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Abstract 

This study is part of the research areas of bioinformatics and large-scale data analysis by 

utilizing Machine Learning algorithms. Current research focuses on regulatory regions 

with two major biological objectives. Creating robust machine learning algorithms for 

single nucleotide resolutions transcription start site discovery and functional 

characterization of variants in regulatory regions.  

First biological objective for the current study is the characterization of regulatory 

promoter region of genes. CAGE is a protocol that offers a clear advantage when studying 

the dynamics related to transcription initiation, alternative promoter usage and the 

identification of enhancer RNAs. Despite the increased popularity of this protocol, CAGE 

is not absent from the list of experimental methods that suffer from biological and 

technical noise which can significantly diminish the robustness of downstream analyses. 

Thus, the need for computational methods emerges, that can accurately increase the 

signal-to-noise ratio in CAGE data, resulting in error-free transcription start site 

annotation and quantification of regulatory region usage. 

DiS-TSS, an annotation agnostic computational framework, that for the first time utilizes 

digital signal processing inspired features customized on the peculiarities of CAGE data. 

Features from the spatial and frequency domains are combined with a robustly trained 

Support Vector Machines model to accurately distinguish between peaks related to real 

transcription initiation events and biological or protocol-induced noise. When 

benchmarked on experimentally derived data on active transcription marks as well as 

annotated TSSs, DiS-TSS was found to outperform existing implementations, by providing 

on average ~11k positive predictions and an increase in performance by ~5% based on in 

the experimental and annotation-based evaluations. 

The DeepTSS algorithm, which is a novel computational method for processing CAGE 

samples, that combines genomic signal processing (GSP), structural DNA features, 
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evolutionary conservation evidence and raw DNA sequence with Deep Learning (DL) to 

provide single-nucleotide TSS predictions with unprecedented levels of performance. 

Second biological objective applies in the field of genetics by assessing the survival risk of 

cancer patients. Cancer prognosis is a highly sensitive process where patients’ risk state 

and survival outcome are accessed. For the prediction of survival prognosis in cancerous 

patients, many approaches have been introduced, including coding and/or non-coding 

expression profiles, metadata (age, cancer stage, sex etc), methylation profiles and 

medical images (MRI, CT scan etc). Thus, genomic alterations in regulatory gene regions 

lack consideration and extensive exploratory analysis. 

A novel deep clustering technique is utilized, using the advantages of autoencoders in 

DNA sequencing data to accurately separate high and low risk patients in eight different 

primary cancer tissues. More than 1000 primary tumor whole genomes have been 

analyzed, retrieved from the ICGC repository. Overall findings suggest that promoter 

regulatory regions play a key role in survival risk prognosis in eight tissues with two levels 

of mortality for the Kaplan-Meier curves. Thus, promoter loci with genomic variations 

have underling patterns able to distinguish between high and low risk cancer patients. 

Development of reliable machine learning, as well as deep learning algorithms in current 

dissertation may pave the way for deciphering biological problems and contribute to 

advancing the field of gene regulation, as well as advance genetics by discovering the 

functional impact of variants in regulatory regions. 
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1. Introduction 

1.1. Machine learning 

Machine learning (ML) is a field focusing on the use of data and algorithms in a way that 

imitates the human way of learning. Mathematical models and algorithms used in 

machine learning, are build based on training data aiming to make predictions on new 

unknown data. There are many fields of knowledge such as medicine[1], bioinformatics, 

computer vision and more that make use of machine learning algorithms to solve complex 

problems. 

1.1.1. Designing machine learning algorithms 

To design robust machine learning models, one needs to well address the nature of the 

problem trying to answer from the data. In other words, asking the right questions from 

the data is a crucial step. Thus, a comprehensive knowledge of the domain is very 

important as well as creating robust training sets. Data must undergo quality control and 

a certain transformation to meet the appropriate structure before feeding them in the 

ML model. This stage remains highly important for the overall accuracy of the final trained 

model and there are several stages such as feature extraction and feature selection where 

robustness of the training set is built. 

1.1.2. Feature extraction 

Feature extraction is the process which transforms the raw data into numerical features 

that can be processed while preserving the information in the original dataset. Thus, 

feature extraction yields better results compared to applying ML directly on raw datasets. 

1.1.3. Feature selection 

Feature selection in machine learning is the process of selecting a subset of relevant 

variables, as more capable predictors to use for the training process of the ML model. 

Feature selection techniques are mainly used for simplifying the models, shorten training 
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time or bypass the curse of dimensionality by applying dimensionality reduction 

techniques (see chapter 1.2.5 Dimensionality reduction). Feature selection can be 

described in three main categories: filters, wrappers and embedded. 

With filter type feature selection methods, variables are selected regardless of the model. 

They observe the correlation of the variables with models output for evaluating the 

separation ability [2]. This type of feature selection suppresses variables with low 

separation ability. The rest of the variables will be involved in the training process of a 

classification, or a regression model and will be used to classify data. These methods are 

particularly effective in computation time and robust to overfitting. 

Wrapper methods evaluate subsets of variables in a repetitive process observing the 

model output and trying to maximize the separation ability [3]. The best feature (forward 

selection) is selected for each loop, or the worst is excluded (backward selection). There 

are two main drawbacks with Wrapper methods. Firstly, there is a high risk of overfitting 

when the number of observations is insufficient and secondly, computation time may 

grow exponentially when the number of variables is large. 

Embedded methods are a combination of filter and wrapper methods. Implementation is 

carried out by algorithms that have their own feature selection methods. Amongst these 

methods LASSO [4] and RIDGE regression [5] remain very popular techniques. Thus, they 

both have inbuilt penalization functions to reduce overfitting. 

1.2. Categorization of Machine Learning algorithms 

ML algorithms, depending on the type of analysis and the degree of supervision needed, 

are separated into four learning categories. These include supervised learning, 

unsupervised learning, semi-supervised and reinforcement learning. 

1.2.1. Supervised learning 

Supervised learning (SL) is the machine learning task of learning a labeled training set of 

variables[6]. In SL, each observation is a pair that consists of an input vector and a desired 
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output value. Supervised learning algorithms learn the labeled training set and generate 

an inferred function which is utilized to perform predictions on unknown new data points. 

SL is used in both classification algorithms, where data points correspond to a certain class 

and regression predictive models where the relationship between independent and 

dependent variables is investigated. SL predictive accuracy depends on the quality of the 

training datasets. 

1.2.2. Unsupervised learning 

Unsupervised learning (UL) is a machine learning type that learns patterns from unlabeled 

data points and there is no prior knowledge for the data labels. Algorithms within the UL 

scope aim to produce patterns, clusters or association rules that can robustly describe the 

input data points. Popular clustering algorithms (e.g., k-means) fall into this category. 

1.2.3. Semi-supervised learning 

Semi-supervised learning is a hybrid approach for machine learning that combines a small 

portion of labeled data with a large quantity of unlabeled data points for the training set. 

It lies between unsupervised and supervised learning types, and thus it is considered a 

special instance of weak supervision. 

1.2.4. Reinforcement learning 

Reinforcement learning (RL) is another type of machine learning and differs from 

supervised learning by not needing labeled input/output data point pairs to be presented. 

Instead, it focuses on finding balance between exploring and exploiting the dataset [7]. 

Partially supervised RL algorithms can combine the advantages of supervised and RL 

algorithms [8]. 
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1.2.5. Dimensionality reduction 

 

Figure 1: PCA transformation. Features A and B are transformed into a new coordinate system PC1 and PC2. (Figure has 

been created for the needs of the current thesis) 

Principal component analysis (PCA) is a method suitable for the analysis of big datasets 

with a high dimensional space. PCA reduces the dimensions of a dataset while trying to 

minimize any information loss. Data are linearly transformed into their major components 

and projected into fewer dimensions, where most of the variation is explained. Thus, PCA 

mathematical approach lies in the maximization of the covariance while the new 

coordinate system demands the eigenvalues and eigenvectors of the covariance matrix. 

Linear discriminant analysis (LDA), is also a technique widely used for dimensionality 

reduction. In this case, except of the principal components that maximize the variance 

within data, LDA aims to maximize the differences between groups. Thus, the data tend 

to maintain the information of the classes of origin. 
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t-distributed stochastic neighbor embedding (t-SNE) is a statistical method for the 

visualization of high-dimensional datasets. T-SNE is giving each datapoint a location in a 

lower-dimensional map and is based on a Stochastic Neighbor Embedding [9]. t-SNE is a 

nonlinear dimensionality reduction technique for embedding high-dimensional data for 

visualization in a low-dimensional space of two or three dimensions. To visualize the data 

in low dimensions t-SNE creates a probability distribution over pairs of high-dimensional 

objects in such a way that similar objects are assigned a higher probability while dissimilar 

points are assigned a lower probability. Furthermore, t-SNE defines another probability 

distribution for the points in the low-dimensional space, while it minimizes the Kullback–

Leibler divergence (KL divergence) between the two distributions with respect to the 

locations of the points. 

Uniform Manifold Approximation and Projection (UMAP) is another dimensionality 

reduction technique that can be used to visualize patterns of clustering in high-

dimensional data. UMAP remains very similar to t-SNE technique and attempts to create 

local clusters without preserving global structure of the data. It is a widely used approach 

for single cell RNA sequencing data, able to denote different cell types. 

1.2.6. Assessment of machine learning models 

While building ML models, part of the data is excluded from the training process to later 

serve as an evaluation set. Comparing the model predictions on this “unseen” set with 

the true labels of the data will produce several accuracy metrics which indicate the 

performance of the model. Among the most popular and robust metrics are precision, 

sensitivity (or recall) and specificity. Regarding classification problems (see chapter 1.3.1 

Classification) and for visualizing the performance of the model, Area Under the Curve 

(AUC) or Receiver Operating Characteristics (ROC) are widely used as performance 

indicators. Wider area under the curve, created by sensitivity and 1 – specificity axis, 

indicates better degree or measure of separability for the predictive model. 

sensitivity =
 number of true positives 

 number of true positives +  number of false negatives 
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specificity =
 number of true negatives 

 number of true negatives +  number of false positives 
 

Lastly, F1 score combines the precision and sensitivity of a classifier into a single metric 

by taking their harmonic mean. Also allows for better balance between the two metrics, 

especially in case of unbalanced datasets. 

𝐹 = 2 ×
 precision ×  recall 
 precision +  recall 

 

1.3. Categorization of Machine Learning applications 

1.3.1. Classification 

Classification algorithms refer to the process of data categorization in different classes or 

categories. With the training process followed for creating predictive classifiers, output 

models can identify the designated label for each unknown data point with high accuracy. 

Several classifiers are thoroughly explained in chapter “1.4 Machine learning algorithms”. 

1.3.2. Regression 

Regression analysis is a process for estimating the relationship between a dependent 

variable and a set of independent variables. This type of analysis aims to estimate the 

value of the independent variable.  

Linear regression is a very popular and robust form of regression analysis, where a line is 

calculated that most closely fits the data in respect to ordinary least squares (OLS). OLS 

calculates the unique line, which minimizes the sum of squared differences between the 

true data and the line. 
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1.3.3. Clustering 

Clustering [10] is the process where data points are separated into subsets in such a way 

that objects in the same group are more related to each other than those in the other 

groups [11]. 

There are many different approaches for clustering datasets that led to many algorithms, 

comprising two major categories, Hierarchical and Partitional. The former construct new 

clusters with every step, while utilizing the algorithm and the latter construct all clusters 

simultaneously (see chapter 1.4.8 for k-means clustering algorithm). 

 

Figure 2: Clustering analysis. Data points are separated according to capable features. (Figure has been created for the 

needs of the current thesis) 

1.4. Machine learning algorithms 

The following chapters focus on ML algorithms, utilized in current study, for solving large 

scale biological problems.  
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1.4.1. Naive Bayes classifier 

Naive Bayes classifier is a supervised classification ML algorithm which assumes that 

features of a measurement are independent of each other. Thus, these features depend 

on each other, and all properties independently contribute to the classification 

probability of an observation. For each class, the algorithm calculates the probability for 

the observation and classifies it in the class with the highest probability. The conditional 

probability is calculated from the following formula: 

𝑃(𝑋 ∣ 𝐶!) =, 
"

#$%

𝑃(𝑥& ∣ 𝐶!) 

1.4.2. Support Vector Machines 

Support Vector Machines (SVMs) are categorized as a supervised learning technique and 

are utilized for both classification and regression analysis. SVMs first appeared by Vladimir 

Vapnik in 1963 [12] and remains one of the most popular method for predictive analysis. 

SVMs map training data points in space in a way that they maximize the width of the gap 

between the two categories. A separating line/surface is created between surfaces 

supported by the samples on margins which are called support vectors (Figure 3). New 

predictions are mapped in the space of the hyperplane and a probability is predicted for 

which class/category they belong to. In conclusion SVMs try to maximize the distance 

between the classes while minimizing the classification error. SVMs have been used for 

many bioinformatics tasks [13]. 
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Figure 3: SVMs. Maximum margin Hyperplane. Support vectors are created by the samples on the margins. (Figure has 

been created for the needs of the current thesis) 

1.4.3. Random forest 

Random forest is a supervised ensemble learning technique utilized for classification and 

regression problems and operates by contracting a multitude of decision trees (see 

chapter 1.4.7) during the training process. In the case of classification analysis, random 

forest output is the class which was selected by the majority of the trees. For regression 

problems, the output of the algorithm is the mean or average prediction of the individual 

trees. Random forest overcomes the overfitting problem during training of decision trees 

but gradient boosted trees demonstrate higher accuracy [14]. However, input data 

characteristics may affect performance. 

