UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING

EXTREMUM SEEKING CONTROL FOR TRAFFIC CONGESTION CONTROL

by
AMORGIANOS PANAGIOTIS-SPYRIDON

Submitted in partial fulfillment of the requirements for the degree of Diploma
in Mechanical Engineering at the University of Thessaly

Volos, 2022






© 2022 Amorgianos Panagiotis-Spyridon

All rights reserved. The approval of the present D Thesis by the Department of Mechanical
Engineering, School of Engineering, University of Thessaly, does not imply acceptance of the
views of the author (Law 5343/32 art. 202).



Approved by the Committee on Final Examination:

Advisor Dr. Konstantinos Ampountolas,

Associate Professor, Department of Mechanical Engineering, University
of Thessaly

Member Dr. Dimitrios Pantelis,

Professor, Department of Mechanical Engineering, University of
Thessaly

Member Dr. Costas Papadimitriou,

Professor, Department of Mechanical Engineering, University of
Thessaly

Date Approved: [09/26/2022]



Acknowledgements

Firstly, I would like to thank my professor Dr. Konstantinos Ampountolas for being helpful and
inspiring throughout all this valuable time he offered on my effort. | would like to thank my dear
friends Tasos, Mike and Chara for being by my side in every way | needed them, all this time |
was conducting my thesis.l would like to specially thank my mother and father, without whose

guidance and support | would not be here.



EXTREMUM SEEKING CONTROL FOR TRAFFIC CONGESTION
CONTROL

AMORGIANOS PANAGIOTIS-SPYRIDON
Department of Mechanical Engineering, University of Thessaly,2022

Supervisor: Dr Konstantinos Ampountolas
Associate Professor

Abstract

Urban traffic light control is a challenging problem that emerged the recent years, concerning many
researchers all over the world. Inefficient traffic light control may lead to congestion phenomena
which impact severely not only the economy but also the environment and peoples’ health.
Controlling a traffic network system efficiently, is an arduous task since the system is governed
by unknown varying dynamics, disturbances are sudden and sometimes unmeasurable, and
measurements obtained are subject to high noise. Extremum Seeking is an adaptive control
technique that does not require a model or any a priori knowledge of the system’s dynamics,
therefore it is suitable for application on a traffic network. In this thesis, Extremum Seeking is
utilized in an open loop scheme to estimate the unknown prevailing critical occupancy, that
maximizes the system’s throughput. This estimate is destined to be utilized from a perimeter
controller as its reference set point. The proposed scheme is simulated with real data exhibiting a
Network Fundamental Diagram (NFD), which were collected from the Central Business District
(CBD) of Chania.

Key words: Network Fundamental Diagram (NFD), Extremum Seeking Control (ESC), Perimeter
Controller
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Hepiinyn

O éley)0G TV ACTIKOV POTEWVAOV CTUATOI0T®V £Vl £V OVGKOAO TPOPANLA TOL EUPOVIGTNKE
T TEAEVTOLO YPOVIOL Kot ammOoGyOAEL TOAAOVG EpeLYNTEG GE OAO TOV KOGHO. O 0VOTOTEAEGLOTIKOG
EAEYXOG TOV QOTEWV®OV GCNUATOO0T®V WUIOoPel va. 0ONYNOEL O QAVOUEVO KLKAOPOPLOKTG
oLVUEOPTOTG OV EMNPEAlovY coPapd Oyl povo v okovouio aAAd kol To mepBdALOV Kol TNV
vyeia Tov avlpdnwv. O amoTEAEGUOUTIKOS EAEYXOG EVOG CLGTNIATOS KUKAOPOPLKOV SIKTHOL lval
éva, 0VoKOAO £pY0, dEG0UEVOD OTL TO GUOTNUA SETETOL OO AYVOOTN LETAPOALOUEVT] OLVOLIKY], OL
dratapoyéc etvor EAPVIKEG Kol PLEPIKEG POPES LU LETPNOULES KOl O1 LETPNOELS TOV AouPdvoviot
vroxkewvtar o€ VYNAO 06pvPo. O Edeyyog Evpeong Axpotatov ivar pio TpOGOPUOGTIKN TEXVIKN
eAEYYOL TOV Oev oamalTtel LOVTEAD 1 OTOIONTOTE EK TV TPOTEPWV YVMGT TNG SVVOUIKNG TOL
OCLOTNLOTOG, EMOUEVMG EIVOL KATAAANAN Y10 EQOPLOYT| G€ £vaL OIKTLO KVKAOPOpiag. TNV Tapodoa
dwtppn, o Edeyyog Evpeong Akpotatov ypnoiponoteital o€ £vo GOGTNA 0VOIKTOO BpOyov Yo
NV eKTiUNon g AyveoTng ETIKPOTOVCHS KPIoUNng TANpOTNTAG, 1 Omoio. UEYIOTOTOLEL TNV
amdO0GT TOL GLGTHUOTOG. AVTA 1) EKTiUNON TPoopileTan vo ypNoLOTOMOEl amd Evav TEPUETPIKO
ereyKT ¢ onueio avapopdc tov. To TPOTEWOUEVO GUGTNLO TPOCOUOUDVETOL LE TPOLYLOTIKA
dedopéva mov apovctdlovv Eva Bepedoeg ddypappo diktvov (NFD), ta omoio culiéyxOnrkav
amd TNV KEVTPIKY| EMYEIPMNUOTIKT) TEPLOYN TOV XOVimV.
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1. INTRODUCTION

1.1 Motivation

Urban transportation is essential to contemporary civilization, yet it confronts mounting
challenges due to rising population density and automobile ownership. Multiple major cities
experience traffic congestion, which is affecting many domains of our society, including being
costly. Cities are becoming hotter while transportation times for people and commaodities are larger
than they could be, because of the saturation of urban networks or even of some crucial parts of
them. According to [1] in 1994, traffic congestion in several large urban areas of the United States
had already cost an average of US$640 per driver per year due to transportation delays. Moreover,
driving delays lead to higher emissions of carbon dioxide and particulate matter such as fine
particles (PM, <), which impacts severely the environment and the people. In [2] the authors

suggest that a 10’““g/m3 raise in (PM, <) levels originating from vehicles’ combustion engines,

caused a 3.4% raise in day-to-day mortality while, authors in [3] suggest that, extended exposure
to fine particles (PM, ) can cause atherosclerosis, thrombosis, and vascular remodeling. The
issues stated above could be diminished by decreasing the traffic congestion in urban areas. This
thesis aims at contributing to the solution of this problem, by proposing Extremum Seeking Control
as an estimation algorithm that seeks, online, for the optimal occupancy value of the network. This
estimation is then actuated by a perimeter controller.

1.2 Introduction to Literature Review
1.2.1 Traffic Congestion Problem

The traffic congestion problem has been attempted to be solved following several approaches. A
slower time-scale approach focuses on infrastructure’s further development. Expansion of road
networks aim at increasing the networks’ capacity in vehicles, but as modern cities become more
densely populated, it is becoming an increasingly sophisticated and expensive venture.
Nonetheless, expansion of road networks is challenging and needs proper research and planning.
The Pigou-Knight-Downs paradox, as described in [1], suggests that, increasing road’s capacity in
vehicles can attract more drivers, thus failing to avoid the congested regime. Therefore, this
approach needs to be investigated thoroughly in terms of its effect on travel times before its
implementation is decided. Building infrastructure is necessary, but it shall be accompanied by
sophisticated traffic light controller programs, to utilize its potential.

Numerous researchers have been investigating how traffic light controllers can tackle the problem
of underutilization of the existing infrastructure. Urban traffic light controllers’ purpose is to
ensure that collisions between conflicting flows are avoided, while Travel Time Spent (TTS) and
Total Travel Distance (TTD), are minimized and maximized, respectively. Efficient traffic light
control systems can be of great benefit towards a network’s performance, without long time
construction requirements and at a relatively low cost. Because a traffic network of an entire city
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is a very complex dynamical system which is usually disturbed by unexpected events (e.g., creation
of bottleneck due to collided vehicles), a pre-fixed signal plan is not able to maintain good
performance and avoid congestion. Therefore, researchers over the last years focused on online,
model or non-model-based traffic light controllers such as: Perimeter Control [4],[5], SCATS [6],
and self-organizing traffic lights (SOTL) [7]. Perimeter Control, through which, this thesis
addresses the traffic congestion problem, is a traffic light controller relied upon the existence of a
Network Fundamental Diagram (NFD) within a protected area. Essentially, a Perimeter Controller,
adjusts the accumulation of vehicles inside the network, towards a reference set point, in which
the (NFD) exhibits maximum flow. The controller can achieve it by regulating, the percentage of
vehicles waiting at the entrance links, that will finally enter the protected area. The optimal
accumulation of vehicles of an NFD is subject to various unpredictable factors, making the a priori
selection of a reference set point inefficient. This problem drastically calls for an adaptive control
technique, resetting, in real-time the critical occupancy value, by utilizing sensor measurements of
flow and occupancy. In [8], a Kalman filter-based estimation algorithm is proposed to tackle this
problem, while in this Thesis, an Extremum Seeking algorithm is proposed for estimating the
critical occupancy.

1.2.2 Extremum Seeking Control

Extremum seeking control is an adaptive, model-free technique dating back in 1922 [9], making it
the first adaptive control technique developed. It attracted researchers’ interest mainly after its
stability guarantees, proven in 2000 in [10]. Extremum Seeking Control is a perturb and observe
method, where an excitation signal is perturbing the input with an additive sinusoid, and then it
observes the objective criterion’s output to estimate the gradient. The next step of the algorithm is
headed towards the extremum and is proportional to the estimated gradient. The scheme’s purpose
is to seek for the gradient of an extremum (which is zero), thus minimizing or maximizing the
objective function. It has been utilized to control numerous applications of hard-to-model systems,
such as: Anti-lock Braking System (ABS) [11],[12], Maximum Power Point Tracking (MPPT) of
Photovoltaics [13] and Wind Energy Conversion Systems (WECS) [14],[15] while it has even
been applied on an industrial scale, on a biochemical wastewater treatment process called CANON
[16], or to minimize the thermoacoustic pressure oscillations of industrial combustors [9]. Finally,
Extremum Seeking has also been proposed to control traffic lights in [17] and [18]. See Chapter
3, for a general overview of ESC’s methodology.

1.3 Thesis Organization
The rest of this thesis is divided into four chapters, from Chapter 2 to 5.

Chapter 2 covers literature review, beginning from ESC’s background and evolution throughout
the last century. Then, a thorough investigation of ESC’s applications and modifications is
presented.

In Chapter 3 the theory and methodology of Extremum Seeking Control as well as of its
generalization, Slope Seeking Control, are presented
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Chapter 4 is divided into two parts. The first part, from Chapter 4.1 to Chapter 4.4 contains a series
of Numerical examples beginning with a simple application of ESC to an LTI system and an
application of SSC to an LTI system. Then ESC is applied to an LTV system without input and
output dynamics and in 4.3.2 an example with input and output dynamics, inspired by the
benchmark example of Krstic in [9], is presented. In 4.4, a uni-cycle model is modeled on Simulink
in order to simulate the Antilock Braking System with an Extremum Seeker. In 4.5, ESC is utilized
as an estimation algorithm firstly for seven static objective functions (one for each day of the week)
and then on an open loop scheme, estimating the critical occupancy values based on data collected
from the CBD network of Chania.

