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ABSTRACT 

The current era is defined by the abundancy of data. Globally, the accumulation 

of data is exponentially increasing each year, leading to huge amounts of data, 

containing useful information. Machine learning, a set of data-driven approaches 

for developing mathematical models, based on self-learning algorithms, has 

found fertile ground to grow. The adaptation of machine learning has been also 

vast not only due to the recent data availability, but also because of the easy access 

to high performance hardware. In most domains, the implementation of machine 

learning approaches brought previously unattainable solutions to complex 

problems and overall high performances to their operations, leading to a 

significant paradigm shift. However, a gap has been identified in the domain of 

Agriculture, the only domain that is steadily behind in technological 

advancements, even though it is highly significant and belongs in the primary 

production. The need for fast technological adaptation to agriculture is grave, 

because of the rapid increase in global population, leading to overpopulation and 

the adverse effect of climate change. 

The problem at hand is the development of a methodology for proper 

identification of diseases on trees, that are located within orchards of high valued 

crops. Agricultural operational environments are highly complex and the disease 

detection is problem based on vision, therefore large amounts of imaging data 

and sophisticated machine learning algorithms are employed to tackle all specific 

issues. Specifically, a significant number of data has been collected from various 

walnut orchards and has been manually labelled by expert agronomists. 

Additionally, multiple convolutional neural network architectures are utilized, 

since they are highly capable of extracting features and useful information from 

complex images. The proposed methodology comprises of three consecutive 

tasks, aiming to offer a holistic solution towards the identification of infected 

trees, in order to mitigate the disease’s spread and preserve the crop production 

and yield. The first task tackles the issue of tree localization within orchards with 

the use of semantic segmentation, from images taken by unmanned aerial 

vehicles, under a large variety of conditions and throughout all seasons. Once the 

proper localization is complete, unmanned ground vehicles receive the 

information to autonomously navigate through the orchard and inspect each tree 

individually, leading to the next phase. The second step concerns the detection 

of disease infected leaves, specifically anthracnose, in images of walnut trees, a 

high value crop. Final step is to properly classify the images of disease-infected 
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leaves and approximate the level of infection in each tree. Outcome of this 

methodology is a variability map of the orchard and the extent of the disease 

spread within it, which can then be used by automatic precision spraying systems 

or manual operations to treat the trees with the minimum possible resources. 

Each task of the proposed methodology has been thoroughly investigated, tested 

and evaluated for application in real-life agricultural environments. Aim of the 

present thesis is to develop a methodology that is not just applicable in real-life 

operational environments, but also achieves high performance, robustness, and 

generalization, a demanding task due to the complex and variable nature of the 

agricultural environments. All targets have been met for each one of the tasks, 

leading to the publication of three scientific papers in esteemed peer-reviewed 

journals, proving the scientific soundness of all approaches. Future goals of the 

proposed methodology include, but are not limited to, further development 

based on the potential of the methodology, and direct implementation in real-life 

farming systems. 
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1 INTRODUCTION 

1.1 BACKGROUND 

1.1.1 Age of data 
Decades have passed since the computer started to become an integral part in 

almost everyone’s lives, invoking radical changes throughout business and 

personal aspects of life, leading us towards the Age of Information. 

The Information Age, also known as the Computer Age or the Digital Age is 

a historical period that began in the middle of the 20th century, and whose main 

hallmark was the rapid epochal change from the traditional industry, constituted 

by the Industrial Revolution, to an economy mainly based on information 

technology [1][2][3][4]. The beginning of the Information Age has coincided with 

the development of transistor technology, not by accident, since these two are 

directly associated [5].  

The exponential increase in all crucial tokens of the digital revolution such as 

processing capabilities, storage capacity, data management, and transmission 

speeds, together with the associated reduction in costs per unit, marked the 

beginning of a new era: the “Age of Data” [6]. This period, as we are currently 

experiencing it, has been defined by the collection, storing and analysis of data, 

that cascaded in a rapid transformation of the economy, society, and in general, 

all aspects of life. These changes have brough monumental effects to the way 

humanity works, but also how we entertain ourselves and socially interact with 

each other. The exponential increase in the use of computers, brought an even 

bigger increase in the creation and utilization of data. A popular term for the 

massive amount of data that is created, collected, and processed by all electronic 

devices, is called “Big Data” [7]. 

This term has been used, overused and abused, mainly for the wrong reasons, 

however, the question remains: “what is Big Data?”. Arguably a marketing term 

and a meme, but ultimately the keyword that signifies advancing trends in 

technology, namely on data-driven approaches, that are used for understanding 

data, their underlying information and their usefulness for making important 

decisions. Data are continuously created at an increasing rate across the globe at 

an accelerative way, currently doubling every two years, as estimated by IDC 

(International Data Corporation) [8]. What is noteworthy is that the main reason 
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for the increasing number of data is not solely the result of increasing streams of 

existing data sources, but the creation of entirely new streams, mainly from 

electronic devices packed with sensors or human interaction, such as 

smartphones. As a matter of fact, countless of digital sensors that can measure 

all types of variables, are installed, and used worldwide in automobiles, industrial 

equipment, energy meters and more. A noteworthy example is the United Stated 

of America, where, in the past decade, the digital economy has been a major 

growth factor [9]. An average annual growth of 5.6% annually  was achieved by 

the digital sector between 2005 and 2016, even if the country’s economy as a 

whole grew only 1.5% [10]. Cloud computing fuelled that growth, by boosting 

efficiency and enabling new business models [11]. 

1.1.2 Data accumulation 
“Data is the new oil” is probably one of the most prevalent mottos of the 21st 

century, accentuating the increasing significance and value of data [12]. This 

metaphor shows accurately how, in this new era, data are “fuelling” the digital 

transformation the mankind is experiencing. This is apparent, simply by 

observing the changes brought by the collective online footprint concerning the 

global economy and the digital lifestyle [13]. 

The global data accumulation that is taking place at the moment is astounding, 

and yet, it will keep on increasing exponentially in the years to come [14]. Some 

interesting facts reveal the magnitude of all data accumulation and transactions, 

and hint to the levels they will reach in the future. The creation of data will grow 

to such a degree, that will surpass 180 ZB (zettabytes) by 2025, which will be 

approximately 118.8 ZB more than that which was available in 2020 [15]. 

Between 2010 and 2020, the creation, capturing, copying, and consumption of 

data went up by 5000%. Considering absolute values, usage grew from 1.2 trillion 

GB (gigabytes), to an astounding 60 trillion GB [16]. Between 2018 and 2020, 

90% of the world’s total amount of data was created. In 2020, the total data 

generation per day was 146,880 GB, and if we consider that the world population 

is 8 billion people, it is easily derived that every person was generating on average 

1.7 MB (megabytes) per second [17]. At a daily basis, over 306·109 emails are sent, 

5·106 tweets are posted on Twitter, and 95·106 photos and videos are shared on 

Instagram. However, the discussion on photos and videos requires further 

investigation, since, vision is the dominant sense in the majority of human beings 

for interacting with their environment, perform tasks, convey information and 

acquire knowledge. 
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1.1.3 Digital images 
A significantly large part of all created data, both online and offline, is digital 

images. With the term digital images, all different types of data that can contain 

visual information are included, such as static and dynamic images, as well as 

videos, which can be defined as a sequence of rapidly recorded static images. In 

general, the majority of traditional media have migrated to the digital domain, 

therefore it is only natural that there would be a radical increase in digital images 

globally. Images can convey messages in a denser fashion than text, as it is also 

mentioned in the famous adage “a picture is worth a thousand words”, and 

therefore are more prominent to be used for faster transfer and richer storage of 

information. In technical terms, there are three pillars that are of great importance 

concerning digital images. 

1.1.3.1 Remote Sensing 
Remote sensing was generally considered as the non-contact information 

acquisition of an instance or an event. The absence of physical contact comes in 

contrast to the in-situ observation, which in general is restricting, especially in 

real-life applications. The term remote sensing has been associated mainly to the 

information acquisition from Earth (or other planets when possible), and is 

applied in large number of scientific areas, such as agriculture, geography, 

meteorology, geology, oceanography, hydrology, land surveying and generally, all 

ecology-related sciences. Some other application concern intelligence, military 

operations, planning, and other human-centric applications. 

The contemporary use of the term refers mainly to image acquisition by sensors 

installed in airborne and spaceborne vehicles, such as aircrafts and satellites, and 

the classification or detection of items on the surface. There are two categories 

concerning remote sensing, the “active” which relies on emitted and reflected 

signals from said airborne and spaceborne vehicles, and the “passive” which relies 

solely on the natural reflection of the sunlight. Nevertheless, both of them utilize 

the signature of the propagated signals from a wide spectrum of electromagnetic 

radiation, to map land, oceans and atmosphere from the Earth’s surface. 

1.1.3.2 Digital image processing 

Digital image processing is the term that describes the utilization of a digital 

computer and an algorithm, in order to perform any type of process on digital 

images. It is a subdivision of digital signal processing, considering that images are 

just two (or more) dimensional signals, and has contributed vastly in tasks such 
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as noise reduction. Various reasons have driven the evolution of digital image 

processing as a scientific and technological area. One reason is the advancements 

in mathematical concepts that apply to the particular domain, such as discrete 

mathematical theory, while on the same time, another reason is the technological 

progress in computer hardware such as CPUs (Central Processing Unit), GPUs 

(Graphics Processing Unit), and the memory capacity increase, both in storage 

ROM (Read Only Memory) but also as RAM (Random Access Memory). 

However, undoubtably one of the most important drives for the evolution of this 

domain is the practical demand for real-life application in a variety of areas such 

as agriculture, medical science and industry amongst other. Digital image 

processing has had a significant impact in the IT (Information Technology) 

scientific area as well as in applied solutions by providing with practical and 

effective methods such as multi-scale signal analysis, feature extraction and 

pattern recognition. 

1.1.3.3 Computer vision 
Computer vision (CV) takes things one step further and focuses on the extraction 

of meaningfully information from digital images (including videos). 

This interdisciplinary scientific field aims to enable computers to gain a high-

level understanding of a problem, in the same fashion as the human visual 

system can do [18][19][20]. This classifies CV as part of AI (Artificial 

Intelligence), since it goes beyond the functions of simple processing, and allows 

systems to learn to derive helpful knowledge that can assist with decision making 

and recommendations. This broader understanding of digital images relies on 

some well-known CV methods such as acquisition, process, analysis, and 

knowledge extraction from high-dimensional data, with final aim to produce 

symbolic or numerical information in a definitive structure i.e. decisions or 

recommendations [21][22][23][24]. 

Key element of CV is the understanding of context, which can be translated as 

the transformation of visual information to a cognitive process, the same way an 

eye’s retina captures the light’s photons, and the brain transforms this input into 

knowledge. Image understanding can be regarded as the symbolic information 

disentanglement of image data, with the use of mathematical and computational 

models based on principles of linear algebra, geometry, physics, statistics and 

learning theory [25]. 

Therefore, CV can be considered as the scientific discipline that enables artificial 

intelligence to extract information from images. As mentioned above, digital 

image data can exist in various types, such as static or dynamic images, videos, as 
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well as multi-angle input recordings (from multiple cameras), multi-dimensional 

images from 3D (three dimensional) scanners, and multi-spectral images with 

large variety of bandwidth capturing such as IR (Infra-red) or NIR (Near Infra-

red). The technological discipline of CV embraces all image capturing systems 

and aims to develop theories, methods and models that apply to all input variants. 

Some well-known CV sub-domains are object recognition, object detection, 

semantic segmentation, video tracking, 3D pose estimation, motion recognition, 

image restoration and image enhancement [23].  

1.2 PROBLEM DEFINITION 

1.2.1 Computer vision issues due to complexity 
Vision is an inherent attribute to most living creatures, and the dominant sense 

in most of them, including humans. For those who are lucky enough to have it, 

it enables them to process their surroundings in their visual cortex by the 

information they receive when photons enter their eyes. Different living creatures 

see different bandwidths of light, however they all perceive their environment 

with a high level of intuitive understanding. 

This task is inherently hard for a computer to perform. Understanding visual 

information is complicated because it involves intelligence, hence, an 

“unintelligent” machine is ill-equipped to perform such a task. Scientists have 

managed to develop techniques and algorithms to allow machines classify images 

or recognize objects, however these techniques fell short when the visual 

information increased in complexity. 

Since all these systems mainly aim to assist humans, either directly or indirectly, 

it is important to research and develop methodologies that will enable them to 

“understand” all environments in which people are present and operate within. 

Controlled, or at least anticipated settings, can be achieved for indoor locations 

such as warehouses or shopfloors, however humans operate a fair deal on open 

air surroundings. One example is the operational environment of self-driving 

cars, where they need to be outside and drive around various locations. A more 

specific example of open-air scenes that are important for humans are agricultural 

environments, where operations take place in rural locations which are highly 

complex from a visual point of view. Agricultural environments can contain 

enormous amounts of information within a range of aspects such as crops, trees, 

leaves, seeds, weeds, etc., as well as cover large areas for notable variations. Such 

open-air environments, besides their intrinsic complexity, suffer from various 
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variabilities, either global, such as the daily day/night switch, the yearly seasonal 

fluctuations, or specific, such as the cropping periods depending on each crop or 

other seasonal operations. This time-dependent environment can radically 

change their characteristics with the change of time, maintaining however, similar 

needs concerning operations. 

1.2.2 Lack of technological advancements in Agriculture 
Agriculture, an important and critical domain for human prospect and existence, 

has itself seen little improvement since the Industrial Revolution. Even though 

the Information Age has impacted almost all other large industries and pushed 

towards their 4th age, i.e., Industry 4.0, Agriculture is still lacking the deep and 

integral application of information technologies. On the same time, the Earth’s 

population is continuously increasing, and a large majority will be facing a realistic 

threat concerning famine, unless the primary production of Agriculture as a 

whole, increases as well [26]. The rapid swift towards the Age of Data, together 

with the accessible computational power, is steadily bringing Agriculture closer 

to new technologies, but with more to be done. This evolution of traditional 

Agriculture goes by the name Precision Agriculture, and it’s based on state-of-

the-art technologies for various domains. 

1.2.3 Precision Agriculture 
Precision agriculture (PA) is the practise which aims towards the increase of 

agricultural yield and mitigation of environmental risks, via monitoring and 

measuring the variability in a plethora of farming management parameters. 

Research effort focusing on precision agriculture research aim on developing a 

DSS (Decision Support Systems) for farm management, with the ultimate goal of 

optimizing processes, procedures and returns, while preserving natural  and 

operational resources [27][28].  

Precision agriculture has also reaped the benefits from the wide-ranging 

availability of unmanned vehicles, both ground- and aerial, since they 

systematically become less expensive, and can be operated by relatively 

inexperienced pilots. These ground robots and agricultural drones have the 

ability to be equipped with RGB (Red Green Blue), IR (infrared), hyperspectral 

or multispectral cameras, which are capable of capturing different types of 

images. Special techniques of field images can be stitched together with the use 

of photogrammetric methods, in order to create orthophotos. Such multispectral 

images contain additional values per pixel, such as near infrared and red-edge 

spectrum values on top of the standard red, green blue values, which are used to 
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process and analyze vegetative indexes such as NDVI (Normalized Difference 

Vegetation Index) maps [29]. 

Such unmanned vehicles are capable of capturing imagery in a remote and even 

unsupervised fashion, and can provide detailed visual information about a 

farming installation, from a few centimetres, up to kilometres. Additionally, 

geographical references such as elevation, can be used to build precise 

topography maps, which are used for correlating topography with crop health. 

This correlation can offer information which is valuable for the optimization of 

variable-rate application of crop inputs such as water, fertilizer, and chemicals 

(herbicides and growth regulators) [30]. 

1.2.4 Field inspection by human experts  
One of the most critical agricultural tasks, the identification of diseases that affect 

food/nut production trees within orchards, has been conducted with the same 

way for centuries. Diseases, viral or fungal, infect the trees and reduce their 

potential for large or at minimum the normal, expected yield. The adverse effects 

of trees infection, besides the obvious loss of crops, can be easily translated into 

economical figures once the crops are of high value. 

In large orchards, early signs of infection can be completely missed since human 

presence can be sparse. Omitted infections can swiftly lead to the contagion of 

larger areas, since the infection spread obeys the same exponential formula as all 

diseases do, except of course the mobility parameter that appears in human and 

animals. In essence, given a non-constrained system that usually applies in 

orchards, the larger the number of infected trees is, the faster the infection 

spreads to the rest, and consequently, the more drastic measures need to be taken 

to deal with the spread. Aim of every producer is to achieve the maximum 

reduction in resources and yield losses, therefore, early detection systems could 

be immensely valuable for agricultural operations. Deploying experts to conduct 

field inspections periodically would be costly and impractical, therefore there is a 

gap for autonomous systems to be developed and employed for such tasks. 

Additionally, the human factor is not negligible should be taken into 

consideration when performing tasks, since human errors can easily occur, 

especially when there is fatigue, or other obstructive factors present. This issue 

might not have a threatening impact in an orchard (when compared to a hospital’s 

Emergency Room), however, supports the importance of achieving a human 

expert-level accuracy for a developed system. Nevertheless, yield loss or increased 

expenses can incur significant financial impact to producers, which can lead to 
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debts, closures and bankruptcies, which can lead to physical or mental health 

issues. 

1.2.5 Disease detection 

A variety of studies have attempted to tackle the issue of disease detection on 

leaves, however, most of them had promising results only when the images were 

properly curated before the classification [31][32][33]. Placing leaves on single-

coloured backgrounds, or manually removing background information from real-

life images increased the accuracy of trained classifiers, however such approaches 

lack applicability in real conditions. Ideal or controlled environments are useful 

for proof of concept as well as for some specific applications, however, the vast 

portion of agriculture is conducted on open air environments, and therefore it is 

mandatory that such methodologies are applicable in them, regardless of the 

external conditions. 

1.2.6 Tree localization 
On top of the existing tasks performed by on-field experts, new set of tasks have 

emerged with the introduction of new technologies as they gradually become 

available to the public. Tasks like tree location for autonomous orchard 

operations, rely on remote sensing images taken by GPS (Global Positioning 

System) satellites, however there is inherent complexity in them mostly due to 

the existence of same-coloured canopies and weeds, or tree trunks and ground 

[34]. The next generation of farming, i.e. Agriculture 4.0, relies heavily on 

robotics, therefore efficient automated and unsupervised operations, require 

efficient tools and systems that overcome issues with the use of intelligence. 

1.2.7 High complexity of agricultural environments 
A severe obstacle computer vision faces towards its effectiveness in precision 

agriculture applications, is the high complexity environments as they are 

represented in digital images. The human visual perception is by far more capable 

is resolving challenging inputs, than any type of RGB sensors, especially the 

commercially available ones. Such challenging inputs could be captured sceneries 

where both illuminated and shadowed portions exist in the same frame, and the 

camera can only clearly capture one of those, but also in images of high-density 

information, where only a small portion contains useful information and needs 

to be investigated. Both examples apply in precision agriculture, especially when 

tackling images with trees and canopies that have a high number of leaves, both 

with light and shadow, and the focus needs to be specifically on the leaves of the 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 12:15:21 EEST - 3.133.119.121



 

 23 

tree, but the background contains out-of-focus trees, sky, ground, weeds and 

much more. What is noteworthy is that these obstacles are hardly ever mentioned 

by human experts, firstly because the human visual system is by far a better vision 

system than any of the digital ones in existence, and secondly because they have 

obtained “trained eyes” from knowledge and experience, that can pinpoint an 

issue with impeccable ease and speed. 

1.2.8 The proposed solution: combination of large volumes of data 

and machine learning algorithms 

Farming activities and operations within agricultural environments cover a large 

range, most of them conducted, lead or supervised by trained domain experts or 

expert workers with multiple years of involvement in the field. Agriculture 4.0 

aims on assisting human in the entirety of this range of tasks, with any piece of 

technology available. Tasks that are dependent on such level of expertise are 

difficult to automate and model with traditional programming, especially the ones 

that are reliant on visual information, such as field inspection. Taking a step 

further, there is dire need for the development of methodologies, and 

consecutively systems, that will be able to assist human experts with high level of 

accuracy in complex and difficult tasks, such as disease identification in 

agricultural environments. These factors have led to the selection of Precision 

Agriculture, and specifically disease detection in real environments and in-field 

application, as a use case for the present thesis. Alongside with the increasing 

capacity for data collection, closely related to the constantly lowering cost of 

digital sensors, and in tandem with the rise of AI algorithms and the cost 

reduction of powerful chipsets, the problem at hand can be addressed and useful 

outcomes can be extracted. 

1.3 OBJECTIVE 
Main objective of the present thesis is to develop methodologies that tackle 

computer vision issues that were up to now, ineffective when applied in real-

world applications. These methodologies focus on automatic operations based 

on visual stimuli in precision agriculture tasks, and specifically in open-air 

complex environments. All methodologies are developed based on obtained large 

amounts of data, in the form of digital images, and utilize deep learning 

algorithms, namely deep neural networks, which have been proven that can learn 

to successfully perform computer vision tasks of high complexity with increased 

accuracy [35]. 
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Similar works have been tackling issues of computer vision in precision 

agriculture by applying their methodologies in ideal or controlled environments. 

Leaves’ features are extracted only when placed in high-contrast backgrounds, 

weeds are recognized when present in clear ground, seeds and fruits are detected 

when their colour is distinct compared to the leaves, and trees are located from 

aerial images when the ground is free of weeds. These ideal conditions, even 

though they would be also optimal for the farmers, are scarcely found. 

Additionally, open air environments suffer from temporal fluctuations (day-night 

and yearly cycles) and weather conditions (sun, rain or snow), resulting in major 

variations in the macroscopic picture of the said environments. 

This work, however, attempts to solve the issues created by the on-field 

applicability and complexity. Tasks that traditionally are conducted with the on-

field presence of expert agronomists and farmers, such as disease identification 

on leaves, are attempted to be automated by modular methodologies, in order to 

initially assist and later on replace the human presence on the fields. 

Goal of this work is to establish methodologies, based on various machine and 

deep learning methodologies that tackle the issues of computer vision tasks in 

complex environments with large amounts of data, and examine their in-field 

applicability and robust performance. The range of vision tasks should attempt 

to cover a complete operation performed in agricultural environments, where all 

comprising tasks are performed in open-air complex environments and all data 

are collected by cameras placed on UGVs (Unmanned Ground Vehicles) or 

UAVs. Ultimate goal is to achieve close-to-human levels of accuracy by 

unsupervised robotic agents, in tasks that are conducted exclusively by visual 

inspection of experts, in order to integrate this knowledge extraction mechanism 

into subsequent tasks. 

