
University of Thessaly

School of Engineering
Department of Mechanical Engineering

COUETTE FLOW OF MATERIALS WITH
TEMPERATURE DEPENDENT VISCOSITY

by

Marina Konstantina Chaidi

Supervisor:

Dr. Athanasios Papathanasiou

Submitted in partial fulfillment of the requirements for the degree of
Diploma in Mechanical Engineering at the University of Thessaly

Volos, 2023



University of Thessaly

School of Engineering
Department of Mechanical Engineering

COUETTE FLOW OF MATERIALS WITH
TEMPERATURE DEPENDENT VISCOSITY

by

Marina Konstantina Chaidi

Supervisor:

Dr. Athanasios Papathanasiou

Submitted in partial fulfillment of the requirements for the degree of
Diploma in Mechanical Engineering at the University of Thessaly

Volos, 2023



© 2023 Marina Konstantina Chaidi

All rights reserved. The approval of the present D Thesis by the Department of Mechanical Engi-
neering, School of Engineering, University of Thessaly, does not imply acceptance of the views of
the author (Law 5343/32 art. 202).



Approved by the Committee on Final Examination:

Advisor: Dr. Athanasios Papathanasiou
Professor, Department of Mechanical Engineering, University of Thessaly

Member: Dr. Georgios Charalampous
Assistant Professor, Department of Mechanical Engineering, University of Thessaly

Member: Dr. Andreas Tsiantis
Dr. Mechanical Engineering, Department of Mechanical Engineering, University of
Thessaly

Date approved: [28/02/2023]



Acknowledgements

I would like to express my gratitude to my supervisor and professor Dr. Athanasios
Papathanasiou, for his valuable assistance and guidance throughout the writing of this
thesis. I am also very thankful to Mr. Andreas Tsiantis for his valuable support and
advice during the implementation of this study on issues regarding to OpenFOAM
software.

I would also like to thank Dr. Georgios Charalampous for being member of the
examination committee and for reading my work.

Lastly, I am very grateful to my family and friends for being by my side and whose
moral support played a significant role during the accomplishment of my studies.



COUETTE FLOW OF MATERIALS WITH
TEMPERATURE DEPENDENT VISCOSITY
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Supervisor: Dr. Athanasios Papathanasiou

ABSTRACT

Couette flow can be found in many chemical, nuclear and mechanical engineering
applications. Therefore, the correct computation of the flow is of great importance,
especially when the fluid properties are functions of temperature. In this case, vis-
cous forces are developed between the fluid elements leading to heat production. This
phenomenon is known as viscous dissipation. In this thesis is investigated the circular
Couette flow between two coaxial cylinders of materials with viscosity as polynomial
function of temperature. Simulations of the flow are conducted using the CFD soft-
ware OpenFOAM. Both geometrical parameters and material properties that affect
the flow are examined. For this, were generated three different geometrical models
based on the radius ratio of the cylinders. For each model are conducted simulations
for a range of Br number values, obtaining the velocity and temperature profiles.
The way that these parameters affect the flow is carefully analyzed. Lastly, the sim-
ulations results are compared in detail with series solutions up to second order in Br
number for the velocity and third order for the temperature distribution.
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1 INTRODUCTION

1.1 The Taylor-Couette Flow

The term Taylor-Couette describes the fluid flow between two concentric cylinders
when the one, or both of them are rotating with a constant angular velocity. When
the gap between the cylinders is small compared to the cylinder diameter, the term
also refers to the flow between two parallel moving or stationary plates. The gap
between the two surfaces is filled with an incompressible and usually highly viscous
fluid. At low Reynolds numbers, therefore at low velocities, the flow is considered
laminar and steady [1]. Regarding the viscosity and the thermal conductivity of the
fluid, they can be functions of temperature or constants.

This flow was first investigated by Maurice Couette (1890) and it occurs in many
chemical, nuclear and mechanical engineering applications. Couette flow is well known
for its application in viscometry and rheological measurements. More particularly
Couette flow can be found in many industrial applications as electric motors, rotating
heat pipes, cooling of electrical systems, gas turbines as well as food and polymer
processing industries. It is also applied in geothermal energy, cooling of nuclear
reactors and gas drainage etc. In these cases both the viscosity and the thermal
conductivity are functions of temperature [2].

Most of the devices that are employed in viscometry, lubrication and polymer in-
dustry, require that their design carefully considers the thermomechanical coupling
between viscous heat generation and Couette flow. The development of viscous forces
between the fluid elements leads to heat production, known as viscous-dissipation.
When high viscosity fluids are subjected to shear, they can undergo a large increase
in temperature due to viscous dissipation. This thermal development interacts with
other destabilizing factors, including degradation or decomposition of the fluid, and
reduces the functionality of the device. As a result, viscous heating is a common cause
of error in viscometry, especially with rotational viscometers, where the entire sample
is constantly sheared during the measurements. Therefore, a correct computation of
the flow is crucial for the regular functioning of the device and especially the correct
interpretation of its measurements [3].
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Figure 1.1: Schematic representation of Couette flow

1.2 History of Couette Flow Research

As R. Donelly said ”Fluid caught between rotating cylinders has been intriguing
physicists for over 300 years with its remarkably varied patterns and its chaotic and
turbulent behaviour” [4]. Taylor-Couette flow refers mainly to the flow between two
concentric cylinders when the one is rotating. This case, with the outer cylinder
rotating, was first described by Maurice Couette in his thesis, which was presented
at Paris in 1890 and it was mainly used as a viscometer. In 1923 G. I. Taylor studied
the mathematical aspect of the case. For this, modern scientists named this type of
flow Taylor-Couette flow [4].

