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Abstract 

 

Autonomous robotic systems are being used more and more in the last years, in many 

applications such as delivery, search and rescue, transport, and others. Each application has its 

unique characteristics, thus different solutions are needed. One of the most important aspects 

of autonomous systems is path planning. In this thesis, different path planning algorithms such 

as A*, RRT, PRM and APF are explained and compared by doing a comparative quantitive 

case study on a map of the campus of the University of Thessaly and concluded on the strength 

and weaknesses that each one posse. Finally, the best-suited algorithm is proposed to be used 

for an in-house robot that may be developed at the university which is PRM. 
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Αλγόριθμοι σχεδιασμού διαδρομής για αυτόνομα ρομποτικά συστήματα 

 

ΛΟΙΖΟΥ ΙΩΑΝΝΗΣ 

Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας, 2022 

 

Επιβλέπων Καθηγητής: Δρ. Κωνσταντίνος Αμπουντώλας,  

Αναπληρωτής Καθηγητής Συστημάτων Ελέγχου 

 

Περίληψη 

 

Τα αυτόνομα ρομποτικά συστήματα χρησιμοποιούνται όλο και περισσότερο τα τελευταία 

χρόνια, σε πολλές εφαρμογές όπως την διανομή, την έρευνα και διάσωση, τις μεταφορές και 

πολλές άλλες. Κάθε εφαρμογή έχει τα δικά μοναδικά χαρακτηριστικά και για αυτό χρειάζονται 

διαφορετικές λύσεις. Ένας από τους πιο σημαντικούς τομείς είναι ο σχεδιασμός διαδρομής. Σε 

αυτή την διπλωματική εξηγούνται και συγκρίνονται διάφοροι αλγόριθμοι σχεδιασμού 

διαδρομής όπως A*, RRT ,PRM, και APF και γίνετε ένα πείραμα πάνω χάρτη του προαύλιου 

του πανεπιστημίου Θεσσαλίας που καταλήγει στα πλεονεκτήματα και τα μειονεκτήματα που 

έχει ο καθένας. Κλείνοντας προτείνετε ο πιο ταιριαστός αλγόριθμος για ένα ρομπότ το οποίο 

μπορεί να δημιουργηθεί στο πανεπιστήμιο και είναι ο PRM. 

 

Λέξεις-κλειδιά: Σχεδιασμός διαδρομής, Σχεδιασμός κίνησης, Αυτόνομα ρομπότ , A*, RRT 

,PRM, APF 
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1 Introduction  

1.1 Motivation 

Robotics in the last years are having exponential growth in production and use. As 

algorithms progress and computational power increases robots are becoming smarter by the day 

which results in increased use in all sectors of life. While mechanically robots have remained 

the same or with small improvements for the last years, their intelligence had seen massive 

changes. Artificial intelligence allows robots to become more autonomous and less dependent 

on human intervention.  

That’s why robots as they become more autonomous, they have to be also more reliable. 

Path planning is a big part of it and at the same time one of the most challenging because there 

is never one fit solution. Path planning selection can be a quite difficult task. 

The goal of this thesis is to do a quantitative comparative study on four path planning 

algorithms such as A*, RRT, PRM and APF and compare their performance on a map that 

represents the University of Thessaly campus which is located in Pedion Areos. Then conclude 

on which algorithm is the best for use in a possible in-house-produced robot. 

1.2 Thesis organization  

This thesis is divided into five chapters: 

In Chapter 1 an introduction on what is a robot is covered and the main information that is 

needed to proceed in the next chapters 

In Chapter 2 a literature review is being presented that explains what type of path planning 

algorithms exist and how they are classified 

In Chapter 3 the creation of the map is explained and all the path planning algorithms that 

are used in this thesis 

In Chapter 4 the application of the previously explained algorithms is shown with a detailed 

explanation of the results  

In Chapter 5 which is the final, all the results are being compared and a proposal is made for 

which is the best-suited algorithm 
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1.3 Robot system procedures 

 When human walking is analyzed, a clear pattern occurs. First, it uses its eyes to see the 

environment, the nose to smell it, the feet, or hands to feel it and the ear to hear it. These are 

the sensors needed to collect all the possible data and then fuse it together to decide the state 

that is currently in. This is called perception. This is the first important step for the human to 

help him to walk. When the state Is decided then the next step is to decide how to proceed to 

achieve its goal. For example, if a human wants to walk from the bedroom of the house to the 

kitchen, he needs to consider the map that he is remembering of his house and plan its route 

optimally. Sometimes it needs to go straight to the goal or to do a subgoal before reaching its 

destination. Every occasion is different and depends on a lot of factors. When humans want to 

go as fast as possible without covering unnecessary distances, they calculate the optimal path 

in their minds before starting. This is what called planning. When the path to the goal is decided, 

the human must walk to reach its destination otherwise the goal is unachievable. To do this 

human uses its feet one at a time to cover the distance needed to complete the path. This is 

called action. Now that the three main phases are explained the problem can be seen 

dynamically. The human senses his environment and his deciding its state or otherwise called 

in this case localizing. Then uses his mind with his memory to decide the best possible path 

that needs to be taken to reach the goal and then start walking toward it. But as the human is 

walking the state is subject to change and it needs to be assessed again. Then the planning may 

also be subject to change if the state forces the plan to change because of unexpected changes 

to the environment. And walking is not always precise to the point so the action may need 

correction to correctly follow the path. All this is in a constant loop until the desired goal is 

met. This procedure is what all robots use with sensors for perception, microprocessors, and 

memory for planning, and motors for action. 

 

 
Figure 1.1 Path for action (Caron, 2016) 

 

One of the most used sensors used for perception in robotics is the light detection and ranging 

sensor (LiDAR). LiDAR uses laser beams that are safe for the eyes to help the computer and 
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the robot to see the 3d environment and have an accurate representation of the world. In a 

typical lidar sensor, the surroundings are impacted by pulsed light pulses. These pulses return 

to the sensor after bouncing off nearby objects. The sensor determines the distance traveled by 

each pulse by measuring the time it takes for it to return to the sensor. A precise, real-time 3D 

map of the environment is produced by repeating this procedure millions of times per second. 

