
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Low power hardware architecture for Bayesian Neural

Networks

Diploma Thesis

Antonios-Kyrillos Chatzimichail

Supervisor: Nikolaos Bellas

September 2022

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Low power hardware architecture for Bayesian Neural

Networks

Diploma Thesis

Antonios-Kyrillos Chatzimichail

Supervisor: Nikolaos Bellas

September 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Aρχιτεκτονική υλικού χαμηλής ισχύος για νευρωνικά

δίκτυα Bayes

Διπλωματική Εργασία

Αντώνιος-Κύριλλος Χατζημιχαήλ

Επιβλέπων: Νικόλαος Μπέλλας

Σεπτέμβριος 2022

v

Approved by the Examination Committee:

Supervisor Nikolaos Bellas

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

Member Yehia Massoud

Professor, Department of Computer, Electrical and Mathematical Sci-

ence & Engineering (CEMSE), King Abdullah University of Science

and Technology (KAUST)

Member Christos Antonopoulos

Associate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

vii

Acknowledgements

A KAUST Remote Internship Program sponsored this work. The author would also like

to acknowledge Dr. Charalampos Antoniadis, affiliated with Innovative Technologies Labs

(ITL) at KAUST, for his continuous support and guidance throughout the internship.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Antonios-Kyrillos Chatzimichail

xi

xii Abstract

Diploma Thesis

Low power hardware architecture for Bayesian Neural Networks

Antonios-Kyrillos Chatzimichail

Abstract

In recent years, Neural Networks (NNs) have proved their potential in various tasks such as

image recognition or autonomous driving. However, conventional NNs do not express the

uncertainty of their predictions; thus, they can not be trusted for critical applications that do

not tolerate errors. On the other hand, because Bayesian Neural Networks (BNNs) consider

probability distributions on the NN weights instead of scalars, they can mathematically mea-

sure the uncertainty of their predictions. There are two methods for implementing BNN in-

ference, the Monte Carlo based method, which requires the sampling of weights distributions

and multiple inference iterations, and moment propagation, where the mean and variance of

a normal distribution is propagated through the BNN. Hardware implementations of moment

propagation BNN inference consume less power because they complete the inference in a

single forward pass. Because propagation of normal distributions through non-linear activa-

tion functions leads to large hardware designs, not suitable for resource-constrained platforms

such as FPGAs, these activation functions are approximated by polynomials. Hardware im-

plementations of moment propagation have been studied solely for fully-connected neural

networks, while lacking optimal accuracy due to the approximation of the ReLU activation

function with a single polynomial term. Therefore, in this work we add one more polynomial

term in the approximation ofReLU providing better accuracywith negligible additional hard-

ware. We also propose a polynomial approximation for another common activation function,

tanh, and extend the hardware implementation to Convolutional Neural Networks (CNNs).

Experimental results demonstrated that the proposed approximation of ReLU outperforms

the previously suggested single-term polynomial by achieving up to 5.9% higher accuracy

with negligible hardware area and power overhead.

Keywords:
Bayesian Neural Network, FPGA, Moment Propagation, ReLU polynomial approximation,

tanh polynomial approximation

Περίληψη xiii

Διπλωματική Εργασία

Aρχιτεκτονική υλικού χαμηλής ισχύος για νευρωνικά δίκτυα Bayes

Αντώνιος-Κύριλλος Χατζημιχαήλ

Περίληψη

Τα τελευταία χρόνια, τα νευρωνικά δίκτυα έχουν αποδείξει τις δυνατότητές τους σε διάφο-

ρες εργασίες όπως η αναγνώριση εικόνας ή η αυτόνομη οδήγηση. Ωστόσο, τα συμβατικά

νευρωνικά δίκτυα δεν εκφράζουν την αβεβαιότητα των προβλέψεών τους. Επομένως, δεν

μπορούν να είναι αξιόπιστα για κρίσιμες εφαρμογές που δεν ανέχονται σφάλματα. Από την

άλλη πλευρά, επειδή τα Bayesian Neural Networks (BNNs) θεωρούν κατανομές στα βάρη

είναι αντί για βαθμωτές τιμές, μπορούν να μετρήσουν μαθηματικά την αβεβαιότητα των προ-

βλέψεών τους. Υπάρχουν δύο μέθοδοι για την υλοποίηση BNN inference, η μέθοδος Monte

Carlo, η οποία απαιτεί δειγματοληψία των κατανομών-βαρών και πολλαπλές επαναλήψεις

inference, και η μέθοδος moment propagation, όπου η μέση τιμή και η διακύμανση μιας κα-

νονικής κατανομής διαδίδεται μέσω του BNN. Οι hardware υλοποιήσεις του BNN inference

με moment propagation καταναλώνουν λιγότερη ισχύ επειδή ολοκληρώνουν το inference

σε ένα μόνο πέρασμα. Επειδή η διάδοση κανονικών κατανομών μέσω μη γραμμικών συ-

ναρτήσεων ενεργοποίησης οδηγεί σε μεγάλες αρχιτεκτινικές, ακατάλληλες για πλατφόρμες

με περιορισμούς πόρων όπως οι FPGAs, αυτές οι συναρτήσεις προσεγγίζονται με πολυώ-

νυμα. Οι υλοποιήσεις υλικού του moment propagation έχουν μελετηθεί αποκλειστικά για

πλήρως συνδεδεμένα BNNs, ενώ δεν έχουν βέλτιστη ακρίβεια λόγω της προσέγγισης της

συνάρτησης ενεργοποίησηςReLU με έναν μόνο πολυωνυμικό όρο. Επομένως, σε αυτήν την

εργασία προσθέτουμε έναν ακόμη πολυωνυμικό όρο στην προσέγγιση της ReLU , παρέχον-

τας καλύτερη ακρίβεια με αμελητέα πρόσθετο υλικό. Προτείνουμε επίσης μια πολυωνυμική

προσέγγιση για μια άλλη κοινή συνάρτηση ενεργοποίησης, την tanh, και επεκτείνουμε την

hardware υλοποίηση στα Συνελικτικά BNNs. Τα πειράματα έδειξαν ότι η προτεινόμενη προ-

σέγγιση τηςReLU υπερέχει του προηγούμενου πολυωνύμου ενός όρου, επιτυγχάνοντας έως

και 5, 9% υψηλότερη ακρίβεια με αμελητέα επιβάρυνση σε επιφάνεια υλικού και ισχύ.

Λέξεις-κλειδιά:
Bayesian Νευρωνικό Δίκτυο, FPGA, Moment Propagation, πολυωνυμική προσέγγιση της

ReLU , πολυωνυμική προσέγγιση της tanh

xiv Περίληψη

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xvii

List of tables xix

Abbreviations xxi

1 Introduction 1

1.1 Motivation and related work . 1

1.2 Thesis objective . 2

1.2.1 Contribution . 3

1.3 Thesis structure . 3

2 Background 5

2.1 Field-Programmable Gate Arrays (FPGAs) 5

2.1.1 Use of Field-Programmable Gate Arrays 5

2.1.2 High-level synthesis for FPGAs 6

2.2 Bayesian Neural Networks (BNNs) . 7

2.2.1 Introduction to Artificial Neural Networks 7

2.2.2 Idea behind Bayesian Neural Networks 11

2.3 Sampling-free BNN inference on FPGAs 12

xv

xvi Table of contents

3 Proposed architecture and optimizations 15

3.1 Proposed quadratic approximation of the ReLU activation function 15

3.2 Μoment propagation in convolutional and pooling layers 17

3.3 Proposed approximation of the tanh activation function 18

3.4 Design flow . 19

3.5 Hardware architecture and implementation 21

3.5.1 Optimizations in the top-level function 21

3.5.2 Optimizations inside layer functions 22

3.5.3 Area optimization with fixed-point bit-widths of variables 25

3.5.4 Further memory optimizations . 26

4 Experiments and results 29

4.1 Neural network benchmarks and datasets 29

4.2 Accuracy and uncertainty of polynomial approximation activation functions 31

4.3 Power, Performance and Area of the hardware implementations 33

5 Conclusion 35

5.1 Summary and conclusions . 35

5.2 Future work . 35

Bibliography 37

APPENDICES 41

A Proof for Taylor expansion of tanh 43

B Algorithms for 2D convolutional layers 45

List of figures

1.1 Difference between typical ANNs and BNNs 2

2.1 FPGA architecture . 6

2.2 Biological and artificial neuron . 8

2.3 Example of a fully-connected layer with 2 neurons and 3 inputs 9

2.4 A 2D convolutional layer with I input and O output channels 9

2.5 Example of a 2D convolution operation 10

2.6 Example of a 2D Max and Average Pooling 10

2.7 Example of a BNN . 12

2.8 A neuron of a BNN implementing moment propagation 14

3.1 Comparison of polynomial functions with ReLU 16

3.2 Pre- and post-activation computation in a 2D convolutional layer 17

3.3 Comparison of tanh function and its polynomial approximation 18

3.4 Design flow of this work’s BNN accelerator 20

3.5 Throughput optimization by DATAFLOW directive. 23

3.6 Architecture schematic for a convolutional or a fully-connected layer 27

3.7 Accuracy and aPE for FC3L net and LeNet-5 over different bit-widths . . . 28

4.1 FC3L net architecture . 30

4.2 Modified LeNet-5 architecture . 30

4.3 Example images of datasets . 31

4.4 Throughput comparison of accelerators and respective serial CPU programs 33

xvii

List of tables

4.1 Accuracy and uncertainty for various BNNs and datasets 32

4.2 Area and energy of accelerators . 34

xix

Abbreviations

2D two-dimensional

AF Activation Function

ANN Artificial Neural Network

aPE average Predictive Entropy

ASIC Application-Specific Integrated Circuit

BN Batch Normalization

BNN Bayesian Neural Network

BRAM Block Random Access Memory

CDF Cumulative Distribution Function

CLB Configurable Logic Block

CNN Convolutional Neural Network

CPU Central Processing Unit

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

etc. et cetera

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

GRNG Gaussian Random Number Generator

HDL Hardware Description Language

HLS High-Level Synthesis

II Initiation Interval

MC Monte Carlo

MCD Monte Carlo Dropout

NN Neural Network

PL Programmable Logic

xxi

xxii List of tables

PS Processing System

RAM Random Access Memory

ReLU Rectified Linear Unit

RGB red, green, and blue

RNN Recurrent Neural Network

ROM Read-Only Memory

SRAM Static Random Access Memory

XPE Xilinx Power Estimator

Chapter 1

Introduction

1.1 Motivation and related work

Nowadays, Artificial Neural Networks (ANNs) achieve noticeable success in multiple

fields of science and life, such as image classification [1], autonomous driving [2], predicting