The first random forest algorithm was introduced by Tin Kam Ho [15] in 1995 and utilized 

the random subspace method [16], which was a way to implement the "stochastic 

discrimination" approach to classification proposed by Eugene Kleinberg [17]. 
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Figure 4: Overview of Random Forest algorithm. The final prediction comes from the majority vote of the individual 

decision trees. (Figure has been created for the needs of the current thesis) 

1.4.4. K-nearest neighbors 

K-nearest neighbors algorithm (K-NN) is a non-parametric supervised learning method 

which was first developed by Evelyn Fix and Joseph Hodges [18] and is used for solving 

both classification and regression problems. The KNN algorithm assumes that similar data 

points will be in closer proximity. K-NN uses the k nearest data points of the training set, 

to obtain the mean (in case of regression analysis) or for defining the class (for 

classification problems). The “K” value is a hyperparameter of the algorithms and directly 

affects the performance of the method. Several distance metrics can be used for assigning 

the data points to the corresponding class such as Euclidian distance, cosine similarity and 

chi-square distance. Metrics are used depending on the dataset and type of the analysis. 
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Figure 5: K-NN. Current K value is 3 (K=3). The grey data point, which is under classification, the majority of the 3 nearest 

neighbors define the class. The datapoint will be classified in “class B”. (Figure has been created for the needs of the 

current thesis) 

1.4.5. Linear regression 

Linear regression can be referred as a linear approach for modeling the relationship 

between a dependent and one or more independent variables. In the case of one 

independent variable the method is called simple linear regression and for more than 

one, the process is called multiple linear regression [19]. Thus, a mathematical equation 

can describe the above relationship. The following form describes the relationship of y 

dependent variable,  

y = 𝛽' + 𝛽%𝑥% +⋯+ 𝛽"𝑥" 

where β are the coefficients, with the independent variables χ. Furthermore, there are 

several methods for calculating β coefficients such as least squares method or maximum 

likelihood. Linear regression models are usually fitted using the least squares approach 

by achieving the best-fit regression line. Regression models fall under the category of 

supervised learning methods. 
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Figure 6: Example of linear regression. Observations are assumed as the result of random deviations from a relationship 

between the dependent variable (y) and an independent (x) variable. (Figure has been created for the needs of the 

current thesis) 

1.4.6. Logistic regression 

Logistic regression is a classification method widely used when the dependent variable is 

categorical [20]. Usually, the method is used with a binary dependent variable while the 

independent variables have continuous or discrete values. Furthermore, multinomial 

logistic regression is an extension of binary logistic regression that allows for more than 

two categories of the dependent variable. 
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Figure 7: Logistic regression. Independent variable (x) has discrete values compared to dependent variable (y) which is 

binary [0, 1]. (Figure has been created for the needs of the current thesis) 

In contrast with linear regression that aims to describe the data points with a line, in 

logistic regression a sigmoid function is fitted on the data by tuning several parameters 

for the best fit. Thus, sigmoid function imposes the output values between [0,1]. New 

observations are given a probability to belong to either class. 

1.4.7. Decision trees 

Decision Trees (DTs) is a non-parametric supervised learning method that can be utilized 

for classification and regression analysis. DTs aim to create a model that predicts the value 

of a target variable by learning simple decision rules inferred from the data features. In 

decision analysis, a decision tree can be used to represent decisions and support decision 

making visually. Also, DTs are represented with nodes and leafs in a tree-like model of 

decisions. Amongst the algorithms proposed for DTs, ID3 [21] (which works only for 

discrete data) and CART [22] (for discrete and continuous data) are the most popular.  
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ID3 utilizes a top to down approach and for each node the best feature regarding the data 

separation is selected. Furthermore, ID3 uses entropy as a measure for the data 

homogeneity. The process is repeated until all sub-trees consist of homogeneous data. 

On the other hand, CART creates binary trees and utilizes brute force search for optimal 

separation of the data.  

 

Figure 8: Decision tree overview. (Figure has been created for the needs of the current thesis) 

1.4.8. K-means 

K-means is an unsupervised clustering algorithm for separating observations in groups.  

Centroids for each group are randomly placed. In each step of the algorithm the mean of 

each cluster is calculated and represents the new centroid for each cluster (Figure 10). 

The squared Euclidean distance metric (or other metrics e.g., mahalanobis distance) is 

calculated for estimating the current mean of each cluster.  
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Figure 9: Elbow methods. Optimal number of clusters is three (3) as indicated by the elbow point. (Figure has been 

created for the needs of the current thesis) 

“K” value indicates the number of centroids/clusters to be created and is an input 

parameter. There are several methods for finding the optimal k value with the elbow 

method finding great popularity (Figure 9). K-means clustering tries to minimize within-

cluster variances. Also, the algorithm has a loose relationship to the k-nearest neighbor 

classifier (see chapter 1.4.4 K-nearest neighbors). 
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Figure 10: K-means clustering. Stars represent the 3 centroids (Green, blue, orange). Black lines indicate the borders 

between the three (3) classes. (Figure has been created for the needs of the current thesis). 

1.5. Neural networks 

1.5.1. Artificial neural networks 

An artificial neural network (ANN) is a method of connected nodes (or else called artificial 

neurons) inspired from biological neural systems (like the human brain) and can perform 

calculations. These nodes are connected, similarly to neuron synapses in a biological 

organism, and transmit signals to nearby neurons. Artificial neurons receive signals, 

processes them, and transmits signals to neighbor connected neurons. These connections 

are called edges and both neurons and edges have weights assigned to them which 

adjusts the learning process (Figure 11). 

This approach was initially adopted in 1943 with the first neural network presented by 

McCulloch & Pitts [23]. During the 1980s neural networks were improved with Hopfield 

model [24] and the introduction of the back propagation algorithms [25]. 
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Figure 11: Overview of an ANN (Figure has been created for the needs of the current thesis). 

1.5.2. Recurrent neural network 

A recurrent neural network (RNN) is a type of ANN where connections between 

neighboring nodes can create a cycle that allows output from some nodes to affect future 

inputs to the same nodes which allows the network to demonstrate a dynamic behavior 

(Figure 12). 

RNNs derive from feedforward neural networks and use feedback loops to process a 

sequence of data which informs the final output. These feedback loops (also often 

described as memory) allow information to persist. RNNs are widely used for tasks such 

as speech recognition [26] and natural language processing [27]. 
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Figure 12: Overview of RNN (Figure has been created for the needs of the current thesis). 

1.5.3. Feedforward neural network 

A feedforward neural network (FNN) is an ANN where connections between the nodes do 

not create a cycle [28] like in RNNs. FNN was the first type of an ANN [2] where the 

information is passed forward to the next nodes (in only one direction) through the input 

nodes (Figure 13). 
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Figure 13: Overview of FNN (Figure has been created for the needs of the current thesis). 

The simplest form of the FNN is the single layer perceptron [23]. In a single layer 

perceptron, inputs are fed into the layer and multiplied by the corresponding weights. All 

values are then summed up to produce a sum of the weighted input values. Finally, the 

sum is compared to a threshold previously set, and the value produced takes values 

(usually zero or one) [0,1] if below or above the threshold (Figure 14). 

Single layer perceptron is an important model of FNN and as a supervised learning 

method it is used for classification tasks. Using the delta rule [29], which is a gradient 

descent learning rule for updating the weights of the inputs, the network can compare 

the outputs of the nodes with the intended values, allowing the network to readjust the 

weights through the training process to improve its accuracy. 

In the multi-layered perceptron algorithm, the process of updating the weights is nearly 

analogous. However, it is defined more specifically as a back-propagation method. In such 

cases, each hidden layer within the network is adjusted according to the output values 

produced by the final layer. 
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Figure 14: Single layer perceptron overview (Figure has been created for the needs of the current thesis) 

1.5.4. Autoencoder 

Autoencoders are an unsupervised learning technique and a subcategory of feedforward 

neural networks. They can compress the input into a lower dimensional space with 

minimum loss and reconstruct the output to the original data (Figure 15). 

Autoencoders use three main components, the encoder, the code, and the decoder. The 

encoder is responsible for compressing the input producing the code, and the decoder 

reconstructs the code to the original input data. Autoencoders are mainly used as a 

dimensionality reduction technique or for compressing data. Autoencoders are trained as 

an ANN, with the backpropagation method. 

 

Figure 15: Autoencoder architecture. Input is a number image (seven). Output can maintain the core information of the 

image with partial information loss. (Figure has been created for the needs of the current thesis) 
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1.5.5. Long short-term memory 

Long short-term memory (LSTM) [30] is an ANN which, unlike standard FNN networks, 

has feedback connections. These networks combine the advantages of the RNNs and take 

it a step further by expanding lifetime of the memory, thus their name combines the two 

phrases "long-term memory" and "short-term memory". LSTM is used for tasks as 

handwriting recognition [31], speech recognition [26] and more and these networks have 

become very popular in the last decade. The LSTM architecture aims to achieve a short-

term memory, like RNNs that can last thousands of timesteps, and therefore become 

"long short-term memory" [30]. LSTMs networks thrive in prediction for time series data 

where lags of unknown duration between important events may happen.  

1.5.6. Convolutional neural network 

A convolutional neural network (CNN or ConvNet) is another class of ANNs, mainly used 

in computer vision to classify image data [32]. Thus, CNNs are deep learning algorithms 

that can find patterns within object inputs and are able to differentiate the inputs in 

classes. The preprocessing of the inputs required in a CNN is minimal in contrast to other 

classification algorithms.  

 

Figure 16: CNN architecture [33].  

A CNN can robustly capture the Spatial and Temporal dependencies within an input 

through the application of relevant filters. Their architecture enables a better fitting to 
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the input dataset due to the reduction in the number of parameters involved and 

reusability of weights. CNNs demonstrate superior performance especially when 

classifying images compared to conventional ML algorithms. There are three main types 

of layers in CNN architecture, convolutional layer, Pooling layer, and fully connected layer. 

Convolutional layers are the core building block of a CNN architecture. They are the first 

layer of a CNN and can be followed by additional convolutional layers or pooling layers 

with the fully connected layer in the final stage of the architecture. Complexity is 

increased as more layers are added to the CNN and greater aspects of the inputs can be 

identified. Primary layers focus on simple features (like edge detection) and downstream 

layers start to recognize elements or shapes. Hence, convolutional layers are where the 

majority of computation occurs. 

1.6. Deep learning 

Deep Learning [34] is a subfield of machine learning and learns by discovering intricate 

structures in the data. Such models use multiple layers to progressively extract higher 

level features from the raw inputs. Hence, each level in a deep learning model learns to 

transform the inputs into a more abstract representation. 
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Figure 17: Neural network vs deep learning neural network. (Figure has been created for the needs of the current thesis) 

Moreover, deep learning model architectures such as deep neural networks, deep 

reinforcement learning, autoencoders, convolutional neural networks and lately 

Transformers [35] (which is a model mainly used in NLP) have been successfully applied 

to fields including computer vision [36], speech recognition, NLP, bioinformatics [37], 

drug design, medical image analysis, and games [38], where they have produced highly 

accurate results and in some cases even surpassing human performance.  

1.7. Big biological data 

With next generation sequencing techniques (see chapter 1.7.1) flourishing in the past 

years, the scientific community has entered an era of big biological data and the need for 

analyzing and extracting meaning out of them arose. There are five main types of data 
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that are massively growing and utilized to answer biological questions including, gene 

expression data, DNA, RNA, and protein sequence data, protein to protein interaction 

(PPI), pathway data, and gene ontology (GO) [39]. 

For this study, ML techniques are applied on a large collection of big biological data, 

aiming to make predictions and correlations for gaining knowledge about major, state-of-

the-art biological problems. 

1.7.1. Next Generation Sequencing 

DNA double helix structure was discovered in 1953 by James Watson and Francis Crick 

[40]. Rosalind Franklin, who was an X-ray crystallographer, also contributed to this huge 

scientific discovery [41]. Watson and Crick were awarded the Nobel Prize in Physiology or 

Medicine in 1962, shortly followed by Robert Holley in 1968 for sequencing the first RNA 

molecule [42]. The combination of these immense discoveries paved the way for 

sequencing the DNA double helix. In 1977 Fredrick Sanger [43] developed the chain-

termination method, which uses a sequence of interest as a template for a PCR and adds 

modified nucleotides, called dideoxyribonucleotides, on the DNA strand during the 

extension step [44]. By 1986, the first automated DNA sequencing method had been 

developed. Further ahead, in 2005, the second generation (2G) of sequencing (or NGS) 

emerged, and enabled the amplification of millions of copies of DNA fragments in a 

parallel structure [45] surpassing the limitations of sanger sequencing. The main goal of 

NGS compared to first generation sequencing technologies was to lower the cost and 

improve the performance of the method. 

NGS technologies offer many advantages over alternative sequencing techniques, 

including the ability to generate sequencing reads in a cost-effective, fast, and sensitive 

way. Nevertheless, there are also some drawbacks, including poor interpretation of 

homopolymers and incorporation of incorrect dNTPs by polymerases which result in some 

sequencing errors. The need for deeper sequencing coverage arose, because of short read 

lengths, and progress in this domain will enable more accurate final genome assembly 
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[46]. The major drawback of NGS techniques is the need for PCR amplification prior to 

sequencing that is associated with PCR bias in the library preparation stage. 

The 3G sequencing bypasses the need for PCR amplification and is capable of sequencing 

single molecules. Stephen Quake introduced the first single molecule sequencing 

technology [47], by obtaining sequence information with the use of DNA polymerase. The 

method was monitoring the incorporation of fluorescently labeled nucleotides to DNA 

strands with single base resolution. 

1.7.2. CAGE-Sequencing 

CAP Analysis of Gene Expression (CAGE) is a protocol introduced in 2003 [48] for capturing 

and quantification of capped RNA 5’ ends.  

CAGE produces a set of short nucleotide sequences (or tags) approximately 20 to 21 

nucleotides long that correspond to the TSSs for the vast majority of human transcripts 

with the exception of RNAs without the 5’-cap such as rRNAs. Mapping the CAGE tags to 

the genome allows the quantification of RNA transcripts within a biological sample and 

simultaneously the identification of the tissue/cell-type specific TSSs and thereby their 

promoters. 

Assigning identified TSSs and promoters to either known or novel genes, a process called 

annotation, remained a challenging bioinformatics task for several years. In 2010 the 

CAGEscan [49] methodology was introduced and provided a link of TSSs detected by CAGE 

to downstream sequence regions contributing to novel promoter discovery and offering 

new perspectives into the relations of transcribed RNAs to their neighboring genomic 

and/or transcriptomic elements. 

A short overview of the CAGE-sequencing protocol (Figure 18) and downstream analysis 

is described below. First, reverse transcription and cDNA synthesis is performed with 

random priming to ensure the capture of both polyadenylated and non-polyadenylated 

RNA. Then, the RNA 5’cap and 3' ends are biotinylated followed by RNAse I treatment 
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where non-hybridized, single-stranded RNAs are digested. Streptavidin beads are used to 

capture the biotinylated cap-site of complete cDNAs, a process called Cap-trapping, and 

separate them from RNAs without the 5’-cap such as rRNA, truncated RNA, and 

incompletely reversely transcribed RNAs that remain in the solution. 

After selection, cDNA is further processed for sequencing. First, it is released from the 

beads, then a linker is ligated to the single stranded cDNA and second strand synthesis is 

performed. The linker sequence contains a recognition site for type III restriction 

endonuclease that cleaves a fragment of approximately 27 nucleotides into the cDNA. 

The short fragments are then amplified and sequenced. 
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Figure 18: Overview CAGE protocol [50]. 

The output of the CAGE protocol is a set of short nucleotide sequences along with their 

observed counts. CAGE tags quantify the abundance of RNA transcripts within a biological 

sample. 
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1.7.3. WGS-Sequencing 

Whole-genome sequencing (WGS) is a concise method for analyzing the entire DNA of a 

genome. Rapidly growing WGS genomic data revolutionized biosciences and supported 

scientists in characterizing the mutations involved in cancer progression, and tracking 

disease outbreaks. 

Maxam–Gilbert sequencing [51] and Sanger sequencing [52] were the most popular DNA 

sequencing methods in the 1970s. Several whole bacteriophages as well as animal viral 

genomes were sequenced with these methods, but in the 1990s the need arose for more 

rapid and automated sequencing methods. 