A point cloud is a name given to this 3D map. The lidar point cloud can be used by an onboard 

computer for secure navigation. Below an open-sourced robot is analyzed as an example 

 

 

  
 

Figure 1.2 A lidar sensor in the left and in the right the result taken from lidar 

 (Velodyne Lidar, 2018) 

 

 

 

 

 

TurtleBot3 example 

 

TurtleBot3 is a small, cheap, programmable mobile robot that is open-sourced for use in 

education, research, hobby, and product prototyping. The goal of the turtleBot 3 is to be 

accessible to anyone who wants to apply or improve its robotics skills while testing in a real-

world environment. Because it is also modular, different sensors and microprocessors are 

available to be used. 
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Figure 1.3 Diagram that demonstrates Turtlebot 3 and its components (Robotis, 2015) 

 

For the perception phase, the following sensors are used 360 LiDAR for SLAM and navigation, 

Camera, and IMU but because each sensor provides different data, a fusion technique has to be 

applied to make the data usable. Then for the planning phase, it has a Raspberry Pi 4. It is a 

single-board computer with electronic gates to get the data from the sensors and provide action 

to the actuators. Finally, the motors DYNAMIXEL (XL430-W250-T) are used for the action 

which is moving the robot from one place to another. While this is a simple and cheap example 

most robots use these parts. What changes are the specification of the parts depending on the 

requirements of the mission that the robot needs to handle. While the parts are mostly the same 

there is one thing that can change dramatically from one robot to another. Many claim that are 

the most important factor of all, the software. If you take two mechanically same robots with 

just different software, it is possible to make one work like a kid’s toy and the other like a state-

of-the-art machine. That’s why algorithms used in robots are crucial for their capabilities. 

1.4 Wheeled mobile robots categories 

As mentioned by (Lynch & Park, 2017) wheeled mobile robots are separated into two types, 

which are omnidirectional and Non-holonomic. Omnidirectional robots can move in any 

straight way possible on a plane, while non-holonomic cannot move sideways and they have 

constraints on the way they can move due to their wheels. To determine if the robot is 

omnidirectional or nonholonomic, the design of the wheels is decisive. Nonholonomic robots 
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use the conventional wheels that are used everywhere (e.g. car wheels): The wheel rotation axle 

is parallel to the ground and if it needs to be steered it is changing the rotation axle degree but 

staying parallel to the ground and not slipping sideways. The omnidirectional robots wheeled 

robots usually use omniwheels or mecanum wheels. These wheels are only driven forward and 

backward, and they do not steer, because of their design it is possible to slip sideways which is 

used instead of turning with the conventional method. The omniwheels use rollers that are 

aligned straight and mecanum wheels rollers have some amount of tilt. While the 

omnidirectional robots may seem the best choice because of the moving capabilities they can 

only work best on flat and hard ground.  

The category of the robot influence directly the selection of the algorithms used for planning 

and control and that’s why when wheels are decided also the selection of algorithms that the 

robot can work with is changing. While some path planning algorithms are used in both 

omnidirectional and nonholonomic robots, a lot of other path planning algorithms can’t work 

with the differential constraints that the convectional wheels have.  

 

 

1.5 Real-world mobile robot applications 

As mentioned by (Wikipedia contributors, 2022) An Estonian startup called Starship 

Technologies is working on automated delivery robots. The company has its main office in San 

Francisco, California, and has engineering facilities in Helsinki, Finland, and Tallinn, 

Estonia.  Additionally, Starship maintains offices in Mountain View, California, Washington, 

DC, Germany, and London, UK. Starship received up to $100 million in funding in January 

Figure 1.4 (Left) Conventional wheel, (Center) Omniwheel, (Right) Mecanum 

wheel (Lynch & Park, 2017) 
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and February 2022 from the European Investment Bank and venture capitalists. This money 

will be used for R&D and to add 1,700 more robots to the company's fleet. Since its founding 

in 2014, the company has raised over $202 million.  

 

 

Figure 1.5 Starship robot doing the delivery (Insider, 2021) 

 

Starship creates and manages last-mile delivery robots. These robots are electrically 

powered, and they don’t use the road only the sidewalk at a speed like pedestrians, which is a 

max speed of 6 km/h (3.7 mph). It is only used for short-delivery ranges and while it is 

autonomous, in case of emergency a remote operator can take the control of the robot, to assist 

it to get back on track. By having this option, the downtime of the robots reduces significantly. 

The robot uses computer vision and image processing to detect edges and mapping techniques 

to decide if the terrain is accessible to navigate. The weight of the robot is 25 kg and can carry 

up to 9.1 kg of food delivery. Robots' average battery life is around 18 hours, and the robot can 

travel on average each day around 40 km. The sensors that the robot is carrying are ultrasonic 

sensors, radar, cameras, GPS, IMU, and possibly some more. The interesting fact is that no 

lidar sensor is present. 

Speakers are present on the robots to be able to communicate with the humans when needed. 

Usually, the orders take place through mobile apps on IOS and Android devices. When the 

robot arrives, the client is notified from the app, and to be able to receive the package the client 

must verify its identity through biometric security. The service was trialed in more than 100 

cities and 20 nations before going into operation commercially. The corporation has operations 

in Germany, Finland, Estonia, the United States, and the United Kingdom. Starship will start 

concentrating heavily on providing delivery services on college campuses in 2019. With the 

aim of reaching one million students, it has announced intentions to expand its service to 100 
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college campuses in the US. In order to aid with the delivery driver shortage during the COVID-

19 epidemic, Starship increased the amount of grocery delivery robots employed in both the 

UK and the US. 

 

Starship claims that its robots are “powered by zero-carbon electricity, and for the average 

delivery the electricity that is used as much as boiling a cup of tea”. Research was carried out 

by Starship Technologies and Milton Keynes Council to evaluate the effects of zero-emission 

robots in cities over a period of three and a half years. The study report states that the Starship 

fleet has avoided 280,000 automobile trips and more than 500,000 miles of car travel, saving 

137 tons of CO2 and 22 kg of NOx throughout the course of the study.  

 

1.6 Global and local Planning 

Path planning is considered one of the most important research problems in robotics that a 

robotics engineer has to solve. A great deal of problems is solved by choosing an appropriate 

path planning algorithm. It has been used to direct the robot toward a specific objective from a 

simple trajectory planning to a complicated sequence of actions. Since a priori knowledge of 

the global environment is not always available, path planning cannot always be created in 

advance. Path planning can be used in partially organized and unstructured situations by 

presenting a suitable method. In order to keep the robot moving from the start location to the 

goal location through various intermediate stages, a proper trajectory is constructed that is 

covering all the in-between locations. Every choice made by path planning algorithms is 

determined by the information that is currently accessible, as well as by other factors such as 

the Euclidean distance computation's calculation of the shortest distance to the target point. 

