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Abstract

We present a unified framework, which is based on a queuing network modeling 

representation, for describing, comparing and contrasting simple and hybrid multi-stage production- 

inventory control policies with lot-sizing and advance demand information (ADI). The simple 

policies that we consider are reorder point and kanban policies. The hybrid policies are 

combinations of the simple policies, which can be materialized in a synchronized or an 

independent way, leading to synchronized and independent hybrid policies, respectively.

We then, attempt to describe their basic operations and functions, emphasizing on their 

advantages and disadvantages. Wherever it is possible, we develop evolution equations, so as to 

describe in detail the dynamics of each system. Using the above analysis we attempt a 

comparison of the above systems, emphasizing in equivalencies and superiorities.

We consider two cases where in the first, ADI is available and in the second isn’t. The 

above analysis is carried out for both cases.
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Chapter 1: Introduction and literature review

Chapter 1

Introduction and literature review

1.1. Introduction

Every operations manager should be familiar with the terms reorder point policies (RPPs), 

material requirements planning (MRP) and its successor manufacturing resources planning 

(MRP II), and just in time (JIT). These terms have been used to describe three widely practiced 

approaches for coordinating the flow of material in multi-stage production-inventory systems. 

The literature advocating one or the other approach is voluminous. Each approach has its 

merits and its drawbacks; however, which approach is overall better remains a point of 

controversy among practitioners and researchers. In a growing literature that brings to light 

this controversy it is often pointed out that ‘which approach is better?’ may not be the correct 

question to ask since most real systems include all three approaches anyway.

The main difficulty in comparing RPP, MRP, and JIT is that they have emerged at different 

points in time, within different scientific cultures, and under different general assumptions. 

Thus, RPPs were developed for make-to-stock inventory (i.e., uncapacitated) systems, and 

MRP was developed as a computerized stage coordination tool in a deterministic, discrete-time 

setting with advance demand information (ADI) in the form of a finite, planning horizon. Finally, 

the kanban system, the single technique most closely associated with JIT practices, was 

developed as a manual production control mechanism for production lines.

The purpose of our work is not to study the controversy of RPP vs. MRP vs. JIT, although 

some of the important issues that are related to this controversy are highlighted in Chapter 2 & 

3. Instead, the goal our work is to propose a unified modeling framework, based on a queuing 

network representation, to help describe, compare and contrast classical multi-stage 

production-inventory control policies in a clear and precise manner and introduce new control 

approaches as hybrids of simpler policies. By exposing these policies we hope to provide a 

connection between RPPs, MRP and JIT and show that all three approaches can live under the 

same roof. The proposed framework is built by extending the unified modeling framework for 

pull control mechanisms in multi-stage serial systems developed in Liberopoulos and Dallery 

(2000) to include policies that deal with order lot sizing and Advance Demand Information.
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Chapter 1: Introduction and literature review

We extend classical & hybrid multi-stage production-inventory control policies so as to 

include ADI mechanisms. To be more specific, in most models of production/inventory 

systems, demand is a random variable (or process), for which statistical information exists, and 

suppliers determine their inventory policies in order to deal with the uncertainty in the 

demand. We consider a different situation where the medium/long term demand is still 

assumed to be random but there is more than statistical information about the timing of short­

term demand. The situation that we have in mind is that of downstream customers who place 

orders with a future due-date. Because our objective is to gain basic insights on the value of 

advance information, we consider a simple model of advance information. Namely, all 

customers order exactly r periods in advance of their required delivery date. This restrictive 

assumption is justified when the downstream customer plans his/her production according to 

an MRP-type system.

In order to profit by the existence of such information, we must modify our control policy 

in a way that makes use of the advance demand information that is available. In that direction 

we integrate in the classic control policies, delay or else production order release mechanisms. 

In the simple case (where A.D.I is not available), a production order is released at each demand 

arrival. In other words, the release mechanism is triggered by an actual demand. In the 

modified systems, a production order is released L units before the due-date of an order. In 

this case, production orders are triggered by information signals rather than by actual demand 

arrivals. It is important to note that the release lead time L is a parameter of the policy which 

has to be optimized. Finally, it has to be stressed that the release lead time is not unrestricted as 

it is constrained by the demand lead time. Namely, L· has to be less than or equal to r. 

Policies that take into account advance demand information and hence MRP systems are 

included in Chapter 3.
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Chapter 1: Introduction and literature review

1.2. General Background & Literature Review

A relatively recent review of the controversy of RPP vs. MRP vs. JIT is presented in 

Benton and Shin (1998). A key element to the controversy of RPP vs. MRP vs. JIT is a set of 

related issues regarding multi-stage production-inventory control. We will give highlights of 

some of these issues next.

An issue that surfaces over and over again is the issue of push vs. pull control. The most 

common definition of push vs. pull regards the timing of production initiation in response to 

demand. According to this definition, a pull system initiates production in reaction to current 

demand, i.e., after the realization of demand, hence the word ‘puli’. A push system, on the 

other hand, initiates production in anticipation to future demand, i.e., before the realization of 

demand, hence the word ‘push’ (Karmarkar, 1989). In the latter case, it is assumed that 

advance demand information is available, i.e., that future demand is either announced in 

advance in the form of actual orders or commitments, or is guessed in advance in the form of 

a forecast, or is a combination of the two. In terms of this definition, MRP is a push system, 

whereas RPPs and JIT are pull systems.

According to the above definition of push vs. pull control, in both push and pull systems 

production responds to demand; in push systems it responds proactively, whereas in pull 

systems it responds reactively. One of the difficulties with this definition is that it leaves out 

systems where production ‘ignores’ demand, for example in cases where mean demand exceeds 

mean capacity, at least for some time. One way to circumvent this difficulty is to introduce a 

term to characterize control systems where production is initiated in response to demand 

(present or future), for example ‘closed-loop’ or ‘feedback’, and a term to characterize systems 

where production is initiated without regard to demand, for example ‘open-loop’. Another way 

is to redefine push vs. pull to explicidy mean open-loop vs. closed-loop. This latter view seems 

to be adopted by a number of researchers. For example, in their description of JIT, Bedworth 

and Bailey (1987) state that JIT uses the demand pull concept, requesting inventory 

replenishment from main stores when work-in-process inventories reach their minimum levels, 

rather than pushing material through the manufacturing process and ignoring the rate at which 

the materials are consumed. Also, Vollman et al. (1997) find that the distinction between push 

and pull that is useful pertains to whether individual work centers are allowed to utilize 

capacity without being driven by a specific end item schedule. If we adopt the definition that 

push is open-loop control and pull is closed-loop control, then MRP is a pull-through
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Chapter 1: Introduction and literature review

approach where the master production schedule is converted into material requirements and 

the requirements are time phased to provide JIT production (Rice and Yoshikawa, 1982).

Closely related to the issue of open-loop vs. closed-loop is yet another definition of push 

vs. pull, which regards the performance measure that is being controlled. According to this 

definition, a push system controls throughput and measures WIP, whereas a pull system 

controls WIP and measures throughput (Elsayed and Boucher, 1994 and Spearman and 

Zazanis, 1992). In terms of this definition, an open queuing network of workstations with 

infinite queuing capacity is a push system, whereas a closed queuing network is a pull system. 

This means that MRP and RPPs are push systems since both can be modeled as open queuing 

networks, whereas JIT systems, such as kanban and CONWIP (Spearman et al., 1990), are pull 

systems since they can be modeled as closed queuing networks.

Thus far, one thing is clear: That the definition of push vs. pull is unclear. For a relatively 

recent and comprehensive review on the push vs. pull issue see Pyke and Cohen (1990). Two 

other important issues related to the controversy of RPP vs. MRP vs. JIT are the issues of local 

information vs. global-information control and centralized vs.decentralized control.

Local-information vs. global-information control is sometimes also referred to as 

decentralized-information vs. centralized-information control (Chen et al., 2000 and Simchi- 

Levi et al, 2000). Local information implies that each stage sees demand only in the form of 

orders that arrive from the stages it directly supplies and has visibility of only its own inventory 

status, costs, and so on. Global information implies that each stage has visibility of the demand 

and inventory status of all the downstream stages in the system (Silver et al., 1998). According 

to this definition, installation stock RPP, MRP, and kanban are local-information systems, 

whereas echelon stock RPP is a global-information system. One of the major advantages of 

global information over local information is that using global information can help significantly 

reduce the so-called ‘bullwhip effect’ (Lee et al., 1997 and Chen et al., 2000), which can result 

in important inventory cost savings.

Centralized vs. decentralized control refers to the number of decision makers. Centralized 

control implies that all relevant information in the system flows to a central point where all 

decisions are made in an attempt to globally optimize the entire system. These decisions are 

then communicated to all stages to be implemented. Clearly, this is the case if the entire system 

is owned by a single organization, but it can also be true in a system that includes many owning
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Chapter 1: Introduction and literature review

organizations. In this case the savings or profits that result from the optimization must be 

allocated across the organizations using some contractual mechanism (Simchi-Levi et al., 2000). 

Decentralized control implies that decisions are made independently by separate stages, which 

leads to local optimization of the system (Silver et al., 1998 and Zipkin, 2000). With the above 

definition in mind, the issue of centralized vs. decentralized control is also closely related to the 

issue of cooperation vs. competition (Cachon and Zipkin, 1999). Notice that a centralized 

control system is at least as effective as a decentralized control system because the former 

system can make all the decisions that the latter system would make. Also notice that in a local- 

information system, i.e., a system where each stage can access only its own information, 

centralized control is impossible. Centralized control is often identified with push systems 

because a central decision maker pushes stock to the stages that need it most, whereas 

decentralized control is often identified with pull systems because independent decision 

makers pull stock from their suppliers (Federgruen, 1993 and Pyke and Cohen, 1990). The 

issue of centralized vs. decentralized control is sometimes erroneously confused with the issue 

of local-information vs. global-information control. Namely, centralized control is often 

identified with global-information control and decentralized control is often identified with 

local-information control.

A final note regards the issue of make-to-stock vs. make-to-order control. In a make-to- 

stock system every stage ‘blindly’ produces inventory up to a certain target level ahead of time, 

i.e., before any demands have arrived to the system, so that when a demand arrives there is a 

good chance that it may be filled from inventory. The target level is determined either 

dynamically based on the distribution of forecasted demand and forecast error, or statically 

based on the stationary distribution of demand. In a make-to-order system no inventory is 

produced ahead of time. Instead, production is initiated whenever an order arrives to the 

system. RPPs are make-to-stock, unless they do not allow for positive inventory levels. JIT 

systems are always make-to-stock since in JIT systems replenishment orders are triggered after 

parts are consumed.

The issue of make-to-stock vs. make-to-order is related to the availability of advance 

demand information and therefore to the first definition of push vs. pull. More specifically, if 

advance demand information is available in the form of a demand lead time (e.g., confirmed 

customer orders), allowing production to be initiated before demand, there is less need to 

‘blindly’ produce inventory ahead of time. Indeed, in such a case it may be advantageous to 

exploit as much of the demand lead time as possible by initiating production as early as it takes
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Chapter 1: Introduction and literature review

in order to reduce the inventory target level as much as possible. In other words, there is a 

tradeoff between the production lead time and the inventory target level: the sooner 

production begins the less inventory needs to be kept. With this in mind, MRP is a 

deterministic make-to-order system that copes with uncertainty usually by inflating lead times 

rather than by introducing an inventory target level in the form of safety stock. For a 

discussion on the issue of safety stock vs. safety time in MRP systems see Buzacott and 

Shanthikumar (1994), Karaesmen, Buzacott and Dallery (2002) and Karaesmen, Liberopoulos 

and Dallery (2002).

One of the difficulties that arise when comparing different control policies stems from the 

ambiguity surrounding the issues raised above. The main difficulty, however, is that most 

control policies have emerged at different points in time, within different scientific cultures and 

under different general assumptions. Thus, RPPs were developed for pure inventory (i.e., 

uncapacitated) systems usually with no advance demand information. MRP systems were 

developed as computerized stage coordination tools in a deterministic, discrete-time setting 

with advance demand information in the form of a finite, planning horizon, usually using 

forecasts. Finally, the kanban system, the single technique most closely associated with JIT 

practices, was developed as a manual production control mechanism at the machine level.

In the rest of this thesis we use a unified modeling framework, based on a queuing network 

representation, to describe, compare and contrast classical multi-stage production-inventory 

control policies in a clear and precise manner and introduce new control approaches as hybrids 

of simpler policies. In the following section we present some of the modeling assumptions that 

are common to all these policies.

1.3. Modeling Assumptions

We consider an N-stage serial production-inventory system. Every stage consists of a work- 

in-process (WIP) facility where parts are processed, followed by a finished goods (FG) output store 

where processed parts are stored. We assume that:

1. there is no advance demand information. More specifically, we assume that customers 

arrive randomly in time and that each customer places an immediate request for a non-fixed 

number of end items, i.e. stage-N FG. Demands that are not satisfied from FG inventory 

immediately are backordered and are referred to as backordered demands (BD). The arrival of a 

customer demand for end items eventually triggers a replenishment order for FG inventory at
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Chapter 1: Introduction and literature review

every stage. The exact time at which these orders are placed depends on the control policy in 

place. We assume that there is an infinite supply of raw parts feeding the first stage. FG 

inventory levels at all stages are followed continuously, and replenishments of FG inventory 

may be ordered at any time. There is a setup cost associated with placing and processing an 

order, therefore orders are placed and released for processing in batches or lots. Demands that 

are waiting for the arrival of other demands to complete a lot are referred to as single demands 

(SO).

Our goal is to define in a clear and precise manner production-inventory control policies 

that decide when to place and release replenishment orders at each stage. Since there is no 

advance demand information, we focus on make-to-stock policies. According to such policies, 

FG inventory at the last stage is “blindly” produced up to a certain target level ahead of time 

so that when a demand arrives there is a good chance that it may be filled from FG inventory. 

Upon the arrival of a demand, FG inventory is consumed and replenishment orders are 

eventually placed and released for processing at every upstream stage to raise the FG inventory 

back to the target level. To speed up the replenishment process, FG inventory at other stages 

may also be “blindly” produced up to a certain target level ahead of time. The target levels are 

either dynamic, if they are based on the distribution of forecasted demand and forecast errors, 

or static, if they are based on the stationary distribution of demand. In this thesis we assume 

that they are static. Typical policies for implementing make-to-stock control are reorder point 

and kanban policies.

Reorder point policies were initially developed in the context of uncapacitated inventory 

systems with stochastic demand, whereas kanban policies were developed in the context of 

capacitated production systems. In reorder point policies, the triggering of replenishment 

orders at every stage is based on the inventory position of the stage. In kanban policies, the 

triggering of replenishment orders at every stage is based on the actual inventory of the stage. 

The definition of inventory position in reorder point policies, and of actual inventory in 

kanban policies, follows the installation or the echelon concept, leading to local or global 

information policies, respectively. In the sections that follow, we will present classical reorder 

point and kanban policies as well as combinations of these policies.