COVID-19 pandemic cases [3], etc. However, standard neural networks are not suitable for

critical applications in domains such as healthcare, self-driving cars, and air-crafts. Instead,

Bayesian Neural Networks (BNNs) have been proposed for such applications that cannot

tolerate any errors caused by overconfidence of the neural network.

What distinguishes BayesianNeural Networks (BNNs) from other types of NNs is that the

weights are distributions (usually normal with certain mean and standard deviation values)

instead of scalars. The benefit of this difference is that the network’s output represents a

distribution, and thus, the measurement of uncertainty in the output can indicate how sure we

can be that the network responds with an answer that can be trusted. For example, a typical

ANN that classifies images of handwritten digits will falsely pick one of the 10 digits when

the input image shows something random or irrelevant. However, a Bayesian NN can answer

that it cannot be sure what is inside the image due to the high uncertainty in the result (Figure

1.1).

In the recent years, several works [4, 5, 6] focus on hardware acceleration of BNN infer-

ence, targeting Field-Programmable Gate Arrays (FPGAs) as development devices to achieve

high performance and energy efficiency. Among these works, there are two main approaches

for the BNN inference: the Monte Carlo (MC) approach and the Moment Propagation ap-

proach. The former approach computes the average of N network inference evaluations,

1

2 Chapter 1. Introduction

Figure 1.1: Difference between typical ANNs and BNNs

wherein for each network pass, the weights are obtained by random sampling of Gaussian

distribution, providing different outputs on each evaluation. For a high performance to be

achieved by this approach, the authors of [4]mainly concentrate on implementing fast hardware-

based Gaussian Random Number Generators (GRNGs). An alternative MC suggested in [6]

uses Monte Carlo Dropout, where conventional neural networks are trained and the uncer-

tainty quantification occurs from the dropout, which discards the neurons of the NN with

some probability in every inference pass. In [6], partial BNNs, which consist of both Bayesian

and conventional deterministic layers, have also been studied in an effort to reduce the por-

tion of the BNN that needs to be inferred multiple times. As for the latter approach for imple-

menting BNN inference, Moment Propagation, the neurons represent Gaussian distributions

whose moments, i.e., mean and variance, propagate from the first to the last layer [5]. Even

though the last method requires more computations for a single pass, the advantage is that

only one inference iteration is required, which leads to more power efficient hardware im-

plementations.

Moment propagation technique seems to be promising since it requires only one iteration

of the inference, but comeswith a limitation: it can be efficiently implemented in hardware for

specific activation functions. In the most recent hardware accelerator for Bayesian inference

with moment propagation, BYNQNet [5], the quadratic activation function f(x) = x2 has

been used as a replacement of the Rectified Linear Unit (ReLU) activation function, and

tested in a fully-connected network.

1.2 Thesis objective

The accuracy of models with the quadratic approximation f(x) = x2 might be inade-

quate for some critical applications. Also, several interesting datasets are better suited for

1.2.1 Contribution 3

Convolutional Neural Networks (CNNs), which have not been investigated in BYNQNet.

This work aims to widen the range of applications of the existing hardware implemen-

tation of BNN inference with moment propagation. First of all, an additional term in the

polynomial approximation of ReLU is proposed to improve the model accuracy (1
2
(x2 + x)

instead of x2). A polynomial approximation (x − 1
3
x3) is also suggested for the tanh acti-

vation function. Moreover, the above functions are integrated not only in the 3-layer fully

connected neural network used in [4] and [5] (also referred as FC3L net in this thesis), but

also in LeNet-5 [7], a more complex network that consists of 5 layers and includes convolu-

tional and pooling layers as well.

1.2.1 Contribution

The contributions of the thesis are summarized below:

1. extension of the hardware implementation ofMoment Propagation method to Bayesian

Convolutional Neural Networks

2. enhancement of the polynomial approximation of ReLU used in [5] to improve ac-

curacy, and proposal of a tanh polynomial approximation as activation function that

produces an efficient hardware implementation of moment propagation

3. evaluation of moment propagation performance in complex datasets

1.3 Thesis structure

Chapter 2 explains the use ofHigh-Level Synthesis for programming Field-Programmable

Gate Arrays (FPGAs), provides fundamental ideas of Bayesian Neural Networks (BNNs),

and elaborates the key parts of sampling-free BNN inference on FPGAs. Chapter 3 includes

a presentation of the proposed activation functions for sampling-free Bayesian inference, and

a detailed description of the optimizations made on the hardware design. In Chapter 4, there

is an explanation of the experiments took place and the results derived from software and

hardware metrics. Chapter 5 concludes the thesis and suggests some future work.

Chapter 2

Background

This chapter aims to introduce the reader to the two main fields of this work, Field-

Programmable Gate Arrays (FPGAs) and Bayesian Neural Networks (BNNs). Moreover,

it discusses the characteristics of sampling-free BNN inference on FPGAs.

2.1 Field-Programmable Gate Arrays (FPGAs)

Field-Programmable Gate Arrays (FPGAs) are integrated circuits that are able to be re-

configured. This hardware programmable feature is an outcome of the internal structure of

FPGAs. In particular, they consist of multiple Configurable Logic Blocks (CLBs) arranged in

a matrix form, which are connected by programmable interconnects, as illustrated in Figure

2.1. In this way, the user can connect different blocks to implement the desired design. This

procedure is achieved by generating a bitstream, which is loaded in SRAM inside the device.

[8, 9]

In the rest of this section, two main use cases for FPGAs are emphasized, hardware pro-

totyping and hardware acceleration. After that, it follows a description of the key concepts of

High-Level Synthesis (HLS).

2.1.1 Use of Field-Programmable Gate Arrays

FPGAs are reprogrammable, meaning that they are an ideal platform for design proto-

typing, a vital step before Application-Specific Integrated Circuit (ASIC) implementation.

ASICs are custom integrated circuit chips with a strictly particular purpose.Most of the times,

they achieve design implementations with lower area, latency and power consumption than

5

6 Chapter 2. Background

Figure 2.1: FPGA architecture

FPGA implementations. However, the manufacturing process of ASICs requires a lot of time

and has high in advance cost. That leads to the need of a functioning design in the first place.

As a matter of fact, the procedure of hardware verification is more efficient and low-cost in

FPGAs. [8, 9, 10]

Hardware acceleration is another often field of use for FPGAs. Among various target

platforms for applications, including general purpose CPUs and GPUs, FPGAs typically are

the most appropriate for specific tasks. That is because all the available hardware resources

are tailored to the needs of a certain application, making it possible for the application not

only to run in less time but also to save energy. It has to be noted, though, that hardware

accelerators come with a burden: the application development is more time-consuming than

it would be in software, since the design needs to be manually optimized to utilize the FPGA’s

resources in the best way possible. [8, 10]

2.1.2 High-level synthesis for FPGAs

FPGAs are normally programmed using a Hardware Description Language (HDL), such

as Verilog or VHDL. HDLs allow the programmer to specify circuits and implement algo-

2.2 Bayesian Neural Networks (BNNs) 7

rithms at low level. Arithmetic and logical operations can be performed on bits and simple

data types, led by a pulse signal, the clock. Although programming in an HDL provides a lot

of control over the produced hardware, it requires expertise for the programmer to optimize

the design. [10, 11]

Another way of programming FPGAs is by using High-Level Synthesis (HLS) tools, such

as Xilinx Vitis HLS. These tools are able to convert a program written in a high-level lan-

guage, like C and C++, to a low-level HDL. In this way, development time is reduced since

high level languages are easier to learn and implement. Of course, there are many difficulties

in this process. Firstly, despite the sequential nature of code, the tool needs to find paral-

lelism in it to reach better performance. Moreover, there are parts of software code that are

not synthesizable, meaning that they can not be directly converted to hardware. In this case,

the programmer needs to alter the code to replace the parts that can not be synthesized. Addi-

tionally, in order to help the tool achieve decent performance, programmers need to modify

even synthesizable programs. They can also use directives to instruct the HLS compiler to

implement pipelines, perform parallelization in parts of code, etc. [11]

All in all, HLS provides less flexibility to the designer, but saves development time com-

pared to HDLs. In many cases, HLS designs are proved to be efficient and achieve high

performance.

2.2 Bayesian Neural Networks (BNNs)

In this section, the idea of Bayesian Neural Networks is briefly explained, following a

description of the basic intuition led to Artificial Neural Networks in general.

