equivalently quantify the overfitting) and it is not used for the

training process.

3.5.4 Parent Selection

The is used as the parent selection mechanism, as described

in paragraph .

3.5.5 Crossover, Mutation & Termination Condition

Here, we use Uniform Crossover. According to , each gene of each offspring is a random

linear combination of the corresponding genes of the two parents. This way, the resulting

chromosomes will be more diverse and may contain better solutions than the original

parents.

The mutation operator was implemented as follows. First, the genes of each chromosome

that will be mutated are randomly selected. As referred in subsection , the mutation is

performed on each gene of the offsprings with a probability of .

The termination condition is the number of generations that is limited to , after

which the parameters of the fittest individual will be used to build the final CNN.

Creation of new generation

The crossover between two good chromosomes (solutions) may not always yield a fitter

solution. However, since parents are selected according to fitness, the probability of the child

being fit is high. Once the offspring are created, they are joined with the existing individuals

(parents) in the population, and then altogether get sorted in descending order by their

fitness. Note that our population now consists of both parents and children. Our purpose is

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Roulette-Wheel%20%24%20Selection#0
https://www.codecogs.com/eqnedit.php?latex=3.4.2%20%24%20-%20%24%20%24%20%24%22Selection%22#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%7B3.4.3%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=3.4.4#0
https://www.codecogs.com/eqnedit.php?latex=p_m%3D0.001#0
https://www.codecogs.com/eqnedit.php?latex=N_%7Biter%7D#0
https://www.codecogs.com/eqnedit.php?latex=400#0

26

to keep the fittest members and maintain the size of our population stable. Hence, the low-

fitness chromosomes will be removed from the population at the end of each iteration and

the remaining chromosomes will form the new generation.

3.5.6 GA Hybridization

It is common practice to hybridize a global optimization method with a local one. The main

strategy of this approach is that every few generations a number of the fitter individuals

undergo local optimization and then are inserted back in the population. In detail, the BP is

performed every X generations and fine-tunes the weights of the fittest Chromosome of the

Xth generation; BP is allowed to repeat for a number of epochs using the training set. Once

the best set of weights is found using BP, the fine-tuned chromosome is encoded and replaces

the corresponding chromosome in the population of the current generation.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=n_C#0

27

4. Results and Discussion

GA settings

For GA, we initialize a population containing 50 chromosomes (individuals). For the initial

generation, we generate populations in order to create the gene pool. Gene pool contains

the fittest chromosomes of these populations. The Roulette-Wheel Selection during its

first iteration (3.5.1). GA evolves for maximum number of ,

performing Evaluation (Fitness Function), Selection, Crossover, and Mutation, and at the end

of each generation, our chromosomes are sorted according to their fitness value and moved

to the next generation, while the chromosome with the highest fitness (accuracy) is saved to

perform GA hybridization in . Furthermore, it is important to mention that

Crossover is always performed to its input individuals, while the performance of Mutation

depends on . For more GA settings, see and .

Table 2: Genetic settings

GA parameters Value

Chromosomes (population size) 50

Genes (size of individual) 202,620 (Full-Rank),

201,190 (R=5),

201,266 (R=7),

201,418 (R=11)

Maximum iterations 400

Selection Type Roulette Wheel

Crossover Type Uniform

Mutation probability 0.001

Sigma (Mutation) 1

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=5#0
https://www.codecogs.com/eqnedit.php?latex=10#0
https://www.codecogs.com/eqnedit.php?latex=5#0
https://www.codecogs.com/eqnedit.php?latex=400%20%24%20%24iterations%20%24%20%24%7B(generations)%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Experiment%20%24%204#0
https://www.codecogs.com/eqnedit.php?latex=p_m#0
https://www.codecogs.com/eqnedit.php?latex=3.5#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Table%20%24%202#0

28

Training Images [500, 1000, 2500, 5000]

Test Images the last 1000 of 60,000

Using the above settings, we implemented four experiments.

1. Train CNN with GA using the training subsets, globally for all individuals of the

population.

When training with GA, the parameters can be adjusted globally for all individuals of the

population, which can further improve accuracy. In this experiment we investigated the effect

of the size of the training set. Additionally, we executed the BP on the best individual of the

last generation of the GAs. In , we can see that our experiment worked pretty well

resulting in satisfactory validation accuracy with a mean percentage of 72%. The results of

this experiment are shown below in figures .