The entire DNA sequence of human chromosome 22 (the shortest human chromosome) 

was published in 1999 [53]. In 2000, the second genome of Drosophila melanogaster, a 

popular animal in experimental research, was sequenced [54] and the first plant genome 

(Arabidopsis thaliana) wassequenced by 2000 [55]. In 2001, a draft of the entire human 

genome sequence was published [56] and the genome of the laboratory mouse Mus 

musculus was completed in 2002 [57]. Lastly, in 2014 WGS was introduced to clinics [58]. 

With NGS, sequencing costs and time to produce large volumes of data with state-of-the-

art sequencers made WGS a very powerful tool for advanced genomic research. All the 

exons of an individual's DNA, which provide instructions for making proteins, have been 

sequenced and are available in many public repositories. Mutations occurring within 

exons have attracted great attention within the scientific community and many of them 

have been related with several diseases. However, DNA variations that occur outside the 

exons can also affect regulatory elements and therefore gene regulation. WGS can 

determine variations in any part of the genome, including promoter loci which is the main 

subject of this study. 
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1.7.4. ChIP-Sequencing 

ChIP-sequencing is an NGS method utilized to identify binding sites of DNA-associated 

proteins with the DNA by combining chromatin immunoprecipitation (ChIP) with 

massively parallel DNA sequencing. It can be used to precisely map global binding sites 

for any protein of interest (e.g., Transcription factors). 

The ChIP protocol is divided in five steps (Figure 19). The first step is cross-linking [59] 

using formaldehyde and large batches of the DNA for obtaining a useful amount. The 

cross-links are created between DNA and the protein, but also between RNA and other 

proteins. Second step includes the process of chromatin fragmentation which breaks 

chromatin in chunks to get high quality DNA pieces for the ChIP analysis. Fragments are 

then divided in 500bp (or under) pieces [60] for better genome mapping quality. Next 

step utilizes chromatin immunoprecipitation, the process that enhances specific 

crosslinked DNA-protein complexes by making use of antibodies against proteins of 

interest which also removes non-specific binding sites. DNA recovery and purification 

takes place to separate the DNA from the protein and the final step includes qPCR and 

parallel sequencing. 
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Figure 19: Overview of a ChIP–seq experiment. [61] 

1.7.5. RNA-Sequencing 

RNA sequencing (RNA-seq) is a sequencing method that utilizes NGS to discover and 

quantify RNA within a biological sample at a given moment [62]. It is widely used to 

identify and analyze alternatively spliced transcripts, post-transcriptional modifications, 

gene fusion and changes in gene expression or differences in gene expression between 

different groups [63]. 
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The protocol’s main steps are described below and might vary between different 

sequencing platforms [64] (Figure 20). 

RNA is isolated from the tissue and mixed with Deoxyribonuclease which reduces the 

amount of genomic DNA. The amount of RNA degradation is checked with gel and 

capillary electrophoresis. RNA quality and total abundance are taken into consideration 

for the subsequent library preparation, sequencing, and analysis steps. 

For analyzing the signals of interest, isolated RNA can be kept untouched or filtered for 

RNA with 3' polyadenylated (poly(A)) tails to include only mRNA. Otherwise, RNA can be 

depleted of ribosomal RNA (rRNA) and filtered for RNA that binds specific sequences. RNA 

with 3' poly(A) tails is composed of mature, processed, coding sequences [65]. 

Poly(A) selection has several limitations regarding RNA biotype detection. Many RNA 

biotypes are not polyadenylated, including many noncoding RNA and histone-core 

protein transcripts, or are regulated via their poly(A) tail length and thus might not be 

detected after poly(A) selection [66].  Thus, poly(A) selection can display increased 3' bias, 

especially if RNA quality is low [67]. To avoid such limitations ribosomal depletion is used 

where rRNA is removed which typically represents more than 90% of the total RNA in a 

biological sample [68]. Small RNA targets, such as miRNAs, can be further isolated through 

size selection process with exclusion gels, magnetic beads, or commercial kits. 

RNA is reversed transcribed into cDNA, a step called cDNA synthesis. DNA is more stable 

and allows for amplification using sequencing technology. Fragmentation is performed to 

purify sequences that are the appropriate length for the sequencing machine and size 

selection will remove small sequences [69]. 
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Figure 20: Overview of RNA-Seq. [70] 

1.7.6. DNase-Sequencing 

DNaseq-seq (or DNase I Hypersensitive sites) is a method in molecular biology used to 

identify the areas that are sensitive to deoxyribonuclease (DNase I) allowing the detection 

of active regulatory footprints (enhancers, promoters, etc.) on the genome. The method 

is based on genome-wide sequencing of regions sensitive to cleavage by DNase I [71]. 
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DNase-seq (DNase I hypersensitive sites sequencing) is a method in molecular biology 

used to identify the location of regulatory regions, based on the genome-wide sequencing 

of regions sensitive to cleavage by DNase I. 

The protocol treats DNA-protein complexes with DNase l, followed by DNA extraction and 

DNA sequencing. Sequences bound by regulatory proteins are protected from DNase l 

digestion. By utilizing deep sequencing, representation of regulatory proteins location 

comes with high accuracy genome wide [72] (Figure 21). 

 

Figure 21: DNase-sequencing protocol overview [73]. 

1.8. Promoters of coding and non-coding genes 

1.8.1. Promoters 

Promoters are DNA sequences approximately 1000bp upstream and 500bp downstream 

of the genes (strand specific - towards the 5' region of the sense strand) (Figure 22) that 

contain regulatory elements of gene transcription. Several proteins, such as transcription 

factors, bind on them to initiate transcription of an RNA transcript. Several proteins, such 

as transcription factors, bind on them to initiate transcription of an RNA transcript. 
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Produced RNA transcripts may encode for a protein (mRNA), or they may have a different 

functional role in the cell. RNA polymerase is recruited on site to initiate transcription of 

the gene. Thereby, promoters have similar DNA sequence patterns with some minor 

variations. Promoter identification is a crucial problem in gene discovery and in 

understanding the regulation of genes in a cell [74].  

 

Figure 22: Promoter loci. (Figure has been created for the needs of the current thesis). 

This study focuses on promoter DNA regions, with a big portion dedicated to TSS 

identification from CAGE datasets (and thereby promoter loci identification). 

1.8.2. Algorithms for transcription start site identification from CAGE data 

During the past decade, several in silico methods have been developed for the analysis of 

CAGE sequencing data sets. These methods (RECLU [75], PARACLU [76], CAGEr [77]) aim 

to extract peaks from the CAGE signal and quantify the abundance of RNA transcripts.  

All algorithms aim to remove any bioproducts and false positive peaks from CAGE signal 

while preserving true gene TSS. Some of these implementations include ML techniques 

for the accurate identification of TSS with ADAPT-CAGE [78] exhibiting the highest 

accuracy amongst them. 
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1.9. Genetic variations in DNA 

Variants are alterations in the nucleic acid sequence of the genome of a living organism. 

Genetic variants occur frequently in all living organisms. Some variants are beneficial, 

some neutral, and some are harmful. Variants can be classified in two categories based 

on cell type. 

Germline variants [79] are DNA alterations in gamete cells and can be passed from parent 

to offspring. On the other hand, somatic variants [80] are present only in specific cells 

that are not part of the germline and thus are not inherited. Somatic variants are acquired 

during life progression, usually due to environmental factors or due to errors in the cell 

division process. Some somatic variants may lead to the development of diseases such as 

cancer (Figure 23). Both somatic and germline variants have been reported to play a key 

role in many cancers. 

There are many different variant types that may occur in the DNA and can be classified in 

two categories, small-scale and large-scale variants. Small-scale variants involve a single 

gene. These mutations alter one or a few nucleotide bases of the DNA. Large-scale 

variants involve changes in the structure of one or more chromosomes and many genes 

may be affected at once. 

1.9.1. Point variants 

A point variant can occur in a genome when a single base pair is added, deleted, or 

changed. While most point mutations are not harmful, they might have functional impact, 

including changes in gene expression or alterations in final encoded protein. Point 

variants may involve either substitution, insertion, deletion, and inversion changes to the 

DNA.  
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Figure 23: Germline vs somatic mutations. (Figure has been created for the needs of the current thesis). 

1.9.2. Types of point variants 

Substitution variant occurs when one or more bases in the sequence is replaced by the 

same number of bases. Insertion when a base is added to the sequence and deletion 

when a base is deleted from the sequence. Insertion and deletions are usually called 

indels. Also, inversion variants occur when a segment of the DNA is reversed (Figure 24). 
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Figure 24: Types of point mutations. (Figure has been created for the needs of the current thesis). 

1.9.3. Effects of point variants 

Point variants are classified in silent, missense, nonsense, and frameshift categories based 

on their effect. Silent variants occur when the DNA change does not alter the amino acid 

sequence of the polypeptide. Missense variants occur when the DNA change alters a 

single amino acid in the produced polypeptide chain and nonsense when the DNA change 

creates a premature end codon that intervenes in the polypeptide which remains 

incomplete. Finally, frameshift mutations occur when the addition or removal of a base 

alters the reading frame of the gene.  
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1.9.4. Effects of large-scale variants 

Large-scale variants include Copy Number Variation (CNV) which is a type of variant where 

large portions of the DNA are inserted, repeated, or completely lost. These DNA regions 

vary between 10Kb and 5000Kb long. Other large-scale variants include duplication of 

genes when there is an increase in the number of copies for a gene, deletion of large 

chromosome regions, loss of one copy of a gene where previously two copies were 

present or loss of both copies of the same gene and movement of DNA sections to another 

location. 

1.9.5. SNPs 

Single-nucleotide polymorphisms (SNPs) are substitutions of a single nucleotide at a 

specific position within the genome. SNPs are the most common type of genetic variation, 

and a variant is called an SNP if it occurs with a frequency above one percent (>1%) in a 

population (Figure 25). There are more than 600 million known SNPs across populations 

around the world. 

 

Figure 25: Demonstration of SNPs vs mutations in a population of roses. Assuming there is a variant that turns red roses 

to white, depending on the frequency the variant is called SNP or Mutation. (Figure has been created for the needs of 

the current thesis) 
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Most SNPs have no effect on an organism’s health. However, some of these genetic 

variations have proven to be very important in the study of health. SNPs may help predict 

an individual’s response to a certain drug, susceptibility to an environmental factor, and 

risk of developing diseases. SNPs can also be used to track the inheritance of disease-

associated genetic variations within ancestors. Hence, a particular SNP may not cause a 

disorder, although some of them have been associated with certain diseases. Such type 

of analysis for discovering SNPs correlated with disorders or diseases, is called genome 

wide association study (GWAS). 

1.9.6. Genome wide association studies 

GWAS are utilized to identify associations between DNA regions and diseases (or traits). 

This method analyzes the whole genome of a population seeking for SNPs, to identify 

differences in phenotypes between groups. These studies are searching for hundreds or 

thousands of SNPs at the same time. These SNPs are present at a higher frequency in 

cases compared to controls in a particular locus (Figure 26). SNPs found to be associated 

with a disease can help pinpoint genes or regulatory elements which are more likely to 

correlate with the disease development. 

Therefore, GWAS represent a promising way for studying SNPs across the genome and 

deciphering complex and common diseases in which high abundance of SNPs contribute 

to a person’s risk for developing them. GWAS studies have identified SNPs associated with 

several traits and diseases including heart, Parkinson, Crohn’s and more diseases. 

Furthermore, SNPs have been correlated with response to certain drugs as well as 

susceptibility to specific environments. 
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Figure 26: Overview of allele distribution across population. (Figure has been created for the needs of the current thesis) 

1.9.7. Mutations 

Mutations are genomic variations that occur in less than one percent (<1%) of a 

population. These types of variants have been associated with several diseases and 

disorders, such as cancer development.  

There are two categories in the context of mutations. Passenger mutations which are 

defined as those that do not confer cancer phenotypes and driver mutations which 

describe changes in the DNA sequence that cause cells to become cancerous. Driver 

mutations are targeted in treatment of cancer patients by drugs that can target specific 

mutations.  

Discovery of driver mutations was mainly focused on protein coding genes [81] but 

recently analyses were conducted for the non-coding part of the genome [82]. However, 

passenger mutations have also been proposed and used for analyzing and identifying 

primary and metastatic cancer patterns [83]. 
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1.9.8. Mutational Signatures 

Mutational signatures are characteristic combinations of mutations arising from specific 

mutagenic processes such as DNA replication infidelity, exogenous and endogenous 

genotoxin exposures, defective DNA repair pathways and DNA enzymatic editing [84]. 

A crucial step for analyzing diseases through mutational signature profiles, is to 

understand the underlying mutational processes [85] (Figure 27). This goal is enhanced 

by utilizing non-negative matrix factorization (NMF) [86] algorithms where the 

components of an object (i.e. a mutational signature) are extracted. 

 

Figure 27: Mutational processes thought the lineage of a cell [87]. (Figure has been created for the needs of the current 

thesis) 

Thus, deciphering mutational signatures in various cancers, provides insight for the 

biological context of the disease, the mechanisms involved in carcinogenesis [88], as well 

as exposure to environmental factors [89]. Furthermore, mutational signatures profiling 

has been proven successful for the management and use of targeted therapies in cancer 

patients contributing to personalized medicine. Hence, these profiles have been proven 

as a robust way for analyzing and studying carcinogenesis through evolution of life.  
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Large-scale analysis has revealed many different mutational signature profiles in the 

context of human cancers and has been greatly enhanced with the public repositories of 

ICGC and TCGA [90]. Cosmic [91] is one of the largest databases storing mutational 

signatures that were identified from the analyses of the Pan-Cancer Analysis of Whole 

Genomes (PCAWG) dataset (Figure 28). Signature profiles can be analyzed based on Single 

Base Substitution (SBS), Doublet Base Substitution (DBS) and small insertions and 

deletions (ID). For each of these three categories, signatures have been defined and 

correlated with a particular mutational process. By calculating the cosine similarity 

between signatures of interest and cosmic curated signatures, it is possible to study and 

understand the underlying mechanisms for most cancers. 

 

Figure 28: Profiles of SBS signatures [85]. 

1.9.9. Beneficial mutations 

It is well known that mutations that cause changes in DNA sequence are highly possible 

to be harmful for an organism. On the other hand, there might be occasions that these 
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DNA variations can be beneficial in certain environments. Certain  mutations may enable 

an organism to withstand harsh environmental conditions better than wild-type 

organisms. In such cases they will tend to become more common within the population 

through natural selection. 

For example, a mutation allowed humans to express the enzyme lactase immediately 

after they naturally weaned away from breast milk. Thus, adults are enabled to digest 

lactose, which is likely one of the most beneficial mutations in human evolution [92]. 