2.2.1 Introduction to Artificial Neural Networks

Artificial Neural Networks (ANNs) have been inspired by the biological neural network.

The human brain is not pre-programmed to perform certain tasks but learns from life experi-

ence. That is what ANNs try to imitate in order to form Artificial Intelligent systems.

Although ANNs lack in some respects compared to biological neural networks, they both

share a common ground. The building block of neural networks (NNs) is the neuron, which,

in biology, can also be called a nerve cell. A neuron receives signals from other neurons

through dendrites, which are nerve fibres, and sends signals to other neurons by its axon, a

8 Chapter 2. Background

fibre that forks into many branches that end up to the other neurons’ synapses. One neuron is

typically connected to thousand other neurons. The cell body of each neuron accumulates in

a way the signals arriving at its synapses. Each synapse gets stronger or weaker, depending

on the rate that is triggered. That makes the strength of each synapse adaptable and, therefore,

trainable. [12]

Identically, the artificial neuron gathers the input values ai of all of its connections with

other neurons. The input values are multiplied by weights wi to simulate the adaptation of

synapses’ strength. Usually, a constant bias term b is also added to the accumulated value,

which, then, is given as input to a non-linear activation function f . The final output s of the

neuron is shown in 2.1, whereM is the number of input values.

s = f

(
M∑
i=1

(wiai) + b

)
(2.1)

Figure 2.2: Biological and artificial neuron

An ANN consists of many neurons organized in layers. In a feed-forward NN, neurons of

consecutive layers are connected. The layers of neurons are categorized according to their

functionality. In this work, fully-connected, convolutional, pooling, Batch Normalization

(BN) and dropout layers are used.

Fully-connected is the most common type of layer. Every neuron is connected to all neu-

rons of the previous layer. [13] The output value of each neuron is computed by 2.1. An

example of this type of layer is shown in Figure 2.3.

Convolutional (Figure 2.4) are named the layers that use matrices called filters or kernels

to execute convolution operations on their input (Figure 2.5). The trainable parameters in this

case are the values of the filters, along with a bias term. The output of a convolutional layer is

called a featuremap. [14] These layers work particularly well for tasks involving images, such

is image classification [15], and are usually followed by fully-connected layers to optimize

class scores. [14] There are a lot of parameters affecting the convolution operations, such is

2.2.1 Introduction to Artificial Neural Networks 9

Figure 2.3: Example of a fully-connected layer with 2 neurons and 3 inputs

Each of the 2 neurons is connected with every neuron of the previous input layer.

the filter size and the number of input and output channels. [16] Channels are interpreted as

color channels in the case of images, meaning, for example, that grayscale images have one

channel, while RGB colored images have three.

Figure 2.4: A 2D convolutional layer with I input and O output channels

Convolution operations are performed between the input channels and filters in bold outline,

and then the bias in bold is added element-wise to produce the output channel in bold.

Pooling layers are often used in CNNs to reduce the dimension of the feature maps and,

therefore, decrease the number of trainable parameters and computations. It replaces a block

of adjacent values with a single value. That value is usually either the average or themaximum

value of the elements inside the block, as Figure 2.6 demonstrates. In such cases, the layer is

10 Chapter 2. Background

Figure 2.5: Example of a 2D convolution operation

The first element of the output is calculated by element-wise multiplication and accumulation

of the filter and the marked input. For the rest of the output to be produced, the filter window

slides over the whole input performing the same operation each time.

called Average or Max pooling respectively. Pooling also contributes to avoiding overfitting

of the model. [17, 18]

Figure 2.6: Example of a 2D Max and Average Pooling

Batch Normalization (BN) layers are used to normalize the input of hidden layers, mean-

ing that all the inputs have the same scale. That leads to faster training of the network since the

loss function converges to a minimum in less steps. A BN layer has trainable parameters, γ

and β, which define the mean and variance of the layer’s input. There are also non-trainable

parameters, moving mean and moving variance, which are used to calculate the mean and

variance in the inference. BN applies the transformation shown in equation 2.2, where µ and

σ2 are the moving mean and moving variance, and ϵ is a small constant value. The position

of a BN layer originally suggested to be before the activation function, but there are also

2.2.2 Idea behind Bayesian Neural Networks 11

implementations where BN layers are after the activation functions. [19, 20]

x̂ = γ
x− µ√
σ2 + ϵ

+ β (2.2)

Dropout layers drop some neurons randomly, according to a dropout probability that is set.

When a neuron is dropped, it means it is excluded from the neural network. This technique

can be applied during training for overfitting to be avoided. [21] It can also be applied to

both training and inference, in which case it is called Monte Carlo Dropout, to implement

Bayesian inference. [22]

2.2.2 Idea behind Bayesian Neural Networks

Bayesian Neural Networks (BNNs) are Neural Networks enhanced with the advantages

of probabilistic models. [23] Instead of scalar values, they can produce a distribution for their

predictions, meaning that they better avoid overfitting and have a better sense of the predic-

tion confidence. In contrast to conventional neural networks, BNNs provide extra valuable

information, which is the quantified uncertainty of the predictions they make.

A BNN considers a posterior probability distribution P (W|D) for the weightsW given

a dataset D. According to the Bayes rule, the posterior probability distribution is given by:

P (W|D) =
P(D|W)P(W)

P(D)
(2.3)

where P (W) is a prior probability distribution, P (D|W) is called the likelihood and P (D)

is the integral of sum over all possibleW variables [24, 4]:

P (D) =

∫
W
P(D|W ′)P(W ′) dW ′ (2.4)

Since the computation of eq. 2.4, and consequently eq. 2.3, is difficult, P (W|D) is approxi-

mated by a given distribution which is most of the times the normal distribution with trainable

µ and σ. Therefore, the weights take the form of equation 2.5, where µ and σ are the mean and

standard deviation of the weight distribution, and ϵ is sampled from a unit Gaussian distribu-

tion. In the inference of the BNN, the output of N separate network inferences is averaged,

with each inference using different sampled weights. [24, 4] The structure of a Bayesian

Neural Network can be seen in Figure 2.7.

w = µ+ ϵσ (2.5)

12 Chapter 2. Background

Figure 2.7: Example of a BNN

Unlike deterministic NNs, the weights of a BNN are distributions. Each weight distribution

is sampled during inference.

The inference method described above requires sampling of weights, however, there are

also sampling-free methods.

2.3 Sampling-free BNN inference on FPGAs

The sampling-free technique of moment propagation for ΒΝΝ inference does not involve

Monte Carlo (MC) sampling. Instead of being represented by a scalar value, each neuron

carries two values, the mean and the variance of a Gaussian distribution.Moment propagation

calculates the mean and variance (moments) of the neurons in one pass, starting with the

neurons of the first layer and moving forward one layer at a time. In [5], it has been shown

for theMNIST dataset [25] that the moment propagation method provides comparable results

with 10 MC samples, in less time.

In moment propagation method, the input layer (l = 0) has neurons with zero variance

V[h0
i]
1, and mean E[h0

i] equal to the input values of the dataset. The mean and variance of the

pre-activations of each next layer l are computed by equations 2.6, where hl−1
j refers to each

of the previous layer’s post-activations, wl
ij to the weight between the i-th neuron of layer l

and j-th neuron of layer l − 1, and bli to the bias of i-th neuron of layer l. Since E[wl
ij] and

1In general, variance V is given by V =

N∑
i=1

(xi − xµ)
2

N , where xi is each value in the dataset, xµ is the

mean value, and N is the number of values.

2.3 Sampling-free BNN inference on FPGAs 13

V[wl
ij] are known after training, parameters wl

µ,ij = E[wl
ij], wl

v,ij =
(
V[wl

ij] + E[wl
ij]

2
)
and

wl
µ2,ij = V[wl

ij] in 2.6 can be calculated before inference.

E[xl
i] = bli +

∑
j

E[wl
ij]E[hl−1

j] =

= bli +
∑
j

wl
µ,ij E[hl−1

j]

V[xl
i] =

∑
j

[(
V[wl

ij] + E[wl
ij]

2
)
V[hl−1

j] + V[wl
ij]E[hl−1

j]2
]
=

=
∑
j

[
wl

v,ij V[hl−1
j] + wl

µ2,ij E[h
l−1
j]2

]
(2.6)

The next part of computations is the moment propagation through the activation function,

using the pre-activation moments, as shown in Figure 2.8. As a matter of fact, the activation

function of a layer affects the moment propagation computations. For the computation of

moment propagation through some activation functions, non-trivial operations, such as cu-

mulative distribution function (CDF) computation, need to be performed. These operations

can not be implemented efficiently in hardware designs. On the other hand, moment prop-

agation of polynomial activation functions that require only polynomial operations are bet-

ter implemented in hardware. That leads to the need of replacing activation functions with

respective polynomial approximations. The authors of [5] proposed the replacement of the

ReLU activation function with the quadratic activation function, f(x) = x2. The latter can

be easily integrated in the moment propagation algorithm, and due to its small computational

overhead, it results in a feasible and efficient hardware implementation.