Table 3: Achieved accuracy of the GA-CNN for different size of the training set.

Dataset
Tensor

rank

BP

during
GAs

Accuracy
GA %

Accuracy %
BP after

GA

Train test train /
chrom.

Train Test Train Test

1-5000 last 1000 all full Never 69.54 71.1 100 96.8

1-500 last 1000 all full Never 76 67.4 100 86.8

1-1000 last 1000 all full Never 73.10 75.6 100 93.1

1-2500 last 1000 all full Never 72.04 74 100 96.2

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Table%20%24%203#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=16a-%24d#0

29

Figure 16a: Accuracy of our GA-CNN with 5000 training images. After 400 generations we performed

BP to our model to upgrade the accuracy

Figure 16b1: Accuracy of the proposed GA-CNN with 500 training images

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

30

Figure 16b2: Accuracy of the proposed GA-CNN with 500 training images AFTER applying BP

Figure 16c1: Accuracy of our GA-CNN with 1000 training images

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

31

Figure 16c2: Accuracy of our GA-CNN with 1000 training images. After 400 generations we performed

BP to our model to upgrade the accucacy

Figure 16d: Accuracy of our GA-CNN with 2500 training images

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

32

• Train our CNN with Backpropagation

In this chapter, we present the performance of our CNN when optimized with the traditional

BP algorithm. The following figures () work as our baseline in order to compare the

efficiency of our proposed algorithm with the BPNN.

Table 4: CNN training and test accuracy of the traditional BP

Dataset

Tensor rank

Epochs

Accuracy %

train Test train / chrom Train Test

1-500 last 1000 All full 100 98 89.1

1-5000 last 1000 All full 50 99.99 97.4

1-5000 last 1000 All full 100 100 97.6

Backpropagation is a quick, easy and efficient algorithm to train CNNs. In this experiment, we

tried to evaluate BP’s performance by using two different sizes of training sets and by

increasing the number of epochs. According to , BP worked very well: the weights of

our CNN are well optimized, and our model becomes more accurate. Although, a large

number of epochs can lead to fluctuations in backpropagation, as seen in Fig. 17b.

Additionally, the longer the training period, the more likely it is that overfitting will occur,

which can also cause fluctuations in backpropagation. However, in these experiments, not

significant overfitting was observed, since the test accuracy did not deteriorate with the

number of epochs.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=17a-17c#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Table%20%24%204#0

33

(a): BP performed to 500 images with 100 epochs (b): BP performed with 5000 training images and

100 epochs

Figure 17: Training and Test accuracy of BPNN

2. CNN training with GA using training subset for each individual.

Here, the training process of CNN with GA is the same as in , by using a random

subset of the training set to calculate the fitness of each chromosome. The effect of the size

of the random subset is investigated, using as few as 200 random images per fitness

evaluation. During the training process, the same chromosome decoding process is applied

to the updated chromosome to construct the updated CNN.

According to , reducing the size of the training subset can reduce the accuracy of the

CNN model. We referred in 3.5.2 that the fitness function is the most challenging operation

in GA-CNN, meaning that it is the most time-consuming/computationally expensive

procedure since it evaluates the accuracy of our model. Hence, when we train our CNN with

a smaller training set, the fitness function becomes quicker. But, in this case, our model may

not be able to learn the features of the dataset well enough, resulting in a decrease in

accuracy. As seen in , and , the subset is reduced by where we can notice

that the average validation accuracy is , while in the other two cases where the

percentage decrease of our dataset is smaller, the average validation accuracy is .

More details in .

