
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ADAPTIVE DEPLOYMENT AND MOBILITY OF

CONTAINERIZED SERVICES ON THE EDGE

Diploma Thesis

Foivos Pournaropoulos

Supervisor: Christos D. Antonopoulos

Volos, September 2022

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ADAPTIVE DEPLOYMENT AND MOBILITY OF

CONTAINERIZED SERVICES ON THE EDGE

Diploma Thesis

Foivos Pournaropoulos

Supervisor: Christos D. Antonopoulos

Volos, September 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΡΟΣΑΡΜΟΣΤΙΚΉ ΑΝΆΠΤΥΞΗ ΚΑΙ ΜΕΤΑΚΊΝΗΣΗ

CONTAINERIZED ΥΠΗΡΕΣΙΏΝ ΣΤΟ ΆΚΡΟ ΤΟΥ

ΔΙΚΤΎΟΥ

Διπλωματική Εργασία

Φοίβος Πουρναρόπουλος

Επιβλέπων/πουσα: Χρήστος Δ. Αντωνόπουλος

Βόλος, Σεπτέμβριος 2022

v

Approved by the Examination Committee:

Supervisor Christos D. Antonopoulos

Associate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member Spyros Lalis

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

Member Nikolaos Bellas

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

vii

Acknowledgements

I would like to express my gratitude to Prof. Christos D. Antonopoulos for his priceless

guidance throughout my undergraduate studies and Prof. Spyros Lalis for his invaluable help

for the completion of my Thesis. Finally, a special thanks to my family for the continuous

support in order to achieve my goals.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Foivos Pournaropoulos

xi

xii Abstract

Diploma Thesis

ADAPTIVE DEPLOYMENT AND MOBILITY OF

CONTAINERIZED SERVICES ON THE EDGE

Foivos Pournaropoulos

Abstract

Modern applications tend to embrace the microservices approach, which, in combination

with the proliferation of the edge computing paradigm over the past years, create the need for

dynamic resource allocation and energy efficiency. An additional main concern is to provide

applications with high availability and low response time. Moreover, the mobility of the user

or vehicle that utilizes edge computing intensifies the uncertainty and provokes a plethora of

challenges to guarantee to the application high quality of service and uninterrupted operation.

In this work, we propose an extension to an existing orchestration framework for the

Drone-Edge-Cloud continuum, to provide flexible and dynamic deployment of application

components at the edge.We present the design and implementation of the proposed extension

in detail, and discuss and differentiate previous research in related fields from our extended

framework. In the experimental evaluation, we use a realistic lab-based distributed cluster

setup to present the main benefits of edge computing as well as the potential and limitations

of the proposed mechanism. We examine the different aspects of this study through system-

level and application-level metrics.

Keywords:
Adaptive Deployment, Service Migration, Edge Computing

Περίληψη xiii

Διπλωματική Εργασία

ΠΡΟΣΑΡΜΟΣΤΙΚΉ ΑΝΆΠΤΥΞΗ ΚΑΙ ΜΕΤΑΚΊΝΗΣΗ

CONTAINERIZED ΥΠΗΡΕΣΙΏΝ ΣΤΟ ΆΚΡΟ ΤΟΥ ΔΙΚΤΎΟΥ

Φοίβος Πουρναρόπουλος

Περίληψη

Οι σύγχρονες εφαρμογές τείνουν να υιοθετούν την προσέγγιση των microservices, η

οποία, σε συνδυασμό με την ταχεία ανάπτυξη του προτύπου υπολογισμού στα άκρα του

δικτύου (edge computing), δημιουργούν την ανάγκη για δυναμική δέσμευση των υπολογι-

στικών πόρων και ενεργειακή αποδοτικότητα. Ένας επιπρόσθετος κύριος προβληματισμός

είναι να παρέχουμε στις εφαρμογές υψηλή διαθεσιμότητα και χαμηλό χρόνο απόκρισης. Επι-

πλέον, η κίνηση του χρήστη ή του οχήματος που χρησιμοποιεί το edge computing εντείνει την

αβεβαιότητα και προκαλεί πληθώρα προκλήσεων ώστε να εγγυηθεί στην εφαρμογή υψηλή

ποιότητα υπηρεσιών και αδιάκοπη λειτουργία.

Σε αυτή την εργασία, προτείνουμε μία επέκταση σε ένα υπάρχον πλαίσιο λογισμικού

(framework) ενορχήστρωσης, στο Drone-Edge-Cloud συνεχές, για να παρέχουμε ευέλικτη

και δυναμική ανάπτυξη των μερών της εφαρμογής στο άκρο του δικτύου. Παρουσιάζουμε το

σχεδιασμό και την υλοποίηση της προτεινόμενης επέκτασης σε λεπτομέρεια, καθώς και συ-

ζητόυμε και διαφοροποιούμε την προϋπάρχουσα έρευνα σε σχετικούς τομείς από το δικό μας

εκτεταμένο framework. Κατα την πειραματική αξιολόγηση, χρησιμοποιούμε μία ρεαλιστική,

βασισμένη στο εργαστήριο, κατανεμημένη ομάδα από υπολογιστικά συστήματα (cluster) για

να παρουσιάσουμε τα κύρια ωφέλη του edge computing καθώς και την προοπτική και τους

περιορισμούς που θέτει ο μηχανισμός. Εξετάζουμε τις διαφορετικές πτυχές αυτής της μελέ-

της μέσω μετρικών σε επίπεδο συστήματος και εφαρμογής.

Λέξεις-κλειδιά:
Προσαρμοστική Ανάπτυξη, Μετακίνηση Υπηρεσιών, Υπολογισμός στο ’Ακρο του Δικτύου

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Subject . 2

1.2 Contributions . 2

1.3 Thesis structure . 3

2 Background 5

2.1 Docker . 5

2.2 Kubernetes . 5

2.3 Fractus . 6

2.3.1 Overview . 6

2.3.2 Design . 7

2.3.3 Implementation . 8

xv

xvi Table of contents

3 Design-Architecture 9

3.1 Objective . 9

3.2 Assumptions . 10

3.3 Deployment adaptivity . 10

3.4 Fractus++ custom resources . 11

3.5 Fractus++ entities . 11

3.6 Node-level requirements . 12

3.7 Application deployment . 13

3.8 Adaptation triggering scenarios . 13

3.9 Application removal . 15

3.10 Data-traffic redirection . 15

4 Implementation 19

4.1 Underlying frameworks . 19

4.2 Fractus++ Controller . 19

4.3 Fractus++Monitor . 20

4.4 Fractus++ Agent . 21

4.5 Fractus++ net-proxy . 22

5 Evaluation 25

5.1 Preliminaries . 25

5.1.1 Cluster nodes . 25

5.1.2 Test application . 26

5.1.3 Testing scenario . 27

5.2 Performance Evaluation . 28

5.2.1 Communication latency & bandwidth 28

5.2.2 ImageChecker component - Image processing evaluation 30

5.2.3 Adaptive deployment mechanism - Application-level metrics 31

5.2.4 Adaptive deployment mechanism - Internal delays 32

5.2.5 General limitations . 38

6 Related Work 41

6.1 Application deployment & Edge, Cloud computing platforms 41

6.2 Service migration . 43

Table of contents xvii

6.3 Target mobility & computation migration 44

7 Conclusions and future work 45

7.1 Conclusions . 45

7.2 Possible improvements . 45

Bibliography 47

List of figures

3.1 Cluster connectivity . 10

3.2 Software stack . 13

3.3 Application registration by the user - control flow 14

3.4 Adaptive deployment due to node movement - control flow 15

3.5 Application modification by itself or by the user - control flow 16

3.6 Application removal by the user - control flow 16

3.7 Mobile connection to Ad-Hoc . 17

3.8 Mobile disconnection to Ad-Hoc . 17

4.1 Controller-Monitor interaction . 21

4.2 Net-proxy component interaction . 23

5.1 Interaction between application components 27

5.2 Migration scenario . 28

5.3 System-level latency & bandwidth . 29

5.4 Application-level latency & bandwidth . 29

5.5 Application-level evaluation setup . 30

5.6 Image Processing . 31

5.7 Migration process - Functionality & delay components 34

5.8 Ad-Hoc connection - Functionality & delay components 34

5.9 Ad-Hoc disconnection - Functionality & delay components 35

5.10 Average decision delay . 35

5.11 Average instantiation delay . 36

5.12 Average deployment, removal & termination delay 36

5.13 Average Controller-to-mobile notification delay 37

5.14 Average edge redirection setup & teardown delay 38

xix

xx List of figures

5.15 Mobile node - Average Ad-Hoc connection & disconnection delay 38

List of tables

4.1 Host-specific custom status values per application component 20

5.1 Node specs . 26

5.2 Application-related metrics . 31

5.3 Major components of adaptation overhead 33

5.4 Ad-Hoc delay components . 33

5.5 Model accuracy . 40

xxi

Abbreviations

API Application Programming Interface

CRD Custom Resource Definition

IoT Internet of Things

P2P Peer-to-Peer

RPi Raspberry Pi

VIP Virtual IP

VM Virtual Machine

VPN Virtual Private Network

YAML YAML Ain’t Markup Language

xxiii

Chapter 1

Introduction

The edge computing paradigm enhances application’s quality of service (QoS) bymoving

