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Diploma Thesis

ADAPTIVE DEPLOYMENT AND MOBILITY OF
CONTAINERIZED SERVICES ON THE EDGE

Foivos Pournaropoulos

Abstract

Modern applications tend to embrace the microservices approach, which, in combination
with the proliferation of the edge computing paradigm over the past years, create the need for
dynamic resource allocation and energy efficiency. An additional main concern is to provide
applications with high availability and low response time. Moreover, the mobility of the user
or vehicle that utilizes edge computing intensifies the uncertainty and provokes a plethora of
challenges to guarantee to the application high quality of service and uninterrupted operation.

In this work, we propose an extension to an existing orchestration framework for the
Drone-Edge-Cloud continuum, to provide flexible and dynamic deployment of application
components at the edge. We present the design and implementation of the proposed extension
in detail, and discuss and differentiate previous research in related fields from our extended
framework. In the experimental evaluation, we use a realistic lab-based distributed cluster
setup to present the main benefits of edge computing as well as the potential and limitations
of the proposed mechanism. We examine the different aspects of this study through system-

level and application-level metrics.
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Lepiinym xiil

Authopoatikny Epyacio

HNPOXAPMOXTIKH ANAINITYZH KAI METAKINHXH
CONTAINERIZED YITHPEXZIQN XTO AKPO TOY AIKTYOY

®oifog ITovpvapomoviog

Iepiinyn

O1 oVyypoves epaployés Teivouy vo V10BETOVYV TV TPOGEYYIoT TV Mmicroservices, 1
omoia, o€ cuvovacud pe v taxeion AvAmTLEN TOL TPOTOHTOV VIOAOYIGHOD GTO AKPO TOV
dktoov (edge computing), OMHOVPYOVV TV OVAYKT] Y10, OLVOUIKT] OEGHEVCT] TV VITOAOYL-
OTIK®V TOP®V Kol EVEPYELNKN Am0d0TIKOTNTO. 'Evag emmpocOetog KOPlog TpoPANUATIGHOC
etvat va mop€Yov e GTIC EPAPUOYES VYNAR dtoBectudTnTa Kot o UnAo xpovo andkpiong. Emt-
TAE0V, 1 KIVI|GT) TOV PN GTN 1] TOL OYNHATOS TOL YPNOLLonTolEl To edge computing evieivel v
afepforotnta Kot mpokorel TANOGpA TPOKANCEDV OOTE Vo £yyuNOel 6TV EQUPUOYT LYNMAN
TOLOTNTO VINPECIDOV KoL 0OLIKOTN AEITOVPYiaL.

Ye outn ™V gpyacia, Tpoteivovpe pio ETEKTAOT G€ £va VITAPYOV TAAICIO AOYIGUIKOD
(framework) evopyfotpwong, oto Drone-Edge-Cloud cuveyéc, yia va mapéyovpe evEMKTN
Ko SUVOUIKY] AVATTLEN TOV LEPDV TNG EPAPLOYNE GTO AKPOo TOL dkTVLOL. [Tapovsidlovpe To
oXEO10G O KOl TNV VAOTOINGT| TNG TPOTEWVOUEVNC EMEKTOOTG GE AETTOUEPELD, KOOMG KOl GV-
ntdvLE Ko S1apOPOTOLOVLE TNV TPOVTAPYOVGO EPEVLVO GE TYETIKOVS TOUELG 0Td TO OKO HOG
extetopévo framework. Kato tnv mepopotikn a&loAdynon, xpno1LOTo0o0HE it pEOMOTIKT,
Baciopévn 6To pyacTnpPLo, KOTAVEUNLLEVT OpLdda amd LTOAOYIGTIKG cuothuata (cluster) yio
VO TAPOVGLACOVLE TO, KOPLoL @EAT Tov edge computing KaOdS Kot TNV TPOOTTIKY Kol TOVG
mEPLOPIoUOVS oL Bétel 0 pnyaviopnogs. EEetalovpe Tig S1apopeTiké TTUYEG OVTNG TNG UEAE-

™G HECH UETPIKAOV GE EMIMEOO GUOTNLOTOG KO EPOPLOYNG.