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Experiment%20%24%201#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Table%20%24%205#0
https://www.codecogs.com/eqnedit.php?latex=18a#0
https://www.codecogs.com/eqnedit.php?latex=18b#0
https://www.codecogs.com/eqnedit.php?latex=18d#0
https://www.codecogs.com/eqnedit.php?latex=80-90%25#0
https://www.codecogs.com/eqnedit.php?latex=57.66%25#0
https://www.codecogs.com/eqnedit.php?latex=67.35%25#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Table%20%24%205#0

34

Table 5: GA-CNN Settings for Experiment 2

Dataset Tensor

rank

BP during

GAs

Accuracy

Train Test Train/chrom. Train Test

1-5000 Last 1000 all full Never 69.54 71.1

1-2500 Last 1000 1000 full Never 69.1 68.5

1-5000 Last 1000 200 full Never 51 43.7

1-5000 Last 1000 500 full Never 68.2 64.2

1-5000 Last 1000 1000 full Never 68.9 65.1

1-5000 Last 1000 2500 full Never 69.2 69.6

Figure 18a: Train and Test accuracy of our CNN optimized with 200 training subset (initial size: 5000)

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

35

Figure 18b: Train and Test accuracy of our CNN optimized with 500 training subset (initial size: 5000)

Figure 18c: Train and Test accuracy of our CNN optimized with 1000 training subset (initial size: 5000)

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

36

Figure 18d: Train and Test accuracy of our CNN optimized with 1000 training subset (initial

size: 2500)

Figure 18e: Train and Test accuracy of our GA-CNN optimized with 2500 training subset (initial size:

5000)

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

37

3. Apply low-rank weights to the convolutional layer and then optimize our

CNN only with GA.

Here, we tried to investigate the influence of low-rank matrices on our GA-CNN model. The

training process is similar to the process described above (), with the only

difference being that some parts of our chromosomes are encoded according to .

What is remarkable in this experiment is the fact that our GA-CNN is optimized more

effectively when it has 190/266/418 weights in the convolutional layer compared to when it

has 1690 weights. This is due to the fact that having a lower number of weights allows the

model to reduce the complexity of the model, thus making it easier to optimize and achieve

better performance. Hence, low-rank weights can reduce the number of parameters in the

network, resulting in faster training and improved model performance. Additionally, low-rank

weights can help reduce overfitting, as they encourage the model to focus on important

features and ignore irrelevant ones. In conclusion, the accuracy of the model can be improved

by applying low-rank weights to the convolutional layer, as seen in Table 6.

According to and , the accuracy of the model can be improved by applying low-rank

weights to the convolutional layer. Low-rank weights can reduce the number of parameters

in the network, resulting in faster training and improved model performance. Additionally,

low-rank weights can help reduce overfitting, as they encourage the model to focus on

important features and ignore irrelevant ones. To apply low-rank weights to the convolutional

layer, the genetic algorithm can be used to search for the best combination of weights that

results in the highest accuracy. Once the optimal weights are found, they can be applied to

the convolutional layer and the accuracy of the model can be evaluated.

Table 6: Low-rank GA-CNN training results

Dataset
Tensor

rank

BP

Genes in convolutional
Tensor (W1)

Accuracy %

Train test train/ chrom Train Test

1-
5000

last
1000

all Full never 190 69.54 71.1

1-
5000

last
1000

all 7 never 266 70.90 73.60

1-
5000

last
1000

all 5 never 418 72.32 73.70

1-
5000

last
1000

all 11 never 1620 57.20 73.70

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=Experiment%201#0
https://www.codecogs.com/eqnedit.php?latex=3.5.1.2#0
https://www.codecogs.com/eqnedit.php?latex=2.4#0
https://www.codecogs.com/eqnedit.php?latex=3.5.1.2#0

38

Figure 19a: Training and Validation accuracy of Low-rank GA-CNN (R=7)

Figure 19b: Training and Validation accuracy of Low-rank GA-CNN (R=5)

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

39

Figure 19c: Training and Validation accuracy of Low-rank GA-CNN (R=11)

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

40

4. Train CNN with a hybrid GA-BP algorithm.

The training process of CNN with the hybrid GA-BP algorithm is described in . Further

details about our experiment are shown in .

Table 7: BP settings for the GA-CNN model

BP parameters Value

Epochs [50, 100, 500]

Learning Rate 0.01

Momentum 0.95

Batch Method Mini Batch Method

Batch size 100

Training Images per chromosome [500, 1000, 2500, 5000]

Test Images the last 1000 of 60,000

Number of updates of the weights [5, 10, 25, 50]

Initialization of weights [random, the fittest chromosome]

Hidden Layer 1

Activation Functions ReLU, Softmax

Pooling Mean pooling

The results from this experiment are remarkable since the hybrid GA-BP algorithm scored

100% in training accuracy while test accuracy did not overcome 20% no matter how many

iterations we performed. This is due to the fact that genetic variability is lost because of BP.