computations to the edge of the network, closer to the point where the data are produced. This

provides applications with the opportunity of lower communication latency compared with

communicating with a remote cloud server. Edge computing also favors the overall system

performance and stability, as it reduces the data sent to the cloud resulting in bandwidth

savings. Furthermore, new missions and challenges arise in this field, especially with the

proliferation of self-driving cars or unmanned aerial vehicles, which are characterized by

time-sensitive demands and also amplify cluster heterogeneity, rendering the overall system’s

flexibility and adaptation capability crucial.

With the evolution of edge computing, a plethora of edge-cloud applications arise, which

consist of components distributed across a set of nodes in the Edge-Cloud continuum. Thus,

the monolithic approach is not a proper paradigm for many modern applications. Quite often,

such applications adopt the microservices paradigm, in which an application is organized

as several independent entities which cooperate with each other to produce the final result

or functionality. Microservices-based applications solve real world problems with flexibility

and efficiency. The code implementing microservices is usually packaged and deployed in

the form of containers. Containers provide efficiency as they execute on top of the host’s

Operating System and are, therefore, a lightweight solution for hosting microservices.

To exploit the benefits of edge computing for applications organized as microservice

chains, there is an emerging need to enable orchestration and adaptivity at runtime.

1

2 Chapter 1. Introduction

1.1 Subject

In this Thesis, we design and implement a flexible application deployment mechanism

in the Drone-Edge-Cloud continuum based on the Fractus orchestration framework [1], [2].

Fractus handles automated application deployment and management, to realize a system that

adapts to the user’s requirements as well as node mobility at runtime. The aforementioned

framework manages applications following the microservices paradigm as independent con-

tainers that coexist and communicate to perform real-world missions. Also, it leverages direct

communication opportunities with edge nodes to transparently exploit the aforementioned

advantages of edge computing, while at the same time enabling high availability for the ap-

plication.

However, Fractus deploys all instances of a given component at once, thus having a subset

of idle components during the operation. In this Thesis, we extend Fractus to support just-

in-time provisioning, as well as deployment adaptivity at runtime. In order to improve the

overall system’s resource utilization and energy efficiency, we design a solution in which the

Fractus-related entities are communicating and cooperating, while having a single point of

management information which facilitates keeping track of potential cluster evolution and

enables hosting only the necessary application components at any given time. In addition,

we enable Fractus to readjust due to node mobility and to modify the deployment plan based

on various triggering scenarios.

1.2 Contributions

The contributions of this Thesis can be summarized as follows:

1. Extended the design and implementation of Fractus, to support different scenarios of

adaptive deployment at runtime.

2. Design and execution of a comprehensive experimental evaluation, using a realistic

lab-based cluster for a mobile application and dynamic component migration scenario,

to quantify the overheads and identify weaknesses of our mechanism.

3. Experimental quantification of the advantages of Edge Computing in terms of reduced

latency and increased bandwidth compared with the mobile-to-cloud communication.

4. Validation of the benefits of deployment flexibility via application-related metrics.

1.3 Thesis structure 3

1.3 Thesis structure

The rest of this Thesis is organized as follows: Chapter 2 introduces the Fractus frame-

work, which serves as the basis of this work. Chapter 3 describes the architecture and the

design aspects of our extended framework. Chapter 4 presents detailed insights on the im-

plementation. Chapter 5 focuses on the experimental validation and evaluation of the system

on a distributed cluster. Chapter 6 provides a review of previous work. Finally, Chapter 7

summarizes the most valuable results and the contributions of this Thesis, while proposing

various directions for possible improvements.

Chapter 2

Background

In this chapter, we introduce the most significant aspects of Docker and Kubernetes, tech-

nologies required for this work. Afterwards, we present the Fractus framework, which we use

as a starting point of this Thesis to introduce the desired deployment adaptivity at runtime.

2.1 Docker

Docker [3] is a platform used to create, deploy and run applications in an isolated and

secure environment, in the form of containers [4]. Containers enable faster development

and deployment of modern applications following the microservices approach and provide

portability, in terms of packaging, as they can run on a large variety of systems regardless

of their unique peculiarities. Moreover, containers provide a virtualization technology which

renders them more lightweight comparing with Virtual Machines [5], as the former use the

host’s Operating System, thus improving the system’s overall performance and lowering the

footprint of the enclave.

2.2 Kubernetes

Kubernetes [6] is a container orchestration platform useful for application deployment

andmonitoring in an automated fashion. Referring to the architecture, every Kubernetes clus-

ter has at least one control plane to supervise the cluster state, so that it can be as “close” as

possible to the user’s demanded state. Also, the cluster consists of several worker nodes that

communicate with the control plane via a well-defined API. To this end, the API Server is an

5

6 Chapter 2. Background

essential entity of the control plane, responsible for managing all of the API-related tasks.

A Kubernetes node needs to host an agent called kubelet in order to maintain the desired

Pods in a running state. A Kubernetes Pod is the system’s smallest deployable computing

entity. In addition, nodes host the Kubernetes network proxy, an entity that manages Pod

communication by using packet redirection.

To achieve the desired result, every application description is deployed to the API server

as one or more YAML files, consisting of all the needed parts for a successful operation.

Each independent part of the application is deployed as a Kubernetes Pod which hosts the

necessary containers.

2.3 Fractus

2.3.1 Overview

Fractus [1] [2] is a framework ”built” on top of Kubernetes, responsible for the deploy-

ment and coordination of distributed applications in the form of containerized microservices

in the Drone-Edge-Cloud continuum.

The user provides an application specification to Fractus, describing the application com-

ponents, their desired placement on the different types of nodes, the possible interactions

between them and their resource requirements for a successful deployment. Subsequently,

Fractus decides the deployment plan based on the aforementioned description and deploys

the components in alignment with the user’s demands, if possible at the moment of the re-

quest. Each application component is deployed as a Kubernetes Pod, running the respective

container with the desired functionality. In our case, every Pod hosts one and only container.

The user can also specify how many instances are needed for each component.

In addition, applications registered to Fractus have the flexibility to let their components

use of two types of system services, which can be hosted by each node with respective capa-

bilities: the mobility service to handle the node’s movement and the camera service used for

image capturing and processing. As a result, Fractus can be used for experimentation with a

variety of real-world tasks which require mobile sensors.

Fractus also provides handling of drone-specific operation. This is accomplished by using

information such as the regions of interest as well as the forbidden zones in which the drone

lacks the permission to use the camera or the mobility services.

2.3.2 Design 7

2.3.2 Design

The key operational units for the deployment process are Fractus Controller, Monitor,

Agent and net-proxy components.

The Controller inspects the application’s deployment requests and decides the nodes that

host each component. In order for the deployment to be accomplished, the Controller consid-

ers information such as the cluster nodes’ status, the resource requests by each Kubernetes

Pod and the communication relations between components. Consequently, the Controller

starts theMonitor which periodically performs health-checks for the running components.

