
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DEVELOPMENT OF AWEB APPLICATION

WITH AN INTEGRATED

RECOMMENDATION SYSTEM

FOR RECIPES

Diploma Thesis

Evangelia-Alkistis Lemonaki

Kleopatra Beka

Supervisor:Michael Vassilakopoulos

September 2022

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DEVELOPMENT OF AWEB APPLICATION

WITH AN INTEGRATED

RECOMMENDATION SYSTEM

FOR RECIPES

Diploma Thesis

Evangelia-Alkistis Lemonaki

Kleopatra Beka

Supervisor:Michael Vassilakopoulos

September 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΗΣ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ

ΜΕ ΕΝΣΩΜΑΤΩΜΕΝΟ ΣΥΣΤΗΜΑ ΣΥΣΤΑΣΕΩΝ

ΓΙΑ ΣΥΝΤΑΓΕΣ

Διπλωματική Εργασία

Ευαγγελία-Άλκηστις Λεμονάκη

Κλεοπάτρα Μπέκα

Επιβλέπων:Μιχαήλ Βασιλακόπουλος

Σεπτέμβριος 2022

v

Approved by the Examination Committee:

Supervisor Michael Vassilakopoulos

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

Member Athanasios Fevgas

Laboratory Teaching Staff, Department of Electrical and Computer

Engineering, University of Thessaly

Member George Thanos

Laboratory Teaching Staff, Department of Electrical and Computer

Engineering, University of Thessaly

vii

Acknowledgements

We want to express our gratitude to both our friends and family for encouraging us to

continue with the pursuit of our dreams and providing us with unconditional support during

this journey.

Furthermore, we thank Prof. Michael Vasilakopoulos for supervising this diploma thesis.

Moreover, I would like to thank Lab. Teaching Staff Athanasios Fevgas and Lab. Teaching

Staff George Thanos for their evaluation and contribution to our thesis.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarants

Evangelia-Alkistis Lemonaki and Kleopatra Beka

xi

xii Abstract

Diploma Thesis

DEVELOPMENT OF AWEB APPLICATION

WITH AN INTEGRATED

RECOMMENDATION SYSTEM

FOR RECIPES

Evangelia-Alkistis Lemonaki

Kleopatra Beka

Abstract

Due to the rapid technological development in recent years, an increasingly more significant

percentage of the population uses the internet for convenience in everyday activities. One of

these activities includes the process of learning and storing recipes. Whereas in the old days,

a person had to manually write a recipe on a piece of paper (or a notebook) and keep them

all stored together to stay organised, nowadays we only have to look online for any recipe

of our choosing. They have a list of ingredients at their disposal and a step-by-step guide.

Websites have integrated recommendation systems inside to help make this experience even

more personalised to the user. Depending on the selected type (content-based, collaborative

filtering, knowledge-based or hybrid), these systems provide content recommendations to the

user using their implicit and or explicit feedback to generate them. In this thesis, we present

the background of recommendation systems and the approach we took to develop both the

recommendation systems themselves and the website that supports them, in detail. A dataset

that includes fifteen thousand recipes and one hundred and eleven thousand reviews on these

recipes was used for the development of the recommendation systems. For our purposes,

we created three recommendation systems: two content-based and one with collaborative

filtering. The first system finds similar recipes based on nutritional values related to the recipe

of interest to the user. The second system, using cosine similarity, finds recipes similar to

the specific recipe of interest to the user based on ingredients, title, keywords and category.

Finally, the third system finds users with similar interests (in terms of recipes) and suggests

other recipes. We calculate the similarity in terms of interests using the scores users gave to

Abstract xiii

the recipes they evaluated.

Keywords:
Recommendation system, content-based, collaborative filtering„ knowledge-based, hybrid,

recipes, website, Django, Python

xiv Περίληψη

Διπλωματική Εργασία

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΗΣ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ

ΜΕ ΕΝΣΩΜΑΤΩΜΕΝΟ ΣΥΣΤΗΜΑ ΣΥΣΤΑΣΕΩΝ

ΓΙΑ ΣΥΝΤΑΓΕΣ

Ευαγγελία-Άλκηστις Λεμονάκη

Κλεοπάτρα Μπέκα

Περίληψη

Λόγω της ραγδαίας ανάπτυξης της τεχνολογίας τα τελευταία χρόνια, ένα ολοένα και μεγα-

λύτερο ποσοστό του πληθυσμού χρησιμοποιεί το διαδίκτυο για την διευκόλυνσή του στις

καθημερινές του δραστηριότητες. Μία από αυτές τις δραστηριότητες περιλαμβάνει τη διαδι-

κασία εκμάθησης και αποθήκευσης συνταγών. Ενώ παλαιότερα, ένα άτομο έπρεπε να γράψει

χειροκίνητα μια συνταγή σε ένα κομμάτι χαρτί (ή ένα σημειωματάριο) και να τις κρατήσει

όλες μαζί για να παραμείνουν οργανωμένοι, σήμερα δεν έχουμε παρά να ψάξουμε στο Δια-

δίκτυο για οποιαδήποτε συνταγή της επιλογής μας και έχουμε στη διάθεσή μας τη λίστα των

συστατικών και έναν οδηγό βήμα προς βήμα. Για να γίνει αυτή η εμπειρία ακόμα πιο εξατο-

μικευμένη στους χρήστες, οι ιστότοποι έχουν ενσωματωμένα συστήματα συστάσεων. Αυτά

τα συστήματα, ανάλογα με τον επιλεγμένο τύπο (βασισμένο στο περιεχόμενο, συνεργατικού

φιλτραρίσματος, βασισμένο στη γνώση ή υβριδικό), παρέχουν προτάσεις περιεχομένου στον

χρήστη χρησιμοποιώντας την έμμεση ή και την ρητή τους ανατροφορότηση για τη δημιουρ-

γία τους. Σε αυτή τη διατριβή, παρουσιάζουμε λεπτομερώς το ιστορικό των συστημάτων συ-

στάσεων μαζί με την προσέγγιση που ακολουθήσαμε για την ανάπτυξη τόσο των ίδιων των

συστημάτων συστάσεων όσο και του ιστότοπου που τα υποστηρίζει. Για την ανάπτυξη των

συστημάτων χρησιμοποιήθηκε ενα σύνολο δεδομένων που περιλαμβάνει δεκαπέντε χιλιάδες

συνταγές και εκατόν έντεκα χιλιάδες κριτικές πάνω στις συνταγές αυτές. Έχουν δημιουργηθεί

τρία συστήματα συστάσεων: δυο βασισμένα στο περιεχόμενο και ενα συνεργατικού φιλτρα-

ρίσματος. Το πρώτο σύστημα βρίσκει παρόμοιες συνταγές με βάση τις διατροφικές αξίες,

σχετικά με την συνταγή που ενδιαφέρει τον χρήστη. Το δεύτερο σύστημα, χρησιμοποιόντας

ομοιότητα συνημιτόνου, βρίσκει συνταγές παρόμοιες με την συγκεκριμένη συνταγή που εν-

διαφέρει τον χρήστη, ανάλογα με τα υλικά, τον τίτλο, τις λέξεις κλειδιά και την κατηγορία.

Περίληψη xv

Τέλος, το τρίτο σύστημα βρίσκει χρήστες με παρόμοια ενδιαφέροντα (ως προς τις συνταγές),

και προτείνει άλλες συνταγές. Η ομοιότητα ως προς τα ενδιαφέροντα υπολογίζεται απο τις

βαθμολογίες που έχουν δώσει οι χρήστες στις συνταγές που έχουν αξιολογήσει.

Λέξεις-κλειδιά:
Συστήματα συστάσεων, βασισμένο στο περιεχόμενο, συνεργατικού φιλτραρίσματος, βασι-

