
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

System Dynamics Web Platforms for Educative Purposes

Diploma Thesis

Stelios Lagaras

Supervisor: Aspassia Daskalopulu

September 2022

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

System Dynamics Web Platforms for Educative Purposes

Diploma Thesis

Stelios Lagaras

Supervisor: Aspassia Daskalopulu

September 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Πλατφόρμες Δυναμικών Συστημάτων και Εκπαιδευτικά Εργαλεία

Διπλωματική Εργασία

Λαγάρας Στέλιος

Επιβλέπουσα: Δασκαλοπούλου Ασπασία

Σεπτέμβριος 2022

v

Approved by the Examination Committee:

Supervisor Aspassia Daskalopulu

Associate Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Member Yeoryios Stamboulis

Associate Professor, Collaborating Instructor, Department of Economics, University

of Thessaly

Member Alexander Chroneos

Professor, Department of Electrical and Computer Engineering, University of Thessaly

vii

Acknowledgements

Στην αγαπητή μου Οικογένεια,
την Ζανί και τους φίλους μου

Θερμές ευχαριστίες στον αναπληρωτή καθηγητή κ.Σταμπουλή Γεώργιο,
για την καθοδήγηση και το κίνητρο που μου έδωσε, καθώς και στην
αναπληρώτρια καθηγήτρια κ.Δασκαλοπούλου Ασπασία για τις διορθώσεις.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma thesis, as well as

the electronic files and source codes developed or modified in the course of this thesis, are solely the product of

my personal work and do not infringe any rights of intellectual property, personality and personal data of third

parties, do not contain work / contributions of third parties for which the permission of the authors /

beneficiaries is required and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points where I have used

ideas, text, files and / or sources of other authors are clearly mentioned in the text with the appropriate citation

and the relevant complete reference is included in the bibliographic references section. I also declare that the

results of the work have not been used to obtain another degree. I fully, individually and personally undertake

all legal and administrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Stelios Lagaras

xi

xii Abstract

Diploma Thesis

System Dynamics Web Platforms for Educative Purposes

Abstract

Stelios Lagaras

Simulations are widely accepted as a modern tool in e-learning and education, due to the fact of representing

complex processes and phenomena in a quality and engaging manner. Today, the various simulation software

are costly and hard to be used by tutors and students. For this reason, we develop a simulation learning platform

with modern tools, where users can easily run various models via a friendly interface, tutors can parameterize

the exposed variables of the model, while all the gathered data are stored appropriately in a database for further

analysis.

Keywords:
System Dynamics, Learning Simulations, Learning analytics, e-learning, Vue framework, Heroku, FastAPI, Python,

Javascript, Vensim

Περίληψη xiii

Διπλωματική Εργασία

Πλατφόρμες Δυναμικών Συστημάτων και Εκπαιδευτικά Εργαλεία

Περίληψη

Λαγάρας Στέλιος

Η προσομοίωση αποτελεί σύγχρονο αναγνωρισμένο εργαλείο για την εκπαίδευση με ψηφιακά μέσα, καθώς

δίνει την δυνατότητα στον εκπαιδευόμενο να αντιληφθεί εικονικά και να αλληλεπιδράσει με το αντικείμενο

εκμάθησης. Σήμερα, τα διάφορα λογισμικά προσομοίωσης αποτελούν εξεζητημένο και κοστοβόρο υλικό το

οποίο είναι δύσκολο να χρησιμοποιηθεί άμεσα από εκπαιδευόμενους και εκπαιδευτές. Για τον λόγο αυτό,

αναπτύσσουμε μια πλατφόρμα εκμάθησης μέσω προσομοιώσεων όπου με την χρήση νέων εργαλείων οι

χρήστες μπορούν εύκολα να διατρέχουν διάφορα μοντέλα μέσα από φιλικό περιβάλλον, οι διδάσκοντες

μπορούν να τα παραμετροποιήσουν κατάλληλα, ενώ όλα τα δεδομένα αποθηκεύονται σε μια βάση δεδομένων

για την περαιτέρω ανάλυση και επεξεργασία τους.

Λέξεις-κλειδιά:
Συστημική Δυναμική, Εκπαιδευτική Προσοµοίωση, Ανάλυση δεδοµένων µάθησης, Ηλεκτρονική µάθηση