The conclusions of this study are presented in Chapter 5, accompanied by propositions for further
investigation of the topic.
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2. LITERATURE REVIEW

In this chapter, a literature review of Extremum Seeking is presented. At first ESC’s background
and evolution are presented beginning from Leblanc in 1922 [9], up until its proof of convergence
from Krstic and Wang in [10], and the latest breakthroughs concerning the method. Then, follows
a presentation of various applications for which ESC has been utilized, industrial or not, but also
various extensions of the original scheme that were mostly proposed the years following its
mathematical underpinning [10]. Finally, an analysis is performed on the work of Kutadinata, [17]
where an augmented ESC scheme is applied to three distinct traffic light controllers (Perimeter
controller, SCATS, SOTL). This is the first work ever, to implement ES on urban traffic light
controllers, and it has showcased promising results.

2.1 Background

Extremum Seeking Control (ESC) (or peak seeking) is an Adaptive Control, model-free technique
which dates back at 1922 [9] and is considered as the first method of adaptive control. The decades
following its “birth” Extremum Seeking Control (ESC) has not been a significant pole of attraction
for the scientific community up until the 1940s. Researchers in the USSR made significant steps
towards its development but under the shadow of the 2" world war these works remained
untranslated and were only available in Russian, therefore the International Control Community
was not particularly attracted at the time. A little later, in the 1950s Extremum Seeking Control
experienced its revival through some outstanding works such as the publication of Draper and Li
in 1951 cited in [16], in which the nowadays called “classical” Perturbation Based-Extremum
Seeking Control method was utilized in order to maximize the power output of an airplane’s
combustion engine. The proposed scheme is seeking for the optimal ignition timing of the engine
which maximizes the output in real-time, while the system is subject to uncertainties, varying
conditions and disturbances. This work has been cited by plenty of Control researchers [16] as the
work that brought back the interest of the Control community by highlighting ESC’s efficiency as
a non-model-based technique. Combined with the increasing complexity of engineering problems,
ESC started to attract researchers again in the 1960s, and there were even published books (some
of them exclusively) about extremum seeking such as [19], and others which are cited in [9].
These two decades the scientific community proposed many new schemes and applied them in
numerous problems, thus expanding the available information on ESC. Despite this, the
researchers’ interest shifted towards model reference adaptive control methods and ESC went
through a dormant period for the following years up until the work of Krsti¢ and Wang [10]. The
proof of local convergence in [10] encouraged researchers to study and publish about ESC,
therefore widening the spectrum of its variations. Perturbation Based-Extremum Seeking Control
(PESC), Slope Seeking Control [9], Sliding Mode Based Extremum Seeking Control [20] and
Lyapunov-based Extremum Seeking Control [21] are some of the variations proposed by
researchers the last years.

15



2.2 Applications

Extremum-Seeking has been applied to many complex systems since it comes with ease of
implementation and guaranteed convergence with the only restriction that the dynamics be open-
loop stable. To begin with, ESC has been widely used and researched for implementation on Wind
Energy Conversion Systems (WECSSs) in [14], [15], [20], [22], and on arrays of solar panels in
[13], [23], as a Maximum Power Point Tracking (MPPT) method aiming at maximization of the
power output compared to the theoretical maximum. Another popular application of ESC is on
Anti-lock Braking Systems (ABS), which may be the most widely known of its applications, with
numerous extensions and novel schemes proposed such as those in [9], [24], [11], [12] all with the
purpose of avoiding slipping under hard braking conditions and thus retaining the vehicle’s
controllability. Moreover, ESC has been applied to Mode-Locked fiber lasers by Brunton, Fu and
Kutz in [25]. In order to provide maximum energy pulses, a multi-parameter Extremum Seeking
Control algorithm is utilized for tuning four optical components which in their turn they will
maximize a properly designated objective function. The objective function introduced is the raw
energy output divided by the kurtosis of the pulse spectrum, so that the algorithm favors coherent
energy solutions. Simulations results suggested that the proposed scheme can track the required
tuning that maximizes the objective function even though it is subject to significant disturbances
from the fiber Birefringence. In [26], an ESC algorithm is proposed to control a thermal
environment in real time. Model based techniques for buildings climate control are costly and
require too much effort both to design and construct them but also to frequently update the models
to compensate for the uncertainties arising such as weather changes or activities inside the building
with thermal imprint. For the reasons stated above, the authors in [26] chose to address this issue
via perturbation-based ESC which is a model-free method, suitable for hard-to-model cases. The
simulations conducted, confirmed that ESC is efficient in controlling thermal environments since
it does not have the drawbacks of model-based techniques. Many researchers have published work
on engines’ optimization performance via ESC such as in [27] where the authors propose an ESC
scheme aiming at maximum fuel efficiency, which is approximated by cylinder pressure sensors,
by adjusting the spark timing online. Another interesting approach to the fuel efficiency problem
is the one proposed in [28] where the authors employ an objective function primarily based on
brake specific fuel consumption (BSFC) estimations in order to achieve maximum efficiency with
respect to a set of emission constraints. The conducted experiments on a Euro-VI heavy-duty truck
engine suggest that the proposed scheme is robust enough to withstand real world disturbances
while optimizing the fuel efficiency with respect to the imposed emission levels. In [29], the
authors applied three extremum seeking control schemes in fuel cell hybrid electric vehicles to
reduce hydrogen consumption by retaining the system’s operating point within the high efficiency
region. A first order Extremum Seeker, a high pass filter-based Extremum Seeker and a bandpass
filter-based Extremum Seeker were scrutinized. They were all found to track the optimum
operation point of the system with respect to the battery’s constrained conditions, and to
dynamically adapt the output power, so that the battery’s state of charge is retained in an a priori
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set range. The proposed schemes’ performance was evaluated through experimental
implementation. Other applications of ESC, include minimum power demand formation flights
[9], optimization of aircraft control [30] and maximization of compressor pressure rise [9]. In [31]
ESC was utilized for maintaining desired illumination levels, while optimizing the energy
consumption in hybrid lighting offices, in [32] for control of Tokamaks, tuning a fractional order
PI controller in [33], biochemical wastewater treatment process in [16] and even optimal function
of an ellipsoidal trajectory orientation using muscle effort in [34].

2.2.1 Bioreactors

ESC has been applied in bioreactors for a mass structured cell population balance [16] ,[35]. The
underlying dynamics of this process are governed by a nonlinear partial integral-differential
equation bounded by a nonlinear condition accounting for the cell population growth and a
nonlinear ordinary integral-differential equation describing the substrate consumption. In this case
the controlled input is the feed substrate concentration through which the algorithm steers the input
value towards the desired set point that maximizes the value of a cell density objective function.
A Lyapunov-based Extremum Seeking Control technique is proposed in order to estimate the
unknown state and to track the unknown optimum value. The Lyapunov function and the design
parameters are selected in such manner that a persistent of excitation condition is satisfied and it
has also been shown mathematically that the proposed ESC scheme guarantees exponential
convergence to within a small region of the system’s maximum cell density.

2.2.2 Solar Panels and Photovoltaics

Extremum seeking Control has been also applied to an array of solar panels in [36], in order to
track the optimizing power condition for which the output power is maximized. In this application
the input is the set current which is adjusted in order to track the maximum power point. The
proposed ES controller, instead of utilizing, the classical in ES, perturbation by injection of
sinusoidal signal, it perturbs the input using the inverter ripple. Simulations were conducted,
applying this novel, ripple-based Extremum Seeking scheme to experimental data, obtained from
a rooftop in Princeton, NJ and it was shown that even in days where the irradiance follows an
unpredictable trajectory, because of the partially shaded conditions (clouds covering the sun etc.),
the proposed ESC scheme manages to track down the theoretical maximum power point very
efficiently and thus it is achieving real time convergence to the optimal output for the solar panels
array.

The control of solar panels array has been also approached through a Lyapunov based switching
scheme in [16], [21]. While the traditional ESC scheme enters a region of the optimal value without
converging to the optimal point itself, the Lyapunov based switching scheme (Lyap-ES) on the
other hand converges to the optimal value by exponentially decaying the perturbation signal since
the system has reached to a small region around the extremum. Thus, the Lyap-ES addresses one
of the main challenges of traditional extremum seeking which is the elimination of the limit cycle
and the convergence to the extremum point itself, asymptotically. The proposed scheme is applied
to the maximum power point tracking (MPPT) problem in photovoltaics, and it has been assessed
via simulation by utilizing experimentally measured environmental data. From the simulation
results, it derives that Lyap-ES produces larger energy conversion efficiencies than the common
MPPT methods.
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Another challenge that has retrieved from studying the maximum power point tracking (MPPT)
for solar arrays is the existence of suboptimal solutions. The reference-to-output map may not have
only one Global maximum power point (GMPP) but also some local maximum power points
(LMPP). The global MPP is the one the algorithm should track in order to achieve the maximum
feasible power output. In [13], the author proposes a new perturbed based Extremum seeking
control (PESC) scheme which is able to avoid getting stuck in one of many local maximum power
points (LMPP) as opposed to most of the common MPP tracking algorithms that haven been
proposed in the past decades. The (PESC) scheme proposed utilizes a feedforward control of the
dither gain according to the 1% derivative of the photovoltaic power. Unlike other schemes the one
proposed in [13] detects and tracks the GMPP in one step, thus increasing its tracking speed.
Moreover, while the system is on steady-state regime, an outstanding 99.9% (and higher) accuracy
is achieved with this technique. The simulation results under partially shaded conditions indicate
that the proposed (GPESC) scheme can efficiently be applied to maximize the power output of a
photovoltaics array.

2.2.3 Wind Energy Conversion Systems

Wind energy conversion systems (WECS) have also been approached by extremum seeking based
Maximum Power Point Tracking (MPPT) methods in different variations. Similarly, to the
photovoltaics (MPPT) approach, in (WECS), the algorithm’s purpose is to keep the system’s
operating point at the neighborhood of the optimal Power Coefficient C,, value by controlling the
tip speed ratio A, which is the ratio between the speed of the blade tips and the wind speed. In [22],
the authors implement the MPPT method for the output maximization problem in wind energy
system but instead of utilizing the perturbation based ESC in its classical form, the wind turbulence
is employed as search disturbance. The phase lag between the normalized signals C,, and A, which
are obtained from measurements of the electrical power, the wind speed and the rotational speed,
are utilized to define the actual distance between the current operating point and the maximum
point of the C,,(4) curve. This is achieved by computing the Fast Fourier Transform (FFT) of both
signals and thus, after the phase information is extracted, the mean phase lag 6(t) is computed.
Simulations were conducted in the partially loaded region for a wide range of wind speed. The
proposed scheme is efficient even though there is lack of information about the plant’s dynamics.
Because of that, there are no guarantees that the scheme will be able to converge to the optimal
Aopt and therefore eliminate the steady-state error. What makes the proposed scheme attractive is
the absence of information about the system’s parameters and state and that the input’s variations
are slow, thus minimizing the fatigue of the mechanical components and extending their life
expectancy.