σμένο στη γνώση, υβριδικό, συνταγές, ιστότοπος, ιστοσελίδα

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiv

Table of contents xvii

List of figures xxi

List of tables xxv

Abbreviations xxvii

1 Introduction 1

1.1 Recipe Recommendation . 1

1.2 Contribution . 2

1.3 Bibliographic review . 2

1.4 Thesis Organization . 4

2 Background 5

2.1 Introduction Recommendation Systems . 5

2.2 Types of Recommendation Systems . 5

2.2.1 Content-Based Recommendation Systems 6

2.2.2 Collaborative Filtering Recommendation Systems 7

2.2.3 Knowledge-Based Recommendation Systems 9

2.2.4 Hybrid Recommendation Systems . 10

2.3 Problems of Recommendation Systems . 11

xvii

xviii Table of contents

2.4 Comparison of Recommendation Systems . 12

2.5 Feedback . 13

2.5.1 Ratings . 13

2.5.2 Implicit . 14

2.5.3 Explicit . 15

2.6 Evaluation Metrics of Recommendation Systems 15

2.6.1 Coverage . 16

2.6.2 Serendipity . 17

2.6.3 Novelty . 18

2.6.4 Privacy . 18

2.6.5 Accuracy Metrics . 19

2.6.6 Information retrieval measures . 20

3 Development Environment & Tools 23

3.1 Python . 23

3.2 Django Framework . 24

3.3 Bootstrap . 24

3.4 Anaconda . 25

3.5 PostgreSQL & pgAdmin 4 . 26

4 Design & Implementation 29

4.1 Dataset . 29

4.2 Front-End . 33

4.2.1 Login & Registration of a User . 33

4.2.2 Home page . 35

4.2.3 Side Navigation . 36

4.2.4 Nutrition . 37

4.2.5 Recipe Page . 38

4.2.6 Recommended Recipes . 43

4.2.7 Categories . 43

4.2.8 Ingredients . 46

4.2.9 Profile . 50

4.2.10 Useful . 54

Table of contents xix

4.3 Back-End . 57

4.3.1 Data and Storage . 57

4.3.2 Models . 60

4.4 Recommendation Systems . 61

4.4.1 Content-Based System I . 61

4.4.2 Content-Based System II . 63

4.4.3 Collaborative-Filtering System . 65

4.4.4 Hybrid System . 68

5 Experimental Evaluation 69

5.1 Recommendation Algorithm Evaluation . 69

6 Conclusions 73

6.1 Summary . 73

6.2 Future Work . 74

Bibliography 75

APPENDICES 81

A Prerequisites 83

A.1 Download Python . 83

A.2 Create Virtual Environment . 83

A.3 Download Packages . 84

A.4 Download Django . 85

A.5 Download pgAdmin4/PostgreSQL . 85

B How to use the website 87

B.1 Download the code . 87

B.2 Set up the database . 87

List of figures

2.1 Content-Based Filtering example . 7

2.2 Collaborative Filtering example . 8

2.3 Knowledge-Based example . 10

2.4 Hybrid system example . 11

2.5 Interval-based rating example [1] . 13

2.6 Ordinal rating example [1] . 14

4.1 Distribution of ratings . 31

4.2 Distribution of Number of Ratings Per Recipe 31

4.3 Most Rated Recipes . 32

4.4 Distribution Of Number of Ratings Per User 32

4.5 Users With Most Ratings . 33

4.6 Login Form. 34

4.7 Registration Form - Step 1. 34

4.8 Registration Form - Step 2. 35

4.9 Registration Form - Step 3. 35

4.10 Home page. 36

4.11 Top Rated recipes. 36

4.12 Side Navigation panel. 37

4.13 Find recipes with similar calories. 38

4.14 Recipes with similar calories. 38

4.15 Recipe page. 39

4.16 Recipe information. 39

4.17 Nutrition table. 40

4.18 Recipe ingredient and instruction list. 40

xxi

xxii List of figures

4.19 Rating and action buttons. 41

4.20 Recipe reviews. 42

4.21 User review. 42

4.22 User Recommendations. 43

4.23 Categories side panel. 44

4.24 Categories. 44

4.25 Categories limiting search. 45

4.26 Category Recipes. 45

4.27 Categories pagination. 46

4.28 Ingredients side panel. 46

4.29 Search by Ingredients. 47

4.30 Recipes with ‘pasta’ as an ingredient. 47

4.31 Recipes with ‘chicken’ as an ingredient. 48

4.32 Recipes with ‘dough’ as an ingredient. 48

4.33 Recipes with ‘chocolate’ as an ingredient. 49

4.34 Recipes with only ‘sugar’ as an ingredient. 49

4.35 Recipes with ‘sugar’ and ‘bananas’ as ingredients. 50

4.36 User profile. 51

4.37 Edit profile. 51

4.38 Edit profile page after filling out the information. 52

4.39 Change password. 52

4.40 Other users’ profiles. 53

4.41 Other users’ profiles. 54

4.42 Other users’ profiles. 54

4.43 Useful side panel. 55

4.44 Volume Converter page. 55

4.45 Length Converter page. 56

4.46 Temperature Converter page. 56

4.47 ERD . 59

4.48 Content-Based I example . 63

4.49 Cosine Similarity Equation . 64

4.50 Content-Based II example I . 65

List of figures xxiii

4.51 Content-Based II example IΙ . 65

4.52 Collaborative-Filtering example . 67

5.1 Cross Validation results . 71

5.2 Accuracy of BaselineOnly algorithm . 71

5.3 Best predictions of BaselineOnly algorithm . 72

5.4 Worst predictions of BaselineOnly algorithm 72

A.1 Check python version . 83

A.2 Downloaded packages . 84

A.3 Django run server . 85

A.4 Connection of database . 86

B.1 Project run server . 88

List of tables

2.1 Classification of the possible result of a recommendation of an item to a user. 21

xxv

Abbreviations

e.g. for example

etc. Et cetera

aka Also known as

HTML HyperText Markup Language

CSS Cascading Style Sheets

RMSE Root Mean Square Error

MAE Mean Absolute Error

EDA Exploratory Data Analysis

KNN K-Nearest Neighbor

NLP Natural Language Process

SGD Stochastic Gradient Descent

TF-IDF Term frequency - Inverse document frequency

GUI Graphical User Interface

xxvii

Chapter 1

Introduction

In recent years, technological advancements have aided the market of readily available

websites for solving the everyday needs of their users. One such demand is cooking. As a

result, recipe websites make an increasing appearance on the web, overcrowding the space

with exorbitant amounts of data. Consequently, users may become overwhelmed by the sheer

volume and grow unable to retrieve the information they were searching for in the first place.

To solve this problem, we have developed recommendation systems whose sole purpose is to

figure out the user’s preferences and remove the menial and time-consuming task of finding

content to their liking. As recipe sharing through the internet becomes increasingly popular,

the demand for such a solution as integrated recommendation systems becomes a necessity

that every user-based website cannot do without.

For the systems to do their job correctly, they need to process a large amount of data

(usually, they need at least 10000 items). For our case, we used data from two CSV files con-

taining around 500,000 recipes frommore than 300 different categories and almost 1,500,000

reviews. Food.com is a popular website for sharing recipes and reviews with users from all

around the world. The recipe’s data (for example, calories, fat content and other nutritional

values) are solely provided by the recipe author.

1.1 Recipe Recommendation

This diploma thesis aims to solve the problem mentioned above that users experience

nowadays. Notably, the way to solve the obstacle of overwhelming the user with informa-

tion is by creating personalised recommendation systems. The recommendations provided

1

2 Chapter 1. Introduction

through these systems will be tailored to each user on the website, taking into consideration

the implicit and explicit feedback that the user generates while using the site to create them.

This technique results in the user having ready-to-go content recommendations and do not

have to search endlessly for something they might like in the vast amount of data. There are

three recommendation systems in total, two of them are Content-Based and the other one is

Collaborative Filtering. After their explanation and implementation, we evaluated them and

interpreted the results.

1.2 Contribution

The contribution of this thesis can be summarized as follows::

1. Recommendation systems of various types have been studied in order to discern the

ones that fit our needs.

2. A website has been implemented for the purpose of this thesis.

3. The recommendation systems that we have deemed necessary for our demands have

been created and integrated with the website.

4. An evaluation on the accuracy of the recommendations has been conducted.

1.3 Bibliographic review

Book [1] is significantly informative and contains all the theories behind recommendation

systems and their application. Apart from that, there are numerous examples to understand

the concept fully. Furthermore, book [2] is equivalent to the one mentioned before, but it

explains in more detail the comparison between different recommendation systems. Article

[3] consists of information about Content-Based and Collaborative Filtering systems. The [4]

is an article that explains the problems of each type of recommendation system and suggests

a hybrid approach. Also, [5], and [6] suggest a hybrid system but the first one also contains

general information about hybrid recommendation systems and some of the combinations.

In [7], we have the differences between Memory-Based and Model-Based systems. Article

[8] is a valuable source of information about all the types of recommendation systems and

their subcategories. Also, it mentions the techniques of the systems and their limitations, like

1.3 Bibliographic review 3

the cold start problem, that articles [9] and [10] explain more about it, its subcategories and

its solutions. In [11], knowledge-based systems and their components are explained. After

that, articles [12] and [13] interpret the types of feedback, implicit and explicit. Apart from

explaining the types of feedback, the first one contains some information about predicting

values from user feedback with machine learning algorithms and evaluating them. Articles

[14], [15], [16], [17] and [18] describe what is evaluation on systems. They explain the basic

general methods of evaluations, like novelty and serendipity, and [17] interprets the accuracy

metrics.

As far as recommendation systems are concerned, in article [19], we have a recipe rec-

ommendation system that uses machine learning algorithms. More specifically, the dataset

is created with web scraping from a website called ‘yummy.com’. Then Term frequency -

Inverse document frequency (TF - IDF) is used along with cosine similarity to compute the

scores of the ingredient pairs. TF - IDF is a statistical measure that evaluates how compatible

a word is with a document in a group of documents. On the other hand, cosine similarity

measures the similarity between two vectors of an inner product space. We used a function

similar to TF - IDF, called CountVectorizer, and cosine similarity only in our Content-Based

part of the hybrid system we made. Another interesting approach is the one in article [20]

that is based on Natural Language Process (NLP) using the nutrition data of the recipes.

In article [21], we have a recommendation system similar to ours, which is a hybrid

recommendation system using both Content-Based and Collaborative Filtering approaches.

It proposes two hybrid strategies utilising the content of recipes and rating information on

recipes. The first approach is withK-Nearest Neighbor(KNN), and the second is with Stochas-

tic Gradient Descent (SGD). Apart from the Collaborative filtering technique, both use con-

tent information from recipes. The dataset used here is also from the ‘food.com’ website. The

algorithm we used in our Collaborative-Filtering part of the project is called BaselineOnly,

and it is simpler than these mentioned above. Still, according to the RMSE values, this one

gave the best RMSE for our dataset. Apart from that, its implementation was much easier

using the surprise library from python, and the Content-Based part of our project gives better

results with cosine similarity. Also, in article [22], a hybrid model combines Content-Based

and Model-Based Collaborative Filtering to propose a recipe recommendation system based

on various ingredients. Moreover, it could find ingredients that are similar to make different

recipes.

4 Chapter 1. Introduction

1.4 Thesis Organization

In Chapter 2 we discuss the the background of recommendation systems, their types and

problems, along with the evaluation metrics.

In Chapter 3 we reference the various tools used to create our website.

In Chapter 4 we discuss the making of the website, both front-end and back-end.

In Chapter 5 includes the experimental evaluation of the recommendation systems.

In Chapter 6 we summarise the thesis and discuss possible future work.

Chapter 2

Background

In this chapter, we will explain what recommendation systems are, when someone can

use them, and their types in detail. Moreover, feedback, ratings and their categories, which

show the user’s experience, are analyzed. Finally, the evaluation metrics of recommendation

systems are described along with mathematical formulas, where necessary.

2.1 Introduction Recommendation Systems

The principal use for recommendation systems is to use collected data to determine what

a user may like based on what they have already interacted with and provide recommenda-

tions. A secondary use is to supply the user recommendations for new content even if they

would not typically try them. Recommendation systems help users cope with the problem

of information overload by presenting them with the most engaging content for them and

offering innovation. Recommendation technology is an effective solution to the problem of

searching for information that arose along with the continuous increase in data.

2.2 Types of Recommendation Systems

When discussing recommendation systems, the two most popular types are content-based

and collaborative filtering. Another type not as well-known is knowledge-based. Last but not

least, we have hybrid recommendation systems that use a combination of techniques from

each type.

5

6 Chapter 2. Background

2.2.1 Content-Based Recommendation Systems

Content-Based recommendation systems, as the name suggests, utilise the content users

consume to provide recommendations. Specifically, each item in the database that the user has

previously interacted with is divided into attributes. Afterwards, we handle those attributes

to create recommendations based on the amount of similarity between items. For example,

if a user interacts only with chicken-based recipes, the system will recommend them solely

chicken-based recipes similar to those with high ratings from the user. Generally, if someone

is interested in a specific item, the system will suggest content as similar to that item as pos-

sible. In contrast with Collaborative filtering systems, Content-Based ones do not have any

problems with new users and items. This type of recommendation system works in two com-

pletely different methods and a variety of models and algorithms. The first uses the vector

spacing method [3] and the second uses a classification model. There are some fundamental

advantages to a Content-Based recommendation system. To begin with, it does not require

data about other users. Additionally, it suggests niche things to the user, based on their pref-

erences, that only a few other users may find engaging. Furthermore, when new items are

added, they appear on the list of recommendations even if they are not rated yet. However,

there are also disadvantages; for example, the suggestions are limited to the user’s current

interests, so there is no variety of subjects recommended and only a small amount of novelty.

[1] [4] In Figure 2.1 there is an example of Content-Based filtering.

2.2.2 Collaborative Filtering Recommendation Systems 7

Figure 2.1: Content-Based Filtering example

2.2.2 Collaborative Filtering Recommendation Systems

Collaborative filtering is the most acknowledged category of recommendation systems.

It uses the ratings of multiple users to recommend content. Computers nowadays allow us to

process a massive amount of data so we can use the opinions of hundreds of users to come

up with the best possible personalized recommendations. The main challenge of this type of

recommendation system is that the ‘ratings’ matrix is sparse, as there are tons of recipes, for

example, but a user only rates a few of them. In Figure 2.2 we present a Collaborative Filtering

example. Mainly there are two methods used in collaborative filtering, Memory-Based and

Model-Based. [1]

8 Chapter 2. Background

Figure 2.2: Collaborative Filtering example

2.2.2.1 Memory-Based method

The Memory-Based method is one of the earliest created approaches and is also known

as neighbourhood-based collaborative filtering. This method generates recommendations by

locating sets of users, known as neighbours, similar to the target user. It uses the entire matrix

of the user-item ratings to find suggestions. Regardless, two fundamental problems occur,

sparsity and scalability. The issue of sparsity arises because users do not rate many items,

which results in a sparse matrix. Scalability, on the other hand, happens because the memory-

based approach can not handle vast amounts of data (users and items). [7] The Memory-

Based method is easy to implement but does not produce satisfactory results with sparse

‘ratings’ matrices. The method is divided into two subcategories: User-based and Item-based

Collaborative filtering.