2. the system has access to perfect ADI over a Bribe time horizon. More specifically, we 

assume that customers arrive randomly in time and that each customer places an order for a 

non-fixed number of end items, i.e., stage-N FG, to be delivered to him exactly T time units
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Chapter 1: Introduction and literature review

after the time of his arrival. The order can be neither cancelled nor modified. T is referred to as 

the demand lead time.

The arrival of every customer demand triggers the consumption of an end-item from FG 

inventory and the placement, activation, and release of a replenishment production order to 

the facility of each stage in the system. The consumption of an end-item from FG inventory is 

activated T time units after the arrival time of the demand. If no end-items are available at that 

time, the demand is backordered. The placement, activation, and release of replenishment 

production orders to the facilities of each stage depend on the control policy in place. To 

speed up the replenishment process, FG inventory at some or all the stages may have been 

built up to a certain target level ahead of time, i.e., before any demands have arrived to the 

system.

We have used die terms placement, activation, and release to indicate the three different phases 

in the life of a replenishment order. These phases are defined as follows. When an order is 

placed at a stage, the stage receives the order information. When an order is activated, parts 

corresponding to the order are requested to be released into the WIP facility of the stage for 

processing. Finally, when an order is released, parts corresponding to the order are actually 

released into the WIP facility of the stage for processing. The placement, activation, and release 

of a replenishment order are indicated graphically in Figure 11.

In the presence of ADI, it may be cost effective to introduce a deliberate time delay 

between placing and activating an order, particularly if the demand lead time T is long. An 

order that has been placed but has not yet been activated is referred to as an outstanding demand 

(OD). An order that has been activated may not be immediately released due to the temporary 

lack of parts or production authorizations, in those control policies that require production 

authorizations (e.g., kanban-type policies). An order that has been activated but has not yet 

been released is referred to as a backordered demand (BD).

The deliberate delay between placing and activating a replenishment order depends on the 

so-called installation and echelon planned lead times associated with each stage. These lead 

times are defined as follows. The installation planned lead time of stage n is denoted by ln and is a 

specified fixed control parameter that is usually related to the flow time of a typical part 

through the facility of the stage. The echelon planned lead time of a stage is denoted by Ln and is 

the sum of the installation planned lead times of the stage and all its downstream stages, i.e.,
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Α,=Σ/*»»=1*2»-*Ν· (!)
k-n

With these definitions in mind, the time of activating a replenishment order at stage n is 

determined using an MRP-system logic by offsetting the due date of the demand that triggered 

the order by the stage echelon planned lead time, L„. This means that the order is activated 

with no delay, if Ln>T,ot with a delay equal to T — Ln with respect to the demand arrival 

time, if Ln < T . In other words, the delay in activating an order, denoted Tn, is given by

T„ = max[0,T — Ln],n= 1,2, (2)

We assume that there is an infinite supply of raw parts feeding the first stage. FG inventory 

levels at all stages are followed continuously, and replenishments of FG inventory may be 

ordered at any time. There is a setup cost associated with placing and processing an order, 

therefore orders are placed and released for processing in batches or lots. Demands that are 

waiting for the arrival of other demands to form a complete lot are referred to as single demands 

(SD).
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Chapter 2

Multi-Stage Production-Inventory Control Policies with Lot 

Sizing (no Advance Demand Information)

2.1. Introduction

In a stochastic demand environment, typical inventory control policies are RPP, (s,S) & 

“order up to” policies and Kanban policies. In this section we will present:

• Installation and Echelon (Q, r) Policies

• Installation and Echelon Kanban Policies

• Hybrid Installation and Kanban/Reorder Point (Q, r) Policies

Most of the results on IS and ES (Q,r) policies presented here are interpreted from Axsater 

and Rosling (1993) and Axsater (2000).

2.2. Installation and echelon stock (Q, r) policies

When a multi-stage production-inventory system is controlled by an IS or an ES (Q, r) 

policy, every stage is controlled by a (Q, r) rule based on its inventory position. This means 

that as soon as the inventory position of stage n falls at or below a reorder point rn, an order is 

placed for the least integer number of lot sizes QH that raises the inventory position above rn.

The difference between IS and ES policies lies in the definition of inventory position. In 

an IS policy, the inventory position at stage n is defined as the installation stock at stage n, i.e. 

stock on hand (stage-» FG) plus outstanding orders (stage-» WIP + BD) minus backorders 

(stage-(»+l) BD). In an ES policy, the inventory position at stage » is defined as the echelon stock 

at stage », i.e. the sum of the installation stocks at stage n and all its downstream stages. In 

other words, the installation and echelon stock at stage », which are denoted by in and 

respectively, are defined as

/„ = BD;i + WIP„ + FG„ -BD„+1 ,»= 1,2, (3)
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K = BD„ + X (WIP, + FGt) - BD„+I ,*=1,2,
k=n

,N, (4)

and are related as follows:

In =Yjh >» = 1>2>
k=n

= k, ~ k,+i, n = 1, 2, ..., N-l, and iN = IN

(5)

(6)

With the above definitions in mind, the decision to place an order at each stage is based on 

local information, in an IS policy, and on global information, in an ES policy. The parameters 

0„ and rn are in general different for each stage. We make the common assumption that the 

order lot sizes satisfy

Qn = jn ■ Qn+i, n = 1, 2, ..., N, and QN+l = 1, 00

for some positive integers jn. Assumption (7) is necessary if the rationing policy is to satisfy all 

or nothing of a production order, because then the installation stock at every stage should 

always consist of an integer number of downstream lot sizes (except for the last stage where 

the rationing policy allows the partial satisfaction of a customer order as long as stock is 

available). Besides simplifying material handling, the integer ratio constraint (7) also simplifies 

analysis significantly. The cost increase due to constraint (7) is likely to be insignificant due to 

the insensitivity of inventory costs to the choice of order quantities (Chen, 1998).

A queueing network model representation of a two-stage production-inventory system 

operating under an IS (Q, r) policy is shown in Figure 1.

parts to 
customers

customer
demands

Figure 1: Queueing network model representation of a two-stage production-inventory system 
operating under an IS (Q, r) policy.
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The symbolism used in Figure 1 and all other similar figures that follow in the rest of the 

thesis is as follows. The ovals represent WIP facilities, and the queues followed by vertical bars 

represent synchronization stations linking the queues. Queues are labeled according to their 

content, and their initial value is indicated inside parentheses. For example, the queue 

representing the FG output store of stage 1 is labeled FG, and its initial value is q0. The 

marking at the bottom corner of every synchronization station indicates the lot size needed to 

activate the synchronization station, i.e. the minimum number of customers that must be 

present in each queue to activate the synchronization station. For example, queues FG, and 

BD2 are linked in a synchronization station marked with “,Q2.” This means than as soon as 

there are at least Q2 parts in FG, and 02 demands in BD2, then exactly j22 of the parts depart 

from FG, and enter into WIP2, and exactly j22 of the backordered demands depart from BD, 

and are discarded since they are satisfied. Another example is the synchronization station 

consisting of a single queue, SD,, which is marked with “Qv” This marking means that as soon 

as there are at least demands in SD,, then exactly Q, of the demands depart from SD, and 

enter into queue BD,.

The local information nature of IS policies and the global information nature of ES 

policies is reflected in the way customer demand information is communicated to all stages, as 

can be seen in Figure 1 and Figure 2, respectively. In an IS policy, customer demand 

information is communicated from a stage to its previous upstream stage only when an order 

is placed at the former stage. In an ES policy, on the other hand, a customer demand is 

communicated to all stages immediately upon its arrival to the system.

parts to 
customers

customer
demands

Figure 2: Simplified queueing network model representation of a two-stage production- 
inventory system operating under an ES (Q, r) policy.
2.2.1. Behavior and properties of Installation stock (Q, r) policies

Let us first examine IS (Q, r) policies. We assume that the initial installation stock FG 

inventory positions in an IS (Q, r) policy satisfy r'n < i°n < r'n + Qn for all n, where r‘n are the 

installation stock reorder points. These conditions will anyway be satisfied as soon as an order
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has been placed by every stage. An IS (Q, r) policy is always nested in the sense that when an 

order is placed at stage n, then orders must simultaneously be placed at all downstream stages 

as well. This is evident by looking at Figure 1. Further more an IS (Q, r) policy does not 

depend on the initial installation stock positions but only on the reorder points r'n and the 

reorder quantities Qn.

With the above observations in mind an IS (Q, r) policy (with initial installation stock 

positions equal to their maximum level) can always be replaced by an equivalent ES policy with 

initial echelon stock positions

/° = Y* i° = re+0 
n Zak=n k 'n +

where r) are the echelon stock reorder points in the equivalent ES policy and are given by (see 

Axsater and Rosling, 1993)

r = r +EL+1w+&)>r«=1’2’·· ., N-1, and rN=rlN (9)

2.2.2. Behavior and properties of Echelon stock (Q, r) policies

A similar analysis can be performed for ES (Q, r) policies. Here again we assume that the 

initial echelon stock FG inventory positions in an ES (Q, r) policy satisfy r‘ < I® < r* + Qn, for 

all n, where r) are the echelon stock reorder points. These conditions will anyway be satisfied 

as soon as an order has been placed at every stage. Unlike IS (Q, r) policies, ES (Q, r) policies 

generally depend on the initial echelon stock positions 7° as well as on the echelon stock 

reorder points r" and the reorder quantities 0„. Also, unlike IS (Q, r) policies, ES (Q, r) 

policies are not always nested. If an ES (Q, r) policy is nested, however, then it can be replaced 

by an equivalent IS (Q, r) policy; otherwise, it can not. Axsater and Rosling (1993) show that a 

necessary and sufficient condition for an ES policy to be nested is that the initial installation 

stock inventory positions satisfy

£ = !°n - Cl = K - Cl + (*. -1) · a+i, for * = 1, 2, ..., N-l, (10)

for some positive integers kn such that 1 < kn < jn . If condition (10) holds, the resulting nested 

ES policy can be replaced by an equivalent IS policy with initial installation stock positions
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£ = K - Ci = < + K ■ Qn+l, for η = 1, 2, ..., N-l, and /° = 7° , (11)

where rl are the reorder points in the equivalent IS policy and are given by:

r = r Ci “ Qn+1, for η - 1, 2, ..N-l, and r£ = (12)

Moreover, in this case, the resulting nested ES policy does not depend on the initial 

installation stock positions and therefore on the initial echelon stock positions.

2.2.3. Comparison of Installation & Echelon stock (Q, r) policies

To summarize, IS (Q, r) policies are nested ES (Ο, ή policies and are therefore special cases ofES 

policies. Axsater and Rosling (1993) give an example where a non-nested ES policy is preferable 

to a nested ES policy. An important implication of the preceding analysis is that the behavior 

of an IS policy does not depend on the initial FG inventory positions. The behavior of an ES 

policy, on the other hand generally depends on the initial FG inventory positions, except when 

condition (10) holds, in which case the resulting ES policy is nested and can be replaced by an 

equivalent IS policy. In other words, IS policies depend on two parameters per stage, rn and Qn,

i.e. they have two degrees of freedom on the choice of parameters per stage, whereas ES 

policies generally depend on three parameters per stage, rn, Qn, and 7°, i.e. they have three

degrees of freedom per stage. Chen (1998) gives an alternative definition on the difference in 

the degrees of freedom on the choice of parameters between the two policies. More 

specifically, he states that without loss of generality, the installation stock reorder points in an 

IS policy, r'n , must be integer multiples of j2„+i, for n — 1,2,..., iV-1, whereas in an ES policy 

no such restrictions are placed on the echelon stock reorder points r(, for n— 1, 2,..., N.

2.3. Installation and echelon kanban policies

Motivated by the preceding discussion regarding IS and ES policies, we examine the 

notions of installation and echelon kanbans, which lead to the definitions of IK and EK policies, 

respectively.

When a multi-stage production-inventory system is controlled by an installation kanban (IK) 

or an echelon kanban (EK) polity, every stage n has associated with it a finite number of 

authorization cards or kanbans, which is equal to an integer multiple of the stage lot size A
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kanban is either free or attached onto a part. A free stage-» kanban is used to communicate a 

customer demand for one part at stage ». More specifically, when a lot of Qtl free stage-» 

kanbans has been completed, an order of equal size is placed at stage ». If a lot of Qn parts in 

stage-(»-l) FG inventory is available, the lot of free kanbans is attached onto the lot of parts 

and the combined lot is released into the WIP facility of stage ». The kanbans remain attached 

to the lot of parts until the combined lot reaches a certain final FG output store. From there, 

the lot of parts is being depleted as FG inventory is being consumed by the next downstream 

stage or by customers (if the final FG output store is the output store of the last stage). When a 

part is consumed, the kanban that was attached to it is detached and becomes a free kanban 

again. Tins free kanban is used once again to communicate a customer demand for one part at 

stage » so that when a lot of Qn free kanbans has been formed, an order of equal size is placed 

at stage ».

The difference between IK and EK policies lies in the definition of the final FG output 

store, i.e. the point after which kanbans are detached from parts. In an IK policy, the final FG 

output store at stage n is the FG output store of stage n. In an EK policy, it is the FG output 

store of the last stage, i.e. stage N. This means that in an IK policy, a stage-» kanban follows a 

part through the WIP facility and the FG output store of stage « and is detached from the part 

after the part leaves the FG output store of stage «. In an EK policy, on the other hand, a 

stage-» kanban follows a part through the WIP facilities and FG output stores of stages » 

through N and is detached from the part after the part leaves the FG output store of stage N. 

Tliis implies that in an IK policy, the decision to place an order at each stage is based on local 

information, whereas in an EK policy it is based on global information from all downstream 

stages. The kanbans used in IK and EK policies are referred to as installation and echelon 

kanbans, respectively. Note that in an IK policy, every part in the WIP facility or FG output 

buffer at stage » has attached onto it a stage-» installation kanban. In an EK policy, on the 

other hand, every part in the WIP facility or FG output buffer at stage « has attached onto it 

one echelon kanban from each of stages 1 through ». This means that in an EK policy, when 

an end item is consumed by a customer, N echelon kanbans are detached from the part and 

turn free.

The simplified queueing network model representations of a two-stage production- 

inventory system operating under an IK and an EK policy are shown in Figure 3 and Figure 4, 

respectively.
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Figure 3: Simplified queueing network model representation of a two-stage production- 
inventory system operating under an IK policy.

Figure 4: Simplified queueing network model representation of a two-stage production- 
inventory system operating under an EK policy.

2.3.1. Behavior and properties of installation kanban policies

Axsater and Rosling (1993) and Axsater (2000) compare IK policies to IS policies. More 

specifically, they view IK policies as being inherendy IS (Q, r) policies, where a) backorders are 

not subtracted from die definition of the installation stock inventory position, and the reorder 

point at stage n is defined as r'n = (K‘n — 1 )-Qn, where K‘n is an integer such that K'n > 1 and

K'n ■ Qn is the number of installation kanbans at stage n, or b) the inventory position is defined 

exaedy as in IS policies, and the reorder point is occasionally decreased (when there are 

backorders).