As it was observed in [22], the proposed ESC scheme was sensitive to wind speed fluctuations and
more specifically the method seemed to be less effective for low turbulence levels. Later, in [37]
it was shown that plain ESC algorithms are not robust enough when implemented in Wind Energy
Conversion Systems (WECS). The algorithm climbs very slowly towards the optimum when there
is low wind speed, while it climbs abruptly when the wind speed is higher. The authors’ proposition
in [37] for counter measuring this problem was a saturation nonlinearity in order to moderate the
effect of the wind speed fluctuations. The same problem was also approached in [14] where the
author proposed a simple but efficient modification. Instead of using the power output feedback,
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the logarithm of the power output is employed as the feedback. In contrast to the proposition in
[37], the logarithmic power feedback does not require additional tuning. As it is stated in [14],
when the logarithm of the power is used, the relevant slope is independent of the wind. Simulations
were conducted for both power feedback and log-of-power feedback and were based on a simple
differential equation model. The results support the proposed theory, since the ESC algorithm with
log-of-power feedback produced almost identical settling times for all three wind speeds
simulated. Therefore, the modified ESC scheme is more robust to wind speed and presents
consistent performance.

In [15], the author proposed a new MPPT method for WECS which does not demand sensor
measurements of the wind’s or tip’s speeds. This method utilizes only the voltage and the current
as its parameters. The method is particularly attractive because, unlike most MPPT methods, it
tracks the maximum power point of WECSs and not of their wind turbines therefore the output
power of WECS is maximized. The proposed technique was simulated, and the results indicated
small convergence time and efficiency of more than 98.5%.

2.2.4 Anti-lock Braking System

Finally, one of the most well-known and deeply investigated applications of extremum seeking
control is the Anti-lock braking system (ABS). ABS is a crucial active safety component for
passenger vehicles that has been widely employed in numerous car models since Mario Palazzetti,
Giancarlo Michellone and Giovanni Tabasso invented the modern ABS system for automotives in
1971 in the Fiat Research Center [38]. Nonetheless, its ancestor, the Dunlop Maxaret anti-skid
braking system was introduced in the early 1950s and had been broadly utilized in the British
aviation.

The braking process’ performance depends on countless varying factors such as the vehicle’s
speed, the applied braking pressure, the condition of the wheels, the road’s surface and the friction
between them. Most of those factors cannot be measured by the vehicle or any of its sensors and
therefore they compose a nonlinear process with high uncertainty. The purpose of the Anti-lock
braking system is to prevent the wheels from lockups and skidding in slippery conditions which
would not only decrease the deceleration of the vehicle, but it would also make the steering of it
under heavy breaking situations impossible. Therefore, the objective of the ABS scheme is to
maximize the friction coefficient which is proportional to the friction force or in other words
minimize the stopping distance. The input this system needs to extremize in order to achieve
maximization of the objective function is the wheel slip 2. The ABS has been approached in
numerous forms besides the traditional Extremum Seeking Control [9]. From the work of [39]
about tyre dynamics it has been revealed that for varying external inputs, the force response of the
tire presents a time lag. Because ABS controllers command very abruptly the brakes and therefore
the tyres, such an impact must be taken seriously into consideration. A response to that has been
given in [12] where two different time anticipation methods are embedded in a modified five phase
Anti-lock braking algorithm. Both the open-loop pressure steps and the Pressure derivative profiles
compensate for the time delays at a satisfying degree as shown in the experimental results. Another
study in [11], confronts the undesirable drop in lateral tyre forces that appears while the system
attempts to maximize the breaking forces. In order to address this issue, the algorithm is adjusted
so that it analyzes the steering input information to determine the operational zone of the search
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algorithm. Simulations were conducted for both the modified ABS algorithm which enhances the
lateral stability and for the ABS algorithm which only prevents the longitudinal slip. The
comparison between them showed that the enhanced scheme has a slightly larger stopping time,
however the vehicle’s lateral stability has improved significantly thus offering the vehicle
enhanced capability of turning under abrupt braking situations. Moreover, the extremum seeking
control scheme without steady-state oscillation (ESCWSSO) which has been proposed in [24] was
applied in Anti-lock braking system and was compared to the traditional perturbation-based ESC
scheme and sliding-mode-based ESC scheme. The simulation results showed that under the same
circumstances the proposed scheme behaved more efficiently by stopping the vehicle within the
shortest time. Although the sliding-mode-based scheme reached higher braking torque than the
proposed scheme, it appeared very large oscillations which call for higher requirements on
actuators.

2.3 ESC for traffic congestion

Extremum Seeking Control has also been utilized for tuning or estimating parameters of three
types of traffic light controllers in [17], modified as a Nash Equilibrium Seeking scheme. The road
network in this work, is considered as a non-cooperative game, where the agents are the
intersections, or neighborhoods (set of neighboring intersections) whose purpose is to solely
maximize their own output ignoring the system’s overall performance. Meaning, that an agent may
command increased external flow to alleviate the congestion locally (maximize its performance
measure), thus, possibly creating congestion to a neighboring agent. Nonetheless, the author
manages to ease the task of assigning frequencies to each intersection compared to [40], where the
authors proposed a Nash Equilibrium Seeking scheme which required unique frequency for each
agent. Instead, the author of [17], exploited the decaying effect that a road network (in accordance
with many physical systems) exhibits spatially, by re-using dither frequency signals to agents far
enough from each other in order to reduce the system’s computational load while making the
assigning task easier. The proposed scheme was combined with Perimeter Controller [4],[5],
SCATS [6], and self-organizing traffic lights (SOTL) [7] and they were simulated on SUMO in a
simple handmade road network. In the perimeter controller’s case, the internal network’s
intersections are governed by SOTL, which was shown in [6], to homogenize the region in terms
of congestion, therefore exhibiting a robust NFD. Simulations results, shown a significant increase
in performance compared to the controllers working on pre-set, fixed parameters, especially for
the perimeter controller which showcased an impressive performance enhancement of 29%.
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3. METHODOLOGY

In this chapter, the theory and methodology of the Perturbation Based Extremum Seeking Control
(PESC) are investigated. A common ESC block diagram is presented, as well as the analytical
proof of convergence for the linear time invariant case. Then, a generalization of the method, called
Slope Seeking Control (SSC) is presented and analyzed together with its corresponding block
diagram. In SSC, instead of seeking for the extremum, the method tracks the gradient it is
commanded to seek. An intuitive analysis of how the method works (PESC and its generalization
SSC) also takes place in this Chapter.

3.1 Perturbation Based — Extremum Seeking Control

Perturbation based Extremum Seeking Control (PESC) is the foundation of Extremum Seeking
Control (ESC) by being its classical and most common method. It was introduced from Leblanc
in order to optimize the power transfer from an overhead power - line to a train. It has been studied
for many years since then and it has been tested in many applications. It relies on a sinusoid to
perturb the system’s input and in some cases this sinusoidal excitation can as well be an already
existing disturbance of the plant. Then, the controller observes the corresponding output and
decides whether the input was perturbed towards the direction that extremizes the output. If that is
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Extremum-seeking controller
Figure 3. 1:Extremum Seeking Control block diagram

the case, the next step will also be to that direction, and it will be proportional to the estimated
gradient of the objective function for the current operating input value. Otherwise, the algorithm
is steered to the opposite direction with a step, again, proportional to the estimated gradient.
Extremum Seeking is an Adaptive control method which tracks the extremum (maximum or
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minimum) of an objective function P. The values of the cost function P are usually provided by
some sensor measurements however the final value of P depends on the input signal and the
underlying dynamics. A common extremum seeking control block diagram is shown in Figure
(3.2).

The purpose of the Extremum Seeking Control scheme is to minimize (or maximize) a quadratic
objective function. Under Taylor’s approximation, any C? function can be approximated locally
by eqn.

”

P(w) =P + %(u —u")? (3.1.1)

Where, for P" > 0 negative integration gain k < 0 is selected, while for P"” < 0, positive k > 0
is selected. Overall, the scheme’s purpose is to track the optimal value u* for which the objective
function is optimized. &t stands for the estimate of the unknown variable u*. A sinusoidal
perturbation is added to @ resulting in signal u

u =14+ asinwt (3.1.2)

Signal u passes through the plant resulting in a cost function P which is oscillating, around some
mean value (the current operating point).

n

P
P(u) = P*+ 7(12 + asinwt — u*) (3.1.3)

The output P is passing through a washout high-pass filter resulting in a zero mean output
perturbation (signal p) by excluding the mean Direct current component. A representation of a
simple high-pass filter in the frequency domain follows:

S
HPF = 3.14
s+ ( )

Wp

Where, s is the Laplace variable and wy, is the filter cutoff frequency

Thus, the information about the objective function’s gradient has already been separated from the
DC component of the map, P*(u).The high-pass filer is not required but it enhances the scheme’s
performance [30] therefore it is included.

The high-pass filtered signal p is then demodulated by a sinusoidal perturbation which might as
well be phase-shifted. Multiplication of signal p with the input sinusoid results in signal t

7= asin(wt —®)u (3.1.5)

It is noted that when the input signal is greater than the optimal value u > u* , the output
perturbation is out of phase thus resulting in a mostly negative signal T which drags the input u
towards the extremum. If the input signal is smaller than the optimal value u < u*, the output
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perturbation, colored red, is in phase and the produced signal t is mostly positive as shown in
Figure (3.2).

&

i< ut u* ozt
Figure 3. 2: Schematic illustrating extremum-seeking control acting on a static quadratic criterion P(u).

Signal 1 essentially estimates the gradients of the objective function in the current operating point
and thus steer the algorithm towards the optimal value rapidly when the gradient is larger and
slower when the gradient is smaller. This can easily be noticed for plants with constant dynamics,
where the cost function P is only a function of the input signal u. Substituting, equation (3.1.2) in
the cost function P gives

P(u) = P(i + asin(wt)) (3.1.6a)

Assuming that perturbation amplitude a is small and expanding the cost function P(u) to the
perturbation amplitude, yields.

P(u) =P(i1) + 6_P
Jdu

B asin(wt) + 0(a?) (3.1.6b)

u=u

Averaging signal T = asin(wt — @)y, and substituting the leading order term in the high pass
filtered signal which roughly is u = Z_Z| _asin(wt) , over one period yields.
u=u
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w
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a?sin(wt — @) - sin(wt) (3.1.7bh)

i ) cos(®) (3.1.7¢)

u=u

Therefore, it is easy to comprehend that in the case of plants with constant dynamics, the average
signal 7,4 is proportional to the slope of the cost function P with respect to the input signal u.

The demodulated signal t is then passing through an integrator block. Integration of signal t results
in @ which is the best estimate of the optimal value u* which maximizes (or minimizes) the
objective function P.

A~

du—k 3.1.8
Fraiald (3.1.8)

Where k, is the integration gain. Integration gain determines how rapidly the actuation rises.
However, selecting exceedingly high integration gain values may disrupt the scheme’s stability.