AéCarc-kAre10nd:

[Ipocappootikny Avantvén, Metaxivnon Yanpeoudv, YToAoyIoHog 6to “AKpo Tov AKTHOV
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Chapter 1

Introduction

The edge computing paradigm enhances application’s quality of service (QoS) by moving
computations to the edge of the network, closer to the point where the data are produced. This
provides applications with the opportunity of lower communication latency compared with
communicating with a remote cloud server. Edge computing also favors the overall system
performance and stability, as it reduces the data sent to the cloud resulting in bandwidth
savings. Furthermore, new missions and challenges arise in this field, especially with the
proliferation of self-driving cars or unmanned aerial vehicles, which are characterized by
time-sensitive demands and also amplify cluster heterogeneity, rendering the overall system’s

flexibility and adaptation capability crucial.

With the evolution of edge computing, a plethora of edge-cloud applications arise, which
consist of components distributed across a set of nodes in the Edge-Cloud continuum. Thus,
the monolithic approach is not a proper paradigm for many modern applications. Quite often,
such applications adopt the microservices paradigm, in which an application is organized
as several independent entities which cooperate with each other to produce the final result
or functionality. Microservices-based applications solve real world problems with flexibility
and efficiency. The code implementing microservices is usually packaged and deployed in
the form of containers. Containers provide efficiency as they execute on top of the host’s

Operating System and are, therefore, a lightweight solution for hosting microservices.

To exploit the benefits of edge computing for applications organized as microservice

chains, there is an emerging need to enable orchestration and adaptivity at runtime.

1



2 Chapter 1. Introduction

1.1 Subject

In this Thesis, we design and implement a flexible application deployment mechanism
in the Drone-Edge-Cloud continuum based on the Fractus orchestration framework [|], [2].
Fractus handles automated application deployment and management, to realize a system that
adapts to the user’s requirements as well as node mobility at runtime. The aforementioned
framework manages applications following the microservices paradigm as independent con-
tainers that coexist and communicate to perform real-world missions. Also, it leverages direct
communication opportunities with edge nodes to transparently exploit the aforementioned
advantages of edge computing, while at the same time enabling high availability for the ap-
plication.

However, Fractus deploys all instances of a given component at once, thus having a subset
of idle components during the operation. In this Thesis, we extend Fractus to support just-
in-time provisioning, as well as deployment adaptivity at runtime. In order to improve the
overall system’s resource utilization and energy efficiency, we design a solution in which the
Fractus-related entities are communicating and cooperating, while having a single point of
management information which facilitates keeping track of potential cluster evolution and
enables hosting only the necessary application components at any given time. In addition,
we enable Fractus to readjust due to node mobility and to modify the deployment plan based

on various triggering scenarios.

1.2 Contributions

The contributions of this Thesis can be summarized as follows:
1. Extended the design and implementation of Fractus, to support different scenarios of

adaptive deployment at runtime.

2. Design and execution of a comprehensive experimental evaluation, using a realistic
lab-based cluster for a mobile application and dynamic component migration scenario,

to quantify the overheads and identify weaknesses of our mechanism.

3. Experimental quantification of the advantages of Edge Computing in terms of reduced

latency and increased bandwidth compared with the mobile-to-cloud communication.

4. Validation of the benefits of deployment flexibility via application-related metrics.
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1.3 Thesis structure

The rest of this Thesis is organized as follows: Chapter 2 introduces the Fractus frame-
work, which serves as the basis of this work. Chapter 3 describes the architecture and the
design aspects of our extended framework. Chapter | presents detailed insights on the im-
plementation. Chapter [ focuses on the experimental validation and evaluation of the system
on a distributed cluster. Chapter [ provides a review of previous work. Finally, Chapter f]
summarizes the most valuable results and the contributions of this Thesis, while proposing

various directions for possible improvements.






Chapter 2

Background

In this chapter, we introduce the most significant aspects of Docker and Kubernetes, tech-
nologies required for this work. Afterwards, we present the Fractus framework, which we use

as a starting point of this Thesis to introduce the desired deployment adaptivity at runtime.