The approach followed in the present work is conducted by establishing a 

workflow for multi-level computer vision tasks, that can be directly applied on 

real-life agricultural environments. And since these novel methodologies will be 

applied on high-value crops productions such as orchard farming, there is 

significantly higher interest both on their economic and environmental impact. 

In short, the present work covers the following objectives: 

• Main objective is to develop methodologies that tackle these issues 

considering computer vision in precision agriculture. 
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• The developed methodologies are based on machine learning algorithms, 

which learn to successfully perform computer vision tasks of high 

complexity with increased accuracy. 

• Similar works have been tackling issues of computer vision in precision 

agriculture by applying it in ideal or controlled environments, however 

this work attempts to solve the issues created by the on-field applicability 

and complexity. 

• Goal of this work is to establish the applicability and performance of 

various machine and deep learning methodologies that tackle the issues 

computer vision tasks in complex environments, with large amounts of 

data. 

• This is conducted by establishing a workflow for multi-level computer 

vision tasks, that can be directly applied on real-life agricultural 

environments. 
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2 STATE OF THE ART 

2.1 MACHINE LEARNING 
Up until the 1950s, computers were considered to be “dumb” since they were 

able to only do what they were programmed to, in a pre-determined manner. 

Along came AI which brought to computers the ability to learn from their errors 

by trying to correct them [36][37], in the same way it is done in living beings 

[38][39]. The brain’s cognitive and learning skills have been extensively studied 

and consequently implemented in computer science [40][41].  Probably the most 

influential area of computer science of the modern world ][42][43][44], AI’s 

applications cover almost all domains including agriculture [45], medicine [46], 

energy [47] and manufacturing [48]. AI’s penetration to our everyday lives, even 

though mostly unrecognizable, it is very deep, as it is applied in our smartphones, 

smartwatches, search engines, shopping carts, autonomous cars, video platforms 

and music players [49]. Machines can now understand more than they used to 

and we are gradually becoming more used to this fact [50]. 

Mathematical formulas are the core of AI, used in such combinations and ways 

so that a machine becomes able to learn from data [51]. A wide range of 

algorithmic approaches and mathematical concepts found fertile ground in the 

domain of data science, because they could enable the machines to learn from 

data. The set of all of these mathematical concepts, methods and algorithms is 

known as machine learning [52]. Machine learning (ML) is the foundation on 

which the machines are programmed iteratively learn in order to achieve 

intelligence. By looking at the large picture, ML is “only” a part of the general 

concept of AI [53], visually shown in Figure 1, nevertheless it is the most 

significant one and definitely the one that has drawn a huge amount of research 

and academic interest. 
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Figure 1: Machine learning as part of artificial intelligence. 

2.1.1 Machine learning versus conventional programming 
Conventional programming and ML’s difference lies in one major aspect. Even 

though both are parts of computer science [54]. When algorithms are developed 

with specific instructions and rules in order to “explain” the computer in each 

step exactly what to do, it is called conventional programming. On the other 

hand, the premise is completely the opposite in ML since what is provided to the 

computer are the input-output sets, and the tools to learn to derive the latter from 

the former. The two types of programming can be illustrated in Figure 2. 
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Figure 2: Conventional programming versus machine learning. 

The outcome model that derives from an ML approach, contains rules which can 

either be clear or obscure, based on which of the many ML algorithms is 

implemented. Unawareness of the ML model’s rules can cause uncertainties and 

insecurity, however ML applications have achieved extremely high efficiency 

most applications that have been tested. 

2.1.2 Fundamental features of machine learning 

Machine learning strongly depends on data. In most cases, the more data it uses, 

the better it works. This make sense, given that machine learning is built on 

“experience”. As far as living creatures are concerned, they learn from examples; 

the first human that touched fire probably never did it a second time. The more 

experiences someone has, the better understanding is accomplished with a 

subject or task. The same goes with physical abilities. Someone must throw a rock 

many times to learn how to throw it far, or to build strength for it. The same 

applies also to the machines. In an attempt for a machine to build a set of rules 

that describe the function that turns input onto output, it needs a lot of input and 

output data to be used for tryouts. Again, tryouts stand for the testing of as many 

possibilities that will lead to the desired outcome in the same manner as babies 

try to find the right shape that goes to the right hole. The mathematics behind 

this thought process is a bit more complicated than this example, however the 

idea is simple; more data means more experience, leading to more tryouts, causing 

deeper learning, and consequently, better understanding. 

At the time being, machine learning allows for achieving something called narrow 

artificial intelligence [55]. This is the intelligence that is confined within some 

specific limits. This means that we can build models, where models are the rules 

that a machine learning algorithm produces given explicit input/output) that can 

be applied only to specific tasks, e.g., identification of faces in images. The greater 

picture is general artificial intelligence [56]. This is the hypothetical, for the 

moment, intelligence that gives a machine the capacity to perform intellectual 

tasks like an adult human.  

A simplified version of machine learning working pipeline reads as follows: 

• Input and output data are obtained; 

• The desired algorithm is selected and fed the data; 

• The algorithm makes an attempt to solve the problem; 

• After the attempt, results are evaluated; 
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• The algorithm proceeds to correct its parameters and attempts again; 

• Repeat until a performance condition is met. 

The final condition is highly relative to the type of problem, the desired outcome 

and the algorithm that has been chosen, but simplified again, is to build a model 

that covers most cases successfully or generalizes well. This means that the model 

should not only be able to predict the provided examples, but also examples that 

are completely unknown to it. This is achieved by using the data that are in 

possession in a smart way. Thus, in most of the cases of a finite amount of data, 

data are split into three categories. Before starting anything, an amount of data is 

concealed from the rest of the process. This set is called “testing data” and will 

be used in the final step again. The rest of the data, that is usually the larger 

amount compared to the testing set, will be used for the learning process. Out of 

the training data however, a small portion will be used for the validation of the 

learning process itself. This validation data helps the model to learn from its 

mistakes and improve its predictions after each iteration, until it reaches a 

condition that is being set. After the model has completed training, it is evaluated 

against the testing data. Given on how well it performs on the testing data, its 

accuracy and general efficiency is evaluated. The splitting of the data is visualized 

in Figure 3. 

 

Figure 3: Splitting the data for machine learning.  
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The above analysis is a description on how supervised machine learning works 

[57]. However, supervised learning is not the only type of machine learning. 

There are more which will be elaborated next. 

2.2 TYPES OF MACHINE LEARNING METHODS 
There are four types of ML methods, depending on the problem at hand and the 

available data. When there is specific knowledge on the outcome, as it has been 

described in detail above, the ML method is called supervised learning. 

Nonetheless, sometimes the outcome is not specifically known, albeit some 

general intuition can point towards a direction, and only after the predictions are 

produced there can be a clear view on their usefulness. This method is called 

unsupervised learning [58]. Semi-supervised learning, recently gaining a lot of 

attention, is a combination of supervised and unsupervised learning, however it 

is not considered a category on its own [59]. A highly popular ML method, 

especially amongst the gaming community, is based on algorithms that “reward” 

desired actions and “punish” undesired ones as they happen. Reinforcement 

learning, as it is called, has been behind some famous examples like AlphaGo 

[60], Super Mario [61] and in any simulated human models trying to 

walk/run/jump [62]. Last but not least, active learning is another particular 

category of ML, used for building recommender systems. Recommender systems, 

as hinted by their name, aim at providing the most fitting recommendations, 

based on patterns that humans exhibit. Platforms like Netflix [63] and Spotify 

[64] use recommenders for movie and songs recommendations that fit the taste 

of the user in order to engage them into using the platform more. Another 

example is Amazon that recommends complementary items to the ones someone 

is buying, so that they have more chances that the user will spend more money 

[65]. The largest example is Google that utilizes ML to almost every business 

aspect, such as in its search engine, mail service, maps and most importantly, 

advertising [66]. 

2.2.1 Supervised learning 

Supervised learning is the most common category of ML [57] and the main focus 

of the present thesis since in used in each step of the methodology, the output is 

known. There are two model categories that fall under supervised learning, 

namely regression and classification. 
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2.2.1.1 Regression 
Regression refers to a continuous variable output, meaning that in can take any 

value. Common examples of regression are word prediction in texts, real-estate 

values prediction, or energy consumption forecasting [67]. In all these examples, 

a common denominator is that the prediction can be almost any value. A visual 

example of regression be seen in Figure 4, where the blue dots are actual data, 

and the green line is the prediction curve. 

 

Figure 4: Qualitative representation of regression. 

2.2.1.2 Classification 

Classification is the method where the input is related to specific outcomes, or 

predefined classes. Classification is widely in imaging applications, such as 

agricultural [68] or medical[69], where the goal is to classify an image based on its 

content and appoint it to a class. Therefore, in medical applications for example, 

machine learning algorithms are used to identify cancers and metastases in whole 

body scans or other imaging methods [70][71][72]. Classification is in essence 

regression except the selected activation function that assigns new values to the 

outcome and serves as a final step. A visual representation of classification is 

shown in Figure 5 where the blue line is the classification border that splits the 

data into two categories. 
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Figure 5: Qualitative representation of Classification. 

2.2.2 Unsupervised learning 

Unsupervised learning [58] is governed by an “intuition” for the solution of a 

problem, and reaches to an output without prior knowledge set by examples. 

Three categories are the main parts of unsupervised learning, clustering, 

dimensionality reduction, and association. 

2.2.2.1 Clustering 
Clustering is the task of grouping (or dividing) data based on common 

characteristics and patterns without having specific classes as a target. It differs 

from classification because the classes are not predefined, but instead, assumed. 

A visual representation is given in Figure 6 with three main clusters of similar 

characteristics and some random outlier points. 
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Figure 6: Qualitative representation of Clustering. 

2.2.2.2 Dimensionality reduction 

Dimensionality reduction aims to reduce the amount of data that is available, with 

the minimum possible information loss. Large amounts of data increase the 

computational complexity and cost during processing, and do not necessarily 

imply valuable information, therefore, dimensionality reduction techniques aim 

in finding relations between the data, in order to remove features that do not 

offer any value. A visual example of dimensionality reduction from 2-dimensions 

(2D) space to 1-dimension (1D) space is depicted in Figure 7. 
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Figure 7: Dimensionality reduction schematic illustration. 

. 

2.2.2.3 Association 

Association aims to find association rules between large amounts of data in the 

same way as the human cognitive function equivalent. Via ML, computers can 

perform this task, sometimes better than humans, especially in cases where huge 

amounts of data with thousands of attributes each are available. A simplified 

visualization is shown in Figure 8. 
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Figure 8: Association rules in data sets. 

. 

2.2.3 Reinforcement learning 
Reinforcement learning might be the closest method to how most living creatures 

learn, since it rewards “good” actions and punishes “bad” actions. A simplified 

visual depiction on how reinforcement learning works, can be shown in Figure 

9, where the relationship is shown between an agent that acts and its actions are 

rewarded on the basis of the outcome they produce. 

 

Figure 9: Reinforcement learning. 

Reinforcement learning is mainly used for two practices, classification, and 

control. 

2.2.3.1 Classification 

Classification under reinforcement learning has one main difference than that of 

the supervised learning; the temporal component where the assigned class can 

change over time as the outcome of an action. Other than that, the aim still is to 

appoint a class to an input. 

2.2.3.2 Control 
The most famous application of reinforcement learning because its applications, 

such as controlling driverless cars and robotic arms without explicit 

programming, are widely marketable. Based on the hardware and the problem, a 

set of actions is provided as input and based on the outcome, the ML model 

chooses the appropriate action in order to reach the desired goal. When mistakes 
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are made, they are “punished”, and correct behaviors that lead to the target are 

“rewarded”. 

2.2.4 Recommender systems (active learning) 

Active learning is different from the other types of learning because the learning 

algorithm can actively request feedback from the information source in order to 

label previously unlabelled data. Another definition that describes this type of 

learning is the “iterative supervised learning”. A visual representation of an 

example if shown in Figure 10. 

 

Figure 10: Recommender system. 

Two main categories exist for recommender systems, namely content based and 

collaborative filtering. 

2.2.4.1 Content based 

In content-based systems, the algorithm aims to continuously add information 

about a user with the intention of improving its predictions. Invoking the user 

into providing more data, this is an iterative process provides adaptability for any 

changes in usual behavioural pattern from the user’s side. 

2.2.4.2 Collaborative filtering 
Collaborative filtering systems, as opposed to content-based systems, are 

developed explicitly on past interactions of a user towards their targets. Main 

premise of the design is that that historical information is usually enough to make 

predictions about the user. 

2.2.5 The main pillars of machine learning types 
Summing up, ML methods are designed to tackle a large range of problems with 

diverse ways. Data science and ML are constantly expanding, with more 
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algorithms being developed continuously. The main pillars however, as described 

above, remain the same and are presented in Figure 11. 

 

Figure 11: Machine learning types and their respective categories. 

2.3 FAMILIES OF MACHINE LEARNING ALGORITHMS 
Further categorization can be applied to the ML algorithms, depending on the 

way they apply the learning method. Naturally, each algorithm is designed to learn 

in certain ways, different than the others, however, distinctive similarities exist in 

a number of approaches based on their basic principles and functions, enabling 

this categorization. 

2.3.1 Regression 
Regression is the most fundamental ML family, used for finding simple 

correlations between variables. At its core lies linear regression, and as the name 

implies, it fits a line to represent 2D data [73]. Some other notable examples are 

multiple [74], logistic [75], stepwise [76], ordinary least squares [77], multivariate 

adaptive splines [78], and locally estimated scatterplot smoothing [79]. 

2.3.2 Regularization 
Regularization is effectively regression, however, their main difference is that 

during their learning process, the algorithms apply terms of regularization in 

order to penalize complex models and favor simple ones, for achieving 
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generalization. Notable examples are least angle [80] and ridge [81] regression, 

elastic-net [82] and LASSO [83] which stands for Least Absolute Shrinkage and 

Selection Operator. 

2.3.3 Bayesian 
Bayes’ theorem is the base for this family of learning algorithms that base their 

learning methods on the probability that something will happen, based on what 

have already happened in the past [84]. It is one of the oldest documented 

mathematical concepts of the modern world and widely used in statistics [85]. 

Naïve [86], Gaussian naïve [87], Bayesian network [88], and belief networks [89] 

are some of the most famous Bayesian ML algorithms. 

2.3.4 Instance-based 

Instance-based algorithms take new instances (testing example or unknown data), 

compare them with all the other previous instances, and create predictions based 

on similarity metrics. Space representation of data is the key component, 

especially in algorithms such as support vector machines (SVM) [90], the most 

famous in this family and in general. Another name for this family of algorithms 

is memory-based methods with some noteworthy examples being k-nearest 

neighbors [91], self-organizing maps [92], learning vector quantization [93] and 

locally weighted learning [94].  

2.3.5 Decision Tree 

Built tree-like structures of decisions based on if-else conditions, decision tree 

(DT) methods are applied on the features of all examples, and once an output is 

reached, the optimal branch is selected. Characterized by speed, DT methods are 

accurate, however, they are prone to suffer from not being able to generalize 

(overfit). Famous examples are classification and regression tree [95], conditional 

trees [96], iterative dichotomizer [97], and C4.5- C5.0 [98]. 

2.3.6 Ensemble 

Ensemble methods combine weaker models in order to create a strong model 

that generalizes better that its counterparts. Random forest (RF) [99] being a 

prime example, builds numerous decision trees and aggregates their outcome, 

thus reducing the overfitting issue. Boosting algorithms are a major part of this 

algorithmic family with most prominent examples being adaptive [100] and 
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gradient boosting [101], bootstrapped aggregation [102], and stacked 

generalization [103]. 

2.3.7 Clustering 

In the clustering family, algorithms build models by being provided with 

reference points, also known as centroids, and then try to assign the data based 

on their proximity or relationship to these centroids. Famous algorithms are the 

k-means [104] and k-medians [105], as well as variations that operate on 

hierarchical pre-existing structures. 

2.3.8 Dimensionality reduction 

The algorithms in this family are designed to reduce the number of variables, to 

achieve minimization of data with as little impact as possible on the retained 

information. Prominent examples are principal component [106], quadratic [107], 

mixture [108] and flexible discriminant analysis [109], partial least squares [110] 

and principal component regression [111], multidimensional scaling [112], and 

projection pursuit [113]. 

2.3.9 Association Rule 

Association rule algorithms aim to find associations between data variables. The 

apriori [114] algorithm is well known for large datasets with a big number of 

variables albeit computationally complex and relatively slow. On the other hand, 

the eclat [115] algorithm is the faster and most suitable solution, however, for 

small and medium datasets.  

2.3.10 Artificial Neural Networks 
Artificial neural networks (ANN) are by far the most trending algorithmic family 

in the past decades, heavily associated with ML. Designed with the human brain 

as equivalent, neurons in ANN are represented by nodes with units and synapses 

as mathematical operations [116]. Layers are formed by stacking nodes, 

positioned as such so that each layer processes data consecutively. Perceptron 

[117], the original design of ANNs, an input layer, a hidden layer and an output 

layer comprise the architecture. Multilayer perceptron is based on the same 

premise but with more hidden layers [118]. ANNs became increasingly 

complicated and thus, it became harder to optimize their parameters. Stochastic 

gradient descent, an optimization method, has evolved as a standalone ANN 

[119]. Backpropagation, a groundbreaking method, was designed to compute the 
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gradients of variables and reiterate differential operations backwards in order to 

optimize the model’s weight towards a better prediction [120]. Mentionable 

algorithms in this family are also the radial basis function [121] and the Hopfield 

[122] networks. 

2.3.11 Deep Neural Networks 
Deep neural networks (DNN) is a direct byproduct of ANNs, introduced for 

solving more complex problems [123]. The most recent addition to ML and data 

science, they’ve sparked academic and corporate research due to the availability 

of vast amounts of data, and abundancy of inexpensive computational power like 

central, graphical and tensor processing units (CPUs, GPUs, and TPUs). By being 

deeper and more complex architectures than ANNs, allows them to extract from 

large amounts of data, deeper and more complex features, without prior feature 

engineering [124]. A recently coined and highly used term, deep learning, includes 

the type of learning methods based on DNNs [125]. Two notable variations of 

DNNs, designed with specific characteristics are presented below. 

Recurrent neural networks (RNN), developed for forecasting purposes such as 

timeseries predictions [126], take previous time steps of a variable and store it in 

memory cells in order to make future predictions. Originally designed for word 

prediction when typing texts, RNNs have applications to weather, energy, stock 

market value and any type of forecasts. Most famous representations are the long 

short-term memory (LSTM) [127] and the gated recurrent unit (GRU) [128] 

algorithms. 

Convolutional neural networks (CNN) have immensely contributed to the 

DNNs’ popularity due to their wide applicability, especially in vision applications 

[129]. The application of filters, or convolutions in mathematical terms, reveals 

patterns and characteristics, such as edges or corners, that assist with the model 

optimization. Their fame originated by outperforming ANNs by a large margin 

in the identification of handwritten digits, a problem of image classification [130]. 

On top of image classification, CNNs are used for object detection applications, 

where objects are located and classified within images [131], and instance aware 

semantic segmentation where pixel-wise class appointment takes place in images 

[132]. Surveillance systems and autonomous cars run based on CNNs. 

The CNNs’ superiority on image-related tasks performance, led to the 

development of even more complicated architectures and concepts. Variational 

autoencoders [133] architectures where the input images are encoded based on 

their features, and consequently other images are decoded, originating from the 
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encoded latent space, resulting in similar but definitely not identical images. 

Generative adversarial networks [134] are developed as two antagonizing 

networks, where one (the generator) is generating images and the other (the 

discriminator) is comparing them against to real images. Such algorithms have 

found extended application in generation tasks as well as counterfeiting 

problems. Deep belief networks [135] and deep Boltzmann machines [136] are 

also notable mentions, whereas the former are generative models, and the latter 

are recurrent models with applied stochastic principles. 

2.4 MACHINE LEARNING IN PRECISION AGRICULTURE 
Agriculture is vital for a country’s economy, however, its true necessity resides in 

the global food security, especially for the upcoming years [137]. Serving as the 

main source of food and raw materials, agriculture is the means for employment 

and income for a large percentage of the global population. Population increase 

however, presents a significant demand challenge to agriculture [138][139] 

especially since arable land decreases smaller and becomes poorer through the 

years[140]. It is imperative that the global food system provides with healthy and 

nutritious food, and on the same time minimizes the environmental impact 

during its production. Agricultural systems need to become more sophisticated 

and comprehensible via means of data collection and analysis for multiple 

physical aspects and phenomena, in order to overcome the aforementioned 

challenges [141][142].   

Machine learning has only recently been introduced in agriculture, even though 

it is proven to be highly efficient in processing large amounts of data, and coping 

with complex, non-linear tasks [143], [144]. Several agricultural applications have 

applied ML modelling, most commonly for crop management, a valuable part of 

agriculture since it provides information to producers about on-field operations 

which eventually contributes to decision-making [145], [146]. Other applications 

of ML methodologies in agriculture involve soil, water and livestock 

management, however, they are fewer since many data availability is smaller.  

A preliminary scholarly literature survey was conducted, aiming to capture the 

latest progress in crop management studies,  focusing on the application of ML 

methodologies. Variations of keywords such as “machine learning”, or “precision 

agriculture” were used in the Google Scholar and Scopus search engines. The 

reviewed studies are all published between 2018 and 2020, and include scientific 

journals publications, conference articles and  Masters/PhD theses. 
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A keyword information clustering was created with the use of approximately 130 

keywords were utilized from a total of 26 publications, as listed in the 

corresponding part of the manuscripts. The 10 most frequent keywords are 

presented as a word-cloud in Figure 12. 

 

Figure 12: Keyword information clustering of the 26 reviewed articles. 

The appearance frequency is represented by the font size, while same-coloured 

keywords indicate similar frequency.  “Precision agriculture”, a dominant 

research topic, was the commonest keyword, followed by “Deep Learning”, 

arguably the hottest scientific topic of the present era. The “Convolutional 

Neural Network” keyword denotes the importance of the algorithm, and the 

“Disease” keyword, the importance of the disease detection problem. “Image 

Processing”, “Machine Learning” and “Unnamed Aerial Vehicle” (or UAV) 

followed, with “UAV” being present in works that require high resolution 

images. “Image Processing” appeared together with “Machine Learning” since 

they are complimentary methods. Lastly, “Artificial Neural Network” and 

“Feature Selection” appeared the same frequency, indicating the usefulness of 

ANNs in precision agriculture, alongside with proper methodologies for feature 

extraction.  