In other words, BP is used here to make our chromosomes optimal. After a number of

iterations, more and more optimal individuals are added to the population. Genetic operators

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=3.5.5#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Table%20%24%207#0

41

see these optimal individuals as the goal-the type of chromosomes that the rest of the

population should look like in order to get a high accuracy of our model, and eventually we

reach a point where we have exactly the same individuals in the next generations.

Table 8: Train and Validation accuracy of the hybrid GA-BP algorithm

Dataset

Tensor rank

BP every gen

Accuracy %

train test train per chrom Train Test

1-5000 last 1000 All full 1 100 10.1

1-5000 last 1000 all full 5 100 12.3

1-5000 last 1000 all full 10 100 15.7

1-5000 last 1000 all full 20 100 20

Based on our experiments, we can realize that GAs requires a large amount of data, iterations

and time to train our CNN satisfactorily, while BP can quickly and accurately identify

handwritten digits after a few training epochs. For example, when training our model with

 training images, GA-CNN has accuracy equal to 71.1% after 400 iterations and BPNN’s

accuracy is equal to after only . After performing , we come

to the conclusion that the accuracy of the model is also relatively consistent across different

training datasets. In , we notice that whether the training subset is minor or almost

half of the original training set , the accuracy of our model is almost equal

to .

During our research, we came across two surprising conclusions: training our GA-CNN model

with low-rank weights leads to better optimization results in contrast with full-rank weights.

Here, the average accuracy is equal to which is greater than the accuracies we got on

the first two experiments and, is a satisfactory value to compare it with BP. The second

unexpected conclusion is the poor performance of our proposed hybrid GA-BPNN model. In

theory, this model works by combining the best features of both algorithms, such as the GA’s

ability to search for an optimal solution and the BPNN’s ability to quickly find a local minimum

and creates a more powerful and robust predictive model in comparison to traditional

algorithms. Yet the efficiency of BP creates a super-fit individual that when inserted into the

population eliminates the genetic diversity in just few generations.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=5000#0
https://www.codecogs.com/eqnedit.php?latex=97.6#0
https://www.codecogs.com/eqnedit.php?latex=100%20%24%20%24epochs#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Experiment%20%24%202#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Table%20%24%204#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%7B(%24Fig.%20%24%2018a%20%24%20%24and%20%24%2018d)%7D#0
https://www.codecogs.com/eqnedit.php?latex=66.85%25#0
https://www.codecogs.com/eqnedit.php?latex=73.66%25#0

42

5. Conclusions and future work

In this paper, we investigated the training of a deep learning CNN by an evolutionary

algorithm, namely GAs. The proposed approach is evaluated on the MNIST dataset.

1. Considering the ability of GAs to train a CNN with increased generalization, we used a

constant subset of 1000 images as the test set, whereas varying the train set from

5000 images to 200 images. Each individual was trained with the same train set.

Results showed a deterioration of test accuracy from to respectively. If BP

is applied afterwards with only the values of accuracy become and

 respectively.

2. The novel idea of allowing each chromosome to train with a random subset of the

available training set is also explored. In these experiments, we allowed the training

set per chromosome to vary from 5000 images (the whole training set) to 200 images.

Results showed a deterioration of test accuracy from 74% to respectively.

3. The effect of the rank of the tensor was also studied. To this end, the

chromosomes encoded tensors with rank equal to , and , using the inverse

canonical polyadic decomposition (CPD). The achieved test accuracy was effectively

constant, which is a remarkable result.

4. The hybridization of GAs with BP was studied next, with striking results. Fine tuning

the best chromosome of the generation with BP using just , dominates the

population, causing quick loss of genetic diversity and resulting in overfitting,

achieving train accuracy and very poor test accuracy: if BP is executed

every generation and just over if BP is invoked .

5. It is also interesting to note that overfitting does not occur even after

. This is evident, since the test accuracy does not seem to decrease, throughout the

evolution.

Considering the arithmetic complexity of the GA-training of CNN, one epoch of the BP is equal

to the forward pass of the full training set of images, thus:

.

In the above expression one should add the computational cost of adjusting the network’s

weights. On the other hand, the GA-training requires

.