An important detail on BNNs with polynomial approximation functions is the addition of

Batch Normalization (BN) layers before activations. A significant reason for using BN layers

is that they shrink the range of pre-activations to [-1,1], where the polynomials approximate

more accurately common activation functions. In this case,wl
µ,ij ,wl

v,ij ,wl
µ2,ij parameters and

bias bli in 2.6 are transformed into:(
wl

µ,ij

)′
=

γl
i√

(σl
i)

2 + ϵ
wl

µ,ij

(
wl

v,ij

)′
=

(γl
i)

2

(σl
i)

2 + ϵ
wl

v,ij(
wl

µ2,ij

)′
=

(γl
i)

2

(σl
i)

2 + ϵ
wl

µ2,ij(
bli
)′
= βl

i + γl
i

bli − µl
i√

(σl
i)

2 + ϵ

(2.7)

14 Chapter 2. Background

Figure 2.8: A neuron of a BNN implementing moment propagation

The mean E[xl
i] and variance V[xl

i] of the pre-activations are given by equations 2.6. The

computation of the mean E[hl
i] and variance V[hl

i] of the post-activations depends on the

activation function, and will be described in sections 3.1 and 3.3.

where the BN parameters γl
i, βl

i , µl
i, σl

i, and the constant ϵ have already be defined in training.

Chapter 3

Proposed architecture and optimizations

In this chapter, polynomial functions are proposed as replacements of common activa-

tion functions, in order for moment propagation algorithm to be efficiently implemented in

hardware. In particular, a new quadratic function is proposed to approximate ReLU bet-

ter than f(x) = x2, which has been used in BYNQNet [5]. A polynomial approximation

is also suggested for tanh. Additionally, a hardware implementation is presented for both

fully-connected and convolutional BNNs.

3.1 Proposed quadratic approximation of the ReLU activa-

tion function

In [26], the authors empirically show that f(x) = x2 is not the ideal second degree poly-

nomial to replace the ReLU function. Instead, they propose f(x) = 1
2
(x2 + ax) as a better

option for approximating ReLU in the range [−a, a]. For this function to be integrated in the

moment propagation algorithm, its first and second moments need to be calculated.

Consider the pre-activation randomvariablexl
i. Then, the first moment of the post-activation

through 1
2
(xl

i
2
+ axl

i) is given by:

E[hl
i] = E[

1

2
(xl

i

2
+ axl

i)] =
1

2
(E[xl

i

2
] + E[axl

i]) =
1

2
(V[xl

i] + E[xl
i]
2 + aE[xl

i]) (3.1)

where E[xl
i] and V[xl

i] are computed by equations 2.6. The second moment is given by:

V[hl
i] = V[

1

2
(xl

i

2
+ axl

i)] =
1

4
(V[xl

i

2
] + a2 V[xl

i] + 2a ∗ cov(xl
i, x

l
i

2
)) =

=
1

4
(V[xl

i

2
] + a2 V[xl

i] + 2a ∗ (E[xl
i

3
]− E[xl

i]E[xl
i

2
]))

(3.2)

15

16 Chapter 3. Proposed architecture and optimizations

where cov(X,Y) is the covariance between random variables X and Y and is defined as

cov(X,Y) = E[XY]−E[X]E[Y]. Due to the assumption of normal distribution propagation

and because the skewness of a normal distribution is 0, we have

E[(
xl
i − µ

σ
)3] = 0 ⇒ E[(xl

i − µ)3] = 0 ⇒ E[xl
i

3 − 3xl
i

2
µ+ 3xl

iµ
2 − µ3] = 0 ⇒

⇒ E[xl
i

3
]− 3E[xl

i

2
]µ+ 3E[xl

i]µ
2 − µ3 = 0 ⇒

⇒ E[xl
i

3
]− 3E[xl

i

2
]µ+ 3µ3 − µ3 = 0 ⇒

⇒ E[xl
i

3
] = 3E[xl

i

2
]µ− 2µ3

(3.3)

Then, by substituting E[xl
i
3
] in 3.2 with the result in 3.3, we obtain

V[
1

2
(xl

i

2
+ axl

i)] =
1

4
(V[xl

i

2
] + a2 V[xl

i] + 2a ∗ (3E[xl
i

2
]µ− 2µ3 − µE[xl

i

2
])) =

=
1

4
(V[xl

i

2
] + a2 V[xl

i] + 2a ∗ (2E[xl
i

2
]µ− 2µ3)) =

=
1

4
(V[xl

i

2
] + a2 V[xl

i] + 4a ∗ (E[xl
i

2
]µ− µ3)) =

=
1

4
(2V[xl

i](V[xl
i] + 2E[xl

i]
2) + a2 V[xl

i] + 4a ∗ (E[xl
i

2
]µ− µ3)) =

=
1

4
(2V[xl

i](V[xl
i] + 2E[xl

i]
2) + a2 V[xl

i] + 4a ∗ ((V[xl
i] + E[xl

i]
2)E[xl

i]− E[xl
i]
3)) =

=
1

4
(2V[xl

i](V[xl
i] + 2E[xl

i]
2) + a2 V[xl

i] + 4a ∗ (V[xl
i]E[xl

i]))

(3.4)

Due to the use of normalized input and Batch Normalization layers, the range of interest

for the pre-activations is [−1, 1]. Therefore, since a = 1, the proposed quadratic polynomial

approximation function for ReLU is f(x) = 1
2
(x2+x). This function is compared to f(x) =

x2 and ReLU in Figure 3.1.

−1 −0.5 0.5 1

0.5

1
ReLU

x2

1
2
(x2 + x)

Figure 3.1: Comparison of polynomial functions with ReLU

3.2 Μoment propagation in convolutional and pooling layers 17

3.2 Μoment propagation in convolutional and pooling lay-

ers

Convolutional layers are widely used in image recognition and other tasks [27]. They are

also used in BNNs [6]. The moment propagation computations for the convolutional layer

is illustrated in Figure 3.2 and shares similar ideas to the fully connected layer. In essence,

for each element of a layer’s l output, there are two steps. In the first step, the mean and

variance of the pre-activations, E[xl] and V[xl], are computed using equations 2.6, where,

instead of dot products, convolution operations are performed between the post-activations

of the previous layer l− 1 and the pre-computed parameters wl. Subsequently, the equations

of moment propagation through the desired activation function are applied (for example, eq.

3.1, 3.4 with a = 1 in the case of f(x) = 1
2
(x2 + x)). The produced mean and variance of

the post-activations are then used as input by the next layer l + 1.

Figure 3.2: Pre- and post-activation computation in a 2D convolutional layer

Pooling layers are frequently used after convolutional layers for subsampling. Among

various types of pooling layers, Average and Max pooling layers are some of the most com-

mon. More specifically, these layers slide a window over the input, maintaining the average

or maximum value of the elements inside the window. In the case of moment propagation,

the window consists of Gaussian distributions. For Average pooling layers, the output is a

new Gaussian distribution with its mean and variance calculated as shown in equations 3.5,

18 Chapter 3. Proposed architecture and optimizations

where E[hl−1
j] and V[hl−1

j] are the mean and variance of the j-th element of the window and

N is the number of elements in the window. As for Max pooling layers, the distribution with

the largest mean is maintained.

E[hl
i] =

N∑
j=1

E[hl−1
j]

N
, V[hl

i] =

N∑
j=1

V[hl−1
j]

N2

(3.5)

3.3 Proposed approximation of the tanh activation function

Tanh is another popular activation function for neural networks. Like ReLU, a polyno-

mial approximation needs to be found in order for it to be applied in BNN infernce with

moment propagation. As for tanh polynomial approximation, the first two nonzero terms of

the respective Taylor expansion were selected, x− 1
3
x3 (proof in Appendix A). In Figure 3.3,

tanh and its polynomial approximation are compared in the range of interest [−1, 1].

−1 −0.5 0.5 1

−0.5

0.5
tanh

x− 1
3
x3

Figure 3.3: Comparison of tanh function and its polynomial approximation

Once again, the first two moments of the polynomial need to be calculated and integrated

in the moment propagation algorithm. Considering a pre-activation random variable xl
i, the

first moment of the post-activation through xl
i − 1

3
xl
i
3 activation function is:

E[hl
i] = E[xl

i −
1

3
xl
i

3
] = E[xl

i]−
1

3
E[xl

i

3
] =

= E[xl
i]−

1

3
(3E[xl

i

2
]E[xl

i]− 2E[xl
i]
3) =

= E[xl
i]− E[xl

i

2
]E[xl

i] +
2

3
E[xl

i]
3 =

= E[xl
i]− (V[xl

i] + E[xl
i]
2)E[xl

i] +
2

3
E[xl

i]
3 =

= E[xl
i]− V[xl

i]E[xl
i]− E[xl

i]
3 +

2

3
E[xl

i]
3 =

= E[xl
i]− V[xl

i]E[xl
i]−

1

3
E[xl

i]
3

(3.6)

3.4 Design flow 19

and the second moment is given by:

V[hl
i] = V[xl

i −
1

3
xl
i

3
] = V[xl

i] +
1

9
V[xl

i

3
]− 2

3
cov(xl

i, x
l
i

3
) (3.7)

cov(xl
i, x

l
i

3
) = E[xl

i

4
]− E[xl

i]E[xl
i

3
] (3.8)

Since E[X4] = E[X]4 + 6E[X]2 V[X] + 3V[X]2 for a Gaussian random variable X , 3.8

becomes

cov(xl
i, x

l
i

3
) = E[xl

i]
4 + 6E[xl

i]
2 V[xl

i] + 3V[xl
i]
2 − E[xl

i](3E[xl
i

2
]E[xl

i]− 2E[xl
i]
3) =

= E[xl
i]
4 + 6E[xl

i]
2 V[xl

i] + 3V[xl
i]
2 − 3E[xl

i

2
]E[xl

i]
2 + 2E[xl

i]
4 =

= 3E[xl
i]
4 + 6E[xl

i]
2 V[xl

i] + 3V[xl
i]
2 − 3(V[xl

i] + E[xl
i]
2)E[xl

i]
2 =

= 6E[xl
i]
2 V[xl

i] + 3V[xl
i]
2 − 3E[xl

i]
2 V[xl

i] =

= 3E[xl
i]
2 V[xl

i] + 3V[xl
i]
2

(3.9)