The applications of the reviewed studies are classified into four categories based 

on their purpose, namely crop disease detection, yield prediction, weed detection 

and quality assessment, however, since the aim of the present thesis is to propose 

a methodology for disease detection on trees, an analytical overview of reviewed 

studies of only the crop disease detection category is presented. 
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2.4.1 Crop disease detection 
A significant problem throughout all agriculture, crop diseases are a threat to 

production, able to implicate catastrophic economic impact to producers. 

Multiple studies attempted to tackle issues of automatic detection and disease 

classification with ML approaches, and consequently resulted in the several 

publications throughout the years. Since it is a vision-based problem, the majority 

of works use images containing leaves or seeds, which are the parts that exhibit 

signs of infection on a tree. 

A leaf disease detection model was developed by the authors in [147], namely a 

one-class SVM model for each condition the plant displays (healthy, downy 

mildew, powdery mildew and black rot), based on images of vine leaves, 

accomplishing a high generalization behaviour when applied in other crops as 

well. A total accuracy of 95% was achieved, signifying that 44 of the 46 tested 

plant-condition combinations were classified successfully correctly. The authors 

of [148] combined a CNN with colour information for disease detection in 

vineyards, from images taken by UAVs. Colour spaces and vegetation indices 

were combined, aiming to improve the model’s performance resulting to an 

overall accuracy of 95.8%. The improvement of accuracy in maize leaf diseases 

attempted in [149], where GoogLeNet and Cifar10 were trained and tested on 

images from nine kinds of maize leaf and eight kinds of maize leaf diseases, 

achieving accuracy of 98.9% and 98.8% was achieved by each model respectively. 

A hybrid method was introduced [150], for the detection and classification of 

diseases in citrus plants. The first step aimed at the detection of lesion spots on 

leaves and fruits, with the second step performing classification of citrus diseases 

including anthracnose, black spot, canker, scab, greening, and melanose, based 

on a multi-class SVM . This technique reached 97% classification accuracy on 

image gallery dataset showing citrus disease images, 90.4% on a local dataset and 

89% on combined dataset. 

A clustering algorithm, namely k-Means was applied in [151] in conjunction with 

an SVM, for the classification of papaya diseases from images taken from mobile 

devices. K-Means was responsible for the segmentation of the diseased region 

while SVM for the feature extraction and classification, resulting to an 

approximately 90% classification accuracy. Detection of canker in leaves was 

tackled in [152], with the use of the kNearest Neighbor (kNN) method, achieving 

detection accuracy 96% for late disease stage, however, in indoor conditions. A 

pre-trained CNN model, namely VGG16 [153], was implemented in [154] for 

mildew disease identification in pearl millet, achieving accuracy of 95%. Lastly, a 

powerful algorithm from the family of ANNs, Deep Residual Neural Network 
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(DRNN), was implemented in [155] for detecting at the early stage multiple plant 

diseases in wheat. The approach aim at model deployment on a smartphone, and 

managed to reach 87% accuracy under exhaustive testing and 96% accuracy on a 

pilot test conducted in Germany. 

2.4.2 Summary of the reviewed studies 
A total number of 26 articles were surveyed, including sub-categories of crop 

management additional to crop disease detection. Table 1 provides a summary of 

these articles alongside relative information such as publication year, crop type, 

the purpose of the study, the applied algorithm and the results for each study.  

Table 1: Summary of the reviewed publications. 

Ref Year Cat. Crop Purpose Algor. Results 

[156] 2019 YP Corn 

Predictions of yields 

for new hybrids 

planted 

DNN 

RMSE=12% av. yield 

RMSE=50% STD for 

validation dataset 

[157] 2019 YP 

Wheat 

 

Malting 

barley 

Crop YP from NDVI 

and RGB data 
CNN 

Early period: 

MAE=484.3kg/ha 

MAPE=8.8% 

Later: 

MAE=624.3kg/ha 

MAPE=12.6% 

[158] 2019 YP Rice grain 

Acquire important 

features associated 

with rice grain yield 

CNN 

RGB and multispectral 

images: 

R2=0.464~0.499 

MAPE=26.61% 

[159] 2019 YP Strawberry 

Strawberry flower 

detection system for 

YP 

R-CNN 
Av. accuracy=84.1% 

Av. occlusion=13.5% 

[160] 2019 YP Wheat 
Predict wheat yield 

across Australia 

SVM 

RF 

NN 

YP at the statistical division 

level: 

R2 ~0.75 

[161] 2020 YP Wheat 

Winter wheat YP 

based on multi-

source data 

SVM 

GPR 

RF 

R2 >0.75 

Yield error <10% 
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[162] 2019 YP Maize 

Meta models for the 

prediction of crop 

model outputs 

XG 

Boost 

 

RF 

R2 >0.96 

 

[68] 2020 CDD Walnut 
Classify leaves to 

healthy and infected 
CNN 

Accuracies ranging from 

92.4% to 98.7% 

[147] 2019 CDD Vine 

Identify crop disease 

on leaf sample 

images 

One 

Class 

SVM 

model 

Total success rate of 95% 

[148] 2018 CDD Vine 
Identify infected 

areas of grapevines 
CNN Accuracy more than 95.8% 

[149] 2018 CDD Maize leaf 

Improve 

identification 

accuracy of maize 

leaf diseases 

CNN 

Accuracy: 

98.9% for 

GoogleLeNet 

98.8% for 

Cifar10 

[150] 2018 CDD Citrus 

Detect and classify 

diseases in citrus 

plants 

M-SVM 

Accuracy: 

97% on image gallery 

dataset 

90.4% on local dataset 

[151] 2018 CDD Papaya 

System that 

determines the 

papaya diseases 

Clusteri

ng 

 

SVM 

More than 90% classification 

accuracy 

[152] 2019 CDD Citrus 

Remote sensing 

technique to detect 

citrus canker 

KNN 

Accuracy: 

94% healthy and 

asymptomatic trees 

96% healthy and canker-

infected trees 

[154] 2019 CDD 
Pearl 

millet 

identify mildew 

disease in pearl 

millet 

CNN 

95% accuracy 

90.50% precision 

94.5% recall 

91.75% f1-score 
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[155] 2019 CDD Wheat 

Detect many plant 

diseases in real 

conditions 

RNN 

Accuracy: 

0.87 under exhaustive 

testing 

0.96 on a pilot test 

[163] 2019 WD 
Bermuda 

grass 

Detect weed in 

bermudagrass 
CNN 

F1 score value>0.99 

 

[164] 2018 WD Sugar beet 

Create pattern based 

on shape features for 

different weeds 

ANN 

 

SVM 

Correctly classified weeds: 

ANN:92.50% 

SVM:93.33% 

plants: 

ANN:93.33% 

SVM:96.67% 

[165] 2018 WD 
Bean 

spinach 

Learning method 

with unsupervised 

training data 

collection 

CNN 

Differences in accuracy: 

1.5% in spinach, 6% in beam 

compared to supervised 

training data labeling 

[166] 2018 WD Maize 

Weed detection in 

early season maize 

field 

RF 
Accuracy=0.945 

Kappa value=0.912 

[167] 2018 WD 
Cotton 

sunflower 

Design prescription 

maps 
RF 

Accuracy: 84% of weeds in 

cotton field, 81.1% in 

sunflower field 

[168] 2018 WD Sugar beet 
Crop-weed 

classification system 
FCN 

Precision: 98.3%, 99.1% and 

85.5% for crop, weed and 

intra weed 

[169] 2018 WD Rice 
Generate a weed 

cover map 
FCN Overall accuracy: 0.935 

[170] 2018 QA Pepper 
Classify seeds to high 

and low quality 
MLP 99.4% stability rate 

[171] 2019 QA Soybean 
Classify 10 soybean 

varieties 

GA-BP 

and T-S 

fuzzy 

NN 

Av. accuracy: 

96% for training set, 84% for 

test set 

[172] 2018 QA Beer 

Evaluate intensity 

levels of sensory 

descriptors in beer 

ANN 

High correlation (R=0.91) to 

predict the intensity levels of 

10 sensory descriptors 

Algor.: Algorithms; ANN: Artificial neural network; Av: Average; Cat.: Categories; CDD: Crop 

disease detection; CNN: Convolutional neural networks; DNN: Deep neural network; FCN: Fully 
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convolutional network GPR: Gaussian process regression; KNN: k-nearest neighbors; MAE: Mean 

absolute error; MLP: Multilayer perceptron; NN: Neural network; R-CNN: Region based 

convolutional network; RF: Random forest; RNN: Recurrent Neural Network; RMSE: Root mean 

square error; STD: Standard deviation; SVM: Support vector machine; WD: Weed detection; QA: 

Quality assessment; XG-Boost: Extreme gradient boosting; YP: Yield prediction;  

 

Nine (9) out of the total twenty-six (26) reviewed articles, constituting the 

majority, were related to crop disease detection (34.62%). Seven (7) articles were 

in reference to yield prediction (26.92%) as well as weed detection (26.92%). The 

minority of articles was related to quality assessment with three (3) articles 

(11.54%). A visual representation of the crop management’s four groups 

distribution is given in Figure 13. 

 

Figure 13: Distribution of the four categories of crop management. 

Within these reviewed articles, a total of twelve (12) different ML algorithms were 

applied. The most implemented algorithm was CNN, found in nine (9) studies 

(28.13%), which is logical since most studies utilized images with high complexity 

for feature extraction. Second was SVM, applied in six (6) studies (15.63%), with 

RF following, appearing in five (5) works (15.63%). ANN and FCN (Fully 

Convolutional Network) appeared in two (2) articles (6.25%) and finally, DNN, 

Gaussian Process (GP) regression, kNN, MLP, RNN and XGBoost were found 

in one study (3.13%). An analytical plot can be seen in Figure 14 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 12:15:21 EEST - 3.133.119.121



 

 48 

 

Figure 14: Frequency (%) of machine learning algorithms appearing in the reviewed 
studies. 

Crop disease detection is the largest and most common problem associated with 

precision agriculture. Diseases can have significant impact on production and its 

financial consequences, especially in high value crops. The economic impact crop 

diseases can incur to farmers and producers can be significant, therefore, there is 

imperative need for the development of detection tools. Simultaneously, the 

technology is ripe for the development and deployment of such systems, since 

the necessary major components are: accessibility ease, hardware affordability, 

availability of vast amounts of data, collected by sensors and/or cameras, and 

sophisticated ML algorithms to train models for performing highly complex and 

demanding tasks, to assist the works experts conduct on the field. 
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3 METHODOLOGY 

Aim of this thesis is to develop a multi-level methodology with ultimate goal to 

identify disease-infected trees in operational, agricultural environments. Such 

environments are extremely rich in information, because they contain a variety 

of diverse, different sized objects, such as trees, fruits, leaves, and weeds, each 

one with their own different features. This information can be captured with a 

variety of optical and imaging sensors, however, aim of the methodology is to 

rely on the cheaper and more available RGB camera sensors, similarly to the 

perception of a human expert. A crucial factor for the development of the 

proposed methodology is the large amount of data that can be gathered, thus 

leading the way for the implementation of machine and deep learning algorithms, 

which can achieve robustness and high accuracy performance. 

The developed methodology is divided into three levels. Initially the precise 

location of the trees in an orchard is defined, based on the shape of their 

canopies, with images collected by an unmanned aerial vehicle (UAV) that flies 

above the orchard. Then, once the tree’s location is accurately located, it is 

possible for an unmanned ground vehicle (UGV) to navigate through the orchard 

and inspect its canopy from a distance that is convenient for the UGV’s 

manoeuvrability. The inspection aims to detect disease-infected leaves within the 

canopy, similarly to how a human expert would do. Finally, in order to be able to 

detect disease-infected leaves inside a plethora of leaves and background 

information, a classifier is designed and trained with sole purpose the successful 

distinction between healthy and disease-infected leaves, but in real conditions. 

The multi-level methodology a whole, as well as each level individually, can be 

considered as critical steppingstones for a plethora of agricultural operations. 

Path planning, a crucial agricultural aspect with huge impact on operations, relies 

heavily on the proper mapping of an orchard. Accurate tree localization allows 

accurate orchard mapping that consequently enables optimized path planning. 

Variability maps are a useful tool, used in tandem with remote sensing 

applications, and can display areas with common characteristics within a range of 

interest. They can be used to demonstrate disease spread within an orchard and 

enable precision spraying for efficient treatment and reduction in costs and 

energy. Therefore, correct disease identification in tree level allows to create 

accurate variability maps, and consequently help the producers reduce fungicide 

costs, overall energy costs, and increase yield and therefore profits.  
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Each of the three levels of the methodology is described and presented in detail 

in the following paragraphs, starting from the efficacy of classifying disease-

infected leaves in real-life conditions, to detecting a number of infected leaves 

within leaf-rich canopies and finally to the accurate localization of trees in the 

orchard by canopy segmentation. For the training, validation and testing of the 

developed deep learning models, images were collected from a walnut orchard, 

that partially suffered from the anthracnose fungi, well known for its 

catastrophically impact to high value crops. 

3.1 LEAF-BASED IMAGE CLASSIFICATION FOR DISEASE 

DETECTION WITH CONVOLUTIONAL NEURAL NETWORKS 
The first level of the methodology focuses on the development of a model that 

can successfully classify on-field images of healthy and anthracnose-infected 

leaves. Initial scope is to validate that this can be achieved at a high accuracy, so 

that it can be used for on-site inspections. An approach was investigated for the 

proper classification of anthracnose-infected leaf images, based on recognizing 

brown-yellowish marks that are present on the leaf as circular spots or along its 

perimeter, as seen in Figure 15. 

 

Figure 15: Anthracnose presence on a walnut leave. 

Deep learning algorithms, like CNNs, have been chosen for the proper training 

of a classifier that will be able to distinguish images with infected leaves from 

images with healthy ones. The fundamental principles behind CNNs are the 

convolutions and pooling operations, which when applied on an image, they 

transform it in such a way that enhances its desired features. This process creates 
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several images, each of whose impact is constantly calculated and optimized. The 

images with the most useful features are ultimately the ones that affect the 

distribution of weights in the final model. Convolutions are the mathematical 

operations that give CNNs the advantage, compared to other algorithms, in the 

task of image classification. As a consequence, CNNs have been consistently 

outperforming ANNs and SVMs, which were the state-of-the-art in computer 

vision and image analysis, up until the time CNNs were introduced [24]. On top 

of that, a Fast Fourier Transform (FFT)-based preprocessing technique was 

implemented for feature extraction on the images. An optional background 

removal method was ultimately investigated, for evaluating the background’s 

effect on the performance of the classifier. 

3.1.1 Process Description 
The process followed in this level of the methodology is shown in Figure 16. 

There are three stages:  

- Preprocessing, where the images are gathered, prepared, and finally split,  

- Learning process, i.e. ML training, where the images are used to train a 

classifier until it reaches its maximum potential by self-improving 

methods, and  

- Inference/predictions, where characterized test images are provided to 

the classifier to evaluate its actual performance.  

The stages are presented descriptively at Figure 16. 
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Figure 16: Process flowchart of the approach followed for the image classification. 

3.1.1.1 Preprocessing 
The preprocessing stage of a data-driven methodology is a crucial part for the 

overall performance. It includes methods that load, clean, transform, resize and 

engineer data is such ways, that make them suitable for usage with the selected 

algorithm and application. An important function of the preprocessing stage is 

to shuffle and split the data into training, validation and testing portions, for 

ensuring an unbiased training procedure and reliable testing results. The steps 

followed in this methodology are presented here. 

Load the dataset  

The images are recursively loaded based on their pathnames. A label value of ‘0’ 

or ‘1’ is appended to each loaded image, depending on the prefix of their 

filename. 

Colour conversion  

Two colour conversion functions were implemented: a BGR to RGB colour-

space conversion, where the image’s colour channels’ order switches to the most 

common (RGB) format, as well as a BGR to the grayscale colour-space 

conversion, where all the colour information is removed from the images, and 

only the brightness and saturation for each pixel is maintained. 

Feature extraction (grayscale only) 

A feature extraction method, namely the Fast Fourier Transform (FFT), is 

additionally applied for the grayscale images. FFT is particularly valuable in 

bringing out edge features of objects in images (i.e., leaves), thus potentially 

assisting the model’s performance improvement, compared to a straightforward 

approach of grayscale images. 

Background segmentation (optional)  

This optional method removes the background from images with the use of 

commonly used classical computer vision techniques such as thresholding, 

dilation and erosion. 

Data normalization  

The dataset values are normalized within the [0,1] range in order to ensure that 

the loss function, which is usually not convex, finds the global minimum as easy 
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as possible. Reducing the range of input values also assists the convergence of 

the backpropagation algorithm. 

Dataset shuffling  

The dataset is being shuffled by implementing the “random.shuffle” method, 

which is an order-shuffling algorithm based on a random number generator. 

After the application, the order of the images, which originally was alphabetical, 

is now mixed throughout the dataset. 

Dataset splitting  

The dataset is being split in the following fashion: First, 15% of the total dataset 

is held out and set as the testing set, then the remaining dataset is split again in 

the 80/20 fashion, where the small portion is used as the validation set. The rest 

is used for training the algorithm. The training and validation sets are used for 

the training of the prediction algorithm, while the testing dataset is used only after 

the classifier is trained. 

3.1.1.2 Learning process 
Learning process refers to the training of the model based on training data and 

the monitoring via validation for ensuring improvement in order to achieve the 

best performance possible. 

CNN architecture definition  

The architecture of the CNN is defined based on experimentation and trials. The 

number, type and order of layers is the important aspect that can lead to effective 

network architecture. 

Functions definition  

Various functions that are used throughout the network are being defined 

through bibliographic research and trials. The activation function is carefully 

chosen for defining the output of the layer, and the loss function used for the 

optimization of the network’s weights. 

Training  

This is the process where the algorithm tries to create a function that describes 

the desired relation, based on the training data. It then makes predictions based 

on this function and moves to the next step. 

Validation  
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Following the previous step, the function that the algorithm created is being 

evaluated against the validation dataset. The error in the predictions is being 

calculated, and the algorithm tries to find a way to minimize this error. This part 

defines the “learning” of the process. 

Finalizing the model  

The training-validation process repeats itself until the algorithm cannot improve 

itself anymore. When the training loss and the validation loss have become almost 

the same, lowest-possible value, and before the validation loss starts to increase, 

the procedure stops, and model is finalized to its best state. 

3.1.1.3 Inference 

Inference is the process where the trained model makes predictions. The 

predictions are done on data that have been withheld from the training process, 

therefore the performance achieved during this process is more reliable than that 

of the training and validation. The steps of this stage are described. 

Test the CNN based on trained data  

The performance of the finalized model is measured by its validation accuracy, 

i.e., the level of accuracy that could be achieve based on the data that it has been 

given to train and evaluate. This is only indicative of the model performance since 

the actual performance is only evident when predictions on unknown data take 

place. 

Make predictions on the test data  

Testing data, which is completely unknown to the model, are used to make 

predictions on each image’s class. For each image, the classifier provides a 

predicted class, which is stored alongside its true class. 

Calculate performance metrics  

This is the final step where the predicted classes are being cross-checked over the 

true classes of the testing images. Then, the testing accuracy, precision, recall and 

f1-score of the model are calculated. A confusion matrix is also used to visually 

evaluate the performance of the model, and also check if it is biased over any 

class. 

After the performance metrics are calculated, they are stored, and the algorithm 

returns to the shuffling of the original dataset and continues the process. For the 

particular approach, the algorithm runs a total of five repetitions, and finally the 
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mean value of the performance metrics is being calculated. The reason why this 

repetitive loop is performed is to ensure the stability of the model and eliminate 

outliers that are not representative. 

3.1.2 Feature Extraction Preprocessing with Fast Fourier Transform 
Fast Fourier Transform (FFT) is used in image preprocessing for the easy 

detection of abrupt changes in images, such as the presence of anthracnose in 

leaves. The image is considered as a signal described in a two-dimensional spatial 

domain. Abrupt changes in images are mainly considered as high-frequency 

signals. As a result, image representation in the frequency domain is a powerful 

tool for the detection of such changes, so that they can be enhanced or removed, 

depending on the required task. Moreover, applying filters to images in the 

frequency domain is computationally faster than to do the same in the spatial 

domain. Similar applications of the FFT combined with ML algorithms have 

been tested in image classification applications of different domains with 

promising results [26]. 

When applied on an anthracnose-infected leaf image (Figure 17.a), FFT 

decomposes the signal into its periodic components, so that it produces their 

frequencies. After implementing the FFT, the image is converted from the spatial 

domain to the frequency domain. At this new representation, each point denoted 

a specific frequency that is included in the original image. After the FFT 

application, the image is shifted in such a way that the fixed-value DC-component 

𝐹(0,0), which corresponds to the average brightness, is displayed in the center 

of the image. 

The next step is to calculate the magnitude of the Fourier Transform, as it 

contains most of the information of the image structure. More specifically, if the 

magnitude changes abruptly, the signal is considered to be high frequency. Figure 

17.b shows the magnitude spectrum after the implementation of FFT with the 

pixels in the center of the image representing its low frequencies. In general, 

anthracnose is considered as an abrupt change, and is consisted of high 

frequencies. As a result, a high pass filter which allows only high frequencies 

should be implemented. Since the low frequencies are near the center of the 

Fourier image, a radius around the center is determined, and all the frequency 

components within that radius are constricted. For that reason, each image gets 

multiplied by the Gaussian high pass filter where a smooth cut off process is 

used. The cut off frequency is considered to be equal to the standard deviation 𝜎 

in the frequency domain and is equal to 0.3. 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 12:15:21 EEST - 3.133.119.121



 

 56 

The magnitude spectrum after the use of the filter where the low frequencies 

were successfully removed, is shown in Figure 17.c. Finally, the inverse Fourier 

transform was implemented in order to obtain the original image without low 

frequencies, as it is shown in Figure 17.d. 

 

    

(a) (b) (c) (d) 

Figure 17. Fast Fourier transform (FFT) steps where: (a) the original image; (b) is 
analysed into a magnitude spectrum; (c) into a modulated spectrum; (d) and finally into 
the feature-rich image. 

The choice of simple FFT over wavelet transforms or more advanced techniques 

is because the time domain is irrelevant to the specific problem. The 

photographed leaves have no temporal information, therefore there is need to 

only focus on the frequency precision, and FFT is the most appropriate method 

for this application [27]. 