From the start state to the target location, there may be more than one path. However, there are 

several circumstances where there is no way to get to the goal location. For better results, the 

best path must travel the fewest distances, be free of obstacles and collisions, and take the least 

amount of time to arrive at the desired state. The chosen trajectory must also be smooth and 

devoid of sharp twists because a robot may be subject to a variety of motion restrictions, like 

the nonholonomic condition (Klancar et al., 2017). According to (Hoy et al., 2014) path 

planning can be divided into two categories. The first is global path planning. In this case, the 

environment is static, and the control design considers global information that is known a priori. 

This strategy costs a lot to deploy but has received a lot of attention in the literature so far. The 
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second method is local path planning, in which the robot's movement generates the path based 

on information from its sensors. In order to react to a new environment, the robot needs to 

generate a new path. Although the design of this system is more complex, it is more practical. 

In a path planning algorithm, there are four primary factors that must be (Teleweck & 

Chandrasekaran, 2019). Optimizing is the first. This criterion guarantees that the chosen 

solution is the best in terms of distance, time, cost, and other factors. The second requirement 

is completeness, which guarantees that the path planning algorithm will provide a solution if it 

is feasible. The next is precision and accuracy. To move from the origin to the destination state, 

this criterion is essential. The execution time is the final requirement. Because robots are real-

time systems the time needed for computing is very limited for practical uses. 

 

1 

 

 

 

 

 

1 APF can also be consider a local planning algorithm 

Path Planning
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Figure 1.6 Path planning global and local classification 
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2 Literature review 

When mobile robots gain autonomous capabilities, they become more useful. It enables the 

removal of human operators, which may be advantageous from an economic and safety 

standpoint. To create autonomy most of the time path planning algorithms need to be selected 

and implemented to make the robot move correctly from a start point to an end goal. Because 

of the vast selection of path planning algorithms that are available in literature many can find 

this task challenging.  

The four path planning categories are discussed below in Figure 2.1, with each category 

broken down into two subcategories. This classification is based on the underlying ideas and 

methods that create and return a path. Later a more in-depth explanation of these categories and 

the reason behind their arrangement will be presented.  

 

 

 
Figure 2.1 Path planning categorization (Sánchez-Ibáñez et al., 2021)  
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The following classification is based on how algorithms work. Many literature reviews split 

it into two main categories as stated by (Sánchez-Ibáñez et al., 2021). Which is, if the 

environment is static or dynamic. When the environment is static the map does not change when 

time passes. On the other hand, in case the map changes its path in real-time, it is considered as 

dynamic. The second biggest classification is the one discussed above.  Global and local 

planning. The global planning is usually associated with offline planning and local with online 

planning. One issue with this classification is that some algorithms are considered both local 

and global algorithms (e.g. APF). A reactive computing algorithm is best used in local planning, 

but it is possible also to be used in global planning. Another classification by (Vagale et al., 

2021) is between classic algorithms which require a complete map beforehand to work. Such 

classic algorithms usually are graph search algorithms. The other is Advanced which contains 

sampling-based algorithms and soft computing. (SOUISSI et al., 2013) offers a number of 

distinct and logical path planning classifications. When the robot model is the main aspect path 

planning algorithms are classified to (non-holonomic, holonomic, kinodynamic). When the 

map is the main aspect (required or not required before the planning). When replanning is the 

main aspect offline or online. Finally, the last classification proposes is when the algorithm 

provides always the same solution and it is divided into deterministic and probabilistic. 

 

2.1  Modelling of workspace in path planning 

Information about the environment should be fed in the path planner. It can be either the 

obstacles that are in the environment or features of the surface that are important for the 

planning. For example, the minimum distance may not be the primary factor. It can be the 

minimization of the energy that the robot needs to complete the mission based on the terrain or 

the wind. This type of optimization was very important for the mars rover because of the limited 

energy that it had available. 

2.2 Environment cell decomposition and roadmap graphs 

Surface mobile robots traverse a specific area of space by driving from one location to 

another. Therefore, it is important to think about how the path planner will handle this surface 

and how the locomotion model will interact with it. For example, some algorithms need the 
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creation of a graph that is a simplified view of the environment that the robot is moving. There 

are many ways to build a graph. 

This work (Sánchez-Ibáñez et al., 2021) classifies it in Cell decomposition and roadmaps. 

The first of these is dividing the surface into cells. Grids that are regular or irregular. Figure 2.2 

a–c demonstrates how grid cells are shaped: squares, triangles, and hexagons can be used to 

construct regular grids. Its key benefit is the straightforward indexation of each node, which 

enables instant access to any of them and an efficient method of memory storage. But it is 

possible to provide inferior pathways. Irregular grids, like the one shown in Figure 2.2 d, allow 

for better adaptability of the grid to terrain features with varied values of resolution. 

According to (Nash, 2013), other types of cell decomposition include navigation meshes and 

circle-based waypoint graphs. Roadmaps are used to describe the environment in a different 

way, as was already mentioned. A roadmap is a network composed of nodes connected by 

edges. Each edge shows how to get from one state to another while each node represents a 

potential state for the robot. Some examples of roadmaps include Visibility graphs, State-

Lattice graphs, and Voronoi graphs (Figure 2.2e-f). When using Graph Search methods, like 

(Likhachev & Ferguson, 2009) work, the latter method involves creating the edges based on 

the motion constrains, ensuring that the final path is possible given the robot's mobility 

limitations. 

These graphs' cells or nodes can store information about the surface where they are located as 

static or dynamic elements. For instance, this could be data about elevation. An electronic 

elevation map (DEM). 

 

 

 

 

 

 

 



 

 12 

 
Figure 2.2 Elevation map (5 Free Global DEM Data Sources – Digital Elevation Models, 2022) 

 

 

 

 

 

 
Figure 2.3 Types of grids and roadmaps (Sánchez-Ibáñez et al., 2021) 
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3 Methodology (Description of proposed Path 

Planning algorithms) 

3.1 Map creation 

For this case study, the map of the university of Thessaly campus in Pedion Areos will be 

used. The robot to get the grid map has two options, one is to explore the area completely at 

least one time to be able to map the university campus, or the other one to load it on the robot 

because it is known, in this case study the map will be extracted from the google maps using 

the measuring tool provided in the maps. 