In this section the proof of convergence of the perturbation based ES scheme for a static map is
presented as in [9]. In order to perform the proof, the objective of the ES scheme is restated as the
minimization of the estimation error denoted as:

i=u"—1 (3.19a)
d=u"+ a (3.1.9b)
Substituting equation (3.1.9b) into (3.1.2) gives
u—u* =asin(wt) — 4 (3.1.10)

Substituting equation (3.1.10) into (3.1.1) gives

P=P + 7(11 — asin(wt))? (3.1.11)

Expanding the squared term gives

”n

P
P=prP + = (%2 — 2ii - asin(wt) + a?sin®(wt)) (3.1.12a)

”» 12}

P=pP + 7112 — P"ii - asin(wt) + 7azsin2(wt) (3.1.12b)

Implementing the trigonometric identity 2sin?(wt) = 1 — cos(2wt) in equation (3.1.12) gives

" " "

P y P
P =P+ Iaz + 7112 — aP usin(wt) — Zaz cos(2wt) (3.1.13)
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Following the sequence of the block diagram of Figure (3.1), output signal P passes through the
high pass filter. The Direct current terms, which in this case are the first two terms on the right
side of equation (3.13), are removed by the high pass filter, thus giving

n

., P”
P] ~ —1i? — aP usin(wt) — —a* cos(wt) (3.1.14
s+wh[ ] 5 aP i sin(wt) i cos(Qwt) ( )

N

The high pass filtered signal is then multiplied by sin(wt) (®=0) giving

144 n

T~ 7112 sin(wt) — aP"1 - sin?(wt) — Taz cos(2wt) sin(wt) (3.1.15)

Applying the following trigonometric identities
2sin?(wt) = 1 — cos(2wt) and 2 cos(2wt) sin(wt) = sin(3wt) — sin(wt)
gives

PII n n n

T~ —aTﬁ + a7ﬁ -cos(RQwt) + a? Y (sin(wt) — sin(3wt)) + 7112 sin(wt) (3.1.16)

Since the plant is static, u* is constant. Therefore,
ii=-1 (3.1.17)

The integration gives

k
i ~——1 (3.1.18)
S
Substituting equations (3.1.16) and (3.1.17) in (3.1.18), one gets
k PII PII P”
i~ 5 I—a7ﬁ + a7ﬁ -cos(Qwt) + a? ?(sin(wt) — sin(3wt))

n

P
+ 7112 sin(wt)| (3.1.19)

Since the conducted analysis is local, the last term which is quadratic in i is neglected, thus
giving

—a—1il+a—1-cosQwt) + a®> —(sin(wt) — sin(3wt))| (3.1.20)

2 2 8

~ —
~

S

Nd]

k l PII _ PII Pn

The last two terms of the equation (3.1.20) are high frequency signals which are “attenuated”
through integration. Therefore, they are neglected, giving

. ka
il ~ —7P”ﬂ (3.1.21)

Where kP" > 0, thus making the system stable.
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3.2 Perturbation Based — Slope Seeking Control

Slope Seeking essentially is a generalization of the classical Extremum Seeking Control. In ESC
the set slope of the objective function that the algorithm tracks, is the gradient of an extremum
which is zero. However, on some applications operating on the extremum point, in presence of
finite disturbances can destabilize the system, therefore the algorithm is commanded to track a
non-zero gradient.

In the basic slope seeking scheme, a sinusoidal signal is added to the best estimate of the optimizing
value # and the resulting signal passes through the plant as shown in Figure (3.3). The output of
the plant is filtered by a high-pass filter and the resulting signal is multiplied by a sinusoid
(demodulation) in order to extract the operating gradient information. Then, the reference slope is
added to the demodulated signal and the output is integrated into . In the special case where the
reference slope added is zero the algorithm tracks the extremum of the objective function.

Under Taylor’s approximation, any C? function can be approximated locally by the following
equation:

: P’
P=P +Plu—u)+—@—u)’ (321

Where P’,..f is the gradient of the objective function in which the system is forced to operate at.
For P > 0 we have negative integration gain k < 0, while for P" < 0 we have positive k > 0.
From Theorem 3.1 of [9] we know that the output error y — P* converges exponentially to an

O(a+ i) neighborhood of the origin given that: perturbation frequency w is large enough and
1

is asymptotically stable

1+L(s)
Where,
L(s) = 25” (3.2.2)
and
r(P'res) = = ap;” Re(; af “+) - (323)
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Figure 3. 3:Slope Seeking Control block diagram
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4. APPLICATIONS

Simulation examples were conducted for both, the linear time invariant (LTI) and linear time
variant (LTV) cases, showing the scheme’s ability to track the optimal value even when it varies
with time. Then, a generalization of the extremum seeking control, called slope seeking is
presented accompanied by a simulation example. Then, a benchmark theoretical example of
extremum seeking acting on a system with linear time variant dynamics is presented. Finally, the
extremum seeking control technique is applied to the anti-lock braking system (ABS) of a unicycle
vehicle model in order to track the optimum slip value that maximizes deceleration.

4.1 Extremum Seeking Control on LTI system

In this section the algorithm is demonstrated for a simple static quadratic cost function (the
simplest possible problem) in order to showcase its function. By implementing the extremum
seeking algorithm, the cost function’s maximum is tracked. The quadratic objective function
considered is the following:

P(u) = 60— (4—u)?

Function P has a global maximum at u* = 4, giving P(u*) = 60. Extremum Seeking Control is
applied with u = 0 as the initial value of the variable under optimization. Nonetheless the
convergence of the proposed scheme is guaranteed, and it is independent of the initially selected
value of u since there is only one extremum. Initial values of u furtherer from the optimal value
prolong the convergence time. Perturbation amplitude is selected as a = 0.2 so that the peek

. s . . _— 1
seeking scheme’s error, y — P* achieves local exponential convergence to within an 0(a? + E)

neighborhood of the origin, under Theorem 1.1 of [9]. Larger perturbation amplitude would result
in larger residual error and faster tracking of the optimum value whilst smaller perturbation
amplitudes would need more time to achieve convergence to an even smaller neighborhood of the
optimum. Roughly speaking, the “accuracy” of the convergence and the fast tracking of the
optimum are two antagonizing components that one should take into consideration while selecting
the perturbation amplitude. Integration gain k is also controlling the speed of convergence thus it
can compensate for the lack of “speed” that may be induced by the small amplitude. Therefore,
integration gain is selected as k = 3. The perturbation frequency w governs the distinction
between the time scales of the integrator's estimation process and the additive and multiplicative
perturbation's gradient estimation process. Sufficiently large frequencies, achieve more accurate
slope estimation and less impact of the perturbations produced by higher order harmonics and the
DC component f(8*). Therefore, perturbation frequency is selected as w = 10Hz, thus providing
higher precision measurements of the gradient P’ while being qualitatively large relative to the
other design parameters (k, a, h, P'"). As shown in [9] o could even be a little larger than the plant
time constants. The washout frequency of the high-pass filter should not be larger than ® in order
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to attenuate the DC component in y, while the slope estimation P’(u) passes through uncorrupted.
A second order Butterworth high pass filter, with a cutoff frequency of h = 2Hz is employed, so
that only the output oscillations are passing. The simulation’s results are plotted in Figure (4.1).
The objective function P is oscillating while rising from 40 to 60 for about 3 seconds. It is
essential to notice that although the actuation signal u is oscillating with an amplitude a
throughout the entire simulation, the output signal is oscillating intensely when the input u is far
from u*, while the output perturbation is almost zero when the objective function reaches its peak.
The ESC scheme manages to climb rapidly to the peak of the cost function and presents small
deviations once it reaches the optimum value (as it was expected from the averaging analysis of
signal 1).

4 T T T T T L esnasas hasass ARSARRERNE
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Figure 4. 1: Extremum Seeking Control response with a static objective function P(u)

The Butterworth filter was introduced by the British physicist and engineer Stephen Butterworth
in 1930 in [41]. Butterworth filters have a maximally flat frequency response in the passband. The
magnitude expression of a Butterworth high pass filter is:

|H(w)| £ (4.1.1)

1
VIt
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Where o is the angular frequency of the input signal to the high pass filter, and n is a positive
integer, referring to the order of the corresponding filter. Assuming transfer function H(s) is a
rational function with real coefficients and rearranging gives:

|H(jw)|? = (4.1.2)

1+ w2
Using the identity:
] — S
S=jwew —]—,

Gives:

H(s)H(-s) = (4.1.3)

S
1+ (32

@
Where H (s) is the transfer function. The poles of equation (4.1.3) are given by:

2n2k+n+1
sk =e’" ,ke{0,1,..2n—1}

All these poles are points of the unit circle, %rad apart from each other. Looking back at equation

(4.1.3) it is evident that when the factor H(s) has a root, the factor H(s) has a root in the negative
location. For a stable filter to be designed, it is necessary that H(s) has all the poles in the left half
of the s-plane. Stable poles are given by:

j n2k+n+1
Sk,stable = € 4n ,k€{0,1,..n—1}

Therefore, the transfer function of a Butterworth low-pass filter is given by:

1
H(s) = —B(s)
Where:
( 2-1
2k+n+1
1_[ (sz — 2cos (271—) s+ 1) ,evenn
11 4n
B(s){ no1 (4.1.4)
c 2k +n+1
(s+1) (52 — 2 cos (271—) s+ 1) ,oddn
L 11 4n

The poles of a high-pass Butterworth filter are given by the same expression as for the low-pass
filter. The only difference is that the high-pass filter has n zeros. Its transfer function is given by:
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H(s) =

Where B(s) is given by equation (4.1.4), depending on the filter’s order.

4.2 Slope Seeking Control on LTI system

Simulation.

An example of the slope seeking scheme acting on a linear time-invariant plant is illustrated here.
The following quadratic static objective function is considered:

Pu,t) =50+ (u—4) + (u—4)? (4.2.1)

where P',.r =1, u” = 4 and P”" = 2. We set perturbation frequency w = 5Hz, amplitude a =

0.1, integrator gain k = 10, washout high pass filter cutoff frequency h = 5Hz , u = 0 is selected
as the initial guess and slope reference was calculated by substituting the above parameters in
equation (3.2.2) thus giving:

r(P'ef) = —0.025
. Substituting the parameters in L(s) and calculating the poles of the characteristic polynomial

1+z © it is confirmed that the system attains stable gradient seeking.

kaP"
_1
r /s

1+L(s)=0->s5=-1

L(s) =

Derivation of equation (4.2.1) gives:
P'=-7+2u (4.2.2)

Solving equation (4.2.2) in terms of u for the commanded slope: P’ = 1 gives the optimal input
value

-7+2u=1
u==4
And the objective function’s value for the corresponding slope
P(4) =50

The response graphs in figure (4.2) confirms that the system converges to the commanded values.
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Figure 4. 2: Slope Seeking Control response with a static objective function P(u)

4.3 Extremum Seeking Control on LTV system

4.3.1 ESC on quadratic criterion

In this section the algorithm is employed in a linear time varying system in order to showcase its
efficiency and its ability to track time-varying optimal values. Therefore, we consider the
following quadratic time-dependent objective function

t 2

P(u,t) = 60 — (10 —u — 2sin (Z))

The time-varying objective function P has a global maximum at u*(t) = 10 — Zsin(i) giving

P* = 60. Since the purpose of the algorithm is to track the varying parameter u* with u, the
perturbation frequency o should be large enough to be considered fast compared to the varying
parameters which oscillate at 1/8x Hz. Thus, perturbation frequency is selected as w = 10Hz.
Since the objective function has one and only extremum, the selection of the initial value of u is
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irrelevant with the quadratic function’s convergence to the extremum. Therefore u = 0 is selected
as the initial guess. For initial values furtherer away from the optimal value u* the time of
convergence is increasing. Integration gain is selected as k = 4, demodulation amplitude is
selected as A; = 1, and modulation amplitude is selected as A,,, = 0.2. A first order Butterworth
high pass filter, with a cutoff frequency of h = 2Hz is employed. By conducting the simulation
in MATLAB and plotting the response of the extremum seeking control for the proposed dynamic
plant it can be easily noticed that the ESC scheme maintains a near optimum performance for the
quadratic cost criterion despite the lack of information about the varying parameter. The actuation
signal has managed to approximately track the optimum value u* which is oscillating around u =
10 with an amplitude of 2.
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Figure 4. 3: Extremum Seeking Control response with a dynamic objective function P(u)

4.3.2 ESC on quadratic criterion with input/output dynamics
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Inspired from example 1.3 as well as the proposed algorithm 1.2.1 in [9], the following rather
challenging example is considered. Extremum Seeking Control is implemented on a dynamic plant
according to the design algorithm 1.2.1 proposed in [9]. The input dynamics considered have a
zero in the right half-plane, making them non-minimum phase dynamics. The product of input and
output dynamics F;(s)F,(s) has a large relative degree and the optimal values u* and P* are time
variant, thus making the system difficult to control. Moreover, sensor noise is present in the
simulation as a uniformly distributed random signal with minimum, min = —0.05, maximum,
max = 0.05 and sample time, T = 0.001.