Applying 3.9 to 3.7, and because V[X3] = 9E[X]4 V[X] + 36E[X]2 V[X]2 + 15V[X]3, we

have

V[xl
i −

1

3
xl
i

3
] = V[xl

i] +
1

9
V[xl

i

3
]− 2

3
(3E[xl

i]
2 V[xl

i] + 3V[xl
i]
2) =

= V[xl
i] +

1

9
(9E[xl

i]
4 V[xl

i] + 36E[xl
i]
2 V[xl

i]
2 + 15V[xl

i]
3)− 2E[xl

i]
2 V[xl

i]− 2V[xl
i]
2 =

= V[xl
i] + E[xl

i]
4 V[xl

i] + 4E[xl
i]
2 V[xl

i]
2 +

5

3
V[xl

i]
3 − 2E[xl

i]
2 V[xl

i]− 2V[xl
i]
2

(3.10)

3.4 Design flow

The design flow of this work’s accelerator (Figure 3.4) starts from the BNN training

phase, which generates all the weights that are used later in the inference. For this phase,

each of the BNNs has been built in Python code utilizing TensorFlow and TensorFlow Prob-

ability libraries. The proposed polynomial activation functions are not built-in in TensorFlow,

so they have been added. TensorFlow uses the automatic differentiation technique to compute

the activation function’s gradient and then, it trains the network by implementing backprop-

agation. For conventional NNs to be converted to Bayesian ones, all fully connected and

convolutional layers need to use the reparameterization method supported by TensorFlow

Probability. After the training ends, all the weights are exported to a file to be used in the in-

ference. More specifically, these weights are the means and standard deviations of the weight

distributions along with the biases of fully connected and convolutional layers, and the γ, β,

µ and σ parameters of batch normalization layers (used to compute equations 2.7).

20 Chapter 3. Proposed architecture and optimizations

The next phase is the software implementation of the inference to validate the correctness

of the calculations. The inference program, which has been developed in C, can be param-

eterized to implement a BNN’s inference using either the moment propagation or the MC

sampling method. Firstly, it initializes the BNN’s layers and loads their weights from the

weights file generated by the Python program at the end of training. After that, it loads from

a file the dataset that feeds the network and then, it executes the inference. Lastly, the pro-

gram measures the accuracy and the average predictive entropy (aPE) over the dataset, as

shown in equation 3.11, whereD is the dataset size,K is the number of classes and p(ykd |xd)

is the probability of the BNN classification yd to be k given input xd. Accuracy indicates

the correctness of the predictions and it is desired to be as high as possible, while aPE is a

measurement that can quantify predictions’ uncertainty and it should be in general as low as

possible, but distinctively high for confusing input, like random Gaussian noise.

aPE =
1

D

[
D∑

d=1

(
−

K∑
k=1

p(ykd |xd) log p(y
k
d |xd)

)]
(3.11)

After the verification that the C code produces right results, the part of the code imple-

menting the moment propagation inference is moved to Xilinx Vitis High-Level Synthesis

(HLS) to be converted to hardware using Vitis Kernel Flow. The produced bitstream file,

along with the weights and images files, are loaded into the FPGA and, finally, a C program

running on Zedboard’s ARM launches the hardware accelerator and collects the results.

Figure 3.4: Design flow of this work’s BNN accelerator

3.5 Hardware architecture and implementation 21

3.5 Hardware architecture and implementation

Once the code is imported in Vitis HLS, several actions need to be taken to improve la-

tency and throughput and manage hardware utilization area and, therefore, power consump-

tion. Many optimizations can be applied to achieve less memory accesses and parallelism.

Mainly, they are given as directives to the synthesizer tool, but quite often code transforma-

tions need to be done as well.

In a NN inference, there are specific parts that can be optimized to consume less time.

Regarding latency, one direct optimization is the parallelization of the computations by using

more hardware components. The inference requires a lot of computations and in fact, many

of them can be done in parallel. And for the rest of them, they can be executed in a pipeline.

Pipeline is a very strong technique for loops and functions. It boosts overall latency and

throughput, by dividing the loop/function body into smaller blocks of instructions, forming

several stages. So, in the optimal case, one loop iteration or function call starts in each clock

cycle and another ends in each cycle. Similar to pipelining, ensuring a continuous data flow

between layers is another vital optimization for NN inference. More specifically, each layer

in a NN without feedback consumes data from the previous layer and produces data for the

next one. In this way, each layer can work on different input, improving throughput. It has to

be noted that the above methods that reduce execution time, result in a larger hardware area.

To optimize the area, one solution is to decrease the bit-length of the data. That, of course,

is a trade-off of accuracy and correctness.

All the above optimizations, regarding the BNN inference, will be discussed in detail in

the next subsections.

3.5.1 Optimizations in the top-level function

The top-level function of the hardware accelerator is responsible for the overall inference.

Firstly, it takes the images as input, along with all the layers’ weights, which are sent to the

accelerator by the ARM processor. After that, it iterates through each image and feeds it to

the first layer by passing it as argument to the relative function call. The results of the first

layer are then passed to the next layer, and this continues until the last layer produces the

BNN’s output. The output is stored in a local BRAM first and once ready, it is sent to the

DRAM.

22 Chapter 3. Proposed architecture and optimizations

Themain optimization in the top-level function is theDATAFLOWdirective.More specif-

ically, DATAFLOW is used in the for-loop that iterates images. In this way, it creates separate

hardware processes for each of the functions inside the loop body. These functions are the

fetch_input function, which fetches an image from the main memory and stores it in local

memory, the layer functions, which execute each layer’s computations, and thewrite_output

function, which sends the output from local memory to the main memory. All these stages

are independent of each other for different input images, and there comes the benefit of be-

ing separated into processes that run concurrently. That means that when the inference for

the first image is in the second layer stage, the second image is in the first layer stage and

the third image is in the fetch_input stage. Algorithm 1 and Figure 3.5 help illustrate the

optimized throughput achieved by DATAFLOW in FC3L_net. The same idea also applies

in LeNet-5.

Algorithm 1 Top-level function for FC3L net

1: Procedure fc3l_net (input images, layer weights w1, w2, w3, output E[h3], V[h3])

2: for each image in images do

3: #pragma HLS DATAFLOW

4: fetch_input(image, imageloc); // the image is fetched to local memory

5: fc(imageloc, 0̄, w1, E[h1], V[h1]); // first layer takes imageloc as E[h0] and zeros as V[h0]

6: fc(E[h1], V[h1], w2, E[h2], V[h2]); // second layer takes first layer’s output as input

7: fc(E[h2], V[h2], w3, E[h3]loc, V[h3]loc); // third layer takes second layer’s output as input

8: write_output(E[h3]loc, V[h3]loc, E[h3], V[h3]); // write output to main memory

9: end for

10: End Procedure

By default, when working with Vitis Kernel Flow, all input and output arrays share the

same bundled bus to communicate with the main memory. DATAFLOW directive, how-

ever, fails to be implemented, unless each function/process uses a separate memory bus. The

specification of different memory buses for each array argument has been achieved by the

INTERFACE directive, which paved the way for DATAFLOW to be successful.

3.5.2 Optimizations inside layer functions

Fully-connected and 2D convolutional layers are implemented in separate functions and

have their own optimizations, even though their architecture (Figure 3.6) shares the same

3.5.2 Optimizations inside layer functions 23

Figure 3.5: Throughput optimization by DATAFLOW directive.

Each function becomes a separate process. The time interval between the end of two consec-

utive iterations is reduced.

basic modules. The main optimization for these layers is loop PIPELINE.

Starting with fully-connected layer, there is a nested for-loop that iterates through each

input and output neuron and performs the needed computations, as it can be seen in Algorithm

2. Essentially, the algorithm takes one input and it uses it to calculate a partial sum of all

the output neurons. After it processes the last input, all the output neurons have accumulated

their final pre-activation values. PIPELINE directive is applied to the inner loop and achieves

initiation interval (II) of 1, meaning that a new loop iteration is launched in each clock cycle.

PIPELINE is similar to DATAFLOW, since it divides the loop body into pipeline stages,

which can be executed at the same time, like processes in DATAFLOW.

The order of the nested loops in Algorithm 2 could be easily inverted. The alternative

algorithm 3 that occurs by that, iterates through output neurons and for each one, it uses the

entire input to define its value. In this way, the storage of partial sums for all output neurons

is not needed, since only one output is calculated each time. That change means that the inner

loop, which is to be pipelined, iterates through the input and aggregates one output neuron’s

value. However, that causes a dependency between inner loop iterations, which is not ideal

for PIPELINE. With the order of nested loops suggested in Algorithm 2, each iteration of the

inner pipelined loop updates the value of a different output neuron, which leads to an efficient

PIPELINE with II of 1. Another benefit with this approach is that the input is used serially,

24 Chapter 3. Proposed architecture and optimizations

Algorithm 2 Fully-connected layer function

1: Procedure fc (input E[hl−1], V[hl−1], layer weights wl, output E[hl], V[hl])

2: initialize(E[xl], V[xl]); // initialize pre-activation means to biases (bl) and variances to 0

3: for each (E[hl−1
j], V[hl−1

j]) in (E[hl−1], V[hl−1]) do

4: for each (E[xli], V[xli]) in (E[xl], V[xl]) do

5: #pragma HLS PIPELINE

6: w_pos = get_weight_position(j, i);

7: E[xli] += wl
µ,w_pos ∗ E[hl−1

j];

8: V[xli] += wl
v,w_pos ∗ V[hl−1

j] + wl
µ2,w_pos ∗ E[h

l−1
j]2;

9: end for

10: end for

11: moment_propagation_through_activation_function(E[xl], V[xl], E[hl], V[hl]);

12: End Procedure

meaning that no input is read multiple times.