Thus, if then can become comparable to the arithmetic

complexity of BP, .

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

https://www.codecogs.com/eqnedit.php?latex=74%25#0
https://www.codecogs.com/eqnedit.php?latex=67.4%25#0
https://www.codecogs.com/eqnedit.php?latex=8%20%24%20%24epochs#0
https://www.codecogs.com/eqnedit.php?latex=96.2#0
https://www.codecogs.com/eqnedit.php?latex=86.8%25#0
https://www.codecogs.com/eqnedit.php?latex=64.2%25#0
https://www.codecogs.com/eqnedit.php?latex=9%5Ctimes%209%5Ctimes%2020#0
https://www.codecogs.com/eqnedit.php?latex=5#0
https://www.codecogs.com/eqnedit.php?latex=7#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=11#0
https://www.codecogs.com/eqnedit.php?latex=8%20%24%20%24epochs#0
https://www.codecogs.com/eqnedit.php?latex=100%25#0
https://www.codecogs.com/eqnedit.php?latex=10%25#0
https://www.codecogs.com/eqnedit.php?latex=once#0
https://www.codecogs.com/eqnedit.php?latex=20%25#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=once%20%24%20%24every%20%24%2020%20%24%20%24generations#0
https://www.codecogs.com/eqnedit.php?latex=400%20%24%20%24generations#0
https://www.codecogs.com/eqnedit.php?latex=N_%7Btr%7D%3D5000#0
https://www.codecogs.com/eqnedit.php?latex=O_%7BBP%7D(N_%7Btr%7D%20%5Ctimes%20n_%7Bepoch%7D)#0
https://www.codecogs.com/eqnedit.php?latex=O_%7BGA%7D(n_C%20%5Ctimes%20N_%7Biter%7D%20%5Ctimes%20train_%7BChrom%7D%20)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cfrac%7Btrain_%7Bchrom%7D%7D%7BN_%7Btr%7D%7D%3C%3C1%20%24%20%24%20%24%7B(12)%7D#0
https://www.codecogs.com/eqnedit.php?latex=O_%7BGA%7D#0
https://www.codecogs.com/eqnedit.php?latex=O_%7BBP%7D#0

43

Although a few novel ideas have been explored in this work, the results presented are

considered initial. First, the CNN used for experimentation is very simple. The dataset also

consists of very small images of 10 classes. These limitations were necessary to conclude the

thesis within the available time frame and with the available computer hardware. Future work

includes applying GAs to train more complicated CNNs, with larger datasets. The use of more

difficult classification tasks may reveal the superiority of the GAs versus BP, which is still a

remaining issue after this work. The BP may also be modified to be applied to low rank tensors

of the convolutional layers.

We believe that our proposed approach is an effective way to improve the accuracy of deep

learning classifiers. We also observe that the proposed approach can be used for other deep

learning tasks, such as object detection and image segmentation. We are currently exploring

ways to further improve our approach by incorporating more advanced evolutionary

algorithms and other optimization techniques.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

44

References

[1] Alex Pereira da Silva, Comon, P., & de Almeida, A. L. (2015, April). An iterative deflation

algorithm for exact CP tensor decomposition. In 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) (pp. 3961-3965). IEEE.

[2] Amin Dastanpour, Suhaimi Ibrahim, RezaMashinchi, “Effect of Genetic Algorithm on

Artificial Neural Network for Intrusion Detection System”, Advanced Informatics School,

University Technology Malaysia, Jalan Semarak, 54100 Kuala Lumpur, Malaysia | Faculty of

Computing, University Technology Malaysia, Johor (2016)

[3] Delibasis, K. K., Asvestas, P. A., Matsopoulos, G. K., Zoulias, E., & Tseleni-Balafouta, S.

(2008). Computer-aided diagnosis of thyroid malignancy using an artificial immune system

classification algorithm. IEEE Transactions on Information Technology in Biomedicine, 13(5),

680-686.

[4] Delibasis, K. K., Asvestas, P. A., & Matsopoulos, G. K. (2011). Automatic point

correspondence using an artificial immune system optimization technique for medical image

registration. computerized medical imaging and graphics, 35(1), 31-41.