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Aim of the Dissertation 1

1.2 Justification of the research topic 1

1.3 Structure of the dissertation 2

2 Simulation as a learning Tool 5

2.1 Types of E-Learning Tools 5

2.2 Terminology of Simulation, Game, Simulation-Game 5

xv

xvi Table of contents

2.3 Modern implementation of Simulation Games 6

2.4 Benefits of simulation based learning 7

2.5 Challenges of simulation representation 8

2.6 Collecting Data and Learning Analytics 8

3 Application Architecture 11

3.1 Software review and motivation for PySD . 11

3.2 Application architecture - back end . 12

3.2.1 Simulation core engine . 12

3.2.2 FastAPI back end . 12

3.2.3 Database . 12

3.2.4 SCHEMA and PYDANTIC VALIDATION . 14

3.2.5 Example of fastapi function . 14

3.3 Application architecture - front end . 16

3.3.1 Vue App Structure . 16

3.3.2 UI Frameworks . 17

4 Technical Analysis 19

4.1 Setting the environment . 19

4.2 Structure of the directory . 19

4.3 Steps of a Simulation . 20

4.3.1 Homepage . 20

4.3.2 Choosing the Model . 20

4.3.3 Vue state and Pinia . 21

4.3.4 DocTable . 22

4.4 Student Dashboard . 22

4.4.1 Front-end Side . 22

4.4.2 API Side . 23

Table of contents xvii

4.4.3 Student’s Interface 23

4.5 Results 26

5 Conclusions 29

5.1 Conclusions & Summary 29

5.2 Difficulties 29

5.3 Suggestions for Future expansion 30

Bibliography 33

Chapter

Appendix 37

1 Example of run_simul function 37

2 API Directory with description 40

List of figures

1.1 E-Learning Ecosystem [1] 3

2.1 One of the few surviving screenshots of SimRefinery.[2][3] 7

3.1 Prototype of ER Database 13

3.2 Tools used to build the API 15

3.3 Vue Components Structure 17

4.1 API - Frontend connection Sketch 21

4.2 Tutor Dashboard 22

4.3 Controls of User 24

4.4 Simulation Charts 25

4.5 New reported cases - Ebola infection 27

4.6 Population infected - Ebola infection 27

xix

List of tables

4.1 Ebola Infection Simulation 26

xxi

Abbreviations

SD System Dynamics

js Javascript

LTG Limits to Growth

DaaS Database as a Service

ORM object relational mapping

UI user interface

SPA Single Page Application

auth Authentication

LMS Learning Management Systems

LA Learning Analytics

xxiii

Chapter 1

Introduction

1.1 Aim of the Dissertation

The aim of this dissertation is the creation of a full stack web platform, which serves as an interactive learn-

ing environment running simulation models in System Dynamics. The creation of a friendly interface will help

students to create knowledge from running simulations, while they inspect various models parameters and

experi- ment with them. Our platform PySims, saves the progression of the simulation the parameters values

and the final results, enabling tutors to observe and potentially analyze students approaches on various

simulated situations (problem conditions) with the aim to evaluate their way of thinking and their behavior and

to give personalized feedback back to them.

1.2 Justification of the research topic

The rapid technological improvement and integration in everyday life has affected the educational

procedure with the usage of internet telecommunications and computer devices, leading to a wide learning

ecosystem [1.1] which is called E-Learning. E-Learning has been around since the 1960s, but it is only in the

last two decades that there is a tremendous growth in new applications of e-learning due to the rapid

developments in technology and computers, like smartphones, virtual reality systems, IoT (Internet of Things),

computational power etc. On

1

2 Chapter 1. Introduction

The first stage, E-Learning, has been focused on managing, storing and serving information via LMS (Learning

Management Systems), while the evaluation of acquired knowledge is happening through questionnaires forms,

thus, leading to a very static and passive experience on students' part. The revolution of Web 2.0, has invented

new sub-fields in E-Learning like Microlearning [4], where the information is broken down to smaller

perspectives, Mobile Learning, with the invention of smartphones and tablets, where learning can exists in any

location, Open Education which focus on the accessibility of learning material, freely for everyone,

Do-it-Yourself Learning, which provides just in time, just enough information and guidance for the users. All

the above, shapes into E- Learning 2.0 [1] plus the new technological trends, like virtual & augmented reality

may lead to future extensions and research interest.

As a more dynamic environment emerges, simulations are suitable with various course subjects as a tool in

the e-learning procedure.Various researchers propose that. ”well-designed simulations will develop in the

student a profound, flexible, spontaneous kinesthetic understanding of the subject matter” [5] [6] [7]

Simulation software has been developed in a classical architecture of applications since the mid 20th cen-

tury. Although numerous of these softwares offer a standalone toolbox for analysts, there are lacking in online

connection, like modern web apps, and in holistic ways of group management and learning capabilities.

In the Big Data era, (learning) analytics are constantly increasing of interest, various stakeholders like

compa- nies, corporations, state departments, educational institutions and research departments are looking for

data tanks, in order to understand various behavioral patterns and strategies.

In our case, we are looking forward to interconnecting the various puzzle parts of System Dynamics and

Simulations, creating a modern, compact, and reliable solution for collecting the necessary data.

1.3 Structure of the dissertation

In Chapter 2 we present more details about e-learning, how simulation tools are used in e-learning, what are

the benefits for the learners and the tutors, and what kind of pitfalls should be avoided. In Chapter 3 we discuss

the architecture of our application. PySD[8] is our core library responsible for the simulation execution,

FastAPI will be used as the API framework for building the functionalities that our application should

accomplish, like

1.3 Structure of the dissertation 3

storing and serving simulations, writing and reading results from and on the database. On the front end part of

our platform we choose Vue 3 and Element plus UI library for designing user’s interface and communicating

with the back end. In Chapter 4, we present more technical details and some typical user scenarios. We

conclude with future ideas of using these tools in the classroom describing a road map for our next plans.

Figure 1.1: E-Learning Ecosystem [1]

Chapter 2

Simulation as a learning Tool

2.1 Types of E-Learning Tools

The variety of E-Learning tools are constantly developed in parallel with technological tools and devices.

From the classical blogs and wikipedia articles we are facing an expansion to podcasts and social media usage

for learning purposes. Virtual worlds tend to add interactivity and familiarity to the learners, with avatars and

interactive 3D environments [9] as also augmented and virtual reality are coming to enhance the users

experience. Open source repositories, open learning communities and collectives are building cutting edge

portals like stack overflow, and paid platforms for developers like codemy, codecademy etc.