3.2 OBJECT DETECTION WITH SINGLE-SHOT DETECTOR 

ALGORITHM FOR TREE-LEVEL DISEASE CLASSIFICATION IN 

ORCHARDS 
The second level of the proposed methodology focuses on the implementation 

of the aforementioned classifier to an object detector. The object detector was 

trained so that to able to accurately detect the presence of anthracnose-infected 

leaves in images containing healthy leaves. The task at hand, poses the highest 

level of complexity regarding disease detection since it takes distant images of 

canopies containing many leaves, and tries to find signs of infection in individual 

leaves. Such leaves could be hiding in shadows, behind others, or simply be 

“invisible” due to the extremely information-rich image, however, the developed 

methodology is considering all associated problems for tackling each one.  
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3.2.1 Process Pipeline 
The methodology pipeline developed in this level, can be broken down into three 

sequential tasks. The first task regards the proper training of a model that is able 

to identify infected leaves in contrast to healthy ones, in leaf-rich images. The 

second task focuses on the development of a model that can locate anthracnose-

infected leaves at tree-level, from images that are taken in real field conditions, 

from a relatively far distance (approximately 2-3m). The third task aims to utilize 

the produced knowledge that derives from the detection and localization of 

anthracnose-infected leaves, with ultimate goal to classify the infection level of 

each tree within the orchard, potentially creating a variability map. These tasks 

are described in the following paragraphs. 

3.2.2 Model Training 
The open source TensorFlow Object Detection API was exploited to enable the 

deployment of object detection models. Instead of training the SSD (Single Shot 

Detector) model from scratch, the final layers of pre-trained models that had 

already been trained for image classification on benchmark datasets were re-

trained on the acquired data. Three well-established architectures were trained, 

tested and evaluated with the SSD; Resnet50 [173], Inception v2 [174] and 

Mobilenet v2 [175]. These architectures, used as CNN feature extractors for the 

object detection algorithms, were originally pretrained on a large-scale 

benchmark object detection dataset (COCO) [176]. These particular pretrained 

models were selected because they provide a balance between good performance 

accuracy and high execution speed [177].  

3.2.3 Anthracnose-infected leaves detection on tree level 
Capturing a whole tree in one single image by any high resolution RGB camera, 

produces an image size that is relatively large compared to the relative size of the 

single leaves, the target objects to be detected. If the model was trained 

considering the original image, this size difference would make the object 

detection task extremely challenging due to the limited number of pixels 

representing the targets (leaves). Extensive investigation and testing took place 

verifying that at raw image size level the trained models performed poorly. An 

alternative approach was developed to tackle this issue. 

According to proposed approach, images acquired from each tree side are 

segmented into sections. Different image sizes were investigated, leading to the 

selection of sub-image sizes of 1,280×1,280 and 640×640 pixels, where the best 
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results were achieved. That signifies that the 5,472×3,648 pixels raw images can 

be segmented into 12 or 48 smaller images (Figure 18a). A script was developed 

for the automatic segmentation of the original images. The automatic 

segmentation does not produce exact pixel sizes for all the sub-images. hence, 

the ones located at the edges of the original image were clipped. Since the 

surrounding pixels mainly represented indifferent content, such as soil or sky, 

thus rendering them unusable, they can be removed without information loss.  

During the experimentation it has been observed that poorly trained models 

occurred when the images that were larger than 1,280×1,280 pixels, due to the 

ratio of leaf size over total image size. The smaller size of leaves is related to less 

pixels for describing their characteristic features, and consequently, noisier 

information. Distinguishing infected from healthy from infected leaves at this 

level is already a complex task, the model training was conducted with the most 

obvious examples of infected leaves (true positives). Ground truth bounding 

boxes were created as annotations in each sub-image, that ranged in size from 

50×100 to 320×320 pixels, containing the most evidently infected leaves. The 

threshold was set to a maximum 3 infected leaves were for each sub-image as 

seen in Figure 18b. Extensive investigation on the dataset resulted to the 

definition of this particular threshold. In detail, a maximum of 3 leaves were 

distinctly and undeniably classified as infected for every sub-image, since the 

majority of leaves were overlapped, shaded or at angles that made extremely 

challenging to distinguish them from the neighboring leaves even to the human 

eye. An attempt to annotate more leaves per image, lead to the overlapping of 

the boundaries of the leaves, resulting to a significant performance drop. Thus, 

for each sub-images, no more than 3 infected leaves were annotated. 
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Figure 18. Proposed image segmentation of walnut tree side view image into sub-images 
sized 1,280×1,280 pixels (a) and ground truth bounding boxes containing anthracnose-
infected leaves (b). 

3.2.4 Classification of trees 
This methodology’s main goal is to develop a tool to automatically appoint a class 

on the trees within the orchards based on their health status (infected or healthy). 

Therefore, at a second level, the previously trained model is applied to all the 

walnut trees of the orchard. Ultimately, the system’s performance was evaluated 

in real field conditions. At this stage, the trained model should be able to 

recognize the target (i.e., the tree), from a distance that ideally covers the total 

surface of the canopy. Therefore, all sides of the trees that were tested in this 

approach, were meticulously captured with the RGB camera. This requirement 

was addressed by capturing images from all four sides, 90° apart from each other, 

and at approximately a constant distance from the tree,. This setup was used to 

maximize the coverage of the foliage of the trees with coverage angle higher that 

360° (including overlapping) (Figure 19). 

 

 

Figure 19. The image coverage of the walnut tree taken from four different angles 90° 
apart from each other. 

To sum up, the developed methodology that is being followed in the current 

system level, is shown in Figure 20. The methodology is divided in three phases: 

a) the training phase which includes data acquisition, image preprocessing and 

model training, b) the testing phase including acquisition and preprocessing 

images from 4 sides of the remaining trees, and tree classification, and c) the 
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evaluation phase where the predicted classification is cross-checked with the real 

classification of the trees according to experts’ knowledge. 

 

Figure 20. Process flow of the proposed methodology. 

3.3 ORCHARD MAPPING IN COMPLEX ENVIRONMENTS WITH 

DEEP LEARNING SEMANTIC SEGMENTATION 
The third and final level of the developed methodology focuses on the accurate 

localization of trees within orchards, from aerial images. This is a task that is more 

contemporary, since digital imagery from aerial means became available only 

recently comparing with the eons of agricultural activity of humans. However, 

the inherent difficulty of locating full-canopy trees in weed-ridden orchards or 

canopy-less trees in barren grounds, is easily understandable. This level aims to 

complete the methodology as a whole, by allowing unsupervised localization of 

trees by canopy segmentation and other traditional computer vision techniques, 

namely centroid calculation via mask moments. 

This way, the entire operation can be performed in an unsupervised manner, 

starting from tree trunk localization from geo-referenced aerial imagery collected 

by UAVs, and then, on-field inspection by images collected by UGVs navigating 

through the orchard as part of operational planning. 
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The third level of the methodology is also structured around data-driven 

algorithms and computer vision techniques. A large dataset was generated from 

a large number of UAV captured images, and the annotation was conducted by 

masking the canopies of the trees in order to create a large dataset for supervised 

learning. A deep-learning algorithm was selected to train a model on this 

annotated dataset, with aim to properly identify tree canopies and segment them 

from the background and the rest of the objects. A mask image is produced as 

the output, containing the shapes of all predicted tree canopies. Right after 

segmenting the canopies’ shape, the moment of each mask, also known as 

weighted average, is used for the calculation of its centroid. This is used as the 

most reasonable approximation of the location of the tree’s trunk. The tree trunk 

locations can finally be computed with high accuracy, provided that the geodetic 

coordinates of the photographed location are retained in the orthomosaic images. 

In order to tackle with the orchards’ complex environments, in terms of the weed 

presence in the image background, and the high variability in the phenomenology 

of canopies due to seasonality, a deep learning algorithm, namely U-net, was 

considered for base for deployment, and was further tweaked to fit the problem’s 

requirements. 

3.3.1 Semantic Segmentation Architecture 

U-net is an advanced type of convolutional neural network which consists of two 

modules, an encoder and a decoder. These networks encode the input into a 

latent space with the aim of creating the desired output based on the 

aforementioned input. The characteristic feature that distinguishes U-net from 

the simple encoder-decoder networks, is that it contains direct “skip” 

connections. These are present between the shallow encoder and decoder layers 

alongside the sequential structure of the architecture [178]. This way, useful 

features from the encoding/input layers can be directly fed to the 

decoding/output layers. Two modifications were implemented to the standard 

U-net architecture for the developed approach; the input layer was tweaked to 

handle both 3- and 6-channel images and the insertion of a dropout layer took 

place between each of the convolutional layers per block, to avoid the overfitting 

tendency towards that occurs in small datasets with similar visual representations. 

A schematic of the U-net used in this work is shown in Figure 21. 
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Figure 21. Architecture of the modified U-net network implemented in the approach. 

3.3.2 Process Flow 
The methodology developed for the canopy segmentations follows a sequential 

order which consists of several preprocessing, training, and evaluation steps 

throughout the whole process. The complete process flow can be summarized as 

follows: 

• Data are imported and split into train and test sets. To achieve 

generalization and robustness on the implementation of the approach, 

the test set is required to contain at least one image from each use case. 

• Image reshaping into a predefined aspect ratio and, colour enhancements 

such as contrast equalization are applied. 

• The training dataset is fed to the U-net and the trained model learns to 

create proper segmentations for each image. An evaluation metric is used 

across a randomly selected validation set comprising 10% of the training 

set, so that the trained model can iteratively learn to create better 

segmentation masks. 

• The trained model predicts segmentation masks for the test images and 

the evaluation metric is applied in order to evaluate the model’s 

performance. 

• The segmentation masks are compared with the real masks annotated by 

experts, and the presence of false positive or false negative segmentations 

is manually investigated. 

• The model’s overall performance is defined by the accuracy it achieved 

on the test dataset, as well as the ratio of false positives and false negatives 

over the total amount of trees in the image. 
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A visual representation is shown in Figure 22. 

 

Figure 22. Process flow of the proposed methodology for creating segmentation 
predictions. FN: false negative; FP: false positive.  

3.4 PROCESS AUTOMATION FROM LOCATING THE TREE TO 

DETECTING THE DISEASE ON TREE AND LEAF LEVEL 
The system as a whole is designed to follow the logic of a linear sequence of 

operations. The methodology aims to integrate the aforementioned, highly 

complex tasks, in order to enable unsupervised robotic systems to perform the 

said tasks with as close as possible to human expert level accuracy. The 

methodology’s core task is disease identification, however, the order in which 

these tasks should be deployed in a real-life scenario are different. 

Initially, an aerial inspection takes place to identify the locations of all trees within 

the orchard. This will provide with exact coordinates that will be used for the 

navigation of the ground vehicles and their placement to each tree. Then, camera 

sensors will capture images of the trees’ canopies in order for the detection and 

classification of infected leaves. Finally, this information will be used to create a 

variability map of the orchard, and thus provide detailed information of the 
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disease spread within the orchard. Based on that information, additional 

automated systems can perform precision spraying or any other operations that 

are deemed necessary. A schematic of the overall process can be seen in Figure 

23. 

 

Figure 23. Schematic of the overall process automation methodology. 
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The automation of the entire process can be achieved only on the premise that 

each task is successfully completed. For instance, if the tree localization fails, 

important ground operations such as path planning, will not be able to be 

achieved since the trees will be located in different positions that the ones 

expected by the operating vehicles. Furthermore, if due to erroneous detection, 

the trees’ disease classification is wrong, the variability map that will be 

misrepresenting the reality, and the corrective actions will be wrong and useless. 

As previously described, agricultural operational areas are information-rich 

environments, where a plethora of visual stimuli can offer useful insights on the 

condition of individual trees as well as orchards as a whole. Even from relatively 

small orchards, the amount of data that can be extracted is large due to numerous 

different areas of interest, thus covering the main volume requirement for 

applying data-driven deep learning approaches. However, volume alone is of low 

value unless there is variety in data. Agricultural environments cover the 

requirement of variety as well, since there are numerous types of trees, plants, 

weeds and other objects present in orchards. Most of the aforementioned flora, 

especially in high-value crops, is being susceptible to the yearly change of seasons, 

leading to being able to collect large amounts of high-variability data within one 

year, when a full seasonal cycle is complete. These requirements, volume and 

variety, pose as ideal characteristics datasets should have, for applying machine 

and deep learning algorithms on them. The implementation of deep learning 

algorithms on the available data, for each step of the proposed methodology, is 

presented in the following section. 
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4 IMPLEMENTATION 

4.1 METHOD IMPLEMENTATION – HARDWARE AND 

SOFTWARE SPECIFICATIONS 
In this paragraph, the hardware specifications and software information, used for 

all tasks and experiments, is provided in detail. 

4.1.1 Camera, UAV 
A Sony RX100 II digital camera with a F1.8 (T) lens was used to take photos of 

raw format 5,472×3,648 pixels resolution at a 3:2 aspect ratio. This camera has 

been used for ground photo acquisition, as well as for aerial photography, since 

it can be mounted on UAVs. In total, two different types of UAV were used, a 

quadcopter (Phantom 4, DJI Technology Co., Ltd., Shenzhen, China) and a 

fixed-wing UAV (eBee, senseFly, Cheseaux-sur-Lausanne, Switzerland), both 

equipped with high-accuracy GNSS (real-time kinematic (RTK) positioning), 

which was also used for accurate geotagging. 

4.1.2 Computer hardware and software 
The personal computer that was used for all algorithmic and model development 

was equipped with Intel® Core™  i7-6950X CPU (@3.00GHz) and 64GB RAM 

PC, running Ubuntu 18.04 LTS OS. All models were trained on a Nvidia Titan 

GeForce GTX 1080 Ti. For the image classification task, all images were 

annotated manually, however, for object detection task, each image was 

annotated by using “LabelImg”, a free (MIT license) graphical image annotation 

tool [179]. With this tool, boxes containing leaves infected with anthracnose were 

created on all training images. The produced annotations containing the 

coordinates of the annotated objects within the image, were saved as XML files 

in PASCAL VOC [180] format. The XML files were initially converted into .csv 

and then into TFRecords files, containing all training and testing data, in a form 

suitable for the TensorFlow Object Detection API [177]. For the semantic 

segmentation task, all images were segmented and annotated with the use of 

Supervise.ly, an online platform for computer vision tasks [181]. 

The Jupyter Notebook [30] interactive computing product under the Python 

programming language was used for encoding the whole process, with all 
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developed neural network architectures, being programmed with Keras (with 

Tensorflow backend [31]). Additionally, data normalization, data splitting, 

confusion matrices and performance metric reports were programmed with Sci-

Kit Learn, and OpenCV was used for loading and manipulating images. SciPy 

was used for additional operations such as the FFT application, Glob was used 

for reading filenames from a folder, Matplotlib was used for plot visualizations, 

and finally Numpy was used for all mathematical and array operations. 

4.2 LEAF-BASED IMAGE CLASSIFICATION FOR DISEASE 

DETECTION WITH CONVOLUTIONAL NEURAL NETWORKS 

4.2.1 Data Acquisition 

Classification of images is a complex process that needs large volumes of feature-

rich data, and an “intelligent” self-trainable algorithm that can learn from the data 

to classify correctly. All walnut trees located in the orchard, where photographed 

under various lighting conditions. Specifically, photos were taken during 

morning, noon and afternoon times, having the sun across or behind the camera. 

This detail is important because the position of the sun affects the 

diffusion/refraction of light through/on the leaf, and creates a difference of how 

anthracnose is captured on the image, as dark brown spots on a light green leaf 

or light brown spots on dark green leaf. The leaves were manually cropped and 

split into categories. Acquired from a walnut orchard in Volos, Greece, a total of 

4,491 images contained close-ups of leaves, both with, and without anthracnose. 

The number of the anthracnose-infected leaf images amounted to 2,356, slightly 

higher than the healthy leaf images which were 2,135. In Figure 24 (a) and (c) an 

indicative image from a leaf infected with anthracnose is seen, with and without 

background, and in Figure 24 (b) and (d), a healthy leaf again with and without 

background. 
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(a) (b) (c) (d) 

Figure 24. Images of anthracnose-infected ((a) with and (c) without background) and 
healthy ((b) with and (d) without background) walnut leaves. 

4.2.2 Data Preparation 
Since all images had different proportions, their size was modified to a 256×256 

pixels proportion. This resolution was deemed satisfactory for both maintaining 

the images features, as well as keeping computational time to a minimum.  

All images were originally saved in an RGB 3-channel, and small script was set 

up in order to assign a numerical value as a label to each image, according to its 

prefix. Therefore, images with the “anthracnose_” prefix were assigned with the 

value ‘0’, and images with the “healthy_” prefix were assigned with the value ‘1’. 

The images are loaded into the memory alphabetically due to their order in the 

containing folder, as well as the script used to load them. If the dataset is split as 

is, in training/validation/testing, it is certain that at least the training and testing 

datasets will not contain sufficient or any images from one or the other class. For 

example, the testing set will only contain healthy images if it derives only from 

the last images of the loaded dataset, thus there will be no proper measure for 

the classifier performance. Therefore, since the order of the images was defined 

by the name of each file, a shuffling method based on a random-number 

generator is used to randomly reorder the images so that the sampling is as 

unbiased as possible, thus avoiding improper training. 
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4.2.3 Data Split 
Splitting the dataset occurs in a three way fashion: A training portion destined for 

training the classifier, a validation portion for model improvement during the 

training process, and a testing (held-out) portion which is a part of the dataset 

that is completely hidden from the training process and will be used for validating 

the classifier on unknown data. Each aforementioned portion is created as a 

subset that contains a 50/50 ratio of healthy and anthracnose-infected leaves 

photos. This happens to avoid any unnecessary class imbalance that would incur 

if a dataset would contain images from only one category. 

Python’s random.shuffle generator was used to shuffle the order of images and 

avoid having datasets with similar external conditions. This way, images of leaves 

with different shapes, angles, levels of infection, main leaf colour, brightness, 

ambient lighting, etc., are all included in all categories in order to achieve the 

highest possible variability. Variability in the datasets ensures that the model will 

be trained in the most generalized fashion possible and will be evaluated and 

tested under all conditions [25].  

The first data split concerns the removal of 15% of the total dataset for later use 

as testing dataset. The remaining 85% of the dataset is then split again into an 

80/20 ratio, resulting in the following portions, as seen in Table 2. 

Table 2. Data splitting percentages and purpose. 

Dataset Training Validation Testing 

% of total dataset 68% 17% 15% 

# of images 3053 764 674 

 

The validation set, which is used during the training process, allows the model to 

update its weights in such a way, so that its performance improves, as well as to 

avoid overfitting. After the model has finished training, it is tested on the testing 

data, and verified if it has classified the test images correctly, thus creating the 

need to keep the testing set hidden. 

4.2.4 Performance Metrics 
In this paragraph, the performance metrics that were used to evaluate the 

performance of this approach, are described. In general, the performance metrics 

are used in order to provide a common measure of the performance of the trained 
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classifier, against new images from the testing set. The outcome of this 

prediction, in comparison to the actual class label that was assigned to the image, 

can take one of the four values, true positive (TP) or true negative (TN) if it is 

classified correctly, and false positive (FP) or false negative (FN) if it is 

misclassified. 

These values are then used to calculate the performance metrics that are most 

commonly used in classification problems. In Table 3, the performance metrics 

used in this approach for evaluation of the performance of the trained classifier, 

together with their descriptions, as well as their mathematical formula, are 

described. 

Table 3. Performance metrics used for the image classification. 

Name Description Formula 

Accuracy 

ratio of correctly predicted observation to the 

total observations (preferred in balanced 

datasets) 

(TP+TN/TP+FP+FN

+TN) 

Precision 
ratio of correctly predicted positive observations 

to the total predicted positive observations 
(TP/TP+FP) 

Recall 
ratio of correctly predicted positive observations 

to all observations in actual class 
(TP/TP+FN) 

F1 score  
is the weighted average of Precision and Recall 

(preferred in unbalanced datasets) 

[2∙Recall∙Precision] / 

[Recall+Precision] 

 

Additional to the performance metrics, a helpful way to visualize the prediction 

results is the confusion matrix. The confusion matrix is a table that displays the 

aforementioned values in such a way that one can easily view the number of 

properly classified examples, as well as false positives and false negatives. In this 

level of the proposed methodology, which is a binary classification, the confusion 

matrix is of size 2×2. The template used for the confusion matrix is shown in 

Table 4. 
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Table 4. The confusion matrix template. 

Confusion 

Matrix 

Predicted 

Anthracnose Healthy 

T
ru

e 

Anthracnose 

Healthy 
 

 

All the confusion matrices with the results for each tested scenario are located in 

Appendix A. 

Finally, a loss function (or objective function, or cost function) is used to evaluate 

how well the specific algorithm performs on the given data. The mean squared 

error (MSE) was used as a performance metric, where the average squared 

difference between the estimated values and the real values is calculated during 

the training. It is preferred because large errors create larger consequences than 

equivalent smaller errors, and it always has non-negative values. 

The value of the loss function is important for the evaluation of the model’s 

performance, because it can show us if the model can improve its performance 

and how well the predictions correspond to the real values. The closest that this 

value is to 0, the better will be the performance of the model. 

4.2.5 Convolutional Neural Network Architecture 
For this approach, a deep neural network was developed, that utilizes convolution 

and pooling operations, which have proven to be very effective on problems 

regarding image classification [182]. Classic feature extraction techniques, used in 

computer vision, required the manual feature selection in order to find the 

appropriate feature to utilize. CNNs, being a type of ANNs, can perform feature 

extraction automatically by applying numerous filters on the input images, and 

consequently learn to pick the ones that are useful for the images’ proper 

classification. 

A typical CNN structure starts with a convolutional layer, as the name states, and 

is generally followed by a pooling layer. This combination is repeated as many 

times as necessary for the defined architecture, followed by fully connected layers, 

before the final output layer. Moreover, when there are cases of overfitting during 

training, a dropout layer can be added after either a convolution, a pooling, or a 

fully connected layer.  
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In the proposed implementation, a deep-layer network is designed and 

developed, with five convolutional–pooling layers, a dense layer followed by a 

dropout layer, and finally, the output layer with one node since it is a binary 

classification. A layout of the network’s architecture along with the layers’ shapes 

and the number of trainable parameters, is given in Table 5. A more detailed 

figure of the proposed CNN is presented in Appendix B. 

Table 5. The selected CNN architecture. 