The first assumes that a user will be interested in an item if other users similar to them

like this item as well. Generally, users are categorised as similar when they have many ‘liked’

items in common. So, the k more similar users to person A we find, the better the predictions

for their unrated recipes, for example, will be. [1]

2.2.3 Knowledge-Based Recommendation Systems 9

The second category is similar to the Content-Based method. In short, if we have a target

item A and a user B, this method discovers sets of similar items to A and recommends them

to user B. [1]

2.2.2.2 Model-Based method

In contrast, the Model-Based method groups different users into classes based on their

rating patterns. [7] Machine learning and data mining methods are primarily used for predic-

tions. Some of them are the Bayesian network, decision trees and rule-based models. [1] The

model-based approaches are usually time-consuming to build and update and cannot cover

as diverse a user range as the memory-based ones do.[7]

2.2.3 Knowledge-Based Recommendation Systems

Knowledge-Based recommendation systems are different from the others we discussed

above. It uses other techniques to recommend content based on domain knowledge. A specific

user will get recommendations based on their profile and feedback from other users will not

be included in most cases. [11] This is the main difference between this recommendation

system and Content-Based/Collaborative Filtering because these two give suggestions based

on the past actions of the user and his peers. Knowledge-Based systems are separated into two

subcategories, Constraint-Based and Case-Based recommendation systems. In Constraint-

Based, users specify their needs or constraints (for example, limits) on the item attributes. In

a Case-Based system, however, there are specific cases that are selected by the user as targets

(or anchor) points. In Figure 2.3 the process of the system is observed. [1]

10 Chapter 2. Background

Figure 2.3: Knowledge-Based example

2.2.4 Hybrid Recommendation Systems

The recommendation systems specified above have many advantages. However, they

contain enough problems that there was a demand for a different solution. The solution to

that is Hybrid recommendation systems. These recommendation systems combine two or

more of the individual systems mentioned in the previous chapters. In Figure 2.4, there is

a hybrid system example which combines three different recommendation techniques. The

result of merging the various aspects of recommendation systems is better performance with

fewer drawbacks for any individual one. [1] Usually, Collaborative Filtering is combinedwith

another type of recommendation system. For example, EntreeC is a hybrid recommendation

system that combines Knowledge-Based and Collaborative Filtering. The knowledge-Based

method helps the Collaborative Filtering because it creates an entry point where the target

user rates an item so the item cold start problem does not exist anymore.[5] Some of the

techniques of hybrid systems are:

• Weighted: A linear combination of predictions by the various methods of the recom-

mendation system used is computed to come up with the final result.

• Switching: The hybrid system switches among the available methods based on the

requirements each time.

• Mixed: The final result here is the results of each method added together without any

combination. [6]

• Feature Combination: The outcome of the collaborative-filtering method is used as a

2.3 Problems of Recommendation Systems 11

feature to build a Content-Based system over the augmented feature set.

• Cascade: In the cascade case, one system of recommendations refines the results given

by another system.

• Feature augmentation: The results of one recommendation system are utilised as input

features for the other system.

• Meta-level: The model used for a recommendation system is utilised as input for an-

other system. [1]

Figure 2.4: Hybrid system example

2.3 Problems of Recommendation Systems

A content-Based system has considerable disadvantages. This system is based solely on

the objective information of items. Thus, it does not consider the subjective attributes of the

item. Moreover, another problem is overspecialization since it suggests only items similar to

those the user has rated highly. As a result, the user does not get any recommendations about

other categories of items that they have not yet tried but may find interesting. Furthermore,

the quality of the suggestions is not up to par unless there is enough interaction with the target

user. [4] [11]

For Collaborative-Filtering recommendation systems, the main concerns are sparsity and

scalability. The item-user ‘ratings’ matrix has many items, and the user’s ratings are too few

compared to the number of items, which means the matrix is sparse. As for the problem

of scalability, the memory-based approach can not handle large amounts of data (users and

12 Chapter 2. Background

items). [7] Another problem is the item cold-start problem, which occurs when we add new

items, and there is no feedback for them, so it is not recommended to the users. [4] Further-

more, an additional concern is the ‘grey sheep’ that occurs when we classify users into two or

more different groups, making the similarity equivalent and the recommendations unreliable.

[11]

The Cold Start problem occurs when there is an insufficient number of ratings and feed-

back to generate quality recommendations. [8] There are three types of cold start problems:

• New community: The lack of data (ratings) when creating a new recommendation sys-

tem for making reliable recommendations.

• New item: When adding a new item with no ratings, the users will not get recommen-

dations for this item.

• New user: When users register for the first time, they have not rated any items, so the

system can not generate personalized recommendations about them. Apart from that,

even if the user has rated only a few items, it is entirely possible that this will not be

enough for the system to make satisfying suggestions causing the users to stop using

the application. [9] [10]

Content-Based and Collaborative-Filtering recommendation systems suffer from the cold

start problem, either ‘new item’, ‘new user’, or both. That is because they need past actions

of users to produce recommendations. [6]

2.4 Comparison of Recommendation Systems

Each one of the recommendation systems mentioned above has advantages and disadvan-

tages, and the results differ depending on the type of data. Specifically, a particular method

may not produce satisfactory results for one kind of data because of the algorithm in use. Fur-

thermore, it is challenging to generate recommendations for a user that does not interact with

any content. Collaborative filtering works very well in this case. However, there are other

concerns, such as the item cold-start problem and the issue that if a user likes only a specific

category of items, there might be other available users with the same taste. A content-Based

system does not have these types of problems and works well with new content. [2]

2.5 Feedback 13

2.5 Feedback

Feedback and ratings are mentioned many times in this chapter by now. These ratings

show the level users like or dislike a specific item.

2.5.1 Ratings

2.5.1.1 Continuous rating values

Ratings can be continuous values. Usually, in cases like this, the users have to select a

value in a range (for example, 0 to 100). However, this method is not often used.

2.5.1.2 Interval-based ratings

Interval-based ratings are a method of feedback that is more in use than Continuous rat-

ing values. In Interval-based ratings, a discrete set of numbers in order are used to quantify

positive or negative ratings. For example, a 5-point rating scale might look like this set −2,−1,

0, 1, 2, in which the lowest value of rating (−2) indicates an extreme dislike, and the highest

value of rating (2) indicates a strong like to the item. Figure 2.5 contains an example of a

5-star rating method.

Figure 2.5: Interval-based rating example [1]

2.5.1.3 Forced Choice rating system

Consider a 5-star Interval-based method with the following set of numbers 1, 2, 3, 4, 5.

If number 4 corresponds to ‘really like’ and number 3 corresponds to ‘like’, there are two

14 Chapter 2. Background

choices for dislike and three for like, so we have an unbalanced rating scale as a number that

corresponds to ‘neutral’ does not exist.

2.5.1.4 Ordinal ratings

If ordered categorical values are used like Strong dislike, Dislike, Neutral, Like, Strong

like we have the Ordinal rating case. The name for the category comes from the fact that these

attributes are ordinal. In Figure 2.6 an example of Ordinal rating used in Stanford University

course evaluation forms is illustrated.

Figure 2.6: Ordinal rating example [1]

2.5.1.5 Binary ratings

For Binary ratings, there are only two options to rate an item; positively or negatively.

The choices can be like or dislike (as seen on YouTube), 0 and 1, or unspecified values.

2.5.1.6 Unary ratings

Unary ratings allow the users to specify whether they like an item, but there is no option

to express a negative rating. Unary ratings are often used, especially in implicit feedback data

sets. For example, if a user buys an item, it means they liked it, but if they do not buy it, this

does not mean that they did not like it. [1]

2.5.2 Implicit

Implicit feedback is the type of feedback the users are urged to make on their own, for ex-

ample, rating a movie on IMDB. This feedback seems to be the most straightforward route for

the recommendation system to understand what users like. However, this notion is inaccurate,

as the feedback is inherently noisy and harder to interpret. [12] [13] That is why sometimes

users rate an item in a way that does not correspond to their natural reaction and feelings

about this specific item. Consider some users that declare they like vegan food recipes, but

2.5.3 Explicit 15

they have made chicken soup many times. Which one of these reflects their true preferences?

Definitely the second one.

2.5.3 Explicit

The system generates explicit ratings bymonitoring the users’ actions. For instance, when

users buy an item, it is possible that they are interested in this item. That means that the users

would rate with a high value this item. Furthermore, if users ask for more information about

an item or check it out on a website, it possibly means they like it. Because of the problem

mentioned above in implicit feedback, explicit ratings are becoming more popular. [1]

2.6 Evaluation Metrics of Recommendation Systems

This section will analyse various ways of evaluating a recommendation system. We im-

plement the evaluation process using two different methods, in general, online and offline.

The user’s reactions are measured in online methods concerning the presented recom-

mendations. In order to achieve this, active users are essential. For instance, in an online

evaluation of a recipe recommendation system, one might measure the percentage of users

clicking on recommended recipes. These methods are known as A/B testing and what they

actually do is measure the direct impact of the recommendation system on users. However,

because of the necessity of active users, this method is usually not feasible in research. [1]

On the other hand, offline evaluation methods are used much more frequently with static

data resources and analogous evaluation metrics to estimate numeric effectiveness measures

that can be tuned for and compared. In this type of evaluation, the existing ratings are divided

into train set and test set, with the choice of where a rating is placed, train or test, as an attribute

of (u, i) combined and not as individuals(u or i). The training set has rating data that are used

as an input field to the recommendation system to build a model of user-item interplays. Then,

a score has to be set for each item of the train set affiliated with the target users or to each

item in the other set for the users, as mentioned earlier. [18]

The following issues are significant when designing evaluation methods for recommen-

dation systems:

• Evaluation goals: Although accuracy metrics are commonly used for evaluating rec-

ommendation systems, the image of the users’ experiencemay not be total. Even if they

16 Chapter 2. Background

are the most valuable part of the evaluation, many other objectives such as innovation,

trust, coverage and serendipity are also essential for the users’ experience.

• Experimental design issues: Even when we use accuracy as the metric, it is critical

to design the tests so that the accuracy is not overestimated or underestimated. For

instance, if the same set of defined ratings is used both for model development and for

accuracy evaluation, the accuracy will be highly overestimated.

• Accuracy metrics: This one is the most significant evaluation part of the evaluation.

Recommendation systems can be assessed either as the prediction accuracy of a rating

or the accuracy of ranking the items. So, common metrics like the mean absolute error

(MAE) and mean squared error (MSE) are regularly used. The estimation of rankings

can be accomplished using numerous methods, like utility-based computations, rank-

correlation coefficients, and the receiver operating characteristic curve. [1]

2.6.1 Coverage

As reported by [14], the coverage of a recommendation system is a measure of the field

of items over which the system can make recommendations. The term coverage was mainly

related to two approaches: (i) the percentage of the items for which the system can make a

suggestion, and (ii) the percentage of the accessible items which successfully are at least once

recommended to a user [14] [17]. Therefore, even though various authors differ regarding

terminology, we choose the definition from [14] and refer to (i) as prediction coverage and

(ii) as catalogue coverage.

Prediction coverage is mainly based on the recommendation engine and its input. If we

have a collaborative filtering system, the inputs are item ratings. The systemwill be capable of

making suggestions for items for which it obtained enough input. In our case, it will generate

reliable recommendations if we have enough ratings. If we define the available items and Ip

the items that the system can make predictions for, a fundamental measurement for prediction

coverage can be given by:

Prediction coverage =
∣Ip∣
I

Assuming that r(x) gives the usability of item x, a weighting factor in the computation of

2.6.2 Serendipity 17

the coverage is introduced for taking the corresponding usefulness of items in a recommen-

dation list into account:

Weightedprediction coverage =
∑i∈Ip r(i)
∑j∈I r(j)

Catalog coverage can be a highly valued measure for systems that suggest lists of items

(e.g. top 5 most appropriate items) since the above coverage does not consider this. Catalog

coverage is generally measured on a set of recommendation sessions; for instance, by exam-

ining for a specified period, the recommendations returned to users [14]. If we consider IjL as

the set of items included in the list L returned by the jth suggestions noticed during the mea-

surement time. N is the total number of suggestions observed during the measurement time,

and let ‘I’ be the set of the entire accessible items. The measurement of catalog coverage is

as follows:

Catalog coverage =
∣⋃j=1...N IjL∣
∣I ∣

If Bj refers to the set of items that may be valuable to be returned in suggestion j, the

computation of the Weighted Catalog coverage is given as follows:

WeightedCatalog coverage =
∣⋃j=1...N(IjL⋂Bj)∣
∣⋃j=1...N Bj ∣

[14]

2.6.2 Serendipity

Serendipity is equal to ‘lucky discovery’, which means that we measure how obvious

the recommendations the system makes are. Serendipity is something bigger than a novelty,

which depends on how much the user suspects what recommendation results he will see. For

example, consider a user who makes recipes from Category A, and the recommendation sys-

tem suggests new recipes from Category B. These recipes will be new to the user. However,

these categories might relate to each other, so these recommendations will not be serendipi-

tous. However, if these categories are unrelated, the recommendations are more unexpected

and serendipitous. [1] Consider PM as a set of suggestions made by a primitive prediction

model and RS as the recommendations made by a recommender system. Elements from RS

that do not appear in PM are denoted as unexpected recommendations. So, we calculate the

unexpected set of recommendations with the following equation:

18 Chapter 2. Background

UNEXP = RS/PM

Although, the unexpected recommendations are not at all times useful. So, u(RS\RM) is

used to describe the usefulness of the recommendations mentioned before. If u(RSi) = 1 the

prediction is useful, else if u(RSi) = 0 it is not. N is the overall number of data in UNEXP.