Another example of mutated organisms that may be benefited are bacteria. They can 

develop antibiotic resistance when exposed to antibiotic drugs and amongst their 

population only those with great resistance tend to survive [93]. This phenomenon poses 

a challenge to modern medicine as infection by these bacteria is harder to be treated. 
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2. Transcription start site identification of coding and non-coding 

genes 

2.1. Previous implementations 

Current chapter analyzes all current implementations for the analysis of CAGE datasets 

for TSS identification.  

2.1.1. ADAPT-CAGE 

ADAPT-CAGE [78] is the most recent algorithm published in 2020 and utilizes Ensemble 

classifiers to distinguish between true TSS sites and noise or other bioproducts. The 

algorithm can be utilized directly on CAGE reads however, in contrast to existing 

implementations, it is also based on structural and promoter-associated motif features 

extracted from the underlying DNA sequence. Also, CAGE reads are filtered based on their 

mapping quality and 5 prime ends are grouped into peaks based on user provided 

distance. ADAPT-CAGE features derive from the polymerase II motifs, structural DNA 

features and expression profiles.  

2.1.2. PARACLU 

PARACLU [76] an algorithm which was published in 2007, discovers clusters of different 

density and length for CAGE tags. The algorithm utilizes a density parameter d, and 

thereafter reports the segments of each chromosome that maximize the following 

formula: 

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑣𝑒𝑛𝑡𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑠𝑒𝑔𝑚𝑒𝑛𝑡 − 𝑑		 ∙ 	 (𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑒𝑔𝑚𝑒𝑛𝑡	𝑖𝑛	𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠) 

Therefore, distance “d” favors loci with high tag abundance while simultaneously 

penalizes longer regions. 
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2.1.3. RECLU 

RECLU [75] was published in 2004 and comprises an expansion of the PARACLU algorithm. 

RECLU can utilize biological replicates as well as different and more vigorous filtering of 

the results. 

2.1.4. CAGEr 

CAGEr [77] was the current implementation before ADAPT-CAGE and was published in 

2015. CAGEr filters quality of the input data and removes the “G” nucleotide from the 5’ 

prime ends when necessary. All tags are then grouped into clusters. CAGEr can also supply 

results about differentiated TSSs between different samples and identify TSS shifting 

events by analyzing several CAGE experiments. 

2.1.5. TSRchitect 

TSRchitect [94] which is a more versatile implementation, is able to utilize data from a 

spectrum of transcriptome profiling techniques including CAGE, PEAT, RAMPAGE, and 

STRIPE-Seq, while the algorithms is able to also handle experiments with replicates. 

Furthermore, TSRchitect can perform directly on bam file types. 

2.2. DiS-TSS 

Despite the widespread usage of CAGE-seq data, there is increasing evidence in the 

literature that unveil alarming levels of noise embedded in CAGE datasets, raising issues 

related to the specificity of CAGE as a TSS identification protocol [75], [77], [95]. According 

to these studies CAGE can identify capping events involving diverse locations of 

transcribed loci such as different splicing products that may be classified as transcriptional 

noise. 

To this end DIANA Signal-TSS (DiS-TSS) [13] was implemented, an in silico TSS 

identification approach that combines CAGE data with digital signal processing (DSP) 

derived features and ML to provide highly accurate and single-nucleotide resolution 
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predictions (Figure 29). CAGE reads are represented in the time series domain as signal 

vectors, after basic pre-processing takes place regarding mapping quality and tag-cluster 

aggregation. DiS-TSS directly extracts signal features inspired by the DSP field [96] that 

are related to the signal’s structural properties which can accurately distinguish real 

transcription initiation events from biological and/or protocol-induced noise (Figure 30). 

Subsequently these features are forwarded into an SVM model that has been trained on 

CAGE signal from annotated TSSs and non-promoter regions. 

2.2.1. Overview of DiS-TSS 

DiS-TSS algorithm can operate with two different modes (Figure 29). Regarding the first 

mode of operation users can provide input of CAGE alignments in bam format and the 

algorithm will score all candidate TSSs. In the second mode, users can provide BED 

formatted genomic loci along with the bam alignments. The algorithm will analyze the 

bed file and analysis will focus on the selected loci instead of the whole genome. Initially, 

CAGE tags with low mapping quality (less than 10) are removed and the remaining tags 

are aggregated into clusters using a distance parameter cutoff (default value = 25). Peaks 

are further filtered based on the normalized (tags per million - tpm) expression level 

threshold (default = 1). For each peak, DiS-TSS identifies the position with the highest 5’ 

end tag coverage and flags it as the peak’s representative for future analysis. The 

following step involves DSP-derived feature extraction which captures the characteristics 

of each peak’s signal. Subsequently, the features are vectorized and combined to an SVM 

model which has been trained to distinguish between CAGE signal from real transcription 

initiation events and technical or biological noise. 
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Figure 29: DiS-TSS pipeline overview. (A) Genome browser view of raw CAGE signal. (B) Initial step that summarizes the 

aggregation of CAGE tags into clusters/peaks. (C) Extraction of features related to peak properties. (D) Assembly of 

feature vectors prior to using the DiS-TSS ML model that produces the final score for each peak. 

2.2.2. Feature Analysis and Selection 

The thirteen (13) most popular features which were inspired from the DSP field for 

analyzing and unveiling embedded patterns in digital signals were extracted. These 

features are tightly related to the signal’s structural properties [97] and by conducting 

exploratory analysis revealed that they can distinguish structural differences between 

TSS-associated CAGE signal and transcriptional noise (Figure 30). The list of features 

includes kurtosis, height, width, prominence, peak area, skewness, peak length, local 

maxima mean, variance of local maxima and count of local maximum peaks. Additionally, 

after transferring the signal from space to frequency domain by utilizing fast Fourier 

transform (FFT), mean and variance of the frequency amplitudes are calculated as well as 

the frequency with higher energy inside the power spectrum (which is known as dominant 

frequency) [98]. 
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Figure 30: Distribution of the top-8 feature values in the positive and negative sets. 

To identify each feature importance and keep only those having high predictive power, 

the Recursive Feature Elimination (RFE) [99] method was utilized. RFE fits a model using 

different combinations of features and eliminates the weak ones until a certain 

performance limit is reached. In this study, RFE was conducted by utilizing a radial basis 

function (RBF) SVM model for scoring different subsets of feature. Therefore, eight (8) 

total features were selected to contribute as the best performing set which includes 

skewness, peak length, peak height, peak area, dominant frequency, mean and count of 

local maxima as well as kurtosis (Figure 30). All remaining features contribution to the 

algorithm’s performance was having a negative efect and were therefore excluded from 

any further analysis. Features that do not provide better model performance are usually 

removed prior to the training procedure to achieve greater generalization of the model 

and reduce the overall computational complexity. 

2.2.3. Training of DiS-TSS 

CAGE peaks (N = 38,439) were extracted from H9 cell line samples, as described in chapter 

2.2.1 (Overview of DiS-TSS) section and formed the basis for training the algorithm (Figure 
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31). CAGE peaks that were localized closer than 1 kb from annotated protein-coding TSSs 

and overlapped H3K4me3 and Polymerase II ChIP-Seq enriched regions, formed the 

positive set (N = 11,304). To avoid the inclusion of promoter-proximal genomic loci that 

are rich in functional information (i.e. promoters), CAGE peaks that were found in regions 

flanking promoters (up to 9 kb in each direction from the 1 kb window mentioned above) 

were removed entirely from the dataset. Intergenic peaks that did not overlap any 

H3K4me3 and Polymerase II ChIP-Seq enriched regions were selected as the negative set 

(N = 11,579). The same pipeline was used for generating a benchmarking set of 75,127 

CAGE peaks (32,310 positives and 42,817 negatives) in K562 cells which was used to 

compare the performance of DiS-TSS with existing algorithms outside the biological 

context of DiS-TSS training. The importance of utilizing an evaluation dataset from a cell 

line (K562) with an entirely different expression profile than the samples used for training 

is paramount for exploring the possibility of overfitting the model on putative cell-specific 

structural properties of CAGE signal or sequencing batch effects. 

 

Figure 31: Genome browser view of an example genomic locus depicting the process of assigning CAGE peaks to the 

positive or negative sets. The distinction between the two sets depends on the co-occupancy of H3K4me3 and 

Polymerase II ChIP-Seq peaks. CAGE peaks occupied by both active transcription signals are assigned to the positive set. 

Peaks that do not exhibit coverage by any of the two signals were assigned to the negative set, while peaks that were 

occupied either by H3K4me3 or Polymerase II were not considered for training or for the labeled data evaluation. 

2.2.4. Evaluation of DiS-TSS 

Τwo distinct types of evaluation strategies were utilized for benchmarking the 

performance of CAGE TSS predictors, including DiS-TSS, CAGER, RECLU and TSRchitect. 

The first strategy is mainly experimentally driven and utilizes Polymerase II, H3K4me3 and 
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transcription factor ChIP-Seq occupancy. The second evaluation approach is based only 

on gene annotations that were used to segment the genome into positive and negative 

zones in terms of promoter functionality. Both evaluation processes were applied on K562 

cell line datasets to further explore the generalization ability of our algorithm and provide 

a benchmarking environment outside the cell type context of DiS-TSS training set. In Table 

1 all evaluation results are summarized. 

Table 1: Summarized evaluation results in K562 cells, based on experimental data and annotated protein coding TSSs. 

From left to right, each column shows the number of predictions overlapping with at least one TFBS, H3K4me3 and 

Polymerase II peaks, the true positive and false positive zones (as defined by annotated protein coding TSSs). DiS-TSS 

results are based on a 0.5 score cutoff. 

Algorithm 

Total 

positive 

predictions 

Number of predictions overlapping with: 

TFBS  

(%) 

H3K4me3 

(%) 

Polymerase II 

(%) 

TP zone 

(%) 

DiS-TSS 10,937 10,125 

(92.57)  

9,619 

(87.94) 

9,574 

(87.53) 

8,915 

(81.51) 

CAGER 14,465 12,681 

(87.66) 

11,732 

(81.1) 

12,076 

(83.48) 

10,819 

(74.79) 

RECLU 12,282 10,646 

(86.67) 

9,958 

(81.07) 

9,763 

(79.49) 

9,420 

(76.69) 

TSRchitect 7,281 4,705 

(64.62) 

4,161 

(57.14) 

4,222 

(57.98) 

4,128 

(56.69) 

Experimentally Driven Evaluation 

For the purposes of the evaluation process, ChIP-Seq datasets were utilized based on 

known marks of active transcription such as H3K4me3 [100]–[102] and Polymerase II in 

H9 and K562 cell lines. After applying a score cutoff of 0.5 for DiS-TSS, the overlap of 
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positive predictions with H3K4me3 and Polymerase II ChIP-Seq peaks was calculated. The 

same overlap was also calculated for CAGER, RECLU, and TSRchitect predictions. 87.95% 

(9,616 out of 10,937) of positive DiS-TSS predictions were found enriched in H3K4me3 

(Figure 32A) and 87.53% (9,574) in Polymerase II ChIP-Seq signal (Figure 32B), 81.1% and 

83.48% of positive CAGER predictions, 81.07% and 79.49% for RECLU and 57.14% and 

57.98% for TSRchitect respectively. 

 

Figure 32: Experimental evaluation of algorithms based on annotated protein-coding TSSs and H3K4me3, Polymerase II 

and TF ChIP-Seq peaks in K562 cells. Percentage of each algorithm’s predictions overlapping (A) H3K4me3 and (B) 

Polymerase II enriched regions as well as (C) at least one TFBS. (D) Percentage of predictions that were found in 

promoters (±1 kb around annotated TSSs, true positive regions) and (E) outside of promoters (flanking true positive 

regions and up to ±50 kb from the TSSs, false positive regions). 

An additional approach for the evaluation was also utilized, based on the cross-tissue 

compendium of transcription factor ChIP-Seq binding sites provided by the ENCODE 

consortium [103] (Txn Factor track). The abundance of TFBSs overlapping with the 

positive predictions set provided by each algorithm in K562 cells was calculated (Figure 

32C). A total of 92.57% (10,125 out of 10,937) of DiS-TSS predictions were found to 

overlap with at least one TFBS, while 87.66%, 86.67% and 64.16% were the results for 

CAGER, RECLU and TSRchitect respectively. 
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Evaluation Based on Protein-Coding Transcript Annotation 

To further explore the performance limits of CAGE-oriented TSS predictors, an evaluation 

approach exclusively based on annotated protein coding transcripts was utilized. The 

region surrounding each transcript start (±1000b) was considered as the positive zone 

and the flanking region, up to 50000b in both directions, as the negative zone. For every 

algorithm, positive predictions within the positive zone were considered true positives 

(TP) while those found in the negative zone were flagged as false positives (FP). DiS-TSS 

achieved the highest performance (Figure 32D, E) with 81.51% TP (8,915 out of 10,937), 

followed by RECLU with 76.69% (9,420 out of 12,282), CAGER with 74.79% (7,479 out of 

14,465) and TSRchitect with 56.69% (4,128 out of 7,281). 

2.2.5. Discussion 

The above presented algorithm attempts to overcome the limitations and provide a 

breakthrough in CAGE- mediated TSS identification. DiS-TSS is an annotation-agnostic and 

the first algorithm to combine digital signal processing, on CAGE datasets for extracting 

peak shape related features, and Machine Learning for effectively distinguishing real TSS-

related CAGE enriched regions from biological and technical induced noise. Hence, 

through this study, the field of digital signal processing will be introduced to the 

transcriptomics community which can effectively be combined with Machine Learning to 

provide answers to complex and diverse biological questions. 

The evaluation process of algorithms with different types of functionalities is far from 

straightforward and requires careful planning. Thus, the current 2-fold strategy involved 

two major points. At first an evaluation based on the enrichment of the algorithms’ 

predictions with H3K4me3, Polymerase II and TFBS ChIP-Seq signal separately, and 

second, a benchmarking approach solely based on annotated protein-coding transcripts 

and their promoters. The advantage of the previous evaluation method is that for each 

comparison there are several advantages and disadvantages as they can complement one 

another. They also illustrate a spherical view of the algorithms’ performance and provide 
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knowledge for critical components of their applicability and possible functional 

limitations. The algorithm was trained, and the performance was evaluated in two 

different cell types with basically different gene expression profiles, to test the robustness 

against overfitting on cell-specific signal structural properties or sequencing batch effects. 

H9 cells are one of the most widely distributed and well researched embryonic stem cell 

lines in contrast with K562 cells that are extensively utilized as a myelogenous leukemia 

model. The gene expression diversity was the main reason for selecting these two cell 

types, in addition to their widespread and popularity usage in Consortia such as the 

ENCODE [103] and FANTOM [104]. The availability of CAGE, H3K4me3, Polymerase II and 

TFBS ChIP-Seq data for both cell types, also played a decisive role for actively selecting 

them for this study. 

The contribution of this study gravitates around the novel application of digital signal 

processing techniques applied on transcriptomic data and the extraction of feature types 

that when combined with a robust ML model can achieve high performance in the 

problem of CAGE-oriented TSS identification. 