Layer (type) Output Shape 
Param 

# 

conv2d_1 (Conv2D) (None, 254, 254, 32) 896 

max_pooling2d_1 (MaxPooling2) (None, 127, 127, 32) 0 

conv2d_2 (Conv2D) (None, 125, 125, 64) 18496 

max_pooling2d_2 (MaxPooling2) (None, 62, 62, 64) 0 

conv2d_3 (Conv2D) (None, 60, 60, 128) 73856 

max_pooling2d_3 (MaxPooling2) (None, 30, 30, 128) 0 

conv2d_4 (Conv2D) (None, 28, 28, 256) 295168 

max_pooling2d_4 (MaxPooling2) (None, 14, 14, 256) 0 

conv2d_5 (Conv2D) (None, 12, 12, 512) 1180160 

max_pooling2d_5 (MaxPooling2) (None, 6, 6, 512) 0 

flatten_1 (Flatten) (None, 18432) 0 

dropout_1 (Dropout) (None, 18432) 0 

dense_1 (Dense) (None, 512) 9437696 

dense_2 (Dense) (None, 1) 513 

Total params: 11,006,785 

Trainable params: 11,006,785 

Non-trainable params: 0 
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The images enter the network at a 256×256 pixels dimension. The first (input) 

convolutional layer consists of 32 filters (kernels) of size 3×3, always followed by 

a max-pooling layer of size 2×2, which chooses the maximum value of each 

consecutive four (2×2) pixels. The number of filters is doubled at each next 

convolutional layer (32 → 64 → 128 → 256 → 512), and at the same fashion, 

the max-pooling layers that follow. A flattening operation is placed in the 

sequence, right after the convolution and pooling operations, transforming the 

2-dimensional matrices, to 1-dimensional arrays. This transformation sets up the 

hidden, fully connected (dense) layer with 512 nodes. Following, a dropout layer 

drops randomly 20% of the learned weights in order to avoid overfitting. Last is 

the output layer with one node, since the problem at hand is binary classification. 

The activation function that is used in all convolutional and fully connected 

(dense) layers is the Rectified Linear Unit (ReLU) and the final activation function 

is the sigmoid function. The algorithm is set to train for 100 epochs, however an 

early stopping function prevents the network to over-fit by stopping its training 

when the validation loss starts to increase and diverge from the training loss. For 

the loss, the binary cross-entropy function is calculated with an Adam optimizer 

[28], and accuracy is used as the measurable metric. The ImageDataGenerator 

class [29] was used for the model training, in order to perform seamless 

augmentations on images such as rotations, shifting, zoom and flips. 

4.2.6 Visualization of Convolutions 

Even though CNNs are considered “black boxes”, there is a way to visualize 

some of the computations that take place, as well as their effect on the input 

image at each step. Here, some of the filters that are being applied at each layer 

are presented, as well as the activation maps that are produced after the 

convolutions. 

4.2.6.1 Filters 
The filters are mathematical kernels that are being applied on the matrix that 

represents the image. In computer vision applications, they are constructed in 

such ways so that when they are multiplied with the image values, they bring out 

specific features, such as edges. For this methodology, a CNN with five 

convolutional layers is used (Table 6). 

Table 6. Filter dimensions for each convolutional layer. 
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Layer 
Filter 

Dimensions 
Number of filters 

Conv2d_1 3×3 32 

Conv2d_2 3×3 64 

Conv2d_3 3×3 128 

Conv2d_4 3×3 256 

Conv2d_5 3×3 512 

 

While for the grayscale images the filter application is straightforward, for RGB 

images, each channel has its own filters being applied. A visual representation of 

the filters for an RGB image is shown in Figure 25. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 25. The three RGB colour channels’ filters: (a) for the first convolutional layer; 
(b) the second convolutional layer; (c) the third convolutional layer; (d) and the fourth 
convolutional layer. 

These filters are important for the machine learning processing, since they bring 

out features of the images that will be used for the proper classification. 

4.2.6.2 Activation Maps for RGB 
The activation maps are the result of the filter application on the input image or 

on other activation maps when they enter the convolutional stage. These maps 
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highlight features of the image that can potentially be useful for the classification. 

Two activation maps cases of a leaf infected with anthracnose are presented, one 

with background information, and one with the background removed. The two 

images are shown in Figure 26. 

  

(a) (b) 

Figure 26. (a) Walnut tree leaf before; (b) and after the background removal. 

Since the images go through various transformations via mathematical 

operations, it is useful to see how the activation maps look like after the first and 

after the last convolutional layer. Activation maps for the leaf image that contains 

background information are shown in Figure 27, while activation maps of the 

leaf image that had its background removed are shown in Figure 28. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 27. Activation maps for the leaf image that contains background information: (a) 
for the first convolutional layer; (b) and last convolutional layer; and individual maps for: 
(c) the first; (d) and last convolutional layer. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 28. Activation maps for the leaf image without background information (a) for 
the first convolutional layer; (b) and last convolutional layer; and individual maps: (a) for 
the first; (d) and last convolutional layer. 

The filters effect on each channel of the RGB images independently is also 

investigated. First, the image is split into each channel, and then three separate 

images are created, as shown in Figure 29. 
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(a) (b) (c) (d) 

Figure 29. Anthracnose-infected leaf image after background removal (a), the image’s 
red (b), green (c) and blue channel. 

The filters are then applied and the activation maps visualized for each image on 

the first and last convolutional layers of the proposed network. The separate 

feature maps of each RGB colour are presented in Figure 30 for the red channel, 

in Figure 31 for the green channel and Figure 31 for the blue channel. It is clear 

that the filters have different effects on the different channels, obvious both in 

the first layer, as well as the last. 

 

(a) 

 

(b) 
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Figure 30. Feature maps of the red channel: (a) for the first; (b) and last convolutional 
layer; and individual maps: (c) for the first; (d) and last convolutional layer. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 31. Feature maps of the green channel: (a) for the first; (b) and last convolutional 
layer; and individual maps: (c) for the first; (d) and last convolutional layer. 

 

 

(c) 

 

(d) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 32. (a) Feature maps of the blue channel for the first; (b) and last convolutional 
layer (c) and individual maps for the first (d) and last convolutional layer. 

4.2.6.3 Activation Maps for Grayscale 
The same method is applied on three categories of the grayscale images in Figure 

33 and the images that have been transformed with the FFT method in Figure 

34. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 33. Feature maps for the image that was transformed to grayscale, without 
background, (a) for the first; (b) and the last convolutional layer; (c) and individual maps 
for the first; (d) and last convolutional layer. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 34. Feature maps for the image that was transformed to grayscale, without 
background, and after the application of the fast Fourier transform: (a) for the first (b) 
and the last convolutional layer and individual maps (c) for the first (d) and last 
convolutional layer. 

4.2.6.4 Filter Effect on Images 
The effect of the filters can be examined by visualizing the optical pattern of the 

filter itself, both on a white image, and on the image of the leaf. This is done by 

applying gradient ascent to the input image, in order to maximize the response 

of the particular filter. The filters of the first and last convolutional layers are 

applied on a blank image, just to visualize the filter itself, as shown in Figure 35. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 35. Filters’ effect on a blank image: (a) for the first; (b) the last convolutional 
layer; and individual filters: (c) for the first; (d) and last convolutional layer. 

Following this, the image with the anthracnose-infected leaf is used as input and 

the effect of the filters on the leaf image itself can be seen in Figure 36. 

 

  

(a) (b) 

  

(c) (d) 

Figure 36. Filters’ effect on the anthracnose-infected leaf image, without background: 
(a) for the first; (b) the last convolutional layer; and individual filter effect: (c) for the 
first; (d) last convolutional layer. 
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This way, insight of the depths of the deep neural network are obtained, and 

specifically how the convolutions affect the features of an image that contains 

leaves. 

4.3 OBJECT DETECTION WITH SINGLE-SHOT DETECTOR 

ALGORITHM FOR TREE-LEVEL DISEASE CLASSIFICATION IN 

ORCHARDS 

4.3.1 Case study 

In order to appropriately train a model capable of the proper detection of leaves 

infected with anthracnose, a significantly large volume of images with distinct 

features of the objects of interest, is required by object detection algorithms. In 

the proposed approach, 100 images were acquired from all trees of a commercial 

walnut orchard, located in Rizomylos in Central Greece. These images were used 

as a training dataset for the object detector. A 20% of the aforementioned images 

were randomly chosen in each run, in order to be used as validation dataset for 

the training process of the object detector. The orchard size used for this case 

study was 4 ha and contained a total of 379 walnut trees. The images from the 

training dataset contained trees that were selected based on their location within 

the orchard, their infection percentage and the size of the canopy. This approach 

aims at training an object detector with the highest possible accuracy and evaluate 

its performance with unknown images. For that reason, the remaining 279 trees 

that were excluded from the object detection training phase, were used to 

examine the effectiveness and robustness of the detector in real orchard 

environments.  

The images were acquired in raw format with resolution of 5,472×3,648 pixels, 

the same as it was used in the previous approach. The camera was positioned at 

1.5m from the ground centered towards the side canopy center to capture as 

much of the tree’s canopy as possible, demonstrated as a schematic in Figure 37. 
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Figure 37. Camera setup for aiming the walnut tree’s canopy from one side. 

4.3.2 Object detection algorithms 
The SSD object detection algorithm was the basis of the proposed methodology. 

The selection of the SSD for this methodology was based on two factors. 

Number one, the detection of anthracnose-infected leaves on walnut trees is the 

main aim, therefore, lower prediction accuracy is not an issue, since there is a 

large number of leaves on the tree’s canopy, that will be detected nevertheless. If 

enough infected leaves are detected, the tree will be classified as infected in total, 

even without having all infected leaves located by the model. Number two, future 

goal of this application is the on-field deployment and its operation in real time, 

either by the acquisition and processing of images, or video feed. Consequently, 

adequate accuracy and fast performance is preferred over the highest accuracy 

but slow performance. 

In literature, a comparison of the accuracy, by measuring the mean Average 

Precision (mAP), and speed by measuring the Frames Per Second (FPS), between 

the the most famous object detectors including Faster R-CNN, SSD and YOLO 

(You Only Look Once), on the VOC2007 [180] dataset, has been documented 

[183]. The results are presented in Table 7. R-CNN and Fast R-CNN are omitted 

from the table due to their very low processing speed (<1fps). 

 

Table 7. Comparison of object detectors on the VOC2007 dataset. 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 12:15:21 EEST - 3.133.119.121



 

 85 

Method mAP FPS Batch 

size 

# 

boxes 

Input 

resolution 

Faster R-CNN 

(VGG16) 

73.2 7 1 ∼ 6.000 ∼ 1000 × 600 

YOLO (VGG16) 66.4 21 1 98 448 × 448 

SSD300 74.3 46 1 8.732 300 × 300 

SSD512 76.8 19 1 24.564 512 × 512 

SSD300 74.3 59 8 8.732 300 × 300 

SSD512 76.8 22 8 24.564 512 × 512 

 

The mAP described in detail later within the document, FPS denotes the frames-

per-second and measures inference speed, batch size is the number of training 

examples used in a single iteration, # boxes is the number of predicted boxes, 

and the input resolution is the pixel size of the images used as input. 

According to Table 7, the fastest and most accurate detector is the SSD300. SSD 

[184] is a popular architecture for detecting objects in images, by using a single 

deep neural network. This technique discretizes the created bounding boxes into 

a set of default boxes, through different scales and aspect ratios as shown in 

Figure 38. During inference, the trained network provides predictions concerning 

the objects’ class in each default box, and on the same time, it adjusts every box 

appropriately, to fit the shape of desired objects. Feature maps with different 

resolutions are used as a basis for the produced predictions, resulting in a more 

natural objects’ treatment of diverse sizes. Furthermore, a single network 

conducts all computations, making SSD very easy to train and be integrated into 

full systems that entail detection components [185]. 
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Figure 38. Predicted bounding boxes on an image acquired from the experimental 
orchard (a) and the final selection over the actual position (b). 

4.3.3 Validation and evaluation of methodology 
The proposed methodology’s validation was based on the application of the 

trained object detection model, to all the orchard’s trees that were not used for 

training the models. All four of the trees’ canopies perimetrical images were 

segmented, according to the methodology mentioned previously. Namely, for the 

images sized 1,280×1,280 pixels there would be 12 sub-images × 4 sides = 48 

sub-images, or 48 sub-images × 4 sides = 192 sub-images of 640×640 pixel 

resolution, to be examined with the trained object detector for anthracnose-

infected leaves. 

Expert knowledge was recorded and used as ground truth for the tree’s 

classification. Expert agronomists, specialized in orchards production, inspected 

thoroughly throughout the entire orchard and classified each tree into two 

classes. The first class was constructed based on trees that were severely infected, 

and the other based on healthy or lightly infected trees. The second class was 

mixed (both healthy and lightly infected trees) because the non-infected trees 

were extremely limited as a result of the spreading of the inoculum throughout 

the orchard. 

After extensive investigation, the number of 10 detected leaves per side was set 

as threshold for the classification between the two classes. The aforementioned 

threshold was defined based on the knowledge of the experts. In principle, 

images from the training dataset were given to the expert agronomists, for 

defining the threshold, i.e. the number of the infected leaves within each image, 
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and re-classify the trees if it is deemed necessary. The threshold was the average 

number of leaves, above which, the trees were classified as severely infected.  In 

cases where the classifications for the different sides vary, the majority of 

outcomes is considered for the final classification of the trees. In the rare 

occasions when equal sides are categorized in both classes, a secondary 

classification mechanism is based on the total number of classified leaves. The 

classification of the tree is then passed along with its ID, the coordinates, and 

additional metadata, to a data file which can then be used to create a point map 

of the infected trees, ultimately being able to visualize the way and speed the 

infection is spreading throughout the orchard. 

Merging healthy and lightly infected trees in one class was an attempt to balance 

the classes, however, the severely infected trees were still significantly more. This 

class imbalance was unfortunate; however, model generalization was more 

important. The imbalance was tackled by selecting a proper metric for measuring 

the performance of the developed system.  

4.3.4 Performance Metrics for Object Detection 

4.3.4.1 Intersection over Union (IoU) 
IoU focuses on the localization part of the prediction and is the measure of how 

much overlapping occurs between the areas of the ground truth bounding box 

and the predicted bounding box. When a prediction box matches 100% the 

ground truth box, the IoU is 1. The mathematical formula is given in Equation 

(1). 

 

𝐼𝑜𝑈 =  
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 

(1) 

 

4.3.4.2 Average Precision (AP) 

For object detection problems, average precision (AP) [186] is usually used as a 

primary metric because it can evaluate both the classification and the detection. 

The AP shows the accuracy with which the detector can define the area where 

the object is really, at a specific overlap percentage (i.e. 50%, 75%, 95%). It is 

defined as the mean precision at a set of eleven equally spaced recall levels [0, 0.1 

,…, 0.9 ,1], represented as r, and for the PASCAL VOC standard that was 

adopted in this methodology level, a prediction considered positive only if IoU 
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≥ 0.5. Any AP between (0.5:0.95) is considered a positive match and corresponds 

to the average over multiple IoU within the image. The mathematical equation 

for the AP is given in Equation (2). 

𝐴𝑃 =
1

11
∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟=(0,0.1,…,1)

 
(2) 

 

4.3.4.3 Average Recall (AR) 

Average Recall (AR) is an significant metric for object detection problems, due 

to the fact that it summarizes proposal performance, i.e. recall, across IoU 

thresholds. The AR measures how many of the objects that were supposed to be 

detected, are indeed detected. In essence, AR correlates with detection 

performance [187]. The mathematical formula used for its computation is given 

in Equation (3). 

𝐴𝑅 = 2 ∫ 𝑟𝑒𝑐𝑎𝑙𝑙(𝐼𝑜𝑈)𝑑𝐼𝑜𝑈
1

0.5

 
  (3) 

 

Generally, for object detector applications, mean average precision (mAP) and 

mean average recall (mAR) are preferred, due to the fact that the most popular 

benchmark datasets deal with multiple classes of objects and the mean value of 

precision and recall is necessary. This can also be seen in Table 7. However, since 

only one class is present (anthracnose infected leaves), mAP and mAR are 

considered as AP and AR respectively. 

4.4 ORCHARD MAPPING IN COMPLEX ENVIRONMENTS WITH 

DEEP LEARNING SEMANTIC SEGMENTATION 
Three sites of commercial walnut orchards, located in Thessaly, Central Greece, 

were used for testing the proposed methodology. The orchards covered a range 

of tree ages and soil surface features. On the same premise of data variability, the 

images were collected and selected for representing different seasons. Aim was 

the capture of different tree conditions and stages, that occur throughout the 

growing season, such as defoliated, canopy developing, canopy fully developed, 

and brown canopy before defoliation. Moreover, the orchards covered a range 

of background soil surface conditions, such as free from weeds, partly covered 

by weeds, and untreated soil with complete weeds coverage. A sum of 106 images 

from the aforementioned three orchards had led to defining seven different use 
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cases, used for training and testing the proposed methodology. A detailed list of 

the characteristics’ use cases is presented in Table 8. 

Table 8. Characteristics and categorization of the orchards into separate use cases. 

Use Case No. Yearly Season Weeds Coverage Canopy Size Foliage Colour Ground Colour 

1 Autumn Low - Brown Brown 

2 Autumn Low - Mixed Brown 

3 Summer Low Small Green Brown 

4 Summer Low Medium Green Brown 

5 Summer Low Medium Green Mixed 

6 Summer Low Large Green Brown 

7 Summer High Large Green Green 

 

All use cases were adequately represented by several images in the training set 

and, more importantly, the test set was constructed so that it contains always, one 

image of each use case at minimum. This way, the trained models would be tested 

for all different combinations of characteristics, ensuring the maximum 

generalization. Sample images for each use case are presented in Appendix C. 

4.4.1 Data Acquisition 
Several test flights were conducted from 2018 to 2020 in order to acquire a large 

number of images, from multiple orchards, under different conditions. To 

maximize the exploration ability, the automated flights were maintained with the 

necessary criteria to produce high-accuracy orthomosaics. Each automated 

flight’s parameters, such as UAV flight height, speed, number of captured images, 

side overlap and forward overlap ratio, were fine-tuned with aim to produce high-

resolution orthomosaics (below-centimeter pixel size), and are presented in detail 

in Table 9. 

Table 9. Details on the UAV flights that were conducted for each use case, for acquiring 
images and creating the orthomosaics used in the approach. 

Use Case 

No. 

Acquisition 

Date 

Number of 

Trees 

Number of  

Images 
Overlap GSD 

Air Speed 

(m/s) 

Cloud  

Coverage (%) 
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1 1/11/2018 1399 283 75% 1.3 <3 49 

2 30/8/2020 569 522 75% 1.3 3 32 

3 19/6/2020 358 330 75% 1.3 <3 5 

4 3/06/2020 506 244 75% 1.5 <3 35 

5 12/8/2020 2118 510 75% 1.5 <3 40 

6 07/05/2019 296 193 75% 1.3 <3 12 

7 15/05/2020 632 465 75% 1.3 <3 5 

4.4.2 Data Preprocessing 
Image preprocessing is a fundamental aspect of computer vision tasks, especially 

when employing self-learning algorithms. The reason for this is the need to 

transform the images into proper sizes/shapes, in order for the numerical 

computations to take place. Each of the raw images captured from the orchards 

occupied over 30 MB of storage each and had a 5472 × 3648 pixel rectangular 

shape. Size reduction and reshaping was applied to all images in order to 

transform them to dimensions of 512 × 512 pixels. 

This approach also investigated the effect of image preprocessing in terms of 

colour and colourspaces. Histogram equalization (EQ) [188] and contrast-limited 

adaptive histogram equalization (CLAHE) [189] are two methods usually used 

for contrast enhancement in RGB images, both of which expand the contrast by 

adapting the range of the image’s pixel values either globally or locally. Besides 

the RGB spectrum, the HSV colourspace—which represents colour with hue, 

saturation, and value, all assigned to cylindrical coordinates—was also 

investigated since it amplifies different features of an image, which could lead to 

increased performance. 

A novel approach for contrast increase and feature extraction was attempted in 

this methodology. The approach was based on the combination of an RGB 

contrast-enhanced instance of an image, and its HSV colourspace instance, fused 

into a single 6-channel image. These fused images contain “double” information 

when compared to a regular 3-channel image; however, the increase in added 

value, due to more colour channels, is not directly implied [70]. A visual 

representation of how the 3- and 6-channel images are constructed is shown in 

Figure 39. 
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(a) 

 

(b) 

 

(c) 

Figure 39. Channel deconstruction of (a) RGB, (b) HSV, and (c) fused images. 

Two variants of the fused images were tested, namely the RGB image without 

any contrast enhancement and the CLAHE method for adaptive contrast 

enhancement, alongside the HSV colourspace image. The visual differences 

between all methods are presented in Figure 40.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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Figure 40. Image colour transformations used in for the proposed approach: (a) RGB, 
(b) EQ, (c) CLAHE, (d) HSV colourspace, (e) 6-channel RGB and HSV fusion, and (f) 
6-channel CLAHE and HSV fusion. 

4.4.3 Performance Metric 
The Sørensen–Dice coefficient [190] was selected as the performance metric for 

the segmentation of trees against their background. It was preferred over the 

intersection over union (IoU, also known as the Jaccard index [191]) because the 

IoU penalizes bad classifications harder [192] and, in the case of tree foliage, the 

exact details of the foliage shape is not of high importance. As a loss function, 

the negative value of the dice coeffsicient was used, as is common in image 

segmentation tasks [193].  
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5 RESULTS 

5.1 LEAF-BASED IMAGE CLASSIFICATION FOR DISEASE 

DETECTION WITH CONVOLUTIONAL NEURAL NETWORKS 
 

Prior to the exploratory analysis of the optimal CNN setup, it is necessary to see 

where the other famous classification ML algorithms stand in the particular 

problem. In a previous work [32], it was shown that neural networks outperform 

other algorithms in a similar dataset, thus pointing to investigating the best neural 

network implementation. However, some of the most famous classical ML 

algorithms were tested on this new dataset for the comparison. The results are 

shown in Table 10. 

Table 10. Comparison of classical (ML) algorithms. 

 

 DT RF Ada-
Boost 

SVM ANN 
(Perceprton) 

Accuracy 64.59 79.55 77.45 81.37 83.38 

Precision 65.02 80.17 77.82 81.66 84.28 

Recall 64.78 79.83 77.78 81.21 84.11 

F1 score 64.32 79.39 77.42 80.74 83.22 

 

It is clear that ANNs perform better in a particular problem, and therefore the 

choice in focusing on CNNs, a direct derivative of ANNs, is justified and 

validated. 

The first comparative analysis was dedicated to measure the accuracy as well as 

the loss of both the validation and the testing dataset for images containing 

background information. Measuring accuracies allows us to see if the predictions 
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made to the unknown set match the performance of the model while training. In 

Table 11 the accuracy percentage and the loss for each method used are listed. 

Table 11. Accuracy and loss for the three preprocessing approaches, for the validation 
and testing sets on images with background information. 