Furthermore, every node of the cluster hosts a Fractus Agent instance in order to peri-

odically update state-related information to the Kubernetes registry, such as the node type,

the location, and the available resources. The Fractus net-proxy components are used to per-

form data redirection and exploit opportunities for direct peer-to-peer (P2P) communications

between the application components.

As for the application components, there are four basic categories based on the type of

the nodes which host them:

1. Drone component, which is hosted only by a drone.

2. Hybrid component, meaning that it can run both on cloud and edge nodes.

3. Edge component, hosted only by static nodes at the edge of the network.

4. Cloud component, which resides in nodes in the cloud.

As mentioned before, the application model follows the microservice architecture paradigm,

in the form of containers. As a result, a subset of the registered application components need

to use several services, for the purposes of any given application. For example, a component

placed on a drone could send the captured pictures to a component at the network edge in

order to process them and make a decision with the results. Each one of these services is

provided with a Virtual IP (VIP) from Kubernetes.

In our study, we primarily focus on hybrid components, which are used for the evaluation

of the deployment adaptivity in one of the possible cases, namely the component migration

between cloud and edge nodes. For the hybrid components, the FractusController chooses the

most suitable host based on ametric provided by the user at the time of application registration

to Fractus. For example, some indicative metrics would be the maximum communication

8 Chapter 2. Background

bandwidth, the minimum communication latency, or the preference of communication with

the edge nodes over WiFi rather than with the cloud nodes using a 4G internet connection.

However, Fractus always deploys instances of such components on all selected candidate

nodes, even if some of those instances may be required only for a short amount of time

during the application’s lifetime.

2.3.3 Implementation

Every necessary part of the cluster, such as the different types of nodes, drones, applica-

tions and their components are represented via Custom Resource Definitions (CRDs). The

lifecycle of the above resources, through specific operations, is controlled by the Kubernetes

API server.

The Fractus Controller watches for new application descriptions to be registered to Ku-

bernetes, creates the respective Kubernetes custom resources and services and deploys the

distributed components as independent Kubernetes Pods. When the deployment phase is fin-

ished, the Controller spawns the Fractus Monitor thread to check the execution status of the

application’s components.

If multiple instances of the same component are deployed, the service-invoking compo-

nents are able to communicate with a single service-providing component by applying the

respective ingress and egress rules to allow traffic to or from the appropriate instance. Every

distinct application service is granted a unique VIP from Kubernetes and all the instances of

the same service provider have the same VIP.

Chapter 3

Design-Architecture

In this chapter, we discuss the objective of the Thesis, the assumptions made during this

work and our extended design and architecture compared with the Fractus prototype. We will

refer to our extension as Fractus++.

3.1 Objective

Figure 3.1 illustrates the architecture of a model cluster used as our running example.

The cluster consists of two edge nodes, one cloud node, which also hosts the control plane,

and one mobile node. All the nodes are connected over a VPN, each one of them using an

Ethernet interface, except from the mobile node which employs a 4G internet connection.

In order to reduce the application-level response time we exploit direct WiFi channels for

mobile-to-edge communication.

Our primary goal is to bring the computations closer to the mobile node, thus exploiting

the communication but also computing advantages that edge computing offers, such as the

lower latency, the higher bandwidth as well as potentially faster or underutilized computing

resources. Another main concern is to ensure the application’s high availability with mini-

mal downtime. In addition, we aspire to improve the overall resource utilization by adding

adaptivity to the application deployment at runtime, as we deploy, migrate, and remove ap-

plication components based on user-provided metrics combined with the dynamic topology

of the member nodes. We mainly focus on distributed applications running on a set of edge,

cloud and mobile nodes.

9

10 Chapter 3. Design-Architecture

Figure 3.1: Cluster connectivity

3.2 Assumptions

The basic assumptions made in this work are the following:

• The communication between the cluster components is reliable and secure.

• Application components do not fail.

• Any communication-related errors between the application components are handled as

needed at the application-level to provide the desired functionality.

3.3 Deployment adaptivity

Modern applications have increased demands in terms of executing and monitoring their

desired state to guarantee successful operation. Furthermore, real-world tasks in the form

of distributed applications need to reconfigure their component placement based on various

events which are not known a priori.

In this study, we render the Fractus++ framework more versatile by (i) providing the user

with the flexibility to perform application-specificmodifications during runtime, (ii) automat-

ically adapting the application deployment due dynamics in resource availability or mobility

3.4 Fractus++ custom resources 11

of application components, as well as (iii) letting the application’s components themselves

lead to a revision of the application’s deployment plan.

More specifically, the initial application description can be replaced with another modi-

fied version by the user to reconfigure its characteristics. If the user needs the application to

be self-operating, this can be achieved by having the application modify its description to Ku-

bernetes programmatically. The above choices refer to the user’s own demands to rearrange

the deployment.

Fractus++ also supports adaptation based on cluster status. If a new node joins the cluster

and directly affects the application, meaning it can satisfy the application’s needs, the de-

ployment will automatically change to include the new node to the plan at any given moment

during operation. Additionally, an application consisting of a mobile node can exploit the

benefits of edge computing by offloading several application components from the cloud to

edge devices, if needed.

To accomplish adaptivity, the deployment phase occurs in a repetitive way as it can be

triggered by the aforementioned events.

3.4 Fractus++ custom resources

We introduce a new mobile node custom resource, which refers to a node type capable of

moving and changing its position in the physical space. The motivation for the above addition

is to test and evaluate our mechanism in several component migration scenarios, where the

mobile node enters or leaves the proximity range of one or more edge nodes.

3.5 Fractus++ entities

The responsibilities of the main Fractus++ entities are the following:

1. Fractus++ Controller: In the initial deployment case, it is responsible for the candidate

nodes filtering, the host selection and the component-to-node mapping, as it was on

the prototype version as well. The new capabilities of the Controller are the following:

• TheController is continuously informed about cluster status or application modi-

fications and performs the necessary adaptation to satisfy user’s demands. During

12 Chapter 3. Design-Architecture

the adaptive deployment stage, the unused Pods are removed from their hosts and

the new ones are deployed to the selected hosts.

• When the user requests the deletion of an application, theController removes and

cleans all running Pods from the cluster.

2. Fractus++Monitor: TheMonitor’s main responsibility is to periodically check for any

updated or new Fractus++ custom resources. Whenever this occurs, the Monitor in-

spects the application description, in order to decide if the corresponding update leads

to a change in the current state of the cluster and, as a consequence, theControllermust

be notified. Also, theMonitor periodically checks the status of the running Pods.

3. Fractus++ Agent: Same as in the prototype, the Agent placed on cloud, edge or mobile

nodes, keeps track of the node’s state and resource availability and sends updates to

the Kubernetes registry. When the Agent is hosted by a mobile node, apart from the

aforementioned, it also retrieves and sends to the Kubernetes registry its coordinates

periodically.

4. Fractus++ net-proxy: It is responsible for the redirection of the application’s traffic

through a direct WiFi channel instead of the conventional one, if the mobile node is

within the proximity range of an edge node and the edge node has direct communication

capabilities. The Fractus++ net-proxy running on the edge nodes, behaves as an access

point and waits for new connections, while the same entity running on the mobile node

receives notifications on the availability of Ad-Hoc connection opportunities from the

Controller.

3.6 Node-level requirements

Figure 3.2 depicts the software stack of different types of cluster nodes. The cloud node

runs the control plane for both Kubernetes and Fractus++, thus hosting the Kubernetes API

Server and the Fractus++ Controller and Monitor entities. The rest of the nodes host the

kubelet agent. Also, each node hosts the Fractus++ Agent and the essential container runtime

software to be able to execute the desired application components in the form of containers.

The edge as well as the mobile nodes host a net-proxy component to exploit direct commu-

nication opportunities that may occur at runtime.

3.7 Application deployment 13

Figure 3.2: Software stack

3.7 Application deployment

Figure 3.3 presents a typical application deployment request to Fractus++. TheController

is notified by Kubernetes when a new application has been registered. The application de-

scription is stored to internal data structures and translated to various dependencies between

the involved components. The Controller updates the cluster’s resources and it then builds an

initial deployment plan. The latter also spawns the Monitor to start monitoring for resource

updates and the status of the already deployed Pods.