The following equation determines the serendipity: [15]

SRDP = ∑
N
i=1 u(RSi)

N

2.6.3 Novelty

Novelty has to do with the percentage of the recommendations a recommendation system

makes that the target user was unaware of or has not seen again. The unexpected recommen-

dations help users discover whether they have other preferences they have not discovered yet.

Moreover, it helps with recipes, for example, or categories they dislike. In some types of rec-

ommendation systems, like Content-Based methods, the suggestions are generally relevant

to each other because some features are combined, and their similarity leads to the final sug-

gestions. However, these recommendations are too obvious, so there is no novelty here. The

most efficient way of measuring novelty is to ask the users if they have ever seen or thought

of the recommended items. However, this online method is usually complex because it re-

quires large databases with users. However, some offline methods are available, considering

we have timestamps together with the ratings. Novelty recommendation systems’ target is to

suggest items that a user is more likely to choose in the future. [1]

2.6.4 Privacy

The privacy issue comes with Collaborative Filtering systems, in which a user shares his

preferences over items with the system to get some valuable recommendations. However,

these preferences must stay private; that is, no one else can use the recommender system to

gain information about the preferences of a particular user. It is inappropriate for a recom-

mendation system to reveal private information about users, not even for a single one. Last

but not least, privacy may come at the expense of the accuracy of the suggestions. So, it is

significant to examine this trade-off thoroughly. [17]

2.6.5 Accuracy Metrics 19

2.6.5 Accuracy Metrics

The accuracy must be measured over the test set to conclude that a recommendation

system makes satisfying and efficient recommendations. [1] First of all, to begin the process,

a recommendation system must have a data set including several items (I). Also, some of

these items have to be rated implicitly or explicitly in one of the two ways mentioned in

section Feedback. Then, the system chooses a number of these items and suggests them to

the target user in a specific form, e.g. ordered list. The most critical issues here are:

• the set of the selected items

• in which order these items are(in case of ordered list)

To measure the accuracy of the recommendation system, the thing that is taken most into

account is how close the utility of the shown object is considering the preferences of the

target user. Generally, accuracy is the most known metric in Artificial Intelligence, and the

following equations can describe it: [16]

accuracy = number of good cases

number of cases

accuracy = number of successful recommendations

number of recommendations

In many cases, the difference between the actual and predicted value of the recommen-

dation system is calculated to measure the accuracy. This value is called error,

error = real value − predicted value

2.6.5.1 Root Mean Squared Error (RMSE)

This metric is the most popular one used to measure predicted ratings’ accuracy. The

system sets up predicted ratings r̂ui for a test set T containing user-item pairs (u,i). Apart

from that, the real ratings rui are known because the users have previously rated the items

explicitly or implicitly. The RMSE value among the predicted and actual ratings is calculated

by:

RMSE =
¿
ÁÁÀ 1

∣T ∣ ∑(u,i)∈T
(r̂ui − rui)2

20 Chapter 2. Background

One feature of the RMSE is that it disproportionately penalises significant errors through

the squared term within the summation. [17]

2.6.5.2 Mean Absolute Error (MAE)

MeanAbsolute Error calculates the absolute value of the difference between the predicted

value and the actual value. For example, let ‘i’ be the first prediction in which the algorithms

predict a value much bigger than the actual and ii the second prediction with a predicted value

much smaller than the actual. These two predictions will cancel each other out, resulting in a

small error value. However, only positive values will be calculated using the absolute value

so that the error will be the actual addition of the two predictions’ errors. The equation for

MAE is the following:

MAE =
¿
ÁÁÀ 1

∣T ∣ ∑(u,i)∈T
∣r̂ui − rui∣

Mean Absolute Error, compared to Root Mean Squared Error does not disproportionately

penalizes large errors. [17]

2.6.5.3 Disadvantages of measuring Errors

The main problem with the above metrics is that usually, most users do not consider

as significant the fact that recommendation systems can predict their rating with decimal

precision. Instead, most likely, they are interested in the list of items the system returns.

Moreover, not much weight is given to whether the system can predict the rating for items

users have rated low.

Using these measures has the problem that all ratings are considered essential. If we look

at the problem from the scope of top-k recommendations and not from the prediction of the

rating, the issue is if the recommendations are good enough. On the other hand, the items

not included in the top-k list are almost indifferent. So, the measures mentioned in the next

section are more important than these.

2.6.6 Information retrieval measures

In many cases, applications do not have recommendation systems that predict the rating

the user will give to an item. However, it attempts to recommend items common to these the

target user likes. For example, if a user adds a recipe to ‘favourite recipes’, the system tries

2.6.6 Information retrieval measures 21

Recommended Not recommended

Used True-Positive (TP) False-Negative (FN)

Not used False-Positive (FP) True-Negative (TN)

Table 2.1: Classification of the possible result of a recommendation of an item to a user.

to suggest similar recipes that the user might add to favourites in the future. So, we measure

whether the user actually adds the predicted items to liked items or not.

A common technique is that a specific user is selected from a data set, and some of the

user’s ratings are removed from the data set. Then, the recommendation system has to predict

some items the user might like and compare them to those removed. After that, there are four

possible outcomes for the recommended and hidden items, as shown in Table 2.1

• True Positive (TP) : An item is recommended and used by the user.

• False Positive (FP) : An item is recommended but the user has not used it.

• True Negative (TN) : An item is not recommended and the uses has not used it.

• False Negative (FN) : An item is not recommended but the user used it.

Since the data is not collected during the recommendation system evaluation, all unused

items must be set as indifferent and useless to the target user, as if the user would never be

interested in any of those. However, this is not always true because a user may not have dis-

covered the existence of an item or a category of items, so they may be helpful after they have

been listed in the recommendation results. In this case, the number of ‘FP’ (false positive) is

overestimated.

The number of examples that fall into each cell in the table can be counted, and the fol-

lowing quantities may be computed:

Precision = #TP

#TP +#FP

Recall(TruePositiveRate) = #TP

#TP +#FN

FalsePositiveRate(1 − Specificity) = #FP

#FP +#TN

22 Chapter 2. Background

Usually, we foresee trade-offs among these quantities. Besides, longer suggestion lists

improve recall, but the precision may decrease. In applications where the number of returned

recommendations is fixed, the best measure is Precision at N. On the other hand, if the rec-

ommendation lists are not fixed, curves comparing precision to recall or true positive to false

positive are computed to evaluate the algorithms. The first type is the precision-recall curve,

and the other is the Receiver Operating Characteristic or ROC curve. Although both curves

measure the percentage of recommended items, precision-recall curves emphasize the pro-

portion of chosen suggested items. In contrast, ROC curves emphasize the proportion of items

not chosen that end up being recommended. [17]

Chapter 3

Development Environment & Tools

To develop the web application that supports the development of recommendation sys-

tems, we needed to find the tools that would help us most in our endeavour. After carefully

considering all available means at our disposal, we selected the following languages and

tools.

3.1 Python

For developing our thesis, we used Python programming language and, to be more spe-

cific, version 3.9.0. Python is an OSI-approved open source license, making it freely usable

and distributable, even for commercial use [18]. It is an object-oriented language created by

Guido van Rossum and released in 1991. Even though Python has been around for over thirty

years, it is still one of the most popular programming languages. The reason why is because

Python can be used for several things, such as:

• create web applications

• connect to database systems

• perform complex mathematical calculations

• software development

making it versatile. Another reason why Python has become so widely used is because

of its simple syntax and readability, making it one of the easiest programming languages for

beginners and experienced programmers alike to grasp and use. This, along with the vast

23

24 Chapter 3. Development Environment & Tools

libraries available with ready-to-use functions, makes Python a valuable asset in a program-

mer’s toolkit.

3.2 Django Framework

For designing the website, we used Django Framework. Django is a free, open-sourced

Python Framework, released publicly on 2005, and its principal use is to make the process of

creating a website more accessible. That means that Django focuses on the reusability of its

content (aka DRY; Don’t Repeat Yourself) with ready-to-use functions that allow the user to

concentrate on developing the web application.

Django has several features that make it appealing when choosing an approach to creating

a website.[23] Such as:

• Super Fast: designed to help developers create web apps quickly.

• Fully loaded: user authentication, content administration, site maps, RSS feeds etc.,

are all taken care of by Django.

• Reassuringly secure: SQL injection, cross-site scripting, cross-site request forgery

and clickjacking are some of the issues with security that Django helps overcome with

its secure user authentication.

• Exceedingly scalable: Django helps with website traffic demand.

• Incredibly versatile: Build anything from content management systems to scientific

computing platforms.

Furthermore, Django follows the MVT (Model-Views-Template) architectural pattern.

The ‘Model’ assists with handling the data that the developer works with; more often than

not, the data are from databases. The ‘View’ deals with the appearance and is the layer that

the user sees and interacts with. Finally, the ‘Template’ handles the logic and functionality of

the web application.

3.3 Bootstrap

To design the website more efficiently, we used Bootstrap version 5. Bootstrap is cur-

rently the most popular HTML, CSS and JavaScript Framework available for developing

3.4 Anaconda 25

responsive websites released on 2011 [24]. Bootstrap is a front-end framework that includes

base templates for web page content that is regularly used. That includes templates for:

• Cards, card groups and card decks.

• Buttons

• Modals

• Tables

• Image carousels

• Navigation bars

• Forms

along with many others. Those ready-to-use templates from Bootstrap have alternatives

for a bit of a selection, for example, buttons have eight colours to choose from and tables

have a dark theme apart from the default light theme. However, if the developer needs more

customisation, that is achieved using CSS. Furthermore, one of the benefits of using Bootstrap

while designing a web page is that it helps achieve a uniform look throughout.

3.4 Anaconda

Anaconda is a Python and R language distribution released on 2012. Anaconda helps sim-

plify the process of downloading and managing packages, and virtual environments [25]. Its

principal use is for solving complex scientific problems using machine learning. Apart from

being a package manager, Anaconda includes the Anaconda Navigator, a graphical user in-

terface (GUI) that allows developers to access valuable tools from a user-friendly desktop

application. The applications that are available through Anaconda Navigator are the follow-

ing:

• JupyterLab

• Jupyter Notebook

• QtConsole

26 Chapter 3. Development Environment & Tools

• Spyder

• Glue

• Orange

• RStudio

• Visual Studio Code

3.5 PostgreSQL & pgAdmin 4

For managing our database, we used PostgreSQL. PostgreSQL is an open source object-

relational database system that extends the SQL language, released on 1996 [26]. It was

initially designed for Unix-type systems; however, as its popularity grew, they developed it

for other operating systems like Windows. The main uses of PostgreSQL are:

• General use database for applications and websites.

• Geo-spatial and analytics applications.

PostgreSQL has multiple features that make it compelling for database management, with

more added with every significant release. Bellow, we see a list of a few of them:[26]

• Data Types : everything from integers and strings to date/time and arrays, JSON files

and custom types.

• Data Integrity : with features like primary and foreign keys, explicit and advisory

locks etc.

• Concurrency, Performance: with features like Multi-Version concurrency Control

(MVCC), Table partitioning, indexing etc.

• Reliability, Disaster Recovery : a reason why PostgreSQL is popular is its readability.

With that, features like Write-ahead Logging (WAL) and tablespaces help.

• Security : PostgreSQL’s authentication system is one of the most useful features.

• Extensibility: extensions like PostGIS (for geo-spatial databases and geographical

information) add to the functionality of the database.

3.5 PostgreSQL & pgAdmin 4 27

• Internationalisation, Text Search : PostgreSQL provides support for international

characters and is case and accent-insensitive.

To help with the management of the database, we used pgAdmin4. PgAdmin is a GUI tool

that is free and open-source. [27] The software has the look and feel of a desktop application,

making it easy for the developer to handle databases in PostgreSQL even if they have little to

no prior knowledge. PgAdmin is available on both website and desktop application. It assists

in managing the schemas and relationship visualisation among them.