Before Taylor, many approaches had been made to investigate the mathematical
scope of the fluid motion between surfaces. Kelvin, Rayleigh [5] and many others
have examined the flow between two infinite moving planar surfaces when the one
moving relatively to other. Their objective was to specify the circumstances under
which the flow is unstable. There appeared a divergence between the experimental
results and theory as experiments with infinite surfaces was impractical. This problem
led Taylor to examine the stability of a liquid between two cylinders. He concluded
that below a critical value of the rotating velocity, the flow is laminar. Above this
critical point the laminar flow is replaced by turbulence flow. The instability produces
a continuous secondary motion in the form of vortices placed periodically along the
cylinder’s axis [6]. In 1928 J. Lewis’s experiment validated Taylor’s results [7].
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The instability of Couette flow had been puzzling the scientific community in the
following years. K. W. Schwartz et. al. [8] and D. Coles [9] considered the transi-
tion and the instabilities of the flow between two rotating cylinders in the presence
of axisymmetric and non-axisymmetric disturbances, to determine the roots of the
turbulence. They observed that the occurrence of Taylor vortices increases with the
increase of the rotation velocity above the critical point, but eventually above a sec-
ond critical point of speed the vortices acquire a ’wavy’ form moving with a constant
wave velocity.

In 1962 B. Gebhart [10] investigated the viscous dissipation effect in natural convec-
tion. He concluded that in the gravitational field of Earth, the dissipation is negligible
for most typical engineering equipment. However, dissipation can be significant in
circular systems. Furthermore, he observed that viscous dissipation cannot be ig-
nored for rotating flows that can be described by high Prandtl numbers or flows in a
high gravitational environment. Later, J. Nihoul [11] examined the flow of an incom-
pressible fluid considering the viscosity and the thermal conductivity as functions of
temperature. Nihoul proved that each Br number corresponded to a value of temper-
ature and velocity, defining thus a unique profile of temperature, velocity as well as
shear stress. In 1974 P. C. Sukanek et. al. [12] observed that above a critical value of
Br number, there was a decrease of the shear stress when increasing the shear rate.
Furthermore, T. D. Papathanasiou et. al. [13] investigated the thermomechanical
coupling in circular Couette flow considering thermal conductivity and the viscosity
as polynomial function of temperature. They compared the results of Numerical and
Series solution for different values Br numbers and radius ratio of the cylinders.

1.3 State of the Art

Couette flow remains an interesting field of study due to the wide range of applications
it encounters and the variety of the parameters by which it is affected. Particularly,
the development of viscous dissipation and its effects are of great interest to the
scientific community. G. C. Hazarika et. al. [14] and R. A. Kareem et. al. [15]
investigated the flow of an incompressible fluid with variable viscosity and thermal
conductivity, taking into consideration the impact of the magnetic field. They showed
that an increase in viscosity caused an increase in the temperature and the wall shear
stress profile but led to a decrease in the velocity profile. T. S. Yusuf et. al. [16]
explored the entropy generation in a fluid flow between two infinite-length concentric
cylinders in the presence of a radial magnetic field as well as viscous dissipation.

In the work of P. K. Mondal et. al. [17] regarding the influence of viscous heating
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in flow through the annulus of two non-symmetrically heated concentric cylinders,
the temperature profile was calculated for different values of Br number. Considering
Br = 0 the temperature profile was linear as in the case of pure conduction, while for
Br > 0 there was an increase in the fluid temperature. For Br < 0 the temperature
decreased, as it concerned the cooling of the fluid. Similar results were obtained in
the study of B. K. Jha et. al. [18] of the heat transfer in flow of a fluid with heat
generating/absorbing properties, considering the effect of viscous dissipation.

S. Shabbir et. al. [19] conducted a thermal analysis of Couette flow within a small
annulus. They proved that the velocity profile is linear for zero pressure gradient.
Furthermore, they observed that the effect of viscous dissipation becomes more intense
with the increase of Br number. Particularly, for Br ≈ 0 the temperature profile is
approximately linear, while as Br increases the profile becomes parabolic and the
point of maximum temperature appears towards the centre of the distance between
the cylinders. In the same year A. O. Ajibade et. al. [2] carried out a similar
investigation, with additional consideration the boundary thickness, proving that it
is another parameter that affects the flow and cannot be neglected.

1.4 Scope of this Study

As previously stated, Couette flow can be found in many chemical, nuclear and me-
chanical engineering applications. Of great interest is the heat generation due to
viscous dissipation and the parameters that affect it.

The purpose of the present study is to examine the circular Couette flow of materials
with temperature dependent viscosity. The flow is examined for different sizes of the
gap between the two cylinders and different values of Br number. The main objective
is the simulation of the flow, illustrating the viscous dissipation phenomenon, and the
investigation of the parameters by which it is affected. The simulation’s results for
the velocity and temperature profiles, are compared with the series solutions proposed
in the work of T. D. Papathanasiou et. al. [13].

The simulations of this work were carried out by using the Computational Fluid
Dynamics (CFD) software OpenFOAM. The geometry and mesh structure were gen-
erated via the Gmsh software. For the validation of the solver that was used for the
simulation, was considered the flow of material with constant viscosity. The simula-
tions results were compared with the analytical solution. Since the range of solver’s
validity was determined, were carried out flow simulations of materials with tem-
perature dependent viscosity, obtaining the velocity and temperature profile. The
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proposed series solution were adapted in order to be compared to the simulations re-
sults. Finally, were examined the parameters that affect the flow and was conducted
a comparison between the two solutions.

5



2 MATHEMATICAL FORMULATION OF COUETTE FLOW

As mentioned, Couette flow is the viscous fluid flow in the gap between two relatively
moving boundaries. The flow is described by the Navier-Stokes equations, from which
can be obtained the velocity and pressure profile. The temperature profile can be de-
rived from the energy conservation equation. More precisely the governing equations
of the flow are the following:

Conservation of Mass:
∂ρ

∂t
+∇ · (ρV) = 0 (2.1)

For incompressible fluid the density is constant and the equation is simplified:

∇ ·V = 0 ⇒ ∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.2)

Conservation of Momentum:

∂ρV

∂t
+∇ · (ρVV) = −∇p+∇ · τ + F (2.3)

Conservation of energy:

∂

∂t

[
ρ

(
e+

1

2
V 2

)]
+∇·

[
ρV

(
e+

1

2
V 2

)]
= ∇· (k∇T )+∇· (−pV + τV)+V ·F+Q

(2.4)
where V is the velocity field, F are the external forces that are applied to the fluid,
Q is the amount of energy added to or removed from the system in the form of heat
and τ is the stress tensor and for Newtonian fluids can be expressed as:

τ = µ
(
∇V +∇VT

)
− 2

3
µI (∇ ·V) (2.5)

2.1 Plane Couette Flow

Considering the incompressible flow of a viscous fluid with constant density and ther-
mal conductivity between two parallel plates, the one plate is moving with constant
velocity while the other is stationary. Both plates maintain constant and uniform
temperatures T1 and T2.
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Figure 2.1: Plane Couette flow

Considering no slip boundary conditions:

u(x, 0) = 0 (2.6)

u(x, h) = V
m

s
(2.7)

the equations (2.2) and (2.3) are simplified respectively to:

∂v

∂x
= 0 (2.8)

and

µ
∂2u

∂y2
=

dp

dx
(2.9)

Therefore, the velocity profile is:

u(x, y) =
1

2µ

(
dp

dx

)(
y2 − hy

)
+

V

h
y (2.10)

The energy equation (2.4) for this flow can be expressed as:

ρCpdT

dt
= k∇2T − T

(
∂p

∂T

)
∇V + S (2.11)

where S is the viscous heat generation term:

S = µ

(
∂u

∂y

)2

(2.12)

Applying the boundary conditions:

T (x, 0) = T1 (2.13)
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T (x, h) = T2 (2.14)

the temperature profile is:

T − T1

T2 − T1

=
y

h
+

1

2
Br

y

h

[
1− y

h

]
(2.15)

where Br is the dimensionless Brinkman number, which is a measure of the heat
conduction due to viscous dissipation:

Br =
µu2

k(Tw − T0)
(2.16)

From the constitutive equation the shear stress can be expressed as:

σ = µ
du

dy
= µ

V

h
(2.17)

2.2 Circular Couette Flow

Examining the flow of an incompressible viscous fluid between two coaxial cylinders.
The inner cylinder of radius κR is stationary while the outer cylinder of radius R
rotates with a constant angular velocity ω. Both cylinders maintain constant and
uniform temperatures T1 and T2. The Reynolds number of the flow is defined as:

Re =
ωκR(R− κR)

ν
(2.18)

where, ν = µ
ρ
the kinematic viscosity of the fluid. It is considered low Re number

(approximately less than 2000), therefore steady-state laminar flow.

Figure 2.2: Circular Couette Flow
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In the general case of variable viscosity and thermal conductivity, the momentum and
energy equations that describe the flow can be formulated respectively as:

1

x2

[
∂

∂x

[
µ

µ0

x3 ∂

∂x

(u
x

)]]
= 0 (2.19)

1

x

∂

∂x

[
k

k0
x
∂Θ

∂x

]
+Br

µ

µ0

[
x
∂

∂x

(u
x

)]2
= 0 (2.20)

where,

Θ =
T − T0

T0

, x =
r

R
, u =

uθ

ωR
, Br =

µ0(ωR)2

k0T0

(2.21)

In the equation (2.21), T0 is a reference temperature, Br is the Brinkman number
and µ0, k0 are known values for the viscosity and thermal conductivity, respectively.
The equations (2.19), (2.20) can be further simplified in the case of constant viscosity
or thermal conductivity.
From the equation (2.2), as shown in the following ur = 0 at the boundaries, it
appears that the only non-zero velocity is the uθ:

∂ur

∂r
+

ur

r
+

1

r

∂uθ

∂Θ
+

∂uz

∂z
= 0 ⇒ 1

r

∂

∂r
(rur) = 0 ⇒ ur = 0 (2.22)

The velocity distribution can be calculated from the momentum conservation equation
(2.3), considering constant properties and zero pressure gradient, as the flow arises
from the rotation of the cylinders:

1

r

∂

∂r

(
r
uθ

∂r

)
− uθ

r2
= 0 ⇒ uθ = c1r +

c2
r

(2.23)

Applying the boundary conditions:

uθ(r = κR) = 0 (2.24)

uθ(r = R) = ωR (2.25)

the final velocity profile of the flow is defined as follows:

uθ = ωR

(
κR
r
− r

κR

)(
κ− 1

κ

) (2.26)

Likewise, the temperature distribution as obtained from the energy equation, for the
flow between two cylinders with constant uniform temperatures:

T (r) =
T1 − T2

lnκ
ln
( r

R

)
+ T2 (2.27)

and the shear stress:

τrθ = 2µωR2

(
1

r2

)(
κ2

1− κ2

)
(2.28)
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2.3 An Approximate Series Solution For Circular Couette
Flow

In this study is investigated the case of viscous dissipation, with the viscosity as a
function of temperature and constant thermal conductivity. The analytical solution
for this flow is obtained by the equations (2.19) and (2.20), where the equation (2.20)
can be further simplified as follows:

1

x

∂

∂x

[
x
∂Θ

∂x

]
+Br

µ

µ0

[
x
∂

∂x

(u
x

)]2
= 0 (2.29)

The boundary conditions to be met in this case:

At x = κ : u = 0 and
∂Θ

∂x
= 0 (2.30)

At x = 1 : u = 1 and ∂Θ = 0 (2.31)

The variation of viscosity with temperature can be expressed as:

µ0

µ
= 1 +

I∑
i=1

βiΘ
i (2.32)

The solutions to the problem defined by the equations(2.19), (2.29) and the boundary
conditions (2.30), (2.31) can be formulated as:

u(x)

x
= u0(x) +

N∑
n=1

un(x)Brn (2.33)

Θ(x) = Θ0(x) +
N∑

n=1

Θn(x)Brn (2.34)

In the work of T. D. Papathanasiou et. al. [13], [20], [21] and K. A. Caridis et. al.
[22], are obtained solutions for the velocity and temperature profile, of second and
third order in Br number.
More particular, the second-order solution for the velocity can be formulated as:

u(x)

x
= u0(x) + u1(x)Br + u2(x)Br2 (2.35)

where,

u0(x) =
κ2 − x2

(−1 + κ2)x2
(2.36)
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u1(x) =

[
1

x2
− −1 + κ4 − 4 ln(x)− 4 ln(x)κ2

κ2(κ2 − 1)