2.2 Terminology of Simulation, Game, Simulation-Game

Before we present an historical overview of simulations, allow us to clarify the meaning and overlapping of

the words Simulation, Game and Simulation-Game. Games can exist in a pure entertainment sphere, for

example running or playing rock-paper-scissors, that kind of games are also usually called plays. On the other

hand, simulations are not always games, for instance a weather forecast simulation, or a virtual representation

of a model like Holzinger et al. (2009)[10], where they present a medical education simulation. We can

distinguish at least two cases where a simulation-game coexists. First, in many known games which are

fundamentally bases in some

5

6 Chapter 2. Simulation as a learning Tool

kind of a simulation, e.g. Flight Simulator, The Sims, Age of Empires etc. simulations are used in the

background with play centric target of the game, where in the second case, we found simulation centric

scenarios, like the famous Beer Game, developed at the MIT (Massachusetts Institute of Technology) in the

1960s [11] where the term game is mostly used to describe the educational, training purpose of the simulation -

we also find the term serious games for such cases.

A very interesting article about John Hiles, a simulation pioneer and his company, Maxis Business

Simulations[3], points out why games and simulations are communicating vessels. Maxis and their circle, for a

decade, were jumping between the corporation specific simulations, and simulation games. It is in our special

interest to study the intersection of these two worlds, where simulation meets the game and vice versa, such, there

we found most of the learning and training potential.

2.3 Modern implementation of Simulation Games

Pasin & Giroux has made a very good overview of modern implementation of simulations in their

article[12]. Some of the remarkable modern cases are the flying simulators where pilots have real life training

experience, to virtual reality systems teaching surgical techniques to students, simulations are helping students

to take a virtual real hand on experience in difficult tasks. Another common field of application is policy

making decision problems, and crisis management [13]. This connects to Urban simulations and aspects like

land-field, water and energy consumption policies [14] ,and of course the health sector on various pandemic

scenarios, urban pollution ,urban mobility, and habitual health metrics like smoking and safe driving. One of the

first impactful books in SD was Limit to Growth(1972)[15] by Dennis Meadows. His vision about the

limitation of our planet’s resources in an era that the industrialization was dominating was remarkable. Last but

not least, the management sector, has appreciated earlier on 1950s the value of simulations as a training tool.

According to Pasin and Giroux [12], by 1961 ”more than 100 business games had been published in the US

alone...” [16], and by 1998 more than 60% of companies with more than 500 employees were using simulations

games in their training activities according to Faria’s survey[17]. The trending on management training keeps

on increasing in the 20s as now it is applied in specific management fields like, project management,

knowledge management, financial management etc.[12].

2.4 Benefits of simulation based learning 7

Figure 2.1: One of the few surviving screenshots of SimRefinery.[2][3]

2.4 Benefits of simulation based learning

Simulation as a learning tool can benefit and extend the classical learning procedure. Simulation can be

useful by revealing the interconnections of a System, and how small actions of seeming independent parts

apparently affects each other, thus revealing what is called the big picture. Pasin, writes down ”They allow

participants to develop a global perspective, to connect learning with real-world situations and to get close to

the realities...” [12][18]. Another development that we should consider, is technological improvements and how

the new generations are familiarized with information interaction via gaming and everyday computer usage.

That, as stated from Proserpio and and Gioia [19] applies in the modern needs of ”virtual generation” (V-gen)

which is much more visual, interactive, and focused”. Some of the positive attitudes recorded from Papoutsakis

et.al [20], where a greek teachers study group examined, are: the teachers found simulations as a pleasant way

of teaching, the students are interested in being actively involved, they are modern and give plenty of options to

the tutors. Stergioulas[21] points out that simulation tools enhance the student centered learning orientation,

allowing students to practice decision making and critical thinking and to stage the consequences of their

applied strategies. All the

8 Chapter 2. Simulation as a learning Tool

above, makes simulation tools as a necessary addition in the 21st century classroom.

2.5 Challenges of simulation representation

Although simulations can be a very useful tool, they need to be designed with precision and awareness of

learners' perception, as, very easily, can be turned into an overwhelming experience for them. Van der Meij et

al. [22] records four tasks that learners have to cope with. First they must get familiar with the format and the

operators of the simulation. Various attributes like labels, axis and variable names should be placed in a

qualitative manner. In summary of the rest, the represented domains have to be cleared, learners could relate the

shared information between graphs, and the translation between them should be easy. Potential problems that

may occur for the learners, are over-generating cognitive load, thus minimizing the resources for actual learning

[23]. Also, the ability to connect visual representation with verbal and written information was reported to show

signs of expertise by at least two studies from Tabachneck et al[24], and Kozma [25]. Our simulation interface

has been carefully designed and implemented to make a pleasant experience for the learners, while keeping the

necessary information on the layout.

2.6 Collecting Data and Learning Analytics

Learning Analytics concept is another constantly growing dimension of E-Learning as it examines and

shapes the procedure of learning, the way that learning is implemented and continuously creating a loop by

gathering information from learners, their actions and their results. The definition given by the Society of

Learning Analytics Research is: “Learning analytics is the measurement, collection, analysis and reporting of

data about learners and their contexts, for purposes of understanding and optimizing learning and the

environments in which it occurs” [26]. Siemens points out that corporation private usage of LA from big techs

like Facebook, Netflix and Shazam are ahead from establishing defined techniques and tools, although that

points out the necessity that arises. One of the functionalities implemented in our platform is storing all the

simulation progression and the decisions taken by the learners, so future research and analysis can be done by

using LA techniques. In further steps, we may analyze

2.6 Collecting Data and Learning Analytics 9

how learners take their decisions, how successfully they adapt and if our learning model is successfully agile.