Algorithm 3 Alternative non-optimal fully-connected layer function

1: Procedure fc_alternative (input E[hl−1], V[hl−1], layer weights wl, output E[hl], V[hl])

2: for each (E[xli], V[xli]) in (E[xl], V[xl]) do

3: initialize(E[xli], V[xli]); // initialize pre-activation mean to bias (bli) and variance to 0

4: for each (E[hl−1
j], V[hl−1

j]) in (E[hl−1], V[hl−1]) do

5: #pragma HLS PIPELINE

6: w_pos = get_weight_position(j, i);

7: E[xli] += wl
µ,w_pos ∗ E[hl−1

j];

8: V[xli] += wl
v,w_pos ∗ V[hl−1

j] + wl
µ2,w_pos ∗ E[h

l−1
j]2;

9: end for

10: moment_propagation_through_activation_function(E[xli], V[xli], E[hli], V[hli]);

11: end for

12: End Procedure

As for the 2D convolutional layer, it shares the same key algorithmic steps with the fully-

connected layer, i.e. output initialization, main computation consisting of nested loops and

moment propagation through activation function. Again, the order of the nested loops is se-

lected to be input iterations in the outer loop and output iterations in the inner loop, for the

inner loop to be properly pipelined, as described earlier. Originally, there were 6 nested loops,

3.5.3 Area optimization with fixed-point bit-widths of variables 25

which were unified into 2 nested loops, as shown in Algorithms 4 and 5 in Appendix B. In

this way, not only the code has been clearer to the synthesizer, but also the PIPELINE di-

rective has been applied in a loop with a larger body and number of iterations. Although

PIPELINE can be used in the outer loop, it has been intentionally avoided, because in that

case it fully unrolls all nested loops, resulting in significantly larger hardware area, which

is not always acceptable. Finally, for II of 1 to be achieved, the DEPENDENCE directive

needed to be used to instruct the compiler that the dependency found on updating output be-

tween successive iterations is false, since, in fact, each iteration updates a different output

element.

The Average Pooling layer that is part of the LeNet-5 inference has nearly 100 times

lower latency than the 2D convolutional layer. Since any latency optimization applied to it

would increase the area without a distinctive difference in overall inference time, the Average

Pooling layer has been intentionally left unoptimized.

3.5.3 Area optimization with fixed-point bit-widths of variables

The original BNN model uses 32-bit floating-point numbers to represent layer inputs,

weights and outputs. Although floating-point arithmetic is quite standard in C and generally

in software, fixed-point bit-widths can be more efficient in hardware. The decrease of bit-

widths results not only in smaller storage size of variables, but also in smaller and faster

hardware operators. Consequently, the latency can be optimized as well.

Of course, reducing the bit-width of variables limits both the range of numbers that can

be represented and their precision. These affect the precision of the application, which, in

this case, is translated to BNN accuracy. To fully benefit from low bit-widths without a huge

impact in accuracy, input and batch normalization during training and inference are good

techniques for the model to retain relatively small values that can be represented by less bits

without significant precision loss.

In practice, 17-bit fixed-point representation proved to be the golden mean between area

and accuracy, with the former almost halved and the latter degrading by 0.1% – 2%. By all

means, the fixed-point approach is very sensitive to the application, meaning that experiments

need to be done each time to find the optimal number of bits. Figure 3.7 illustrates the impact

of various bit-widths to the overall accuracy and aPE metrics.

26 Chapter 3. Proposed architecture and optimizations

3.5.4 Further memory optimizations

One probable bottleneck that has not been resolved during optimization is the memory

accesses for the network weights. In this work, the weights are coming from outside the

hardware accelerator, as they are arguments in the top-level function (Algorithm 1). That

means that the ARM CPU of the FPGA sends the weights from the DRAM to the hardware

kernel by passing them as arguments when it launches the kernel. This procedure is more

time-consuming compared to the case that the weights are already inside the accelerator.

The latter can be achieved if the weights are stored in static arrays in a design header file

[5]. In this way, the weights would be implemented as BRAMs, more specifically as ROMs,

meaning that the access to them would have been faster. It has to be considered, though, that

the weights would fill a lot of hardware area.

Unfortunately, some obstacles have prevented the abovemethod from being implemented.

The main problem is that synthesis on Vitis HLS stalls at a very early stage for a long time.

This issue may be caused to some extent by ”ap_fixed” class that is responsible for the imple-

mentation of fixed-point low-bit numbers. The replacement of these with standard floating-

point numbers led to a successful synthesis. However, the area overhead of storing floating-

point weights to BRAM was huge, forcing the implementation step to fail.

Although the idea of the weights being stored inside the accelerator seems to be appealing

for latency optimization, it leads not only to greater hardware area but also to lack of repa-

rameterization after deployment on FPGA. In the contrary, when the weights, along with the

network input, are received by the accelerator from an external source, the accelerator can be

used for inference on different datasets that need different weights. This may not be a huge

advantage in the case of FPGAs, because a new accelerator with different weights can be im-

plemented relatively fast and with no extra cost, but if the hardware accelerator was intended

to be implemented in ASIC, reconfigurability and, therefore, reusability would matter more.

3.5.4 Further memory optimizations 27

Figure 3.6: Architecture schematic for a convolutional or a fully-connected layer

The architecture is separated in two modules. The multiplication and accumulation module is

responsible for the dot products and/or the convolution operations included in equations 2.6.

A memory controller defines which input and weights are read and which output is updated.

After the first module finishes, the computation of moment propagation through the desired

activation function is performed. For this figure, activation function f(x) = 1
2
(x2 + x) is

used, so equations 3.1 and 3.4 with a = 1 are computed. This architecture is indicative and

does not necessarily match the generated design by Vitis HLS.

28 Chapter 3. Proposed architecture and optimizations

32-bit 22-bit 17-bit

0.2

0.4

0.6

0.8
0.83 0.82 0.85

0.16 0.17
0.25

FC3L net

Accuracy aPE
32-bit 23-bit 17-bit

0

0.2

0.4

0.6

0.8

1 0.9 0.9 0.88

0.11 0.11

0.25

LeNet-5

Accuracy aPE

Figure 3.7: Accuracy and aPE for FC3L net and LeNet-5 over different bit-widths

Measurements refer to the first 1000 images of Fashion MNIST dataset. The activation func-

tion used is f(x) = 1
2
(x2 + x). Normally, accuracy is expected to drop when the bit-width

decreases, as happens in the right figure for LeNet-5. The accuracy rise in the left figure for

FC3L net should be considered coincidental.

Chapter 4

Experiments and results

The software-only measurements were obtained on a system equipped with an Intel core

i7 @ 2.9 GHz CPU and a 8 GB RAM. Moreover, for the hardware implementation, we used

the Xilinx Zedboard evaluation board, which includes an ARM Cortex A9 @ 667 MHz Pro-

cessing System (PS) and Programmable Logic (PL). Finally, the PL includes 220 DSP slices,

106400 Flip-Flops, 53200 LUTs, and 560KB BRAMs.

4.1 Neural network benchmarks and datasets

Two NNs and three datasets have been targeted for the experiments. The first NN is the

3-layer fully-connected network (referred as FC3L net) used in [4] and [5], which consists

of 784 (28*28) input neurons, a couple of hidden layers with 200 neurons each, and an output

layer of 10 neurons. Each hidden layer is also fused with a Batch Normalization (BN) layer

(Figure 4.1). FC3L net has been implemented twice, once with f(x) = x2 as activation func-

tion and the other time with f(x) = 1
2
(x2+x). The datasets used in this network are MNIST

[25] and Fashion MNIST [28]. The former is a dataset for handwritten digits recognition,

while the latter is a MNIST-like dataset of fashion products. They both contain 60000 28x28

grayscale images in the training set and 10000 images in the test set.

The secondNN that has been used is LeNet-5 [7]. LeNet-5 is a CNN consisting of 5 layers,

with the first 3 being convolutional and the last 2 being fully-connected. Average pooling

layers follow the first two convolutional layers. BN layers have also been added before each

activation function (Figure 4.2). Originally, LeNet-5 uses tanh as activation function, but,

for this work, this has changed to the polynomial tanh approximation x− 1
3
x3. The previous

29

30 Chapter 4. Experiments and results

Figure 4.1: FC3L net architecture

polynomial activation functions (x2, 1
2
(x2+x)) have also been tested on this network. Another

modification to the original network is the input size, which has changed from 1x32x32meant

for greyscale images, to 3x32x32 for colored images. In particular, SVHN [29] has been

used as a colored-image dataset since it contains real-world street view house numbers in a

MNIST-like format. SVHN has 73257 digits for training and 26032 digits for testing. MNIST

and Fashion MNIST have also been tested in LeNet-5. Examples of images for these datasets

can be seen in Figure 4.3. It has to be noted that LeNet-5 was not designed to be Bayesian,

but by the replacement of scalar weights with distributions, it is converted to a BNN.