2.3. DeepTSS 

Another robust highly sensitive approach for approaching the TSS identification problem 

is introduced in this chapter. By combining the knowledge gained from the previous 

implementation (DiS-TSS), a novel computational method for processing CAGE-oriented 

samples, that combines genomic signal processing (GSP), structural DNA features, 

evolutionary conservation evidence and raw DNA sequence with Deep Learning to 

provide single-nucleotide TSS predictions with unprecedented levels of performance is 

presented. 

In this chapter DeepTSS [105], which is a fully updated extension of the previous method 

(DiS-TSS) [13] for distinguishing between TSS-associated CAGE signal and biological or 

technical noise, will be thoroughly analyzed. DeepTSS is a computational framework for 

single-nucleotide resolution and accurate TSS identification that combines GSP, sequence 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 11:53:23 EEST - 3.129.210.76



 75 

and evolutionary conservation inputs, CAGE data and DL (Figure 33C). The algorithm 

handles basic pre-processing of the inputs and works directly with aligned tags 

overlapping the CAGE peaks. Hence, tags are transformed to signal vectors in the time 

domain and GSP-inspired features are calculated. Additionally, the DNA sequence 

corresponding to CAGE signal peaks is one-hot encoded and structural features are 

extracted along with the evolutionary conservation score which is calculated by phyloP 

[106]. Furthermore, each feature domain is forwarded as input to a separate 

convolutional layer, which is a branching scheme, already proved to work successfully and 

utilized in the context of precursor micro RNA prediction [107] . All outputs of the layers 

are concatenated and directly forwarded to the densely connected part of the ML 

framework. A multifaceted benchmarking strategy was utilized based on annotated 

experimental data and genomic loci, DeepTSS was found to outperform previously 

published implementations for distinguishing real transcription initiation events from 

biological or protocol-induced noise. 

2.3.1. Annotation and experimental data 

Pre-aligned CAGE datasets in bam format (GRCh38 assembly), from H9 and K562 cells with 

sample codes CNhs11917, CNhs12334 respectively and the corresponding collapsed 

CAGE tags (5’ end) contained in ctss files were downloaded from the FANTOM repository 

[104]. DeepTSS and ADAPT-CAGE can be applied directly on bed or bam files with pre-

calculated representatives of the CAGE peak and iTiSS can only perform on bam file types. 

All other implementations, PARACLU, RECLU and CAGER can only be utilized on the ctss 

files. 

Regarding ChIP-Seq datasets for Polymerase II and H3K4me3 with sample codes 

ENCFF281VBW, ENCFF773FKD, ENCFF757WPX and ENCFF261REY were retrieved from the 

ENCODE repository [103] in bed narrow peak file format and the UCSC liftover software 

was used to migrate them from GRCh37 to GRCh38 assembly coordinates.  
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Also, genomic locations of TFBS from 161 TFs regarding 91 cell types were downloaded 

from the ENCODE 'Txn Factor' track in UCSC. The protein-coding gene annotation was 

downloaded from Ensembl v98 [108]. Furthermore, 100-way per-nucleotide phyloP 

evolutionary conservation score was retrieved from UCSC. 
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Figure 33: Overview of training set selection, feature extraction and DeepTSS DL architecture. A) Synopsis of the process 

for labeling H9 CAGE peaks as positive or negative samples. Peaks exhibiting an overlap with annotated protein-coding 
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gene TSSs as well as both H3K4me3 and Polymerase II enriched loci were labeled as positives while those that overlapped 

with either of the two marks but not with annotated TSSs were removed from any subsequent analysis. CAGE peaks that 

did not overlap with any of the two marks and annotated TSSs were marked as negatives. B) For each peak 

representative (position with highest amount of overlapping 5’ end of tags) we extracted the centered underlying 

sequence (600bp) and proceeded to extract four distinct feature categories. The one-hot encoded version of the 

sequence, the GSP-inspired and structural DNA sequence-based features as well as the per nucleotide evolutionary 

conservation evidence. C) DL architecture of DeepTSS, specifically designed for exploiting each individual feature type. 

The architecture consists of 4 distinct convolutional branches for processing the different feature types. The first branch 

operates on the one-hot encoded version of the input DNA sequence, the second and third on GSP and structural DNA 

features respectively, and the fourth on the evolutionary conservation evidence. All branches are designed with 2 

consecutive convolutional layers and their output is concatenated prior to the application of the fully connected part of 

the network. The final output is based on a sigmoid activation function. 

2.3.2. Overview of DeepTSS 

DeepTSS framework can be utilized directly with pre-aligned CAGE reads in bam file 

format. All CAGE tags that don’t meet a quality threshold mapping provided by the user 

(default = 10) are excluded from further analysis. All remaining reads are grouped into 

peaks based on a user-defined distance parameter (default = 50bp). Subsequently, the 

expression level (normalized in tags per million - tpm) of each CAGE peak is calculated and 

those below a user-defined cutoff (default = 1) are excluded. For each peak, the position 

with the greatest number of overlapping 5’ tag ends is spotted and selected as 

representative of the peak. On the other hand, users can provide their own CAGE peak 

representatives in bed format, and they are forwarded directly as the input of DeepTSS 

framework. DeepTSS performs all required feature extraction and directly proceeds on 

utilizing the DL model for scoring each observation. 

2.3.3. Network architecture 

One-hot encoded DNA sequence surrounding the CAGE peak representatives is utilized 

within the DeepTSS framework, GSP and structural DNA features are extracted directly 

from the underlying sequence, and evolutionary conservation is extracted as calculated 

by phyloP. The two branches of GSP and structural DNA features, standardization of 
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features took place separately. Regarding the conservation score no processing was 

utilized (for regions not having a score, DeepTSS assigns zeros). 

For each input type category, a separate convolutional branch has been created, which is 

composed of two convolutional layers (Figure 33C). The calculations from all four 

branches are concatenated and forwarded to the final fully connected layer of the 

framework. All branches operate on a 600 nucleotide bases window size. A multitude of 

models were trained and tested with many different kernel sizes, filter numbers and 

nodes for the dense layers and the final combination which reached the best performance 

on the test set was selected. The one-hot encoded DNA sequence, structural and GSP 

feature branches were constructed with 16/12 kernel sizes and 20/10 filters in the 

convolutional layers. The evolutionary conservation branch is consisted of 32 filters for 

the first convolution layer and 16 regarding the second layer with kernel sizes 16 and 8 

respectively. Range of values for the number of filters in both layers was 20, 30 and 40. 

The range for the kernel length was 20/15, 16/12, and 12/8. The fully connected part is 

comprised of three layers with 120/60/25 nodes, while the range of tested values was 

140/80/40, 120/60/25, and 100/60/20. Leaky ReLU [109] which was adopted as the 

activation function regarding all layers was followed by batch normalization. The sigmoid 

function has been utilized for the final layer of the architecture which calculates the 

algorithm’s output. 

All architectures were trained with binary cross entropy loss function, for 60 epochs 

having enabled an early stopper parameter which was adjusted on ten epochs patience. 

Most of the hyper-parameters were tuned by training many different models of the 

framework for more than 60 epochs exhausting out all possible combinations, which 

concluding in batch size fixed at 256, 0.001 learning rate with ‘Adam’ optimizer and 

dropout rate of 0.2 (Supplementary Table 8). Furthermore, models were tested with 64, 

128, 256 and 512 batch sizes, 0.01, 0.001, 0.0005 and 0.0001 learning rates and 0.2, 0.25, 

0.3, 0.35 dropout rates. A grid search has been utilized for the hyper-parameters tuning 
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approach which learns each configuration of the hyper-parameters and indicates the best 

performing combination. 

2.3.4. Feature extraction 

Various GSP-inspired features were specifically selected as approximations of the DNA 

physicochemical properties in the form of distinct time series. Z-Curve [110] which 

comprises three different signal vectors, each providing a unique representation of the 

DNA sequence. The three components Xn, Yn and Zn correspond to an irrespective 

nucleotide distribution where Xn describes the distribution of purines/pyrimidines, Yn the 

functional group of the bases (amino or keto) and Zn the strength of the hydrogen bonds 

between base pairs (strong H-bond or weak H-bond). DNA-walk representation [111] 

describes a graph where a step upwards is taken if the current nucleotide is a pyrimidine 

and vice versa for a purine. In contrast to Z-curve, DNA walk does not consider the 

previous nucleotide. Paired numeric [112] incorporates the complementarity DNA 

sequences. Tetrahedron representation [113] is a fixed mapping method where all four 

nucleotides are considered as the four vertices of a regular tetrahedron. DeepTSS also 

utilizes structural DNA features associated with promoter regions such as bendability and 

propeller twist [114]. 

All spatial signals are calculated based on a 600bp window around the representative 

CAGE peak. The window size has been decided based on the performance of multiple 

models trained with different values, and its application was achieved with a stride of 

1bp. Z-Curve and tetrahedron representations are multidimensional signals composed of 

three vectors while DNA walk and paired numeric are one-dimensional vectors. These 

signal features can describe a genomic sequence, identify hidden periodicities and 

nucleotide distributions that cannot be revealed with conventional methods. 

Structural features were calculated by using a sliding window and converting each 600bp 

sequence to overlapping 3-mers or 2-mers. For bendability, the input sequences were 

fragmented into overlapping 3-mers (1bp stride), and for each 3-mer we assigned a score 
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that was derived from earlier biochemical studies [115]. The dimensionality of the 

resulting vector was 598. The same strategy was applied for propeller twist [116], [117], 

with the only difference being that this feature is based on 2-mers. Therefore, the 

resulting vector had 599 values. 

These features effectively transform the input DNA sequences into time series. In 

addition, each input sequence is also transformed into its one-hot encoded version and 

the phyloP-derived numerical representation of its evolutionary conservation. Regardless 

of the feature type, the application of the neural network convolutional process ensures 

that local patterns and more abstract combinations of them across different feature types 

that maximize the DL model’s capacity for distinguishing between positive and negative 

CAGE peaks will be identified. 

2.3.5. Training of DeepTSS 

CAGE peaks and their representatives (N=38,439) were extracted from the H9 sample, as 

described in chapter 2.3.2 (Overview of DeepTSS), and used for training our model (Figure 

33B). Peaks that overlapped H3K4me3 and Polymerase II ChIP-Seq enriched loci and were 

positioned within 1kb from annotated protein-coding TSSs, comprised the positive set 

(N=11,304). Intergenic CAGE peaks not overlapping with either H3K4me3 or Polymerase 

II bound regions formed the negative set (N=11,579). Promoter-proximal CAGE peaks that 

were localized in regions flanking annotated promoters (9kb in each direction and outside 

of the previously mentioned 1kb window) were removed entirely from all analyses, to 

avoid the putative inclusion of functionally rich information in the negative set. A 

benchmarking set of 75,127 CAGE peaks (32,310 positives and 42,817 negatives) from the 

K562 sample was generated and used to query the generalization capacity of DeepTSS on 

data from a biological context that was not included in the training process, and to 

compare its performance with previously existing implementations. 

Chromosomes 15 and 14 were completely left out of the training process. The former was 

used for testing the models during the optimal hyperparameters search and the latter as 
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an evaluation set during training. For all loci in the training and validation sets, a sliding 

window of 600bp (the window based on which the input features are calculated) was 

used. Initially, the window was placed 100bp upstream of the CAGE peak representative 

position and then moved to its final position 100bp downstream, with a 25bp stride. 

Therefore, for each sample in the initial set of CAGE peak representatives, we generated 

7 additional samples where the input DNA sequence, based on which all input features 

are calculated, is not centered on the representative. With this approach, we augmented 

the input set by generating more samples and forced our model to remain unaffected by 

any potential biases regarding the position of the CAGE peak representatives within the 

input sequences [107]. 

2.3.6. Evaluation of DeepTSS  

Regardless of their common objective, the evaluation process of algorithms with diverse 

feature extraction processes and mathematical modeling is far from trivial. For comparing 

DeepTSS, ADAPT-CAGE, TOMETOOLS, CAGER, RECLU, PARACLU and iTiSS processes were 

specifically designed to calculate an unbiased estimate of each algorithm’s performance. 

The first benchmark is based only on protein-coding gene annotations that were used to 

divide the genome into promoter (positive) and non-promoter (negative) regions. The 

second benchmark consists of purely experimental data including H3K4me3 and 

transcription factor ChIP-Seq enriched regions as well as a segmentation of the human 

genome into chromatin states as calculated by ChromHMM [118], downloaded from the 

Roadmap Epigenomics Project.  

DeepTSS was trained on CAGE samples from H9 cells, and all benchmarks were based on 

K562 datasets to query the algorithm’s ability to generalize on unseen data. 

Evaluation based on protein-coding gene annotation 

The evaluation of TSS predictors was based on a benchmark created by annotated 

protein-coding genes. For each TSS the proximal region (+/- 500b) was labeled as the 

positive zone, and the flanking region (+/- 50.000b) as the negative zone (Supplementary 
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Figure 50). Positive predictions overlapping the positive zones were assigned as true 

positives (TP) and the rest were considered false positives (FP). Any prediction falling 

within a negative zone and exhibiting an overlap with H3K4me3 ChIP-Seq peaks was 

flagged as a TP instead of FP.  

Positive zone is defined as a +/−500b window centered on the annotated TSS as it has 

been reported to be occupied by TSSs across different tissues (e.g alternative TSSs) [119] 

or under different conditions [120]. 

Hence, to observe the performance based on a different point of view, instead of 

evaluating each CAGE peak individually, we considered that a positive prediction is a gene 

exhibiting at least one overlapping CAGE peak (algorithms’ output) with its TSS vicinity 

(+/− 500bp). 
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Figure 34: Annotation-based evaluation in K562 cells, based on known protein-coding TSSs. For all algorithms, we 

applied multiple score cutoffs to calculate performance metrics in a wide range of prediction confidence and generate 

Precision-Sensitivity as well as TP-FP curves. A) Comparison of distinct DeepTSS models trained with different 

combinations of input feature types and our initial GSP-inspired algorithm, DiS-TSS [26], that used SVM to model the 

data. The green curve corresponds to a DL model trained on the GSP features used in DiS-TSS and the one-hot encoded 

version of the raw DNA sequence. B) DeepTSS, ADAPT-CAGE and TOMETOOLS performance as measured with precision 

and sensitivity. Trade-off between TPs and FPs in the CAGE peak- (C) and gene-oriented (D) evaluation. 

For DeepTSS and ADAPT-CAGE, several score cutoffs were applied to explore their 

performance in the full score range (Figure 34). PARACLU, RECLU, CAGER and iTiSS do not 

provide a score for every CAGE peak. Instead, their output is the equivalent of DeepTSS 

and ADAPT-CAGE predictions after applying a score cutoff. For this reason, precision-

recall curves were not calculated for PARACLU, RECLU, CAGER and iTiSS, which are 
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denoted as points in the graphs. A comparison of all algorithms on this benchmark is also 

presented in Table 2. PARACLU, RECLU, CAGER and ADAPT-CAGE were used with default 

settings, and DeepTSS with a score cutoff of 0.9. 