 
Accuracy Loss 

Validation Testing Validation Testing 

Grayscale 92.869 92.469 0.192 0.197 

Fast Fourier 93.153 92.938 0.198 0.176 

RGB 96.847 95.969 0.086 0.111 

 

The second comparative analysis was to measure the accuracy and loss for each 

method, but with additionally applying the background removal method. This 

way, the images contain less relevant-to-the-infection information, which should 

lead to increased performance. Table 12 show that by removing unnecessary 

information, the performance of each model has increased. 

Table 12. Accuracy and loss for the three preprocessing approaches, for the validation 
and testing sets on images without background information. 

 
Accuracy Loss 

Validation Testing Validation Testing 

Grayscale 95.710 95.469 0.116 0.130 

Fast Fourier 96.591 96.531 0.108 0.105 

RGB 99.006 98.719 0.031 0.049 

 

Finally, the best performing model is selected (RGB images with background 

removal) and compared it to state-of-the-art CNNs for image classification. The 

afforementioned CNNs have set accuracy records when originally trained on the 

Imagenet [33] database, and thus, are selected for comparison. In detail, 

DenseNet121 [34] a version of DenseNet (Densely Connected Convolutional 

Networks) that is 121 layers deep, was used. DenseNet solved the vanishing 

gradients problem, despite its depth, by having in its architecture both 1×1 and 
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3×3 convolutional layers, as well as batch normalization. Another architecture 

that was used is VGG16 [35], a version of VGG (Visual Geometry Group). As a 

general rule, VGGs only use 3×3 convolutional layers, stacked on top of each 

other. ResNet50 [36] is the 50-layer deep version of ResNet (Residual neural 

Network), an exotic architecture that is based on “network-in-network” micro-

architectures. Due to global average pooling, instead of fully connected layers, 

the size of ResNet50 is significantly smaller than VGG16. Finally, Inception V3 

[37] is 48-layers deep and is Inception’s third instalment. Inception V3 

incorporated RMSProp (Root Mean Square Propagation) optimizer and 7×7 

convolution in the 1×1, 3×3 and 5×5 convolutions which were already presented 

within the same module of the network.  

For the sake of comparison, the networks are used along with their weights, and 

only the last layers are retrained on the specific dataset, also known as transfer 

learning. Thus, each algorithm is re-trained/fine-tuned on the desired dataset, 

with the same preprocessing functions, in order to compare only the models’ 

performance. Additionally, the training times of each algorithm have been 

measured with the %%time function of Python, set to measure the execution 

time of only the training of the model and none of the preprocessing or the 

processing of the predictions. The results are shown in Table 13. 

Table 13. Comparison of most common CNNs with the proposed CNN. 

 VGG16 DenseNet121 ResNet50 Inception V3 Proposed CNN 

Validation accuracy 96.88 99.049 98.505 99.290 99.006 

Validation loss 0.10 0.033 0.050 0.027 0.031 

Testing accuracy 95.78 96.577 98.363 99.375 98.719 

Testing loss 0.12 0.071 0.067 0.013 0.049 

Execution time (s) 1.39×103 1.87×103 1.29×103 1.71×103 0.99×103 

 

It is noticed that the proposed CNN architecture has performed better than the 

rest of the state-of-the-art architectures, except Inception V3, which achieved 

better accuracy both in the validation dataset, as well as in the testing dataset. 

However, a key point difference is that the proposed CNN architecture is 

significantly shallower compared to the other architectures, therefore it can be 

trained a lot faster on the same dataset. 
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It is clear that the proposed network achieves a similar accuracy to the state-of-

the-art Inception V3 network, in less time due to its shallower architecture. The 

tradeoff is in favor of the proposed network, since the difference in time is 

significant, while the accuracy difference is minimum. Given that in this particular 

problem the useful features are not so complex, the proposed CNN performs 

satisfactorily. 

5.2 OBJECT DETECTION WITH SINGLE-SHOT DETECTOR 

ALGORITHM FOR TREE-LEVEL DISEASE CLASSIFICATION IN 

ORCHARDS 

5.2.1 Object detector training performance 

Two different training datasets were derived from the initial image dataset, 

depending on the segmentation dimensions (640x640 or 128x1280 pixels), and 

were used for training the object detectors. These datasets do not derive directly 

from the results of the segmentation of the original images.  A number of sub-

images containing unnecessary information, irrelevant to the target (leaves), such 

as soil, sky and other unnecessary information, were discarded. Detailed 

information on the number of images used in every step of the analysis is shown 

in Table 14. 

Table 14. The number of images that were used for training and validation of the object 
detector and for the final classification of the trained model. 

Description Total 
SSD 

Training 

SSD 

Validation 

Classification 

Validation 

Original images 379×4=1,516 80×4 = 320 20×4=80 279×4=1,116 

Total sub-images 

(1,280x1,280) (x12) 
18,192 3,840 960 13,392 

Total sub-images 

(640x640) (x48) 
72,768 15,360 3,840 53,568 

Total sub-images after 

removing soil/sky 

(1,280x1,280) 

5,597 1,187 277 4,133 
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Total sub-images after 

removing soil/sky 

(640x640) 

11,094 2,361 492 8,241 

 

Three different CNN classifiers were evaluated and compared based on their 

overall performance; Resnet50, Inception v2, and Mobilenet v2. Direct 

comparison between these methods was conducted on the same dataset, at two 

different image sizes. Examining the performance metrics of the classifiers the 

application of Resnet50 CNN in the SSD architecture produced the best results 

in terms of accuracy and speed since it reached higher AP within less training 

steps. The configuration parameters alongside with the performance metrics for 

each approach are presented in Table 15. 

 

Table 15. Parameters and performance metrics for the models evaluated using the 
training dataset of the methodology. 

 Model 

Training 

parameters 
Resnet50 Inception v2 Mobilenet v2 

# train images 2.361 1.187 2.361 1.187 2.361 1.187 

# test images 492 277 492 277 492 277 

width 640 1,280 640 1,280 640 1,280 

height 640 1,280 640 1,280 640 1,280 

Total steps 20,000 15,000 50,000 50,000 20,000 20,000 

Vertical flip yes yes yes yes yes yes 

Horizontal flip yes yes yes yes yes yes 

Batch size 32 32 12 12 12 12 

Learning rate 1.18-9 1.6-2 3.0-3 3.76-5 4.17-3 3.0-3 

Training time (hours) 15 14 4 7 5 8 

Performance metrics      
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AP (IOU = 

0.50:0.95) 

0.629 0.35 0.57 0.391 0.475 0.285 

AP (IOU = 0.50) 0.926 0.601 0.931 0.574 0.824 0.428 

AP (IOU = 0.75) 0.706 0.37 0.618 0.456 0.505 0.336 

AR MaxDets = 1 0.621 0.296 0.567 0.252 0.496 0.198 

AR MaxDets = 10 0.71 0.515 0.65 0.545 0.594 0.417 

AR MaxDets = 100 0.73 0.576 0.663 0.601 0.622 0.472 

Classification loss 0.32 0.568 3.65 10.768 0.494 1.193 

Localization loss 0.109 0.182 0.5 0.632 0.17 0.262 

Regularization loss 0.125 0.151 0.59 0.5407 0.344 0.364 

Total loss 0.556 0.901 4.74 11.941 1.099 1.819 

 

The experimentation with the CNN classifiers was performed at different image 

sizes to investigate the appropriate level of segmentation of the initial images in 

order to achieve the highest possible accuracy with the lowest computational 

time. Direct result of this was to obtain different number of images used for the 

training phase; 2.361 sub-images sized 640×640 pixels and 1.187 sub-images 

sized 1,280×1,280. Regardless the segmentation size, the annotated boxes were 

the same in both datasets. 

Based on the results that are presented in Table 15, Resnet50 and Inception v2 

performed better than Mobilenet v2 for both sub-image sizes in terms of 

prediction performance. This was expected since Mobilenet v2 aims at producing 

fast predictions during deployment. Inception v2 outperformed Mobilenet v2, 

however, by requiring significantly more iterations for reaching the highest AP 

through all examples (steps), meaning that, in general, it was struggling to learn 

the desired features underlying in the images. Resnet50 achieved the best 

accuracy, reaching approximately 63% AP, in spite of being the slowest one, due 

to its extensive depth of convolutional layers. All three CNNs showed similar 

behavior considering the size of the input images, performing better with the 

images of 640×640 pixels. The selected model for the testing in real conditions 

was the 640×640 pixel size Resnet50. The AP and total loss regarding the training 

steps of the selected model is shown in Figure 41. 
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(a) (b) 

Figure 41. Average precision (AP) (a) and total loss (b) for the Resnet50 classifier 
training, on sub-images with 640×640 pixels size. 

 

According to the analysis, the selected model starts reaching a minimum plateau 

in the total gain loss after 16,000 runs, and in the AP value after 9,000 runs. 

5.2.2 Expert knowledge classification 
Expert agronomists categorized the trees in the two classes (severely infected or 

healthy/lightly infected), after a detailed manual inspection of the orchard’s 

images. A total of 243 out of the 379 trees were classified as severely infected, 

while the remaining 136 were classified as lightly infected or healthy. The number 

of tree images for each class, that was selected for training, was close to equal, in 

order to be able to capture a good amount of both severe and light infection of 

anthracnose on leaves, for a balanced training and proper generalization of the 

model. Thus, the validation dataset ended up having 194 severely infected and 85 

lightly infected / healthy trees. The class distributions for the total number of 

trees and the classification-validation dataset are shown in Figure 42. 
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Figure 42. Class distribution for the total number of tree images, as labelled in the 
orchard, and for the tree images used for classification-validation datasets. 

 

5.2.3 Object detector classification and validation 
Once the best trained model was selected, it was applied on the remaining 279 

trees of the orchard from which the corresponding images were not used during 

the training phase. A predicted class was appointed and cross-referenced for each 

tree, with a ground truth class, given by the on-field experts. The maps deriving 

from these classifications are shown in Figure 43. Figure 43(a) shows the 

classification map as it was formed by the expert’s labelling, and Figure 43(b) 

shows the classification map as it was formed by the trained model’s predictions. 

The two maps are very similar depicting the spatial distribution of healthy and 

infected trees throughout the orchard. These two maps, when paced side-by-side, 

can visually demonstrate the proposed method’s efficacy, as well as the feasibility 

and applicability of an automated, high-accuracy, anthracnose-detection system. 

The aim of developing such a system is to be used as an assistive tool in precision 

agriculture. After further geostatistical analysis, this georeferenced information 

can lead to the production of variable rate fungicide application map as part of a 

decision-making system. 
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(a) (b) 

Figure 43. Experts’ knowledge tree classification map (a) and the predicted classification 
of the trees according to the object detector results (b) of the studied orchard. The red 
squares indicate the infected and the green the healthy classified trees. Map (b) contains 
fewer points because the trees used for model training were not included in the 
classification analysis. 

The results were inserted in a confusion matrix in order to observe the ratio of 

correctly predicted classes (Table 16). The confusion matrix shows the sums of 

properly and improperly predicted classes over the real classes, in a tabular form. 

Confusion matrices are equally useful to the performance metrics, because they 

offer visual interpretation of the results and a detailed distribution of the 

misclassified cases. 

Table 16. Performance of the object detector during the validation phase. 

  Expert classification 

  Severe infection Healthy / Light infection Total 

P
re

d
ic

to
r 

c
la

ss
if

ic
a
ti

o
n

 

Severe infection 166 28 194 

Healthy / Light infection 22 63 85 

Total 188 91 279 
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The accuracy, F1 score, precision, and recall, are the most common performance 

metrics for classification purposes. Their descriptions and mathematical formulas 

are described in [194]. The different performance metrics show the success of 

the tree classification under various scopes. In detail, accuracy considers how the 

number of predictions that was correct regardless of the class; the harmonic 

mean, or F1 score, calculates the classification accuracy by considering class 

imbalance that might be present, which fits the proposed approach. Precision 

shows how many of the positive predictions were actually correct considering all 

the predicted positives (correct and incorrect) and recall shows how many of the 

positive predictions were correct considering all true positives (regardless of 

whether they were properly classified). This approach aims to tackle the detection 

of anthracnose infected leaves, it is valuable to take into consideration both 

precision and recall, in order to be able to bring forth any weaknesses the train 

model has in predicting false negatives (predict healthy when the tree is infected). 

The classification of the test trees reached 82.1% accuracy. However, due to the 

classes’ imbalance, the F1 score, as the harmonic mean of precision and recall, is 

more unbiased and therefore a more appropriate metric [195]. The formulation 

of the F1 score is for finding equal balance between precision and recall for a 

class, which makes it significantly useful, especially when classes within datasets 

are imbalanced. The trained model application on unknown, test data (trees), 

achieved 86.9% with regards to the F1 score, and on the same time, precision 

and recall achieved 88.3% and 85.6% respectively (Table 17). 

 

Table 17. Performance metrics for classification of the trees' classes. 

Performance metric Value 

Accuracy 0.821 

F1 score 0.869 

Precision 0.883 

Recall 0.856 

 

Type 1 classification errors, referring to the false negative classification, were 

27.3% more than type 2 classification errors, referring to the false positive 
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classification. This signifies that the trees that have been misclassified as severely 

infected, and consequently would be unnecessarily treated, are more than the 

severely infected misclassified as healthy trees, which would not be treated at all 

and spread the virus.  

The properly classified, along with the misclassified predicted trees, were 

mapped. The aim was to visualize the distribution, density, and spatial 

characteristics of the misclassified trees in order to understand if there were any 

location-related variables that affected the performance of the trained object 

detector (Figure 44). The colour coding of this mapping consists of correctly 

classified trees (blue), false negatives i.e. anthracnose infected trees that were 

labelled as healthy (yellow), and false positives i.e. healthy trees that were 

incorrectly labelled as infected (pink). According to the resulted map, the vast 

majority of the predictions were correct in accordance with the expert 

classification. The false predictions were fairly balanced between the two classes 

(false positives and false negatives). In real in-field applications, the false positive 

predictions are not as important, compared to the false negatives. Unnecessary 

treatment with fungicide application would not be an issue for these trees since 

it would not affect their overall health and the general yield and production of 

the orchard.  
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Figure 44. Point map of the properly classified (blue), false negative classified (yellow) 
and false positive classified (pink) trees, based on the trained object detector as compared 
to the ground truth classification (expert knowledge). 

5.3 ORCHARD MAPPING IN COMPLEX ENVIRONMENTS WITH 

DEEP LEARNING SEMANTIC SEGMENTATION 

5.3.1 Validation on Dataset 

All models were trained between 40 and 100 epochs, a visualization of which is 

seen in Figure 45. Early stopping was used for preventing overfitting of the 

models. The models were trained and tested on 96 and 10 images respectively, 

which were randomly selected from the 106 images of the dataset, including all 

seven use cases (use cases presented in Table 8 and Table 9). In this way, the 

generalization of the model was ensured. The accuracy achieved by the models 

under the differently pre-processed datasets is shown in Table 18. 

 

Figure 45. Learning plot with training and validation accuracy. 

Table 18. Accuracy (dice coefficient) for investigated methods of pre-processing. 

Image Colourspace RGB EQ CLAHE HSV RGB + HSV CLAHE + HSV 

Channels 3 6 

Training accuracy 0.91 0.90 0.90 0.92 0.91 0.91 

Validation accuracy 0.90 0.88 0.89 0.90 0.89 0.90 
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Testing accuracy 0.87 0.77 0.86 0.86 0.85 0.86 

 

As mentioned previously, the dice coefficient is used for benchmarking the 

performance of trained models. However, the ability of a trained model to 

properly segment trees is measured by visual inspection. The system was 

validated by applying the trained models to never-before-seen images of entirely 

different use cases and comparing the results to the identification of a human 

expert. The false positives (FPs), i.e., incorrectly identifying trees at locations 

where there were none, and false negatives (FNs), i.e., failing to identify trees, 

could thus be registered. On top of the tree canopy segmentation, the exact 

location of a tree’s trunk was computed based on the predicted masks. The 

method for computing this location was based on the centroids of the image 

moments, i.e., the weighted average of the predicted masks. Therefore, for each 

mask representing a tree canopy, and with the condition that it was isolated and 

in no way connected to an adjacent mask, a single point was calculated to signify 

the position of the tree trunk, considering a fairly symmetrical canopy shape. A 

visual example of the predicted segmentation (left) and the real annotation (right), 

both overlaid on the original images, is given in Figure 46. 

Figure 46. Examples of false positive and false negative segmentation predicted by the 
developed system (left) as compared to the real segmentation (right). 

Since the primary aim of this approach is to solve the problem of the accurate 

mapping of trees’ locations within orchards, the absolute intersection between all 

pixels was mainly considered for the training phase. The rough shape and size of 

a properly identified tree canopy was what would lead to a correct computation 
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of the trunk location and the estimation of the tree’s age. Therefore, in order to 

choose the best-trained model for the application, the test set was manually 

investigated across the predicted segmentations from each approach. Based on 

this premise, FPs and FNs were identified and each model ultimately received a 

score based on the ratio of FPs, FNs, and their sum, over the total amount of 

trees in each image, as seen in Table 19. 

Table 19. Overall performance evaluation, expressed as percentages (%), of the models 
examined in the test set of the methodology, in terms of false positives (FPs), false 
negatives (FNs), and their sum ratios over the total number of trees in the test set. 

Image Colourspace RGB EQ CLAHE HSV RGB + HSV CLAHE + HSV 

FPs (%) 7.49 9.41 16.17 7.57 7.49 4.99 

FNs (%) 5.81 8.73 15.17 6.48 10.66 16.22 

Total misidentifications (%) 13.30 18.14 31.34 14.05 18.16 21.21 

 

From the overall evaluation of the models’ performance, the RGB model was 

identified as the simplest and provided the best results. Therefore, it was selected 

as the primary model to be investigated further. In the next step, the performance 

of the RGB model was investigated for each use case separately. In this way, the 

strengths and weaknesses of the selected approach could be identified and 

therefore tackled in future work. The results of the RGB method were further 

broken down per test image, covering all use cases that were included in this level 

of the methodology, as shown in Table 20. 

Table 20. Performance evaluation of the RGB model (best performing) applied to the 
separate test images for each use case, expressed as percentages (%) of false positives, 
false negatives, and their sum total. 

Test Image 1 2 3 4 5 6 7 8 9 10 Mean 

Use Case 2 1 5 4 4 6 6 5 7 3  

FPs (%) 7.69 8.33 16.67 9.09 2.08 1.82 2.33 12.64 14.29 0.00 7.49 

FNs (%) 0.00 4.17 4.17 18.18 0.00 1.82 0.00 3.45 2.38 23.94 5.81 

Total (%) 7.69 12.50 20.83 27.27 2.08 3.64 2.33 16.09 16.67 23.94 13.30 
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The accuracy achieved for all use cases using the RGB model ranged between 

72.7% and 97.9%, which can be considered as a satisfactory result. Comparing 

images 6 and 7 with 9, the effect of the presence of weeds’ on the accuracy of the 

model is evident, since the first two images, which belong to use case 6 (large 

trees; few weeds), performed considerably better compared to image 9, which 

belongs to use case 7 (large trees; many weeds). In the latter, the FPs were the 

primary reason for limiting the system’s performance. This signifies that the 

developed weeds within the image frame led to increased FP misclassifications 

(weeds classified as trees). Interestingly, when running test images from use cases 

1 and 2 (i.e., images captured during autumn when the canopy was turning 

brown), accuracy was notably high, albeit with a low level of weeds coverage. 

With regard to common characteristics between use cases, three indicative results 

from the RGB model are presented in Figure 47. These three categories cover 

the most contrasting situations; (a) ideal conditions with medium/large tree 

canopies and ground with only a small amount of weeds, (b) intermediate 

conditions with large tree canopies but weed-infested ground, and (c) unfavorable 

conditions with small tree canopies and some weeds present. The first image 

belongs to use case 4, containing clear green canopies and ground covered by 

only a few weeds. The second image, which represents use case 7, shows large 

green canopies; however, the ground is almost entirely covered with weeds of a 

similar shade of green. The third image is from an orchard free of weeds (use 

case 3); however, the canopies are particularly small in size due to the young age 

of the trees. Use cases 4 and 6 are the most ideal, considering canopy and 

background colour contrast due to the season and the lack of weeds. A 

noteworthy outcome is that even though use cases 4 and 5 both had medium-

sized canopies, the trained model’s accuracy was completely different due to the 

presence of weeds. Additionally, use cases 1 and 2 demonstrated similar behavior 

as use cases 3 and 4, since all of them were almost free of weeds, with the only 

difference being the more brownish colour, making it slightly harder to identify 

all canopies. In all images, a mask overlay of 50% transparency was applied in 

order to visualize the segmentations; therefore, the real shades of the images were 

altered. 

Conditions Test Images 
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Weeds: few  

Canopy size: large 

 

Weeds: many  

Canopy size: large 

 

Weeds: few  

Canopy size: small 

 

Figure 47. Results of indicative RGB images covering a range of different conditions. 
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5.3.2 Validation on Orthomosaics 
The system as presented above showed its ability to recognize tree canopies with 

high accuracy when applied to high resolution images of certain dimensions. 

However, investigating the performance of the system with orthomosaics 

covering the entirety or a large part of the orchard area was also considered to be 

of great interest. Therefore, in a further analysis, the trained models were applied 

to orthomosaics captured from orchards with pixel resolution considerably lower 

than the original training dataset. The aim of this test was to examine the extent 

of the trained models’ capabilities considering the pixel resolution range of all 

canopies. Applying the models directly to the orthomosaics produced errors due 

to the presence of “transparent” pixels that denote areas outside the bounds of 

the appointed orchard. Two methods were used to overcome this inconvenience: 

“oversampling”, i.e., filling the transparent pixels with the dominant ground 

colour; or “undersampling”, i.e., cropping the largest area possible that did not 

contain “out-of-borders” areas. 

The test included (a) analysis of orthomosaics treated as a whole (i.e., as one 

image) and (b) analysis of sub-images clipped from the orthomosaic. It is 

important to note that these were never-before-seen images that had not been a 

part of the original dataset. Similarly to the training phase, orthomosaics of three 

different use cases were selected. 

Case A. The first case displayed an orchard with large- to medium-sized canopies. 

As mentioned above, the pixel resolution was smaller than that of the training 

dataset. The accuracy reached 99%, with only a small FP segmentation on the 

right section of the middle of the image detected, visible in Figure 48. 
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Figure 48. Undersampled orthomosaic of an orchard with large- to medium-sized 
canopies (left) and the segmentation predicted by the model (right). 