To be able to perform the case study as simply as possible to compare the path planning 

algorithm some assumptions and simplifications must be made. It will simplify the problem but 

not change it. 

 

Assumptions and simplifications: 

 

• The map is assumed that it does not have unreachable paths and what is presented on 

the map as not a building is an area where the robot can move freely 

• The difference in height in certain areas is not considered 

• Buildings are simplified to rectangles and circles 

• The distances have an error of  1 meter 

 

Map size: 108m * 212m 

 

  
Figure 3.1 Google maps University of 

Thessaly campus dimensions (Google, 2022) 
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Buildings size and location 

 

Mechanical engineering measurements: 

 

 

 

 

 

The same methodology is being followed for measuring the other buildings of the 

campus like Architecture engineering, Civil engineering, and Urban engineering and the 

amphitheater.  

        

The map will be a grid map with dimensions equal to the width and height in meters 

and each grid point represents a square of area 1m^2. The free space will be represented with 

zeros and the obstacles with ones. By placing ones in the right place of the matrix the shape of 

the obstacle forms and then you have a grid map that can be used with path planning algorithms. 

Below is an example with a rectangle obstacle in the centre. 

 

Figure 3.2 Google Maps measurements of 

mechanical engineering building (Google, 2022) 
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[

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 ] ( 3.1 ) 

 

When the obstacle has the shape of a circle the equation of the circle can be used to find 

which grid points are inside the obstacle and equal them with 1. 

 

𝑡 = (𝑥 − 13)2 + (𝑦 − 13)2 ≤ 11^2  ( 3.2 ) 

 

 

Figure 3.3 Grid map created with zeros and ones 

 

 

Graph and Trees 

 

According to (Lynch & Park, 2017) frequently path planning algorithms explicitly or 

implicitly represent the C-space as a graph. The graph is made with a number of nodes and 

several edges that connect two nodes. The node represents a point in space and the edge a path 

that connects the two nodes without passing through an obstacle or to have violated a constraint. 

The graph it is possible to be directed or undirected. In a directed graph every edge is one-

way but two different edges can be present between nodes in opposite directions. In an 

undirected graph, each edge is bidirectional.  
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There are weighted and unweighted graphs. Every edge in a weighted graph has a cost that 

corresponds to a positive number which represents something like meters or the cost of gas. In 

an unweighted graph, each edge has the same cost so there is no reason to have weights for 

each edge. For example, each edge has a cost of 1.  

 

 

Figure 3.4 (Left) Directed weighted graph (Center) Undirected weighted graph (Right) Directed 

unweighted graph (Lynch & Park, 2017) 

 

Graph search 

 

When a search algorithm possesses the optimality property, it indicates that the path is 

guaranteed to be the most optimal. When a search algorithm possesses the completeness 

property, it guarantees that the algorithm will always discover the path. This is stated by (Roy, 

2021) 

3.2 A* search 

One of the best search methods for locating the shortest path between graphs is A-star, 

commonly known as A*. It uses information about path cost and heuristics to find the path. 

That’s why it is also called an informed search algorithm. It is an optimal and complete 

algorithm. 

A* uses a formula each time it visits a node to find the cost related to that node and then 

until the desired point is reached, it enters the node with the lowest value.. 

 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)  ( 3.3 ) 
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• g(n) is the distance that the node has from the starting point , by following the path 

that the algorithm created until that step 

• h(n) is the heuristic, which is the estimated distance from the node to the goal node 

without taking into account obstacles. 

 

That’s why heuristics are estimated guesses. As the algorithm doesn’t really know the exact 

map before it calculates the g(n) cost. Many argue that A* falls into the category of artificial 

intelligence because it is like a thinking brain. 

To calculate distance and create a cost for each node there are two distinct ways. The 

Manhattan distance which is going only in straight lines and the Euclidean which the diagonal 

way is possible 

 

𝐷𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|  ( 3.4 ) 

 

𝐷𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = ((𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2)
1
2 

 

( 3.5 ) 

By choosing the type of formula for the distance cost you also choose how the robot can 

behave in the map. For example, if the Manhattan distance is chosen then the robot cannot move 

diagonally. But if Euclidean distance is chosen then the robot can move diagonally. 
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Table 3.1 A* pseudo code (GeeksforGeeks, 2022) 

 

Sampling methods 

 

All grid-based methods give an optimal solution based on the discretization of the map. That 

leads to increased computational complexity when the degree of freedom increases which 

makes them almost useless for applications that have more degrees than ℛ2. Α different 

approach for planners is sampling methods that use random or deterministic functions to select 

a sample in the C-space or state-space as mentioned by (Lynch & Park, 2017). A function to 

check if the sample that was created is in 𝑋𝑓𝑟𝑒𝑒 . A function to find prior free-space samples in 

the vicinity, and a basic local planner to link to or move toward the new sample. These routines 

are used to create a graph or tree that represents the robot's possible moves. Sampling methods 

in general they trade resolution accuracy of the solution to gain computational speed for finding 

satisfying solutions. Most sampling procedures are probabilistically complete: as the number 

of samples grows to infinity, the likelihood of discovering a solution, if one exists, approaches 

100%. 

 

Algorithm: A* 

1: Create the open list 
2: Create the close list 
3: Insert the starting node in the open list with f = 0 
4: while the open list != empty do 
5:    find the node with min(f) in open list and make it q 

6:      Drop q from open list 
7:    Create q eight successors and set their parents to q    
8:        for each successor 
9:           If successor == goal 

10:               stop search 
11:           else calculate g and h for successor 

 12:           end if 
13:           if a node position == successor position is in the open list   
14:           which  a lower f than successor, ignore this successor                                                                              
15:           end if 
16:           if  a node position == successor position is in the closed list which  
17:           was a lower f than a successor, ignore this successor, 
18:          else add the node to the open list    
19:           end if 
20:       end for 
21: end while 
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3.3 RRT 

The basic RRT algorithm uses a single tree that is expanding toward the 𝑥𝑔𝑜𝑎𝑙 from the 

𝑥𝑠𝑡𝑎𝑟𝑡 while also avoiding the obstacles in the way.  