Table 2: Evaluation results in K562 cells, based on annotated protein-coding gene TSSs. From left to right, the number 

of total positive predictions of each algorithm is shown, the number of TPs and FPs in both CAGE- and gene-oriented 

benchmarks as well as the performance in terms of precision and sensitivity on default parameters. 

Evaluation based on ChromHMM-derived genome annotation and experimental data 

Current section presents the comparison results based on two evaluation benchmarks on 

K562 cells (Supplementary Table 6). The first one is based on ChromHMM, a well-

established ML algorithm for genome segmentation on different chromatin states from 

the analysis of six histone modifications (Figure 35A-B, Supplementary Figure 49A-B). The 

Algorithm 

Total 

positive 

predictions 

All 

predictions in 

query zone 

Gene−oriented 

set of 

predictions 

Protein-coding TSS 

annotation 

TP FP TP FP Precision Sensitivity 

DeepTSS 31,443 6,398 123 3,122 91 0.98 0.96 

ADAPT-

CAGE 
31,177 6,294 172 3,091 125 0.97 0.94 

CAGER 14,465 6,489 1,771 3,102 1,003 0.97 0.78 

PARACLU 9,453 4,016 129 2,258 95 0.97 0.60 

RECLU 11,558 6,257 1649 3,082 970 0.93 0.79 

TOMETOOLS 30.689 5,765 228 3,016 174 0.96 0.86 

iTiSS 1,734 98 37 118 40 0.72 0.01 
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second is based on purely experimental data related to H3K4me3 and TFBS occupancy 

(Figure 35C-D, Supplementary Figure 49C-D). Score cutoff of 0.9 was applied to DeepTSS 

and default settings (Supplementary Table 7) on ADAPT-CAGE, TOMETOOLS, PARACLU, 

RECLU, CAGE and iTiSS for isolating their positive predictions. A summary of the 

comparison results of this evaluation process is shown in Table 3. 

Table 3: Summarized evaluation results in K562 cells, based on chromatin states, experimental data and annotated 

protein coding TSSs. From left to right, each column shows the number of total positive predictions of each algorithm, 

the percentage overlapping with chromatin states associated with active and weak/repressed transcription, and at least 

one TF and H3K4me3 peak. 

Algorithm 

Total 

positive 

predictions 

ChromHMM 

active 

transcription 

ChromHMM 

weak 

transcription 

TF  

ChIP-Seq 

peaks 

H3K4me3 

ChIP-Seq 

peaks 

DeepTSS 31,443 
96.66% 

(30,376) 

3.33% 

(1,047) 

98.27% 

(30,898) 

92.04% 

(28,939) 

ADAPT-

CAGE 
31,177 

95.90% 

(29,885) 

4.09% 

(1,276) 

97.72% 

(30,466) 

91.12% 

(28,409) 

CAGER 14,465 
84.62% 

(12,195) 

15.37% 

(2,215) 

87.67% 

(12,681) 

81.11% 

(11,732) 

PARACLU 9,453 
94.01% 

(8,868) 

5.98% 

(565) 

95.26% 

(9,005) 

92.06% 

(8,702) 

RECLU 11,558 
93.35% 

(10,773) 

6.64% 

(767) 

94.32% 

(10,902) 

89.96% 

(10,397) 

TOMETOOLS 30,689 
92.59% 

(28,395) 

7.40% 

(2,272) 

95.46% 

(29,296) 

88.12% 

(27,044) 
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iTiSS 1,734 
41,58% 

(721) 

58,41% 

(1,013) 

48,12% 

(848) 

41,94% 

(739) 

For the first benchmark the percentage of each algorithm's positive predictions with 

active transcription (group 1) and repressed or weak transcription chromatin states 

(group 2) as annotated by ChromHMM (Figure 35A) was calculated. 96.66% (30,376) of 

DeepTSS’s positive predictions were found to overlap group 1 and 3.33% (1,047) group 2. 

ADAPT-CAGE performance was 95.90% (29,885) and 4.09% (1,276) for group 1 and 2 

respectively, TOMETOOLS 92.59% (28395) and 7.40% (2272), PARACLU 94.01% (8,868) 

and 5.98% (565), RECLU 93.35% (10,773) and 6.64% (767), CAGER 84.62% (12,195) and 

15.37% (2,215) and iTiSS 41.58% (721) and 58.41% (1,013). 

Regarding the negative predictions (Figure 35B), DeepTSS exhibited an overlap of 28.74% 

(4,576) with group 1 and 71.25% (11,343) with group 2, 31.31% (5,067) and 68.68% 

(11,114) for ADAPT-CAGE, 39.42% (6609) and 60.57% (10155) for TOMETOOLS, 61.25% 

(18,522) and 38.75% (11,718) for PARACLU, 69.72% (27,147) and 30.27% (11,790) for 

RECLU, 57.63% (13,643) and 42.36% (10,029) for CAGER and 73.94% (34,405) and 26.05% 

(12,121) for iTiSS. 

Furthermore, the second evaluation approach was utilized with the scope of exploring 

the occupancy of TF and H3K4me3 ChIP-Seq peaks in the vicinity of positive predictions 

(Figure 35C & D for TF and H3K4me3 respectively). For DeepTSS, 98.27% (30,898) of 

positive predictions overlapped with at least one TFBS and 92.04% (28,939) with 

H3K4me3, ADAPT-CAGE 97.72% (30,466) and 91.12% (28,409), TOMETOOLS 95.46% 

(29296) and 88.12% (27044), PARACLU 95.26% (9,005) and 92.06% (8,702), RECLU 94.32% 

(10,902) and 89.96% (10,397), CAGER 87.67% (12,681) and 81.11% (11,732) and iTiSS 

48.12% (848) and 41.94% (739). 
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Figure 35: Evaluation of algorithms based on H3K4me3 and TF ChIP-Seq peaks as well as ChromHMM-derived chromatin 

states from the analysis of six histone modifications in K562 cells. Percentage of each algorithm’s positive (A) and 

negative (B) predictions overlapping chromatin states associated with genomic regions exhibiting active (left panel) and 

weak/repressed (right panel) transcription. Percentage of the algorithms’ positive predictions with at least one TFBS (C) 

and H3K4me3 peak (D) derived from ChIP-Seq. 
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2.3.7. Application of existing algorithms 

CAGER, RECLU, PARACLU and iTiSS were applied on the ctss files provided by FANTOM 

with default parameters and the results we considered as their positive predictions 

(Supplementary Table 7). Regarding previous implementation, ADAPT-CAGE and 

TOMETOOLS are the only methods that utilize ML to filter out noise from the CAGE signal. 

ADAPT-CAGE and DiS-TSS were also used with default parameters (Supplementary Table 

7). For TOMETOOLS, 1,048,124 scored CAGE enriched loci were downloaded from all cell 

types profiled by FANTOM for human species. Liftover from UCSC was utilized to lift the 

coordinates from hg37 to hg38. To discover TOMETOOLS predictions for the K562 cell 

line, we overlapped the FANTOM scored TSS file with the K562 CAGE peaks (N = 47,377). 

This way, we generated TOMETOOLS predictions in H9 and K562 cells (Supplementary 

Table 4). The score threshold (0.228) was chosen based on the algorithm’s documentation 

and was used in the evaluation process shown in Figure 34. In Figure 35 benchmark, 

multiple score thresholds were applied. 

The computational times for ADAPT-CAGE, CAGER, RECLU, PARACLU and iTiSS are ~13 

hours, ~46 mins, ~13 mins, ~4 sec and ~30 mins respectively, for ~47,000 CAGE peaks. 

TOMTOOLS peaks were downloaded directly from the Fantom5 repository. 

2.3.8. Software requirements and benchmarking 

DeepTSS was developed with Python 3.7, and TensorFlow (version 2.2) with Keras API 

(version 2.4.3) for implementing the DL part of the framework. All dependencies and a 

thorough documentation can be found at the GitHub repository.  

To apply DeepTSS, users must provide a CAGE bam file or a bed file with precalculated 

CAGE peak representatives, the corresponding human genome assembly in fasta format, 

and the evolutionary conservation score as calculated by phyloP in bigWig format. If the 

phyloP score is not provided, the evolutionary conservation branch will not be utilized 

automatically, and predictions will be based on the remaining feature types.  
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DeepTSS was benchmarked in terms of computational cost on a computer running on an 

Intel Xeon E5-2630 v3 @ 2.40GHz and a total of 8 threads was utilized for performance 

benchmarking, to simulate the average CPU capacity of personal computers. The time 

cost for predicting approximately 40,000 CAGE peak representatives was ~4 minutes on 

average, with all convolutional branches enabled. 

DeepTSS is freely available to the public and can be downloaded at the following GitHub 

repository: https://github.com/DianaLaboratory/DeepTSS. 

2.3.9. Discussion 

DeepTSS is a novel DL-based computational framework for removing noise from CAGE 

data and maximizing the probability that the remaining CAGE signal corresponds to 

transcription initiation events. DeepTSS operates on a seemingly unrelated spectrum of 

features that are used as input to a DL architecture that was specifically designed to 

exploit each individual feature type. In contrast to existing implementations, DeepTSS 

does not require any kind of prior feature engineering process since it relies on 

convolutional layers directly embedded in the DL architecture that can readily identify 

patterns and only utilize the important ones for the classification task. DeepTSS was found 

to outperform existing state-of-the-art implementations when evaluated on a 

meticulously designed strategy that included experimental data and high-quality genome 

annotations. 

This study highlights the importance of ML, and specifically DL, in providing solutions to 

removing inherent flaws in experimental methods that are the bread-and-butter of 

contemporary Molecular Biology research. Reliable algorithms, like DeepTSS, can unleash 

the full potential of already popular protocols such as CAGE, and play a fundamental role 

towards unveiling key gene expression regulators as well as pushing the boundaries of 

non-coding RNAs implication in regulatory networks even further. Finally, DeepTSS is 

utilized without using gene expression quantities of CAGE peaks and works directly on the 

DNA paving the road for novel gene identification. 
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3. Analysis of variants in regulatory regions 

3.1. Overview of variants in diseases 

Variants affecting regulation of gene expression have been proposed as one of the main 

causes of human diversity. Furthermore, genomic variants implicated in regulatory 

mechanisms may affect an organism’s health. The importance of SNPs is underscored 

from GWAS, which have correlated a vast number of polymorphisms to various diseases. 

Alongside the SNPs, analysis of rare variants in non-coding loci has provided immense 

insights and has had a great impact in cancer understanding and treatment. Τhis type of 

analysis paved the road for better drug discovery and precision medicine [121]. 

In this chapter, rare variants, or better referenced mutations, have been studied with 

respect to the functional impact on an organism’s genome. Furthermore, a novel 

methodology based on ML techniques is introduced and aims to overcome technical 

difficulties encountered in the context of characterizing survival outcomes of cancer 

patients. To this end, mutations (rare variants) are thoroughly analyzed, and patients’ 

survival outcome has been correlated with mutations in promoters’ loci. This study 

highlights that mutations in these regulatory regions can be robust predictors of cancer 

severity and overall patient survival potential. 

3.1.1. Promoter loci 

A great challenge for analyzing regulatory region profiles was to define the promoter 

length. It is crucial that promoter length is used with caution and that the variants 

analyzed are in the context of non-coding regulatory regions. To this end, Enriched DNase-

seq profiles from the ENCODE consortium were analyzed. Narrow peaks already analyzed 

with ENCODE’s pipeline were obtained from the repository. This task was performed in 

order to identify regions  with high open chromatin density relative to gene start. The 

consensus of all peaks was considered as the region of interest (Figure 36).  
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Figure 36: Enriched DNase-seq regions around the promoter. Coordinates are relative to gene start. 

Thereby, promoters are considered as 2,000bp length regions, 1,500bp upstream and 

500bp downstream of gene start with respect to strand (Figure 37).  

 

Figure 37: Promoter loci. Promoters are considered as 2,000bp length regions (1,500bp upstream and 500bp 

downstream with respect to strand). 
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3.1.2. Exploratory data analysis 

In the following chapters pan-cancer analysis was conducted regarding mutations residing 

within promoter regions. These mutations were studied based on how they may affect 

the overall survival of cancer patients. To meet these requirements WGS and survival 

metadata were obtained from the ICGC consortium. More than 1000 whole genomes 

were analyzed across seven (7) different primary cancers (Brain, Esophagus, Kidney, Liver, 

Ovary, Pancreas and Prostate).  

Indels were separated from single nucleotide variants (SNV). SNVs overlapping promoter 

loci were discovered in higher abundance compared to indels which were found in much 

lower numbers (Figure 38). 

 

Figure 38: Abundance of variants in promoter loci genome wide pan-cancer. Each dot represents a sample. Red dots 

correspond to indels and dark dots to SNVs. 
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3.1.3. Somatic mutation-type features 

Downstream analysis focuses on SNVs (the most abundant type of variant in the datasets) 

that reside on promoter regions of protein coding genes. Each SNV and its flanking 

sequences serve as features for the model. More specifically, for each donor, all SNVs are 

categorized across the six possible single-nucleotide changes, the 96 possible nucleotide 

changes plus both flanking nucleotides, the 78 possible doublet-nucleotide changes 

(Doublet Base Substitution, DBS) and the 28 and 96 possible insertions/deletions. This 

concludes in a set with 304 total features. All features were extracted with 

SigProfilerMatrixGenerator [122]. 

3.1.4. Mutational signature extraction 

De novo promoter-signature discovery was utilized with SigProfilerExtractor method 

[123], based on the 96 trinucleotide sequence contexts for single base substitutions 

(Figure 39). Two signatures were obtained for each tissue’s high and low risk groups, to 

assess the underlying mutational processes. Mutational processes from different 

etiologies are retrieved from the cosmic database version 3 [85]. Thus, cosine similarity 

and correlation metrics were calculated between original and reconstructed signatures 

with values greater than 0.8 and 0.7 respectively for all tissues. 
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Figure 39: Mutational signatures extraction from patients in 8 different tissues. (Figure has been created for the needs 

of the current thesis) 

3.2. Training of autoencoders 

Mutation-type features were used as inputs to train multiple autoencoder models. For 

each model, a single convolutional branch is created, composed of 2 layers. For each 

tissue, a different model was trained, concluding in a total of seven (7) different models. 