Chapter 4

Design & Implementation

A large amount of data is necessary to implement the content-based and collaborative

filtering recommendation systems. This chapter will present the data used, the process of

creating the recommendation systems, and the website application they work on.

4.1 Dataset

The dataset we used is ‘Recipes.csv’ and ‘Reviews.csv’ fromFood.com, found onKaggle.[28]

It consists of two csv files and the first one, ‘Recipes’, contains the following elements:

• RecipeId : A unique id for each recipe

• Name : The name of each recipe

• AuthorId : The unique id of the author who wrote the recipe

• AuthorName : The name of the author who wrote the recipe

• CookTime-PrepTime-TotalTime : The cooking time, the preparation time and the

summation of these two values

• DatePublished : The date the recipe was published

• Description : The description of the recipe written by the author

• Images : Some images of the result of making the recipe

• RecipeCategory : The category the recipe belongs to

29

30 Chapter 4. Design & Implementation

• Keywords : Some keywords about the recipe

• RecipeIngedientQuantities : The quantities for each ingredient of the recipe

• RecipeIngedientParts : The parts of the ingredients

• AggregatedRating : The aggregated rating for each recipe

• ReviewCount : How many reviews each recipe has

• Calories, FatContent, SaturatedFatContent, CholesterolContent, SodiumContent,

CarbohydrateContent, FiberContent, SugarContent, ProteinContent :The amount

of the above variables that each recipe contains

• RecipeServings : The servings of each recipe

• RecipeYield : The yield of each recipe

• RecipeInstructions : The instructions to make the recipe

The second file, ‘Reviews’, contains the following elements:

• ReviewId : The unique id of each review

• RecipeId : The id of the reviewed recipe

• AuthorId : The id of the author who wrote the review

• AuthorName : The name of the author who wrote the review

• Rating : The rating of the author for the recipe

• Review : The review of the recipe

• DateSubmitted : The date the review was submitted

• DateModified : The date the review was modified

Because the dataset with the recipes was too large, we deleted some recipes. To begin

with, we deleted the rows with ‘null’ and ‘character(0)’ as the value. Subsequently, we only

kept the recipes reviewed at least once.

For a better understanding of the dataset ‘reviews’, we performed exploratory data anal-

ysis (EDA), with the following results:

4.1 Dataset 31

• Distribution of the number of ratings:

Figure 4.1: Distribution of ratings

In Figure 4.1, we observe that 74% of all ratings in the data are five (5), and very few

are less than this. In general, low ratings show that the recipes are not that good.

• Distribution Of Number of Ratings Per Recipe:

Figure 4.2: Distribution of Number of Ratings Per Recipe

32 Chapter 4. Design & Implementation

Figure 4.3: Most Rated Recipes

Here, in Figure 4.2, we see that most recipes receive less than seven (7) ratings, and

very few recipes have many ratings, although the most rated recipe has received 2,182

ratings, as we observe in Figure 4.3.

• Distribution of Number of Ratings Per User:

Figure 4.4: Distribution Of Number of Ratings Per User

4.2 Front-End 33

Figure 4.5: Users With Most Ratings

We noticed in Figure 4.4, that most users gave less than five (5) ratings, and very few

gave many ratings, although the most productive user has given 739 ratings as we see

in Figure 4.5.

4.2 Front-End

In this section, we will talk about the look of our website and what a user can do once

they make a profile, along with screenshots for visual aid.

4.2.1 Login & Registration of a User

The first page a user comes across on the website is the login page 4.6. If they already

have a profile, the user can fill in their credentials to continue using the website.

34 Chapter 4. Design & Implementation

Figure 4.6: Login Form.

If the user is not registered, there is a sign-up prompt below the login button where the

user can create a profile. The form requires the user’s full name 4.7, username, email 4.8 and

password 4.9. As soon as the registration is finished, the user can use their username and

password to log in.

Figure 4.7: Registration Form - Step 1.

4.2.2 Home page 35

Figure 4.8: Registration Form - Step 2.

Figure 4.9: Registration Form - Step 3.

4.2.2 Home page

Once successfully logged in, the default redirection sends the user to the home page of

our website 4.10. At the top, we can see the header bar, where the name and logo of our

website are prominent. On the right is a functional search bar, and on the left is a button that

opens the side navigation panel.

In the middle of the screen, the user finds another search bar with the prompt to find a

recipe. Typing anything there provides the user with the recipes most relevant to the search

36 Chapter 4. Design & Implementation

query.

Figure 4.10: Home page.

Scrolling past that, the user finds the first few recommended recipes, comprised of the

Top Rated recipes in our database. These ‘Top Recipes’ 4.11 are an assortment of the highest-

rated ones and those with the most reviews. They are thirty-two (32) in total.

Figure 4.11: Top Rated recipes.

4.2.3 Side Navigation

Clicking on the button on the top left side of the header bar opens the side navigation

panel of our website. 4.12 Clicking anywhere on the screen, outside the side panel, closes the

4.2.4 Nutrition 37

side navigation panel once again.

Each of the different sections are links to different parts of the website. When clicked,

the first link, ‘Snackify’ (the name of our website), returns the user to the home page. At

the bottom of the panel, we find the ‘Logout’ button, which redirects the user to the login

page, restricting access to the website until the user enters their credentials once again. In the

‘About Us’ part, we find a page containing details about this website’s creators and how to

contact us. Regarding the rest of the sections, we analyze each below in more detail.

Figure 4.12: Side Navigation panel.

4.2.4 Nutrition

In this section, the user is prompted to enter the name of any recipe on the website 4.13.

The recommendation system we built will handle the input and recommend recipes with

similar nutritional value to the one the user has provided.

38 Chapter 4. Design & Implementation

Figure 4.13: Find recipes with similar calories.

For example, let us say that the user wants to find recipes similar to ‘Baked Italian Meat-

balls’; when they click enter, they see the results below:

Figure 4.14: Recipes with similar calories.

This is only the first row of results. The number of recommended recipes varies with each

input.

4.2.5 Recipe Page

After clicking on any available recipes on the site, the user can see the recipe information

page 4.15.

4.2.5 Recipe Page 39

Figure 4.15: Recipe page.

At the top of the page, on the left-hand side, we find a carousel of images from the recipe

taken by the users that have tried it. On the right-hand side, there is most of the information

about the recipe 4.16. Let us look at it a little closer.

Figure 4.16: Recipe information.

At the top of the card, we have the recipe author’s username and the recipe category, with

links that redirect to the user’s profile and the recipes of the specific category. In the row

below, we can find the recipe’s servings and the yield (in this example, the servings are 32,

and the recipe yields 4 pints of apple butter). Next is the recipe’s name with a larger text size

to catch the eye of the user immediately. In this area, the user can also find the overall rating

of the recipe, the number of reviews used to create this rating, along with a description of it

provided by the user. Finally, as a footer, we provide the time the recipe needs to prepare and

cook and the total time a user will need to make it.

40 Chapter 4. Design & Implementation

The last thing we can find is the nutrition table 4.17 for each recipe.

Figure 4.17: Nutrition table.

From there, a user can be informed about the calories, fat content, calories, and other

information they may want to know. The nutrition information is enclosed inside a modal

pop-up, ensuring that users who do not want to know are not overwhelmed with more data

than necessary.

Closing the modal and scrolling further in the page, the user finds space dedicated to

recipe making 4.18.

Figure 4.18: Recipe ingredient and instruction list.

On the left card is a list of the ingredients with their corresponding amount and a list of

4.2.5 Recipe Page 41

instructions broken down into steps. Next to each ingredient and instruction step is a clickable

checkbox that is helpful when making a complicated recipe and does not want to miss a step

or forget an ingredient.

Figure 4.19: Rating and action buttons.

On the right side, we find a couple of buttons and a form 4.19. The two buttons are to

add the recipe to the user’s favourite recipes or their cookbook (or both) accordingly. The

favourite button is for the recipes the user has made and loved and wants others to know this

recipe was good. The cookbook button is for the recipes the user liked and would like to make

again or for new recipes they want to try. The rating form is with a star system out of five (5),

with:

• ★Ð→ the recipe was awful.

• ★★Ð→ the recipe was bad.

• ★ ★ ★Ð→ the recipe was ok.

• ★ ★ ★★Ð→ the recipe was good.

• ★ ★ ★ ★ ★Ð→ the recipe was awesome.

Once the user has rated a recipe, a message appears that they have already rated this

recipe. The star rating appears as well.

42 Chapter 4. Design & Implementation

Figure 4.20: Recipe reviews.

At the bottom of the page, the user can find all the available reviews from other users that

have tried the specific recipe 4.20. At the top left of each review is the author’s username

with a link to view their profile.

If the user has not written a review for this recipe, a box prompting to leave a review

appears at the top.

Figure 4.21: User review.

On the other hand, if the user has left a review, a message that the user has already left

a review (and can not leave another) appears at the top right below the user’s review 4.21.

Next, their username appears at the top left, with the link to their profile. Finally, an ‘x’ button

4.2.6 Recommended Recipes 43

at the top right, next to the date, deletes the review, permitting the user to write another.

4.2.6 Recommended Recipes

In this page, the user can find their personalised recommendations 4.22.

Figure 4.22: User Recommendations.

These recommendations are based on the recipes the user placed in their favourites, ran-

domly selecting twenty (20) to present to the user. We discuss more the process of generating

the recommendations below. 4.3

4.2.7 Categories

In the side navigation panel, when the user clicks on the ‘Categories’ button, a drop-down

panel appears 4.23. The user has the choice among three popular recipe categories (‘Dessert’,

‘Breakfast’ and ‘Lunch/Snacks’) or clicking the ‘More...’ button,

44 Chapter 4. Design & Implementation

Figure 4.23: Categories side panel.

which redirects the user to a page with all of the categories available.

On the categories page, we can see all of the available ones separately 4.24, and a search

bar.

Figure 4.24: Categories.

The search bar contains all category names, and as the user types, it limits the results only

to show the ones containing the input. So, for example, if the user writes ‘ag’ into the search

bar, the results are limited to ‘Beverages’, ‘Punch Beverage’ and ‘Spaghetti’ 4.25.

4.2.7 Categories 45

Figure 4.25: Categories limiting search.

After writing or selecting the category the user wants, an ‘enter’ from the keyboard redi-

rects to the result page.

For instance, after selecting the category ‘< 15 Mins’, we can see the recipes tagged as

such 4.26. The number next to the category name inside the parenthesis indicates the number

of recipes in the category. Below we can see the first row of results.

Figure 4.26: Category Recipes.

Scrolling to the bottom, we find the pagination 4.27. From there, the user can move be-

tween all the available recipes in a manner that is not overly confusing with too many results

on each page. Every paginator page holds 20 results, so in our example, the 55 recipes in the

46 Chapter 4. Design & Implementation

‘< 15Mins’ category are separated into three pages, where the third page holds the remaining

15 results instead of 20.

Figure 4.27: Categories pagination.

4.2.8 Ingredients

In the side navigation panel, when the user clicks on the ‘Ingredients’ button, a drop-

down panel appears 4.28. The user has the choice among three popular recipe ingredients

(‘Chicken’, ‘Chocolate’ and ‘Potatoes’) or clicking the ‘More...’ button,

Figure 4.28: Ingredients side panel.

4.2.8 Ingredients 47

which redirects the user to a page with a search bar 4.29 and a few recommended ingre-

dients.

Figure 4.29: Search by Ingredients.

As they scroll down, they encounter a few recipes from four recipe ingredients that we

think are the most common for people to search for. Such as:

• pasta

Figure 4.30: Recipes with ‘pasta’ as an ingredient.

• chicken

48 Chapter 4. Design & Implementation

Figure 4.31: Recipes with ‘chicken’ as an ingredient.

• dough

Figure 4.32: Recipes with ‘dough’ as an ingredient.

• chocolate

4.2.8 Ingredients 49

Figure 4.33: Recipes with ‘chocolate’ as an ingredient.

Returning to the search bar at the top of the page 4.29, there are two ways in which the

user can search. The first one, and the most obvious, is to write one ingredient they want to

have in a recipe, and the result page holds every recipe with this ingredient 4.34.