It is important to note that in an IK policy the reorder point r'n is an integer multiple of 

the stage lot size Qn, whereas in an IS (Q, r) policy it need not be. Instead, in an IS (Q, r) 

policy, it is natural to require only that r'n be an integer multiple of the downstream stage lot

size On+l, for n = 1, 2,..., IV-1, if the rationing policy is to satisfy all or nothing of a production 

order.

As in the case of Installation (Q,r) polides, IK policys does not depend on the initial 

installation stock positions but only on the reorder quantities Qn and the integers K'n, which 

together with the Qn define the reorder points r'n .
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Axsater and Rosling (1993) conclude that IK policies are inherendy IS (Q, r) policies with 

some limitations and are therefore inferior to IS (Q, r) policies, although in a more recent 

paper they recognize that this conjecture is not always correct (Axsater and Rosling, 1999). In 

our view there is a fundamental difference between installation stock and IK policies. In an IK 

policy, demand is communicated at a stage only when FG inventory is consumed by the next 

downstream stage or by a customer. In an IS (Q, r) policy, on the other hand, demand is 

communicated at a stage irrespectively of whether FG inventory is consumed or not. This 

difference is quite evident when one compares Figure 3 to Figure 1.

A consequence of this difference is that an IK policy is never nested in the sense that an IS 

(Q, r) policy is, i.e. in the sense that when an order is placed at stage n, then orders must 

simultaneously be placed at all downstream stages as well. Instead, the only thing that can be 

said about IK policies is that when an order is placed at stage n, then an order must be released 

in the next downstream stage or to a customer (if stage n is the last stage).

A more important consequence of the difference between IK and IS (Q, r) policies is that 

in an IK policy, the WIP + FG inventory at every stage is always bounded by the number of 

installation kanbans. In an IS (Q, r) policy, on the other hand, although the FG inventory at 

every stage is bounded by the initial FG inventory position, the WIP inventory is unbounded. 

The lack of an upper bound on the WIP inventory may not be a problem in uncapacitated 

systems such as pure inventory systems. Suggestively, Axsater and Rosling (1993) cite Veinott 

(1965) who demonstrated the optimality of reorder point (Q, r) policies for single-stage 

systems for classical cost structures and fixed lot-size Q. In capacitated production-inventory 

systems, however, (Q, r) policies may lead to significant congestion and are certainly not 

optimal. Suggestively, Veach and Wein (1994) and Liberopoulos and Dallery (2001) 

demonstrate that base stock policies are not optimal for single-stage production-inventory 

systems under classical cost structure assumptions. Numerical evidence in Duri et al. (2000), 

Karaesmen and Dallery (2000) and Liberopoulos and Koukoumialos (2001) also support the 

argument that base stock policies are not optimal in production-inventory systems with more 

than one stages.

2.3.2.Behavior and properties of echelon kanban policies

Similar arguments hold when one compares EK to ES policies. Namely, one can view EK 

policies as being inherently ES (Q, r) policies, where a) backorders are not subtracted from the
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definition of the echelon stock inventory position, and the reorder point at stage n is defined as 

r) = (Kl'n — 1) ■ Qn, where Ken is an integer such that Ken> 1 and Ken Qn is the number of 

echelon kanbans at stage n, b) the inventory position is defined exactly as in ES policies, and 

the reorder point is occasionally decreased (when there are backorders).

Unlike IK policies, EK policies generally depend on the initial echelon stock positions 7° 

as well as on the reorder quantities Qn and the integers Ken , which together with the Qn, define

the reorder points r* . An EK policy may never be nested in the sense that an ES policy may 

be nested, i.e. in the sense that when an order is placed at stage «, then orders must 

simultaneously be placed at all downstream stages as well. Nonetheless, an EK policy may be 

partially nested in the sense that when an order is placed at stage n, then orders must 

simultaneously be placed at all but the last downstream stages as well. A necessary and sufficient 

condition for an EK policy to be partially nested is that the initial installation stock inventory 

positions satisfy

= (K'n-l)-Qn-(K‘n+l-l)-Qn+l+(kn-l)-Qn+l,{otn = l,2, ,N-1, (13)

for some positive integers k„ such that 1 < kn < jn. If condition (13) holds, the resulting EK 

policy does not depend on the initial installation stock position of any stage except the last 

stage. Unlike a nested ES (Q, r) policy, which can always be replaced by an equivalent IS (Q, r) 

policy, a partially nested EK policy can never be replaced by an equivalent IK policy, because, 

as was already mentioned above, IK policies are never nested (either partially or fully).

Here also we find that there is a fundamental difference between EK and ES (Q, r) 

policies. In an EK policy, demand is communicated at a stage only when an end item from FG 

inventory is consumed by a customer. In an ES (Q, r) policy, on the other hand, a demand is 

communicated to all stages immediately upon its arrival to the system, irrespectively of whether 

an end item from FG inventory is consumed by a customer or not. This difference becomes 

evident when one compares Figure 4 to Figure 2. In fact, a close look at Figure 2 and Figure 4 

reveals that the model of an EK policy is identical to the model of an ES (Q, r) policy, for all 

but the last stage. The implications of the difference between EK and ES (Q, r) policies are 

similar to the implications of the corresponding difference between IK and IS (Q, r) policies 

that was discussed.
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An EK policy with Ken+l ■ Qn+{ > Ken Qn, or equivalently K‘+l > jn ■ Ken due to (7), for some

stage n, has the property that the release or an order into the WIP facility of stage η + 1 will 

never be blocked due to the lack of an available stage-(»+1) kanban in queue BD,/+1. Therefore, 

queue BD,i+1 and the entire loop traced by stage-(«+l) kanbans can be eliminated, and stages n 

and η + 1 can be merged into a single stage. In this case, the resulting system is equivalent to a 

production-inventory system with N-1 stages operating under an EK policy. A limiting case of 

this is when Ken+l > jn ■ K‘n, for all stages n — 1,2, ..., IV-1. In this case the entire system forms

a single stage with K[ ■ Qx kanbans, and the resulting policy is equivalent to a make-to-stock 

CONWIP policy with lot sizing (CONWIP policies were introduced in Spearman et al. (1990)). 

Therefore, without loss of generality we assume that for a system with N stages,

^n+\ < Jn · Ken, £ot n = 1,2, ..N-i.

In Section 2.2 we saw that an IS (Q, r) policy is a special case of a ES (Q, r) policy. For this 

reason we concluded that ES (Q, r) policies are superior to IS (Q, r) policies. Such an argument 

can not be carried over to kanban policies because IK and EK policies are never equivalent to 

each other, except in the trivial case where there is a single stage. For this reason, it is not 

simple to determine whether EK policies are superior to IS policies or vice versa. It should be 

noted, however, that an advantage of EK policies over IK policies is that the former polices 

use global information, whereas the latter policies use only local information.

2.3.3. Disadvantages of installation and echelon kanban policies

We already mentioned that an important advantage of kanban policies over their reorder 

point counterpart policies is that the former policies impose an upper bound on the WIP + 

FG inventory. This advantage implies inventory holding cost savings. One of the 

disadvantages of kanban policies, however, is that they do not communicate customer demand 

information to all upstream stages as quickly as their corresponding reorder point policies. This 

is because in kanban policies customer demand information is communicated only when a lot 

of kanbans is detached, and kanbans are detached only when FG parts are consumed. This 

disadvantage has a direct impact on customer service since it implies longer customer response 

times, particularly if customer demand is highly variable. It also implies that the capacity of the 

system depends on the number of kanbans.

One way to overcome these disadvantages and increase customer service and system

-22-

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 01:04:38 EEST - 3.12.76.237



Chapter 2: Multi-stage Production-Inventory Control Policies with Lot sizing (No A.D.I.)

capacity would be to increase the number of kanbans at every stage. Unfortunately, however, 

this would also increase inventory costs at every stage, since the number of kanbans 

determines the initial FG inventory and the reorder point. Another approach would be to 

uncouple a) the actions of detaching a kanban and communicating demand information and b) 

the initial FG inventory and reorder point from the number of kanbans at every stage. This 

approach can be implemented by combining an IK or an EK policy with an IS or an ES (Q, r) 

policy to form a more sophisticated hybrid policy. Such hybrid policies are discussed next.

2.4. Hybrid installation kanban/reorder point policies

A hybrid installation kanban/ reorder point (IK/RP) (Q, r) policy is a combination of an IK 

policy with an IS or an ES (Q, r) policy. In a hybrid IK/RP (Q, r) policy, installation kanbans 

trace a loop within each stage and are detached from the FG output store of the stage as in an 

IK policy. However, when an installation kanban is detached from a part in FG inventory, it 

does not carry with it customer demand information, as in an IK policy. Instead, demand is 

communicated according to the RP policy in place.

We distinguish two types of IK/RP (Q, r) policies: synchronised and independent. We 

differentiate between these two types because, synchronized IK/RP (Q, r) policies are related 

to the production authorisation card (PAC) system or generalised kanban control system (GKCS) 

introduced by Buzacott and Shanthikumar (1993) and Zipkin (1989), whereas independent 

IK/RP (Q, r) policies are related to the extended kanban control system (EKCS) introduced by 

Dallery and Liberopoulos (2000).

In both synchronized and independent IK/RP (Q, r) policies, the actions of detaching a 

kanban and communicating demand are uncoupled. Moreover, in both cases, the initial FG 

inventory and the reorder point are not determined by the number of kanbans, as is the case in 

IK policies. Finally, in both cases, customer demand is communicated according to the RP 

policy in place. The difference between the two cases is that in a synchronized IK/RP (Q, r) 

policy, when a stage-» installation kanban is detached from a part in stage-» FG inventory, it is 

used to authorise the placement of a replenishment order for one part at stage ». In an 

independent IK/RP (Q, r) policy, on the other hand, when a stage-» installation kanban is 

detached from a part in stage-» FG inventory, it is used to authorise the release of a replenishment 

order for one part at stage ». In other words, in a synchronized IK/RP (Q, r) policy, the 

placement of orders is synchronised with the trajectory of installation kanbans, whereas in an
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independent IK/RP (Q, r) policy the placement of orders is independent of the trajectory of 

installation kanbans. In both synchronized and independent IK/RP (Q, r) policies, the 

decision to authorize the placement or release of an order at each stage is based on local 

information, since it depends on the availability of installation kanbans. The decision to place 

an order at each stage, on the other hand, is based on local information, if the reorder point 

policy in place is an IS (Q, r) policy, and on global information, if the reorder point policy is an 

ES (Q, r) policy. With the above definitions in mind, there are four hybrid IK/RP (Q, r) 

policies to consider: synchronized IK/IS (Q, r) policies, synchronized IK/ES (Q, r) policies, 

independent IK/IS (Q, r) policies and independent IK/ES (Q, r) policies.

Queueing network model representations of a two-stage production-inventory system 

operating under a synchronized IK/IS (Q, r) policy, an independent IK/ES (Q, r) policy, an 

independent IK/IS (Q, r) policy and a synchronized IK/ES (Q, r) policy are shown in Figure 

5, Figure 6.

parts to 
customer

customer
demands

Figure 5: Queueing network model representation of a two-stage production-inventory system 
operating under a synchronized IK/IS (Q, r) policy.
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Figure 6: Queueing network model representation of a two-stage production-inventory system 
operating under an independent IK/ES (Q, r) policy.

A new element in all four figures (Figure 5, Figure 6), with respect to all previous figures, is 

the set of queues FKa, which contain free stage-» kanbans. In all four hybrid IK/RP (Q, r)
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policies, the total number of installation kanbans at stage n is K‘n ■ Qn, where K'n is an integer 

such that K‘n > 1, as in IK policies. Initially, a number of these kanbans is attached onto an 

equal number of parts in the FG output buffer of stage n, defining the initial installation stock 

FG inventory position, in , and consequendy the initial echelon stock FG inventory position, 

7°, at stage n, for all n. The remaining installation kanbans, i.e. K‘n ■ Qn - i°n kanbans, are stored 

in queue FK„ as free installation kanbans ready to authorize the placement or release of an 

equal number of orders at stage n.

We omit the independent IK/IS (Q, r) policy and the synchronized IK/ES (Q, r) policy 

because 1) an independent IK/IS (Q, r) policy is equivalent to a nested independent IK/ES 

(Q, r) policy (Figure 6) and therefore a special case of the latter policy (just like an IS (Q, r) 

policy is equivalent to a nested ES (Q, r) policy and is therefore a special case of the latter 

policy), and 2) a synchronized IK/ES (Q, r) policy is identical to an independent IK/ES (Q, r) 

policy (Figure 6). To see this notice that the model of a synchronized IK/ES (Q, r) pokey is 

equivalent to the model of an independent IK/ES (Q, r) pokey (Figure 6), once tire 

synchronization stations linking FK„ and SDs are merged into the synchronization station 

hnkmg queues FG/;4 and BD„, n = 1,2.

With the above observations in mind, the only distinct hybrid IK/RP pokeies are 

synchronized IK/IS (Q, r) pokeies (Figure 5) and independent IK/ES (Q, r) pokeies (Figure 

6). We will therefore focus on these pokeies only. Before proceeding to analyze them, 

however, let us make a few more observations on the hybrid IK/RP pokeies. The first 

observation is that the models of synchronized pokeies appear to be much more comphcated 

than tire models of independent pokeies, although a synchronized IK/ES (Q, r) pokey is 

identical to an independent IK/ES (Q, r) pokey, as was mentioned above. The second 

observation is that in a synchronized IK/IS (Q, r) pokey (Figure 5), although the actions of 

detaching a kanban and communicating demand are not directly coupled, they are indirectly 

coupled. This is because the communication of demand is coupled with the placement of 

orders, and the placement of orders is synchronized with the trajectory of installation kanbans. 

This means that the communication of demands from a stage n to the previous upstream stage 

>i-i can be blocked due to the lack of free stage-» kanbans in queue FK„. Based on these two 

observations, we conclude that independent IK/RP policies appear to offer a simpler, more natural and 

probably more cost effective way of combining IK poliaes with RP polities than synchronised IK/RP policies.
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2.4.1. Behavior and properties of synchronized IK/IS (Q, r) policies

Let us first consider synchronized IK/IS (Q, r) policies. We assume that the initial 

installation stock FG inventory positions in a synchronized IK/IS (Q, r) policy satisfy 

(R'n -1) · Qn < i°n < R‘n ■ Qn, for all n, as was the case in IS (Q, r) policies, where R‘n are integers

such that 1 < R‘n < K‘n. Moreover, we assume that i°n > Qn+1, otherwise, the system will come to 

a deadlock. Without loss of generality we also assume that in - ( R‘n -1) · Qn = kn ■ Qn+1, where kn 

is an integer such that 1 < kn < jn. This assumption guarantees that the inventory of stage n is 

at the reorder point exactly when ordering. It also guarantees that fn > Qn+l, so that the system 

will never come to a deadlock. Similarly to IS (Q, r) policies, a synchronized IK/IS (Q, r) 

policy does not depend on the initial installations stock positions but only on parameters 0tl,

K and K .