Inputs were standardized by utilizing standard scalers. Hyperparameters were optimized, 

separately for each of the 8 models, by training different models for over 20 epochs, 

exhausting all possible combinations and evaluating the validation loss. Also, 10% of the 

data, for each tissue, were used as a validation for the autoencoder. Autoencoder models 

final layers size, vary between 10 and 20 nodes. For further reduction UMAP was utilized, 

reducing the dimensions to 2. All models number of neighbors parameter is set to 5 

(Figure 40). 
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Figure 40: Pipeline overview. Mutational signatures are fed to the autoencoder and therefore to UMAP. clustering 

algorithm was utilized (k-means) to cluster patients and Kaplan-Meier curve estimation indicated separation between 

patient groups. Also, strong statistical significance was discovered for the log rank test. (Figure has been created for the 

needs of the current thesis) 

3.2.1. Clustering 

K-means, a widely used and efficient clustering algorithm, was utilized to group between 

samples (Figure 41, Figure 51). The elbow method was used to determine the optimal 

number of total clusters (see chapter 1.4.8 K-means). Thus, two (2) clusters are created 

as the optimal cluster number for minimizing within-cluster variance for all tissues, except 

for ovary that indicated an optimal number of 3 total clusters. K-means was utilized with 

300 max iterations. 
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Figure 41: K-means clustering scatter plot of brain tissue. All tissues can be found at chapter 5 Supplements. 

3.2.2. Survival analysis 

All models were evaluated based on their separation ability of survival. Kaplan-Meier 

curve [124] estimation indicated separation between patient groups in all seven (7) 

tissues for two (2) levels of mortality (Figure 42 and Figure 52). For analyzing the survival 

data two variables are considered. The time for which follow up was available, and the 

status at the end of the follow-up. The former is a continuous variable (time in days) and 

the latter a categorical, specifying whether the endpoint was the event of interest. Also, 

strong statistical significance was discovered for the log rank test between the groups in 

each cancer. 
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Figure 42: Kaplan-Meir curves of brain tissue. All tissues can be found at chapter 5 Supplements. 

3.2.3. Analysis of non-regulatory regions 

To assess the predictive power of SNVs residing specifically in promoter regions with 

respect to patient survival outcome, the pipeline was utilized on a different set of non-

coding regions that served as negative (Figure 43). Negative regions consist of 50Kbp 

length and 10Kbp upstream of the promoters (with respect to strand). Special attention 

was given so that negative zones do not overlap any upstream gene. 
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Figure 43: Non-regulatory regions. Negative zones are indicated in red. (Figure has been created for the needs of the 

current thesis) 

3.3. Mutational signature analysis 

Each cancer type may present unique underlying mutational processes. To further 

investigate this matter, for each risk group mutational profiles were extracted and 

underlying mutational processes were deciphered. In all tissues and for each group, 

mutational signatures were extracted across the six possible single-nucleotide changes. 

 

Figure 44: Mutational signatures for brain tissue. Differences are observed between blue, red, and pink SNS categories.  
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3.3.1. Deciphering Mutational Signatures 

For each signature cosine similarity and correlation metrics were calculated and 

compared to COSMIC database pre-extracted mutational processes (Figure 45). By 

deciphering each one of the signatures, mutational processes revealedBER deficiency, 

Spontaneous deamination of 5-methylcytosine, tobacco smoking and aging as factors of 

cancer progression. Regarding the brain tissue BER deficiency and tobacco smoking are 

the two (2) underlying processes between the 2 risk groups. Aging was observed in all 

tissues, but it is not an environmental factor (like UV light). Also, it is known that as 

organisms age more mutations are accumulated in the genome. All processes for all 

tissues can be found in supplementary Table 9.  

 

Figure 45: Brain low risk group signatures mutational processes. 

3.4. Hotspot analysis 

Hotspot analysis, which is a spatial analysis and mapping technique interested in the 

identification of clustering of spatial phenomena, was utilized for mutations in the 

promoter loci. For each promoter, mutations across patients with distance below fifty 

(<50bp) nucleotides are clustered together, and “hotspots” are created (Figure 46). All 

clusters having less than ten (10) mutations are filtered out. With this type of analysis 
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expression differences in genes can be analyzed in spatial order. Hotspots are highly likely 

to damage certain parts of the promoter and lead to deregulation of the genes. 

 

Figure 46: Mutation hotspots in promoter loci of 5 samples/donors. 

3.4.1. Abundance of mutations in hotspots 

Brain and liver tissues indicated a high abundance of mutations in hotspots, for several 

promoters, but mean values for all tissues are approximately 7-10 mutations within each 

hotspot. Overall samples have indicated some mutational activity in their promoter loci. 

3.4.2. Expression differences 

To further explore the impact of mutations in promoter regions, gene expression analysis 

was performed for mutated and non-mutated (wild type) promoters. To eliminate biases 

on gene expression arising from disease onset rather than the underlying mutations, only 

cancerous samples were included. Due to limitations in the availability of both WGS and 

RNA-Seq data derived from the same patient, downstream analysis was performed only 

for cancerous liver tissue with an adequate number of samples (n =295) meeting the 

criteria. For every gene, two groups were created and compared, one that included 

samples with the mutated promoter along their gene expression value (measured in TPM) 

and a second one with the wild type (non-mutated) promoter and gene expression value. 

The log10 of TPM values in both groups was plotted (Figure 48). MALAT1 was the most 

frequently mutated promoter in this dataset (Liver). The gene’s downregulation in the 
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mutated samples was found to be statistically significant (p=0.016). Mutations in the 

promoter of ZNF430 (which encodes for Zinc finger protein 430) were associated with the 

expression of ZNF430 which was significantly different in wild types and marginally above 

strong significance (p=0.019). PTGFR had a significant p-value (p=0.001) with 

downregulated mutated samples, however the dataset lacks abundance of mutated 

samples. Finally, WDR74 was marginally above significant p-value (p=0.065) and mutated 

samples tend to have lower expression levels. 

 

 

Figure 47: Boxplot of hotspot abundance across tissues in promoters. Each dot stands for a gene’s promoter. 
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Figure 48: Log10 differences of the expression values (TPM) for mutated and wild type samples. 
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4. Publications 

During the current doctoral thesis several scientific publications were published and are 

listed below by category and chronological order. 

Transcription start site identification algorithms 

1. DiS-TSS: An Annotation Agnostic Algorithm for TSS Identification. Grigoriadis D., 

Perdikopanis N., Georgakilas G.K., Hatzigeorgiou A. (2020) Bioinformatics and 

Biomedical Engineering. IWBBIO 2020. https://doi.org/10.1007/978-3-030-

45385-5_55 

The above paper was selected by the conference to submit the extended study to the 

journal “BMC-Bioinformatics”. 

2. DeepTSS: multi-branch convolutional neural network for transcription start site 

identification from CAGE data. BMC Bioinformatics 23 (Suppl 2), 395 (2022). 

Grigoriadis, D., Perdikopanis, N., Georgakilas, G.K. and A. G. Hatzigeorgiou. 

https://doi.org/10.1186/s12859-022-04945-y. 

Repositories of miRNA transcription start sites and regulatory factors 

3. DIANA-miRGen v4: indexing promoters and regulators for more than 1500 

microRNAs. Nucleic acids research, Perdikopanis, N†., Georgakilas, G. K†., 

Grigoriadis, D., Pierros, V., Kavakiotis, I., Alexiou, P., & Hatzigeorgiou, A. (2021) 

https://academic.oup.com/nar/article/49/D1/D151/6007663?login=false 

†These authors contributed equally: Nikos Perdikopanis and Georgios K. Georgakilas 

Genetic variation in cancer 

4. A deep clustering approach for separating different levels of cancer risk, using 

genomic variations in regulatory regions. (Under submission) Dimitris Grigoriadis, 

Marios Miliotis, Spyros Tastsoglou and Artemis G. Hatzigeorgiou 
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5. Supplements 

Table 4: Performance metrics for all algorithms after applying multiple score cutoffs and combinations of parameters. 

This table corresponds to the hybrid evaluation presented in Figure 3 for K562 cells (Supplementary Table). 

 

Algorithm Threshold Predictions TP FN FP TN Specificity Sensitivity precision accuracy
DeepTSS 0 9117 6663 36 765 1653 0,684 0,995 0,897 0,912
DeepTSS 0,01 9140 6645 54 573 1868 0,765 0,992 0,921 0,931
DeepTSS 0,02 9150 6634 65 496 1955 0,798 0,990 0,930 0,939
DeepTSS 0,03 9155 6629 70 447 2009 0,818 0,990 0,937 0,944
DeepTSS 0,04 9162 6624 75 424 2039 0,828 0,989 0,940 0,946
DeepTSS 0,05 9169 6618 81 400 2070 0,838 0,988 0,943 0,948
DeepTSS 0,1 9188 6599 100 342 2147 0,863 0,985 0,951 0,952
DeepTSS 0,2 9209 6581 118 288 2222 0,885 0,982 0,958 0,956
DeepTSS 0,3 9224 6567 132 260 2265 0,897 0,980 0,962 0,958
DeepTSS 0,4 9238 6555 144 232 2307 0,909 0,979 0,966 0,959
DeepTSS 0,6 9263 6530 169 195 2369 0,924 0,975 0,971 0,961
DeepTSS 0,7 9278 6517 182 176 2403 0,932 0,973 0,974 0,961
DeepTSS 0,8 9300 6489 210 159 2442 0,939 0,969 0,976 0,960
DeepTSS 0.9 (default) 9354 6398 301 123 2532 0,954 0,955 0,981 0,955
DeepTSS 0,91 9364 6386 313 119 2546 0,955 0,953 0,982 0,954
DeepTSS 0,92 9370 6376 323 118 2553 0,956 0,952 0,982 0,953
DeepTSS 0,93 9376 6352 347 114 2563 0,957 0,948 0,982 0,951
DeepTSS 0,94 9391 6325 374 112 2580 0,958 0,944 0,983 0,948
DeepTSS 0,95 9407 6299 400 107 2601 0,960 0,940 0,983 0,946
DeepTSS 0,96 9432 6267 432 100 2633 0,963 0,936 0,984 0,944
DeepTSS 0,97 9471 6220 479 97 2675 0,965 0,928 0,985 0,939
DeepTSS 0,98 9539 6102 597 83 2757 0,971 0,911 0,987 0,929
DeepTSS 0,99 9694 5753 946 55 2940 0,982 0,859 0,991 0,897
DeepTSS 0,995 9694 5753 946 55 2940 0,982 0,859 0,991 0,897
DeepTSS 0,996 9694 5753 946 55 2940 0,982 0,859 0,991 0,897
DeepTSS 0,997 9694 5753 946 55 2940 0,982 0,859 0,991 0,897
ADAPT-CAGE 0,01 9170 6617 82 753 1718 0,695 0,988 0,898 0,909
ADAPT-CAGE 0,02 9198 6587 112 581 1918 0,768 0,983 0,919 0,925
ADAPT-CAGE 0,03 9227 6545 154 454 2074 0,820 0,977 0,935 0,934
ADAPT-CAGE 0,04 9247 6537 162 408 2140 0,840 0,976 0,941 0,938
ADAPT-CAGE 0,05 9251 6525 174 380 2172 0,851 0,974 0,945 0,940
ADAPT-CAGE 0,1 9281 6491 208 304 2278 0,882 0,969 0,955 0,945
ADAPT-CAGE 0,2 9315 6444 255 245 2371 0,906 0,962 0,963 0,946
ADAPT-CAGE 0,3 9337 6415 284 215 2423 0,918 0,958 0,968 0,947
ADAPT-CAGE 0,4 9384 6353 346 187 2498 0,930 0,948 0,971 0,943
ADAPT-CAGE 0.5 (default) 9421 6294 405 172 2550 0,937 0,940 0,973 0,939
ADAPT-CAGE 0,6 9466 6214 485 155 2612 0,944 0,928 0,976 0,932
ADAPT-CAGE 0,7 9524 6102 597 140 2685 0,950 0,911 0,978 0,923
ADAPT-CAGE 0,8 9612 5906 793 125 2788 0,957 0,882 0,979 0,904
ADAPT-CAGE 0,9 9778 5495 1204 107 2972 0,965 0,820 0,981 0,866
ADAPT-CAGE 0,91 9817 5328 1371 99 3019 0,968 0,795 0,982 0,850
ADAPT-CAGE 0,92 9835 5279 1420 99 3037 0,968 0,788 0,982 0,846
ADAPT-CAGE 0,93 9860 5220 1479 99 3062 0,969 0,779 0,981 0,840
ADAPT-CAGE 0,94 9939 4950 1749 89 3151 0,973 0,739 0,982 0,815
ADAPT-CAGE 0,95 9964 4852 1847 86 3179 0,974 0,724 0,983 0,806
ADAPT-CAGE 0,96 10040 4591 2108 75 3266 0,978 0,685 0,984 0,783
ADAPT-CAGE 0,97 10099 4338 2361 64 3336 0,981 0,648 0,985 0,760
ADAPT-CAGE 0,98 10209 3942 2757 55 3455 0,984 0,588 0,986 0,725
ADAPT-CAGE 0,99 10373 3150 3549 49 3625 0,987 0,470 0,985 0,653
ADAPT-CAGE 0,995 10569 2227 4472 40 3830 0,990 0,332 0,982 0,573
TOMETOOLS 0,1 9544 5924 775 592 2253 0,792 0,884 0,909 0,857
TOMETOOLS 0,15 9644 5890 809 309 2636 0,895 0,879 0,950 0,884
TOMETOOLS 0.228 (default) 9819 5765 934 228 2892 0,927 0,861 0,962 0,882
TOMETOOLS 0,25 10024 5482 1217 165 3160 0,950 0,818 0,971 0,862
TOMETOOLS 0,3 10178 5015 1684 126 3353 0,964 0,749 0,975 0,822
TOMETOOLS 0,4 10427 3570 3129 70 3658 0,981 0,533 0,981 0,693
TOMETOOLS 0,5 10673 1635 5064 31 3943 0,992 0,244 0,981 0,523

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 11:53:23 EEST - 3.129.210.76



 107 

Table 5: Performance metrics based on multiple score cutoffs and combinations of parameters for the annotated protein 

coding gene-oriented evaluation that is presented in Figure 3D in K562 cells (Supplementary Table). 