Figure 4.34: Recipes with only ‘sugar’ as an ingredient.

The second method is for the user to put more than one ingredient in the search bar,

separated by commas, and the result page holds every recipe with all the ingredients 4.35.

50 Chapter 4. Design & Implementation

Figure 4.35: Recipes with ‘sugar’ and ‘bananas’ as ingredients.

Of course, under each result page, there is a paginator to avoid an overfilled page with

results that confuse the user.

4.2.9 Profile

In the side navigation panel, when the user clicks on the ‘Profile’ button, it redirects to

the current user’s profile in session 4.36. On the left side of the screen, the user can see basic

information about themselves, such as their first and last name as well as their username

exactly below, as they filled them out during the sign-up process, as well as a default profile

picture.

Underneath that, in a newly created profile is a dash (‘-’) where the user’s birthday and

the city they live in should be. That is because these pieces of information were not in the

sign-up form, as some users might not want to disclose that.

4.2.9 Profile 51

Figure 4.36: User profile.

4.2.9.1 Edit Profile

In the event that the user wants to fill them in, or they wrote something wrong while

signing up, at the bottom of the card, there is a button named ‘Edit Profile’.

Figure 4.37: Edit profile.

After clicking on it, the user is redirected to the page 4.37 where they can edit their in-

formation and add their birthday, city, and even a profile picture of their choosing.

52 Chapter 4. Design & Implementation

Figure 4.38: Edit profile page after filling out the information.

In the event of a mistype during the editing process. Before clicking ‘Save Changes’, the

user can click the ‘Reset’ button, effectively returning the information to the last save state.

4.2.9.2 Change Password

If the user thinks their password is too easy or wants a different password, they can change

it through the ‘Change Password’ form 4.39.

Figure 4.39: Change password.

4.2.9 Profile 53

4.2.9.3 Other Users’ Profile

In the event a user wants to visit another user’s profile, all they have to do is click on their

username through a review or a recipe. After that, the user is redirected to a page similar to

their profile 4.40.

On the card on the left is the user’s personal information that the profile they visit lacks, of

course, the ‘Edit Profile’ button. The middle card holds the recipes the user has uploaded on

the site 4.42 instead of the cookbook (if there are none, an error message appears informing

us that the user has not uploaded any recipes yet). Finally, the right card shows the recipes

the user has favourited.

Figure 4.40: Other users’ profiles.

54 Chapter 4. Design & Implementation

Figure 4.41: Other users’ profiles.

At the bottom of the page, a list of the reviews that the user made appears, with the names

of the recipes, as well as the rating and the review date 4.41.

Figure 4.42: Other users’ profiles.

4.2.10 Useful

In the side navigation panel, when the user clicks on the ‘Useful’ button, a drop-down

panel appears 4.43. The user can choose among three useful converters (‘Volume Converter’,

‘Length Converter’ and ‘Temperature Converter’) that can help during cooking.

4.2.10 Useful 55

Figure 4.43: Useful side panel.

Let us look at them a little more closely.

• Volume Converter:

Figure 4.44: Volume Converter page.

On the ‘Volume Converter’ page, the user can find a table with a list of widely used

ingredients measured in grams and then, in each column, the breakdown of how many

grams from each ingredient fills each of the measuring utensils. For example, for the

ingredient ‘All-purpose flour’, 1 tbsp equals 10 grams of product, 1/4 of a cup equals

45 grams etc.

• Length Converter:

56 Chapter 4. Design & Implementation

Figure 4.45: Length Converter page.

On the ‘Volume Converter’ page, the user can find a table with a list of the conversion

from inches 1-12 to centimetres and back. Those measurements are mainly used for

the size of pans during baking.

• Temperature Converter:

Figure 4.46: Temperature Converter page.

The user can find two tables with information on the ‘Temperature Converter’ page.

The left table holds the conversion of the most used temperatures in a commercial oven

with Fahrenheit or Celsius units and an equivalent for a gas indication. The table on the

right has an estimated average temperature for ovens with a fan and ovens without a

4.3 Back-End 57

fan in Celsius units for when the recipe asks for a vague ‘Medium’ or ‘Medium-High’

temperature.

4.3 Back-End

4.3.1 Data and Storage

As mentioned, we have two (2) CSV-type files: ‘recipes’ and ‘reviews’. After we reduced

the size of the ‘recipes’ dataset with the methods mentioned in 4.1, we stored them in the

PostgreSQL database we created. Using Django to create our website, we have advantages

like the Django authentication system, which handles both authentication and authorization.

Briefly, authentication checks if a user is whom they claim to be, and authorization decides

what an authenticated user is permitted to do. Τhe term authentication is used to refer to both

tasks.

The auth system consists of:

• Users

• Permissions: Binary (yes/no) flags determine whether a user can perform a specific

task.

• Groups: A method of applying labels and permissions to more than one user.

• etc.

Our database consists of two types of tables. The first type is tables created by Django

and its authentication system, and they are the following:

• auth_group

• auth_permission

• auth_group_permission

• auth_user

• auth_user_groups

• auth_user_user_permission

58 Chapter 4. Design & Implementation

• django_admin_log

• django_content_type

• django_migrations

• django_session

The second type of table is those that we created to store our data, and they are the fol-

lowing:

• accounts_interactions: This table keeps our users’ reviews and ratings.

• accounts_profile: This one has inside the profile of each user and their personal infor-

mation. Every time a new user signs up, a new row is created at this table containing

the data from the ‘auth_user’ table. Then, the particular user can edit the profile data

and add more information about themselves.

• accounts_profile_cookbook: The cookbook of each user that contains the recipes they

want to find easily and make them.

• accounts_profile_favorite: The favourite recipes of each user

• accounts_recipes_info: Here, we saved the ‘recipes’ dataset mentioned in 4.1, so we

can have access to it without difficulty.

• accounts_reviews: The ‘reviews’ dataset mentioned in 4.1 is stored again to access it

more easily.

For a better understanding of the database and its tables, we depicted it in an Entity Re-

lationship Diagram (ERD) in the following figure:

4.3.1 Data and Storage 59

Figure 4.47: ERD

60 Chapter 4. Design & Implementation

In Figure 4.47 there are the tables wementioned above and the relationship between them.

The types of relationship are the following:

• one-to-one: For example, a recipe can be written by only one user.

• one-to-many: For instance, a recipe can have many reviews.

• many-to-many: For example, a recipe can have many ingredients and an ingredient

may be in many recipes.

According to the file ‘models.py’ which is explained with details in the next subsection,

the tables of the database are created with the corresponding relationship between them.

4.3.2 Models

In Django, there is a python file named ‘models’, and every model class generated there

has. As a result, the creation of a new table in the database. So, each of the following models

is also a table in the database:

• interactions: It contains the following data:

– RecipeId

– UserId

– Review

– Rating

• recipes_info: Contains all the columns that the ‘recipes’ CSV file contains, mentioned

in 4.1

• reviews: From the ‘reviews’ dataset mentioned in 4.1, this model has the same columns

as it.

• profile: It contains the personal information of a user:

– UserId

– first_name

– last_name

4.4 Recommendation Systems 61

– birthday

– city

– date_created

– image

We created this database so new users can create a profile and have the opportunity to

make their cookbook and favourite list and get recommendations for recipes they may like.

Apart from this, we made models and saved the CSV files mentioned in 4.1, so we could

have access to them more accessible and avoid reading the CSV files every time we needed

them.

4.4 Recommendation Systems

There are three (3) recommendation systems: two Content-Based systems and one Col-

laborative Filtering system. One Content-Based and the Collaborative Filtering are combined

to give results on one page.

4.4.1 Content-Based System I

The implementation of this Item Based Content Filtering system is based on correlation.

Correlation describes the statistical relationship between two entities. By that, we mean it is

how two variables move concerning one another. Correlation is a value between -1 and +1.

However, correlation is not causation! There are three (3) types of correlations:

• Positive Correlation : A positive correlation is a value between zero (0.0) and one

(1.0). A correlation of one (1.0) shows that if the first variable moves up, the second

one will also increase. This relationship is not so strong if the correlation is less than

one (1.0).

• Negative Correlation :A negative correlation is a value between zero (0.0) and minus

one (-1.0). A negative correlation shows that the two variables have opposite behaviour.

Thus, if the first one moves up, the second one moves down.

62 Chapter 4. Design & Implementation

• Zero or no correlation : A zero correlation shows no relationship between the first

variable and the second one. If the first one moves up, the second one may do anything

else.

The process we followed to create this recommendation system is:

1. From the original dataset, we keep only the name of the recipes and the nutrition values,

which are:

• FatContent

• SaturatedFatContent

• CholesterolContent

• SodiumContent

• CarbohydrateContent

• FiberContent

• SugarContent

• ProteinContent

2. A matrix is created with ‘ pivot_table() ’ from the ‘pandas’ library. That creates the

spreadsheet-style pivot table as a DataFrame, with the name as a column and the others

as values.

3. We create a function that takes as input: the name of the recipe we want to predict

similar ones, the correlation lower limit that we want between the recipe and the rec-

ommended recipes, and the ‘corrwith()’ function from ‘pandas’ library to compute the

correlation between the recipes.

4. We create a new DataFrame with the recipes and the correlations and return a sorted

list with the names of the recipes that are acceptable to recommend to the user.

The Figure 4.48 below is an example of this recommendation system. It represents the

call of the function mentioned above with the name of the recipe we want to find similar ones.

Then, the names of the recipes that are going to be recommended are shown.

4.4.2 Content-Based System II 63

Figure 4.48: Content-Based I example

4.4.2 Content-Based System II

The second Content-Based system uses Cosine Similarity to compute the similarity be-

tween recipes.

The process here is different from the process we followed on the previous Content-Based

system:

1. We clean the following columns of the ‘recipes’ DataFrame:

• RecipeCategory : Some special characters are removed like ‘<, &, /’, and the

numbers are replaced by their written form. Subsequently, we return a list of the

category.

• RecipeIngredientParts : The ingredients are split and returned in a list.

• Name : The recipe’s name is returned in a list.

• Keywords : Each recipe’s keywords are cleaned like the RecipeCategory, and

after being split, we return them in a list.

2. A function that creates a mix of these lists is created and applied to the ‘Name’ column

of the recipes DataFrame, creating a new column named ‘total’.

64 Chapter 4. Design & Implementation

3. We create another new column named ‘total parsed’ that contains the ‘total’ data with-

out the commas.

4. Because this procedure requires some time, we save the DataFrame we created in a

CSV file, and we read the file every time a recommendation has to be generated by

the system. So, when the saved CSV file is read, ‘CountVectorizer’ from the ‘sklearn’

library is used to convert the collection of text documents to a matrix of token counts.

5. At this point, ‘cosine similarity’, also from the ‘sklearn’ library, is used to compute the

cosine similarity between samples in X and Y.

According to [29], the cosine similarity of two non-zero vectors can be computed with

the help of the Euclidean dot product formula:

A ⋅B = ∣∣A∣∣ ⋅ ∣∣B∣∣ ⋅ cos(θ)

Consider two vectors of attributes, A and B, the cosine similarity, cos(θ) , is expressed

using a dot product and magnitude as in the following figure:

Figure 4.49: Cosine Similarity Equation

where Ai and Bi are components of vector A and B respectively.

So, the values of the results from the equation among the characteristics of the two recipes

are between zero (0) and one (1). Therefore, if it is zero (0), there is no similarity between

the recipes; on the other hand, if it is one (1), the list of characteristics of the recipes is the

same.

Here, in Figure 4.50 is an example of this recommendation system:

4.4.3 Collaborative-Filtering System 65

Figure 4.50: Content-Based II example I

The figure above shows the name of the similar recipe we want to find. After that, we

find the index of the recipe in the DataFrame and then, using the cosine similarity, we find

the similar recipes and sort them in a list. In Figure 4.51, the recommendations are depicted.

Figure 4.51: Content-Based II example IΙ

4.4.3 Collaborative-Filtering System

This recommendation system is considerably different from the other ones. The steps to

create it are the following:

1. From the ‘reviews’ dataset, we kept only the following columns:

• AuthorId

66 Chapter 4. Design & Implementation

• RecipeId

• Rating

The first one, ‘AuthorId’, is renamed as ‘UserId’.