]
β1C

3
0

16x2
+ U1 (2.37)

with,

U1 =
β1C

3
0

16

(
κ2 − 1− 4 ln(κ)

κ2(−1 + κ2)

)
(2.38)

and

C0 =
2κ2

1− κ2
(2.39)

u2(x) = u2α(x) + u2β(x) + u2γ(x) (2.40)

where,

u2α(x) =
C5

0

16

(
−2β2

κ4x2

)
ln(x)2 (2.41)

u2β(x) =

[
β2

16

[
2x2κ2 − κ2 − 2x2

x4κ4

]
+ u2β1(x)β

2
1

]
ln(x)C5

0 (2.42)

with,

u2β1 = − 1

32

[
8x2 ln(κ) + 4x2 ln(κ)κ2 − 7x2κ2 + 6x2 + x2κ4 − κ2 + κ4

κ4x4(−1 + κ2)

]
(2.43)

u2γ(x) = − 1

384x6

(
u2γ1x

6 + u2γ2x
4 + u2γ3x

2 + u2γ4

)
(2.44)

The u2γ1, u2γ2, u2γ3, u2γ4 coefficients are functions of the fluid properties and the
radius ratio κ and can be found in the Appendix A.

The second-order solution for the temperature profile can be obtained as:

Θ(x) = Θ0(x) + Θ1(x)Br +Θ2Br2 (2.45)

For an isothermal system, the viscosity is constant and the Br = 0, therefore in the
equation (2.45) the term Θ0(x) = 0. The terms Θ1(x) and Θ2(x) can be expressed
as:

Θ1(x) =

[
−2 ln(x)− κ2

4κ2
− 1

4x2

]
C2

0 (2.46)

and
Θ2(x) = F1 ln(x) + F2 (2.47)
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where,

F1(x) =
C4

0

16

[
[(4 ln(κ) + 4 ln(κ)κ2 − 3κ2 + 3)β1]x

2 + 2κ2(κ2 − 1)β1

κ4x2(−1 + κ2)

]
(2.48)

and

F2(x) = C4
0

(
x2 − 1

κ2 − 1

)[
(4x2 − 5x2κ2 + x2κ4 + 16x2 ln(κ)− κ2 + κ4)β1

−64κ2x4

]
(2.49)

For a more accurate temperature profile can be obtained a third-order solution as:

Θ(x) = Θ1(x)Br +Θ2(x)Br2 +Θ3(x)Br3 (2.50)

The form of Θ3(x) is considerably more complex and can be found in the study of
T.D. Papathanasiou [13].
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3 FLOW SIMULATIONS USING OpenFOAM

In the present work the simulations of the flow were performed by using the software
OpenFOAM, an open source tool for Computational Fluid Dynamics (CFD). The
advantage of this software is the free access and the variety of features used to simulate
demanding fluid flows including heat transfer, turbulence and even chemical reactions.
The file structure of OpenFOAM simulations consist of three main directories: the
system, the constant and the time directories, as presented in the figure 3.1.

Figure 3.1: File structure of OpenFOAM simulations

The system directory consists of three main files, which should be included in any
OpenFOAM case; the controlDict, fvSchemes and fvSolution files. The simulation’s
general operation is managed by the controlDict file. In the fvSchemes file are speci-
fied the numerical schemes used for the terms in the problem’s governing differential
equations. Each governing equation is solved by a numerical solver as defined in the
fvSolution file. In the constant directory are contained two main files defining the
thermophysical properties of the fluid and the turbulence properties of the flow. More
particular, in the thermophysicalProperties file can be specified the thermophysical
modelling of the simulation, through the thermoType dictionary item. In the constant
directory is also contained the polyMesh folder in which can be found the files that
describe the geometry and the mesh structure. In the 0 time directory are defined
the boundary conditions and the initial values for each variable of the case.

For the purpose of this study where used two different solvers, the simpleFoam and
rhoSimpleFoam solver.
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3.1 SimpleFoam

SimpleFoam is a solver for steady-state, incompressible and turbulent flow. The
algorithm that is used is the SIMPLE (Semi-Implicit Method for Pressure Linked
Equations) or the SIMPLEC (Semi-Implicit Method for Pressure Linked Equations
Consistent) algorithm. The following strategy is used for the solution: The equations
describing the flow are solved sequentially and the each solution is applied to the
following equation.
More particular, at first is solved the momentum equation:

∂urjui

∂x
+ ϵijkωiuj = −1

ρ

∂p

∂xi

+
1

ρ

∂

∂xj

(τij + τtij) (3.1)

where, u is the absolute velocity, ur is the relative velocity, ω is the angular velocity
and τij, τtij represent the viscosity and turbulence stress, respectively. From this
solution is derived a velocity field which is a function of pressure and satisfies the
momentum equation but not the continuity equation. This field is inserted in the
continuity equation and is obtained a pressure profile, which is added in the momen-
tum equation. The above procedure is continued until convergence. Eventually, arises
a velocity profile satisfying both equations.[23]

In this study simpleFoam was used for the simulation of a steady-state laminar Cou-
ette flow between two cylinders, with constant fluid properties. The velocity profile
obtained and the solution was compared with the analytical solution.