Chapter 3

Application Architecture

3.1 Software review and motivation for PySD

From the later 90s there have been developed a lot of Simulation Specific Software systems some of them

worth mentioning:

• Powersims

• Vensim

• Stella & iThink

• Anylogic

• Insight Maker

It is highly interesting that so many software products share the pie of specific usage of them, the bigger

clients are corporations from fields like Oil Companies, Railway Companies, Real Estate and other high value

aspects. But, as it happens with many high-tech products of our era, compatibility is a real problem. While

every company has its own file encryption it is impossible to iterate between them with the same model-file.

There have been a try for a unified file type XMILE [27] which interpolates with Stella & iThink, and also it is

on the roadmap of our core tool PySD[28], but till then, we will focus on Vensim files which will be

parsed/translated to python files.

11

https://powersim.com/
https://vensim.com/
https://www.iseesystems.com/store/products/ithink.aspx
https://www.anylogic.com/
https://insightmaker.com/

12 Chapter 3. Application Architecture

3.2 Application architecture - back end

3.2.1 Simulation core engine

PySD is a novel approach on Simulating SD models by means of bringing the necessary tools in one layer

to the bottom of software development, just into a python package. As the creators state ”System dynamicists

should directly use the tools that other people are building, instead of replicating their functionality in SD

specific software”. Now, the developer is able to have a pandas dataframe with all the results with a few lines of

code. Also, PySD offers the necessary functionalities that our application needs, like running a simulation from

a previous state and changing the parameters of the model variables.

3.2.2 FastAPI back end

It is a common practice on modern applications decoupling the back end with front

end by creating an API which serves as the intermediate traffic regulator. Our API will

get simulation calls, process them, run the simulation and return the results on the front

end, thus, it is responsible for a variety of tasks and its role is of high importance. As a

mechanical analogy API connects our engine (PySD) with the wheels and the chassis

(front end) of our vehicle (application).

As PySD is developed in python language, naturally we choose to develop our API

in python so our next task is to choose one of the modern Python API frameworks. Our choice is FastAPI, an

open source project from Tiangolo which is notorious for its speed and also has a great documentation.

3.2.3 Database

We use https://dbdiagram.io/d to draw a database sketch prototype

Our main table is simulation, which represents the necessary details of a simulation run. Also, we may need

another table in order to store the models and their details, such as their namespace -information about each

model’s component - and their documentation. Lastly, we may of course have a database table about the user

https://fastapi.tiangolo.com/
https://dbdiagram.io/d

3.2.3 Database 13

Figure 3.1: Prototype of ER Database

administration and information. In a lot of modern projects, Database as a Service (DaaS) solutions are preferred,

helping the developer focus on other crucial parts.

ORM MODEL and SQLAlchemy

The original language to communicate with a Relational Database, has its own syntax, usually the

commands- queries are in capitals and some mathematical expressions like joins are also used. In contrast, in

the world of object oriented languages, object-relational-mapping (ORM) has been developed to abstract the

database from low-level manipulation. With an ORM, you normally create a class that represents a table in a

SQL database, each attribute

14 Chapter 3. Application Architecture

of the class represents a column, with a name and a type. Then, we can access our database items like a normal

Object. SQLAlchemy is the modern tool in python for this job and it’s database agnostic, we can focus on

development and if we want to switch to another database, we just have to change one line of code and

SQLAlchemy’s engine will do the work for us. At the moment, supported databases are: SQLite, Postgresql,

MySQL, Oracle, MS-SQL, Firebird, Sybase and others, most of which support multiple DBAPIs.

3.2.4 SCHEMA and PYDANTIC VALIDATION

Schema, a greek word, describes the structure of any of the traffic handled by the API. We define different

schemas for get requests and responses, thus getting a fixed description of the json structure and also the

various field types. Schemas are used on the backbone of FastAPI to validate a request and its response by its

schema and the field types, thus, improving development ergonomics, minimizing errors and helping with

debugging them. Another feature of schemas auto-generates our’s FastAPI’s documentation tool named

”Swagger UI” which we can access in the same url, e.g. ”API_URL/docs”. There, we can try out our API

interactively, performing all of the four actions: post, get, delete, edit. The automatic documentation is

particularly useful for other applications and their teams, which may interest using our API. When they would

like to use a functionality, e.g. get some data from the database they only need to find the correct function from

the documentation and call it, that separation of concerns makes API a black box for external colleagues.

3.2.5 Example of fastapi function

Now we are ready to create our main paths and their functionality, let’s take for example we want to define:

/get_simul_by_id/{id}

on FastAPI would write:

@app.get(’/get_simul_by_id/{id}’, response_model= schema.Simulation)

def get_simul_by_id(id:int, db: Session = Depends(get_db)):

DB query to get simulation

3.2.5 Example of fastapi function 15

...

return(obj)

The first line defines the path where a request hit’s, and the at ’@’ character which is called a decorator

shows that this call will be handled by the function defined below. Also we can spot two other syntax patterns,

first the brackets ’’ defines query parameters which can be used from the handler function and also a db:

Session call which represents the connection between the API and the DB.