 

Table 3.2 RRT pseudocode (Lynch & Park, 2017) 

 

Usually, the sampler at (line 3) chooses 𝑥𝑠𝑎𝑚𝑝 nearly uniformly distributed with a slight bias 

towards the 𝑥𝑔𝑜𝑎𝑙. The 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡  node which is close to the search tree T (line 4) is the node 

minimizing the Euclidean distance from 𝑥𝑠𝑎𝑚𝑝 . A simple local planner (straight line motion) 

(line 5) finds a path that connects 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡  to 𝑥𝑛𝑒𝑤. If the path does not cross any obstacle is 

added to the search tree T. The total effect of the slight bias on the nearly uniform distribution 

sample is that it pushed the tree towards them, resulting in fast exploring 𝑥𝑓𝑟𝑒𝑒  . 

The algorithms are adjustable in three main parts: how to sample from 𝑋, how to select the 

“ nearest” node in T, and how to find the path to develop the tree towards the 𝑥𝑠𝑎𝑚𝑝. Even a 

slight modification to the sampling method, for example, can result in a completely different 

running time of the method. There are a big variety of planners based on RRT like: RRT* , 

Bidirectional RRT etc. 

RRT*: An improved version of RRT which results in a more optimal path because of the 

continues improvement of the tree 

Algorithm: RRT 

1: create search tree T with xstart 
2: While T < max(Tree size) do 
3:    Create xsamp 
4:    find xnearest in the tree to xsamp 

5:    Use a local planner to create a path from xnearest to xnew in  
   the direction of xsamp 

6:       If path does not cross through an obstacle then 
7:        add xnew to the tree by creating and edge from xnearest to xnew 

8:        if  xnew == xgoal then 
9:           return 0  

10:       end if 
11:    end if 
12:  end while 
13:  return 1 
14: Find path with A* 



 

 20 

Bidirectional RRT: A faster exploring tree starting from the start and the end point at the 

same time and meeting at the middle 

3.4 PRM 

Before addressing any specific queries, the PRM employs sampling to create a roadmap 

representation of 𝐶𝑓𝑟𝑒𝑒. The roadmap is an undirected graph, which means that any direction of 

the edge can be taken by the robot. As a result, PRMs are most useful for kinematic issues in 

which an accurate local planner can discover a path (not considering obstacles) from any 𝑞1 to 

any 𝑞2. The simplest example is when there is no kinematic constraints for the robot a straight 

line planner is used.  

After the undirected graph is completed, a 𝑞𝑠𝑡𝑎𝑟𝑡 node is added and connected with the 

closest nodes in the graph. A similar approach is present with the 𝑞𝑔𝑜𝑎𝑙  node. When the graph 

is fully completed with the start and end node a graph search algorithm is used to find the most 

optimal path. Typically, A* is used to find the path optimally and efficiently. 

An important topic in PRM roadmap-construction algorithm is how to sample 𝐶𝑓𝑟𝑒𝑒 . The 

most common is sampling in a uniform distribution on 𝐶 and deleting samples that are in 

obstacles. It is known that sampling more densely near the obstacles increases the possibility 

to go through narrow passages which results in higher efficiency of the algorithm but it quite 

complicated to implement. One more option is deterministic multi-resolution sampling. 
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Table 3.3 PRM pseudocode (Lynch & Park, 2017) 

 

 

 

 

Figure 3.5 A roadmap in 2 dimensions (Lynch & Park, 2017) 

 

 

 

 

Algorithm: PRM 

1: for i = 1, . . . , N do 
2:   Create sample point qi 

3:   Insert sample point in roadmap list R 
4: end for 
5: for i = 1 , . . . , N do 
6:   N(qi) = j closest neighbors of qi  

7:   for each q  N(qi) do 
8:     if path does not cross obstacle from q to qi 

     And no previous edge exist then 
9:       insert an edge from q to qi  into roadmap R 

10:     end if 
11:   end for 
12: end for 
13: return Roadmap 
14: Find path with A* 
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3.5 Artificial potential fields 

Artificial potential fields are influenced from potential energy fields that exist in nature, like 

gravitational and magnetic fields. A potential field 𝑃(𝑞) defined over 𝐶 produces a force 

𝐹 = −
𝑑𝑃

𝑑𝑞
  that pushes an object from high to low potential. If the gravitational potential field 

is taken as an example with 𝑔 = 9.81 𝑚/𝑠 and an object with mass 𝑚 at a height of ℎ then the 

potential energy is 𝑃(ℎ) = 𝑚𝑔ℎ and results in an acting force which is 𝐹 = −
𝑑𝑃

𝑑ℎ
= −𝑚𝑔. The 

mass will plummet to the Earth's surface due to the force. 

In robot path planning, the obstacles which are defined in the map are getting assigned a 

high virtual potential and the 𝑞𝑔𝑜𝑎𝑙   a low virtual potential which results in a potential difference 

and a force is created equivalent to the negative gradient of the artificial potential which is 

pushing the robot into the goal and while avoiding the obstacles. The artificial potential field 

differs from other planning algorithms that exist. Because the field’s gradient can be calculated 

very fast It allows the planning to be calculated in real-time instead of calculating it in advance. 

The approach can even deal with obstacles that move or appear unexpectedly if adequate 

sensors are used.  

The basic method has the issue of causing the robot to become stuck in a local minima that 

is created even if the goal has a feasible path. Furthermore, two more problems arise from this 

approach. First, when obstacles are too close to each other they tend to close the path due to the 

overlapping negative potentials which result in an “unfeasible path” that in reality, the robot 

can easily pass through. Second, when you have an obstacle next to the goal the repulsive 

potential doesn’t allow the robot to reach its goal. These problems are under investigation with 

many researchers trying to provide their solutions on the matter like this one is proposed here 

(Yujiang & Huilin, 2017). 
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Figure 3.6 Obstacle that creates a local minima on the left and two obstacles that they overlap in 

the right (Triharminto et al., 2016) 

 

Let's select a point robot in C-space. A 𝑞𝑔𝑜𝑎𝑙  is applied in a quadratic potential energy “bowl” 

with zero energy assigned at the goal,  

 

𝑃𝑔𝑜𝑎𝑙(𝑞) = 𝐾 ‖𝑞 − 𝑞𝑔𝑜𝑎𝑙‖
2
 ( 3.6 ) 

 

where K is simply a constant scaling parameter. 

 The force created by the potential is  

 

𝐹𝑔𝑜𝑎𝑙(𝑞) =  −
𝜕𝑃𝑔𝑜𝑎𝑙
𝜕𝑞 

= 2 ∗ 𝐾(𝑞𝑔𝑜𝑎𝑙 −  𝑞) ( 3.7 ) 

 

an attractive force potential in proportion to the goal's distance. 