2. Apart from this dataset (‘reviews’), we take the ratings of our users from our database

and add them at the end of the previous DataFrame. That is because the target is to

find similar users to the current user, according to the recipes he has rated. Hence, we

need the ratings of the users we create on our website to gain the ability to recommend

recipes to them.

3. The dimension of the DataFrame has to be reduced to avoid any memory errors. So, we

keep only recipes with more than twenty (20) recipes and users that have rated more

than one (1) recipe. Naturally, the system is more accurate if the users have rated more

recipes, but we wanted to allow new users to have recommendations.

4. Then, we defined from the ‘surprise’ library, ‘BaselineOnly’ algorithm and fitted it to

our data with some options we will mention after the steps.

5. We created a function named ‘recipes_to_predict’ and returns the recipes that the target

user has not rated yet so that the recommendations do not have already known recipes

for the user.

6. Another function is created, named ‘get_recommendations’ that takes as input the

‘UserId’ of the target user, the DataFramewemade above with the ‘UserId’, ‘RecipeId’

and ‘Rating’, the ‘recipes’ dataset and a threshold. The basic idea of this algorithm is

that it predicts the rating a user would give to a particular recipe. The threshold shows

the lower limit of the rating, meaning that the recipes with a predicted rating more or

equal to the threshold value will be recommended to the target user. So, this function

estimates the rating values and returns the DataFrame with the most accurate recipes.

From [30] the algorithm predicting the baseline estimate for a given user and item is

computed as follows:

rui = bui = µ + bu + bi

4.4.3 Collaborative-Filtering System 67

If user u is unknown, then the bias bu is assumed to be zero. The same applies to item ‘i’

with bi.

According to [31] the algorithm we used tries to minimize the following regularized

squared error:

∑
rui∈Rtrain

(rui − (µ + bu + bi))2 + λ(b2u + b2i)

Baselines can be estimated in two ways:

• with Stochastic Gradient Descent (SGD)

• with Alternative Least Squares (ALS)

In our case, using the ‘bls_options’ parameter, we chose:

• ALS to compute baselines

• ‘reg_i’ value is five (5), which is the regularization parameter for items

• ‘reg_u’ value is twelve (12), which is the regularization parameter for users

• ‘n_epochs’ value is five (5) that is the number of iterations of the ALS procedure

Below, there is Figure 4.52 that shows the DataFrame with the predicted recipes of a

random ‘UserId’:

Figure 4.52: Collaborative-Filtering example

68 Chapter 4. Design & Implementation

4.4.4 Hybrid System

As mentioned before, 4.4.2 and 4.4.3 are combined to give results on the recommenda-

tions page of our website. For example, consider user A that has his list of favourite recipes

and can rate any recipe he likes.

1. First case : User A has not rated any recipe and does not have any favourite recipe.

In the 4.4.3 section, we mentioned that for the Collaborative-Filtering system, we keep

only the users that have rated at least one recipe for the system to generate recommen-

dations. This makes sense because the system can not find similar users as user A has

not rated any recipes. Apart from that, in 4.4.2 section finds similar recipes from the

list of favourites in the Content-Based system. So, the two systems can not generate

recommendations, and the shown recipes are the top-rated recipes based on the number

of ratings and the values of the ratings.

2. Second case : User A has at least one recipe on his list of favourites but has not rated

any recipes.

In this case, only the 4.4.3 Collaborative-Filtering system can not make any recom-

mendations. Basically, from the 4.4.2 Content-Based system, we get the twenty (20)

most similar recipes from each one of the favourite recipes of User A and append them

to a list. Then, we use a random function to return twenty (20) recipes to recommend

to User A.

3. Third case : User A has rated at least one recipe but does not have any recipes on his

list of favourites.

Here, the 4.4.2 Content-Based system cannotmake suggestions. So, the 4.4.3 Collaborative-

Filtering system finds the recipes that the user would rate highly and lists them. After

that, using the random function again, we return twenty (20) recipes to recommend to

User A.

4. Fourth case : User A has rated at least one recipe and has at least one recipe on his

favourites list.

In this last case, both of the recommendation systems can generate recommendations.

So, same as the above, a list of recommended recipes is created, and with the random

function, we return only twenty (20) of them to User A as recommendations.

Chapter 5

Experimental Evaluation

In this chapter, the focus point is evaluating our Collaborative-Filtering recommendation

system. Apart from the algorithm we used, the whole library ‘surprise’ is explained in detail.

Also, we use figures to display the evaluation results with the corresponding values (i.e. error

values).

5.1 Recommendation Algorithm Evaluation

The Collaborative-Filtering system mentioned in the previous chapter is implemented

using an algorithm named ‘BaselineOnly’ from the ‘surprise’ library. This library consists of

multiple algorithms such as: [32]

• SVD : It is a Matrix-Factorization algorithm, equivalent to Probabilistic Matrix Fac-

torization. [33]

• SVDpp : This is the same as the above algorithm with the characteristic that it takes

into account the implicit ratings of the users.

• NMF : It is a collaborative filtering algorithm based on Non-negative Matrix Factor-

ization. It is identical to SVD.

• KNNBasic : It is a fundamental collaborative filtering algorithm.

• KNNBaseline : This is a main collaborative filtering algorithm that considers a base-

line rating.

69

70 Chapter 5. Experimental Evaluation

• KNNWithZScore : It is also a main collaborative filtering algorithm that considers

the z-score normalization of each user.

• KNNWithMeans : This is also a fundamental collaborative filtering algorithm that

considers each user’s mean ratings.

• NormalPredictor : This is an algorithm that predicts a random rating based on the

distribution of the training set, which is supposed to be normal. It is one of the main

algorithms that do not do much work.

• BaselineOnly : It is an algorithm that predicts the baseline estimate for a given user

and item.

• CoClustering : It is an algorithm based on Co-Clustering [34]

• SlopeOne : This is a straightforward implementation of the SlopeOne algorithm. [35]

Moreover, the ‘surprise’ library offers the possibility to use cross-validation to find which

is the best algorithm to use based on the data the developer has. It tests and trains the dataset

taking as input on different iterations. It creates the following sets: [36]

• training set : is the part of the data that is known and used to train the algorithm.

• testing set : The rest of the dataset that is not in the training set is in this set and is the

‘unknown’ data that we test the model with.

We used the cross-validation from surprise with all the possible algorithms and RMSE

as a measure to find the best algorithm to use to predict our recommendations. In the Figure

5.1, there are the results for our dataset:

5.1 Recommendation Algorithm Evaluation 71

Figure 5.1: Cross Validation results

The function returns:

• test_rmse : An array with accuracy values for each test set.

• fit_time : An array with the time of training in seconds for each split.

• test_time : An array with the testing time in seconds for each split.

Baseline gave us the best RMSE; therefore, we will train and predict with BaselineOnly

and use Alternative Least Squares(ALS). We train the algorithm with our data, and below, in

Figure 5.2, there is the conclusive accuracy of the algorithm measured with the RMSE value:

Figure 5.2: Accuracy of BaselineOnly algorithm

After that, we generated two DataFrames that show the best and the worst predictions. It

considers the value of the error, which is the difference between the estimated rating of the

algorithm and the actual value of the rating. Below there are the two Figures, 5.3 and 5.4, for

the best and the worst predictions, respectively:

72 Chapter 5. Experimental Evaluation

Figure 5.3: Best predictions of BaselineOnly algorithm

The above are the best predictions, and they are not lucky guesses. However, because Ui

(the number of users that have rated the recipe) is between 7 to 35, they are not really small,

meaning that a significant number of users have rated the target recipe.

Figure 5.4: Worst predictions of BaselineOnly algorithm

The worst predictions have a significant error value, so although the estimated rating is

high, the real one is relatively low.

Chapter 6

Conclusions

In this chapter, we intend to summarise what we have mentioned in all the previous chap-

ters. Apart from that, we highlight a few ideas we would like to implement or improve in the

future regarding our project.

6.1 Summary

This diploma thesis aimed to create a website for recommending recipes to users from

scratch. The application we developed not only achieves our target but also provides the user

with relevant information about each recipe, other user experiences with the recipe and even

photographic documentation of it to better visualise the result, among other features.

We developed three different recommendation systems to give the user more flexibility

and control over the recommended recipes. We tested multiple algorithms to figure out the

methods that work best for our dataset and selected the one with the best results for each

recommendation system. The first, a content-based system, utilises the correlation between

items to suggest recipes with similar nutritional values. The second, another content-based

system, uses cosine similarity to calculate the similarity between recipes. The third, a collab-

orative filtering system, finds the users most similar to our user to produce recommendations.

To make sure we deliver the best results, in any case, we took into account the outliers (i.e.

when the user does not have any recipes in the favourites or they have too many of them) and

used the second and third systems to build a hybrid one. This hybrid recommendation system

has individual systems to produce recommendations, and only the best ones make it to the

final user recommendations.

73

74 Chapter 6. Conclusions

In Chapter 5, we present the results of our recommendations after an extensive evaluation

process where we can see the low value of the produced RMSE. According to those results,

we are content with the progress of our project, as, in our allotted time, we have managed to

integrate multiple distinct operations into the website.

6.2 Future Work

There are several things to develop further for future work:

• Use an actual user database instead of one out of a CSV file. For our website to work

correctly, we needed a large amount of data that we could only get through a CSV file

or an API. We would like, in the future, we could run the website without the use of

the CSV file.

• Fine-tune the recommendation systems (possibly turn them into a hybrid). Presently,

the three recommendation systems on our website are content-based and collaborative

filtering. We aim to turn them into hybrid recommendation systems, as they perform

best in evaluation scores.

• List of recipes the user did not like. Explicit feedback is always necessary for recom-

mendation systems, and a list with content the user does not like will help us generate

more suitable recommendations.

• Develop the ‘Add a recipe’ option for the user. Presently, the user cannot upload their

recipes and is only able to view the available recipes from the CSV file. In the future,

we would like to implement the feature.

Bibliography

[1] Charu C. Aggarwal. Recommender Systems: The Textbook. Springer, 2016.

[2] Kim Falk. Practical recommender systems, Jan 2019.

[3] Robin van Meteren and Maarten van Someren. Using content-based filtering for rec-

ommendation, 2000.

[4] CHRISTINA CHRISTAKOU, SPYROS VRETTOS, and ANDREAS STAFY-

LOPATIS. A hybrid movie recommender system based on neural networks. Inter-

national Journal on Artificial Intelligence Tools, 16(05):771–792, 2007.

[5] Robin Burke. Hybrid recommender systems: Survey and experiments - user modeling

and user-adapted interaction, Nov 2002.

[6] Tulasi K. Paradarami, Nathaniel D. Bastian, and Jennifer L. Wightman. A hybrid rec-

ommender system using artificial neural networks. Expert Systems with Applications,

83:300–313, 2017.

[7] SongJie Gong, HongWuYe, and HengSong Tan. Combiningmemory-based andmodel-

based collaborative filtering in recommender system. In 2009 Pacific-Asia Conference

on Circuits, Communications and Systems, pages 690–693, 2009.

[8] Lipi Shah, Hetal Gaudani, and Prem Balani. Survey on recommendation system. Inter-

national Journal of Computer Applications, 137(7):43–49, Mar 2016.

[9] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Jesús Bernal. A collabora-

tive filtering approach to mitigate the new user cold start problem. Knowledge-Based

Systems, 26:225–238, 2012.

[10] Al Rashid, Istvan Albert, Dan Cosley, Shyong Lam, Sean McNee, Joseph Konstan,

and John Riedl. Getting to know you: Learning new user preferences in recommender

75

76 Bibliography

systems. International Conference on Intelligent User Interfaces, Proceedings IUI, 02

2002.

[11] Sarah Bouraga, Ivan Jureta, Stéphane Faulkner, and Caroline Herssens. Knowledge-

based recommendation systems. International Journal of Intelligent Information Tech-

nologies, 10(2):1–19, 2014.

[12] Ladislav Peska. Using the context of user feedback in recommender systems - arxiv,

2016.

[13] DouglasW. Oard and Jinmook Kim. Implicit feedback for recommender systems, 1998.