FastAPI also uses a number of helpful tools which integrate with the database and type safe definition

which also helps in editor tools, for example in VS code Intellisense tool. We have quick look on them bellow:

Figure 3.2: Tools used to build the API

16 Chapter 3. Application Architecture

3.3 Application architecture - front end

Javascript Frameworks have been a recent progression in front end development.

The complexity and scale of modern projects demands a structured way of

development, reli- ability and reusability. In the last decade there have been dozens of

frameworks created, some of them more opinionated like Angular, and some other

more flexible like React. In the middle of them, our choice, the Vue framework was

invented by Evan You in 2014.

The fact that it is one of the most beloved ones[29], it is a progressive framework and has

an active community led as on that choice. Nevertheless, because of the recent change of the default version,

the new 3rd version or just Vue 3 (February, 2022), things are progressing and changing quite quickly, and

someone may need a bit of time to adapt at this fast pace. One of the benefits of the new features, the

Composition API lets developers write more compact and cleaner code. Also, typescript, a superset of

javascript which adds static typing is also supported, and has become the main default for a lot of developers.

Another useful tool is vite, ”a build tool that aims to provide a faster and leaner development experience for

modern web projects” [30] enables the developer seeing immediately the changes on the DOM while coding in

their local environment. Vite has also been invented by Evan You. Last but not least, Nuxt, a meta-framework

based on Vue 3 is also on its 3rd release Nuxt 3 and is awaited with enthusiasm from the Vue developers

community.

3.3.1 Vue App Structure

Vue is a Component based framework, and the proposed way of using it is through SFCs (Single File Com-

ponent). SFCs combine the famous trio of HTML, JS and CSS languages in one single file. As it stated in the

documentation this strategy does not contrast with separation of concerns rule, as the three parts are inherently

coupled while offering a lot of advantages in development ergonomics and codebase maintenance. The writer,

having used the later strategy of SFCs, totally agrees with the Vue approach.

https://v3.nuxtjs.org/

3.3.2 UI Frameworks 17

Figure 3.3: Vue Components Structure

3.3.2 UI Frameworks

As frameworks continuously develop, UI component libraries are sticking together.

By using a specific UI library instead of writing or mixing different small components,

we win a lot of time on styling and micro-development, we get integrity and

consistency in our components and a nice aesthetic UI. Three of the UI libraries that

have earned a reputation in the community are 1) Vuetify, 2) Qasar and 3) Element+

UI. From them, the two lasts are available on Vue 3, and a lot of people are waiting for

the official Vuetify 3 release, which is in a beta state for the time being. Our choice is

Element+ UI, which

offers a tone of components, is well documented and has extra features like theming and dark mode. All the

components from Element+ has the prefix el-{name of the component}

Chapter 4

Technical Analysis

4.1 Setting the environment

To begin with, we need to set up our virtual environment for the back end. As we can read in python’s

official docs ”Python applications will often use packages and modules that don’t come as part of the standard

library. Applications will sometimes need a specific version of a library, because the application may require

that a particular bug has been fixed or the application may be written using an obsolete version of the library’s

interface.The solution for this problem is to create a virtual environment, a self-contained directory tree that

contains a Python installation for a particular version of Python, plus a number of additional packages.” We

found this idea also in the deployment stage when we use Docker containers.

4.2 Structure of the directory

We categorize directory files structure as follows:

• Components - Components are reusable SFCs which can be instantiated on multiple views

• Views - It is the equivalent of a page in a SPA, every page usually has multiple components as children 19

https://docs.python.org/3/tutorial/venv.html

20 Chapter 4. Technical Analysis

• App.vue - The head of the Vue App. Everything hang’s from this component. Usually a router component

exists which is responsible for exchanging between the multiple views.

• Composables - It is the equivalent of a local library, where we store functions that are used multiple times

by importing them from composables.

• Linter and Prettier - A linter helps by checking that quality coding rules are followed, specifically for vue

3 there is the corresponding eslintrc with the appropriate configuration like ts support, vue rules level of

stringency etc. On the other hand, Prettier help’s for aesthetic typing rules like auto configure

spaces,commas and lines width. We just have to save the file and Prettier makes what its name stands for.

• Config files - everything that has to do with the configuration of typescript support and vite bundler e.g.

localhost port, vue experimental features etc.

4.3 Steps of a Simulation

4.3.1 Homepage

Table.vue loads all the user’s history results which are stored on the database, it hits the /get_simuls end-

point and fetches back all the fields of the table simulations [”id”, ”model name”, ”simulation name”, ”csv

path”, ”date”]| plus, we add the delete row choice which also delete the instance on the database via
/delete_simul_b

The key_id part of the path, is a path parameter and can be read from FastAPI. We usually use path parameters

when we have a small and unique query parameter related with the url’s meaning, e.g. here id parameter.

4.3.2 Choosing the Model

We start by describing the functionality of the Tutors control panel. There, the tutor will choose the model

for reproduction and open up the constant variables which will be exposed to the students. Firstly, we have

initialized/uploaded some available models for testing. This happens by init-db.py script as it was

described in the

4.3.3 Vue state and Pinia 21

Backend section. Next, we add a dropdown component named el-dropdown-menu and the items with the com-

ponent el-dropdown-item. The endpoint /get_available_models is used to fetch all the available

models from the database. The diagram 4.1 bellow, points the visual representation of a fetch request:

Figure 4.1: API - Frontend connection Sketch

The fetch request is triggered while the TutorSelection.vue component is rendering, an

improvement technique on this is offered from vue-router, with which we can pre-fetched the data before the

component is rendered. More on this topic are mentioned in Vue-router docs and are related with lifecycle

hooks of components, see vue-docs on this topic.