3.2 rhoSimpleFoam

RhoSimpleFoam is a solver for steady-state, compressible and turbulent flow. As in
simpleFoam, the algorithm that is used is SIMPLE or SIMPLEC algorithm. The
solution strategy is similar with simpleFoam strategy. The difference arises from the
fact that in compressible flow density varies with the temperature and it leads to the
addition of the energy equation.
More precisely, the momentum equation is expressed for a moving reference frame as:

∇ · (ρur × uI) + ρω × uI = ∇p+∇ · (Rvis +Rtur) (3.2)

where, uR is the relative velocity, uI is the velocity in the inertial frame, ω is the
angular velocity of the rotational frame and Rvis, Rtur are the stress tensors due to
viscosity and turbulence, respectively. The energy equation to be solved is:

∂

∂t
(ρet) +∇ · (ρetu+ up+ qvis + qtur −Rt · u−Rvis · ü− 0.5ρü(ü · ü)) = 0 (3.3)
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where et is the total energy, defined as:

et = e+ 0.5u · u+ k (3.4)

the term k represents the turbulent kinetic energy.
As mentioned rhoSimpleFoam is a solver for steady-state flows, therefore in the equa-
tion (3.3) the time derivative is equal to zero. In addition, considering laminar flow,
the turbulent kinetic energy and the last terms of the equation (3.3) can be neglected
and the energy equation is simplified:

∇ · ((ρ(e+ 0.5u · u)u+ up+ qt) = 0 (3.5)

where qt is the total heat flux defined as the sum of heat flux due to viscosity and
turbulence, as follows:

qt = qvis + qtur (3.6)

and it is calculated as:
qt = − µ

Pr

cp
cv
∇e (3.7)

By inserting the enthalpy definition:

h = e+
p

ρ
(3.8)

the equation (3.5) is formulated as:

∇ · ((ρ(h+ 0.5u · u)u+ qt) = 0 (3.9)

In the case that is chosen the sensible enthalpy the total heat flux can be calculated
as:

qt = − µ

Pr
∇h (3.10)

Where Pr is the dimensionless Prandtl number, defined as the ratio of momentum
diffusivity (kinematic viscosity) to thermal diffusivity and can be expressed as:

Pr =
v

α
=

cpµ

k
(3.11)

In this study rhoSimpleFoam was used for a steady-state, laminar circular Couette
flow simulation of an incompressible fluid, with temperature dependent viscosity and
constant thermal conductivity. The solution is compared with the analytical solu-
tion as obtained in the work of T.D. Papathanasiou et. al. [13]. For this aim it
was required defining the viscosity as a polynomial function of temperature in the
thermophysicalProperties directory. The thermophysical modelling package that was
used for the simulation is described in the figure 3.2.
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Figure 3.2: thermoType package

More particular, the polynomial transport requires the viscosity to be expressed as a
polynomial function of temperature of any order:

µ =
N−1∑
i=0

aiT
i (3.12)

The coefficients ai are also specified in the thermophysicalProperties directory.

As previously stated, by using rhoSimpleFoam are solved the energy equation along
with the momentum equation. In the case of variable viscosity the term of heat
generation due to viscous dissipation must be considered in the energy equation.
This additional source term is specified in the fvOptions file which is contained in the
system directory, as described in the figure 3.3.

Figure 3.3: Adding the viscous dissipation term
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3.3 Adaptation of the Series Solution for OpenFOAM simu-
lations

In this study is performed a comparison between the simulation results with the series
solution described in section 2.3. For this, is required a modification of the equation
(2.32) so it is comparable to the equation (3.12). The original model for viscosity
(2.32) can be expressed as:

µ

µ0

=
1

1 + β1Θ+ β2Θ2 + β3Θ3
(3.13)

To specify the problem, is considered: β1 = 1, β2 = 0.5 and β3 = 0.25.
The equation (3.13) can be approximated, with high accuracy, by the following poly-
nomial function:

µ

µ0

= 1 +
7∑

i=0

ciΘ
i (3.14)

where, c = (0 − 1 0.5 − 0.25 0.25 − 0.25 0.188 − 0.125). The ci coefficients
are calculated in the Appendix B.
In figure 3.4 is presented the comparison between the original model for viscosity and
the polynomial approximation. The x-axis refers to the non-dimensional temperature
Θ and the y-axis to the ratio µ

µ0
. The dotted line indicates the original model,

described by the equation (3.13) and the red line to the model described by the
polynomial function (3.14).

Figure 3.4: Viscosity model comparison

The non-dimensional temperature can be expressed as:

Θ =
T − T0

T0

⇒ T = T0(Θ + 1) (3.15)
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By adding the equation (3.15) in the equation (3.14) is obtained the viscosity as a
function of the dimensional temperature:

µ

µ0

=
7∑

i=0

diT
i (3.16)

The equation (3.16) can be approximated with high accuracy by a third-order solu-
tion:

µ

µ0

=
3∑

i=0

diT
i (3.17)

where, d = (2.75 0.0080882353 0.0000108131 0.000000006361)
By multiplying the coefficients di by the reference viscosity µ0 can be obtained the
coefficients ai of the equation (3.12).
The viscosity model described by the equation (3.16) is presented in the figure 3.5.

Figure 3.5: Viscosity model as function of temperature
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4 GEOMETRY AND MESH STRUCTURE

The geometry and the mesh used for the simulations where generated via the Gmsh
software. Gmsh is an open source software for 3D finite element mesh generation
that includes a CAD engine. It consist of four modules: geometry designing, mesh
structure, solver and post-processing. The advantage of this tool is the fast meshing,
its user friendly environment and the capability of parametric inputs [24].

As already described, in this study is examined the circular Couette flow for three
different values of the cylinders radius ratio κ. Therefore there was generated different
meshes for each value of the radius ratio. For this aim, the coordinates for the
geometry design and the mesh structure were defined as variables, which values are
determined by the user as shown in the figure 4.1.

Figure 4.1: Setting variables in Gmsh (indicative values)

In the table 1 are presented the radius values of the outer and inner cylinders for the
three different values of κ. The length of the cylinders is considered 1m.

κ 0.5 0.75 0.85
inner radius (cm) 6 9 10.2
outer radius (cm) 12 12 12

Table 1: Cylinders radius for different κ values

Both 2D and 3D meshes were created. Firstly, the 3D mesh was used for the flow
simulation of a fluid with constant properties. The flow that is examined is laminar,
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thus it can be considered as two-dimensional. Therefore, in the interest of time saving,
it was created a 2D mesh, used for the flow simulation of a fluid with temperature
dependent viscosity. In all cases the mesh was structured (transfinite command) and
was thicker near the boundaries (bump command) in order to ensure higher accuracy,
faster generation and uniform distribution of the cells.

In the case of 3D the mesh was consisted of 300200 cells (hexahedra). In the figures
4.2, 4.3 and 4.4 is presented the mesh for the different values of κ.