3.8 Adaptation triggering scenarios

In Fractus++, we consider various modifications in the application’s deployment plan

which can be initiated from the user, the application itself, or by other external factors. More

specifically, the possible rearrangement-triggering scenarios supported are the following:

• Movement of an application component

• Introduction of a new node in the cluster

• Application description modification by the user or by the application itself

14 Chapter 3. Design-Architecture

Figure 3.3: Application registration by the user - control flow

To visualize the control-flow process, we present an explanatory figure for each of the

scenarios.

Figure 3.4 depicts the main scenario we evaluate, thus providing more details compared

with the other adaptation scenarios. The mobile node updates its coordinates periodically to

Kubernetes. When the node enters the proximity range of an edge node, theMonitor detects

the possible need for migration and notifies theController to adjust the current deployment, if

it may lead to a more efficient setup for the application. In contrast with the first registration

case, the Controller also removes the unused Pods. In addition, an alternative scenario for

this case would be a new node introduction to the cluster.

In Figure 3.5, we present another scenario for readjustment, when the user or even a com-

ponent of the application decides to adjust the current application description. For example,

the user or the application component may modify the region of interest for the application,

meaning that new nodes would be candidates to host a subset of the application components,

or several hosts would no longer be needed. The Controller spots the differences between the

outdated and the updated description and reconfigures the plan by repeating the deployment

procedure.

A key observation for the extended functionality is the fact that we keep a single point of

information storage, which is the Kubernetes registry. Every time a Fractus++ entity needs

to update a custom resource, the invocation results to the API Server.

3.9 Application removal 15

Figure 3.4: Adaptive deployment due to node movement - control flow

3.9 Application removal

In addition to the Fractus prototype, our extended framework supports application re-

moval by the user, as shown below. In Figure 3.6 the Controller is notified for the application

removal, it retrieves the needed stored information about the current deployment plan and it

deletes all application modules.

3.10 Data-traffic redirection

When a hybrid component is moved to one of the edge nodes equipped with a WiFi

interface, the possibility of direct communication with the application components hosted

on mobile nodes is emerging to optimize the system’s overall performance. The Fractus++

net-proxy entity is responsible for redirecting the data traffic to pass through the direct WiFi

channel instead of using the default internet connection between the interacting components.

To leverage this potential, a net-proxy instance is running on all of the edge and mobile nodes.

Figure 3.7 illustrates the process of mobile node connection to the direct channel that the

edge node provides. The mobile node is notified from the Controller to establish the direct

connection with the edge and it then sends to the latter the service component’s name and

the port number. When the edge node has modified its routing rules it responds to the mobile

16 Chapter 3. Design-Architecture

Figure 3.5: Application modification by itself or by the user - control flow

node to let it update its own rules.

Figure 3.8 outlines the reverse procedure, when a direct communication link must be

destroyed. Same as in the connection case, the Controller initiates the disconnection process

by informing the mobile node. The latter restores the routing rules previously modified to

support direct connection and notifies the edge node to follow the same course of action.

Figure 3.6: Application removal by the user - control flow

3.10 Data-traffic redirection 17

Figure 3.7: Mobile connection to Ad-Hoc

Figure 3.8: Mobile disconnection to Ad-Hoc

Chapter 4

Implementation

In this chapter, we discuss the main implementation details of the proposed work.

4.1 Underlying frameworks

The Fractus++ framework uses k3s [7], a lightweight Kubernetes distribution appropriate

for edge computing. In addition, Docker [3] is leveraged as the container runtime software and

Flannel [8] provides a layer 3 overlay network among the cluster members for the internet-

based communication.

4.2 Fractus++ Controller

The Controller is aware of application resource events to Kubernetes and readjusts the

deployment plan. It also cooperates with the Monitor to have global knowledge about the

dynamic behavior of the cluster.

TheController initializes its internal structures and starts the Scheduler thread responsible

for serving deployment-related actions. The Controller’smain thread watches for new appli-

cation registration, modification, or removal events posted to Kubernetes. The main thread

inserts the type of each event as well as the application’s specification and credentials to a

queue, which the Scheduler thread accesses and consumes the plan configuration requests.

The Scheduler thread recognizes two types of application description modifications: 1)

specification changes initiated by the user or an application component, and 2) one or more

new resource type entries in the UpdatedResources list.

19

20 Chapter 4. Implementation

To further explain the latter case, list entries indicate the resource types that have been up-

dated since the last readjustment and may lead to a possible deployment plan rearrangement.

The aforementioned entries are produced by theMonitor at runtime. Whenever a reconfigu-

ration request is finished, the Scheduler clears the UpdatedResources list, if it is not already

empty. The list is introduced via a new property in the application specification and can in-

clude the following entries:

(i) Edge Node Entry, (ii)Cloud Node Entry, (iii)Mobile Node Entry and (iv)Drone Entry.

For example, when the mobile node is in the proximity range of an edge component, the

Mobile Node Entry will be inserted to the UpdatedResources property of the application’s

specification. Alternatively, when a new edge node joins the cluster, the Edge Node Entry

will be added.

In terms of deployment adaptivity, every application component has a dedicated list con-

taining the host nodes for it. The Schedulermarks every host in the above list with the custom

status values shown in Table 4.1:

Table 4.1: Host-specific custom status values per application component

Value Description

Pending The Pod needs to be deployed to the host node

Active The Pod is running on the host node

Inactive The Pod needs to be removed from the host node

Whenever a new node is selected to host a specific component, the node is marked as

Pending in order for the component’s Pod to be deployed to it immediately. From the moment

the given Pod is up and running, the host’s status is marked as Active. During the deployment

plan reconfiguration, if one of the component’s hosts is no longer a candidate, the host is

marked as Inactive.

4.3 Fractus++Monitor

TheMonitor detects cluster resource updates, informs the Controller to apply plan recon-

figurations and performs Pod status monitoring.

TheMonitor entity consists of two threads. The HealthChecker thread is responsible for

the application Pods’ status inspection. The ResourceChecker thread periodically checks the

4.4 Fractus++ Agent 21

cluster’s resources in order to detect any deployment rearrangements that may be required

due to such changes, and notifies the Controller accordingly.

In particular, the ResourceChecker thread examines mobile node-related updates lead to

check if such nodes enter or leave the proximity range of an edge node. If a readjustment is

needed, it inserts the respective resource type to the the UpdatedResources list of the appli-

cation’s specification. Note that the ResourceChecker only checks the resources which are

directly affecting the specific application in question. For instance, an application which does

not use a mobile node, does not require any management over mobile node resources.

The Controller needs to share application-related data structures with theMonitor. To en-

sure proper synchronization, whenever the Scheduler readjusts the deployment, it uses two

binary semaphores to block the HealthChecker and the ResourceChecker threads, respec-

tively. The described functionality is shown in Figure 4.1.

Figure 4.1: Controller-Monitor interaction

4.4 Fractus++ Agent

The Agent sends the node status and resource availability to Kubernetes. In case the Agent

is running on an mobile node, it periodically updates the coordinates to Kubernetes.

22 Chapter 4. Implementation

4.5 Fractus++ net-proxy

The net-proxy cooperates with the Controller and performs data-traffic redirection to let

the application prefer direct communication with the edge transparently.

In general, distributed applications use several components which serve other application

components. Thus, it is crucial for a client component to be able to communicate with the

service-providing component without having to discover it after a possible service migration

or restart. As a consequence, the server component is represented via a Kubernetes Service,

provided with a Virtual IP (VIP). The aforementioned VIP and the service’s port number

are assigned to the service-invoking Pod as environment variables. This address will remain

constant during the application’s lifetime, as long as the Kubernetes Service is not modified.

During a traffic redirection scenario, the Scheduler thread sends to the mobile node’s

net-proxy the credentials in order to connect to the respective edge node’s net-proxy instance

which operates as an access point. The mobile node sends to the edge node the desired com-

ponent’s unique name which the redirection will affect, as well as the service’s port number.