4.3.3 Vue state and Pinia

Vue by default stores fetched information in component’s scope, and passing properties and emits are used

to share information between them. As follows this can be hard for long sequences of children or siblings

components route, thus a general state store is used for more complex applications which is accessible from all

of the components. The default state plug-in used to be Vuex but the newer Pinia store which abstracts some

processes, has become officially the default state package. We also adopt the creation of a store-state, and save

there all the necessary information.

https://router.vuejs.org/guide/advanced/data-fetching.html#fetching-before-navigation
https://vuejs.org/api/composition-api-lifecycle.html

22 Chapter 4. Technical Analysis

4.3.4 DocTable

The Doctable.vue component is responsible for tabulating the documentation of the model, offered

from PySD library. Every piece of information that hides there, is useful in some part of the App, e.g. type of

component as we distinguish the const variables which are exposed to the user, min-max values which should

bound the given values of a variable etc. We can see the complete result in figure 4.2

Figure 4.2: Tutor Dashboard

4.4 Student Dashboard

4.4.1 Front-end Side

The Student’s Dashboard was one of the heavyweight parts of our project. This needs to handle a lot of

parameters in a friendly and intuitive layout. On the right hand of the page stands all the variables information

and the progression toolbar with the run and step run simulation choices. The step run process is a much more

4.4.2 API Side 23

complicated one in comparison with the full run, where we just exchange one request with the API via the

network. The special boolean path parameter step_run is used to inform the API on how to handle the request.

So, for example a full run will hit the endpoint: /add_new_simulation/?step_run=false. We will get back on the

API later on to see how that works out. To continue with, we use the parameters that are enabled by the tutor

and our app creates a list with sliders (el-slider component) which binds the value to our state

components._value field. Also, a special simulation.params object is created to pass only the students active

parameters to the API.We see the right-side part on figure 4.3

4.4.2 API Side

On the crud.py folder we have all the necessary functions, where run-simul is responsible for running

the simulation using the step_run parameter to change mode. When the step_run is on, the PySD engine runs

the simulation for a timestep period and merges the results (a python dictionary) with the latest run. Every

step_run also loads the latest state from a special .pic file. This is available through the parameter

initial_condition in run function. You can read on the appendix of chapter 1.

24 Chapter 4. Technical Analysis

Figure 4.3: Controls of User

4.4.3 Student’s Interface 25

chart-js graphs

Chart.js is the responsible tool for rendering our simulation results. We have created our ChartSimul.vue

com- ponent where we pass the simulation results as a property (Vue prop) as also a chartid property which is

binded in canvas id tag, in order to make multiple charts which should have a unique id. To make every graph

color unique, we map every variable’s name (string) to a hex color. In a future version, the user or admin could

choose which variables would be rendered together in the same graph. The healthy structure of the

ChartSimul.vue component, allows us to populate our desirable graph and render it scaled.

Figure 4.4: Simulation Charts

4.5 Results

26

Chapter 4. Technical Analysis

Our platform stores all the simulation results in the database in JSON format and by extracting every field,

we can get and render information about each variable and stocks. The results are also available for download

in a CSV format. In the Following diagrams we present some typical results of a pandemic simulation about

ebola disease 4.1.

Table 4.1: Ebola Infection Simulation

Time New Reported Cases Population Infected with Ebola Population Susceptible to Ebola

00:00.0 0.35 1 100

00:00.1 0.365152676 1.04375 99.95625

00:00.2 0.380947081 1.089394084 99.91060592

00:00.4 0.397409117 1.13701247 99.86298753

00:00.5 0.414565619 1.186688609 99.81331139

00:00.6 0.432444373 1.238509312 99.76149069

00:00.8 0.451074144 1.292564858 99.70743514

00:00.9 0.470484693 1.348949126 99.65105087

00:01.0 0.490706803 1.407759713 99.59224029

… … … …

00:05.0 1.806956384 5.400368655 95.59963134

… … … …

00:35.0 0.014052233 100.9602326 0.039767378

4.5 Results 27

Figure 4.5: New reported cases - Ebola infection

Figure 4.6: Population infected - Ebola infection

Chapter 5

Conclusions

5.1 Conclusions & Summary

In our project, we have created a full-stack prototype web platform for storing, running and managing SD

Simulations in a potential e-classroom. We used FastAPI on the back end, PySD as the core engine running the

simulations, and Vue 3 as the front end framework, with numerous other small tools for our tasks. The name of

our platform is PySims, from Python and Simulations. PySims, hopes to offer an intuitive UI giving system

dynamists and their students the potential to train beyond their laboratory. This will give future researchers the

ability to gather a lot of data in order to reflect on their teaching approach on SD. In the technical scope, the

project could become complementary to PySD. Anyone interested in the codebase of this project is kindly

asked to communicate with the authors.