A synchronized IK/IS (Q, r) policy is never nested in the sense that an IS (Q, r) policy is,

i.e. in the sense that when an order is placed at stage n, then orders must simultaneously be 

placed at all downstream stages as well (except when K‘n= oo, for all n, as we will see below).

A synchronized IK/IS (Q, r) policy includes IK and IS (Q, r) policies as special cases. 

Namely, a synchronized IK/IS (Q, r) policy with K'n - R'n, for all n is equivalent to an IK 

policy. A synchronized IK/IS (Q, r) policy with K‘n = oo, for all n is equivalent to an IS (Q, r) 

policy with installation stock reorder points equal to r' = (R'n — 1 )-Qn, and is therefore nested. 

Any other synchronized IK/IS (Q, r) policy with R‘n < K'n < oo is never nested.

In order to determine the impact of the choice of system parameters on the departure 

times of parts from various points in the system, we will describe in detail the dynamics of 

kanban and material flow in the synchronized IK/IS (Ο, ή policy. The dynamics of the 

synchronized IK/IS [Q, r) policy, can be described with recursive evolution equations that 

utilize operators “ + ” and “ max ” only. These equations relate the timing of a particular event 

in the IK/IS (£?, ή policy to the timings of events that must precede it. To elaborate, let: 

D(,_\ ,)„■> i = !’·■·>N + 1,: be the departure time of the «th part from the SS) , synchronization

station to MPj, and simultaneously the departure time of the of the corresponding kanban 

transfer to FK;_V
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Dfn, i = 1,...,7V + 1,: be the departure time of the »th part and kanban from the MP;., to FG,,

D^_1(.jn, ί = Ι,.,.,Ν +1,: be the departure time of the #th kanban of stage i from the SSi 

synchronization station to BD„ and the departure time of the corresponding information to 

upstream stages from the SS* synchronization station to SD, r

Dcl : be the arrival time of the nth customer demand to the system. These times are shown in 

Figure 7:

Proposition 1. In a synchronised IK/ IS (Q, r) policy in which MPt consists of a single machine, the timings 

of events are related by the following evolution equations

DL =σ,,η+ ( Dln-X * ) d' = 1, -, N

f

Dr , , = max

Dr . , = max

Dc
i-l, <3, -5,_i

DG’ U(i-U),n ,i = Ι,.,.,Ν + \

Dc ,DG'

\

n
a βι-(κ,-Ξ,) (;,!+1), n

a a
4
,i = 2,...,N + 1

(14)

(15)

(16)

where, by convention, the maximum over an empty set is —°o and DGN+l N+2^ n=Dd,n

Proof. Equation (14) can be explained in a similar way as Equation (17) in the EKCS in 

Dallery’s and Liberopoulos (2000). Equations (15) and (16) can be explained in a similar way as 

equation (18) in the EKCS in Dallery’s and Liberopoulos (2000).
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The symbolism \~]q, has to do with the batching of parts. Equation (3) is recursive in that it

expresses D?iX a n in terms of D Expanding this recursion, starting from i=N+1,

yields:

D,. , = max
(
D , max Dc

Q, J=i j QrKj
,i = 2,...,N + 1 (17)

Substimting D?t_x from Equation (17) into Equation (15), yields

D, . a = maxi HA" D
d.

( '
N

,dg ,max Dg
n Qi 1-1, n β-Si-i j=i j, n Qi-KiQi Qi Qi 7)

,i - 2,.,.,Ν + 1, (18)

so we have the following final evolution equations for a synchronized IK/IS (Q, r) policy:

A”=<r,.„+max(D“.„D°,0,),i = 1.... N

D, . a = max D r
d.

( Λ '
N

- - ,DG ,max Dgr
n

Qi i—l.
n Qi-s,., i=i i.

n Qi-Ki~Qi oi Qi J J
,i = 2,...,N + 1

(19)

A very interesting observation is that the evolution equations (19) of a synchronized IK/IS (Q, 

r) policy has the same structure with the evolution equations of an Generalized Kanban 

Control System (GKCS), with batch size equal to one, that are presented by Dallery and 

Liberopoulos (2000). The only one difference is the term n that appears as n in the evolution

equations of the GKCS, while it appears as tL q. in the synchronized IK/IS (Q, r). The

explanation is that in the synchronized IK/IS (Q, r) policy parts must be grouped before 

proceeding, while in the GKCS, they don’t have to.

Consequently all the properties that stand for the GKCS, stands for the synchronized

IK/IS (Q, r) policy as well, with the only difference that the term n changes to
Qi Qi-
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2.4.2. Behavior and properties of independent IK/ES (Q, r) policies

A similar analysis can be carried out on independent IK/ES (Q, r) policies. We assume that 

in an independent IK/ES (Q, r) policy the initial echelon stock FG inventory positions satisfy

(R'n -1) · Qn < I® < Ren ■ Qn, for all n, as is the case in an ES (Q, r) policy, where Ren are integers 

such that K ■ Qn - K+l ■ Qn+X < K‘n · Qn, or Ren · jn - Ren+X < K‘n · jn by (7), for » = 1, 2, ..., N-i, 

and ReN < K‘N .

Unlike synchronized IK/IS (Q, r) policies, independent IK/ES (Q, r) policies generally 

depend on the initial echelon stock positions Γη as well as on the parameters 0a, Ken and R'n . 

An independent IK/ES (Q, r) policy may be nested in the sense that an ES (Q, r) policy may 

be nested, i.e. in the sense that when an order is placed at stage n, then orders must 

simultaneously be placed at all downstream stages as well. The condition for this to happen is 

exactly the same as in an ES (Q, r) policies and is given by expression (10), where 

r‘ = (R'n — 1) · Qn. If this condition holds, the nested independent IK/ES (Q, r) policy can be 

replaced by an equivalent independent IK/IS (Q, r) policy, just as an ES (Q, r) policy can be 

replaced by an equivalent IS (Q, r) policy. The resulting nested independent IK/IS (Q, r) 

policy does not depend on the initial installation stock positions and therefore on the initial 

echelon stock positions.

A nested synchronized (or equivalendy independent) IK/ES (Q, r) policy, on the other 

hand, can not be replaced by an equivalent synchronized IK/IS (Q, r) policy, because as was 

already mentioned above, a synchronized IK/IS (Q, r) policy is never nested.

An independent IK/ES (Q, r) policy includes IK and ES (Q, r) policies as special cases. 

Namely, an independent IK/ES (Q, r) policy with K'n ■ Qn = Ren ■ Qn - Ren+X ■ Qn+l, or

K'n' jn = R'n ■ jn ~K+\ 00 > f°r n ~ ti 2, ..., N-1, and K‘N = ReN, is equivalent to an IK

policy. An independent IK/ES (Q, r) policy with K‘n— co at every stage n, is equivalent to an 

ES (Q, r) policy with echelon stock reorder points equal to r‘ = (R" — 1) · Qn .

The dynamics of the independent IK/ES (Q, r) policy, can be described, as in the case of 

the synchronized IK/IS (Q, ή policy, by recursive evolution equations. These equations relate 

the timing of a particular event in the IK/ES (Q, ή policy to the timings of events that must
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precede it. To elaborate, let:

D( _1.) n, i = + 1,: be the departure time of the «th part from the SS), synchronization

station to MP„ and simultaneously the departure time of the of the corresponding kanban 

transfer to FKjd.

Din, i = 1,N +1,: be the departure time of the »th part and kanban from the MP;_, into FG,, 

ι-I,...,N

Dd n ·. be the arrival time of the //th customer demand to the system. These times are shown in 

Figure 8:

Figure 8: Timing of events in an independent IK/ES (Q, r) policy

Proposition 2. In a independent IK/ ES (Q, r) policy in which MP; consists of a single machine, the timings 

of events are related hy the following evolution equations

D,.n=(J,n+ maX (Α,η-Ι’^ϊ-Ι,Ο,η)’1' 1’·"’ N

D, max

(

D ,D ,D

λ

d. n Qi (v+1), n QipKj-Si) i-l, n Qt-Si-1
K Qi Qi Qi J

,i = 2,...,N + 1

(20)

(21)

Proof. Equation (20) can be explained in a similar way as Equation (17) in the EKCS in 

Dallery’s and Liberopoulos (2000)]. Equation (21) can be explained in a similar way as equation 

(18) in the EKCS in Dallery’s and Liberopoulos (2000).

The symbolism

it expresses M .j, 

yields:

Qi has to do with the batching of parts. Equation (21) is recursive in that 

in terms of D^jMy. Expanding this recursion, starting from z—NT/,
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D, . * = maxi (‘-I.·)-" D r i ,D
d. Q, i-1,

N
,max D r

a α-νΣΚ-Ο
>,/ = 2,...,N + 1, (22)

so we have the following final evolution equations for an independent IK/ES (Q, r) policy:

υ,,,=σ,.η + ™ajc(Din_vD{._u]}),i=\,...,N

r N
f \

max - D ,D ,max D j

+A<NII

d.
n

Q: i-l. n Qi-Vi j=i j.
n

Q,-SrUKm-Sm)
Qi Qi \ ~Qi

(23)

As in the case of the synchronized IK/IS (Q, r) pohey, the independent IK/ES (Q, r) policy 

has the same structure with the evolution equations of an Extended Kanban Control System ( 

EKCS ), with batch size equal to one, that are presented by Dallery and Liberopoulos (2000). 

The only one difference is the term n that appears as n m the evolution equations of the EKCS,

while it appears as n
~Qi

q, in the independent IK/ES (Q, r) policy. The explanation is that in the

independent IK/ES (Q, r) pohey parts must be grouped before proceeding, while in the 

EKCS, they don’t have to.

The above evolution equations imply property 1:

Property 1: Consider the independent IK/ES (Q, ή polity, with parameters Si,Ki in place of St , K , 

i=1,2...N and let Dt n,i — 1,2...N, and Z/M ^n,i = 1,2...A + \,n = 1,2·.. , denote the corresponding 

event times. Then the following hold.

m

K/>K,, for some le{l,...,N}, K = K, for alii 6 {l,...,N}-{/} ,Si =3), for alii e {l,...,N}-{/},

then

D(. , .,<£>

i = 1,··

ι = 1 ,...,N + 1, n = 1,2,... 

■,N,n = 1,2,...

(ii)If

S/>S/, for some le{l,...,N}, S; = A, for alii e {ΐ,,.,,Ν} -{/} ,Kt =Ki, for alii e |l,...,N}-{/},
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then

Ό,.,λ <D, ,λ , i = + = 1,2,..

D < D , i - l,...,N,n = 1,2,...

D,...s <D. , = 1,...,/,» = 1,2...('-CO.* (;-1,i>+(L-h)

D <D , = 1, ...,/,« = 1,2...

Part (i) of property 1 states that if the number of kanbans in stage 1 is increased from 

fC, to Kl, the departure time of the nth part from all the synchronization stations and 

manufacturing processes in the independent IK/ES (Q, r) policy will not increase but may 

decrease. Part (ii) of property 1 states that if the base stock in stage 1 is increased from 

S/ to S,, the departure time of the nth part from those synchronization stations and

manufacturing processes that are downstream of stage 1 will not increase but may decrease. 

Moreover, the departure time of the nth part from those synchronization stations and 

manufacturing processes that are upstream of stage 1 (including stage 1) will not increase but

may decrease with respect to the departure time of the n + iySl — S^th part from the same 

synchronization stations and manufacturing processes in the original system. To see why the 

latter is true, note that an increase in the base stock of stage 1 from Sl to Sl ,has the same effect

as that of having -T,j extra parts enter the system and receive processing all the way up to 

and including stage 1, before the first demand arrives to the system. Therefore, the departure of 

the nth part in the independent IK/ES (Q, r) policy with Sl from any point upstream of Jt_x l

corresponds to the departure of the n + (Sl — Sl ^jth p part in the independent IK/ES (Q, r) 

policy with S/ from the same point.

The evolution equations in Proposition 2 also clearly imply the following property:

Property 2:The departure times D/._, λ n,i = 1 +1 ,n = 1,2,... and Df „,i = 1 ,...,N,n = 1,2,... are

non-decreasing in σ, m,D, m and D0 m for any m > 1 and 1 e {1,...N}.

The above property states that if a processing times σι m, or a demand vector arrival time

Dj m ,or a raw part arrival time D0 m, is increased, the departure time of the nth part from all

the synchronization stations and manufacturing processes in the independent IK/ES (Q, r) 

policy will not decrease but may increase.
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2.4.3. Comparison between synchronized IK/IS and independent IK/ES (Q, r) 

policies

Based on our discussions above, there are two limiting cases where a synchronized IK/IS 

(Q, r) policy is equivalent to an IK and to an IS (Q, r) policy, respectively. There are also two 

other limiting cases where an independent IK/ES (Q, r) policy is equivalent to an IK and to an 

ES (Q, r) policy, respectively. In fact, these are the only cases where a synchronized IK/IS (Q, 

r) policy and an independent IK/ES (Q, r) policy are equivalent to each other. In any other 

case, a synchronized IK/IS (Q, r) policy and an independent IK/ES (Q, r) policy are never 

equivalent to each other. This means that if we take an IS (Q, r) policy and an equivalent 

nested ES (Q, r) policy, superimpose on each policy the same IK policy and synchronize the 

trajectory of installation kanbans with the placement of orders, the resulting synchronized 

IK/IS (Q, r) policy and synchronized IK/ES (Q, r) policy (which is equivalent to an 

independent IK/ES (Q, r) policy) will not be equivalent to each other. For this reason, we can 

not say with certainty whether an independent IK/ES (Q, r) policy is superior to a 

synchronized IK/IS (Q, r) policy or vice versa. It would not be surprising, however, if in many 

cases an independent IK/ES (Q, r) policy turned out to perform better than a synchronized 

IK/IS (Q, r) policy because the former policy uses global information, whereas the latter policy 

uses only local information. Moreover, as we observed above, synchronized IK/IS (Q, r) 

policies have the drawback that they appear to be more complicated than independent IKES 

(Q, r) policies and most importantly that they cause an indirect coupling between the actions of 

detaching a kanban and communicating demand. This coupling may cause delays in 

communicating demand information.

The notion of a synchronized IK/IS (Q, r) policy is not new. Buzacott (1989) introduced a 

system for coordinating multi-stage production-inventory systems called production authorisation 

card (PAC) system or generalised kanban control system (GKCS) (see also Buzacott and 

Shanthikumar, 1993). A similar system was independently developed by Zipkin (1989) (see also 

Zipkin, 2000). The PAC system depends on three parameters per stage: The initial installation 

stock position, the number of installation kanbans, and the order lot size. Buzacott and 

Shanthikumar (1993) mention a fourth parameter, which is a time delay when placing an order. 

In this Chapter we will assume that the delay parameter is zero, but we deal with the case of 

advance demand information in the next chapter.

Buzacott and Shanthikumar (1993) demonstrate how through the appropriate choice of
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parameters the PAC system can be specialized into a wide variety of classical coordination 

approaches, such as kanban, base stock, etc. Buzacott (1989) divided the PAC system into two 

cases. In the first case, the number of installation kanbans at each stage is greater than or equal 

to the initial installation stock position. In the second case, the number of installation kanbans 

at each stage is smaller than the initial installation stock position. He referred to the first 

system as backorderd kanban system and to the second case as reserve stock kanban system. 