(a) (b)

(c)

Figure 4.2: 3D mesh for κ = 0.85
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(a) (b)

(c)

Figure 4.3: 3D mesh for κ = 0.75
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(a) (b)

(c)

Figure 4.4: 3D mesh for κ = 0.5

In the case of 2D the mesh thickness along the z-direction consisted of one cell. In
the table 2 is presented the number of the mesh cells (hexahedra) for each value of
radius ratio κ.

κ 0.5 0.75 0.85
number of cells 18564 18564 9044

Table 2: Number of cells for each value of κ
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In the figures 4.5, 4.6 and 4.7 is presented the mesh structure for each case of κ value.

(a) (b)

Figure 4.5: 2D mesh for κ = 0.85

(a) (b)

Figure 4.6: 2D mesh for κ = 0.75
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(a) (b)

Figure 4.7: 2D mesh for κ = 0.5
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5 RESULTS

In this study is examined the circular Couette flow for three different values of the
cylinders radius ratio κ. Firstly, is obtained the velocity profile, for the simple case
of constant viscosity and thermal conductivity, without the effect of temperature
variation. Then is investigated the case of viscous dissipation, with the viscosity as
a function of temperature and constant thermal conductivity. In this section are
presented the results of the simulations for the velocity and temperature profile and
their comparison with the analytical solution as described in the section 2.

5.1 Couette Flow Simulation of Materials with Constant Vis-
cosity

As previously stated, in the present work is firstly examined the flow of a material
with constant properties. This simulation carried out using simpleFoam solver. In
this case are considered two coaxial cylinders where the outer one is rotating with
constant velocity 4 rad/s. In order to ensure low Re number, therefore laminar flow,
the viscosity is determined equal to µ0 = 0.1 Pa · s. There are used 3D mesh struc-
tures, as described in section 4. The obtained velocity profile is compared to the
profile given by the equation (2.26). Furthermore, is investigated the profile’s diver-
gence from the linear profile. In the figure 5.1 is presented the velocity profile for
each value of the radius ratio κ, as obtained from the OpenFOAM simulations.

(a) κ = 0.5 (b) κ = 0.75 (c) κ = 0.85

Figure 5.1: Velocity profile for each value of κ. In the legend the minimum velocity is 0m/s, the
maximum is 0.48m/s and the scaling is 0.05m/s.
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In the figures 5.2, 5.3 and 5.4 is presented the comparison of the velocity profiles for
the different values of the radius ratio κ. Where, the y-axis refers to the velocity
uθ(m/s) and the x-axis to the distance between the two cylinders. The blue line
indicates the velocity profile as obtained from the OpenFOAM simulations and the
black dotted line the profile as obtained from the analytical solution (2.26). The
dotted grey line represents the linear profile.

Figure 5.2: Velocity profile comparison for µ0 = 0.1Pa · s and κ = 0.5

Figure 5.3: Velocity profile comparison for µ0 = 0.1Pa · s and κ = 0.75
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Figure 5.4: Velocity profile comparison for µ0 = 0.1Pa · s and κ = 0.85

From the above comparison, it can be observed that the profiles derived from the
simulation and the analytical solution are fully identical. Thus, is ensured the validity
of the simulation’s results. Most importantly it can be shown that when the gap
between the cylinders is small compared to the cylinder diameter, the velocity profile
is sufficiently approximating the linear profile. As the gap increases the velocity profile
becomes parabolic.

5.2 Validation of rhoSimpleFoam solver

As stated in section 3, the flow simulations of materials with temperature dependent
viscosity carried out using rhoSimpleFoam solver. Therefore, was required the valida-
tion of the solver. For this aim, is performed a comparison between the simulation’s
results and the analytical solution given by the equations (2.26) and (2.27). In this
case is considered that both inner and outer cylinder maintain constant temperature
340K and 341K, respectively. As in the simpleFoam case, in order to ensure laminar
flow, the outer cylinder is rotating with constant velocity 4 rad/s and the material’s
viscosity is constant µ0 = 0.1 Pa · s, therefore Br = 0. Furthermore, 2D meshes are
used for the simulation, as stated in section 4.

In the figures 5.5, 5.6 and 5.7 is presented the comparison of the velocity profiles, as
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obtained from the simulations and the analytical solution (2.26), for each value of the
radius radio κ. Where, the y-axis refers to the velocity uθ(m/s) and the x-axis to the
distance r(m) between the two cylinders. The blue line indicates the velocity profile
as obtained from the OpenFOAM simulations and the black dotted line the profile
as obtained from the analytical solution (2.26). The dotted grey line represents the
linear profile.

Figure 5.5: Velocity profile comparison for κ = 0.5

Figure 5.6: Velocity profile comparison for κ = 0.75
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Figure 5.7: Velocity profile comparison for κ = 0.85

In the figures 5.8, 5.9 and 5.10 is presented the comparison of the temperature profiles,
as obtained from the simulations and the analytical solution (2.27), for each value of κ.
Where, the y-axis refers to the temperature T (K) and the x-axis to the distance r(m)
between the two cylinders. The blue line indicates the velocity profile as obtained
from the OpenFOAM simulations and the black dotted line the profile as obtained
from the analytical solution (2.27).
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Figure 5.8: Temperature profile comparison for κ = 0.5

Figure 5.9: Temperature profile comparison for κ = 0.75
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Figure 5.10: Temperature profile comparison for κ = 0.85

From the above comparison, it can be shown that the velocity and temperature profiles
obtained from the simulation are completely similar to the profiles derived from the
analytical solution. The conclusion to be drawn is that rhoSimpleFoam is suitable
for the simulations of this study, as highly accurate results can be obtained. Since
the validity of rhoSimpleFoam is determined it can also be used for the Couette flow
simulations of materials with temperature dependent viscosity.
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5.3 Viscosity as Function of Temperature

In this case is considered the circular Couette flow of materials with viscosity as a
function of temperature described by the equation (3.17). The outer cylinder is rotat-
ing with constant velocity 4rad/s and maintains constant temperature 340K, while
the inner is stationary. Regarding to the temperature, at the inner cylinder is ap-
plied zero Gradient boundary condition, simulating the case of a thermally insulated
inner cylinder. The mathematical model of the examined case is described in detail
in section 2.3.