5.2 Difficulties

As web development becomes richer, the complexity of creating and maintaining an application from a

small number of people or even one, is becoming a difficult task. The modern junior developer should learn a

variety of tasks in the whole spectrum, from designing and developing the back end and front end, to

developing a database and a UI-UX environment and deploying configuration. This, highlights the need of

teamwork and cooperation in the

29

30 Chapter 5. Conclusions

developers community. Another consideration that was a difficulty, is the variate and diversion of different tools

that were used. Sometimes, a tool has its own unique syntax for a specific task, for example on the deployment

stage, server configuration on heroku platform was a difficult task. Lastly, for a novice developer it is hard to

decide between a dozen different tools and technologies which and when to be used, as often libraries and

plug-ins are upgrading and changing very fast.

5.3 Suggestions for Future expansion

As the complexity of this ecosystem goes beyond of this dissertation, we mention some of the future ideas

and part of the road map PySims:

• Implement Authentication and connect University’s database with auth

• Design User’s Profile, with statistical information

• Route guarding and separation of administrators panels

• Examples of users behavioral analysis

• Deploy on University’s Server

The profound answer to any data question is what to do with the data? One of the first thoughts of the writer

was not only to create a tutor-student relationship with these data, but a holistic class relationship by citing

students' approaches between them. To specify, let's imagine an idea from the gaming industry, where a ladder

with best results exists. We strongly believe that this would increase the motivation of students in a System

Dynamics class. A similar game idea is to assign different roles as sub-models in a bigger one. For example, in

the model of local brewery, some students are assigned to decide about first raw materials as the suppliers,

others to decide about production as the brewery owners etc. Thus, the complete picture of the ecosystem and

real-life simulation problems could be reproduced, letting only the imagination of the modelers define the

scenarios.

Another path of development would be the implementation of behavioral analysis of students' strategies, as

it was studied by Vleioras[31] where every decision of the user-student is stored and co-related with the results.

5.3 Suggestions for Future expansion 31

This would help both students and tutors to understand their approach, and may lead to a reinforcement learning

technique analysis.

Bibliography

[1] Harrison Hao Yang. New world, new learning: Trends and issues of e-learning. Procedia - Social and

Behavioral Sciences, 77:429–442, 04 2013.

[2] Barr christopher. Businesses play war games. Pc Mag, 12(11):31, 06 1993.

[3] When simcity got serious: the story of maxis business simulations and simrefinery. https://

obscuritory.com/sim/when-simcity-got-serious/. accesed on: 17-09-2022.

[4] Theo Hug. Micro learning and narration. exploring possibilities of utilization of narrations and storytelling

for the designing of” micro units” and didactical micro-learning arrangements. In fourth Media in

Transition conference, volume 6, 2005.

[5] David Gibson, Clark Aldrich, and Marc Prensky. Games and simulations in online learning: research and

development frameworks: research and development frameworks. IGI Global, 2006.

[6] S Barry Issenberg. The scope of simulation-based healthcare education, 2006.

[7] Vitor Duarte Teodoro. Playing newtonian games with modellus. Physics Education, 39(5):421, 2004.

[8] Houghton J and Siegel M. Advanced data analytics for system dynamics models using pysd. In

Proceedings of the 33rd International Conference of the System Dynamics Society, 2015.

[9] Ann D Cook. A case study of the manifestations and significance of social presence in a multi-user virtual

environment. PhD thesis, 2009.

33

https://obscuritory.com/sim/when-simcity-got-serious/
https://obscuritory.com/sim/when-simcity-got-serious/

34 Bibliography

[10] Andreas Holzinger, Michael Kickmeier, Siegfried Wassertheurer, and Michael Hessinger. Learning perfor-

mance with interactive simulations in medical education: Lessons learned from results of learning

complex physiological models with the haemodynamics simulator. Computers & Education, 52:292–301,

02 2009.

[11] Goodwin J. S. and S. G. Franklin. The beer distribution game: using simulation to teach system. The

Journal of Management Development, 13(8):7–15, 1994.

[12] Federico Pasin and Hélène Giroux. The impact of a simulation game on operations management education.

Computers & Education, 57(1):1240–1254, 2011.

[13] Igor S. Mayer. The gaming of policy and the politics of gaming: A review. Simulation & Gaming,

40(6):825– 862, 2009.

[14] Jan Ritsema van Eck and Eric Koomen. Characterising urban concentration and land-use diversity in

simu- lations of future land use. The Annals of Regional Science, 42(1):123–140, Mar 2008.

[15] Meadows Donella H, Meadows Dennis L, Jørgen R, and William W Behrens III. The Limits to Growth.

New York, Universe Books, New York, 1 edition, 1972.

[16] Wells. Management games and simulation in management development: an introduction. Journal of Man-

agement Development, 9(2):4–6, 1993.

[17] A J Faria. Business simulations games: current usage levels - an update. Simulation Gaming, 29:295–308,

1998.

[18] AJ Faria and John R Dickinson. Simulation gaming for sales management training. Journal of

Management Development, 1994.

[19] Luigi Proserpio and Dennis A. Gioia. Teaching the virtual generation. Academy of Management Learning

& Education, 6(1):69–80, 2007.

Bibliography 35

[20] Stefanos Poultsakis, Stamatios Papadakis, Michail Kalogiannakis, and Sarantos Psycharis. The

management of digital learning objects of natural sciences and digital experiment simulation tools by

teachers. Advances in Mobile Learning Educational Research, 1(2):58–71, Jun. 2021.

[21] Inas Ezz, Cecilia Loureiro-Koechlin, and Lampros Stergioulas. An investigation of the use of simulation

tools in management education. In Proceedings of the 2012 Winter Simulation Conference (WSC), pages

1–14. IEEE, 2012.