Liberopoulos and Dallery (2000) argued that the backordered kanban system is indeed a new 

stage coordination policy, whereas the reserve stock kanban system is a classical IK policy, i.e. 

a policy that limits the WIP + FG inventory at every stage, with an additional constraint on 

WIP inventory alone. For this reason, they identified the PAC system with the backordered 

kanban system only. We will follow the same approach here so that henceforth when we refer 

to the PAC system we will mean only the backordered kanban system. With this in mind, a 

PAC system (i.e. a backordered kanban system) is equivalent to a synchronized IK/IS (Q, r) 

policy, where the queues termed “store,” “requisition tags,” “process tags” and “order tags” in 

Buzacott and Shanthikumar (1993) are related to queues FG„, BD„, FK„, and SD;; in Figure 5.

The notion of an independent IK/EK (Q, r) policy is not new, either. The idea of 

combining a local information kanban system and a global information reorder point policy 

was introduced by Dallery and Liberopoulos (2000). They defined a control system that 

combines a base stock policy and a kanban policy in the case of unit customer demand and 

unit lot sizes and called it extended kanban control system (EKCS). An EKCS is a special case of a 

independent IK/ES (Q, r) policy with unit customer demand and unit lot sizes.

A very close visual comparison between the queueing network model of the independent 

IK/ES (Q, r) policy shown in Figure 6 and the queueing network model of the synchronized 

IK/IS (Q, r) policy shown in Figure 5 may lead to the conjecture that the independent IK/ES 

(Q, r) policy responds faster to customer demands than does the synchronized IK/IS (Q, r) 

policy, given that the two systems have the same parameters. This is because in the 

independent IK/ES (Q, r) policy a demand d. is transferred upstream to D; immediately upon 

its arrival to the system, whereas in the synchronized IK/IS (Q, r) policy a demand d, is 

transferred from DN to DA, in N — i +1 steps after the transfer of a kanban aN_, from AN_, into 

DAn_, ,..., a kanban a, from A; into DA;.

The comparison between the two systems is of course valid only for parameter values that 

satisfy inequality: K: > A For parameter values that do not satisfy this inequality the
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independent IK/ES (Q, r) policy is not defined. It should be noted however that a 

synchronized IK/IS (Q, r) policy with Si > Ki, i=l,...,N, becomes a very restrictive system 

known as the "Local Control" system, in which a finished part p, is released into MPi+1 

depending only on the availability of space in MPi+1 and Pi+1.

What is a little puzzling, when comparing the independent IK/ES (Q, r) policy and the 

synchronized IK/IS (Q, r) policy, is that in the two special cases, when K,=co and when K, = 

S,; i=l,...,N, both the independent IK/ES (Q, r) policy and the synchronized IK/IS (Q, r) 

policy are equivalent to the BSCS and the KCS, respectively, and are therefore equivalent to 

each other. This raises the question: what is the difference between the independent IK/ES 

(Q, r) policy and synchronized IK/IS (Q, r) policy. To answer this question we compare the 

evolution equations relating equivalent event times in the two systems.

To distinguish equivalent event times in the two systems, we denote by λ n the 

departure time of the nth pair from the synchronization station in

i = 1,...,N + 1, and by the departure time of the nth pair from MP,,

1=1,...,N in the independent IK/ES (Q, r) policy. The evolution equations relating 

D(t,,) „ and D'a are therefore given by Proposition 1, where and Djn are replaced

by D^_, ;.j n and Dfn respectively. Similarly, we denote by ^ n and Dfn the respective event 

times in the synchronized IK/IS (Q, r) policy, i.e., i=l,...,N+l, is the departure time

of the nth part p, from the top synchronization station in J;_,. and Dfn is the departure time 

of the nth pair (^(.,λ.) from MP,; i=l,...,N+l. In addition, in the synchronized IK/IS (Q, r) 

policy we de note by Ό?._χ n,i = 2+1, the departure time of the nth kanban ai4 from the

bottom synchronization station in }; i, i.e., the time of the nth arrival of a pair (di l, at_x) in 

DA, j and a vector dl 2 in D 2 (or no vector, if i=2). These times are shown in Figure 7.

Comparing the evolution equations of the independent IK/ES (Q, r) policy and the 

synchronized IK/IS (Q, r) policy, given be Propositions 1 and 2, respectively, leads to the 

following property.

Property 3. Consider two systems, the independent IK/ES (Q> r) policy and the synchronised IK/IS (Q, r) 

polity, having the same parameters Ki and Si i—1,...,N, the same sequence of service times,
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cr. ,i = 1,IV, n = 1,2,zzkz/ .razw sequence of customer demand and raw part arrival times, Dd n 

and D0 , n = 1,2,... respectively. Then, the following holds:

D/ . Λ < D?. . λ , I = ί,.,.,Ν + 1, n = 1,2, 

De <Dg , z = ί,.,.,Ν, n = 1,2,...,

The above property states that the departure time of the nth part pi4 from the 

synchronization station in Ji4>i in the independent IK/ES (Q, r) policy is smaller than the 

departure time of the nth part pl4 from the top synchronization station in Ji4ji in the 

synchronized IK/IS (Q, r) policy, given the same parameter values for the two systems. This 

means that demands are satisfied earlier in the independent IK/ES (Q, r) policy than in the 

synchronized IK/IS (Q, r) policy, but it does not necessarily also mean that the independent 

IK/ES (Q, r) policy has an overall better performance than the synchronized IK/IS (Q, r) 

policy, since inventory storage costs are not taken into account. In fact, the independent 

IK/ES (Q, r) policy is likely to incur higher inventory storage costs than does the synchronized 

IK/IS (Q, r) policy. This is because in the independent IK/ES (Q, r) policy the bound on the 

number of pairs (pt, at) in PA; is higher than the bound on the number of finished parts p; in 

P, in the synchronized IK/IS (Q, r) policy. Namely, in the independent IK/ES (Q, r) policy the 

number of pairs in PA, is bounded by K, (except in the last stage), whereas in the

synchronized IK/IS (q, r) policy, the number of finished parts p, in P, is bounded by S„ where 

V < K). The WIP in MP, as well as the WIP + number of finished parts in stage i, however, is 

bounded by K, in both systems.

From Property 1, which states that parts move faster through the independent IK/ES (Q, 

r) policy than through the synchronized IK/IS (q, r) policy when production is driven by 

demands, it can be shown that parts move faster through the independent IK/ES (Q, r) policy 

than through the synchronized IK/IS (q, r) policy in the presence of infinite demands too. 

This then leads to the following property.

Property 4 The production capacity of the independent IK/ES (Q, r) policy with parameters Ki and Si 
i=1,2,...,N, is higher than the production capacity of the synchronised IK/IS (q, r) policy with the same 
parameters Ki and Si.

Further comparison between the evolution equations of the two policies reveals the 

following property.
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Property 5. The independent IK/ES (Q> ή polity with Ki=Si or Kyco, i-1,2,.. ,,N-1 is equivalent to the 
synchronised IK/IS (q, r) policy with the same parameters Ki and Si.

Proof. When K,= S; or Kpoo, 1=1,2,.. .,N-1, the evolution equations of the independent IK/ES 

(Q, r) policy and of the synchronized IK/IS (q, r) policy are the same. The two systems are, 

therefore, equivalent.

Property 5 states that in order for the synchronized IK/IS (q, r) policy and the 

independent IK/ES (Q, r) policy to be equivalent to each other it suffices that Ki=Si or K,=co„ 

for all but the last stage, i.e., for i=l,2,.. ,,N-1. Of course, the independent IK/ES (Q, r) policy 

and the synchronized IK/IS (q, r) policy with KI=S1 or K^co, i= 1,2,...,N-1, are both 

equivalent to the KCS and BSCS, respectively. In the case where there is only one stage, this 

stage is the last stage. In this case the two systems are equivalent no matter what parameters K, 

and S, are. This is stated as the following property.

Property 6. The single-stage independent IK/ ES (Q, ή polity with parameters Kt and St is equivalent to the 
single-stage synchronised IK/IS (q, r) polity with the same parameters.

2.4.4. Hybrid echelon kanban/reorder point (Q, r) policies

A hybrid echelon kanban/reorderpoint (IK/RP) (Q, r) policy is a combination of an EK policy 

and an IS or an ES (Q, r) policy. In a hybrid EK/RP (Q, r) policy, echelon kanbans trace a 

loop within each stage and are detached from the FG output store of the last stage as in an EK 

policy. When an end item is consumed by a customer, N echelon kanbans (one for every stage) 

are detached from the item and become free. When an echelon kanban is detached from an 

end item in FG inventory it does not carry with it customer demand information, as in EK 

policies. Instead, demand is communicated according to the RP policy in place.

As in the case of hybrid IK/IS (Q, r) policies, we introduce two types of EK/RP (Q, r) 

policies: synchronised and independent. Their definitions are similar to the definitions of 

synchronized and independent IK/RP (Q, r) policies. Here again there are four hybrid EK/RP 

(Q, r) policies to consider: synchronized ΕΚ/IS (Q, r) and EK/ES (Q, r) policies and 

independent ΕΚ/IS (Q, r) and EK/ES (Q, r) policies. However only two of them are distinct, 

as is the case with IK/RP (Q, r) policies. The two distinct cases are synchronized ΕΚ/IS (Q, r) 

policies and independent EK/ES (Q, r) policies.

Queueing network model representations of a two-stage production-inventory system 

operating under a synchronized ΕΚ/IS (Q, r) policy and an independent EK/ES (Q, r) policy 

are shown in Figure 9 and Figure 10, respectively.
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Figure 9: Queueing network model representation of a two-stage production-inventory system 
operating under a synchronized EK/ IS (Q, r) policy.

parts to 
customers

customer
demands

Figure 10: Queueing network model representation of a two-stage production-inventory system 
operating under an independent EK/ES (Q, r) policy.

Most of our discussion on hybrid IK/RP (Q, r) policies can be extended to hybrid EK/RP 

(Q, r) policies, but we will present it in future work. Instead, we will only point out that as is 

the case with IK/RP (Q, r) policies, we can not say with certainty whether an independent 

EK/ES (Q, r) policy is superior to a synchronized ΕΚ/IS (Q, r) policy or vice versa, but that it 

would not be surprising if in many cases an independent EK/ES (Q, r) policy turned out to 

perform better than a synchronized EchelonKanban/InstallationStock (Q,r) policy.
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Chapter 3

Multi-Stage Production-Inventory Control Policies with Lot 

Sizing and Advance Demand Information (A.D.I)

3.1. Introduction

In order to profit by the existence of Advance Demand Information, we must modify our 

control policy in a way that makes use of the extra information that is available. In that 

direction we integrate the classic control policies that we have examined in previous sections, 

with delay or else production order release mechanisms. In the simple case (where A.D.I is not 

available), a production order is released at each demand arrival. In other words, the release 

mechanism is triggered by an actual demand. In the modified systems, a production order is 

released / units before the due-date of an order. In this case, production orders are triggered by 

information signals rather than by actual demand arrivals. It is important to note that the 

release lead time / is a parameter of the policy which has to be optimized. Finally, it has to be 

stressed that the release lead time is not unrestricted as it is constrained by the demand lead 

time. Namely, / has to be less than or equal to r .

The deliberate delay between placing and activating a replenishment order depends on the 

so-called installation and echelon planned lead times associated with each stage. These lead 

times are defined as follows. The installation planned lead time of stage n is denoted by lH and is a 

specified fixed control parameter that is usually related to the flow time of a typical part 

through the facility of the stage. The echelon planned lead time of a stage is denoted by Ln and is 

the sum of the installation planned lead times of the stage and all its downstream stages, i.e.,

Ln = fjk,n=l,2,...,N. (24)
k=n

With these definitions in mind, the time of activating a replenishment order at stage n is 

determined using an MRP-system logic by offsetting the due date of the demand that triggered 

the order by the stage echelon planned lead time, Ln. This means that the order is activated 

with no delay, if Ln > T, or with a delay equal to T - Ln with respect to the demand arrival
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time, if Ln <T . In other words, the delay in activating an order, denoted Ta, is given by

Tn = max[0,T - Ln\, n - 1,2, (25)

3.2. Installation and echelon stock (Q, r) policies with ADI

Two of the most common RPPs are installation stock (IS) and echelon stock (ES) (Q, r) 

policies. In this section we extend the definitions of IS and ES (Q, r) to include ADI.

3.2.1. Definition of installation and echelon stock (Q, r) policies with ADI

When a multi-stage production-inventory system is controlled by an IS or an ES (Q, r) 

policy with ADI, every stage is controlled by a (Q, r) rule based on its inventory position. This 

means that as soon as the inventory position of stage n falls at or below a reorder point rn, a 

replenishment order is placed for the least integer number of lot sizes Qn that raises the 

inventory position above rn. Once a replenishment order has been placed at stage n it becomes 

an outstanding demand that will be activated after a time delay T„, which is given by (25).

The difference between IS and ES (Q, r) policies with ADI lies in the definition of the 

inventory position. In an IS (Q, r) policy with ADI, the inventory position at stage n is defined 

as the installation stock at stage n, i.e., stock on hand (stage-/? FG) plus outstanding orders (stage- 

n WIP + BD + OD) minus backorders (stage-(»+l) BD + OD). In an ES (Q, r) policy with 

ADI, the inventory position at stage n is defined as the echelon stock at stage n, i.e., the sum of 

the installation stocks at stage n and all its downstream stages. In other words, the installation 

and echelon stock at stage n, which are denoted by in and respectively, are defined as

K = ODn+BD„ + WIP + FG„ - (OD„+1+BDn+1), » = 1, 2, ..., N, 

ln = OD„ +BD„ + Σ CWIP, + FG,) - (ODw+1 +BD„+1), » = 1, 2, ..., N,

(26)

(27)

and are related as follows:

Ιη=ΣΚ,η=1,2,...,Ν, (28)
k=n

K =In~ A+i, n = 1, 2, ..., NA, and iN = 1N . (29)

With the above definitions in mind, the decision to place an order at each stage is based on 

local information in an IS policy, and on global information in an ES policy. The parameters
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j2„ and rn are in general different for each stage. We make the common assumption that the 

order lot sizes satisfy:

Qn = h ' Qn+l » » = h 2> · · ·> N> and QN+1 = h (30)

for some positive integers jn. Assumption (30) is necessary if the rationing policy is to satisfy all 

or nothing of a production order, because then the installation stock at every stage should 

always consist of an integer number of downstream lot sizes (except for the last stage where 

the rationing policy allows the partial satisfaction of a customer order as long as stock is 

available). Besides simplifying material handling, the integer ratio constraint (30) also simplifies 

analysis significantly. The cost increase due to constraint (30) is likely to be insignificant due to 

the insensitivity of inventory costs to the choice of order quantities.