2.1 Docker

Docker [3] is a platform used to create, deploy and run applications in an isolated and
secure environment, in the form of containers [#]. Containers enable faster development
and deployment of modern applications following the microservices approach and provide
portability, in terms of packaging, as they can run on a large variety of systems regardless
of their unique peculiarities. Moreover, containers provide a virtualization technology which
renders them more lightweight comparing with Virtual Machines [5], as the former use the
host’s Operating System, thus improving the system’s overall performance and lowering the

footprint of the enclave.

2.2 Kubernetes

Kubernetes [6] is a container orchestration platform useful for application deployment
and monitoring in an automated fashion. Referring to the architecture, every Kubernetes clus-
ter has at least one control plane to supervise the cluster state, so that it can be as “close” as
possible to the user’s demanded state. Also, the cluster consists of several worker nodes that

communicate with the control plane via a well-defined API. To this end, the API Server is an

5



6 Chapter 2. Background

essential entity of the control plane, responsible for managing all of the API-related tasks.

A Kubernetes node needs to host an agent called kubelet in order to maintain the desired
Pods in a running state. A Kubernetes Pod is the system’s smallest deployable computing
entity. In addition, nodes host the Kubernetes network proxy, an entity that manages Pod
communication by using packet redirection.

To achieve the desired result, every application description is deployed to the API server
as one or more YAML files, consisting of all the needed parts for a successful operation.
Each independent part of the application is deployed as a Kubernetes Pod which hosts the

necessary containers.

2.3 Fractus

2.3.1 Overview

Fractus [|l]] [2] is a framework "’built” on top of Kubernetes, responsible for the deploy-
ment and coordination of distributed applications in the form of containerized microservices
in the Drone-Edge-Cloud continuum.

The user provides an application specification to Fractus, describing the application com-
ponents, their desired placement on the different types of nodes, the possible interactions
between them and their resource requirements for a successful deployment. Subsequently,
Fractus decides the deployment plan based on the aforementioned description and deploys
the components in alignment with the user’s demands, if possible at the moment of the re-
quest. Each application component is deployed as a Kubernetes Pod, running the respective
container with the desired functionality. In our case, every Pod hosts one and only container.
The user can also specify how many instances are needed for each component.

In addition, applications registered to Fractus have the flexibility to let their components
use of two types of system services, which can be hosted by each node with respective capa-
bilities: the mobility service to handle the node’s movement and the camera service used for
image capturing and processing. As a result, Fractus can be used for experimentation with a
variety of real-world tasks which require mobile sensors.

Fractus also provides handling of drone-specific operation. This is accomplished by using
information such as the regions of interest as well as the forbidden zones in which the drone

lacks the permission to use the camera or the mobility services.
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2.3.2 Design

The key operational units for the deployment process are Fractus Controller, Monitor,
Agent and net-proxy components.

The Controller inspects the application’s deployment requests and decides the nodes that
host each component. In order for the deployment to be accomplished, the Controller consid-
ers information such as the cluster nodes’ status, the resource requests by each Kubernetes
Pod and the communication relations between components. Consequently, the Controller
starts the Monitor which periodically performs health-checks for the running components.

Furthermore, every node of the cluster hosts a Fractus Agent instance in order to peri-
odically update state-related information to the Kubernetes registry, such as the node type,
the location, and the available resources. The Fractus net-proxy components are used to per-
form data redirection and exploit opportunities for direct peer-to-peer (P2P) communications
between the application components.

As for the application components, there are four basic categories based on the type of

the nodes which host them:
1. Drone component, which is hosted only by a drone.
2. Hybrid component, meaning that it can run both on cloud and edge nodes.
3. Edge component, hosted only by static nodes at the edge of the network.
4. Cloud component, which resides in nodes in the cloud.

As mentioned before, the application model follows the microservice architecture paradigm,
in the form of containers. As a result, a subset of the registered application components need
to use several services, for the purposes of any given application. For example, a component
placed on a drone could send the captured pictures to a component at the network edge in
order to process them and make a decision with the results. Each one of these services is
provided with a Virtual IP (VIP) from Kubernetes.