Input dynamics:

(s—1) (s—1)

Fi(s)=52+35+2=(5+2)(5+1)

Output dynamics:

1
PO =

Cost function:

P(u,t) = P*(t) + 0.4(u — u* (1))’

Therefore,
P" =02
Where:
P*(t) = 0.02-6(t — 15)
And:

u*(t) = 0.005 - 902

Implementing the Laplace transform for P*(t), we arrive at:

0.02¢7158
Aplp(s) = ———

Likewise, for u*(t) we get:
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0.005

Aul—lvl.(s) = s— 002

Following the procedure, as presented in algorithm 1.2.1 at [9] we first select perturbation
frequency w large enough and such that +jw is unequal to any imaginary axis zero of the input
dynamics F;(s). Furthermore, w should not have the same frequency with any other noise. In case
where +jw isanimaginary axis zero of F;(s) the plant will remain unaffected from the sinusoidal

forcing we implemented. Thus, w = 5 md/s is chosen.

The perturbation amplitude a should be large enough to generate observable fluctuations in the
plant’s output, however large perturbation amplitude produces larger steady state output error .
This trade off was fine-tuned via trial and error and was finally set to be « = 0.05.

Compensators design

For the compensators design the symbols of the block diagram of Figure (1.2) from [9] are
employed.

We use one fast pole in C,(s) to compensate for the output dynamics F, (s), since F,(s) has one
slow pole and F, (s) is strictly proper. If I, (s) has zeros that do not have asymptotic stability these
zeros should also be used as zeros of C,(s). Furthermore, the compensator C,(s) should be

designed asymptotically stable.C,(s) = i is satisfying the previously stated guidelines and
therefore it is selected. Thus, the high-pass filter turns out to be:

Co(s) s
I, s+5

C;(s) should be chosen to ensure that C;(s)I;,(s) is proper in order to attain robust control. Any
poles of I;,(s) that are not asymptotically stable, should not be utilized as zeros of C;(s). Finally,
C;(s) should be designed such that:

1
1+ L(s)
Where:
P"|F;(j
(s = LA
And:

Hi(s) = Ci(s)L.($)Fi(s)
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Attains asymptotic stability.

In order to simplify the design procedure of C;(s), phase shift of the demodulation sinusoid is
taken by:

Solving for the parameters above results in:

® = —2F,(5)) = 0.7955

Compensator C; is set to be:

Ci(s)=s—4

And the “integrator” block is set to be:
G (s) = 25—
() = 427002
Replacing the terms above in the characteristic polynomial gives:
0.05 - 0.2|F;(5))|

L(s) = 2 H;(s) = 0.0025|F;(5))|H;(s)
Where:

|F;(5))| = | | |377 3771| =~ (.1857
And:

2552 — 1255 4+ 100
Hi(s) = = 2
s34+ 2.98s% + 1.94s — 0.04

So,

L(s) = 0.00046425H;(s)

The roots of 1 + L(s) = 0 are the poles of the characteristic polynomial:

L(s) =—
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Multiplying on both sides with the denominator of H;(s) and rearranging gives the final form of
the characteristic equation:

s34+ 29916062552 + 1.88196875s + 0.006425 = 0

The roots of the above equation were given by MATLAB as follows:

s; = —0.0034
s, = —0.8936
s3 = —2.0946

Since all three poles have negative real parts, the system attains stable extremum seeking.

The Simulink model built, to simulate the problem stated above is presented in Figure (4.4)

Step in P*
ustar > f(u) > 1 >
u .
s+1 y
Output dynamics P
_s=1 f u
2435 +2 s
Control knob
Input Dynamics J s+5
High-pass filter Sensor noise

0 ¥ EEE

) "Integrator" -
Perturbation Perturbation

(phase shifted)

Figure 4. 4: Extremum Seeking Control simulation for a system with non-minimum phase dynamics

The simulation’s results are shown in Figure (4.5) and Figure (4.6). Figure (4.5) shows the
control variable u which is oscillating about the time variant optimal value u* with success, thus,
producing rapid and precise tracking of the optimal output value y* as shown in Figure (4.6).
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Figure 4. 5: Extremum Seeking Control input response for a system with non-minimum phase dynamics
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Figure 4. 6: Extremum Seeking Control output response for a system with non-minimum phase dynamics

4.4 Extremum Seeking Control on Anti-lock Braking system
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Figure 4. 7: Model of a slipping wheel

We consider a single wheel (the unicycle model) which may be replicated two or four times, to
compose a model for a two-wheel or a four-wheel vehicle. Tire dynamics under braking
situations are described by the following equations:

mv = —Nu(l) (4.4.1)
And,
I&» = —Bw + NRu(d) (44.2)

where N = mg is the weight of the wheel, @ is the angular acceleration, v is the linear
acceleration, R is the wheel’s radius, I is the moment of inertia of the wheel, ,, is the torque from
braking, B is the bearing friction torque coefficient, and w, w are the wheel’s angular velocity and
acceleration respectively and pu(4) the friction force coefficient and the wheel slip ratio denoted
as A are shown in Figure (4.8). A simple function which qualitatively matches the friction force’s
coefficient is utilized as in [9] for the purpose of simulation.

*

) = 2u* (4.4.3)

YA
Equation (4.4.3) is shown, for two different wheel slip values in Figure (4.8).

The wheel slip is defined as:

It is observed that when Rw = v the wheel slip drops to zero A(v,v) = 0 since the tire is not
skidding on the road. When the wheel “locks” the angular velocity of the wheel is w = 0 and
therefore wheel slip is A(v,0) = 0. In figure(n) the friction force coefficient is presented for
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various road conditions. It is easily noticed that the friction force coefficient has an extremum
(maximum) point u* for

some wheel slip value A*. The optimum value u* is different for every one of the three road
conditions of the graph, as well as the optimizing wheel slip value A*.

1 1 I 1 I 1 I I 1 I
09 .
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07
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0 0.1 0.2 03 04 05 06 0.7 08 09 1

Figure 4. 8: Schematic illustration of Equation 4.4.3 for dry and wet road conditions

To formulate the ABS problem in the extremum seeking control format, let us introduce the
relative error 1 = 1 — A, where 4, is an unknown constant. The derivative of 1 gives:
P (Ra) mR2> RB

_ R
A=21= U_2+ v U+Ew+ﬁ’l’b (445)

Since linear acceleration = measurements are provided through the accelerometer (which is a
sensor commonly used in today’s vehicles for triggering airbag inflation), the feedback linearizing
controller is formulated as:

dlv lw | .
Tp = —T(A —1y) — Bw - U= mRv (4.4.6)

Where d is a positive constant, introduced, for the system (4.4.5) to be exponentially stable.

By rearranging equation (4.4.6) and formulating it into the extremum seeking control a cascade of
input dynamics and a static map:

1,
~A+ g =24 (447)

y=u(d) (448)

The Simulink model of the Anti-lock Braking system shown in Figure (4.9), is comprised of four
subsystems. The wheel model, shown in Figure (4.10) is built based on the equations (4.4.1) and
(4.4.2). The lower saturation limit of the integrator resulting in the linear velocity is set to be zero
and it is connected to a “stop simulation” block in order to end the simulation when the vehicle is
immobilized. The wheel model calculates the angular velocity, the linear velocity and the linear
acceleration (which is measured via accelerometer in real vehicles). Angular and linear velocities

40



are used from the coefficient of friction subsystem Mi shown in Figure (4.11) in order to calculate
the current value of u(1) which is then fed back to the wheel model. Linear acceleration is
promoted to the Extremum Seeking Control subsystem which is shown in Figure (4.13). By
substituting the vertical force N with mass times gravitational acceleration mg in equation (4.4.1)
we get . Since p()) is the objective function of the problem, w is divided with (-g) so that the
perturbation-Based Extremum Seeker tracks with A, the optimal slip value A*. Signal A, from the
ESC subsystem and signals v, v and w from the wheel model subsystem are utilized by the
controller according to the equation (4.4.5) as shown in Figure (4.12). This results in the braking
torque, which is forwarded to the wheel model, thus completing the control loop.

Simulation Parameters

Two simulations were conducted, both on Simulink. In the first case the optimal wheel slip value
is A* = 0.2 and the optimal coefficient of friction is u* = 0.8, simulating a dry road, while A* =
0.15 and u* = 0.5, are simulating a wet road. Conducting two simulations, enables the
investigation to consider a wider spectrum of possible road conditions, while evaluating the
algorithm’s performance and robustness. The rest of the parameters are common for both cases.
The vehicle in the simulation starts braking with an initial linear speed v=33.33m/s and an angular

speed of the wheel w = % = 111.11™/,. Therefore, the initial value of wheel slip 1is 2 = 0.
A* = 0.2 and u* = 0.8 are chosen as the optimum values for maximizing the deceleration, the
controller’s gainis chosenasd =1 and g = 9.81m/52 is the gravitational acceleration.

The wheel’s parameters are chosen as m = 400kg, B = 0.01 and R = 0.3m , I = 1.4kgm?.
Maximum deceleration for dry road conditions is: v = —ug = —7.848

Maximum deceleration for wet road conditions is 7 = —4.905

The ES controller’s parameters are chosen as w = 2_7rad/ s the frequency of the sinusoidal
excitation, integration gain k = 2, amplitude of the demodulation sinusoid A = 1, amplitude of

the additive sinusoid a = 0.05 and high pass filter cutoff frequency p = 2.6 rad/s . The
simulation for dry conditions stopped after 5.88sec, when the vehicle was immobilized while the
simulation for wet conditions stopped after 8.2345sec. In Figure (4.15) it is shown that the vehicle
is immobilized after 117.9m in dry conditions, compared to 157.47m in wet conditions as shown
in Figure (4.19). The Extremum Seekers’ output is shown in Figure (4.14) in dry conditions and
in Figure (4.18) in wet conditions, with respect to the optimal value A* for which the controller has
non priori knowledge. Linear velocity together with angular velocity multiplied by the wheel’s
radius for dry and wet conditions are plotted in Figure (4.16) and in Figure (4.20) respectively.
The proposed scheme can track the optimal value that maximizes the friction coefficient
sufficiently well in both cases, thus achieving maximum deceleration (minimum acceleration) as
shown in both Figure (4.17) and Figure (4.21). Therefore, the proposed scheme seems robust
enough to track the unknown varying parameter 4,, despite its unpredictable behavior.
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Figure 4. 10: Wheel sub-model
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Figure 4. 13: Extremum Seeking Control sub-model
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Figure 4. 14: Extremum Seeker tracking 1, (dry conditions)
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Figure 4. 15: Braking distance (dry conditions)
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Figure 4. 16: Linear velocity and angular velocity multiplied by the wheel’s radius (dry conditions)
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Figure 4. 17: Vehicle’s deceleration (dry conditions)
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Figure 4. 18: Extremum Seeker tracking 1, (wet conditions)
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Figure 4. 19: Braking distance (wet conditions)
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Figure 4. 20: Linear velocity and angular velocity multiplied by the wheel’s radius (wet conditions)
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Figure 4. 21: Vehicle’s deceleration (wet conditions)

4.5 ESC on traffic congestion

4.5.1 Data presentation

Data description

The experimental data with which the ES scheme will be tested, are collected during the operation
of the TASS strategy by Siemens in the central business district (CBD) of Chania, utilizing 70
sensors from June 5 to June 11, 2006 [8]. TASS is a semi-real-time signal control strategy, that
includes six different, fixed signal plans. Every 15 min, TASS evaluates the traffic conditions in
the network, based on measurements of 17 “strategically” located sensors, and selects which signal
plan is suitable to be adopted for the next 15 min period. The CBD of Chania, as it is defined in
[8], consists of 71 links of various lengths and 24 junctions. The experimental data includes
measurements of flow and occupancy (%) values every 90 seconds.