[14] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. Eval-

uating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53,

jan 2004.

[15] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond accuracy: Evalu-

ating recommender systems by coverage and serendipity. In Proceedings of the Fourth

ACM Conference on Recommender Systems, RecSys ’10, page 257–260, New York,

NY, USA, 2010. Association for Computing Machinery.

[16] Félix Hernández del Olmo and Elena Gaudioso. Evaluation of recommender systems:

A new approach. Expert Systems with Applications, 35(3):790–804, 2008.

[17] Guy Shani and Asela Gunawardana. Evaluating recommendation systems, Oct 2010.

[18] Rocío Cañamares, Pablo Castells, and Alistair Moffat. Offline evaluation options for

recommender systems. Information Retrieval Journal, 23(4):387–410, 2020.

[19] Suyash Maheshwari and Manas Chourey. Recipe recommendation system using ma-

chine learning models. International Research Journal of Engineering and Technology

(IRJET), 2019.

[20] Tsuguya Ueta, Masashi Iwakami, and Takayuki Ito. Implementation of a goal-oriented

recipe recommendation system providing nutrition information. In 2011 International

Conference on Technologies and Applications of Artificial Intelligence, pages 183–188,

2011.

Bibliography 77

[21] Hetal Gaudani. Personalized recipe recommendation system using hybrid approach.

International Journal of Innovative Research in Computer and Communication Engi-

neering, 5:192–197, 06 2016.

[22] Zhengxian Li, Jinlong Hu, Jiazhao Shen, and Yong Xu. A scalable recipe recommenda-

tion system for mobile application. 2016 3rd International Conference on Information

Science and Control Engineering (ICISCE), 2016.

[23] djangoproject.com, 2022. Available at https://www.djangoproject.com/

start/overview/.

[24] Mark Otto and Bootstrap contributors. Bootstrap, 2022. Available at https://

getbootstrap.com/docs/5.1/getting-started/introduction/.

[25] Anaconda: the world’s most popular data science platform, 2022. Available at https:

//www.anaconda.com.

[26] Postgresql, 2022. Available at https://www.postgresql.org.

[27] pgadmin - postgresql tools. Available at https://www.pgadmin.org.

[28] Kaggle: Food.com - recipes and reviews. Available at https://www.kaggle.

com/datasets/irkaal/foodcom-recipes-and-reviews.

[29] Wikipedia - cosine similarity. Available at https://en.wikipedia.org/

wiki/Cosine_similarity.

[30] Baselineonly-surprise. Available at https://surprise.readthedocs.

io/en/stable/basic_algorithms.html#surprise.prediction_

algorithms.baseline_only.BaselineOnly.

[31] Baseline estimates configuration-surprise. Available at https://surprise.

readthedocs.io/en/stable/prediction_algorithms.html#

baseline-estimates-configuration.

[32] Surprise - prediction algorithms. Available at https://surprise.

readthedocs.io/en/stable/prediction_algorithms_package.

html.

https://www.djangoproject.com/start/overview/
https://www.djangoproject.com/start/overview/
https://getbootstrap.com/docs/5.1/getting-started/introduction/
https://getbootstrap.com/docs/5.1/getting-started/introduction/
https://www.anaconda.com
https://www.anaconda.com
https://www.postgresql.org
https://www.pgadmin.org
https://www.kaggle.com/datasets/irkaal/foodcom-recipes-and-reviews
https://www.kaggle.com/datasets/irkaal/foodcom-recipes-and-reviews
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://surprise.readthedocs.io/en/stable/basic_algorithms.html#surprise.prediction_algorithms.baseline_only.BaselineOnly
https://surprise.readthedocs.io/en/stable/basic_algorithms.html#surprise.prediction_algorithms.baseline_only.BaselineOnly
https://surprise.readthedocs.io/en/stable/basic_algorithms.html#surprise.prediction_algorithms.baseline_only.BaselineOnly
https://surprise.readthedocs.io/en/stable/prediction_algorithms.html#baseline-estimates-configuration
https://surprise.readthedocs.io/en/stable/prediction_algorithms.html#baseline-estimates-configuration
https://surprise.readthedocs.io/en/stable/prediction_algorithms.html#baseline-estimates-configuration
https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html
https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html
https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html

78 Bibliography

[33] Ruslan Salakhutdinov and AndriyMnih. Probabilistic matrix factorization. In Proceed-

ings of the 20th International Conference on Neural Information Processing Systems,

NIPS’07, page 1257–1264, Red Hook, NY, USA, 2007. Curran Associates Inc.

[34] T. George and S. Merugu. A scalable collaborative filtering framework based on co-

clustering. In Fifth IEEE International Conference on Data Mining (ICDM’05), pages

4 pp.–, 2005.

[35] Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-based

collaborative filtering. Proceedings of the 2005 SIAM International Conference on

Data Mining, SDM 2005, 5, 02 2007.

[36] Daniel Berrar. Cross-Validation. Data Science Laboratory, Tokyo Institute of Technol-

ogy, 01 2018.

[37] The hitchhiker’s guide to python! Available at https://docs.python-guide.

org.

[38] Python.org. Available at https://www.python.org/about/.

[39] Pipenv and virtual environments. Available at https://docs.python-guide.

org/dev/virtualenvs/#lower-level-virtualenv.

[40] How to get django. Available at https://www.djangoproject.com/

download/.

[41] How to install django on windows. Available at https://docs.

djangoproject.com/en/4.1/howto/windows/.

[42] Postgresql downloads. Available at https://www.postgresql.org/

download/.

[43] pgadmin - getting started. Available at https://www.pgadmin.org/docs/

pgadmin4/development/getting_started.html.

[44] Evangelia-Alkistis Lemonaki and Kleopatra Beka. Github code, 2022. Available at

https://github.com/kbeka/thesis-snackify/tree/main.

https://docs.python-guide.org
https://docs.python-guide.org
https://www.python.org/about/
https://docs.python-guide.org/dev/virtualenvs/#lower-level-virtualenv
https://docs.python-guide.org/dev/virtualenvs/#lower-level-virtualenv
https://www.djangoproject.com/download/
https://www.djangoproject.com/download/
https://docs.djangoproject.com/en/4.1/howto/windows/
https://docs.djangoproject.com/en/4.1/howto/windows/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.pgadmin.org/docs/pgadmin4/development/getting_started.html
https://www.pgadmin.org/docs/pgadmin4/development/getting_started.html
https://github.com/kbeka/thesis-snackify/tree/main

Bibliography 79

[45] Postgresql tutorial - import csv file into postgresql table. Available at https:

//www.postgresqltutorial.com/postgresql-tutorial/import-

csv-file-into-posgresql-table/.

https://www.postgresqltutorial.com/postgresql-tutorial/import-csv-file-into-posgresql-table/
https://www.postgresqltutorial.com/postgresql-tutorial/import-csv-file-into-posgresql-table/
https://www.postgresqltutorial.com/postgresql-tutorial/import-csv-file-into-posgresql-table/

APPENDICES

81

Appendix A

Prerequisites

This appendix is a step-by-step guide on how to download everything needed in order to

make the application run correctly.

A.1 Download Python

To run the project, it is necessary to install python 3.x on a personal computer. Python is

available for Windows, MacOS, Linux/UNIX and other systems. There are detailed instruc-

tions on how to download and install python in [37], and if no instructions are needed, python

can be downloaded directly from [38].

Check the python version on a personal computer (PC) with the ‘python’ command on

the terminal like the following figure:

Figure A.1: Check python version

However, it is easier to download python and other packages if Anaconda [25] is installed

first.

A.2 Create Virtual Environment

To implement our project, we used a virtual environment. The main advantage of using it

is to isolate the project and download all the packages needed without changing anything in

83

84 Appendix A. Prerequisites

any other project outside the environment. To create a virtual environment, follow the steps

from [39] or if the instructions from [37] are followed, the virtual environment should already

be installed.

In our project, we have a virtual environment named ‘diplomatiki’. To create this, you

should be inside the project folder, and after creating it, the environment has to be activated

according to the instructions mentioned above.

A.3 Download Packages

The packages downloaded to run the project are the following:

Figure A.2: Downloaded packages

To install the packages above there are two options:

• Anaconda users :

1. > conda install pip

2. > pip install ‘PackageName’

• Other users : > pip install ‘PackageName’

A.4 Download Django 85

A.4 Download Django

Most Linux and Unix versions have already installed Django. However, if it is not in-

stalled, there is a detailed tutorial here [40] for Linux. Moreover, below there is a guide here

[41] on how to download and install Django on Windows operating systems.

A.4.0.1 How to create a project

To create a project, it is necessary to activate the virtual environment. After it is activated,

the following command must be given:

• > djangoadmin.py startproject ProjectName

Subsequently, to run the server on your personal computer, use the following command:

• > python manage.py runserver

If there are no errors, the result looks like this:

Figure A.3: Django run server

Finally, by visiting ‘http://127.0.0.1:8000/’ in a browser, the result of the code appears.

A.5 Download pgAdmin4/PostgreSQL

PostgreSQL and pgadmin4 are downloaded together from here [42]. To fully understand

how pgadmin4 works, the documentation is here [43]. After the installation, a database has

to be created in pgadmin, named ‘diplomatiki’. The username and password will be used

in the project code to connect the database with the project. Specifically, in the file named

‘settings.py’, the details of the database are shown in the following figure:

86 Appendix A. Prerequisites

Figure A.4: Connection of database

The following fields have to be set:

• USER : the username you created the database with.

• PASSWORD : use the password you created the database with.

• HOST : use ‘localhost’ if it is installed in your personal computer.

• PORT : the default port is 5432 and does not have to be written down, but if it is not

the default it has to be mentioned

Appendix B

How to use the website

To run the project’s code, it is necessary to follow the instructions of the Appendix A and

download and install the required tools and packages.

B.1 Download the code

You can download the project’s code directly from [44] in zip form. On the website page,

by clicking the ‘Code’ button, there is a ‘Download ZIP’ button.

B.2 Set up the database

To begin with, we use the following commands to create the tables in the database based

on the models of the project:

• > python manage.py makemigrations

• > python manage.py migrate

Subsequently, you have to fill the ‘recipes_info’ and ‘reviews’ database with the corre-

sponding files from here [28]. In addition, from here [44] you can download the preprocessing

of the CSV files from [28] to fill the database with the preprocessed data. Finally, there is

an option in pgadmin to fill a table from a CSV file [45], and that is how you will set up the

database.

At this point, you can run the server on your personal computer, as mentioned in Appendix

A, with the following command:

87

88 Appendix B. How to use the website

• > python manage.py runserver

If everything runs smoothly, the result is the following:

Figure B.1: Project run server

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Recipe Recommendation
	Contribution
	Bibliographic review
	Thesis Organization

	Background
	Introduction Recommendation Systems
	Types of Recommendation Systems
	Content-Based Recommendation Systems
	Collaborative Filtering Recommendation Systems
	Knowledge-Based Recommendation Systems
	Hybrid Recommendation Systems

	Problems of Recommendation Systems
	Comparison of Recommendation Systems
	Feedback
	Ratings
	Implicit
	Explicit

	Evaluation Metrics of Recommendation Systems
	Coverage
	Serendipity
	Novelty
	Privacy
	Accuracy Metrics
	Information retrieval measures

	Development Environment & Tools
	Python
	Django Framework
	Bootstrap
	Anaconda
	PostgreSQL & pgAdmin 4

	Design & Implementation
	Dataset
	Front-End
	Login & Registration of a User
	Home page
	Side Navigation
	Nutrition
	Recipe Page
	Recommended Recipes
	Categories
	Ingredients
	Profile
	Useful

	Back-End
	Data and Storage
	Models

	Recommendation Systems
	Content-Based System I
	Content-Based System II
	Collaborative-Filtering System
	Hybrid System

	Experimental Evaluation
	Recommendation Algorithm Evaluation

	Conclusions
	Summary
	Future Work

	Bibliography
	APPENDICES
	Prerequisites
	Download Python
	Create Virtual Environment
	Download Packages
	Download Django
	Download pgAdmin4/PostgreSQL

	How to use the website
	Download the code
	Set up the database