 

The repulsive potential created by C – obstacle 𝐵 can be calculated from the distance 𝑑(𝑞, 𝐵) 

to the obstacle 

𝑃𝐵(𝑞) =
𝑘

2𝑑2(𝑞, 𝐵)
  ( 3.8 ) 

 

where k>0 is a scaling factor. Only for points outside the obstacle is the potential properly 

defined 𝑑(𝑞,𝐵) > 0 . The obstacle creates the following force  
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𝐹𝑏(𝑞) = −
𝜕𝑃𝐵
𝜕𝑞

=
𝑘

𝜕3(𝑞, 𝐵)
∗
𝜕𝑑

𝜕𝑞
    ( 3.9 ) 

 

The total potential is calculated by adding the attractive goal and repulsive obstacle potentials 

together. 

 

𝑃(𝑞) = 𝑃𝑔𝑜𝑎𝑙(𝑞) +∑(𝑃𝐵𝑖(𝑞))

𝑖

  ( 3.10 ) 

creating a total force of 

 

𝐹(𝑞) = 𝐹𝑔𝑜𝑎𝑙(𝑞) +∑𝐹𝐵𝑖(𝑞)

𝑖

  ( 3.11 ) 

 

It is important to know that the combination of the attractive and the repulsive potential does 

not guarantee that will result in a minimum (zero force) exactly at 𝑞𝑔𝑜𝑎𝑙  .  

Also, because the simple obstacle potential would normally provide unlimited potentials and 

forces near the edges of obstacles, a maximum potential is tactic that is frequently used. 

 

By using the simple obstacle potential, obstacles that are far away from the robot have also 

influence. To eliminate this and add speed up the algorithm the distance is defined where if it 

exceeded the obstacle will be ignored. A range of influence of the obstacles 𝑑𝑟𝑎𝑛𝑔𝑒 > 0 so that 

the potential is zero for all 𝑑(𝑞, 𝐵) ≥ 𝑑𝑟𝑎𝑛𝑔𝑒  

 

𝑈𝐵(𝑞) = {
𝑘 (

1

𝑑(𝑞, 𝐵)
−

1

𝑑𝑟𝑎𝑛𝑔𝑒
)

2

𝑖𝑓 𝑑(𝑞, 𝐵) < 𝑑𝑟𝑎𝑛𝑔𝑒

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  ( 3.12 ) 

 

Gradient descent  

 

Gradient descent is an iterative first-order optimization algorithm that is used to find the min 

and the max of a function. It is widely used in mechanical engineering, control engineering and 

computer games. Gradient descent has two strict limitations that must be taken into account. 

The function needs to be differentiable and convex.  

To calculate the gradient for a univariate function a simple first-order derivative is calculated 

at the given point. If the function is multivariate then it is a vector of derivatives in all the axes. 
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∇𝑈(𝑞) =

(

 
 
 
 
 

𝑑𝑢(𝑞)
𝑑𝑥1
𝑑𝑢(𝑞)
𝑑𝑥2…
𝑑𝑢(𝑞)
𝑑𝑥𝑛

)

 
 
 
 
 

 ( 3.13 ) 

 

 

 

 

 

Figure 3.7 Gradient Descent example (Pandey, 2022) 
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Table 3.4 APF pseudocode 

Algorithm: Artificial Potential fields 

1:  While position != goal then 
2:   Determine distance from the obstacle 
3:   Measure distance from the goal 
4:   Calculate attractive potential 
5:   Calculate repulsive potential 
6:   Calculate total potential 
7:        Calculate Gradient  
8: end 

Figure 3.8 (Top left) The 2d grid map has three obstacles and goal point which is denoted a 

+. (Top right) The summed attractive and repulsive potentials which results in this mountain like 
view (Bottom  left) A Contour plot of the potential (Bottom right) Force vector field (Lynch & 

Park, 2017) 
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4 Application/Case Study 

 

For this thesis, the three scenarios will be studied: 

 

1. On university campus with a starting point at (5,80) and a goal point at (118,45) 

2. On university campus with a starting point at (160,90) and a goal point at (35,35) 

3. On a simple map with a circle obstacle with a starting point at (5,80) and a goal 

point at (200,20) 

4. A special scenario in the university campus for APF in which local minima does 

not occur, with a starting point at (5,80) and a goal point at (200,20) 

 

The reason that a special scenario is created for APF is that no other starting point and goal 

point can provide a feasible path due to reasons that will be explained later. The other 

algorithms are not applied in this scenario because the APF although it works it does work as 

it is intended to. The comparison happens in scenario 3 which APF can have acceptable results. 

Scenario 2 and 3 results can be found in the appendix. Only scenario 1 will be compared 

tottaly 

4.1 Application of A* 

As mentioned before A* has some factors that need to be decided. First, the distance 

calculation needs to be chosen. Since the robot needs to move diagonally to have more options 

in the grid map a Euclidean distance formula is chosen for the calculation of the cost for a 

transfer from each node. Then by applying the A* on the grid map the following results are 

obtained 
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Figure 4.1 Scenario 1 Α* path 

 

 

Table 4.1 A* results 

 

 

 

Advantages and Disadvantages of the method 

 

One of the main advantages of the A star is that it will always provide the most optimal path 

for a given start point and a goal point. By having this advantage, it provides confidence in a 

robotics application that the path planning algorithm will provide the best possible path for the 

given environment. 

Another advantage is that A star except for providing the most optimal path also never fails 

to execute due to the deterministic nature of the algorithm. That can be quite important in search 

and rescue missions where robots need to always work properly. 

While having these upsides it also has its disadvantages one of which is that the algorithm 

is not able to replan fast without reconstructing the whole map. This is a big disadvantage when 

Scenario Path length [ m ] Time to process [ s ] 

1 141.55 0.27 

2 194.52 0.476 

3 219.85 1.35 
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the environment is dynamic, and obstacles are moving. For this specific problem, a new 

improved version of A star is there which is called D star. Where it can replan fast in dynamic 

environments 

One of the biggest disadvantages of A star and generally graph search methods is that they 

are exponentially slower when the degrees of freedom are increased and when the griding needs 

to be finer. That results in limiting the use of A star in high degree of freedom environments. 

That’s where sampling methods are the best and preferred. 

 

 

 

 

 

4.2 Application of RRT 

RRT's fundamental idea is actually fairly simple. Random Points are created and connected 

to the nearest node that is accessible. A verification that the vertex lies outside of an obstacle 

must be done each time a vertex is generated. Chaining the vertex to its nearest neighbor must 

also avoid obstacles, as well. When a node is produced within the goal region or a limit is 

reached, the algorithm is finished. One of the most important parameters of the algorithm is 

randomness which greatly affects the results. 