Data analysis

The data are depicted in Figure (4.22-4.28) for each one of the seven days of the week in terms of
flow time series, occupancy time series and their corresponding Network Fundamental Diagrams
(NFDs). The NFD or MFD (Macroscopic Fundamental Diagram) [4] model of urban road
networks depends on the hypothesis that traffic dynamics of an urban area (like Chania), can be
considered as a single-region dynamic system with vehicle occupancy n as a state variable. The
NFD figures (on the top of each day’s Figure) indeed verify that there exists an NFD for the CBD
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of Chania across the 7 days of the test week. Following a thorough examination of the Figures
produced from the data, the remarks stated below were highlighted:

It can be observed that flow capacity is about 800 (vehicles/cycle) for every day except
Sunday where the demand is lower than it should be in order to fully form region B, as
defined in [8], in the NFD figure (Sunday). Therefore, on Sunday the network only reaches
to an occupancy of x = 20%, as shown in Figure (4.28).

On Monday, not only region B is fully formed, but also the congested regime region C is
partially formed as shown in Figure (4.22). Congested regime region C is described by
negative slope in the NFD. This is because of the uneven spatiotemporal distribution of
congestion throughout the protected network, combined with the imposed signal plan that
(TASS) selected. Flow capacity is observed at x = 20%.

On Wednesday, as shown in Figure (4.24) region B has fully formed in the NFD and flow
capacity is observed at a range of occupancies (20-25%).

On Tuesday, Thursday and Friday, where shops are open in the evening, flow capacity is
observed over a wide spectrum of occupancies (18-35%, 22-30% and 20-25% respectively).
The NFDs of these weekdays, Figure (4.23), Figure (4.25) and Figure (4.26), indicate that
TASS control strategy achieves to maintain high values of flow, however on Friday the
network enters the congested regime region in the NFD of Figure (4.26) thus failing to retain
network’s maximum throughput. This is attributed to the spatiotemporal distribution of
congestion inside the network

On Saturday, flow capacity is observed at x=~22%. The congested regime region C has only
slightly been formed as shown in the NFD of Figure (4.27).

Even though the CBD exhibits an NFD, it is observed that the critical accumulation of
vehicles in the network x*(t) cannot be precisely specified, since the traffic patterns from
day-to-day traffic are subject to uncertainties and the imposed control signal may be any of
the six fixed signal plans. Therefore, this problem calls for an adaptive control technique,
that will track the critical occupancy in real-time by exploiting real-time sensor
measurements without requiring knowledge of the plant’s dynamics.
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Figure 4. 22: Network Fundamental Diagram, Flow and Occupancy time series on Monday, June 5, 2006
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Figure 4. 23: Network Fundamental Diagram, Flow and Occupancy time series on Tuesday, June 6, 2006
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Figure 4. 24: Network Fundamental Diagram, Flow and Occupancy time series on Wednesday, June 7, 2006
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Figure 4. 25: Network Fundamental Diagram, Flow and Occupancy time series on Thursday, June 8, 2006
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Figure 4. 26: Network Fundamental Diagram, Flow and Occupancy time series on Friday, June 9, 2006
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Figure 4. 27: Network Fundamental Diagram, Flow and Occupancy time series on Saturday, June 10, 2006
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Figure 4. 28: Network Fundamental Diagram, Flow and Occupancy time series on Sunday, June 11, 2006
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4.5.2 Solving the static problems

Next a preliminary evaluation test is conducted. The algorithm will be evaluated in tracking the
optimal values of seven second order polynomials (one for each day) which were produced using
the trendlines command in excel and they are shown in the NFD Figures in Figure (4.22-4.28).
The resulting polynomials are then formulated via Taylor approximation to posit a static map form.
The Quadratic Taylor approximation of y(x) around point x=a satisfies:

Z M
y(x) = Z 4 !(a) (x —a)® (4.5.1)
n=0

n

Since point x=a is the extremum, the formulated polynomials will posit the following form:

yll (a)
2

P(x) = y(a) + (x — a)?

Implementing equation (4.5.1) in polynomials y;, fori = 1,2,3,4,5,6,7 results in the following
objective functions for each day respectively.

Monday: P, = 762.292 — 1.9852(x — 20.864)2
With x* = 20.864 and P, (x*) = 762.292

Tuesday: P, = 775.01 — 1.2135(x — 24.736)?
With x* = 24.736 and P,(x*) = 775.01

Wednesday: Py = 742.509 — 1.8022(x — 20.664)?
With x* = 20.664 and P;(x*) = 742.509

Thursday: P, = 787.656 — 1.4866(x — 22.975)?
With x* = 22.975 and P,(x*) = 787.656

Friday: Ps; = 770.109 — 1.3484(x — 23.754)
With x* = 23.754 and Ps(x*) = 770.109

Saturday: Py = 739.972 — 1.699(x — 20.625)?
With x* = 20.625 and Pg(x*) = 739.972
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Sunday: P, = 669.744 — 3.67(x — 14.538)2
With x* = 14.538 and P,(x*) = 669.744

A perturbation-based extremum seeking control scheme, as discussed in Chapter 3, is implemented
seven times for each of the static maps produced by the linearization and the parameters of it are
chosen as follows: perturbation frequency w = 10Hz, demodulation amplitude d = 1, modulation
amplitude a = 0.05, a 1% order Butterworth filter with a cutoff frequency h = 5Hz and integration
gain k = 2. The initial occupancy is considered as x = 0. In Figure (4.29) for Monday, it takes
about 25 time units for the system to achieve its maximum output. Approximately the same time
is needed for Wednesday, as shown in Figure (4.30), while for Sunday to reach its optimal
occupancy, only 20 time units passed as shown in Figure (4.35). For Thursday, Friday, and
Saturday it takes about 30 time units to reach the peak as shown in Figures (4.32), (4.33) and
(4.34) respectively. For Tuesday, where its NFD exhibited an extremum for the highest occupancy
value than the other days’ NFDs, 35 time units passed until the system reaches optimality. The
proposed algorithm achieves optimum tracking for each one of the seven static maps produced by
the collected data. It is evident that initiating the system’s input value, far from the optimum value,
rises the time needed for the system to extremize its output. Nonetheless, in every case, the
system’s output converged asymptotically to the optimal
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Figure 4. 29: Extremum Seeking Control response graphs for Monday
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Figure 4. 31: Extremum Seeking Control response graphs for Wednesday

59



25

20

15

10

800

600

400

200

60

90 100

10

20

30

40

50

60

70

80

90 100

Figure 4. 32: Extremum Seeking Control response graphs for Thursday
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Figure 4. 33: Extremum Seeking Control response graphs for Friday
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Figure 4. 35: Extremum Seeking Control response graphs for Sunday

It is observed that the proposed algorithm manages to track the unknown optimal occupancy value
in all the seven days’ NFDs.
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4.5.3 ESC as an estimation algorithm

In this section an Extremum Seeking Control estimator is proposed for real time implementation.
The proposed algorithm will be evaluated in terms of its ability to monitor the prevailing critical
occupancy of an adaptive perimeter control flow strategy as proposed in [4], but instead of a
Kalman filter based estimator, an Extremum Seeker is utilized for tracking the varying critical
occupancy. The corresponding block diagram of the proposed scheme is shown in Figure (4.36).

Input Qutput
] MNetwork —

fraction of gated flow
that enters

L— Perimeter Controller |«— Occupancy

N A
critical occupancy

ESC estimation Flow
algorithm

Figure 4. 36: Adaptive perimeter control flow strategy on a network

Sensor measurements of occupancy and flow are collected from the network and are forwarded to
the perimeter controller and the Extremum Seeker. Utilizing these measurements, the ESC
estimation algorithm, forwards the prevailing critical occupancy to the perimeter controller. The
discretized perimeter controller’s, state feedback control law is given by:

B(m) = 0(m —1) — K,(X(m) — X(m — 1)) — K;(X(m) — X*)

Where, 8 is the fraction of the gated flow that is allowed to enter the network in the present time
step. Kp is the proportional gain, K; is the integrational gain, X is the measured occupancy and X*
is the prevailing critical occupancy, estimated by the Extremum Seeker. From the estimation
algorithm’s perspective, the plant consists of the network and the perimeter controller. To evaluate
the proposed scheme an open loop scheme is constructed in which the values of flow and
occupancy from the collected data are fed to the ES controller as shown in Figure (4.37). The
evaluation of the proposed scheme in this section, concerns its ability to estimate the underlying
critical occupancy values, during the operation of the TASS signal control strategy in the CBD of
Chania from June 5 to June 11, 2006. It is noted that the proposed algorithm does not track the
current operating occupancy of the data, but the critical occupancy values of the prevailing NFDs.
The ES controller’s output is its estimate of the unknown critical occupancy X*.
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Figure 4. 37: ESC scheme for estimation of critical occupancy

Algorithmic Scheme: (Initial values X = 20 and Y, = 600)

1. New measurements of Flow Y(m — 1) and Occupancy X(m — 1) are entering the
algorithm.

2. The measurements are then filtered by a Butterworth high-pass filter.

3. The filtered signal is multiplied by a phase shifted sinusoid, to extract the operating gradient
information.

4. The produced signal is then integrated into the estimate of the unknown critical occupancy.

5. The same sinusoid, but this time not phase shifted, is additively injected into the estimated
critical occupancy.

The algorithm is set to inactivity for as long as X < 10, because there is no need for perimeter
control if there is not sufficient demand on the entrance links. The critical occupancy estimation
is restricted by lower and upper boundaries: 10 < X* < 30. The parameters of the Extremum
Seeker are chosen as follows: Perturbation frequency: w = 0.001Hz, Amplitude: A = 0.2, Phase:
@ = —m rad, integration gain: k = 0.0001 and a second order Butterworth high-pass filter with a
cutoff frequency h = 0.0009Hz. The applied filter serves at removing the low frequency noise
from the measurements before the operating gradient is estimated from the product of the filtered
and the sinusoidal signals (demodulation).