[22] Jan van der Meij and Ton de Jong. Supporting students’ learning with multiple representations in a

dynamic simulation-based learning environment. Learning and instruction, 16(3):199–212, 2006.

[23] Paul Chandler and John Sweller. Cognitive load theory and the format of instruction. Cognition and

instruc- tion, 8(4):293–332, 1991.

[24] Hermina JM Tabachneck, Anthony M Leonardo, and Herbert A Simon. How does an expert use a graph?

a model of visual and verbal inferencing in economics. In Proceedings of the Sixteenth Annual conference

of the Cognitive Science Society, pages 842–847. Routledge, 2019.

[25] Robert Kozma. The material features of multiple representations and their cognitive and social

affordances for science understanding. Learning and instruction, 13(2):205–226, 2003.

[26] Society for learning analytics research. http://www.solaresearch.org/about/, April 2012.

[27] Eberlein, Robert, Chichakly, and Karim. Xmile: A new standard for system dynamics. System Dynamics

Review, 29, 07 2013.

[28] Houghton, James, Siegel, and Michael. Advanced data analytics for system dynamics models using pysd.

In Proceedings of the 33rd International Conference of the System Dynamics Society, 2015.

[29] Stack overflow yearly survey 2021. https://insights.stackoverflow.com/survey/2021.

accesed on: 21-08-2022.

[30] Vite documentation definition. https://vitejs.dev/guide/#overview. accesed on: 21-08-2022.

http://www.solaresearch.org/about/
https://insights.stackoverflow.com/survey/2021
https://vitejs.dev/guide/#overview

36 Bibliography

[31] Alkiviadis Vleioras. Modeling of decision making and learning in a business simulation game. Master

Dissertation, May 2020. New Entrepreneurship, Innovation and Development Department of Planning and

Regional Development Department of Mechanical Engineering Department of Economics University of

Thessaly.

Chapter

Appendix

1 Example of run_simul function

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

37

38 Chapter. Appendix

16 model_path = list (pathlib . Path(fileDir) . glob(fileExt))

17 model = pysd.read_vensim(model_path)

18

19 #cur_step as an integer − (0...1..2... N)

20 if (step_run) :

21 cur_step = int ((model_details . end_time − model[”INITIAL TIME”] − model[”TIME STEP”])/model[”

TIME STEP”])

22 else :

23 cur_step = 0

24

25 print (f ’ cur_step is :{ cur_step}’)

26

27 # Here starts the model run part

28 if (step_run) :

29 if (cur_step > 0) :

30 print (f ’N_th run of Simulation :({ model_details . start_time }, { model_details . end_time})’)

31 df = model.run(initial_condition =” ./ user / results / pickles / final_state . pic”, return_timestamps =(

model_details . end_time), params=(model_details . params))

32

33 else :

34 print (f ’1 st Run of Simulation :({ model[”INITIAL TIME”]},{model[”TIME STEP”]})’)

35 df = model.run(params=(model_details . params), return_timestamps =(model[”INITIAL

TIME”],model[” TIME STEP”]))

36

37 else :

38 print (f ’ model_details params are : { model_details . params}’)

39 if (cur_step>0): #cur_step > 0

40 df = model.run(initial_condition =” ./ user / results / pickles / final_state . pic”, params=(model_details

. params))

1 Example of run_simul function 39

41 else :

42 df = model.run(params=(model_details . params))

43

44 # Output Part

45 os. makedirs(f’ ./ user / results / pickles / ’ , exist_ok=True)

46 model.export(” ./ user / results / pickles / final_state . pic”)

47

48 if (cur_step>0):

49 data_as_dict = df . to_dict () # storing for merging in step run

50 f = open(f’ ./ user / results / simulation_state . json ’)

51 dict_before = json . load(f)

52 result = mergeStepDicts(dict_before , data_as_dict)

53 else :

54 data_as_dict = df . to_dict () # storing for merging in step run

55 result = data_as_dict

56

57

58 with open(f’ ./ user / results / simulation_state . json ’ , ’w’) as convert_file :

59 convert_file . write (json . dumps(result))

60

61 # create db entry

62

63

64 print (f ’ cur_step={cur_step}’)

65

66 simulation_res = models.Simulation (simulation_name= model_details . simulation_name,

67 model_name = model_details.model_name,

68 csv_path = None,

69 json_data = json . dumps(result) ,

40 Chapter. Appendix

70

71

72

73

2 API Directory with description

• .env – the folder containing all the necessary packages and environmental variables

• .gitignore – we add all the files we don’t want to upload in github

• alembic.ini – stores all the database record, and migration

• app.py – our main driver, here all the paths endpoints are defined

• crud.py – all the functions that are called from app.py

• database.py – the SQLAlchemy engine and database connection

• db-init.py – an initialization scripts, which runs only for once to upload the models on the database

• foo.db – this is a test database for development purposes

• functions.py – helpful functions

• models.py – the models classes defines the tables in the database

• Procfile – this file is needed for deployment, run’s the server

• readme.md – just a read me file in markdown

• requirements.txt – includes all the necessary packages name, it is the equivalent of packages.json

in js

2 API Directory with description 41

• schema.py – contains the various schemas of our api

• init .py – an empty file with special functionality in python to declare the root file as a package.

You can find the complete PySims API documentation

in https://pysims-github.herokuapp.com/docs

https://pysims-github.herokuapp.com/docs