Gene oriented TP/FP     

Algorithm parameters length 
count 
TP 

count 
FP 

DeepTSS 0 500 3216 503 
DeepTSS 0,01 500 3210 390 
DeepTSS 0,02 500 3206 346 
DeepTSS 0,03 500 3205 313 
DeepTSS 0,04 500 3202 297 
DeepTSS 0,05 500 3199 283 
DeepTSS 0,1 500 3191 240 
DeepTSS 0,2 500 3185 204 
DeepTSS 0,3 500 3179 188 
DeepTSS 0,4 500 3175 173 
DeepTSS 0,6 500 3163 141 
DeepTSS 0,7 500 3160 130 
DeepTSS 0,8 500 3150 120 
DeepTSS 0.9 (default) 500 3122 91 
DeepTSS 0,91 500 3119 88 
DeepTSS 0,92 500 3117 88 
DeepTSS 0,93 500 3112 87 
DeepTSS 0,94 500 3107 87 
DeepTSS 0,95 500 3102 85 
DeepTSS 0,96 500 3097 81 
DeepTSS 0,97 500 3084 79 
DeepTSS 0,98 500 3064 70 
DeepTSS 0,99 500 2971 52 
DeepTSS 0,995 500 2971 52 
DeepTSS 0,996 500 2971 52 
DeepTSS 0,997 500 2971 52 
ADAPT-CAGE 0,01 500 3202 512 
ADAPT-CAGE 0,02 500 3189 404 
ADAPT-CAGE 0,03 500 3175 323 
ADAPT-CAGE 0,04 500 3172 290 
ADAPT-CAGE 0,05 500 3169 273 
ADAPT-CAGE 0,1 500 3155 225 
ADAPT-CAGE 0,2 500 3135 181 
ADAPT-CAGE 0,3 500 3129 162 
ADAPT-CAGE 0,4 500 3112 140 
ADAPT-CAGE 0.5 (default) 500 3091 125 
ADAPT-CAGE 0,6 500 3071 114 
ADAPT-CAGE 0,7 500 3049 106 
ADAPT-CAGE 0,8 500 3015 93 
ADAPT-CAGE 0,9 500 2923 81 
ADAPT-CAGE 0,91 500 2891 75 
ADAPT-CAGE 0,92 500 2881 75 
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ADAPT-CAGE 0,93 500 2868 75 
ADAPT-CAGE 0,94 500 2818 67 
ADAPT-CAGE 0,95 500 2790 66 
ADAPT-CAGE 0,96 500 2723 62 
ADAPT-CAGE 0,97 500 2636 55 
ADAPT-CAGE 0,98 500 2523 49 
ADAPT-CAGE 0,99 500 2251 47 
ADAPT-CAGE 0,995 500 1818 41 
TOMETOOLS 0,1 500 3086 454 
TOMETOOLS 0,15 500 3069 237 
TOMETOOLS 0.228 (default) 500 3016 174 
TOMETOOLS 0,25 500 2867 131 
TOMETOOLS 0,3 500 2612 99 
TOMETOOLS 0,4 500 1899 62 
TOMETOOLS 0,5 500 1035 29 

 

Table 6: Table corresponding to all experimental-based evaluations. Columns (b) correspond to the number of 

predictions for each algorithm. These numbers are identical to Supplementary Table 1. In the remaining columns (from 

c to f) we can see the number of predictions overlapping various experimental data enriched regions of the genome. 

The summation of columns E and G for H9 and F and H for K562 does not add up to the numbers shown C for H9 and D 

for K562 because certain predictions do not overlap with any of the ChromHMM chromatin states annotated regions 

and some overlaps with more than one regions (Supplement table). 

 

 

Table 7: Evaluation algorithms default values (Supplement table). 

 

 

Histone marks 
Active transcription %

Histone marks weak 
transcription %

Histone marks 
Active transcription %

Histone marks weak 
transcription %

TFBS 
(e) %

H3K4me3 
(f) %

DeepTSS 31443 30376 96,66 1047 3,33 4576 28,74 11343 71,25 30898 98,27 28939 92,04
ADAPT-CAGE 31177 29885 95,90 1276 4,09 5067 31,31 11114 68,68 30466 97,72 28409 91,12
CAGER 14465 12195 84,62 2215 15,37 13643 57,63 10029 42,36 12681 87,67 11732 81,11
PARACLU 9453 8868 94,01 565 5,98 18522 61,25 11718 38,75 9005 95,26 8702 92,06
RECLU 11558 10773 93,35 767 6,64 27147 69,72 11790 30,27 10902 94,32 10397 89,96
TOMETOOLS 30689 28395 92,59 2272 7,40 6609 39,42 10155 60,57 29296 95,46 27044 88,12
iTiSS 1762 721 41,58 1013 58,41 34405 26,05 12121 26,05 848 48,12 641 36,37

Algorithm 
(a)

Cluster Of TSS
 (predictions) 

(b)

Overlap with
positive predictions negative predictions

Algorithm Default values
ADAPT-CAGE Score threshold=0.5

PARACLU Number of reads=30
RECLU tpm=0.1
CAGER threshold = 0.5 (tpm filter)

TOMETOOLS Score threshold=0.228
iTiSS modeType=DENSE_PEAK
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Table 8: DeepTSS hyper parameters (Supplementary table) 

Training metrics Evaluation metrics Hyper parameters 

Acc loss precision recall Val 
accuracy 

Val 
loss 

Val 
precision 

Val 
recall 

Learning 
rate 

Batch 
size 

Drop 
out 

0,938 0,187 0,929 0,948 0,960 0,137 0,973 0,945 0,01 64 0,2 
0,950 0,149 0,944 0,957 0,961 0,118 0,953 0,969 0,001 64 0,2 
0,953 0,139 0,947 0,960 0,963 0,122 0,975 0,950 0,0005 64 0,2 
0,957 0,125 0,951 0,963 0,951 0,140 0,927 0,979 0,0001 64 0,2 
0,959 0,120 0,953 0,966 0,957 0,135 0,943 0,972 0,01 128 0,2 
0,960 0,115 0,954 0,967 0,960 0,117 0,947 0,973 0,001 128 0,2 
0,961 0,112 0,955 0,967 0,960 0,119 0,964 0,955 0,0005 128 0,2 
0,955 0,133 0,949 0,962 0,962 0,121 0,968 0,955 0,0001 128 0,2 
0,957 0,125 0,951 0,963 0,962 0,119 0,954 0,970 0,01 256 0,2 
0,978 0,061 0,975 0,981 0,977 0,085 0,971 0,982 0,001 256 0,2 
0,953 0,142 0,946 0,960 0,954 0,140 0,935 0,975 0,0005 256 0,2 
0,956 0,133 0,949 0,963 0,960 0,129 0,971 0,948 0,0001 256 0,2 
0,953 0,140 0,946 0,961 0,949 0,158 0,959 0,937 0,01 512 0,2 
0,955 0,133 0,949 0,962 0,955 0,136 0,948 0,963 0,001 512 0,2 
0,957 0,126 0,951 0,964 0,954 0,136 0,940 0,969 0,0005 512 0,2 
0,960 0,127 0,953 0,964 0,952 0,131 0,940 0,960 0,0001 512 0,2 
0,948 0,156 0,939 0,958 0,953 0,143 0,941 0,967 0,01 64 0,25 
0,951 0,147 0,943 0,959 0,944 0,160 0,915 0,979 0,001 64 0,25 
0,952 0,143 0,945 0,960 0,954 0,134 0,943 0,966 0,0005 64 0,25 
0,954 0,137 0,947 0,962 0,953 0,137 0,945 0,963 0,0001 64 0,25 
0,955 0,134 0,948 0,962 0,957 0,130 0,960 0,954 0,01 128 0,25 
0,956 0,130 0,949 0,963 0,954 0,141 0,961 0,946 0,001 128 0,25 
0,954 0,137 0,948 0,961 0,959 0,126 0,972 0,945 0,0005 128 0,25 
0,956 0,131 0,950 0,963 0,960 0,132 0,969 0,949 0,0001 128 0,25 
0,957 0,127 0,951 0,963 0,959 0,128 0,960 0,956 0,01 256 0,25 
0,958 0,124 0,952 0,964 0,963 0,120 0,968 0,956 0,001 256 0,25 
0,959 0,121 0,953 0,965 0,965 0,119 0,956 0,964 0,0005 256 0,25 
0,959 0,118 0,953 0,966 0,966 0,118 0,955 0,965 0,0001 256 0,25 
0,960 0,116 0,955 0,966 0,963 0,119 0,952 0,964 0,01 512 0,25 
0,961 0,114 0,955 0,968 0,966 0,118 0,963 0,961 0,001 512 0,25 
0,963 0,104 0,957 0,970 0,950 0,117 0,942 0,926 0,0005 512 0,25 
0,965 0,101 0,959 0,971 0,958 0,118 0,974 0,940 0,0001 512 0,25 
0,966 0,119 0,960 0,972 0,960 0,117 0,960 0,950 0,01 64 0,3 
0,966 0,181 0,961 0,972 0,950 0,191 0,955 0,921 0,001 64 0,3 
0,967 0,171 0,962 0,971 0,953 0,184 0,945 0,952 0,0005 64 0,3 
0,961 0,128 0,964 0,974 0,959 0,124 0,961 0,958 0,0001 64 0,3 
0,957 0,126 0,951 0,964 0,961 0,125 0,963 0,958 0,01 128 0,3 
0,957 0,129 0,951 0,963 0,965 0,122 0,968 0,961 0,001 128 0,3 
0,961 0,113 0,954 0,968 0,965 0,116 0,962 0,967 0,0005 128 0,3 
0,959 0,118 0,953 0,965 0,966 0,117 0,958 0,961 0,0001 128 0,3 
0,949 0,155 0,943 0,955 0,944 0,157 0,916 0,977 0,01 256 0,3 
0,953 0,139 0,947 0,960 0,953 0,136 0,935 0,974 0,001 256 0,3 
0,957 0,125 0,951 0,964 0,959 0,122 0,953 0,966 0,0005 256 0,3 
0,958 0,121 0,952 0,965 0,961 0,119 0,956 0,966 0,0001 256 0,3 
0,960 0,118 0,955 0,965 0,959 0,127 0,959 0,960 0,01 512 0,3 
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0,956 0,129 0,950 0,962 0,959 0,123 0,943 0,976 0,001 512 0,3 
0,957 0,125 0,952 0,963 0,961 0,118 0,952 0,970 0,0005 512 0,3 
0,958 0,123 0,952 0,964 0,955 0,131 0,939 0,973 0,0001 512 0,3 
0,959 0,119 0,953 0,965 0,960 0,121 0,945 0,976 0,01 64 0,35 
0,959 0,117 0,954 0,965 0,958 0,122 0,943 0,974 0,001 64 0,35 
0,960 0,116 0,954 0,966 0,961 0,118 0,949 0,974 0,0005 64 0,35 
0,960 0,117 0,954 0,966 0,959 0,128 0,962 0,955 0,0001 64 0,35 
0,963 0,106 0,957 0,968 0,963 0,119 0,956 0,970 0,01 128 0,35 
0,956 0,130 0,949 0,963 0,954 0,141 0,961 0,946 0,001 128 0,35 
0,959 0,120 0,952 0,965 0,961 0,130 0,972 0,949 0,0005 128 0,35 
0,960 0,116 0,954 0,966 0,959 0,131 0,949 0,969 0,0001 128 0,35 
0,948 0,156 0,939 0,958 0,953 0,143 0,941 0,967 0,01 256 0,35 
0,960 0,116 0,954 0,967 0,961 0,129 0,965 0,956 0,001 256 0,35 
0,960 0,118 0,955 0,965 0,959 0,127 0,959 0,960 0,0005 256 0,35 
0,960 0,117 0,954 0,966 0,959 0,128 0,962 0,955 0,0001 256 0,35 
0,960 0,116 0,954 0,966 0,959 0,131 0,949 0,969 0,01 512 0,35 
0,961 0,112 0,956 0,966 0,957 0,125 0,940 0,975 0,001 512 0,35 
0,961 0,112 0,955 0,966 0,960 0,127 0,966 0,952 0,0005 512 0,35 
0,962 0,109 0,957 0,968 0,962 0,119 0,954 0,971 0,0001 512 0,35 
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Figure 49: Evaluation results of all algorithms for chromosome 15 (supplement figure). 
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Figure 50: Positive and negative zones around annotated genes (supplement figure). 
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Figure 51: K-means clustering of tissues Kidney, Liver, Ovary, Pancreas, Prostate and Esophagus. (Supplement figure) 
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Figure 52: Kaplan-Meir curves of tissues Kidney, Liver, Ovary, Pancreas, Prostate and Esophagus. Ovary has 3 mortality 

levels, p value is created between groups 1 & 2.  (Supplement figure) 
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Table 9:Mutational processes of each group in all tissues. For ovary group 1 and group 2 are used (highest and lowest 

risk groups).    

Signature Mutational process Group 1 Group 2 Tissue 

SBS1 
Spontaneous deamination of 5-
methylcytosine 1 2,98 Brain 

SBS4 Tobacco smoking 0 58,86 Brain 
SBS5 Aging / Tobacco smoking / NER deficiency 14,04 1,86 Brain 
SBS36 BER deficiency 0 22,96 Brain 
SBS49 Possible sequencing artefact 0 13,34 Brain 
SBS50 Possible sequencing artefact 71,8 0 Brain 

SBS60 Possible sequencing artefact 13,16 0 Brain 

     

SBS1 
Spontaneous deamination of 5-
methylcytosine 8,28 4,82 Esophagus 

SBS2 APOBEC activity 21,78 11,72 Esophagus 

SBS3 
Defective homologous recombination-
based DNA damage repair [...] 0 46,06 Esophagus 

SBS5 Aging / Tobacco smoking / NER deficiency 52,02 24,2 Esophagus 

SBS13 APOBEC activity 16,5 13,2 Esophagus 

     

SBS1 
Spontaneous deamination of 5-
methylcytosine 0,88 8,28 Kidney 

SBS5 Aging / Tobacco smoking / NER deficiency 18,38 18,06 Kidney 
SBS22 Aristolochic acid exposure 80,74 0 Kidney 

SBS40 
(Unknown) correlated with patients’ ages 
for some types of human cancer 0 73,66 Kidney 

     

SBS1 
Spontaneous deamination of 5-
methylcytosine 10,6 13,34 Ovary 

SBS3 
Defective homologous recombination-
based DNA damage repair [...] 65,2 0 Ovary 

SBS5 Aging / Tobacco smoking / NER deficiency 24,2 21,72 Ovary 

SBS40 
(Unknown) correlated with patients’ ages 
for some types of human cancer 0 64,94 Ovary 

     

SBS5 
Spontaneous deamination of 5-
methylcytosine 0,58 0 Pancreas 

SBS36 BER deficiency (somatic MUTYH mutations) 87,86 100 Pancreas 

SBS53 Possible sequencing artefact 11,56 0 Pancreas 
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SBS1 
Spontaneous deamination of 5-
methylcytosine 17,56 18,46 Prostate 

SBS4 Tobacco smoking 0 71,98 Prostate 
SBS5 Aging / Tobacco smoking / NER deficiency 18,82 51,38 Prostate 
SBS15 Defective DNA mismatch repair (MMR) 13,26 12,18 Prostate 

SBS40 
(Unknown) correlated with patients’ ages 
for some types of human cancer 50,36 0 Prostate 

     

SBS1 
Spontaneous deamination of 5-
methylcytosine 16,3 11,7 Liver 

SBS5 Aging / Tobacco smoking / NER deficiency 39,24 31,74 Liver 
SBS15 Defective DNA mismatch repair (MMR) 21,3 17,82 Liver 
SBS19 Unknown 23,16 0 Liver 
SBS21 DNA mismatch repair deficiency 0 15,82 Liver 

SBS44 Defective DNA mismatch repair (MMR) 0 22,92 Liver 
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