The constructed algorithm is evaluated using the data shown in Figures (4.22 - 4.28) for each day
of the week and then, the high pass filtered signal, the gradient’s estimate and the critical
occupancy estimation are plotted (Figures 4.38-4.44). In Figure (4.38), in which the estimation
algorithm’s results for Monday are shown, it is observed that during the morning peak (8:00-12:00)
the critical occupancy estimate of the algorithm is about X* = 22%. The actual occupancy during
that period on Monday as shown in Figure (4.22) was about X = 25% thus, presenting small
deviation from the obtained estimate. This algorithm’s estimate suggests that the actual occupancy
during that period, was right of the peak of the prevailing NFD, thus decreasing the network’s
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throughput. After the morning peak the algorithm climbs gradually and reaches critical
occupancies around X* = 28% and maintains them during the evening peak (18:00-22:00) when
the actual occupancy was between X = 20% and X = 25%. This means that the obtained
measurements for that period exhibit a positive derivative of the NFD (left of the peak), therefore
the algorithm steers the critical occupancy towards higher values to achieve better performance.
The filtered signal and the gradient’s estimate tend to oscillate with high frequency, which is
attributed to the presence of noise in the experimental data. The actual occupancy for Tuesday’s
morning peak is observed from Figure (4.23) to be about X = 20% and the critical occupancy
estimate for the same period is X* = 22% (not posing a threat for oversaturation) as shown in
Figure (4.39). The estimate drops slightly during the off-peak and begins rising steadily in the
evening peak. The first hours of Wednesday, as shown in Figure (4.40) (and of most days) the
algorithm mainly remains inactive, since the actual occupancy is not surpassing the declared
threshold value. During the morning peak the algorithm maintains its output at about X* = 20%
which is a little lower than the actual measured occupancy for that time. The estimate quickly
drops to X* = 16% during the off-peak and it then rises to X* = 24% to track the critical
occupancy during the evening peak. The critical occupancy estimated for Thursday is shown in
Figure (4.41) and it is observed that the estimation values are about the same with the actual values
in the morning peak. However, in the evening peak the algorithm estimates the critical occupancy
at about X* = 25% compared to the actual value which even reaches X = 30%. This comparison
suggests that the imposed control (TASS) led the network’s operation to the congested regime
since it estimated critical occupancy values lower than the actual values. In Figure (4.42) it is
evident that the algorithm quickly tracks the rising critical occupancy during both peaks (morning
and evening) of Friday, while settling to a lower X* = 20% in the off-peak between them. The
estimate for Saturday is shown in Figure (4.43). In the morning (8:00-12:00) the critical occupancy
estimation is close to X* = 22% while the corresponding actual occupancy shown in Figure (4.27)
is climbing from X = 10% to X = 25%. During the off-peak the estimate dropsto X* = 17% and
even X* = 15% in the evening, thus exhibiting slight deviation from the actual occupancy values
obtained from the measurements. During Sunday the occupancy hardly surpasses the threshold
value therefore the algorithm is only activated for three short periods throughout the day as shown
in Figure (4.44). The adaptive perimeter controller is not needed if the demand in vehicles waiting
to enter the protected area does not pose the threat of congestion.
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Figure 4. 38: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Monday
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Figure 4. 39: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Tuesday
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Figure 4. 40: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Wednesday
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Figure 4. 41: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Thursday
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Figure 4. 43: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Saturday
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Figure 4. 44: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Sunday



5. CONCLUSIONS AND FURTHER WORK

This thesis has investigated the implementation of Extremum Seeking Control as a real time
estimation algorithm, utilizing sensor measurements to produce the current critical occupancy
value for which the network’s flow is maximized. These measurements were collected from the
CBD of Chania under the operation of TASS from June 5 to June 11, 2006, and they were shown,
in section 4.5.1, to exhibit seven NFDs one for each of the seven days with relatively low scatter.
The produced NFDs were approximated by seven linearized static maps. Then the estimation
algorithm was implemented on the static maps to preliminary evaluate its tracking ability. The
results were promising, showcasing the algorithm’s ability to quickly and precisely converge to
the optimum in every case. The proposed algorithm combined with the perimeter controller seems
able to track the critical occupancy on real time even when the NFD of the network is not well
defined. The evaluation conducted in the last chapter highlighted that the proposed ESC algorithm
tracks the varying optimal operation point quickly and accurately. Therefore, the proposed
adaptive perimeter control scheme coupled with SOTL (which promotes even spatial distribution
and therefore well-defined NFDs) for the internal intersections’ control, seems to be a solid
alternative for traffic light control in urban areas.

The investigation conducted in this thesis, produced the following research opportunities:

1. To solidify the conclusions of this thesis, the proposed scheme should also be evaluated in
a realistic simulation with varying demands. In [17], a simulation is conducted for the
proposed scheme, however the manually constructed network is small and does not include
enough sudden events that may occur in a real life network, like car crushes, pedestrians
crossing the streets etc. A simulation including the aforementioned, would produce robust
evidence for the proposed scheme’s ability to track in real-time the critical occupancy and
therefore, alleviate the congestion.

2. Different approaches on ESC implementation for urban traffic control should also be
investigated. Using a faster convergence, enhanced ESC scheme, directly optimizing the
offsets and cycle lengths could even be possible. ESC could also be applied to other urban
or even highway traffic light controllers for optimizing their throughput by perturbing the
parameters of the controller.

3. The adaptive perimeter control flow could also be constructed, using various other adaptive

control techniques for the real-time estimation of the unknown critical occupancy.
Enhanced ESC schemes could also be applied in order to achieve faster convergence.
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APPENDIX

All codes used for the simulations of Chapter 4 are presented in this appendix, written in the Matlab
programming environment. Code for example 4.1

P = @(u,t) (60-(4-(u)) ."2);
u 0;

yO = P<ulo);

ustar = @(t) (4);

ystar = @(t) (60);

% Parameters of ESC

freq = 100; % sample frequency

dt = 1/freq;

T = 10; % total period of simulation (in seconds)
A = .2; % amplitude

omega = 10*2*pi; % 10 Hz

phase = 0;

K = 3; % integration gain

% high pass filter

butterorder=1;

butterfreg=2; % in Hz for 'high'

[b,a] = butter (butterorder,butterfreg*dt*2, '"high'")
ys = zeros (l,butterorder+1) +y0;

HPF=zeros (l,butterorder+l);

uhat=u;
for i=1:T/dt
t = (i-1)*dt;
time (i) = t;
yvals (i) = P(u,t);
ustars (i) = ustar(t);
ystars (i) = ystar(t);
for r=1l:butterorder
ys(r) = ys(r+l);
HPF (r) = HPF(r+1);
end
ys (butterorder+l) = yvals(i);

HPFnew = 0;
for r=1:butterorder+l

HPFnew = HPFnew + b (r) *ys (butterorder+2-r);
end
for r=2:butterorder+1

HPFnew = HPFnew - a(r) *HPF (butterorder+2-r);
end
HPF (butterorder+1l) = HPFnew;

xi = HPFnew*sin (omega*t + phase);

uhat = uhat + xi*K*dt;

u = uhat + A*sin(omega*t + phase);
uhats (i) = uhat;

uvals (i) = u;
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o
o

figure

subplot(2,1,1)

plot (time,uvals, time,uhats, time,ustars, 'LineWidth',1.2)
ll=legend('sus’', '$\hat{u}s")

set(ll, '"interpreter', 'latex', 'Location', 'SouthEast"')
grid on

subplot(2,1,2)

plot (time, yvals, time, ystars, 'LineWidth',1.2)
ylim([-0.1 65])

ll=legend ('SyS', "Sy*S")

set(ll, '"interpreter', 'latex', 'Location', 'SouthEast"')
grid on

Code used in example 4.2

P = @(u,t) (50+((u)=-4)+(4-(u)) ."2);
u 0;
yO0 = P(u,0); % u =20

% ESC Parameters
freq = 100; % sample frequency
dt = 1/freqg;

T = 10; % total period of simulation (in seconds)
A= .1; % amplitude

omega = 10*pi; % 5 Hz

phase = 0;

K = 10; % integration gain

% High pass filter (Butterworth filter)
butterorder=1;
butterfreg=5; % in Hz for 'high'

[b,al] = butter (butterorder,butterfreg*dt*2, '"high'")
ys = zeros (l,butterorder+l)+y0;
HPF=zeros (l,butterorder+l);

uhat=u;

for i=1:T/dt
t = (1-1)*dt;
time (1) = t;
yvals (i)=P(u, t);

75



for r=1:butterorder

ys(r) = ys(r+l);
HPF (r) = HPF(r+1l);
end
ys (butterorder+l) = yvals(i);

HPFnew = 0;
for r=l:butterorder+1

HPFnew = HPFnew + b (r) *ys (butterorder+2-r);
end
for r=2:butterorder+1

HPFnew = HPFnew - a(r)*HPF (butterorder+2-r);
end
HPF (butterorder+1l) = HPFnew;

xi = HPFnew*sin (omega*t + phase);
X1 x1i-0.025;

uhat = uhat - xi*K*dt;
u = uhat + A*sin(omega*t + phase);

uhats (i) = uhat;
uvals (i) = u;
uset (i) = 4;
yset (1) = 50;
end
figure

subplot(2,1,1)

plot (time,uvals, time, uhats, time,uset, 'LineWidth',1.2)
ll=legend('SusS', 'S\hat{u}s")

set(1ll, '"interpreter', 'latex', 'Location', 'SouthEast"')
grid on

subplot(2,1,2)

plot (time,yvals, time, yset, 'LineWidth',1.2)
ll=legend('y', 'y*")

set (11, '"interpreter', 'latex', 'Location', 'SouthEast")
ylim ([0 707)

grid on

Code used in4.3.1

P = Q(u,t) (60-(10-(u)-2*sin(t/4)) ."2);
u = 0;

y0 = P(u,0);

ustar = @(t) (10-2*sin(t/4));

ystar = Q(t) (60);

% Parameters of ESC

freqg = 100; % sample frequency

dt = 1/freq;

T = 100; % total period of simulation (in seconds)
A= .2; % amplitude

omega = 10*2*pi; % 10 Hz

phase = 0;

K = 4; % integration gain

% high pass filter
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butterorder=1;

butterfreg=2; % in Hz for 'high'

[b,al] = butter (butterorder,butterfreg*dt*2, 'high'")
ys = zeros (l,butterorder+1) +y0;

HPF=zeros (l,butterorder+l) ;

uhat=u;
for i=1:T/dt
t = (i-1)*dt;
time (i) = t;
yvals (i) = P(u,t);
ustars (i) = ustar(t);
ystars (i) = ystar(t);
for r=l:butterorder
ys(r) = ys(r+l);
HPF (r) = HPF (r+1);
end
ys (butterorder+l) = yvals(i);