Figure 4.2: Modified LeNet-5 architecture

This work aimed to experiment on even more complicated networks, like VGG-11, an

11-layer CNN. However, the training of such networks suffers from the gradient explosion

4.2 Accuracy and uncertainty of polynomial approximation activation functions 31

Figure 4.3: Example images of datasets

MNIST [25] (left), a dataset of handwritten digits, Fashion MNIST [28] (center), a dataset of

MNIST-like fashion products categorized in 10 classes, such as T-shirt/top, pullover, sandal,

etc., and SVHN [29] (right), a real-world dataset of street numbers that contain distractions

apart from the central digit of interest.

problem when polynomial activation functions are used. Gradient clipping [30] has been

applied to resolve the issue, but it worked efficiently only in LeNet-5, not VGG-11. It has

to be noted that the BNN training is out of the scope of this work, so no more effort has

been given to the training of more complex networks. After all, experiments on FC3L net

and LeNet-5 have produced insightful results, as will be more evident in the next sections.

4.2 Accuracy and uncertainty of polynomial approximation

activation functions

From the experiments held on FC3L net and LeNet-5 during the training phase, valuable

information is gained about the effect of different activation functions on model accuracy and

uncertainty. Table 4.1 explores the value of thesemetrics for both networks.More specifically,

accuracy in the training and test set has been measured for different combinations of the

network, dataset, and activation function.Moreover, uncertainty in the test set and in a random

noise set has been evaluated in each case.

Table 4.1 contains some worth mentioning metrics. First of all, it can be seen that the

accuracy achieved by the f(x) = 1
2
(x2 + x) activation function is in most cases higher than

32 Chapter 4. Experiments and results

f(x) = x2, with the gap between the two of them reaching about 6% for the SVHN dataset

on LeNet-5. However, in the same case, the accuracy of the polynomial approximation of

tanh (x− 1
3
x3) has been left behind by 1

2
(x2 + x). On the other hand, these two are closer to

each other in the rest of the cases. The reason is the gradient explosion problem, which has

failed to be resolved entirely by the gradient clipping method.

As for the uncertainty of the model for the test set, measured by the aPE metric defined

in 3.11, minor changes are observed between different activation functions in most cases.

Uncertainty of themodel when random noise images are given as input should be distinctively

higher than uncertaintywith the standard test set images as input. This is true formost LeNet-5

combinations but none of FC3L net cases. That, along with the increased accuracy of LeNet-

5, are the outcomes of LeNet-5 being more complex than FC3L net.

Table 4.1: Accuracy and uncertainty for various BNNs and datasets

BNN Dataset AF AccTrain↑ AccTest↑ aPE_test↓ aPE_rand↑

FC3L net

MNIST
x2 0.9939 0.9821 0.017 0.000
1
2
(x2 + x) 0.9931 0.9818 0.019 0.000

F_MNIST
x2 0.8853 0.8354 0.170 0.001
1
2
(x2 + x) 0.8863 0.8451 0.162 0.013

LeNet-5

MNIST

x2 0.9960 0.9930 0.009 0.843
1
2
(x2 + x) 0.9961 0.9935 0.008 0.438

x− 1
3
x3 0.9946 0.9930 0.010 0.465

F_MNIST

x2 0.9142 0.8958 0.127 0.701
1
2
(x2 + x) 0.9215 0.9036 0.113 0.095

x− 1
3
x3 0.9166 0.8941 0.134 0.447

SVHN

x2 0.8664 0.8105 0.016 0.790
1
2
(x2 + x) 0.8998 0.8693 0.017 0.806

x− 1
3
x3 0.8424 0.8126 0.229 0.657

4.3 Power, Performance and Area of the hardware implementations 33

4.3 Power, Performance and Area of the hardware imple-

mentations

For the inference, the measurements focus on throughput, utilization area and energy con-

sumption of the accelerated BNNs. Figure 4.4 demonstrates the throughput optimization for

both FC3L net and LeNet-5. The hardware implementations of these networks are ×3.44

and ×1.61 times faster than the respective serial C code running on the CPU. At this point,

a comparison with parallel C code would be more appropriate if the scope of this work was

exclusively the optimization of latency. However, this work aims to propose low-power hard-

ware architectures with decent latency. The proposed architectures achieve a throughput of

at least 80 images per second, meaning that even real-time video could be processed. One

last realization that needs to be noted about Figure 4.4 is that the throughput remains almost

the same for any of the activation functions x2, 1
2
(x2+x) and x− 1

3
x3. Of course, this affects

the hardware area.

AF x2 or 1
2
(x2 + x)

200

400

600

184.89

635.45

Th
ro
ug
hp
ut
(I
m
ag
es
/s
)

FC3L net

SW HW
AF x2 or 1

2
(x2 + x) AF x− 1

3
x3

50

60

70

80

49.93 49.93

80.22 80.23

Th
ro
ug
hp
ut
(I
m
ag
es
/s
)

LeNet-5

SW HW

Figure 4.4: Throughput comparison of accelerators and respective serial CPU programs

FC3L net hardware implementation has ×3.44 higher throughput than software. LeNet-5

achieves ×1.61 speedup on hardware compared to software.

A goal has been set for each accelerator to achieve the same performance regardless of the

activation function, resulting in more hardware components for moment propagation through

more computational heavy activation functions. In particular, as Table 4.2 indicates, DSP

slices are the only hardware components that present a noticeable increase as the activation

function becomes more complex, while Flip-Flops and LUTs slightly rise and BRAM us-

34 Chapter 4. Experiments and results

age remains the same. Lower throughput for more complex activation functions could be an

option to preserve the area, but this has not been selected for this work.

Table 4.2: Area and energy of accelerators

FC3L net with AF f(x) = LeNet-5 with AF f(x) =

x2 1
2
(x2 + x) x2 1

2
(x2 + x) x− 1

3
x3

Clock (MHz) 100 100 100 100 100

DSPs 17 (8%) 31 (14%) 35 (16%) 59 (26%) 95 (43%)

Flip-Flops
14189

(13%)

16110

(15%)

27397

(26%)

30681

(28%)

37126

(34%)

LUTs
15980

(30%)

17071

(32%)

29449

(55%)

31193

(58%)

33513

(62%)

BRAM 13% 13% 41% 41% 41%

Power (W) 1.479 1.496 1.636 1.665 1.711

As for power measurements, Xilinx Power Estimator (XPE), a spreadsheet-like tool that

estimates the power consumption of FPGA designs [31], has shown that the power slightly

increases as the design becomes more hardware demanding. The resulting low power of the

designs can be attributed to the low clock frequency and area utilization. Another useful

metric that can be obtained by power and throughput is energy expressed in images per Joule,

as demonstrated by formula 4.1. For example, the energy for FC3L net with AF 1
2
(x2 + x) is

calculated as 635.45/1.496 = 424.77 Images/J .

Energy (Images/J) =
Throughput (Images/s)

Power (W or J/s)
(4.1)

All the above measurements suggest that replacing x2 by 1
2
(x2 + x) activation function

is generally advantageous. Regarding the experiments, network designs implemented with
1
2
(x2 + x) had an average accuracy boost of 1.5% compared to x2. Furthermore, the average

rise in power was only 0.024 W , with acceptable area increase and no drop in throughput.

Finally, focusing on the case of the SVHN dataset used in LeNet-5, merely 0.029W overhead

has been required. At the same time, the design could achieve identical latency and an increase

of 5.9% in accuracy.

Chapter 5

Conclusion

This is the final section of the thesis and aims to highlight some key conclusions and

suggest some future work.

5.1 Summary and conclusions

This work has established the potential of hardware implementations to apply sampling-

free Bayesian Neural Network inference in real world applications. It has shown that the

sampling-free Bayesian inference is efficiently implemented in hardware even for Convo-

lutional Neural Networks, with high prospects in image recognition tasks. Polynomial ac-

tivation functions have been proposed for the replacement of ReLU and tanh activation

functions, and they have achieved great accuracy. Activation function f(x) = 1
2
(x2 + x)

managed to surpass the accuracy of the previously suggested quadratic activation function

(f(x) = x2) for the replacement of ReLU by up to 5.9% with negligible additional hard-

ware area. Finally, the hardware implementations of the sampling-free Bayesian inference

achieved satisfactory throughput with low area utilization and power consumption.

5.2 Future work

Although this work has focused on a low power hardware architecture, some future work

could aim to achieve optimal performance. A promising idea for this goal could be the im-

plementation of an efficient weight caching mechanism that prevents multiple requests of the

weights from DRAM, but also tries not to exceed the available hardware area.

35

Bibliography

[1] Boukaye Boubacar Traore, Bernard Kamsu-Foguem, and Fana Tangara. Deep convolu-

tion neural network for image recognition. Ecological Informatics, 48:257–268, 2018.

[2] Jelena Kocić, Nenad Jovičić, and Vujo Drndarević. An end-to-end deep neural network

for autonomous driving designed for embedded automotive platforms. Sensors, 19(9),

2019.

[3] Suyel Namasudra, S. Dhamodharavadhani, and R. Rathipriya. Nonlinear neural net-

work based forecasting model for predicting covid-19 cases. Neural Processing Letters,

2021.

[4] Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian, Massoud Pe-

dram, and Yanzhi Wang. VIBNN. In Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems. ACM, mar 2018.

[5] Hiromitsu Awano and Masanori Hashimoto. Bynqnet: Bayesian neural network with

quadratic activations for sampling-free uncertainty estimation on fpga. In 2020 De-

sign, Automation & Test in Europe Conference & Exhibition (DATE), pages 1402–1407,

2020.