The net-proxy running on the edge node firstly retrieves the requested component’s IP ad-

dress in the overlay network which is used for Pod communication, and it assigns a new

IP address to the specific component, dedicated to application-level communication through

WiFi. In addition, it modifies the routing rules to redirect to the specific Pod traffic sent to the

component’s assigned address of the direct channel. Subsequently, it returns a response with

the component’s assigned address. Finally, the mobile node modifies its own routing rules to

redirect all the data sent to the service’s VIP and port to the dedicated address through the

WiFi channel. Figure 4.2 illustrates the explained procedure.

Whenever the redirection needs to be destroyed, the Scheduler thread notifies the mobile

node. The latter restores the iptables [9] rules to enable communication using the default

connection and forwards the same notification to the edge node to delete the undesired rout-

ing rules.

4.5 Fractus++ net-proxy 23

Figure 4.2: Net-proxy component interaction

Chapter 5

Evaluation

In this chapter, we will present the experimental evaluation undertaken to validate the

operation and quantify the performance of the proposed deployment adaption mechanism.

The first section describes the experimental setup. The second part presents the experimental

results.

5.1 Preliminaries

5.1.1 Cluster nodes

Within our cluster, we consider Mobile, Edge and Cloud nodes. Each node runs the re-

spective Fractus++ Agent based on its type. The Agents register the node type to Kubernetes.

The Agent for the Mobile node updates the coordinates periodically. The Agents at the edge

also submit their location to Kubernetes.

We evaluated our work on a realistic lab-based cluster which consists of the following

members as outlined in Table 5.1. It is important to clarify that the Cloud node hosts both the

application-level components as well as the Kubernetes and the Fractus++ control planes.

As for the connectivity, all the cluster nodes are connected via a VPN. Additionally, the

Mobile node [10], the Edge 1 and the Edge 2 are employing their WiFi interface, using the

2.4GHz frequency band, for the ephemeral P2P connections. TheMobile node uses a 4G/LTE

USB modem [11] for the standard and permanent communication to the Internet. The 4G

network coverage is provided by COSMOTE [12].

25

26 Chapter 5. Evaluation

Table 5.1: Node specs

Node Raspberry Pi 3

Model B

(Mobile node)

Desktop

(Edge node 1)

Laptop - VM

(Edge node 2)

Cloud - VM

(Cloud node)

Processor ARM

Cortex-A53

@1.20 GHz

Intel(R) Core(TM)

i5-4670

@ 3.40GHz

Intel(R) Core(TM)

i5-7200U

@ 2.50GHz

Intel(R) Xeon(R)

Silver 4110

@ 2.10GHz

Cores 4 4 2 4

RAM 1GB 8GB 4GB 16GB

OS Raspbian

GNU/Linux 11

(bullseye)

Ubuntu 20.04.4 Ubuntu 20.04.1 Ubuntu 20.04.4

Kernel 5.15.32-v7+ 5.15.0-46-generic 5.15.0-46-generic 5.4.0-122-generic

5.1.2 Test application

The distributed application used in the experiments, as shown in Figure 5.1, contains

three different components. The MobileViewer component is running on the mobile node. It

accesses the local camera service, to capture images periodically. In turn, these images are

sent to the ImageChecker component. The latter implements the image processing service

of the application and forwards the subset of the images considered as “interesting” for the

application to theDataStore component, which saves them for further usage / inspection. The

ImageChecker component is a hybrid component, as it can reside in both Edge and Cloud

nodes. In this experiment, we focus on the migration of this hybrid component, namely the

adaptive deployment of the ImageChecker as a function of the mobile node’s current position

in order to exploit nearby Edge nodes. TheDataStore component is a pure cloud component.

The component used to test the adaptation mechanism has an image footprint of 331MB and

implements the hybrid ImageChecker component.

5.1.3 Testing scenario 27

Figure 5.1: Interaction between application components

5.1.3 Testing scenario

For the purpose of our lab-based experiments, we extend the defaultAgent functionality in

order to support virtual node mobility. This is done by letting the Agent read a file, specified

via a configuration parameter, which encodes the waypoints and the (constant) velocity of

the node. The distance traveled between two consecutive locations is periodically calculated

assuming the nodemoves in a straight line, and the node’s (virtual) current position is updated

in the respective Kubernetes resource.

In order to exploit the advantages of the edge computing at runtime, the hybrid component

is migrated to an Edge node, when the Mobile node approaches its proximity range, thus the

Edge node is preferred over a Cloud node. If the Edge node is equipped with aWiFi interface,

the Mobile node adopts a temporary P2P interaction with the Edge node over WiFi, as long

as it remains within the WiFi range.

We test the deployment adjustment mechanism in the following component migration

scenario: During the experiments, the proximity range of Edge nodes is equal to 25 meters

and the Mobile node’s velocity equals 2.5 m/s. As shown in Figure 5.2 the Edge nodes are

being placed in equal distances, forming three regions without Edge node coverage and two

regions with edge coverage.

28 Chapter 5. Evaluation

Figure 5.2: Migration scenario

5.2 Performance Evaluation

5.2.1 Communication latency & bandwidth

To begin with, we quantify the benefits in the case when the Mobile node is communicat-

ing with the Edge nodes instead of the Cloud node. Themain favorable characteristics of edge

computing are the lower communication latency and the higher communication bandwidth

utilization compared with the communication with the cloud. Thus, modern applications typ-

ically opt for interaction with the edge of the network whenever possible. This is particularly

true for time-sensitive applications. In the following evaluation, the Mobile node uses the

WiFi Ad-Hoc channel when sending data traffic to the Edge nodes and the 4G internet con-

nection for the Cloud node.

The first set of experiments leverages the ping command to quantify the communication

latency and the iperf tool [13] for the communication bandwidth. In the system-level case,

the nodes involved are not using the Fractus++ software.

From Figure 5.3 it is clear that the interaction with the Edge nodes significantly improves

the communication latency and bandwidth. The latency with the Edge 1 and the Edge 2 is

91% and 88% respectively lower than with the Cloud node. As for the measured bandwidth,

it is 68.8% higher with the Edge 1 and 77% higher with the Edge 2. The above results are

5.2.1 Communication latency & bandwidth 29

expected, as the P2P interaction is more efficient compared to the 4G internet connection

when the RPi communicates with the cloud. The latter also involves passing the data through

a base station, which can be located anywhere, to consequently have access to the internet.

The next step is to involve the test application we discussed, as shown in Figure 5.5, to

measure the communication latency and bandwidth when the MobileViewer is sending: 1) a

simple string (latency) and 2) a 6MB image (bandwidth) to the ImageChecker component.

In Figure 5.4 we observe that the communication latency with both of the Edge nodes

is 55% lower on average, compared with that to the Cloud. Similarly, the communication

bandwidth is approximately 70% higher to the edge rather than to the cloud.

Latency - ping command Bandwidth - iperf tool

Figure 5.3: System-level latency & bandwidth

Latency Bandwidth

Figure 5.4: Application-level latency & bandwidth

30 Chapter 5. Evaluation

Figure 5.5: Application-level evaluation setup

5.2.2 ImageChecker component - Image processing evaluation

At this point, the hybrid ImageChecker component activates its true functionality, mean-

ing that it will process the images sent from theMobileViewer to perform face detection and

blurring, if one or more faces have been detected.

Figure 5.6 asserts that the application shown is favored in its entirety, in terms of response

time to the MobileViewer, whenever the ImageChecker component is hosted by an Edge

node. Communication with the edge reduces the overall response time by 71% on average.

Additionally, the time spent for image processing is also decreased by 74% on average. This

result is explained considering the following factors:

• The Cloud VM handles a larger workload as it hosts the Kubernetes and Fractus++

control planes as well as the ImageChecker, DataStore and Fractus++ Agent Pods.

The Edge nodes only host the Fractus++ Agent, the Fractus++ net-proxy and the Im-

ageChecker entities. As a consequence, the Cloud node has constantly very high CPU

utilization compared with the Edge nodes.

• The Edge nodes have computing capabilities which are comparable with the Cloud

VM’s.