When the randomness factor has a high value then the exploring of the map is more and that 

allows the algorithm to be able to replan fast when needed by using the existing tree. That 

comes with the computational cost of the initial exploration but with the reduced cost for 

replanning. On the other hand, when the randomness factor has a low value the initial 

exploration computational cost is low but with the expense of limited replanning capabilities. 

In the following figure, it can be clearly seen the effect that the randomness factor has. Because 

the method is not deterministic a statistical analysis is required to obtain the results in a 

meaningful way. 
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Figure 4.2 RRT expansion tree with high randomness 

 

 

 

 

 

 

Figure 4.3 RRT expansion tree with low randomness 
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Figure 4.4 RRT path results 

 

To acquire the path length and time to process off the algorithm, 100 runs will take place 

and the mean and standard deviation will be calculated.  

 

Table 4.2 RRT results 

 

 

 

 

 

 

 

 

Scenario  Path length [ m ] Time to process [ s ] 

1 
Mean 160.18 0.026 

Standard deviation 12.11 0.046 

2 
Mean 225.20 0.033 

Standard deviation 24.27 0.032 

3 
Mean 257.89 0.064 

Standard deviation 12.49 0.064 
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Advantages and Disadvantages of the method 

 

One of the most important advantages of the RRT algorithm is the low processing time to 

process a path. Due to its probabilistic nature, the algorithm has a significantly reduced 

computational cost which is one of the best of path planning algorithms. 

It is worth mentioning that RRT can work exceptionally well in a high degree of freedom 

environments compared to graph search algorithms. That’s why RRT and general sampling 

methods are preferred when the degrees of freedom of the environment are high. 

Although RRT has some drawbacks. The path that is produced from the algorithm is not 

guaranteed that it will be optimal. This must be taken into consideration if the optimality of the 

path is a top priority. RRT star is created to address this issue. 

Due to the probabilistic nature of the algorithm, it is possible that sometimes will fail. It will 

not be able to provide any path. That’s why for critical robotics missions this may not be the 

best option 
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4.3 Application of PRM 

By applying the PRM algorithm that is presented above, a roadmap is created for the 

proposed case studies. This will happen by choosing a number of 60 points to be sampled in 

the free grid map and all nodes connect to all the other nodes that can create feasible 

connections. A roadmap of 100 sample points will be shown also. Then A* algorithm computes 

the optimal path. Because the method is not deterministic a statistical analysis is required to 

obtain the results in a meaningful way.  

 

 

Figure 4.5 60 sample points on the map in pink 

 

Figure 4.6 Creation of the connections on 60 sample points (Roadmap) 
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Figure 4.7 Creation of the connections on 100 sample points (Roadmap) 

 

 

 

Figure 4.8 Optimal path of the algorithm calculated on 60 sample points 

 

Statistical analysis of the results 

 

To acquire the path length and time to process off the algorithm, 100 runs will take place 

and the mean and standard deviation will be calculated.  
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Table 4.3 PRM results 

 

 

Advantages and Disadvantages of the method 

 

One of the most important advantages of this method is that because is very simple and uses 

sampling it can compute extremely fast which is making it able to run the algorithm in real-

time online on a robot.  

The roadmap that is created by this method for a specific map that is static, allows the robot 

to change easily the start point and goal point and calculate a new path extremely fast without 

the need to rebuild a roadmap. That’s why this algorithm is very efficient when you need a lot 

of replanning in the same map 

On the other side when the map has a lot of narrow passages even with a very high number 

of sample points it is possible that will not be able to find a path because of the collision 

checking with the obstacles according to (Khokhar, 2021). 

Another downside is that the algorithm is not always guaranteeing an optimal path which 

may result in unnecessary movements of the robot 

Scenario  Path length [ m ] Time to process [ s ] 

1 
Mean 172.6 0.0608 

Standard deviation 19.6 0.02 

2 
Mean 221 0.065 

Standard deviation 11.6 0.0131 

3 
Mean 206.33 0.175 

Standard deviation 0.73 0.027 
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Figure 4.9 Collision check example (Khokhar, 2021) 

4.4 Application of Artificial Potential fields 

To be able to apply this algorithm to the case study all the parameters should be decided to 

give the best possible result given the environment. This is a highly complicated task because 

many factors should be considered. Usually, there are two different methods to achieve that. 

The first one is choosing parameter values by trial and error and adjusting accordingly based 

on the results you get. The second method is to use optimization to decide the parameters of the 

problem based on the constraints you have (Li et al., 2011). For this case study trial and error, 

method is used. 

The first parameter that will be selected to manipulate its value is K which is the scaling 

factor of the attractive potential. By increasing this factor, you increase the slope of the potential 

which results in greater “force” on the robot. By decreasing it you achieve exactly the opposite. 

It may seem at a first glance that increasing the artificial potential as much as possible is a good 

strategy but if the attractive potential is bigger than it should then it would lead to overcoming 

the obstacle’s repulsive potential and leading to an unfeasible path. Furthermore, it can 

introduce periodic phenomena which result in bad path smoothness. 

 

 

 

 



 

 37 

 

Figure 4.10 Attractive potential with K = 0.002 

 

 

Figure 4.11 Attractive potential with K = 0.000833 

 

 

The next parameter that will be studied is k which is the scaling factor of the repulsive 

potential. When this factor is increasing then also the repulsive potential increases that’s why 

bigger values lead to ‘taller obstacles and smaller values lead to ‘shorter obstacles’. The main 

goal here Is to find the most optimal value so the robot can move freely without having any 

artificial problems. Firstly, it is very important to don’t make the value too small because that 

leads to a very small repulsive potential which means that the obstacles don’t have the required 

‘height’ to repel the robot and it can go through them as in the case with the highly attractive 

potential factor. This should not lead to the conclusion that the factor should take very high 

values because if the values are higher than the optimal then the path will lose its smoothness 

due to the steeper slope that it will be created at the base of the obstacle. 