In our study, we primarily focus on Aybrid components, which are used for the evaluation
of the deployment adaptivity in one of the possible cases, namely the component migration
between cloud and edge nodes. For the Aybrid components, the Fractus Controller chooses the
most suitable host based on a metric provided by the user at the time of application registration

to Fractus. For example, some indicative metrics would be the maximum communication



8 Chapter 2. Background

bandwidth, the minimum communication latency, or the preference of communication with
the edge nodes over WiFi rather than with the cloud nodes using a 4G internet connection.
However, Fractus always deploys instances of such components on all selected candidate
nodes, even if some of those instances may be required only for a short amount of time

during the application’s lifetime.

2.3.3 Implementation

Every necessary part of the cluster, such as the different types of nodes, drones, applica-
tions and their components are represented via Custom Resource Definitions (CRDs). The
lifecycle of the above resources, through specific operations, is controlled by the Kubernetes
API server.

The Fractus Controller watches for new application descriptions to be registered to Ku-
bernetes, creates the respective Kubernetes custom resources and services and deploys the
distributed components as independent Kubernetes Pods. When the deployment phase is fin-
ished, the Controller spawns the Fractus Monitor thread to check the execution status of the
application’s components.

If multiple instances of the same component are deployed, the service-invoking compo-
nents are able to communicate with a single service-providing component by applying the
respective ingress and egress rules to allow traffic to or from the appropriate instance. Every
distinct application service is granted a unique VIP from Kubernetes and all the instances of

the same service provider have the same VIP.



Chapter 3

Design-Architecture

In this chapter, we discuss the objective of the Thesis, the assumptions made during this
work and our extended design and architecture compared with the Fractus prototype. We will

refer to our extension as Fractus++.

3.1 Objective

Figure illustrates the architecture of a model cluster used as our running example.
The cluster consists of two edge nodes, one cloud node, which also hosts the control plane,
and one mobile node. All the nodes are connected over a VPN, each one of them using an
Ethernet interface, except from the mobile node which employs a 4G internet connection.
In order to reduce the application-level response time we exploit direct WiFi channels for

mobile-to-edge communication.

Our primary goal is to bring the computations closer to the mobile node, thus exploiting
the communication but also computing advantages that edge computing offers, such as the
lower latency, the higher bandwidth as well as potentially faster or underutilized computing
resources. Another main concern is to ensure the application’s high availability with mini-
mal downtime. In addition, we aspire to improve the overall resource utilization by adding
adaptivity to the application deployment at runtime, as we deploy, migrate, and remove ap-
plication components based on user-provided metrics combined with the dynamic topology
of the member nodes. We mainly focus on distributed applications running on a set of edge,

cloud and mobile nodes.



10 Chapter 3. Design-Architecture

Control plane — Cloud node

()
A

Internet

— VPN
Ethernet Ethernet communication
channel
- Ad-hoc WiFi
: communication
: channel

Mobile node Edge node 1 Edge node 2

Figure 3.1: Cluster connectivity

3.2 Assumptions
The basic assumptions made in this work are the following:
* The communication between the cluster components is reliable and secure.
* Application components do not fail.

* Any communication-related errors between the application components are handled as

needed at the application-level to provide the desired functionality.

3.3 Deployment adaptivity

Modern applications have increased demands in terms of executing and monitoring their
desired state to guarantee successful operation. Furthermore, real-world tasks in the form
of distributed applications need to reconfigure their component placement based on various
events which are not known a priori.

In this study, we render the Fractus++ framework more versatile by (1) providing the user
with the flexibility to perform application-specific modifications during runtime, (i) automat-

ically adapting the application deployment due dynamics in resource availability or mobility
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of application components, as well as (iii) letting the application’s components themselves
lead to a revision of the application’s deployment plan.

More specifically, the initial application description can be replaced with another modi-
fied version by the user to reconfigure its characteristics. If the user needs the application to
be self-operating, this can be achieved by having the application modify its description to Ku-
bernetes programmatically. The above choices refer to the user’s own demands to rearrange
the deployment.