5.2.3 Adaptive deployment mechanism - Application-level metrics 31

Figure 5.6: Image Processing

5.2.3 Adaptive deployment mechanism - Application-level metrics

To have a better understanding of the potential and the possible limitations of the im-

plemented mechanism for deployment adaptivity, we examine various internal delays and

application-level metrics.

The following table 5.2 summarizes application-related metrics:

Table 5.2: Application-related metrics

Metric Description Evaluation

Availability The total number of successful invocations

(from theMobileViewer to the ImageChecker)

to the total number of invocations

Higher is better

Accuracy The number of the successful invocations at

the desired hybrid instance based on the spec-

ified application rule for migration to the total

number of successful invocations

Higher is better

Concerning availability, in the migration scenario 193 of the total invocations of theMo-

bileViewer to the ImageChecker have been completed successfully and 1 failed, resulting in

an availability of 99.48%. When a migration is decided, the old hybrid component is be-

ing deleted with zero grace period in order to use the new application Pod immediately.

Thus, communication errors can occur when the MobileViewer is sending an image to the

ImageChecker.

As mentioned before, we assume that these kind of errors are handled at the application-

32 Chapter 5. Evaluation

level. For example, an image of great significance for the application can be selectively re-

transmitted. When the ImageChecker is migrated and the image transmission fails, there is a

high possibility for the application to achieve sending the image faster, if it retransmits the

image through the P2P channel, than it would have if theMobileViewer was sending the im-

age without errors using the default channel. The above statement is valid in the case when

the component migrates from a node which uses the internet-based channel to an Edge node

that has direct communication capabilities.

Concerning accuracy, the rule we use to select the new host for the hybrid instance is the

physical proximity from the Mobile node. In case of a migration, we remove the old Pods

immediately, with zero grace period. Thus, we observe that the accuracy is 100%, as when

the Mobile node is inside the proximity range it sends any upcoming successful invocations

to the new hybrid instance of the ImageChecker. If a communication error occurs when the

MobileViewer starts sending an image during the removal of the old Pod or the teardown of

the data-traffic redirection, the invocation is considered as failed.

5.2.4 Adaptive deployment mechanism - Internal delays

In order to quantify the performance overhead for themigration of the hybrid ImageChecker

component, Table 5.3 summarizes themain Fractus++-oriented delay components, alongwith

their descriptions, while the Figure 5.7 depicts the whole migration process annotated with

the aforementioned components.

The last part of the experimental evaluation focuses on the latency related to the Ad-Hoc

connection of the Mobile node leveraging the Edge node’s direct WiFi channel. Table 5.4

presents and describes the respective delay components. Figure 5.8 depicts the Fractus++

functionality along with the respective delay component for the Ad-Hoc connection. Simi-

larly, Figure 5.9 shows the Ad-Hoc disconnection case.

TheMobile node’s location update to Kubernetes occurs every 2 seconds and lasts for 342

msec on average. Also, the Fractus++ Monitor is periodically checking for new or updated

resources every 1 second. Thus, the average delay starting from the end of step (1) until the

beginning of step (2) is approximately 544 msec. However, the bottleneck during this time

window is the delay for the Monitor to update its resources from the Kubernetes registry,

added to the delay for the Monitor to update the application description. The delays last 42

msec and 33 msec on average respectively. Thus, the average delay for this time window in

5.2.4 Adaptive deployment mechanism - Internal delays 33

the worst case scenario, assuming that the Monitor is updating the resources with zero idle

time and is not blocked by the Fractus++ Controller, is approximately 75 msec.

Table 5.3: Major components of adaptation overhead

Delay component Description

Location update The delay for the Mobile node to update its location to Kubernetes

and receive the response

Controller notification The delay from the moment when the Fractus++Monitor detects the

need for migration until the Fractus++ Controller receives the de-

ployment adjustment request

Decision The delay from the moment that the Fractus++ Controller is notified

to adjust the deployment until it decides the new component-to-node

mapping

Pod-file creation The delay for the Fractus++ Controller to build the new Pod-related

files

Deployment The delay for the Fractus++Controller to stop the Fractus++Monitor

and to complete the deployment request to Kubernetes

Instantiation The delay for the deployed component instance to become opera-

tional

Removal The delay for the Fractus++ Controller to check for Pods to delete

and complete the removal request to Kubernetes

Termination The delay for the undesired Pods to be completely removed

Redirection teardown notification The delay for the Fractus++ Controller to notify the Fractus++ net-

proxy of the Mobile node to stop data-traffic redirection

Redirection setup notification The delay for the Fractus++ Controller to notify the Fractus++ net-

proxy of the Mobile node to start data-traffic redirection

Table 5.4: Ad-Hoc delay components

Delay component Description

Setup connection The delay for the Fractus++ net-proxy to connect to the Ad-Hoc

channel of the respective Edge node

Teardown connection The delay for the Fractus++ net-proxy to disconnect from the

Ad-Hoc channel of the respective Edge node

34 Chapter 5. Evaluation

The Controller notification delay has an average value of 57 msec. As for the Pod-file

creation procedure, it has negligible overhead equal to 1 msec.

Figure 5.7: Migration process - Functionality & delay components

Figure 5.8: Ad-Hoc connection - Functionality & delay components

Figure 5.10 illustrates the average decision delay for all the possible migration cases. We

observe increased average decision overhead by approximately 27.5% when the migration

target is the Cloud node. This result is explained because the mechanism performs additional

calls to Kubernetes, when none of the Edge nodes can host the hybrid component, by asking

5.2.4 Adaptive deployment mechanism - Internal delays 35

Figure 5.9: Ad-Hoc disconnection - Functionality & delay components

Figure 5.10: Average decision delay

the status of the available Cloud node.

From the presented results, we can observe that, the mechanism is limited by an accept-

able overhead from the moment when the mobile node sends its location until the new mi-

gration decision is made and the deployment plan is readjusted.

In Figure 5.11 we compare the instantiation overhead for the hybrid component across

the different cluster members. As expected, the Edge 1 has the lowest instantiation overhead

as it is the only node which is running on top of the machine’s host Operating System and not

within a VM, thus it is spared from virtualization overheads. The Edge 1 has approximately

20% and 30% lower instantiation delay than the Edge 2 and the Cloud respectively. The

Cloud node has 10% higher overhead due to the fact that it hosts a larger workload than the

Edge 2, which leads to a significantly higher CPU utilization percentage compared with the

36 Chapter 5. Evaluation

Edge nodes. As a consequence, the mechanism’s performance is favored by migrating the

component to the Edge nodes instead of the Cloud node.

Figure 5.11: Average instantiation delay

Next, we evaluate the performance of the stages of the deployment, the removal and the

termination in the same graph as shown in Figure 5.12. As observed from the graph, the av-

erage overhead for the removal and the termination is practically equal on all nodes with a

difference lower than 2 msec for both cases. Referring to the deployment delay, the maxi-

mum difference is approximately 6 msec. The deployment delay varies due to the fact that

it includes the additional overhead of the acquisition cost for two semaphores used for syn-

chronization between the Fractus++ Controller and the Fractus++Monitor. The results show

that these components cause acceptable delays to the overall migration process.

Figure 5.12: Average deployment, removal & termination delay

When the old Pod is removed from the system, the Fractus++ Controller notifies the Mo-

bile node if there is an opportunity for connection or disconnection to or from an Ad-Hoc

network. From Figure 5.13, comparing the redirection setup notification and the redirec-

tion teardown notification delays we notice that the former is 52% higher, as the message to

5.2.4 Adaptive deployment mechanism - Internal delays 37

transmit is longer. This relates to the need of the Mobile node for the essential credentials

to connect to the Ad-Hoc channel in which the Edge node operates as an access point. On

the contrary, whenever a connection needs to stop, the Mobile node does not require rich

information, rather than a simple message with the suitable status code.

Figure 5.13: Average Controller-to-mobile notification delay

From the Edge node’s point of view, we evaluated the average delay to create and delete

iptables rules for each migration case. It is worth noticing that in the case of the redirection

setup delay, the Fractus++ net-proxy on the Edge node initially finds the Pod’s IP address

in the overlay network at runtime and subsequently inserts the appropriate routing rules to

start the redirection. On the other hand, the redirection teardown only includes the delay of

restoring the iptables rules.