A queuing network model representation of a two-stage production-inventory system 

operating under an IS (Q, r) policy with ADI is shown in Figure 11.

parts to 
customers

customer
demands

Figure 11: Queuing network model representation of a two-stage production-inventory system 
operating under an IS (Q, r) policy with ADI.

The symbolism used in Figure 11 and all other similar figures that follow in the rest of the 

thesis is as follows. The ovals represent WIP facilities, and the queues followed by vertical bars 

represent synchronization stations. Queues are labeled according to their content, and their 

initial value is indicated inside parentheses. For example, the queue representing the FG output 

store of stage 1 is labeled FGj and its initial value is 1°. Every synchronization station has a 

marking on its side. This marking indicates either the lot size needed to activate the 

synchronization station, i.e., the minimum number of customers that must be present in each 

queue to activate the synchronization station, or the time delay before the synchronization 

station may be activated. In the second case, the synchronization station has a clock next to it.

To clarify matters, let us look at some examples. Queues FG, and BD2 are linked in a
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synchronization station marked with “j22·” This means than as soon as there are at least Q2 

parts in FG, and Qz demands in BD2, then exactly Q2 parts depart from FG, and are released 

into WIP2. At the same time, exactly Q2 backordered demands depart from BD2 and are 

discarded since they are satisfied. Another example is the synchronization station consisting of 

a single queue, SD,, which is marked with “Qr” This marking means that as soon as there are 

at least Qx demands in SD,, then exactly Qx demands depart from SD, and are placed into 

queue BDj. A final example is the synchronization station consisting of a single queue, OD,, 

which is marked with a clock followed by “T,.” This marking means that when an order enters 

queue OD, it stays there for exactly Γ, time units before it is activated, i.e., before it departs 

from OD, and enters into BD,.

The queuing network model representation of a two-stage production-inventory system

operating under an ES (Q, r) policy with ADI is shown in Figure 12.

parts to 
customers

customer
demands

Figure 12: Queuing network model representation of a two-stage production-inventory system 
operating under an ES (Q, r) policy with ADI.

The local information nature of IS (Q, r) policies with ADI and the global information 

nature of ES (Q, r) policies with ADI is reflected in the way customer demand information is 

communicated to all stages, as can be seen in Figure 11 and Figure 12, respectively. In an IS 

policy, customer demand information is communicated from a stage to its previous upstream 

stage only when an order is placed at the former stage. In an ES policy, on the other hand, a 

customer demand is communicated to all stages immediately upon its arrival to the system.

Notice that if the demand lead time T is equal to zero, i.e., if there is no ADI, then all the 

delays T„ are also equal to zero by (25). In this case, the models in Figure 11 and Figure 12 can 

be further simplified by merging queue OD„ into queue BD„, for «=1,2. Even if the demand 

lead time T is not equal to zero, however, i.e., if there is ADI, the models in Figure 11 and 

Figure 12 have exactly the same structure as the corresponding models with no ADI, once we
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view queues OD„ and BD„ as one combined queue with timer in it. This is an important 

observation, because many of the properties of IS and ES (Q, r) policies with no ADI 

developed in Axsater and Rosling (1993) and reinterpreted in Liberopoulos and Dallery (2002) 

carry over to the situation where there is ADI, as we will see next.

3.2.2. Behavior and properties of IS and ES (Q, r) policies with ADI

First, let us take a closer look at IS (Q, r) policies with ADI. We assume that the initial 

installation stock FG inventory positions in an IS (Q, r) policy with ADI satisfy 

r‘n < i° < r' + Qn for all n, where r' are the installation stock reorder points. These conditions 

will anyway be satisfied as soon as an order has been placed by every stage. The following 

property is evident by looking at Figure 11.

Property 7. An IS (Q> r) polity with ADI is always nested in the sense that when an order is placed at stage 

n, then orders must simultaneously be placed at all downstream stages as well.

Without loss of generality, we also assume that

i°n=r‘+kn-Qn+l,n= 1,2, (31)

where kH is an integer such that \<kn< jn. Assumption (31) guarantees that the inventory of 

stage n is at the reorder point exactly when placing an order. Under some fairly non-restrictive 

assumptions on the customer demand arrival process, it must happen at some time that just 

enough customer demands have arrived to the system so that the inventory position of stage N 

is at the reorder point and all stages place their orders simultaneously. This means that after 

ordering, all installation stock inventory positions will be at their maximum levels, i.e., 

in = r'n+Qn, n - 1,2, ..., N, irrespectively of the initial installation stock inventory positions. 

Moreover, if no customer demands arrive for some time, all FG buffers will end up at their 

maximum levels, i.e., at r'n + Qn, n = 1,2, ..., N, and all other queues will be empty. This state 

is regenerative in that it does not depend on the initial installation stock positions, and it 

implies the following property.

Property 8. The behavior of an IS (Q, r) polity does not depend on the initial installation stock positions i°n , 

but only on the echelon planned lead times Τη„ the reorder points rln and the reorder quantities Qn.
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Even though by Property 8 the behavior of an IS (Q, r) policy with ADI does not depend 

on the initial installation stock positions, the initial installation stock positions do play a role. 

Namely, the initial installation stock positions given by (31) determine the number of demands 

for stage-» FG that must arrive before a replenishment order of size Qn is placed at stage n. 

There are two extreme cases: one where kn - jn and another where kn- 1. If kn — the initial

installation stock positions are equal to their maximum levels, i.e., i° = r'n + jnQn+l = rn

this case, exactly Qa demands, i.e., jn lots of demands of size j2„+i, must arrive before a 

replenishment order of size Qn is placed at stage n. On the other hand, if kn — 1, the initial 

installation stock positions are equal to their minimum levels, i.e., i°n = r‘n + Qn+l. In this case, 

exactly one lot of demands of size j2,;+1 must arrive before a replenishment order of size 0n is 

placed at stage n. This is exactly how an MRP system with fixed order quantity as its lot sizing 

rule works in a continuous review setting, as is stated by the following property.

Property 9. If the flow time of every replenishment order though the 1P7P facility of stage n is constant and 

equal to ln, and kn - 1 so that i°n - r‘n + Qn+1 ,for η - 1, 2,..., N, the resulting IS (fifi ή policy with ADI 

behaves exactly like an MPR system with fixed order quantity as its lot siging rule.

Property 9 is an important observation because it states that an MRP system with fixed 

order quantity is equivalent to an IS (Q, r) policy with ADI.

If the rationing policy is to satisfy all or nothing of a production order, we must assume 

that not only does the integer constraint (30) hold, but also that r‘n is an integer multiple of 

j2„+„ for n = 1, 2,..., N-l, i.e. that r' = bnQn+l, where bH is a positive integer.

Finally, the following property concerns the relationship between IS and ES (Q, r) policies 

with ADI.

Property 10. An IS (Q, ή policy with ADI (with initial installation stock positions equal to their maximum 

level) can always be replaced by an equivalent ES (Q> t) policy with ADI with initial echelon stock positions

1° = ΣΓ-. ί = K+Q„,tt=1,2,...,N,

where ren are the echelon stock reorder points in the equivalent ES policy and are gyven by

r: = r + EL+I(r* +β*)’ N-1, and reN = r‘N
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A similar analysis can be performed for ES (Q, r) policies with ADI. Here again we assume 

that the initial echelon stock FG inventory positions in an ES (Q, r) policy with ADI satisfy 

+ Qn, for all n, where r‘ are the echelon stock reorder points. These conditions 

will anyway be satisfied as soon as an order has been placed at every stage. Unlike IS (Q, r) 

policies with ADI, ES (Q, r) policies with ADI generally depend on the initial echelon stock 

positions 7° as well as on the echelon planned lead times Ln, the echelon stock reorder points

r‘, and the reorder quantities Qn. Also, unlike IS (Q, r) policies with ADI, ES (Q, r) policies

with ADI are not always nested. If an ES (Q, r) policy with ADI is nested, however, then it can 

be replaced by an equivalent IS (Q, r) policy with ADI; otherwise, it can not. Axsater and 

Rosling (1993) give a necessary and sufficient condition for an ES (Q, r) policy to be nested 

when there is no ADI. The same condition holds when there is ADI. This condition is given 

by the following property.

PropertyllAn ES(Q, r) polity with ADI is nested if the initial installation stock inventory positions satisfy

= 7 7 =reG+l 'n + (*„-!)·&+\> 1,2, N-1, (32)

for some positive integers kH such that 1 < kn < jn. If condition (32) holds, the resulting nested ES polity can 

be replaced by an equivalent IS poliy with initial installation stock positions

i°n = I°n-C 1 = <+K-Qn+l> n— 1,2,..., N-1, and i°N = 7° ,

where r‘n are the reorder points in the equivalent IS poliy and are given by

r = r ■ Qn+1, n — 1,2,..., N-1, and r= reN

Clearly, if condition (32) holds, the resulting nested ES policy does not depend on the 

initial installation stock positions and therefore on the initial echelon stock positions. We end 

our discussion of IS and ES (Q, r) policies with ADI with some concluding remarks.

IS (Q, r) policies with ADI are nested ES (Q, r) policies with ADI and are therefore special 

cases of the letter policies. An important implication of the preceding analysis is that the 

behavior of an IS policy does not depend on the initial FG inventory positions. The behavior 

of an ES policy, on the other hand generally depends on the initial FG inventory positions, 

except when condition (32) holds. In the latter case the resulting ES policy is nested and can be
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replaced by an equivalent IS policy. In other words, IS policies with ADI depend on three 

parameters per stage, jL,;, rn and Qn, i.e. they have three degrees of freedom on the choice of 

parameters per stage, whereas ES policies generally depend on four parameters per stage, L„, rn, 

j2„, and 7°, i.e., they have four degrees of freedom per stage.

An MRP system with fixed order quantity as its lot sizing rule is equivalent to an IS (Q, r) 

policy with ADI. Given that an IS (Q, r) policy with ADI is a special case of an ES (Q, r) 

policy with ADI, this means that an MRP system is a special case of an ES (Q, r) policy with 

ADI. In a sense, an ES (Q, r) policy with ADI may be viewed as a broader definition of an 

MRP system. It appears that it is this definition of an MRP system that Asxater and Rosling 

(1994) invoke when they claim that any IS (Q, r) policy and any ES (Q, r) policy (with no ADI) 

can be duplicated by an MRP system (i.e., an ES (Q, r) policy with ADI).

Finally, in case of unit lot sizes, i.e., whenj9„ = 1, n = 1,2,.. ,,N+1, an IS (Q, r) policy with 

ADI is identical to an ES (Q, r) policy with ADI, and they are both equivalent to a base stock 

policy with a release time parameter (Karaesmen et al, 2002).

3.3. Installation and echelon kanban policies with A.D.I

The original kanban system developed at Toyota’s automobile production lines is the single 

technique most closely associated with JIT practices. The last two decades have seen a surge in 

the literature on kanban systems, but there seems to be no agreed upon definition of what a 

kanban system is (Liberopoulos and Dallery, 2000). Liberopoulos and Dallery (2002) used the 

notions of installation kanbans and echelon kanbans to define installation kanban and echelon 

kanban policies, respectively, in cases where there is no ADI. In both policies the placement a 

replenishment production order to the facility of each stage, triggered by the arrival of a 

customer demand, is initiated after the consumption of an end-item from FG inventory. In the 

case where there is ADI, since the consumption of an end-item from FG inventory is activated 

T time units after the arrival time of the demand, the demand lead time T is totally unexploited 

as far as the placement of the replenishment policy is concerned. Hence, by their nature, 

installation kanban and echelon kanban policies can not take advantage of ADI, and therefore 

there is not much to say about kanban policies with ADI. Nevertheless, in the rest of this 

section, we will recall some of the basic facts concerning kanban policies in cases where there 

is no ADI presented in Liberopoulos and Dallery (2002) because we will use them in a later 

section in our discussion of hybrid policies with ADI.
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3.3.1. Definition of installation and echelon kanban policies with A.D.I

In a multi-stage production-inventory system controlled by an installation kanban (IK) or an 

echelon kanban (EK) policy, every stage n has associated with it a finite number of authorization 

cards or kanbans. This number is equal to an integer multiple of the stage lot size Qn. A kanban 

may be either free or attached onto a part. A free stage-» kanban is used to signal a customer 

demand for one part at stage n. Kanbans, like parts, move in lots of size Qn. Specifically, when 

0„ free stage-» kanbans have accumulated at stage », an order of equal size, i.e., 0n, is placed at 

stage n. If Qn parts are available in stage-(»-l) FG inventory, the free kanbans are attached onto 

the parts and the combined lot, i.e., the Qn parts plus their kanbans, is released into the WIP 

facility of stage ». The kanbans remain attached to the parts until the combined lot reaches a 

certain final FG output store. When a part exits the FG output store, because it is consumed by 

the next downstream stage or by a customer (if the final FG output store is the output store of 

the last stage), the kanban that was attached to it is detached and becomes free. This free 

kanban is used once again to signal a customer demand for one part at stage n so that when Ou 

free kanbans have accumulated, an order of equal size is placed at stage n.

The difference between IK and EK policies lies in the definition of the final FG output 

store, i.e., the point after which kanbans are detached from parts. In an IK policy, the final FG 

output store at stage n is the FG output store of stage n. In an EK policy, it is the FG output 

store of the last stage, i.e., stage N. This means that in an IK policy, a stage-» kanban follows a 

part through the WIP facility and the FG output store of stage » and is detached from the part 

after the part leaves the FG output store of stage ». In an EK policy, on the other hand, a 

stage-» kanban follows a part through the WIP facilities and FG output stores of stages n 

through N and is detached from the part after the part leaves the FG output store of stage N. 

This implies that in an IK policy, the decision to place an order at each stage is based on local 

information, whereas in an EK policy it is based on global information from all downstream 

stages. The kanbans used in IK and EK policies are referred to as installation kanbans and echelon 

kanbans, respectively. Note that in an IK policy, every part in the WIP facility or FG output 

buffer at stage » has attached onto it a stage-» installation kanban. In an EK policy, on the 

other hand, every part in the WIP facility or FG output buffer at stage » has attached onto it 

one echelon kanban from each of stages 1 through ». This means that in an EK policy, when 

an end item is consumed by a customer, N echelon kanbans are detached from the part and 

become free.
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The above definition of IK policies is closely related to most of the definitions of kanban 

systems encountered in the literature. The only difference between this definition and most 

other definitions is that in this definition we assume that each kanban is attached onto a single 

part, whereas in most other definitions it is assumed that each kanban is attached onto a 

container that carries an entire lot of parts. This difference, however, has no effect on the 

behavior of the policy, since in both definitions a replenishment order for a new lot of j2„ parts 

is placed at stage n, when an entire lot of j2„ parts in FG inventory has been consumed. The 

reason for which we assume that each kanban is attached onto a single part rather than on a lot 

of parts is because it helps us better accommodate the definition of EK policies.

The original queuing network model representations of a two-stage production-inventory 

system operating under an IK and an EK policy are shown in Figure 13 and Figure 14 

respectively.

raw
parts

Figure 13: Original queuing network model representation of a two-stage production-inventory 
system operating under an IK policy.