 

 

 



 

 38 

 

Figure 4.12 Repulsive potential with k = 8000 

 

Figure 4.13 Repulsive potential with k = 2000 

 

The last parameter that will be studied is the 𝑑𝑟𝑎𝑛𝑔𝑒  which is the distance that affects the 

width of the repulsive potential. By having large values means that the obstacle repulsive 

potential will have a wider affect and while it may give a smoother path it is possible to overlap 

the repulsive potential in a close gap area and block the entrance. By having small values, the 

repulsive potential is steeper and if it is too steep the path it can have very bad smoothness. The 

goal again is to find the optimal value that will result in a good path. The parameters that give 

the best results for the given start and end goal after the trial and error procedure is : 
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Table 4.4 Trial and error factors 

K 0.002 

k 8000 

𝑑𝑟𝑎𝑛𝑔𝑒  1.07 

 

 

 

 

 

Figure 4.14 Gradient decent algorithm visualized with a ball rolling down 
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Figure 4.15 Special Scenario APF extracted path 

 

 

Figure 4.16 APF extracted path with vector field and  

magnification on the jitteriness 

 

Table 4.5 APF results 

 

 

Scenario Path length [ m ] Time to process [ s ] 

1 - - 

2 - - 

3 235 0.0246 

Special 300 0.0243216 
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Results discussion  

 

The length of the path is quite long. This is a consequence of the jittering of the path near 

the obstacles. To avoid local minima this jittering was necessary. If a smoothing algorithm is 

being applied on the path, then it can be useful, but it will not be the most optimal. 

 

 

Advantages and Disadvantages of the method 

 

The computation time needed for this algorithm is neither fast nor slow, it is somewhere in 

the middle. While the computation time is simply good the replanning capabilities of this 

algorithm are its strong point. It can work well in dynamic environments but with a cost. 

The algorithm do not provide the most optimal path. And often it can be trapped in what is 

called local minima. That leads to the algorithm not being used now for real-life applications  
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5 Conclusions  

5.1 Discussion 

Concluding with this thesis all the results from the case studies will be discussed and 

analyzed. All the algorithms will be compared A*, RRT, PRM, and APF and the best one for 

our needs will be proposed. Each algorithm will be commented on its path length, process time, 

smoothness, and replanning capabilities. Below are the results, for scenario 1. They will be 

presented in a stacked column graph: 

 

 

Figure 5.1 Scenario 1 Path length results 
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Starting of APF the results that were not promising. The algorithm for scenario 1 was getting 

stuck in a local minima and it could not provide a path. Then as expected A* gave the shortest 

path of all 3 but with the longest process time. PRM and RRT had similar results in path length 

and process time with a notable difference for the RRT processing time being almost half of 

the PRM but with a higher standard deviation. Below are the results for scenario 2. They will 

be presented in a stacked column graph: 

 

 

Figure 5.2 Scenario 2 Path length results 

            

 

 

Here there is similar pattern to scenario 1 where A* gives the shortest path and longest 

process time. Also, APF does not conclude to a path. RRT and PRM are having again similar 
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results in both metrics but RRT has less process time. Below are the results for scenario 3, will 

be presented in a stacked column graph: 

 

 

Figure 5.3 Scenario 3 Path length results 
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the extremely fast process time of APF which is faster than anything else. It shows that if APF 

finds a modification that provides a solution to the local minima problem then it will be one the 

best path planning algorithms. 

Now to be able to conclude which algorithm is the best for our specific case study it is 

necessary to take a look at the other two criteria that define the quality of the algorithm which 

is smoothness and replanning capabilities. Below we can see a table that descrebie each 

algorithm criterias for this case study. 

 

Table 5.1 Criteria ranking for algorithms  

(Ranking follow this order: Bad, Good, Great, Excellent) 

 A* RRT PRM APF 

Path Length Excellent Good Great Good 

Process time Bad Great Good to Great Excellent 

Smoothness Excellent Good Great Bad2 

Replanning  Bad Good Great Excellent 

 

As we can see no algorithm is perfect and each one has its strong points. By taking into 

consideration all the criteria at the same time while being a good fit for our case, PRM is the 

best-suited algorithm to be used on a robot at the university campus. It excels at nothing but is 

great on almost all of them. Having an almost optimal path length, low process times, great 

smoothness, and replanning capabilities it is making it a great choice for our case. 

 

 

 

 

 

 

 

 

 

 

2 Generally, APF has one of the best smoothness on path planning algorithms when the parameters can take 

the optimal values. In this case because obstacles were overlapping with the optimal values it was necessary to 

choose non optimal parameters. 
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5.2 Suggestions for further study 

In this thesis the application of different path planning algorithms has been studied on a 

static map with no moving obstacles. A possible future work is to test the replanning 

capabilities of the algorithms that were mentioned above and see how the planning algorithm 

reacts to unexpected changes. 

All the planning here was analyzed on a global level which is good when you know the 

map but also doesn’t take into consideration the small details that may appear along its path. 

That’s where local planning ( Trajectory optimization ) is useful. That’s why trajectory 

optimization could be studied next. 

While planning is crucial to be able to plan it is needed for the robot to the surrounding 

environment and to be able to localize where it is. This can be done with the method of 

simultaneous localization and mapping ( SLAM ). 

Finally, the robot has to determine with what speed and acceleration it has to move along 

its path. Here is where control theory is important and PID or Model Predictive control ( 

MPC) needs to be studied further. 

With everything above mentioned all the necessary part of the brain of the robot will be 

almost ready for a real-life application of an in-house produced robot at University of 

Thessaly. 
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Software: 

A brief description of the used software. «The development and execution of the algorithms 

has taken place on my personal laptop MacBook Pro 2017. The specifications of the laptop 

are the following:  

- Processor: Dual-Core Intel Core i5CPU 2.3GHz, 

- Memory: 8,00 GB, 

- OS: macOS Monterey v12.6, 

The software used was MATLAB R2019b with a foundation code of R. Kala (2014) Code for 

Robot Path Planning and Robotics: Computational Motion Planning 
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Appendix 

 

 

Figure 5.4 Scenario 2 A* path 

 

 

 

Figure 5.5 Scenario 3 A* path 
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Figure 5.6 Scenario 2 PRM path (1 of the 100) 

 

 

 

Figure 5.7 Scenario 3 PRM roadmap 
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Figure 5.8 Scenario 3 PRM path (1 of the 100) 

 

 

 

 

 

Figure 5.9 Scenario 2 RRT tree 
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Figure 5.10 Scenario 2 RRT path (1 of the 100) 

 

 

 

 

 

Figure 5.11 Scenario 3 RRT tree 
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Figure 5.12 Scenario 3 RRT path (1 of the 100) 

 

 

Figure 5.13 Scenario 3 APF path 
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