[5] Delibasis, K., Undrill, P. E., & Cameron, G. G. (1996, April). Genetic algorithms applied to

Fourier-descriptor-based geometric models for anatomical object recognition in medical

images. In Medical Imaging 1996: Image Processing (Vol. 2710, pp. 635-645). SPIE.

[6] Delibasis, K., Undrill, P. E., & Cameron, G. G. (1997). Designing Fourier descriptor-based

geometric models for object interpretation in medical images using genetic algorithms.

Computer Vision and Image Understanding, 66(3), 286-300.

[7] Delibasis, K., & Undrill, P. E. (1994). Anatomical object recognition using deformable

geometric models. Image and vision computing, 12(7), 423-433.

[8] Esfahanian, P., & Akhavan, M. (2019). Gacnn: Training deep convolutional neural networks

with genetic algorithm. arXiv preprint arXiv:1909.13354.

[9] Gill, E. J., Singh, E. B., & Singh, E. S. (2010, September). Training back propagation neural

networks with genetic algorithm for weather forecasting. In IEEE 8th international

symposium on Intelligent systems and informatics (pp. 465-469). IEEE.

[10] Goldberg, D. E. (1989). A Simple Genetic Algorithm in Genetic Algorithms in Search

Optimization and Machine Learning.

[11] Huang, H. X., Li, J. C., & Xiao, C. L. (2015). A proposed iteration optimization approach

integrating backpropagation neural network with genetic algorithm. Expert Systems with

Applications, 42(1), 146-155.

[12] Ijjina, E. P., & Chalavadi, K. M. (2016). Human action recognition using genetic algorithms

and convolutional neural networks. Pattern recognition, 59, 199-212.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

45

[13] Jebari, K., Madiafi, M., & Elmoujahid, A. (2013). Parent selection operators for genetic

algorithms. International Journal of Engineering Research & Technology, 2(11), 1141-1145.

[14] Kim, P. (2017). Matlab deep learning with machine learning, neural networks and

artificial intelligence. by Phil Kim.

[15] Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM

review, 51(3), 455-500.

[16] Liu, H., Simonyan, K., Vinyals, O., Fernando, C., & Kavukcuoglu, K. (2017). Hierarchical

representations for efficient architecture search. arXiv preprint arXiv:1711.00436.

[17] Liu, P., El Basha, M. D., Li, Y., Xiao, Y., Sanelli, P. C., & Fang, R. (2019). Deep evolutionary

networks with expedited genetic algorithms for medical image denoising. Medical image

analysis, 54, 306-315.

[18] Luo, X. J., Oyedele, L. O., Ajayi, A. O., Akinade, O. O., Owolabi, H. A., & Ahmed, A.

(2020). Feature extraction and genetic algorithm enhanced adaptive deep neural network

for energy consumption prediction in buildings. Renewable and Sustainable Energy Reviews,

131, 109980.

[19] Montana, D. J., & Davis, L. (1989, August). Training feedforward neural networks using

genetic algorithms. In IJCAI (Vol. 89, pp. 762-767).

[20] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017). Deep

neuroevolution: Genetic algorithms are a competitive alternative for training deep neural

networks for reinforcement learning. arXiv preprint arXiv:1712.06567.

[21] Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Lv, J. (2020). Automatically designing CNN

architectures using the genetic algorithm for image classification. IEEE transactions on

cybernetics, 50(9), 3840-3854.

[22] Tang, S., Gong, R., Wang, Y., Liu, A., Wang, J., Chen, X., ... & Tao, D. (2021). Robustart:

Benchmarking robustness on architecture design and training techniques. arXiv preprint

arXiv:2109.05211.

[23] Tarigan, J., Diedan, R., & Suryana, Y. (2017). Plate recognition using backpropagation

neural network and genetic algorithm. Procedia Computer Science, 116, 365-372.

[24] Undrill, P. E., & Delibassis, K. (1997, October). Stack filter design for image restoration

using genetic algorithms. In Proceedings of International Conference on Image Processing

(Vol. 2, pp. 486-489). IEEE.

[25] Vervliet, N., Debals, O., Sorber, L., Van Barel, M., & De Lathauwer, L. (2016). Tensorlab

user guide. Available on: http://www. tensorlab. net.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

46

[26] Yin, F., Mao, H., & Hua, L. (2011). A hybrid of back propagation neural network and

genetic algorithm for optimization of injection molding process parameters. Materials &

Design, 32(6), 3457-3464.