Figure 5.14 illustrates that the redirection setup delay on the Edge 1 is 43% lower than

on the Edge 2, while the redirection teardown overhead of Edge 1 is 65.9% lower than the

respective overhead of Edge 2. That is explained as the Edge 1 runs directly on top of the

host’s Operating System and the Edge 2 runs as a VM. Thus, the Edge 2 suffers virtualization

overhead on top of the overhead of network management within the Operating System.

Figure 5.15 shows that the Mobile node has 10% lower connection delay with Edge 1

compared with Edge 2. That is expected due to the fact that Edge 1 has lower redirection

setup than Edge 2, as derived from Figure 5.14. The disconnection average delay is similar

for both Edge nodes. A percentage equal to 92% of the total disconnection delay occurs due to

the concurrent iptables rules modification by Kubernetes, thus preventing the Fractus++ net-

proxy to restore the routing rules immediately. The connection and disconnection delays are

bottlenecks for the performance of the mechanism as they induce the highest delays among

the presented overhead components.

38 Chapter 5. Evaluation

Figure 5.14: Average edge redirection setup & teardown delay

Figure 5.15: Mobile node - Average Ad-Hoc connection & disconnection delay

5.2.5 General limitations

Having examined the above experiments in order to evaluate our proposed mechanism in

terms of performance, it is important to extract general conclusions for the limitations of this

work.

The successful operation and communication with the edge is restricted by two factors:

1. The Edge node’s wireless proximity range

2. The Mobile node’s velocity

We assume a wireless proximity range equal to 50 meters and a constant drone velocity

equal to 5 m/s. The overall migration process, from the Cloud to an Edge node, lasts 4.69 sec-

onds on average. Based on relation 5.1 and having an Edge node with the assumed proximity

range, the mobile node’s velocity must not exceed 21 m/s, as the mobile node travels across

a straight line which equals two times the physical proximity range of the Edge node. Exper-

5.2.5 General limitations 39

imentally, the maximum supported velocity equals 26 m/s. This behavior can be explained

because:

• The mobile node remains in the proximity range for a longer time interval than the

theoretical one, due to the delays of the mobile node’s location updates to Kubernetes.

• The mobile node is moving virtually, as the Fractus++ Agent simulates the location up-

dates of an actual node with mobility. In practice, it constantly remains in the physical

proximity of the edge node and its WiFi interface remains active during the Ad-Hoc

disconnection process.

V elocity <
2 ∗ ProximityRange

MeanMigrationDelay
(5.1)

An additional observation is related with the expected invocations of theMobileViewer to

the edge. In this experiment, the period of accessing the camera service is zero, meaning that

theMobileViewer captures a new image immediately after the previous one is sent to the Im-

ageChecker. The formula 5.2 follows an approximate model to calculate theMobileViewer’s

average invocations to the edge for a single traversal.

CallsToEdge =

⌊
2 ∗ ProximityRange

V elocity ∗MeanResponseT ime

⌋
(5.2)

The mobile node’s velocity significantly affects the accuracy of the proposed model, as

increased velocity produces faster migration triggers and less invocations. Thus, the model

becomes vulnerable as the velocity increases. This deduction can be validated from experi-

ments shown in Table 5.5. As observed, in the first case of having the velocity equal to 5m/s,

the model has a high deviation between the theoretical calls and the experimental ones. While

decreasing the speed to 2.5m/s, the accuracy is increased by 10% on average. In the third step,

we observe that the accuracy is increased with the a lower rate, equal to 1.5%. If we keep

reducing the speed, the same behavior will be continued.

The above limits that our mechanism sets can be mitigated using a proactive approach,

which would start the migration process earlier to have the Mobile node start communicating

with the edge as soon as possible when it enters the respective proximity range.

In our experimental evaluation, we mainly focused on the component migration scenario

due to the mobility of a node. However, the implemented mechanism not only provides the

40 Chapter 5. Evaluation

Table 5.5: Model accuracy

Velocity Model accuracy (%)

5 m/s 78%

2.5 m/s 88%

1.25 m/s 89.5%

component migration option, but also a more general deployment adaptivity mechanism that

improves the overall system’s resource utilization and optimizes performance-related metrics

specified by the user.

Chapter 6

Related Work

In this chapter, we outline previous research on the fields of static and flexible application

deployment, service and computation migration, as well as the main differences compared to

our proposed work.

6.1 Application deployment&Edge, Cloud computing plat-

forms

Beyond static deployment, flexible deployment is emerging as a requirement by modern,

complex applications.

Bahl et al. [14] introduce the concept of service offloading from the mobile devices

to a powerful set of computers which are operating at the edge of the network, called as

”cloudlets”. The cluster uses a VM virtualization technology to host the respective services.

The offloading process starts whenever the mobile node approaches the proximity range of

the ”cloudlet” to exploit the communication benefits and terminates when it leaves the range,

thus having to continue the communication with a remote cloud.

Liu et al. [15] mainly focus on IoT applications in the form of containerized services, in

which computations can be offloaded to the gateways, as the latter usually remain underuti-

lized. The authors leverage a centralized cloud-centric approach for the resource orchestration

and management and evaluate the variety of technologies used for virtualization before the

final selection of containers was made. [16] follows the same pattern as the previous work

by offloading services to the Edge Cloud and also considers security as a major concern with

the introduction of trusted environments for the container operation. In terms of evaluation,

41

42 Chapter 6. Related Work

they present the security-related overheads induced by the platform.

Comparing with the first study, we focus on a container migration approach instead of

VM synthesis. Referring to the last two works, apart from the initial deployment phase, our

major consideration is the plan readjustment behaviour at runtime and the different scenarios

which trigger the readjustments.

In [17], the authors justify the emerging need of running applications in which both com-

mon and serverless components are used concurrently. The common components are used

in the form of containers or VMs. As a consequence, the primary focus is on supporting the

adaptive deployment of applications following the above model, by expanding the capabil-

ities of an existing platform. Moreover, the platform can handle the deployment of cross-

cloud applications. The deployment procedure is repeated whenever the captured metrics for

the monitored application suggest it. The design is significantly influenced by applications

that combine both AI and Big-Data fields, which is also the type of application used for the

evaluation. More specifically, the same application is examined in two scenarios, comparing

the case when only VMs are used with the case when serverless components are also part of

the application. The authors prove that the latter case has not only decreased cost but also

higher scalability.

In [18], the authors discuss several advantages of using multi-cloud applications nowa-

days. This extended framework serves applications with such characteristics and also consist-

ing of components with various service levels. In this case, the deployment readjustment is

supported by complex rearrangement rules, activated by events. The rules are correlated and

converted to workflows, which can be modified in the course of time to optimize the used

plan. Moreover, supervision of the application’s precedent recorded activity is also provi-

sioned for possible reuse, or deployment reshaping. The platform evaluation tests a paradigm

of an application using the microservices approach and shows the successful operation and

handling of adaption scenarios.

Work presented in [19] focuses on the adaptive application deployment across multiple

cloud providers, but without solving any plan reconfiguration scenario. A provider-independent

approach is embraced by combining two existing application specification technologies to

exploit both the application components’ topology as well as a uniform method to distribute

the components to multiple cloud vendors. To achieve that, the authors use an intervening

graph which combines essential information about the application’s components and the in-

6.2 Service migration 43

teractions between them. For the functionality validation, a multi-cloud application sample

is presented.

The key difference between the last three studies and our work is that, apart from the func-

tionality testing with an application sample, we also quantify the internal overhead that our

mechanism introduces during the deployment adaptation. In addition, we provide application-

level metrics to ensure the successful operation using a realistic cluster.

6.2 Service migration

Service migration is a technique commonly used in edge computing in order to achieve

better resource utilization and to improve the quality of service for the user.

The authors of [20] introduced a service migration mechanism which exploits cognitive

computing at the edge of the network. The migration process occurs proactively, to send a

subset of the needed services or tasks to the next expected edge node where the user is more

likely to travel, if the node provides the essential required resources. In addition, each service

has three different types, depending on the user’s demands, in terms of the tradeoff between

the quality of the results and the response delay of the running application. To decide for a

possible migration, the mechanism realizes a reinforcement learning approach. The mecha-

nism is also compared with the just-in-time migration case and the case without migration,

using a mobile user in an emotion detection scenario.