As shown, the velocity and temperature distribution are depending from both geomet-
rical parameters and material properties. Therefore, were carried out flow simulations
for different values of the radius ratio κ and the Br number.
In the figures 5.11, 5.12 and 5.13 is presented the temperature profile for radius ratios
κ = 0.5, κ = 0.75 and κ = 0.85 and Br number values ranging from 0.5 to 2, as
obtained from the OpenFOAM simulations.
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(a) Br = 0.5 (b) Br = 1

(c) Br = 1.5 (d) Br = 1.75

(e) Br = 2

Figure 5.11: Temperature profile for κ = 0.5 and ranging of Br values from 0.5 to 2. In the legend
the minimum temperature is 340K, the maximum is 430K and the scaling is 10K.
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(a) Br = 0.5 (b) Br = 1

(c) Br = 1.5 (d) Br = 1.75

(e) Br = 2

Figure 5.12: Temperature profile for κ = 0.75 and ranging of Br values from 0.5 to 2. In the legend
the minimum temperature is 340K, the maximum is 500K and the scaling is 20K.
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(a) Br = 0.5 (b) Br = 1

(c) Br = 1.5 (d) Br = 1.75

(e) Br = 2

Figure 5.13: Temperature profile for κ = 0.85 and ranging of Br values from 0.5 to 2. In the legend
the minimum temperature is 340K, the maximum is 540K and the scaling is 20K.
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Regarding the velocity profile, in the figures 5.14, 5.15 and 5.16 is conducted a com-
parison of the velocity profiles obtained by the simulations, for different values of κ
and Br number.

Figure 5.14: Velocity profiles for κ = 0.5 and ranging of Br values from 0.5 to 2. Where, the y-axis
refers to the velocity uθ(m/s) and the x-axis to the distance between the cylinders r(m).

36



Figure 5.15: Velocity profiles for κ = 0.75 and ranging of Br values from 0.5 to 2. Where, the y-axis
refers to the velocity uθ(m/s) and the x-axis to the distance between the cylinders r(m).

Figure 5.16: Velocity profiles for κ = 0.85 and ranging of Br values from 0.5 to 2. Where, the y-axis
refers to the velocity uθ(m/s) and the x-axis to the distance between the cylinders r(m).
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From the comparisons above, it is noticeable that as the Br number increases, the
velocity profile becomes more parabolic. This alteration is more apparent as the size
of the annulus decreases.

Furthermore, is carried out a detailed comparison between the series solution (as
described in section 2.3) and the OpenFOAM simulations for the temperature and
velocity profile across the annulus.

In figures 5.17, 5.18 and 5.19 is presented the comparison for different values of κ and
Br number. Where, the left y-axis refers to the temperature T (K), the right y-axis to
the velocity uθ(m/s) and the x-axis to the distance r(m) between the two cylinders.
The orange and the blue continuous lines indicate, respectively, the temperature and
the velocity profiles as obtained from the OpenFOAM simulations. The dotted lines
refer to the temperature profile as given by the third-order series solution (2.50) and
the velocity profile as given by the second-order series solution (2.35).

(a) Comparison between series solution and OpenFOAM solution for κ = 0.5 and
Br = 0.5. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.
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(b) Comparison between series solution and OpenFOAM solution for κ = 0.5 and
Br = 1. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.

(c) Comparison between series solution and OpenFOAM solution for κ = 0.5 and
Br = 1.5. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.
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(d) Comparison between series solution and OpenFOAM solution for κ = 0.5 and
Br = 1.75. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and
r(m) to the distance between the cylinders. The continuous lines indicate the profiles
as obtained from the simulations and the dotted lines the profiles as given by the
series solutions.

(e) Comparison between series solution and OpenFOAM solution for κ = 0.5 and
Br = 2. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.

Figure 5.17: Comparison between series solution and OpenFOAM solution for κ = 0.5 and Br
ranging from 0.5 to 2.
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(a) Comparison between series solution and OpenFOAM solution for κ = 0.75 and
Br = 0.5. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.

(b) Comparison between series solution and OpenFOAM solution for κ = 0.75 and
Br = 1. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.
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(c) Comparison between series solution and OpenFOAM solution for κ = 0.75 and
Br = 1.5. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.

(d) Comparison between series solution and OpenFOAM solution for κ = 0.75 and
Br = 1.75. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.
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(e) Comparison between series solution and OpenFOAM solution for κ = 0.75 and
Br = 2. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.

Figure 5.18: Comparison between series solution and OpenFOAM solution for κ = 0.75 and Br
ranging from 0.5 to 2.
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(a) Comparison between series solution and OpenFOAM solution for κ = 0.85 and
Br = 0.5. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.

(b) Comparison between series solution and OpenFOAM solution for κ = 0.85 and
Br = 1. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.
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(c) Comparison between series solution and OpenFOAM solution for κ = 0.85 and
Br = 1.5. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.

(d) Comparison between series solution and OpenFOAM solution for κ = 0.85 and
Br = 1.75. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.
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(e) Comparison between series solution and OpenFOAM solution for κ = 0.85 and
Br = 2. Where, T (K) refers to the temperature, uθ(m/s) to the velocity and r(m)
to the distance between the cylinders. The continuous lines indicate the profiles as
obtained from the simulations and the dotted lines the profiles as given by the series
solutions.

Figure 5.19: Comparison between series solution and OpenFOAM solution for κ = 0.85 and Br
ranging from 0.5 to 2.

From the above comparison can be observed that, the velocity profiles obtained from
the series solution and the OpenFOAM simulations are sufficiently identical, with the
occurrence of a small deviation for Br values above around 1.5. This deviation is
more noticeable as the gap between the cylinders decreases.