Case B. The second use case was an undersampled orthomosaic of an orchard 

with young trees, shown in Figure 49. It was observed that even though the 

canopies were significantly small, the trained model was able to achieve a high 

accuracy of 90.5% with only 5.3% FNs and 4.3% FPs. 

 

Figure 49. Undersampled orthomosaic of an orchard with young trees featuring small-
sized canopies (left) and the segmentation predicted by the model (right). 

Case C. Finally, an orthomosaic with a higher resolution compared to the 

previous case of an orchard with small-sized canopies was undersampled and 

tested. However, the presence of developed weeds dispersed throughout the 

orchard produced many FPs in the segmentation, as seen in Figure 50. 
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Figure 50. Undersampled orthomosaic of an orchard with small canopies, not treated 
for weeds (left), and the segmentation predicted by the model (right). 

Even though a rule-based condition could eliminate such small segmentations, 

this could be counterproductive for cases with young-aged trees with small 

canopies. However, the original orthomosaic, as seen in Figure 51, produced 

significantly fewer FPs compared to the undersampled one above. 

 

Figure 51. Complete orthomosaic of one of the orchards used for the tree segmentation 
task, with trees with small-sized canopies, not treated for weeds (left), and the 
segmentation predicted by the model (right). 
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The accuracy achieved for the orthomosaic was notably high, reaching 82%, and 

the segmentation prediction showed 16.4% FPs and only 1.6% FNs. It is worth 

mentioning that all the FPs were recognized as trees due to the presence of large 

surfaces covered by weeds, simulating the size and the shape of the top view of 

the tree canopy. This indicates that the model can be expected to demonstrate 

excellent performance with weed-free orchards. Furthermore, the FNs were 

located at the edges of the orthomosaic where part of the canopy of the respective 

trees was missing. 

5.3.3 Comparison with Baselines and Other Methods 
A comparison of the proposed approach with other traditional computer vision 

techniques, unsupervised machine learning methods, object detection 

approaches, and other image segmentation deep learning techniques is presented 

in this section. For all methods, baseline versions were used with minor tuning 

of parameters. For the traditional computer vision techniques, blob, feature, and 

colour detection were implemented with the assistance of OpenCV Python 

library [196]. Specifically, for the feature detection, oriented FAST and rotated 

BRIEF (ORB) was used as a baseline. With regard to the unsupervised machine 

learning approach, a K-means algorithm [197] was implemented from Python’s 

SciKit-Learn library [198]. For the object detection approach, the single shot 

detection (SSD) algorithm [184] with a ResNet50 [199] backbone was used, and 

for the segmentation approach, the Mask R-CNN algorithm with a ResNet101 

[199] backbone, both implemented with the Keras library [200] with the 

Tensorflow backend [201]. Since all methods have different ways to extract 

information from images, the characterization of FPs and FNs was conducted by 

a domain expert agronomist. The total percentage of both FP and FN instances 

was used as a metric of comparison, and all methods were tested on the same test 

images from segmentation task. The supervised learning algorithms were trained 

with the default parameters and with early stopping on the same training dataset. 

The results for all methods are presented in Table 21. 

Table 21. Comparison of the proposed approach (in bold) with other computer vision 
baselines and machine learning methods using total percentage of misidentifications as 
a metric (sum of false positives and false negatives). 

Test Image 1 2 3 4 5 6 7 8 9 10 Mean 

Use Case 2 1 5 4 4 6 6 5 7 3  

Blob detection 63.65 56.81 34.35 34.57 31.73 28.00 25.75 28.54 65.39 39.57 40.84 
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Feature detection (ORB) 65.68 59.56 49.72 46.85 48.38 50.24 47.90 48.81 63.40 43.74 52.43 

Colour detection 53.88 52.96 35.32 32.27 31.12 29.62 29.03 27.51 55.88 27.45 37.50 

Clustering (K-means) 52.25 54.17 40.19 39.12 38.69 36.47 36.16 36.20 53.55 42.97 42.98 

Object detection (SSD) 12.34 15.28 21.68 29.16 5.92 7.03 7.05 19.39 21.01 27.10 16.60 

Mask R-CNN 8.31 13.01 19.80 27.21 3.45 3.98 2.80 16.59 17.98 23.00 13.61 

Proposed U-net 7.69 12.50 20.83 27.27 2.08 3.64 2.33 16.09 16.67 23.94 13.30 

 

Blob detection performed poorly on use cases 1 and 2 due to the canopies being 

brown or leafless, on 4 and 5 due to the canopies’ shadows, and on 7 due to the 

matching green colour on the weed-rich ground. On use case 3, no significant 

drawbacks were noted. Feature detection resulted in too many FP identifications 

in all cases because of the leaf-like appearances of most objects present in the 

aerial orchard photos. Colour detection achieved better performance on use cases 

3–6 compared to the previous two methods, but with manual tweaking of the 

colour values for each image separately; however, when foliage and ground 

colour bore a resemblance, there were almost no identifications. When K-means 

was tuned to create two clusters, for trees and backgrounds, it took into account 

all pixels that belonged to weeds or similar fauna. The algorithm trained with SSD 

was able to find most trees; however, the locations of the tree trunks, which were 

computed as the center of the bounding box, had noticeable deviations from the 

ground truth. Finally, Mask R-CNN is a two-stage approach but, even though it 

performed similarly to the proposed U-net approach, the generated model was 

five to ten times larger (the size of the proposed U-net-based model was ~22 

MB), thus rendering the lightweight implementation prerequisite as null. All 

methods offer benefits and drawbacks; however, it is evident that, to meet all 

requirements needed to tackle the problem at hand, the proposed U-net approach 

appears to be the optimal one.
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6 DISCUSSION 

6.1 A CONVOLUTIONAL NEURAL NETWORKS BASED METHOD 

FOR ANTHRACNOSE INFECTED WALNUT TREE LEAVES 

IDENTIFICATION 
The problem of the automatic identification of anthracnose on walnut tree leaves 

has been tackled with the use of deep learning algorithms, specifically 

convolutional neural networks. A total of 4.491 images was acquired, balanced in 

terms of healthy and infected leaves depictions. A number of preprocessing 

techniques, such as fast Fourier transform and background removal, were tested 

in order to evaluate their contribution to the increase of performance.  

Several CNN architectures were tested, with accuracies ranging from 92.4% to 

98.7%, leading to the one that performed best under all preprocessing scenarios. 

The proposed methodology was designed from the ground up in order to address 

the specific issues of the anthracnose–detection problem. Initially, it was needed 

to address the background issue, and to investigate whether the background plays 

any role, and in what level, in the accuracy of the developed classifier. Another 

issue that needed addressing was the type of images to be processed, meaning if 

they would be coloured or monochromatic. Coloured images contained the 

colour information, which is important in this specific use case, since anthracnose 

discolours areas of the green leaf into brown spots. However, there is value in 

the monochromatic approach, since the images can be taken in different times 

within a day (or night), and the colour variations might change. Monochromatic 

images can create a more generalized classifier, even if the accuracy appears to be 

lower, because it diminishes this colour dependency. Because of the reduced 

accuracy of the monochromatic approach, a feature extractor was selected and 

tested on its performance. The fast Fourier transform indeed improved the 

results of the monochromatic approach by extracting edge information with a 

high pass filter, leading to clearer view of the leaves’ abrupt changes on their 

surface. 

The best performing algorithm was then compared with a series of state-of-the-

art CNNs commonly used for image classification problems. It was noted that 

the proposed algorithm for the particular problem performed equally, and in 
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some cases even better, compared to these algorithms. This first level of the 

methodology validates the premise that CNNs are algorithms that can offer high 

accuracy in image classification-based problems. This has a direct application on 

precision agriculture where the automatic identification of diseases is crucial for 

the crops. 

The main outcomes of the image classification task, as part of the methodology, 

can be summarized as follows: 

The proposed CNN method exhibits outstanding performance when RGB 

analysis is performed for the examined images of the anthracnose-on-walnut-

leaves case. This can be emanated from the fact that the results produced from 

the application of the CNN architecture are based on distinct features that appear 

specifically on the anthracnose-infected leaves, compared to the healthy leaves, 

i.e. brown spots and areas. 

The fast Fourier transform method seems to be of major significance in feature 

extraction in the case of the grayscale images, because it accentuates the abrupt 

changes and edges of the leaves. This denotes that the infected leaves have more 

edgy features than the healthy ones. 

The proposed CNN architecture exhibits high performance in all scenarios in 

which it has been tested considering the case of anthracnose disease identification 

on walnut tree leaves. As it is observed from Table 11 and Table 12, the accuracies 

range from 92.4% to 98.7%.  

The proposed CNN architecture exhibits better, or similar, performance to well-

known CNN architectures (i.e., DenseNet121, VGG16, ResNet50 and 

InceptionV3) which have been efficiently used as benchmarks in image 

processing problems for the past years. 

Overall, for the purpose of image analysis and classification, the CNN 

methodology is proved to be proper for complex image classification tasks, such 

as the one under hand here, when a large number of images is considered, 

outweighing the popular CNN architectures for image analysis, such as 

DenseNet121, VGG16, ResNet50 and InceptionV3. 
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6.2 A DEEP LEARNING APPROACH FOR ANTHRACNOSE 

INFECTED TREES CLASSIFICATION IN WALNUT ORCHARDS 
The problem of object detection in precision agriculture lies to the fact that 

agricultural environments are extremely rich in information and highly complex 

regarding visual aspects. Given these circumstances, the aim of the tree-level 

anthracnose detection task was to prove that an approach based on deep learning 

algorithms for disease identification on tree-level is attainable and accurate. This 

object-detection approach was the first step towards identifying the gap, proving 

that the problem can be tackled, paving the road for more studies and alternative 

approaches for improving its accuracy and applicability. 

Some focal points that were derived from the tree-level anthracnose detection 

methodology are given below: 

• SSD offers great trade-off balance between accuracy and speed, therefore 

allowing the proposed approach to be able to run in real-time. 

• Resnet50 was the best performing CNN classifier and was able to reach 

~63% AP. 

• Sub-images sized 640×640 pixels produced better results than the ones 

sized 1,280×1,280 pixels, signifying that at this level, the training requires 

less clearly detected boxes per image in order to perform well. 

• Optimal threshold for the proper classification between healthy/lightly 

infected and infected was set to 10 predicted bounding boxes per side, or 

40 per tree. 

• The tree canopy size in relation to the image size, varies for all cases, 

however some trees are larger with denser canopy, therefore having more 

leaves than others. This was not taken into consideration during the 

training phase, since the aim was for the model to be invariant to such 

changes. 

• Type 1 errors (false positives: appointed healthy, classified infected) were 

investigated after concluding the training and testing phases, revealing 

that the majority of these cases were small trees. The size of these trees 

affected the classification results probably because it affected the ratio of 

the tree surface over the entire image, the leaf density, and the total 

number of leaves included in one shot meaning that there were less leaves 

sparsely located inside the canopy. 

• In some cases, larger trees that were initially classified as healthy from the 

expert agronomists, contained small areas of densely populated infected 
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leaves. The proposed model detected those areas and predicted bounding 

boxes for infected leaves. For example, the tree with ID A.1.2. was 

appointed as “healthy” by the expert agronomists, however the trained 

model detected areas of densely populated anthracnose infected leaves 

signifying infection (Figure 52). In such cases the misclassification is 

considered as human error and strengthens the case why systems based 

on artificial intelligence could assist human experts. 

 

 

(a) 

 

(b) 

Figure 52. Tree A.1.2. classified by the experts as "healthy" (a), and the infected leaves 
detected by the trained model (b). 

 

The main outcomes of this tree-level disease detection methodology are 

summarized in the following statements: 

• Proof of concept: A proposed novel approach of identifying anthracnose 

disease on walnut trees has been developed and evaluated. An object 

detector was trained on tree-level images and was able to identify and 

locate anthracnose-infected walnut leaves on images depicting walnut 

canopies. 

• Applicability on real-life conditions: This detector was applied on 279 

trees of a walnut orchard in real-field conditions and successfully 

classified them to infected or healthy trees, as compared with the ground 

truth, the expert agronomist classification. 

• Open-air conditions applicability: The model of choice for object 

detection was the SSD, an algorithm that utilizes deep learning techniques 

to predict the location and the class of the object in a single step. This 
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allows fast and accurate detection and classification, important 

characteristics for deployment of real-time image capturing systems. 

• Low risk misidentification due to the multiple leaves on the canopy: 

Given the nature of the problem, slight errors in the prediction process 

can be “smoothed out” due to the fact that the tree canopies are dense 

and the symptoms are evident on several leaves. 

• Relatively high accuracy for object localization: The complexity for 

locating and identifying anthracnose-infected leaves is significantly high. 

The objects-to-be-detected are leaves with brown spots and the detection 

of such target in real field environments is particularly challenging. This 

target must be properly distinguished from the background, containing 

a) leaves that in some cases are shaded and in others directly illuminated 

by the sun, b) leaves at different angles and shapes, c) branches and soil 

which in many cases are similarly coloured with the infection spots. Still, 

the object detector was tested on never-before-seen images, reaching a 

~63% average precision. 

• High accuracy for classification of walnut trees’ class: The application of 

the trained model on previously unseen trees was used as the evaluation 

process for the proposed methodology. An expert agronomist had priorly 

classified these trees, however, they were not used for the model training 

process. Prediction accuracy reached 82.1%, precision 88.3%, recall 

85.2% and most importantly, due to the imbalance of classes, the F1 score 

was 86.9%. 

• The classification accuracy of the classifier was considerably high with 

only a few cases where the model failed to classify the trees in the 

appropriate category. The vast majority of the trees that were 

misclassified by the trained model, were false positives, which means that 

they were healthy but were classified as infected. This implies that these 

healthy trees would be treated for the disease, which is not a significant 

issue since the farmer would uniformly apply the fungicide to all trees if 

following the traditional practices. The real problem is the false-negative 

misclassifications which would be infected trees that would not be 

treated. This would pose a risk of inefficient treatment of the disease with 

possible spreading of the disease at a later point in time. However, these 

cases were extremely rare and in the proposed system the scouting for 

diseases can be performed on regular basis limiting the risk of 

misclassified and mistreated infected trees. 

• After further investigation of the misclassified trees, some false-positives 

were proved to be true-positives, which means that the experts 
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misclassified those trees as healthy. It is implied that a properly trained, 

robust AI model, can achieve equally good performance in some cases, if 

not better, when compared to human experts. This means that such AI 

models can serve as useful tools for disease detection in a synergetic 

interaction with expert agronomists. 

Pathogens of the genus Marssonina infect other tree crops as well such as apples, 

with the species Marssonina colonaria, and strawberries with the species 

Marssonina fragariae, showing the same symptoms with the ones occurred in 

walnuts [202]. Therefore, the tools developed it this methodology can have a 

broader application to these crops as well after the required calibration. In 

addition, the fungus overwinters in fallen leaves on the ground, therefore a 

disease map can aid in taking protective measurements to contain the disease for 

the following growing seasons. 

6.3 ORCHARD MAPPING WITH DEEP LEARNING SEMANTIC 

SEGMENTATION 
The proposed methodology is a steppingstone used to address a common 

problem in agricultural environments; the accurate mapping of orchards via UAS 

(Unmanned Aerial Systems). The primary focus was to construct a methodology 

of tree segmentation and mapping of orchards. During the testing phase of the 

models, useful insights were produced, along with some outcomes that showed 

both FP and FN misidentifications. In general, the FPs in the proposed 

methodology were the result of the following: 

• Weeds and shrubs misidentification as tree canopies; and 

• Single-canopy splits that were segmented into multiple smaller high-

density instances. 

On the other hand, the FNs referred to: 

• Circumstantial inadequacy in identifying small canopies; and 

• Limitations in identifying trees with leafless canopies. 

Considering the preprocessing method that was used, more outcomes can be 

discussed. For example, the simple EQ, according to the original image 

brightness and the size of the trees, either produced FPs next to canopies, most 

of them being weeds, or failed to find the trees entirely, especially if their canopy 

was small in size. The CLAHE methodology, a valuable tool that can sustain high 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 12:15:21 EEST - 3.133.119.121



 

 120 

performance under diverse brightness conditions, reduced and transformed the 

canopy sizes at a high degree, which lead to shapes and sizes which were different 

that the canopies in the raw images. A variety of cases has been identified, where 

the slimming caused by the CLAHE method, is splitting some canopies in parts, 

resulting to the incorrect calculation of the tree size and consequently the location 

of its trunk. The model that was trained on images which were transformed into 

the HSV colourspace, performed well especially in the identification of rough 

shapes. However, some clearly visible canopies, which were not missed by other 

methods, where missed by this approach, which resulted to a high number of 

FNs. The fused approach demonstrated that the shortcomings of each method 

affected the predicted segmentations, therefore leading to models with worse 

performance than their best-performing counterparts. Nevertheless, the RGB 

model achieved the highest training and validation accuracy, the best testing 

accuracy, and the best performance considering FPs and FNs. This approach 

demonstrated robustness with all types of orchards and all seasons and for all 

different sizes, proving that it was the best approach for the problem at hand. 

Another factor that mostly affected the presence of FNs was the reshaping that 

images underwent in order to be fed into the training algorithm and consequently 

to the trained model. Resizing can compress information and in some cases this 

compression made small canopies “disappear”. However, even though some vital 

information could have been lost due to resizing, the FN errors remained at a 

low ratio. 

The results of the tree segmentation methodology also demonstrated that the 

majority of FP segmentations were either a) trees or bushes that were outside of 

the orchard, b) developed weeds dispersed throughout the field area, or c) split 

canopies resulting in two separate masks. The first category is easy to handle since 

the coordinates of the orchard are known and therefore any masks outside of it 

can be disregarded. Since the tree trunks can be calculated based on the shape of 

the canopy, their distances can be measured, and a set of rules applied to the 

orchard’s structure could identify such misidentifications. The latter could serve 

as a good solution to address the misidentification problems caused by weeds. 

The third category can also be addressed by applying methods that identify the 

lines on which each tree is planted, therefore deducting whether the calculated 

coordinates of a trunk fall within an acceptable limit. All the above indicate future 

research directions for the continuation of this work. 

The second misidentification factor can also be addressed by changing the 

resolution of the processed images. According to the results of the model 

performance evaluation on orthomosaics, in orchards with young trees featuring 
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small canopies and filled with developed weeds, the performance was rather poor. 

This was attributed to the fact that the top view of the weeds was similarly 

coloured, shaped, and sized as the very small trees within the image. This led to 

the identification of a large number of FPs. The resolution of the images used in 

the procedure played an important role in the accuracy. Running the same model 

on the complete orthomosaic, the results were remarkably improved, reaching 

82% accuracy. This was attributed to the fact that the lower pixel resolution 

resulted in smoothing of the image, merging the pixels that included small weeds 

with the surroundings, thus making the trees stand out in the image. 

Higher accuracy with regard to the overlapping area of pixels may be desired as 

this is a confident performance metric for model training. However, since the 

annotation was conducted with high detail on the canopy while the prediction 

was not required to outline fine details, the metric based on FP and FN 

predictions was additionally used to identify which method achieved the best 

results. Regarding the accuracy metric, the best model achieved 91% for training, 

90% for validation, and 87% for testing accuracy. Considering the false 

predictions ratio, 13.3% was achieved for both positive and negative 

misidentifications of segmented canopies. 

In general, image segmentation has been used in many areas; however, this is the 

first time, based on the authors’ knowledge, that it has been applied to UAV 

images of orchards. Image segmentation was selected over object detection due 

to a number of benefits, some of which can be summarized in the following bullet 

points: 

• The trees’ canopy size can be distinguished, 

• The trees’ canopy shape can be identified, 

• Gaps in the planting scheme due to missing or defoliated and diseased 

trees can be identified, 

• The 2D surface of the imaged canopies can be computed, 

• The 3D surface and volume of the trees’ canopy can be computed, 

• The trees’ ages can be approximated, 

• The amount of pesticide/water needed for individual trees can be 

reduced by assigning proportionate amounts, 

• The orchard’s yield potential can be calculated based on UAV imagery. 

There are diverse possibilities for applying image segmentation to orchards and 

it can cover multiple aspects of operational activities in agriculture. This can be 

achieved with the use of deep learning, as it has proven its use in multiple 
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occasions [203]. Additionally, semantic segmentation is an active domain with 

novel approaches being proposed systematically [204], some of which have direct 

associations with the specific shortcomings of remote sensing [205]. 

For the proposed tree segmentation approach, U-net was utilized and tweaked to 

match the addressed problem and the available dataset. U-net might be 

considered as a relatively basic neural network considering the existence of 

autoencoders; however, several benefits of its use are apparent from the derived 

results: 

• It achieved consistent performance >85% with all image datasets even if 

they had not been enhanced, 

• High performance could be obtained even with a small number (~100) 

of images and even without image augmentation, 

• The trained model could produce masks instantaneously. 

These outcomes render the selection of U-net as optimal for free field 

deployment on UAV images. The lightness of the architecture leads to trained 

models which can run with on-board devices using low-power processors. This 

ease of application, combined with the high performance for the selected RGB 

model and the fact that this performance was achieved with a small dataset, leads 

to the conclusion that the proposed methodology is a promising start in the 

development of a highly sophisticated system that can identify trees in orchards 

and extrapolate a multitude of information useful for a variety of related 

operations. 

The segmentation methodology could be further advanced by investigating the 

use of other sensing tools with different capabilities and functions. These sensors 

might include hyperspectral or multispectral cameras, stereo/depth cameras, or 

thermal cameras. Each of these sensing tools has different pros and cons: 

• Hyper/multispectral cameras. These cameras have multiple applications 

in agriculture, especially for crop monitoring. The main advantage is the 

high-value data related to crop and soil status. The disadvantages of this 

type of camera are the high computational cost that is required to 

transform the raw data, the high purchase cost, and the operational 

constraints due to various calibrations that have to take place before each 

flight and their dependence on weather conditions since cloud coverage 

greatly affects their measurements. 

• Stereo/depth cameras. These are a type of camera commonly used in 

UGV applications due to their accurate depth perception in tandem with 
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RGB depiction. There are two major disadvantages that constrain the use 

of these sensors; their low range of operational distance (most cameras 

have a 20 m range) and increased onboard computational requirements. 

• Thermal cameras. These cameras provide high-value data, similar to the 

hyper- and multispectral cameras. However, they have high 

computational and operational costs. 

However, using one of these sensors, or a combination of them, would increase 

the complexity of the system, adding computational costs. Since the goal is to 

develop a widely acceptable rapid system for on-the-go applications, the 

proposed methodology was strictly based on using RGB camera, thus making it 

accessible to the majority of UAS users. An initial approach for developing a 

simple tree segmentation system that provides instant and accurate results was 

proposed and developed. Evaluating the use of the abovementioned sensors is 

part of research future plans for further development. 