Fractus++ also supports adaptation based on cluster status. If a new node joins the cluster
and directly affects the application, meaning it can satisfy the application’s needs, the de-
ployment will automatically change to include the new node to the plan at any given moment
during operation. Additionally, an application consisting of a mobile node can exploit the
benefits of edge computing by offloading several application components from the cloud to
edge devices, if needed.

To accomplish adaptivity, the deployment phase occurs in a repetitive way as it can be

triggered by the aforementioned events.

3.4 Fractus++ custom resources

We introduce a new mobile node custom resource, which refers to a node type capable of
moving and changing its position in the physical space. The motivation for the above addition
is to test and evaluate our mechanism in several component migration scenarios, where the

mobile node enters or leaves the proximity range of one or more edge nodes.

3.5 Fractus++ entities

The responsibilities of the main Fractus++ entities are the following:

1. Fractus++ Controller: In the initial deployment case, it is responsible for the candidate
nodes filtering, the host selection and the component-to-node mapping, as it was on

the prototype version as well. The new capabilities of the Controller are the following:

» The Controller is continuously informed about cluster status or application modi-

fications and performs the necessary adaptation to satisfy user’s demands. During
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the adaptive deployment stage, the unused Pods are removed from their hosts and

the new ones are deployed to the selected hosts.

» When the user requests the deletion of an application, the Controller removes and

cleans all running Pods from the cluster.

2. Fractus++ Monitor: The Monitor’s main responsibility is to periodically check for any
updated or new Fractus++ custom resources. Whenever this occurs, the Monitor in-
spects the application description, in order to decide if the corresponding update leads
to a change in the current state of the cluster and, as a consequence, the Controller must

be notified. Also, the Monitor periodically checks the status of the running Pods.

3. Fractus++ Agent: Same as in the prototype, the Agent placed on cloud, edge or mobile
nodes, keeps track of the node’s state and resource availability and sends updates to
the Kubernetes registry. When the Agent is hosted by a mobile node, apart from the
aforementioned, it also retrieves and sends to the Kubernetes registry its coordinates

periodically.

4. Fractus++ net-proxy: It is responsible for the redirection of the application’s traffic
through a direct WiFi channel instead of the conventional one, if the mobile node is
within the proximity range of an edge node and the edge node has direct communication
capabilities. The Fractus++ net-proxy running on the edge nodes, behaves as an access
point and waits for new connections, while the same entity running on the mobile node
receives notifications on the availability of Ad-Hoc connection opportunities from the

Controller.

3.6 Node-level requirements

Figure 3.2 depicts the software stack of different types of cluster nodes. The cloud node
runs the control plane for both Kubernetes and Fractus++, thus hosting the Kubernetes API
Server and the Fractust++ Controller and Monitor entities. The rest of the nodes host the
kubelet agent. Also, each node hosts the Fractus++ Agent and the essential container runtime
software to be able to execute the desired application components in the form of containers.
The edge as well as the mobile nodes host a net-proxy component to exploit direct commu-

nication opportunities that may occur at runtime.
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Control plane/ cloud node

App component } [ App component

Fractus++ || Fractus++ Fractus++
Controller Monitor Agent
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[ ContainerRuntime ] [ ContainerRuntime }

Figure 3.2: Software stack

3.7 Application deployment

Figure B.3 presents a typical application deployment request to Fractus++. The Controller
is notified by Kubernetes when a new application has been registered. The application de-
scription is stored to internal data structures and translated to various dependencies between
the involved components. The Controller updates the cluster’s resources and it then builds an
initial deployment plan. The latter also spawns the Monitor to start monitoring for resource

updates and the status of the already deployed Pods.

3.8 Adaptation triggering scenarios

In Fractus++, we consider various modifications in the application’s deployment plan
which can be initiated from the user, the application itself, or by other external factors. More

specifically, the possible rearrangement-triggering scenarios supported are the following:

* Movement of an application component
* Introduction of a new node in the cluster

* Application description modification by the user or by the application itself
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Figure 3.3: Application registration by the user - control flow

To visualize the control-flow process, we present an explanatory figure for each of the
scenarios.