Regarding to the temperature, the deviation between the two solutions is clearly more
apparent, with its maximum value occurring at the point of maximum temperature.
It can be observed that as the Br number increases the deviation becomes more sig-
nificant. It is shown that the solution is also affected by the geometrical parameter
κ, where the discrepancy between the series and the OpenFOAM solution increases
with the increase of the annulus. Furthermore, the maximum developed temperature
increases with the increase of the radius ratio κ. In the table 3 is presented a more
detailed comparison between the maximum temperature as obtained from the simu-
lations and the series solution for the different values of κ and Br number ranging
from 0.5 to 2.
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κ = 0.5 κ = 0.75 κ = 0.85
Br Tf (K) Ts(K) ∆T (K) Tf (K) Ts(K) ∆T (K) Tf (K) Ts(K) ∆T (K)
0.5 363.58 384.71 21.13 388.3 402.83 14.53 401.46 408.83 7.37
1 385.82 424.85 39.03 430.91 458.4 27.49 453.99 469.53 15.54
1.5 405.15 460.28 55.13 465.94 509.15 43.21 496.08 525.60 29.52
1.75 414.66 478.8 64.14 482.55 537.11 54.56 515.67 556.98 41.31
2 425.28 501.08 75.8 500.63 572.45 71.82 536.71 597.18 60.47

Table 3: Maximum temperatures as obtained from the simulations (Tf ) and the series (Ts) solution
and the difference between them (∆T ) for three different values of κ and a range of values of Br
number.
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6 CONCLUSIONS

Couette flow can be found in many chemical and mechanical engineering applications.
The correct computation of the flow is very important, especially in applications where
the fluid properties, as the viscosity, are functions of temperature. In this cases should
be carefully considered the heat production due to viscous forces between the fluid
elements, a phenomenon known as viscous dissipation. For this, the investigation of
the parameters that affect the flow is of great importance.

In this thesis, was considered the flow of materials with viscosity as a polynomial
function of temperature. Both geometrical parameters and material properties were
investigated. Three different geometries were created, based on the size of the annu-
lus which was expressed by the radius ratio κ. For each geometry, were conducted
flow simulations by using the CFD software OpenFOAM, obtaining the velocity and
temperature profiles. Furthermore, were presented approximate series solutions up to
second-order in Br number for the velocity and third-order for the temperature dis-
tribution. An extended comparison between the simulations and the series solutions
results was conducted and the factors that affect the flow were examined.

Regarding to the velocity, for a small gap between the cylinders, the profile can be
sufficiently approximated by a linear profile. With the increase of the gap, the profile
becomes parabolic. Another interesting observation was that the velocity profile
becomes more parabolic with the increase of Br number. This variation is more
noticeable as the value of the ratio κ increases.

The temperature distribution is also affected by the size of the gap between the
cylinders. It was observed that, the maximum developed temperature increases with
the increase of the cylinders radius ration κ. Furthermore, for constant annulus size,
the point of maximum temperature increases with the increase of Br number.

From the comparison between the simulation’s results and the series solution, was
shown that the velocity profiles were identical for Br number values up to 1.5. Above
that value was occurred a small deviation, which was more apparent for small annulus
sizes. However, for the temperature distribution, the deviation was clearly more
apparent, especially at the point of maximum temperature. The discrepancy between
the two solutions was increasing with the increase of Br number or the increase of
the annulus.

Therefore, both the size of the annulus and the Br number are important parameters
that can determine the Couette flow development and should be considered.
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A APPENDIX A

The coefficients u2γ1, u2γ2, u2γ3, u2γ4 of the equation (2.44) can be expressed as:

u2γ1 = −384(Λ1(κ)β
2
1 + Λ2(κ)β2) (A.1)

u2γ2 = C5
0u2γ21 + 192u2γ22 (A.2)

where,

u2γ21 =
3

κ4

[
(−3κ4 + 12κ2 − 16 ln(κ)− 12)β2

1 − (2κ4 − 4 + 4κ2)2β2

]
(A.3)

u2γ22 = Λ3(κ)β
2
1 − Λ4(κ)β2 (A.4)

u2γ3 =

[(
−5κ2 + κ4 + 4 + 12 ln(κ)

κ2(−1 + κ2)

)
3β2

1 +
6β2

κ2
− 12β2

]
C5

0 (A.5)

u2γ4 =
(
β2
1 + 4β2

)
C5

0 (A.6)

The Λ1(κ), Λ2(κ), Λ3(κ) and Λ4(κ) constants can be obtained as:

Λ1(κ) =
κ6

12

(
−19κ4−12κ4 ln(κ)+4κ6+26κ2+08 ln(κ)κ2−48 ln(κ)2κ2−96 ln(κ)−96 ln(κ)2−11

(−1+κ2)7

)
(A.7)

Λ2(κ) = −κ6

6

(
4κ4 + 5 + 24 ln(κ)2 + 36 ln(κ)− 24 ln(κ)κ2 − 9κ2

(−1 + κ2)6

)
(A.8)

Λ3(κ) = −κ6

6

(
5κ8−38κ6+(24 ln(κ)+108)κ4+(−168 ln(κ)−122+48 ln(κ)2)κ2+144 ln(κ)+96 ln(κ)2+47

(−1+κ2)7

)
(A.9)

Λ4(κ) = −κ6

3

(
2κ6 − 15κ4 − 17− 24 ln(κ)2 − 36 ln(κ) + 24 ln(κ)κ2 + 30κ2

(−1 + κ2)6

)
(A.10)
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B APPENDIX B

The coefficients ci of the equation (3.3) can be expressed as:

c0 = 0 (B.1)

c1 = −β1 (B.2)

c2 = −β2 + β2
1 (B.3)

c3 = 2β2β1 − β3
1 − β3 (B.4)

c4 = β4
1 − 3β2

1β2 + 2β3β1 + β2
2 (B.5)

c5 = 4β3
1β2 − β5

1 − 3β3β
2
1 − 3β1β

2
2 + 2β3β2 (B.6)

c6 = β6
1 − 5β4

1β2 + 4β3
1β3 + 6β2

1β
2
2 − 6β1β2β3 − β3

2 + β2
3 (B.7)

c7 = 6β5
1β2 − β7

1 − 5β4
1β3 − 10β3

1β
2
2 + 12β2

1β2β3 + 4β1β
3
2 − 3β1β

2
3 − 3β2

2β3 (B.8)
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