HPFnew = 0;
for r=1:butterorder+l

HPFnew = HPFnew + b (r) *ys (butterorder+2-r);
end
for r=2:butterorder+1

HPFnew = HPFnew - a(r)*HPF (butterorder+2-r);
end
HPF (butterorder+l) = HPFnew;

xi = HPFnew*sin (omega*t + phase);

uhat = uhat + xi*K*dt;
u = uhat + A*sin(omega*t + phase);

uhats (i) = uhat;
uvals (i) = u;
end
figure

subplot(2,1,1)

plot (time,uvals, time,uhats, time,ustars, 'LineWidth',1.2)
ll=legend('Sus', 'S\hat{u}s")

set (11, 'interpreter', 'latex', 'Location', 'SouthEast"')
grid on

subplot (2,1,2)

plot (time, yvals, time, ystars, 'LineWidth',1.2)
ll=legend('SyS$', "'Sy*s")

set (1ll, "interpreter', 'latex', 'Location', 'SouthEast')
ylim([-0.1 657)

grid on

Supplementary code for example in 4.3.2

t = 0:.001:100;
ustar(:,1) = t;
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ustar(:,2) = .005%exp(.02*t);

Supplementary Code for parameters declaration, for example in 4.4

vehicle parameters
= 1.4;

= 400;

= 0.3;

= 9.81;

= 0.01;

initial conds
Miopt = 0.5;

o mQ W3 H oe

S
w 0 =v 0/R; %2=0
$ESC Parameters
freq = 2.7;

phase = 0;
k = 2;

amp = 1;

a = 0.05;
d=1;
p=2.6;

Code for the static problems in 4.5.2

o\

(from TAYLOR)monday
P = (@(u,t) (762.292-1.9852*(20.864-(u)) ."2);

o\

o\

tuesday
P = @(u,t) (775.01-1.2135*(24.736-(u)) ."2);

o\

% wednesday
P = @(u,t) (742.509-1.8022*(20.664-(u)) ."2);

o\°

o\°

thursday
P = @(u,t) (787.656-1.4866*(22.975-(u)) ."2);

o\°

o\°

friday
P = @(u,t) (770.109-1.3484*(23.754-(u)) ."2);

o\°

o\°

saturday
P =@(u,t) (739.972-1.699*(20.625-(u)) ."2);

o\°

3 sunday
@(u,t) (669.744-3.67*(14.538-(u)) ."2);

)
I

u = 0;
yO = P(u,0);

o)

% Extremum Seeking Control Parameters
freqg = 100; % sample frequency
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dt = 1/freq;
T = 100; % tot

al period of simulation (in seconds)

A = .05; % amplitude

d=1; S%demodulation amplitude
omega = 10*2*pi; % 10 Hz

phase = 0;

K=1; % int
% high pass fi
butterorder=1;
butterfreg=5;

[b,a] = butter
ys = zeros(1l,b
HPF=zeros (1,bu

uhat=u;

for i=1:T/dt
t = (i-1)*
time (1)
yvals (i) =P

for k=1l:bu
ys (k)
HPF (k)

end

ys (buttero

HPFnew = 0

for k=1:bu
HPFnew

end

for k=2:bu
HPFnew

end

HPF (butter

x1 = HPFne
uhat = uha
u = uhat +
xhats (1)
xvals (i) =

smoday
% fdef (i) =
Sndef (1) =

$tues
ftri(i) =
ntri(i) =

o\°

o

Swed
% ftet (i) =
S ntet (1) =

$thurs

[

% fpem (i) =

egration gain
lter

% in Hz for 'high'
(butterorder,butterfreg*dt*2, '"high')

utterorder+1) +y0;
tterorder+1) ;

dt;

(u,t) 7

tterorder
= ys(k+l);
= HPF (k+1) ;

rder+1l) = yvals(i);
tterorder+1
= HPFnew + Db (k) *ys (butterorder+2-k);

tterorder+1
= HPFnew - a (k) *HPF (butterorder+2-k);

order+1l) = HPFnew;

w*d*sin (omega*t + phase);
t + xi*K*dt;
A*sin (omega*t + phase);

= uhat;

u;

762.292;
20.864;

775.01;
24.736;

742 .509;
20.664;

787.656;
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gnpem (i) = 22.975;

Sfri
% fpar (i) = 770.109;
S npar (i) = 23.754;
%$satur
S fsav(i) = 739.972;
S nsav (i) = 20.625;
$sun
fkyr (i) = 669.744;
nkyr (i) = 14.538;
end
%monday
sfigure

%subplot(2,1,1)

%plot (time, xvals, time, xhats, time,ndef, 'LineWidth',1.2)
$1ll=legend ('$xS"', 'S\hat{x}$")

Sylim ([0 257)

%set (11, "interpreter', 'latex', 'Location', 'SouthEast"')
%grid on

%subplot(2,1,2)

%plot (time, yvals, time, fdef, 'LineWidth',1.2)

Sylim ([0 8507)

$1ll=legend ('SyS', 'Sy*S")

%set (11, "interpreter', 'latex', 'Location', 'SouthEast"')
%grid on

%tuesday

$figure

$subplot(2,1,1)

$plot (time, xvals, time, xhats, time,ntri, 'LineWidth',1.2)
$11=legend ('$x$', 'S\hat{x}$")

Sylim ([0 257)

%set (11, "interpreter', 'latex', 'Location’', 'SouthEast"')
%grid on

%subplot (2,1,2)

$plot (time, yvals, time, ftri, 'LineWidth',1.2)

Sylim ([0 8507)

$1ll=legend('SyS', 'Sy*S$")

%set (11, "interpreter', 'latex', 'Location’', 'SouthEast"')
%grid on

swednesday

$figure

%subplot(2,1,1)

%plot (time, xvals, time, xhats, time,ntet, 'LineWidth',1.2)
$1l=legend('S$xS$"', 'S\hat{x}$")

Sylim ([0 257)

%set (11, "interpreter', 'latex', 'Location’', 'SouthEast"')
%grid on

%subplot (2,1,2)

$plot (time, yvals, time, ftet, 'LineWidth',1.2)

Sylim ([0 8507)
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%1ll=legend ('SyS', 'Sy*S$")
%$set (11, '"interpreter', 'latex', 'Location’', 'SouthEast"')
%grid on

%thursday

sfigure

%subplot(2,1,1)

%plot (time, xvals, time, xhats, time, npem, 'LineWidth',1.2)
$1ll=legend ('S$x$"', 'S\hat{x}s$")

Sylim ([0 257)

%set (11, '"interpreter', 'latex', 'Location', 'SouthEast"')
%grid on

%subplot(2,1,2)

%plot (time, yvals, time, fpem, 'LineWidth',1.2)

Sylim ([0 8507)

$1ll=legend ('SyS', 'sy*S$")

%set (11, '"interpreter', 'latex', 'Location', 'SouthEast"')
%grid on

Sfriday

sfigure

$subplot(2,1,1)

%plot (time, xvals, time, xhats, time, npar, 'LineWidth',1.2)
$1ll=legend ('$xS"', 'S\hat{x}$")

Sylim ([0 257)

%set (11, "interpreter', 'latex', 'Location', 'SouthEast"')
%grid on

$subplot(2,1,2)

%plot (time, yvals, time, fpar, 'LineWidth',1.2)

Sylim ([0 8507)

$1l=legend ('SyS', 'sy*S$")

%set (11, "interpreter', 'latex', 'Location', 'SouthEast"')
%grid on

%$saturday

$figure

%subplot (2,1,1)

%plot (time, xvals, time, xhats, time,nsav, 'LineWidth',1.2)
$ll=legend('$x$"', '$\hat{x}$")

Sylim ([0 257)

%set (11, "interpreter', 'latex', 'Location’', 'SouthEast"')
%grid on

%subplot (2,1,2)

%plot (time, yvals, time, fsav, 'LineWidth',1.2)

Sylim ([0 8507)

$1ll=legend('SyS', 'Sy*S$")

%set (11, "interpreter', 'latex', 'Location’', 'SouthEast"')
%grid on

$sunday

figure

subplot(2,1,1)

plot (time, xvals, time, xhats, time, nkyr, 'LineWidth',1.2)
ll=legend ('$xS$"', "s\hat{x}s")

ylim ([0 257)

set (1ll, "interpreter', 'latex', 'Location', 'SouthEast')
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grid on

subplot(2,1,2)

plot (time,yvals, time, fkyr, 'LineWidth',1.2)

ylim ([0 85017])

ll=legend('SyS', 'Sy*s")

set(ll, 'interpreter', 'latex', 'Location', '"SouthEast"')
grid on

Code used for application in 4.5.3

%load ('Monday.mat')
%load ('tuesday.mat"')
load ('wednesday.mat")

%load ('thursday.mat"')
%load('friday.mat')
%load ('saturday.mat")
%load ('sunday.mat')
y0 = 600;

u = 20;

o)

% Parameters of ESC

dt = 90; %seconds

omega = 0.001*2*pi; % 0.001 Hz
Ap = 0.2;

phase = -pi;

K = 0.0001; % integration gain
% high pass filter

butterorder=2;

butterfreg=0.0009; % in Hz for 'high'

[b,al] = butter (butterorder,butterfreg*dt*2, 'high'");
ys = zeros (l,butterorder+l)+y0;

HPF = zeros(l,butterorder+l);

%$initial values

Time (1) = 0;
uhat = u;
xi (1) = 0;
ro(l) = 0;
for i=2:961

%$for Monday, for i=2:1022

t = Time (i-1) *86400; %Time: in seconds
Ti(i) = t/3600; %Time in hours for the plots

yvals (i)=Flow (i-1);

%inactivity when occupancy<1l0%
if Occupancy (i-1)<10

uvals (i) = u;

uhats (i) = uhat;
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x1i(1) = 0;
ro(i) = 0;
continue
end

for r=1l:butterorder
if Occupancy (i-1)<10

continue
end
ys(r) = ys(r+l);
HPF (r) = HPF (r+1);
end
ys (butterorder+l) = yvals(i);

HPFnew = 0;
for r=1l:butterorder+1
if Occupancy (i-1)<10
continue
end
HPFnew = HPFnew + b (r) *ys (butterorder+2-r);
end
for r=2:butterorder+l
if Occupancy (i-1)<10

continue
end
HPFnew = HPFnew - a(r)*HPF (butterorder+2-r);
end
HPF (butterorder+1l) = HPFnew;

ro (i) =HPFnew;

%gradient estimate, signal xi
xi (1) = HPFnew*sin (omega*t + phase);

uvuhat = uhat + xi (1) *K*dt;
u = uhat + Ap*sin(omega*t);

Supper lower boundaries
if u >= 30;
u = 30;
uhat = u;
elseif u <= 10;

u = 10;
uhat = u;
end
uvals (i) = u;
uhats (i) = uhat;
end
figure

subplot (5,1,1)

plot (24*Time, Flow, 'LineWidth',1.2)
y1lim ([0 1000])

x1im ([0 24])

grid on

subplot (5,1,2)
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plot (24*Time, Occupancy, 'LineWidth',1.2)
ylim ([0 4017])

x1im ([0 247)

grid on

subplot (5,1, 3)

plot (Ti,ro, 'LinewWidth',1.2)

ylim ([-200 2001])

ll=legend('filtered');

set(ll, '"interpreter', 'latex', 'Location', 'SouthEast"')
x1im ([0 24])

grid on

subplot (5,1, 4)

plot (Ti,xi, 'LineWidth',1.2)

ylim ([-200 2001])

ll=legend('xi'");

set(ll, '"interpreter', 'latex', 'Location', 'SouthEast"')
x1im ([0 24])

grid on

subplot (5,1,5)

plot (Ti,uvals,Ti,uhats, 'Linewidth',1.2);
ll=legend('sSus', 'S\hat{u}s"');

set(ll, '"interpreter', 'latex', 'Location', 'SouthEast"')
x1im ([0 24])

grid on
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