Figure .4 depicts the main scenario we evaluate, thus providing more details compared
with the other adaptation scenarios. The mobile node updates its coordinates periodically to
Kubernetes. When the node enters the proximity range of an edge node, the Monitor detects
the possible need for migration and notifies the Controller to adjust the current deployment, if
it may lead to a more efficient setup for the application. In contrast with the first registration
case, the Controller also removes the unused Pods. In addition, an alternative scenario for
this case would be a new node introduction to the cluster.

In Figure B.5, we present another scenario for readjustment, when the user or even a com-
ponent of the application decides to adjust the current application description. For example,
the user or the application component may modify the region of interest for the application,
meaning that new nodes would be candidates to host a subset of the application components,
or several hosts would no longer be needed. The Controller spots the differences between the
outdated and the updated description and reconfigures the plan by repeating the deployment
procedure.

A key observation for the extended functionality is the fact that we keep a single point of
information storage, which is the Kubernetes registry. Every time a Fractus++ entity needs

to update a custom resource, the invocation results to the API Server.



3.9 Application removal 15

Mobile node Control Kubernetes Fraclus o+ Fractusi
(1) Update location plane Controller Monitor
& receive response (2) Detect

newjupdated resource,

(3)Update app
(4) App description
notification [ (5)Build old vs new

version
(6) Update resources

& receive response

:(7) Find Candidates

& select hosts
(8) Create adjusted

(9] Stop monitor Pods

(10) Deploy new
Pods & receive
response

{11) Pod has
"running" status
{12) Remove old

Pod & receive

response
(13) Pod removed

(14) Notify to stop
redirection &

receive response

(15) Notify to start
redirection &

receive response

Figure 3.4: Adaptive deployment due to node movement - control flow

3.9 Application removal

In addition to the Fractus prototype, our extended framework supports application re-
moval by the user, as shown below. In Figure B.6 the Controller is notified for the application
removal, it retrieves the needed stored information about the current deployment plan and it

deletes all application modules.

3.10 Data-traffic redirection

When a hybrid component is moved to one of the edge nodes equipped with a WiFi
interface, the possibility of direct communication with the application components hosted
on mobile nodes is emerging to optimize the system’s overall performance. The Fractus++
net-proxy entity is responsible for redirecting the data traffic to pass through the direct WiFi
channel instead of using the default internet connection between the interacting components.
To leverage this potential, a net-proxy instance is running on all of the edge and mobile nodes.

Figure B.7 illustrates the process of mobile node connection to the direct channel that the
edge node provides. The mobile node is notified from the Controller to establish the direct
connection with the edge and it then sends to the latter the service component’s name and

the port number. When the edge node has modified its routing rules it responds to the mobile
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Figure 3.5: Application modification by itself or by the user - control flow

node to let it update its own rules.

Figure B.§ outlines the reverse procedure, when a direct communication link must be
destroyed. Same as in the connection case, the Controller initiates the disconnection process
by informing the mobile node. The latter restores the routing rules previously modified to

support direct connection and notifies the edge node to follow the same course of action.
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Figure 3.6: Application removal by the user - control flow
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Chapter 4

Implementation

In this chapter, we discuss the main implementation details of the proposed work.

4.1 Underlying frameworks

The Fractus++ framework uses k3s [[7], a lightweight Kubernetes distribution appropriate
for edge computing. In addition, Docker [3] is leveraged as the container runtime software and
Flannel [8] provides a layer 3 overlay network among the cluster members for the internet-

based communication.

4.2 Fractust++ Controller

The Controller is aware of application resource events to Kubernetes and readjusts the
deployment plan. It also cooperates with the Monitor to have global knowledge about the
dynamic behavior of the cluster.

The Controller initializes its internal structures and starts the Scheduler thread responsible
for serving deployment-related actions. The Controller s main thread watches for new appli-
cation registration, modification, or removal events posted to Kubernetes. The main thread
inserts the type of each event as well as the application’s specification and credentials to a
queue, which the Scheduler thread accesses and consumes the plan configuration requests.