[21] focuses on IoT environments, while operating in the Cloud-Fog-Edge continuum.

Each layer is responsible for handling the respective workload based on its computing capa-

bilities. The Cloud layer manages the most demanding tasks in terms of resource utilization

and decides the deployment plan based on global system analysis. The Fog layer acceler-

ates the interaction with the edge devices. Similarly to our work, the nodes are annotated

with placement-specific labels according to their layer. To provide the overall system with

deployment flexibility, the Cloud layer exploits data mining solutions and the results are con-

sequently shared with the Fog layer. To validate the correct operation, a smart home scenario

is used.

Our work is capable of handling more complex applications and adaptivity scenarios,

such as having an application component to trigger a component migration at runtime.

44 Chapter 6. Related Work

6.3 Target mobility & computation migration

An additional related field is the computation migration in order to provide flexible sup-

port due to the target mobility.

Bramberger et al. [22] apply migrations in a distributed system consisting of multiple

smart cameras for an object tracking application. Smart cameras are used as embedded sys-

tems that cooperate to accomplish several real-world missions. When the target inserts a spe-

cific zone of interest or there is a resource modification, in terms of availability, the migration

process is triggered. The system uses mobile agents, meaning that the agent that performs the

required task is moved between cameras.

Although there are similarities with our proposed work, we handle a larger variety of

applications which can also use systems with sensors.

Chapter 7

Conclusions and future work

In summary, we mainly focused on the need of introducing adaptivity to the deployment

at the edge of the network.

7.1 Conclusions

During this work, we have introduced and extended Fractus, an orchestration framework

for distributed applications in the form of containerized services, which is capable of exploit-

ing possibilities of temporary P2P communication with the edge of the network, based on

user’s requirements.We introduced the functionality to evolve the deployment adaptation and

readjust the plan at runtime, by detecting application description and cluster modifications,

while also considering node mobility. We conducted an experimental evaluation to verify

the advantages of edge computing and to examine the limitations of the mechanism by the

capturing component migration-related overheads. In addition, we validated the successful

operation with several application-level metrics.

7.2 Possible improvements

To optimize the overall system performance and mitigate the limitations presented in the

evaluation, we can perform proactive migration to the new target-host based on the measured

overheads, in order to let the mobile node start communicating with the edge just-in-time with

minimal delay. To achieve that, we also need to predict the node’s mobility to recognize the

next edge node that the mobile node will approach.

45

46 Chapter 7. Conclusions and future work

To further reduce the migration process overhead of the adaptation mechanism, one could

initiate the direct connection between the mobile and an edge node before the Controller-to-

mobile notification is sent, to start the data traffic redirection with lower delay.

Bibliography

[1] Athanasios Grigoropoulos. System Support for the Fault Tolerance, Testing andOrches-

tration of Drone Applications. PhD thesis, University of Thessaly, Dept. of Electrical

and Computer Engineering, Apr. 2022.

[2] Nasos Grigoropoulos and Spyros Lalis. Fractus: Orchestration of Distributed Applica-

tions in the Drone-Edge-Cloud Continuum. 2022 IEEE 46th Annual Computers, Soft-

ware, and Applications Conference (COMPSAC), pages 838–848, 2022.

[3] Docker. https://www.docker.com/. Access date: 2022-03-09.

[4] Container. https://www.docker.com/resources/what-container/.

Access date: 2022-20-09.

[5] Virtual Machine. https://www.vmware.com/topics/glossary/

content/virtual-machine.html. Access date: 2022-21-09.

[6] Kubernetes. https://kubernetes.io/. Access date: 2022-21-09.

[7] k3s. https://k3s.io/. Access date: 2022-03-09.

[8] Flannel. https://github.com/flannel-io/flannel. Access date: 2022-

03-09.

[9] iptables. https://www.netfilter.org/projects/iptables/index.

html. Access date: 2022-27-09.

[10] Raspberry Pi. https://www.raspberrypi.com/products/raspberry-

pi-3-model-b/. Access date: 2022-03-09.

[11] Huawei 4G USB Dongle. https://consumer.huawei.com/en/routers/

e3372/. Access date: 2022-03-09.

47

https://www.docker.com/
https://www.docker.com/resources/what-container/
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://kubernetes.io/
https://k3s.io/
https://github.com/flannel-io/flannel
https://www.netfilter.org/projects/iptables/index.html
https://www.netfilter.org/projects/iptables/index.html
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://consumer.huawei.com/en/routers/e3372/
https://consumer.huawei.com/en/routers/e3372/

48 Bibliography

[12] COSMOTE GR. https://www.cosmote.gr/hub/. Access date: 2022-03-09.

[13] iperf. https://iperf.fr/. Access date: 2022-27-09.

[14] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The Case

for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4):14–

23, 2009.

[15] Peng Liu, Dale Willis, and Suman Banerjee. Paradrop: Enabling lightweight multi-

tenancy at the network’s extreme edge. In 2016 IEEE/ACM Symposium on Edge Com-

puting (SEC), pages 1–13. IEEE, 2016.

[16] Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada Gavrilovska, Taesoo Kim, and

Karsten Schwan. Fast, scalable and secure onloading of edge functions using airbox.

In 2016 IEEE/ACM Symposium on Edge Computing (SEC), pages 14–27. IEEE, 2016.

[17] Kyriakos Kritikos and Paweł Skrzypek. Towards an optimized, cloud-agnostic deploy-

ment of hybrid applications. In International Conference on Business Information Sys-

tems, pages 435–449. Springer, 2019.

[18] Kyriakos Kritikos, Chrysostomos Zeginis, Eleni Politaki, and Dimitris Plexousakis. To-

wards the modelling of adaptation rules and histories for multi-cloud applications. In

CLOSER, pages 300–307, 2019.

[19] Jose Carrasco, Javier Cubo, and Ernesto Pimentel. Towards a flexible deployment of

multi-cloud applications based on tosca and camp. In European Conference on Service-

Oriented and Cloud Computing, pages 278–286. Springer, 2014.

[20] Min Chen, Wei Li, Giancarlo Fortino, Yixue Hao, Long Hu, and Iztok Humar. A dy-

namic service migration mechanism in edge cognitive computing. ACM Transactions

on Internet Technology (TOIT), 19(2):1–15, 2019.

[21] Muhammad Alam, Joao Rufino, Joaquim Ferreira, Syed Hassan Ahmed, Nadir Shah,

and Yuanfang Chen. Orchestration of microservices for iot using docker and edge com-

puting. IEEE Communications Magazine, 56(9):118–123, 2018.

[22] Michael Bramberger, Andreas Doblander, Arnold Maier, Bernhard Rinner, and Hel-

mut Schwabach. Distributed embedded smart cameras for surveillance applications.

Computer, 39(2):68–75, 2006.

https://www.cosmote.gr/hub/
https://iperf.fr/

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Subject
	Contributions
	Thesis structure

	Background
	Docker
	Kubernetes
	Fractus
	Overview
	Design
	Implementation

	Design-Architecture
	Objective
	Assumptions
	Deployment adaptivity
	Fractus++ custom resources
	Fractus++ entities
	Node-level requirements
	Application deployment
	Adaptation triggering scenarios
	Application removal
	Data-traffic redirection

	Implementation
	Underlying frameworks
	Fractus++ Controller
	Fractus++ Monitor
	Fractus++ Agent
	Fractus++ net-proxy

	Evaluation
	Preliminaries
	Cluster nodes
	Test application
	Testing scenario

	Performance Evaluation
	Communication latency & bandwidth
	ImageChecker component - Image processing evaluation
	Adaptive deployment mechanism - Application-level metrics
	Adaptive deployment mechanism - Internal delays
	General limitations

	Related Work
	Application deployment & Edge, Cloud computing platforms
	Service migration
	Target mobility & computation migration

	Conclusions and future work
	Conclusions
	Possible improvements

	Bibliography