[28] Zhang, J., & Qu, S. (2021). Optimization of backpropagation neural network under the

adaptive genetic algorithm. Complexity, 2021, 1-9.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

47

Appendix

Implementation details

Genetic algorithm uses the fitness function to evaluate the individuals in a population.

Initially, for a constant number of populations, our model will randomly generate the weights

of all layers -that need training- for each population. Next, the training set will be fed into the

neural network and the predicting process begins. It is important to mention that the training

set is deliberately shuffled so that the neural network will have a better generalization. After

the fitness calculation, which compares the true output and the predicted output, the

program will update the maximum fitness value for the final training since its weights are the

optimal ones and could likely yield higher accuracy in the final training stage. This process will

continue going on until the maximum generation (iteration) is met.

Figure 20: Convolution, ReLU and Pooling of one MNIST image

For the training of Convolutional Neural Networks (CNNs), we need convolutional filters

(masks) and the training and testing subsets of the available dataset. There are three ways to

train a CNN that refer to the convolutional layer:

1. apply conv function to all your training images and convolutional filters.

2. apply conv function to each training image and the convolutional filters, using a for-

loop from 1 to size of your training subset.

3. apply conv function to the training subset and each convolutional filter using a for-

loop from 1 to the size of the convolutional filters.

In this project, we implemented the third option (Plot No3), where we have 5000 training

images and 20, 9×9 convolutional filters.

Creating Fitness Function

Full-Rank

Accuracy is a metric that generally describes how the model performs across all classes.

According to 3.5.2.1, the chromosome is the flattened combination of weight matrices W1,

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

48

W5, and Wo. The script for calculating chromosomes’ fitness has three input variables: the

chromosome, the images and labels of the training set. We need to get the weights that are

going to optimize the CNN. Hence, the chromosome is decoded into three parts that have the

same dimensions as W1, W5, and Wo. In section 3.2.1, it is explained that W1 represents the

weight values of the convolutional layer (size = 1690 or 9×9×20) and this variable is convoluted

with the training images. The output of this function is then passed into the ReLU activation

function (new size = 20×20×20) and later, to the Mean pooling layer (size = 10×10×20).

According to Plot No3, this process is repeated 20 times and the output of each iteration is

stored in a variable called Y4 (Fig. 21a). Y4 is a 2000×5000 matrix that passes into the

Classification section of our CNN. There, Y4 is multiplied by W5 and their product (size:

100×5000) passes through another ReLU function (new size: 100×1000) (Fig. 21b). Eventually,

this product is multiplied by Wo and the product passes into the Softmax function. The output

of the Softmax function is a matrix sized 10×5000 and shows our training images’ probabilities

for classes 0-9.

Figure 21a: here there are 5000, 28×28 training images (I1-I5000) that are convoluted with each filter

of the convolutional layer (Φ1-Φ20); each result is passed through ReLU and mean-pool functions and

then, it is flattened into a short and fat matrix (Y4.1-Y4.20). These matrices are put together to form

Y4.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

49

Figure 21b: Y4 is multiplied with W5 and passed through the ReLU function, whose result is then

multiplied with Wo; their product is a matrix that contains each image’s probability of recognizing

classes 0-9.

Low-Rank

The process of calculating the fitness of low-rank chromosomes is the same as described

above. There is only one difference between the two scripts which is the decoding of the

chromosomes. In details, this script has four input variables: the chromosome, the images

and labels of the training set and the Rank of the tensors. In the proposed work, we choose

to turn W1 into a low-rank tensor. Hence, we need to fix its sub-matrices accordingly.

W1 is composed of the Core tensor Σ and the factor matrices: A, B, C, as mentioned in section

2.4. Here, da Silva et. al.’s functions were used in order to build the fitness function for the

low-rank chromosomes. In details, W1 is decomposed to the corresponding three factor

matrices and, we create a variable, called alpha, that works as a measure value for the

decomposition of our input chromosome. Then, our CNN is trained and its accuracy is

calculated by comparing the true output and the predicted output of our model.

Institutional Repository - Library & Information Centre - University of Thessaly
27/05/2024 07:00:03 EEST - 3.133.160.113