The Scheduler thread recognizes two types of application description modifications: 1)
specification changes initiated by the user or an application component, and 2) one or more

new resource type entries in the UpdatedResources list.
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To further explain the latter case, list entries indicate the resource types that have been up-
dated since the last readjustment and may lead to a possible deployment plan rearrangement.
The aforementioned entries are produced by the Monitor at runtime. Whenever a reconfigu-
ration request is finished, the Scheduler clears the UpdatedResources list, if it is not already
empty. The list is introduced via a new property in the application specification and can in-
clude the following entries:

(1) Edge Node Entry, (i1) Cloud Node Entry, (ii1) Mobile Node Entry and (iv) Drone Entry.

For example, when the mobile node is in the proximity range of an edge component, the
Mobile Node Entry will be inserted to the UpdatedResources property of the application’s
specification. Alternatively, when a new edge node joins the cluster, the Edge Node Entry
will be added.

In terms of deployment adaptivity, every application component has a dedicated list con-
taining the host nodes for it. The Scheduler marks every host in the above list with the custom

status values shown in Table §.1:

Table 4.1: Host-specific custom status values per application component

Value Description

Pending The Pod needs to be deployed to the host node

Active The Pod is running on the host node

Inactive The Pod needs to be removed from the host node

Whenever a new node is selected to host a specific component, the node is marked as
Pending in order for the component’s Pod to be deployed to it immediately. From the moment
the given Pod is up and running, the host’s status is marked as Active. During the deployment
plan reconfiguration, if one of the component’s hosts is no longer a candidate, the host is

marked as Inactive.

4.3 Fractus++ Monitor

The Monitor detects cluster resource updates, informs the Controller to apply plan recon-
figurations and performs Pod status monitoring.
The Monitor entity consists of two threads. The HealthChecker thread is responsible for

the application Pods’ status inspection. The ResourceChecker thread periodically checks the
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cluster’s resources in order to detect any deployment rearrangements that may be required

due to such changes, and notifies the Controller accordingly.

In particular, the ResourceChecker thread examines mobile node-related updates lead to
check if such nodes enter or leave the proximity range of an edge node. If a readjustment is
needed, it inserts the respective resource type to the the UpdatedResources list of the appli-
cation’s specification. Note that the ResourceChecker only checks the resources which are
directly affecting the specific application in question. For instance, an application which does
not use a mobile node, does not require any management over mobile node resources.

The Controller needs to share application-related data structures with the Monitor. To en-
sure proper synchronization, whenever the Scheduler readjusts the deployment, it uses two
binary semaphores to block the HealthChecker and the ResourceChecker threads, respec-
tively. The described functionality is shown in Figure [.1.
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Figure 4.1: Controller-Monitor interaction

4.4 Fractus++ Agent

The Agent sends the node status and resource availability to Kubernetes. In case the Agent

is running on an mobile node, it periodically updates the coordinates to Kubernetes.
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4.5 Fractus++ net-proxy

The net-proxy cooperates with the Controller and performs data-traffic redirection to let
the application prefer direct communication with the edge transparently.

In general, distributed applications use several components which serve other application
components. Thus, it is crucial for a client component to be able to communicate with the
service-providing component without having to discover it after a possible service migration
or restart. As a consequence, the server component is represented via a Kubernetes Service,
provided with a Virtual IP (VIP). The aforementioned VIP and the service’s port number
are assigned to the service-invoking Pod as environment variables. This address will remain
constant during the application’s lifetime, as long as the Kubernetes Service is not modified.

During a traffic redirection scenario, the Scheduler thread sends to the mobile node’s
net-proxy the credentials in order to connect to the respective edge node’s net-proxy instance
which operates as an access point. The mobile node sends to the edge node the desired com-
ponent’s unique name which the redirection will affect, as well as the service’s port number.
The net-proxy running on the edge node firstly retrieves the requested component’s IP ad-
dress in the overlay network which is used for Pod communication, and it assigns a new
IP address to the specific component, dedicated to application-level communication through
WiFi. In addition, it modifies the routing rules to redirect to the specific Pod traffic sent to the
component’s assigned address of the direct channel. Subsequently, it returns a response with
the component’s assigned address. Finally, the mobile node modifies its own routing rules to
redirect all the data sent to the service’s VIP and port to the dedicated address through the
WiFi channel. Figure illustrates the explained pro