The proposed system can serve as a tool for identifying the locations of trees and 

obstacles within orchards and can be used as part of situation awareness and path 

planning for agricultural robots and autonomous vehicles. In future work, this 

model could serve as a UAV-based scouting tool in a UAV–UGV synergetic 

scheme for autonomous UGV operations within orchards. Additionally, this 

system can identify gaps within tree rows, thus serving as a subsystem of a farm 

management information system (FMIS). 
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7 VALUE 

Agricultural environments are by their nature highly complex environments with 

a plethora of information. On top of that, the spatial and temporal variability of 

said environments change the operational parameters in such a level that one task 

that could be performed successfully under a particular set of conditions, it could 

fail when the conditions change. One example is the tree canopy segmentation 

were, depending on the time of the year, the canopy/ground prevailing colours 

might be completely different. There is a dire need for solutions that deal with 

such issues and overcome obstacles. The agricultural domain was and still is one 

of the most challenging in terms of automating tasks, and therefore, every step 

towards improvements is valuable. 

7.1 OUTCOMES 

7.1.1 Scientific soundness 
The application of self-learning, data-driven methodologies have proven to be 

highly effective in the past two decades [206]. Specifically, machine and deep 

learning algorithms have been constantly breaking performance thresholds and 

improving the state-of-the-art of a large variety of domains, at an extreme rate 

[207]. Due to its immense popularity, the AI community has expanded 

proportionally, and alongside of it, the level of competition. Each and every novel 

algorithm or application is thoroughly validated, evaluated, cross-checked or 

peer-reviewed by scientists and practitioners across the world, leading to 

unbiased systematic filtration. Thus, scientific soundness is preserved, since the 

proposed solutions are valid in terms of their application real-world scenarios, 

either as single solutions or as suite of solutions in an integrated system of disease 

detection and control. Data-driven methodologies, and especially deep learning, 

are still dealt with scepticism. However, the work presented in this thesis, 

structured as a tri-modal approach, managed to produce three peer-reviewed 

papers, all published in globally known scientific journals, and in conferences, 

where the scientific soundness of the methods was discussed and appraised. 
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7.1.2 Benefits 
Machine and deep learning algorithms have proven again and again that they 

offer an excellent solution to complex problems. Their benefits are well 

documented throughout the literature, and are presented in short here: 

Performance: 

The application of self-learning methodologies for complex vision tasks has 

numerous benefits. First and foremost, the performance of models built on deep 

learning algorithms, is by far superior to any other machine learning models. In 

the past decade, deep learning has proven in many cases and in various 

applications that it can outperform any other approaches, including well-known 

machine learning algorithms such as ANNs and SVMs [208]. As explained above, 

performance is directly related to the availability of large volumes of data, 

however, this is easily overcome with the acquisition of images with low-cost 

equipment, and with large temporal variability (seasonal, daily) and abundant 

spatial variability. On top of that, such models can be trained on a plethora of 

publicly available datasets that contain annotated images for agricultural-related 

applications, and then retrained for a more specific task on an acquired smaller 

dataset. 

Continuous improvement: 

Data-driven models can only improve with addition of data, given that this data 

is well curated and properly annotated. This means that even if a model’s 

performance is initially below the desired threshold, it can be improved by 

acquiring more data during time. For the specific case of disease detection on tree 

canopies, and related vision-related tasks in agricultural environments, proper 

data collection can increase the accuracy of predictions since the models will be 

trained on data that contain additional information. Such examples could include 

the collection of images during different times, weather conditions, capturing 

angles, and during different seasons. Additionally, disease progression can be 

taken into consideration and image collection can be organized based on this. 

However, if time is not an impacting factor, it means that additional data/images, 

would contribute nothing to the performance or robustness, and would only 

decrease training time. 

Versatility: 

Prediction models that rely on analytical functions or solely on expert knowledge 

suffer greatly from versatility issues. For example, a rule-based model that is 

developed specifically to recognize anthracnose on walnut trees based on distinct 
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features of the disease and the leaves, would need to be designed from scratch in 

order to be able to detect a different disease on a different type of tree. On the 

contrary, data-driven algorithms, once properly selected, can be used for similar 

approaches given that the data are properly curated and used for training. As 

mentioned above, there is also a technique, called transfer learning, that utilizes 

models that have been trained in similar but different tasks, and uses them as a 

starting point instead of training the desired model from scratch. Therefore, data-

driven models are ideal for applications that need versatility via the utilization of 

gained knowledge and improvement via acquired data. 

7.1.3 Issues 
The application of machine and deep learning algorithms besides its tremendous 

benefits, has on its own some issues and drawbacks. These issues can originate 

from the nature of the algorithms themselves, or from the nature of the specific 

problem at hand. An overview of these issues is given below: 

Black box: 

Deep learning has been an undeniable breakthrough in the AI domain, however 

it suffers from the black box issue [209]. The black box implies that the 

algorithms and trained models are so deep and complex that the internal 

processes become “opaque” to interpretation. This is a nuisance for many 

applications, however, when interpretability of predictions is of essence i.e. 

medical applications, it can be a valid obstacle. In the domain of agriculture, and 

specifically the area of visual inspections, interpretability falls second to results 

since reasoning is not used for decision making at this level. 

Complexity: 

Another issue is the complexity and variability of the agricultural environment 

where the proposed methodology operates on. Seasonal variation can alter the 

environment almost completely, in terms of visual characteristics, which can 

render a trained model almost worthless. This is a well-known issue, both for the 

domain of agricultural environments in terms of visual complexity and variability, 

as well as in the domain of artificial intelligence in terms of model robustness and 

invariance to altered input or adversarial examples. The issue of model robustness 

and resistance to adversarial attacks is at the moment at the centre of extensive 

research, with new solutions emerging constantly. 

Volume (data): 
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Finally, another issue is the dependability of performance on the amount of data. 

Deep learning approaches are heavily dependent on large amounts of data, in 

order to perform above average, due to the size and complexity of their 

architecture. Specifically for computer vision tasks, DL algorithms use intricate 

mathematical operations such as tensor multiplications, convolutions and 

pooling, and other “tricks” such as skip connections or feature propagation, 

which increase the number of “internal parts” needed to process input images. 

Given a small number of training images, DL algorithms underfit and fail to make 

successful predictions, therefore, large volumes of data are necessary for such 

algorithms to perform as intended. 

Annotation: 

Data collection can be a relatively easy task with the availability of different types 

of sensors, the variety of automation with which these sensors can collect data at 

specific periods or certain events, and the ease of storage, where storing devices 

have become widely available and cheap to obtain, locally or on the cloud. A well-

known issue is the annotation or labelling of the data. This is a time-consuming 

procedure where each data entry gets appointed to one or several characteristics, 

usually conducted manually by humans. In the case of disease detection, expert 

agronomists are required to determine and characterise if the signs on the leaves 

are a disease or another issue, and if it is, which disease is it. This requires expert 

knowledge and years in training, and cannot be achieved by untrained personnel, 

which is commonly used for annotating more generic tasks. 

7.2 APPLICABILITY 
Main aim of this thesis is to investigate the applicability of the proposed 

methodology in real operational conditions, in agricultural environments. The 

main points the present thesis covers, are presented here: 

In-field applicability: 

As described earlier in the manuscript, several studies attempted to tackle the 

issue of disease identification on plants and tree leaves. These studies created 

datasets of leaf images placed on high contrast backgrounds (white/black) or 

utilized techniques that segmented the leaf from the background. The results of 

these studies demonstrated the ability of the algorithms to achieve high accuracies 

in classification tasks, however, they suffered from in-field applicability since in 

agricultural environments there are almost zero chances to find a single leaf 

against monochromatic background. The potential for the effective application 
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of such data-driven approaches in real-life conditions was apparent, however, not 

easily attainable. 

The present thesis, addressed this exact issue, developing a methodology based 

on in-field images, selecting and adapting the proper deep learning algorithms 

and applying them in a series of vision-related tasks for smart farming. 

Theoretical approaches for disease detection techniques are valuable in research, 

however, the development of methodologies for in-field application can be 

equally challenging if not more. Specifically for agriculture, the operational 

environments possess such levels of complexity, that can systematically push the 

limits of such applied methodologies and engage additional research on the 

matter. 

Temporal variability: 

As thoroughly stated throughout the manuscript, temporal variability is a key 

element for the success of vision-related tasks in operational agricultural 

environments. Temporal variability vastly affects the visual characteristics of an 

agricultural environment, especially when operations take place throughout the 

year. The temporal variability is potentially an obstacle in a methodology’s 

robustness and performance. However, by implementing deep learning 

algorithms that are highly dependent on large volumes of data, this obstacle can 

turn out to be the tool for building models that not only overcome the visual 

variability of daily or seasonal effects, but also to build a more robust 

methodology that is invariant to features that are related to background 

information, and focus on features which are directly linked to the task at hand, 

i.e. canopy segmentation or disease detection and classification. 

Robustness of performance: 

Robustness is the notion that a model’s prediction is stable to minor variations 

in the input, aiming to the fact that the predictions are based on reliable feature 

abstractions of the task at hand, the same way as a human would perform the 

said task. Robustness is a difficult concept to define and interpret in machine 

learning applications, usually associated with system safety and security. 

However, for applications that do not have immediate “life or death” safety and 

security concerns, such as the agricultural tasks that are tackled in the present 

thesis, robustness means stability of performance within the range of predictable 

temporal and spatial variability, as well as, to minor unforeseeable changes. As 

described above, temporal variability can increase a model’s robustness and 

performance. Moreover, when dealing with images, there are techniques that can 
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increase robustness by manipulating the existing dataset such as applying 

geometrical variations on the input images of the training dataset, for example 

flipping, zooming, tilting and spectral variations, for example shifting a 

colourspace’s values. As described, this technique has been used throughout in 

all three steps of the presented methodology. Another measure for robustness in 

trained models, is their resilience against adversarial attacks. Adversarial attacks 

are well known machine learning techniques that attempt to exploit vulnerabilities 

in models via obtainable information. Purpose of adversarial attacks is to force a 

model into producing profoundly false predictions, without changing important 

aspects of the input image. The type of erroneous prediction the attack aims at, 

can be classified into two categories: targeted when forcing towards a specific 

prediction, and untargeted when forcing the misclassification of the correct one. 

Smart agricultural applications are not unaffected by adversarial attacks, however, 

it is easier to monitor the performance of models such as the ones used in the 

presented methodology, since they are built on the premise of Narrow AI, thus 

serving an exclusive purpose/task. Additionally, operational agricultural 

environments are “protected” spaces, not in terms of security, but in terms of 

inaccessibility and general indifference by the public, thus minimizing the risk of 

unforeseen adversarial inputs. Under such a premise, model robustness can be 

achieved, albeit it is essential that there are safety measures taken within the 

operations so that it is preserved.  

7.3 FUTURE RESEARCH DIRECTIONS 
The proposed methodologies presented in this thesis, are developed with in-field 

deployment as a basic goal. Proof-of-concept is the first step towards achieving 

such a goal, however, the following steps can be equally challenging and 

scientifically intriguing. Some of these future steps are presented below. 

• Scalability: One of the most important aspects of data-driven approaches 

is their ability to optimize their functions in order to effectively address 

the increasing number of data that accumulate over time. Systems based 

on deep-learning technologies are highly reliable on the quantity and 

quality of the data they utilize. A simplistic pipeline for non-

methodological data collection could increase the number of data and 

cover the “quantity” aspect of requirements, however, unless quality is 

also increased, redundant data could be considered “dead weight” to a 

model’s performance. The applicability and sustainability of such systems 

rely heavily on their ability to scale and adapt in various environments. 
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The present thesis proposes a methodology that will be directly integrated 

and applied in a variety of real agricultural environments; therefore, it 

needs to be easily scalable, otherwise it will be used narrowly and will be 

short-lived.  

• Robustness: A critical aspect for the models’ performance consistency 

when operating in different environments, is robustness. Ensuring 

robustness in such a large variety of agricultural environments and 

external conditions is a challenging task, particularly when the models are 

built for in-field deployment. Systematic research on the potential 

conditions that could affect a model’s performance (such as fog) need to 

take place in order to identify such threats and develop solutions. On top 

of that, research is also necessary for identifying potential adversarial 

attacks that can impede a model’s performance drastically. 

• Custom variants of algorithms: The AI domain is one of (if not) the   most 

popular research domains all over the world. Novel algorithms are 

developed weekly, pushing the limits and capabilities of the state-of-the-

art, and on the same time past concepts are re-evaluated for their 

usefulness. Together with ML and DL algorithms, soft computing 

techniques such as fuzzy-logic systems, can offer additional value to the 

models. On top of that, model explainability is highly sought after, 

together with general AI, where researchers aim to create algorithms that 

can simultaneously handle multiple types of input in order to extract an 

output, just like human brains do. It is impossible to know beforehand 

which of these tools will provide added value to the models and their 

respective tasks, therefore rigorous research needs to be conducted. 

• Decision support systems: Finally, the final aim of the canopy 

segmentation, the disease detection, and its proper classification, is to 

provide input for decision support systems (DSS). This is an inherently 

exigent task, even for human experts, since there are a lot of factors that 

need to be taken into consideration before reaching a decision. 

Considering that these vision-based tasks are built without any additional 

information such as geographical or temporal information and metadata, 

further research is in place for properly and seamlessly integrating 

heterogenous data for enhancing the produced outcome. This will lead 

to a better input for the DSS, which in turn would require to take into 

consideration a large range of inputs such as weather conditions or 

operational costs. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 12:15:21 EEST - 3.133.119.121



131 

8 CONCLUSIONS 

The present thesis focuses on the application of machine learning techniques for 

utilizing large volumes of data in order to extract valuable information. Main 

scope of this thesis is to investigate the effectiveness of machine learning 

algorithms in complex and demanding tasks and develop methodologies that 

solve important problems with the use of large volume of data. 

Initially, a broad range of algorithms [145] and applications [210][211][212] has 

been investigated, leading to the selection of smart agriculture as the domain on 

which more extensive research will take place. In particular, vision tasks related 

to tree segmentation and disease detection are of high value for Agriculture 4.0, 

albeit inherently complex and difficult to conduct in real-life conditions. A 

number of studies addressed similar problems; however, the images were either 

taken in laboratories or have been properly preprocessed beforehand with 

background and noise removal techniques. A gap has been identified regarding 

the application of machine learning techniques for computer vision problem in 

real operational agricultural environments. This thesis aimed to fill this gap by 

developing a methodology that would be able to tackle a series of tasks related to 

crop management, based on machine/deep learning algorithms and large 

volumes of data. Target is the identification of tree canopies and their positions 

within an orchard from images taken from UAVs, which will consequently be 

used to guide UGVs to their exact positions and with visual inspection, detect 

the presence of disease on tree level, and finally classify the disease on the leaves. 

This methodology is driven by the quantity and quality of data collected from in-

field measurements, alongside expert annotation of diseases. In particular, the 

problem this thesis focused upon, is walnut orchards located in Greece, where 

anthracnose, a viral disease, affects the yearly yield, which in turn can pose a 

serious economic impact to producers since walnut is a high value crop. 

The developed methodology comprises of three sequential tasks, all of them 

based on visual information. The tasks have distinct scopes between them; 

however, the ultimate goal is to identify the location of trees within an orchard 

and classify each tree based on disease presence on them, in order to create a 

variability map of the orchard, which consequently can be used for precise 

treatment with minimum waste and costs. The main requirement which makes 

the present methodology challenging, is its in-field deployment with low-cost 

imaging equipment, meaning that it is developed to work in agricultural 
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environments under real conditions instead of labs, and is capable of doing so, 

only with RGB cameras instead of expensive hyperspectral or infrared cameras. 

Expensive equipment can be useful, but the added cost would incur a steep 

increase which would have negative impact to the marketability of such a 

solution. Instead, the use of powerful machine and deep learning algorithms was 

preferred to tackle the problems of the specific tasks. 

Extensive research was conducted for the selection of the proper algorithm for 

each task. A plethora of data was available for the investigation, development, 

and application of the proposed methodology. The data, exclusively RGB images, 

where collected from multiple in-field image collections, at times where 

anthracnose could be clearly identified by expert agronomist, and thus, all data 

could be properly labelled. Initially, a variety of machine learning algorithms were 

tested for their performance on image classification on diseased leaves, however, 

it was evident that neural networks outperformed the rest, which was anticipated 

since neural networks, including their derivatives, have been systematically the 

state-of-the-art for the past decade. 

The final results for each level of the methodology showed significant promise 

in terms of accuracy and robustness, as well as in-field deployment. For the task 

of tree canopy segmentation, a U-net architecture has been modified in order to 

fit best to the problem’s requirements and the available input data. The resulted 

trained model is lightweight and can be implemented with low computational 

cost on edge devices, such as UAVs, resulting to close to real-time segmentation. 

The validation of the approach was conducted on test images similar to the ones 

used for training, however, full orthomosaics were tested as well, with the model 

achieving up to 99% accuracy on slightly different type of input (camera image 

vs orthomosaic). For the task of disease detection on tree level, arguably the most 

complex of all, an SSD object detector was trained on in-field images of trees 

infected with anthracnose. Detecting anthracnose infected leaves proved to be 

challenging on that level due to the images’ resolution, therefore a sliding-

window-type algorithm was developed in order to apply inference to parts of the 

tree. The results would then be aggregated and combined for all sides of the tree, 

and a final classification for the tree would derive. The trained model was applied 

on a real orchard, initially inspected by an expert agronomist, and managed to 

correctly classify 87% of previously unknown walnut trees. Finally, for the task 

of image classification on leaf level, a custom CNN architecture was designed 

and developed for the proper classification of anthracnose infected and healthy 

walnut leaves. Different types of preprocessing were tested on the input images, 

with the trained models ranging between 92.4% to 98.7% in accuracy. 
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Notable issues for applying data-driven techniques in computer vision tasks for 

agricultural environments can be related to the volume and quality of the data, 

the demanding task of labelling, as well as the models’ performance in different 

conditions and their lack of explainability. However, these are all known issues 

and subject to continuous research by many researchers and scientists. The 

proposed methodology can and will act as a proof-of-concept for the effective 

in-field computer vision tasks in the complex operational agricultural 

environments. The natural outcome of this thesis will be to use the proposed 

methodology as a steppingstone, and further develop it in order to create a solid 

prototype ready for in-field deployment. 

Future plans include, but are not limited to, further development of the 

methodology towards its applicability on in field operations. Aim of the proposed 

methodology is to be applied and perform successfully in real conditions, which 

is a challenge on its own. In field deployment will present new challenges and 

obstacles concerning the performance of the models in various environments, 

under different light conditions, seasonal variations, and many more unexpected 

variables that can affect the models’ performance. Additionally, the integration 

of such a methodology to production level with low consumption requirements, 

fast execution, increased security mechanisms and adaptability features is a 

mandatory task. In the meantime, the expected growth in the ML and AI domain 

in the short-term future, will introduce new algorithms and methods that will 

offer increased performance and explainability through the models. This fact will 

allow all subsequent applications to research and re-evaluate the application of 

new algorithms for existing solutions. 
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10 APPENDIX 

10.1 APPENDIX A 
Model performance (classification) 

Grayscale without background removal 

Table A1: Confusion matrix of grayscale images with background information. 

Confusion 

Matrix 

Predicted 

Anthracnose Healthy 

T
ru

e 

Anthracnose 

Healthy 

331 14 

27 302 

 

 

Figure A1: Training and validation loss and accuracy for grayscale images with 
background information. 

Fast Fourier without background removal 

Table A2: Confusion matrix of grayscale images applied with FFT and background 
information. 

Confusion Predicted 
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Matrix Anthracnose Healthy 

T
ru

e 

Anthracnose 

Healthy 

358 6 

33 277 

 

 

 

Figure A2: Training and validation loss and accuracy for grayscale images applied with 
FFT and background information. 

 

RGB without background removal 

Table A3: Confusion matrix of RGB images with background information. 

Confusion 

Matrix 

Predicted 

Anthracnose Healthy 

T
ru

e 

Anthracnose 

Healthy 

352 7 

7 

 
 
 
 
 
 
 

308 
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Figure A3: Training and validation loss and accuracy for RGB images with background 
information. 

 

Grayscale with background removal 

Table A4: Confusion matrix of grayscale images with background information. 

Confusion 

Matrix 

Predicted 

Anthracnose Healthy 

T
ru

e 

Anthracnose 

Healthy 

343 18 

9 304 
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Figure A4: Training and validation loss and accuracy for grayscale images without 
background information. 

 

 

Fast Fourier with background removal 

Table A5: Confusion matrix of grayscale images applied with FFT and background 
information. 

 

Confusion 

Matrix 

Predicted 

Anthracnose Healthy 

T
ru

e 

Anthracnose 

Healthy 

344 5 

15 310 
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Figure A5: Training and validation loss and accuracy for grayscale images applied with 
FFT and no background information. 

 

RGB with background removal 

Table A6: Confusion matrix of RGB images with background information. 

Confusion 

Matrix 

Predicted 

Anthracnose Healthy 

T
ru

e 

Anthracnose 

Healthy 

366 2 

1 305 

 

 

Figure A6: Training and validation loss and accuracy for RGB images with background 
information. 
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10.2 APPENDIX B 
Proposed CNN Architecture 

 

Figure B1: Proposed CNN's architecture. 
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10.3 APPENDIX C 
Orchard variability images 

Table C1. Sample images of the seven use cases included in the study. 

Use Case 

No. 
Conditions Sample Image 

1 

Yearly season: Autumn 

Weeds coverage: Low 

Canopy size: - 

Foliage color: Brown 

Ground color: Brown 

 

2 

Yearly season: Autumn 

Weeds coverage: Low 

Canopy size: - 

Foliage color: Mixed 

Ground color: Brown 
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3 

Yearly season: Summer 

Weeds coverage: Low 

Canopy size: Small 

Foliage color: Green 

Ground color: Brown 

 

4 

Yearly season: Summer 

Weeds coverage: Low 

Canopy size: Medium 

Foliage color: Green 

Ground color: Brown 

 

5 

Yearly season: Summer 

Weeds coverage: Low 

Canopy size: Medium 

Foliage color: Green 

Ground color: Mixed 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 12:15:21 EEST - 3.133.119.121



 

158 

 

6 

Yearly season: Summer 

Weeds coverage: Low 

Canopy size: Large 

Foliage color: Green 

Ground color: Brown 

 

7 

Yearly season: Summer 

Weeds coverage: High 

Canopy size: Large 

Foliage color: Green 

Ground color: Green 
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