Figure 14: Original queuing network model representation of a two-stage production-inventory 
system operating under an EK policy.

The models of Figure 13 and Figure 14 can be further simplified by merging queue SD„ 

into queue BD„, for n — 1,2. The simplified models are shown in Figure 15 and Figure 4 16, 

respectively.
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Figure 15: Simplified queuing network model representation of a two-stage production- 
inventory system operating under an IK policy.

Figure 16: Simplified queuing network model representation of a two-stage production- 
inventory system operating under an EK policy.

Next, we discuss IK policies in some more detail.

3.3.2. Behavior and properties of installation kanban policies with A.D.I

Axsater and Rosling (1993) view IK policies (they call them ‘original kanban’ policies) as 

being inherently IS (Q, r) policies, where a) backorders are not subtracted from the definition 

of the installation stock inventory position, and the reorder point at stage n is defined as 

r' = (K'n -1) · Qn, where K‘n is an integer such that K'n > 1 and K‘n ■ Qn is the number of 

installation kanbans at stage n, or b) the inventory position is defined exactly as in IS policies, 

and the reorder point is occasionally decreased (when there are backorders). It is important to 

note that in an IK policy the reorder point r( is an integer multiple of the stage lot size Qn, 

whereas in an IS (Q, r) policy it need not be.

We assume that the initial installation stock FG inventory positions in an IK policy satisfy 

(K‘n -1 )-Qn < i°n < K'n -Qn, for all n, as was the case in an IS (Q, r) policy. Without loss of 

generality we also assume that — (K'n — 1 )-Qn—kn- Qn+1, where kn is an integer such that

\ < kn < jn. This assumption guarantees that the inventory of stage n is at the reorder point 

exactly when ordering. It also guarantees that > Qn+], so that the system will never come to a
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deadlock. Under some fairly non-restrictive assumptions on the customer demand arrival 

process, it must happen at some time that just enough customer demands have arrived to the 

system so that an order is placed at stage 1. Suppose that it also happens that no additional 

customer demands arrive for some time. Then, all WIP facilities will be cleared out of parts 

and all installation stock inventory positions will be at their maximum level. Therefore, without 

loss of generality, we may assume that the initial installation stock positions are equal to their 

maximum level, i.e., in = K‘n-Qn. In this case all the initial SD positions will be zero. This 

means that an IK policy does not depend on the initial installation stock positions but only on 

the reorder quantities Qn and the integers K‘n , which together with the QK define the reorder

points .

Axsater and Rosltng (1993) conclude that IK policies are inherently IS (Q, r) policies with 

some limitations and are therefore inferior to IS (Q, r) policies, although in a more recent 

paper they recognize that this conjecture is not always correct (Axsater and Rosling, 1999). In 

our view there is a fundamental difference between IS (Q, r) policies and IK policies. In an IK 

policy, demand is communicated at a stage only when FG inventory is consumed by the next 

downstream stage or by a customer. In an IS (Q, r) policy, on the other hand, demand is 

communicated at a stage irrespectively of whether FG inventory is consumed or not. This 

difference is quite evident when one compares Figure 3 to Figure 1.

A consequence of this difference is that an IK policy can not take advantage of ADI, as 

was mentioned earlier. Another consequence is that an IK policy is never nested in the sense 

that an IS (Q, r) policy is. A third consequence of the difference between IK and IS (Q, r) 

policies is that in an IK policy, the WIP + FG inventory at every stage is always bounded by 

the number of installation kanbans. In an IS (Q, r) policy, on the other hand, although the FG 

inventory at every stage is bounded by the initial FG inventory position, the WIP inventory is 

unbounded.

3.3.3. Disadvantages of installation and echelon kanban policies with A.D.I

Liberopoulos and Dallery (2002) mention that an important advantage of kanban policies 

over their reorder point counterpart policies is that the former policies impose an upper bound 

on the WIP + FG inventory. This advantage implies inventory holding cost savings. One of 

the disadvantages of kanban policies, however, is that they do not communicate customer
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demand information to all upstream stages as quickly as their corresponding RPPs. This is 

because in kanban policies customer demand information is communicated only when a lot of 

kanbans is detached, and kanbans are detached only when FG parts are consumed. This 

disadvantage has a direct impact on customer service since it implies longer customer response 

times, particularly if customer demand is highly variable. It also implies that the capacity of the 

system depends on the number of kanbans. Another disadvantage of kanban policies is that 

kanban policies can not exploit ADI, as was mentioned earlier.

One way to overcome these disadvantages and increase customer service and system 

capacity would be to uncouple a) the actions of detaching a kanban and communicating 

demand information and b) the initial FG inventory and reorder point from the number of 

kanbans at every stage. This approach can be implemented by combining an IK or an EK 

policy with an IS or an ES (Q, r) policy with ADI to form a more sophisticated hybrid policy. 

In the rest of this thesis we will discuss combinations IK policies with IS or ES (Q, r) policies 

with ADI.

3.4. Hybrid Installation Kanban/Reorder Point (Q, r) policies with ADI

A hybrid installation kanban/ reorder point (IK/RP) (Q, r) policy with ADI is a combination of 

an IK policy with an IS or an ES (Q, r) policy with ADI. In a hybrid IK/RP (Q, r) policy with 

ADI, installation kanbans trace a loop within each stage and are detached from the FG output 

store of the stage as in an IK policy. Flowever, when an installation kanban is detached from a 

part in FG inventory, it does not carry with it customer demand information, as in an IK 

policy. Instead, demand is communicated according to the RPP with ADI in place

3.4.1. Definition of hybrid IK/IS nd IK/ES (Q, r) policies with ADI

We differentiate between the following types of IK/RP (Q, r) policies with ADI: 

independent, synchronised & Delay Before Synchronisation (DBS) and synchronised & Delay Λ/ter 

Synchronisation (DAS).

In both synchronized and independent IK/RP (Q, r) policies with ADI, the actions of 

detaching a kanban and communicating demand are uncoupled. Moreover, in both cases, the 

initial FG inventory and the reorder point are not determined by the number of kanbans, as is 

the case in IK policies. Finally, in both cases, customer demands are communicated according 

to the RPP in place. The difference between the two cases is that in a synchronized IK/RP (Q,
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r) policy with ADI, when a stage-/? installation kanban is detached from a part in stage-» FG 

inventory, it is used to authorise the placement of a replenishment order for one part at stage n. In 

an independent IK/RP (Q, r) policy with ADI, on the other hand, when a stage-» installation 

kanban is detached from a part in stage-» FG inventory, it is used to authorise the release of a 

replenishment order for one part at stage n (the difference between the placement and the 

release of an order was clarified in previous section). In other words, in a synchroni2ed IK/RP 

(Q, r) policy with ADI, the placement of orders is synchronized with the trajectory of 

installation kanbans, whereas in an independent IK/RP (Q, r) policy with ADI the placement 

of orders is independent of the trajectory of installation kanbans. In both synchronized and 

independent IK/RP (Q, r) policies with ADI, the decision to authorize the placement or 

release of an order at each stage is based on local information, since it depends on the 

availability of installation kanbans. The decision to place an order at each stage, on the other 

hand, is based on local information, if the RPP in place is an IS (Q, r) policy with ADI, and on 

global information, if the RPP is an ES (Q, r) policy with ADI.

Especially for the case of synchronised policies, arises another matter; where to place the 

delay mechanisms. Before or after the synchronization of Kanban and order information;

With the above definitions in mind, there are six hybrid IK/RP (Q, r) policies with ADI to 

consider:

1. Independent IK/ES (Q, r) policies with ADI

2. Synchronized DBS IK/ES (Q, r) policies with ADI

3. Synchronized DAS IK/ES (Q, r) policies with ADI

4. Independent IK/IS (Q, r) policies with ADI

5. Synchronized DAS IK/IS (Q, r) policies with ADI

6. Synchronized DBS IK/IS (Q, r) policies with ADI 

The only really distinct hybrid IK/RP policies are:

1. Independent IK/ES (Q, r) policies with ADI

2. Synchronized DAS IK/ES (Q, r) policies with ADI

3. Synchronized DAS IK/IS (Q, r) policies with ADI

This is because 1) an independent IK/IS (Q, r) policy with ADI is equivalent to a nested 

independent IK/ES (Q, r) policy with ADI and therefore a special case of the latter policy, and 

2) a synchronized DBS IK/ES (Q, r) policy with ADI is identical to an independent IK/ES
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(Q, r) policy with ADI and 3) a synchronized DBS IK/IS (Q, r) policy with ADI is identical to 

a synchronized DBS IK/ES (Q, r) policy with ADI which is identical to an independent 

IK/ES (Q, r) policy with ADI. We will therefore focus out attention only on synchronized 

DAS IK/IS (Q, r) policies with ADI, independent IK/ES (Q, r) policies with ADI and 

Synchronized DAS IK/ES (Q, r) policies with ADI.

3.4.2. Behavior and properties of Syn/zed DAS IK/IS (Q, r) policies with ADI

Queuing network model representations of a two-stage production-inventory system 

operating under a Synchronized DAS Installation Kanban/Installation Stock (Q, r) policies 

with ADI is shown in Figure 17:

Figure 17: Queuing network model representation of a two-stage production-inventory system 
operating under a synchronized DAS IK/IS (Q, r) policy with ADI.

We assume that the initial installation stock FG inventory positions in a synchronized DAS 

IK/IS (Q, r) policy with ADI satisfy (R‘n -1) · Qn < i°n < R'n ■ Qn, for all n, as was the case in IS

(Q, r) policies with ADI, where R‘n are integers such that 1 < R‘n < K'n. Without loss of 

generality, we also assume that i°n - (R‘n -1) · Qn = kn ■ Qn+1, where kn is an integer such that 

1 - - Jn ■ This assumption guarantees that the inventory of stage n is at the reorder point

exactly when ordering. It also guarantees that i°n > Qn+l, so that the system will never come to a 

deadlock. Similarly to our analysis of IS (Q, r) policies with ADI, under some fairly non- 

restrictive assumptions on the customer demand arrival process, we may assume that the initial 

installation stock positions are equal to their maximum level, i.e., i°n = R'n ■ Qn. In this case, all 

the initial SD positions will be zero. This means that a synchronized DAS IK/IS (Q, r) policy 

with ADI does not depend on the initial installations stock positions but only on parameters 

L„,Q„,K‘n, and*;.
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A synchronized DAS IK/IS (Q, r) policy with ADI is never nested in the sense that an IS 

(Q, r) policy with ADI is, i.e., in the sense that when an order is placed at stage », then orders 

must simultaneously be placed at all downstream stages as well (except when K'n=<x>, for all n, 

as we will see below).

A synchronized DAS IK/IS (Q, r) policy with ADI includes IK policies and IS (Q, r) 

policies with ADI as special cases. Specifically, a synchronized DAS IK/IS (Q, r) policy with 

ADI with K‘n = R‘n, for all n is equivalent to an IK policy, i.e., a policy which does not exploit 

ADI, as was mentioned earlier. A synchronized DAS IK/IS (Q, r) policy with ADI with 

K'n = oo, for all n, is equivalent to an IS (Q, r) policy with ADI (and hence, an MRP system) 

with installation stock reorder points equal to r'n = (R‘n — 1 )mQ„, and is therefore nested. Any 

other synchronized DAS IK/IS (Q, r) policy with ADI with R'n < K‘n < co is never nested, 

imposes an upper bound on the WIP + FG inventory, while exploiting ADI for better 

replenishment control; however, it does not take full advantage of ADI, since the 

communication of demands from a stage n to the previous upstream stage η-1 may be blocked 

due to the lack of free stage-» kanbans in queue FK,;.

The dynamics of kanban and material flow in the synchronized DAS IK/IS (Q, r) policy 

with ADI, is essential in order to determine the impact of the choice of system parameters on 

the departure times of parts from various points in the system. The dynamics of the 

independent IK/ES (Q, ή policy, can be described by recursive evolution equations that utilize 

operators “ + ” and “ max ” only. These equations relate the timing of a particular event in the 

policy to the timings of events that must precede it.

The timing of events in a syn/zed DAS IK/IS (Q, r) policy with ADI is shown in Figure 18:
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The evolution equations of the above policy are the following:

Di,n=σ,η + max (, D{i_u)n j,i = 1,..., N

D, ... ■ max ('-i
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As in we see the above equation is recursive in that it expresses D,. χ.. n in terms of

D
(ί,ί-Ηΐ), Q,

. The expansion of this recursive equation, unfortunately doesn’t lead as in

compact non-recursive form. This is because the timing of events in the synchronized DAS 

IK/IS (Q, r) policy with ADI, is much too complicated. This inevitably leads to the conclusion 

that synchronized DAS IK/IS (Q, r) policy with ADI, is a very complex policy and hence 

difficult to implement.

3.4.3. Behavior and properties of Independent IK/ES (Q, r) policies with ADI

Queuing network model representations of a two-stage production-inventory system 

operating under a independent Installation Kanban/Echelon Stock (Q, r) policies with ADI is 

shown in Figure 19:

operating under an independent IK/ES ((?,/) policy with ADI.
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A similar analysis as in the case of a synchronized DAS IK/IS (Q, r) policy with ADI can 

be carried out on independent IK/ES (Q, r) policies with ADI. We assume that in an 

independent IK/ES (Q, r) policy with ADI the initial echelon stock FG inventory positions 

satisfy (Ren — 1) · Qn < 7° < 7?/ · Qn, for all n, as is the case in an ES (Q, r) policy, where Ren are 

integers such that R‘ ■ Qn - Ren+l ■ Qn+i < K‘n ■ Qn, or Ren ■ jn - 7?‘+l < K'n · jn, for n = 1, 2, ..N- 

1, and ReN<K'N.

A very important issue is to describe in detail the dynamics of kanban and material flow in 

the independent IK/ES (Q, r) policy, with ADI, in order to determine the impact of the choice 

of system parameters on the departure times of parts from various points in the system. The 

dynamics of the independent IK/ES (Q, ή policy, can be described by recursive evolution 

equations that utilize operators “ + ” and “ max ” only. These equations relate the timing of a 

particular event in the IK/ES (Q, r) policy to the timings of events that must precede it.

The timing of events in an independent IK/ES (0, r) policy, with ADI, is shown in Figure 20:

Figure 20: Timing of events in an independent IK/ES (Q, r) policy, with ADI

Proposition 3. In a independent IK/ES (Q,r) polity, with ADI, in which MPi consists of a single machine, 

the timings of events are related by the following evolution equations:

D,n =&,n + maX ( Dun-1 ’ D(i-U),n ),i = h-,N

D, , . = max
/
Dt+D ,D 1 >D

Λ

d,
V

n
a Qi (i.i+1). Jp,-(*/-*,) i-1. n

a a-Τι y
,i = 2,...,N + 1

(33)

(34)

Proof. Equation (33) can be explained in a similar way as Equation (17) in the EKCS in 

Dallery’s and Liberopoulos (2000). Equation (34) can be explained in a similar way as equation 

(18) in the EKCS in Dallery’s and Liberopoulos (2000).
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The symbolism dj- & has to do with the batching of parts. Equation (34) is recursive in

that it expresses D, t .w in terms of ,+1w . Expanding this recursion yields:

i=N+1:

D,„ .. ,, = max(N ,N + l),n DN+1 + D
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so the final evolution equations have the following form:
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Unlike synchronized DAS IK/IS (Q, r) policies with ADI, independent IK/ES (Q, r) 

policies with ADI generally depend on the initial echelon stock positions Ien as well as on the

parameters Qn, Ken and Ren. An independent IK/ES (Q, r) policy with ADI may be nested in 

the sense that an ES (Q, r) policy with ADI may be nested, i.e., in the sense that when an order 

is placed at stage n, then orders must simultaneously be placed at all downstream stages as well. 

The condition for this to happen is exactly the same as in an ES (Q, r) policies with ADI and is 

given by expression (10), where r‘ = (R* -1) ■ Qn. If this condition holds, the nested 

independent IK/ES (Q, r) policy with ADI can be replaced by an equivalent independent 

IK/IS (Q, r) policy with ADI, just as an ES (Q, r) policy with ADI can be replaced by an 

equivalent IS (Q, r) policy with ADI. The resulting nested independent IK/IS (Q, r) policy 

with ADI does not depend on the initial installation stock positions and therefore on the initial 

echelon stock positions. A nested synchronized (or equivalently independent) IK/ES (Q, r) 

policy, on the other hand, can not be replaced by an equivalent synchronized DAS IK/IS (Q, 

r) policy, because as was already mentioned above, a synchronized DAS IK/IS (Q, r) policy is 

never nested.

An independent IK/ES (Q, r) policy with ADI includes IK and ES (Q, r) policies with 

ADI as special cases. Specifically, an independent IK/ES (Q, r) policy with ADI with

K Qn=K-Qn-Ren+l Qn+1)0r Kin-jn = R‘n-ja-R‘n+l,n= 1,2, N-1, and K'N = ReN , is
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equivalent to an IK policy. An independent IK/ES (Q, r) policy with ADI with K‘n= co for 

every stage n, is equivalent to an ES (Q, r) policy with ADI (and hence an MRP system) with 

echelon stock reorder points equal to r‘ = (Ren — 1) · Qn. Any other independent IK/ES (Q, r) 

policy with ADI with Ren · jn — Ren+l <K-jn < co imposes an upper bound on the WIP + FG 

inventory, and still exploits ADI for better replenishment control, just as an ES (Q, r) policy 

with ADI does.

There are two limiting cases where an independent IK/ES (Q, r) policy with ADI is 

equivalent to an IK policy and to an ES (Q, r) policy with ADI, respectively. In fact, these are 

the only cases where a synchronized DAS IK/IS (Q, r) policy with ADI and an independent 

IK/ES (Q, r) policy with ADI are equivalent to each other. In any other case, a synchronized 

IK/IS (Q, r) policy with ADI and an independent IK/ES (Q, r) policy with ADI are never 

equivalent to each other. This means that if we take an IS (Q, r) policy with ADI and an 

equivalent nested ES (Q, r) policy with ADI, superimpose on each policy the same IK policy 

and synchronize the trajectory of installation kanbans with the placement of orders, the 

resulting synchronized IK/IS (Q, r) policy with ADI and synchronized IK/ES (Q, r) policy 

with ADI (which is equivalent to an independent IK/ES (Q, r) policy with ADI) will not be 

equivalent to each other. For this reason, we cannot say with certainty whether an independent 

IK/ES (Q, r) policy with ADI performs better or worse than a synchronized IK/IS (Q, r) 

policy with ADI. It would not be surprising, however, if in many cases an independent IK/ES 

(Q, r) policy with ADI turned out to perform no worse than a synchronized IK/IS (Q, r) 

policy with ADI because the former policy uses global information, whereas the latter policy 

uses only local information.

Moreover, as we observed earlier, synchronized DAS IK/IS (Q, r) policies with ADI have 

the drawback that they appear to be more complicated than independent IK/ES (Q, r) policies 

with ADI and most importantly that they cause an indirect coupling between the actions of 

detaching a kanban and communicating demand. This coupling may cause delays in 

communicating demand information and therefore not take full advantage of ADI.
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3.4.4. Behavior and properties of Synchronized DAS IK/ES(Q, r) policies with 

ADI

Queuing network model representations of a two-stage production-inventory system 

operating under a synchronized DAS IK/ES (Q,r) policy with ADI is shown in Figure 21:

Figure 21: Queuing network model representation of a two-stage production-inventory system 
operating under a synchronized DAS IK/ES (Q,r) policy with ADI.

The timing of events in an synchronized DAS IK/ES (Q,r) policy with ADI, is shown in 
Figure22:

Figure 22: Timing of events in a synchronized DAS IK/ES (Q,r) policy with ADI

As before we will write down the evolution equations in the following proposition: 

Proposition 4. In a independent IK/ES (Q,r) polity, with ADI, in which MPconsists of a single 

machine, the timings of events are related by the following evolution equations:

D, =σ, „+ max\ D.„ ,,D, .ι,η ι,η \ ζ,/ι-1’ /i / 7 7 7
( r > Λ

max D, + max D r π ,D r ί
d\jr β· (CM)D (2 -{Xi-Si)

iD r η
i-iD a-«Μf 1 Qi\ \ Qi 1 y 1 a 1 /

(36)

(37)
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Proof. Equation (36) can be explained in a similar way as Equation (17) in the EKCS in 

Dallery’s and Liberopoulos (2000). Equation (37) can be explained in a similar way as equation 

(18) in the EKCS in Dallery’s and Liberopoulos (2000).

Chapter 3: Multi-stage Production-Inventory Control Policies with Lot sizing and A.D.I.

The symbolism β- ρ, has to do with the batching of parts. Equation (37) is recursive in 

that it expresses in terms of ,+1^ . Expanding tins recursion yields:

i=N+1:

D... ,\ = max[N ,N Dn+x + max
\

D r i ,D
V ie77rv+1 (Λ,+1·ΛΓ+2)'ΐ7Γ-|β-ν«-(^-^)

D= max(N,N+l),n

2=N

^(Ν-Ι,Ν),η'

Qn+ 1

Λ

,D
I Un+i I y

dn+1 + d ,D

( ( \ \

max Dn + max D . . ,D ,D
d,

n
Qn (N,N+1),

n
Qn~(kn~sn) N-l, n

Qn~^n-\
V Qn Qn 7 Qn J

οπού:

D
(N,N+1),

= max
Qn~(kn~sn)

DN+1 + D

d, Qn
Qn~(^n~^n)

Qn+i

,D

Qn+, N,

Qn~{^n~^n)
Qn+\

Qn+i~$n

οπού:
1______
1______ Qn-(K„-sK)

Qn+i

11______

ΊΓ
11

Qn+i Qn+i
Qn+i f)ΓπΊ (v i) «-1 Cv V ;J G/v+i

Qn

βΛ
(ν-ξ)\μ Qn+1

Qn
Qn {Kn Sn),

apa :

D r Ί = max DN +1 + D

Z> = max DN+D(„1 >f>N + l+DN+D

lafr"
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Hence the final form of D(l.1i) n is:

N j

°(M
= max <

j=i.l Σ°,„+0
m-i J>

n

Qi

1 X >β;.,+Σ°.,+β
a-Sr£(*«-S") m=i

m=i

and so the final evolution equations have the following form:

a ’r£(Km-Sm)

'D,,n = °i,n + maX (Di,n.l, D(i.1>i)>n) , ί = /,···, N

D, , =max<
i'-1’1)·" j-i-l

Σο,, + d
a a-V2>«-s·»)

U>,., + 2>. + D

(38)

a

A synchronized DAS IK/ES (Q, r) policy with ADI is never nested in the sense that an IS 

(Q, r) policy with ADI is, i.e., in the sense that when an order is placed at stage n, then orders

must simultaneously be placed at all downstream stages as well (except when K'n = °o, for all n, 

as we will see below).

A synchronized DAS IK/ES (Q, r) policy with ADI includes IK policies and IS (Q, r) 

policies with ADI as special cases. Specifically, a synchronized DAS IK/ES (Q, r) policy with 

ADI with K‘n = R'n , for all n is equivalent to an IK policy, i.e., a policy which does not exploit 

ADI, as was mentioned earlier. A synchronized DAS IK/ES (Q, r) policy with ADI with 

K'n — co, for all », is equivalent to an ES (Q, r) policy with ADI. Any other synchronized DAS 

IK/ES (Q, r) policy with ADI with R'n < K‘n < oo is never nested, imposes an upper bound on 

the WIP + FG inventory, while exploiting ADI for better replenishment control; however, it 

does not take full advantage of ADI, since the communication of demands from a stage n to 

the previous upstream stage η-1 may be blocked due to the lack of free stage-» kanbans in 

queue FK,;.

By observing closely the evolution equations of a synchronized DAS IK/ES (Q, r) policy 

with A.D.I (38), and comparing them with the corresponding evolution equations of an 

independent IK/ES (Q, r) policy with A.D.I (35), we can come to the conclusion that an 

independent IK/ES (Q, r) policy with A.D.I is Λquicker” than a synchronized DAS IK/ES 

(Q, r) policy with A.D.I. This means that if an order arrives simultaneously in both a 

synchronized DAS IK/ES & an independent IK/ES (Q, r) policy with A.D.I (with identical
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initial conditions & delay mechanisms), die independent IK/ES (Q, r) policy will respond 

quicker. This observation does not mean that an independent IK/ES (Q, r) policy with A.D.I 

is superior to a synchronized DAS IK/ES (Q, r) policy with A.D.I, because we don’t have data 

about the corresponding holding & backorder costs of the two systems.
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Chapter 4: Conclusions

Chapter 4 

Conclusions

4.1. Introduction

We presented a unified framework, which is based on a queuing network modeling 

representation, for describing, comparing and contrasting simple and hybrid multi-stage production- 

inventory control policies with lot-sizing and advance demand information (ADI). The simple 

policies that we considered are reorder point and kanban policies. The hybrid policies are 

combinations of the simple policies, which can be materialized in a synchronized or an 

independent way, leading to synchronized and independent hybrid policies, respectively.

We then, attempted to describe their basic operations and functions, emphasizing on their 

advantages and disadvantages. We developed evolution equations, so as to describe in detail 

the dynamics of each system. Using the above analysis we attempted a comparison of the 

above systems, emphasizing in equivalencies and superiorities.

The basic findings of this effort is summarized in the next section

4.2. Conclusions

A. Let us first consider the case where ADI isn’t available:

Al. We have first considered IS & ES (Q, r) control policies. If an ES (Q, r) policy is nested,

i.e. condition (10) holds, it can be replaced by an equivalent IS (Q, r) policy. This means that 

ES (Q, r) policies are superior to IS (Q, r) policies. In the limiting case where Qn=l, n=l,2,..., 

the two policies are identical and form the well know base stock controlpolicy 

A2. IK and EK policies are never equivalent to each other, except in the trivial case where 

there is a single stage. For this reason, it is not simple to determine whether EK policies are 

superior to IS policies or vice versa. It should be noted, however, that an advantage of EK 

policies over IK policies is that the former polices use global information, whereas the latter 

policies use only local information

A3. Kanban policies have an important advantage over their reorder point counterpart

-64-

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 01:04:38 EEST - 3.12.76.237



Chapter 4: Conclusions

policies is that the former policies impose an upper bound on the WIP + FG inventory. This 

advantage implies inventory holding cost savings

A4. Kanban policies do not communicate customer demand information to all upstream 

stages as quickly as their corresponding reorder point policies. This fact has a direct impact on 

customer service since it implies longer customer response times, particularly if customer 

demand is highly variable. It also implies that the capacity of the system depends on the 

number of kanbans

A5. We can not say with certainty whether an independent IK/ES (Q, r) policy is superior to 

a synchronized IK/IS (Q, r) policy or vice versa. It would not be surprising, however, if in 

many cases an independent IK/ES (Q, r) policy turned out to perform better than a 

synchronized IK/IS (Q, r) policy because the former policy uses global information, whereas 

the latter policy uses only local information

A6. Synchronized IK/IS (Q, r) policies have the drawback that they appear to be more 

complicated than independent IKES (Q, r) policies

A7. Synchronized IK/IS (Q, r) policies cause an indirect coupling between the actions of 

detaching a kanban and communicating demand. This coupling may cause delays in 

communicating demand information

A8. In an independent IK/ES (Q, r) policy, demands are satisfied earlier than in the 

synchronized IK/IS (Q, r) policy, but it does not necessarily also mean that the independent 

IK/ES (Q, r) policy has an overall better performance than the synchronized IK/IS (Q, r) 

policy, since inventory storage costs are not taken into account. In fact, the independent 

IK/ES (Q, r) policy is likely to incur higher inventory storage costs than does the synchronized 

IK/IS (Q, r) policy

A9. The production capacity of an independent IK/ES (Q, r) policy is higher than the 

production capacity of the synchronized IK/IS (q, r) policy, with the same parameters

B. We then considered the case where ADI is available:

Bl. IS (Q, r) policies with ADI are nested ES (Q, r) policies with ADI and are therefore 

special cases of the latter policies

B2. An MRP system with fixed order quantity as its lot sizing rule is equivalent to an IS (Q, r) 

policy with ADI. Given that an IS (Q, r) policy with ADI is a special case of an ES (Q, r) 

policy with ADI, this means that an MRP system is a special case of an ES (Q, r) policy with 

ADI.

B3. An IS (Q, r) policy with ADI & unit lot sizes is identical to an ES (Q, r) policy with ADI
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& unit lot sizes, and they are both equivalent to a base stock policy with a release time parameter 

B4. Installation & Echelon kanban policies, by their nature, can not take advantage of ADI 

B5. The timing of events in a synchronized DAS IK/IS (Q, r) policy with ADI, is much too 

complicated and in general is a very complex policy and hence difficult to implement 

B6. A synchronized DAS IK/IS (Q, r) policy with ADI cause an indirect coupling between 

the actions of detaching a kanban and communicating demand. This coupling may cause delays 

in communicating demand information and therefore not take full advantage of ADI.

B7. An Independent IK/ES (Q, r) policy with A.D.I is superior to an Independent IK/IS 

(Q, r) policy with A.D.I.

B8. We cannot say with certainty whether an independent IK/ES (Q, r) policy with ADI 

performs better or worse than a synchronized DAS IK/IS (Q, r) policy with ADI. It would 

not be surprising, however, if in many cases an independent IK/ES (Q, r) policy with ADI 

turned out to perform no worse than a synchronized DAS IK/IS (Q, r) policy with ADI 

because the former policy uses global information, whereas the latter policy uses only local 

information

B9. In an independent IK/ES (Q, r) policy with A.D.I, demands are satisfied earlier than in 

the synchronized DAS IK/ES (Q, r) policy with A.D.I. This fact does not necessarily mean 

that the independent IK/ES (Q, r) policy with A.D.I has an overall better performance than 

the synchronized DAS IK/ES (Q, r) policy with A.D.I, since inventory storage costs are not 

taken into account.
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