[6] Hongxiang Fan, Martin Ferianc, Miguel Rodrigues, Hongyu Zhou, Xinyu Niu, and

Wayne Luk. High-performance fpga-based accelerator for bayesian neural networks,

2021.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 1998.

37

38 Bibliography

[8] Arm - what is an fpga? https://www.arm.com/glossary/fpga. Visited on:

20-07-2022.

[9] Xilinx - what is an fpga? https://www.xilinx.com/products/silicon-

devices/fpga/what-is-an-fpga.html. Visited on: 20-07-2022.

[10] David Gschwend. Zynqnet: An fpga-accelerated embedded convolutional neural net-

work. Master’s thesis, ETH Zürich, Aug. 2016.

[11] Vitis high-level synthesis user guide. https://www.xilinx.com/content/

dam/xilinx/support/documents/sw_manuals/xilinx2021_2/

ug1399-vitis-hls.pdf. Visited on: 29-07-2022.

[12] Bayya Yegnanarayana. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

[13] Fully-connected layers. https://docs.nvidia.com/deeplearning/

performance/dl-performance-fully-connected/index.html#

fullyconnected-layer. Visited on: 18-07-2022.

[14] Convolutional layers. https://stanford.edu/~shervine/teaching/cs-

230/cheatsheet-convolutional-neural-networks. Visited on: 18-07-

2022.

[15] What is a convolutional layer? https://analyticsindiamag.com/what-

is-a-convolutional-layer/. Visited on: 18-07-2022.

[16] Conv2d: Finally understand what happens in the forward pass. https:

//towardsdatascience.com/conv2d-to-finally-understand-

what-happens-in-the-forward-pass-1bbaafb0b148. Visited on:

18-07-2022.

[17] Pooling layers. https://cs231n.github.io/convolutional-

networks/#pool. Visited on: 18-07-2022.

[18] Comprehensive guide to different pooling layers in deep learning. https:

//analyticsindiamag.com/comprehensive-guide-to-different-

pooling-layers-in-deep-learning/. Visited on: 18-07-2022.

https://www.arm.com/glossary/fpga
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug1399-vitis-hls.pdf
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#fullyconnected-layer
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#fullyconnected-layer
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#fullyconnected-layer
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://analyticsindiamag.com/what-is-a-convolutional-layer/
https://analyticsindiamag.com/what-is-a-convolutional-layer/
https://towardsdatascience.com/conv2d-to-finally-understand-what-happens-in-the-forward-pass-1bbaafb0b148
https://towardsdatascience.com/conv2d-to-finally-understand-what-happens-in-the-forward-pass-1bbaafb0b148
https://towardsdatascience.com/conv2d-to-finally-understand-what-happens-in-the-forward-pass-1bbaafb0b148
https://cs231n.github.io/convolutional-networks/#pool
https://cs231n.github.io/convolutional-networks/#pool
https://analyticsindiamag.com/comprehensive-guide-to-different-pooling-layers-in-deep-learning/
https://analyticsindiamag.com/comprehensive-guide-to-different-pooling-layers-in-deep-learning/
https://analyticsindiamag.com/comprehensive-guide-to-different-pooling-layers-in-deep-learning/

Bibliography 39

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift, 2015.

[20] Batch norm explained visually — how it works, and why neural networks need

it. https://towardsdatascience.com/batch-norm-explained-

visually-how-it-works-and-why-neural-networks-need-it-

b18919692739. Visited on: 19-07-2022.

[21] Dropout regularization in neural networks: How it works and when to use

it. https://programmathically.com/dropout-regularization-

in-neural-networks-how-it-works-and-when-to-use-it/. Visited

on: 19-07-2022.

[22] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger,

editors, Proceedings of The 33rd International Conference on Machine Learning, vol-

ume 48 of Proceedings of Machine Learning Research, pages 1050–1059, New York,

New York, USA, 20–22 Jun 2016. PMLR.

[23] Vikram Mullachery, Aniruddh Khera, and Amir Husain. Bayesian neural networks,

2018.

[24] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed

Bennamoun. Hands-on bayesian neural networks—a tutorial for deep learning users.

IEEE Computational Intelligence Magazine, 17(2):29–48, 2022.

[25] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[26] Ramy E. Ali, Jinhyun So, and A. Salman Avestimehr. On polynomial approximations

for privacy-preserving and verifiable relu networks, 2020.

[27] Samer Hijazi, Rishi Kumar, Chris Rowen, et al. Using convolutional neural networks

for image recognition. Cadence Design Systems Inc.: San Jose, CA, USA, 9, 2015.

[28] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms, 2017.

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
https://programmathically.com/dropout-regularization-in-neural-networks-how-it-works-and-when-to-use-it/
https://programmathically.com/dropout-regularization-in-neural-networks-how-it-works-and-when-to-use-it/

40 Bibliography

[29] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y.

Ng. Reading digits in natural images with unsupervised feature learning. NIPS Work-

shop on Deep Learning and Unsupervised Feature Learning, 2011.

[30] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping

accelerates training: A theoretical justification for adaptivity, 2019.

[31] Xilinx power estimator (xpe). https://www.xilinx.com/products/

technology/power/xpe.html. Visited on: 28-07-2022.

https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html

APPENDICES

41

Appendix A

Proof for Taylor expansion of tanh

The definition of the Taylor series of a function in the origin (x0 = 0) is the following:

f(0) + f ′(0) ∗ x+
f ′′(0)

2!
∗ x2 +

f ′′′(0)

3!
∗ x3 + . . . (A.1)

Now for f(x) = tanh(x), the derivatives are:

f ′(x) = 1− tanh2(x) = 1− f 2(x),

f ′′(x) = −2f(x)f ′(x),

f ′′′(x) = −2 [f(x)f ′′(x)f(x) + f ′(x)f ′(x)] = −2
[
f 2(x)f ′′(x) + (f ′(x))2

] (A.2)

Evaluating these derivatives at x = 0 and substituting on A.1, we have:

0 + 1 ∗ x+
0

2!
∗ x2 +

−2

3!
∗ x3 + · · · =

= x− 1

3
∗ x3 + . . .

(A.3)

By keeping the first two nonzero terms of the Taylor series, the following polynomial ap-

proximation of tanh is obtained:

tanh(x) ≈ x− 1

3
∗ x3 (A.4)

43

Appendix B

Algorithms for 2D convolutional layers

Algorithm 4 Six-loop approach for 2D convolutional layer

1: Procedure conv2D (input E[hl−1], V[hl−1], layer weights wl, output E[hl], V[hl])

2: initialize(E[xl], V[xl]);

3: for ci in CHANNELS_IN do

4: for row in INPUT_DIM do

5: for col in INPUT_DIM do

6: input_idx = get_input_idx(ci, row, col);

7: for co in CHANNELS_OUT do

8: for f_row in FILTER_DIM do

9: for f_col in FILTER_DIM do

10: #pragma HLS PIPELINE

11: output_idx = get_output_idx(row, col, co, f_row, f_col);

12: weight_idx = get_weight_idx(ci, co, f_row, f_col);

13: // perform pre-activation computations

14: end for

15: end for

16: end for

17: end for

18: end for

19: end for

20: moment_propagation_through_activation_function(E[xl], V[xl], E[hl], V[hl]);

21: End Procedure

45

46 Appendix B. Algorithms for 2D convolutional layers

Algorithm 5 Optimized two-loop approach for 2D convolutional layer

1: Procedure conv2D (input E[hl−1], V[hl−1], layer weights wl, output E[hl], V[hl])

2: initialize(E[xl], V[xl]);

3: for ci_row_col in CHANNELS_IN ∗ INPUT_DIM ∗ INPUT_DIM do

4: ci = ci_row_col ÷ (INPUT_DIM ∗ INPUT_DIM); // where ÷ is whole division

5: rem = ci_row_col mod (INPUT_DIM ∗ INPUT_DIM);

6: row = rem÷ INPUT_DIM ;

7: col = rem mod INPUT_DIM ;

8: input_idx = get_input_idx(ci, row, col);

9: for co_f_row_f_col in CHANNELS_OUT ∗ FILTER_DIM ∗ FILTER_DIM do

10: #pragma HLS PIPELINE

11: co = co_f_row_f_col ÷ (FILTER_DIM ∗ FILTER_DIM);

12: rem = co_f_row_f_col mod (FILTER_DIM ∗ FILTER_DIM);

13: f_row = rem÷ FILTER_DIM ;

14: f_col = rem mod FILTER_DIM ;

15: output_idx = get_output_idx(row, col, co, f_row, f_col);

16: weight_idx = get_weight_idx(ci, co, f_row, f_col);

17: // perform pre-activation computations

18: end for

19: end for

20: moment_propagation_through_activation_function(E[xl], V[xl], E[hl], V[hl]);

21: End Procedure

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Motivation and related work
	Thesis objective
	Contribution

	Thesis structure

	Background
	Field-Programmable Gate Arrays (FPGAs)
	Use of Field-Programmable Gate Arrays
	High-level synthesis for FPGAs

	Bayesian Neural Networks (BNNs)
	Introduction to Artificial Neural Networks
	Idea behind Bayesian Neural Networks

	Sampling-free BNN inference on FPGAs

	Proposed architecture and optimizations
	Proposed quadratic approximation of the ReLU activation function
	Μoment propagation in convolutional and pooling layers
	Proposed approximation of the tanh activation function
	Design flow
	Hardware architecture and implementation
	Optimizations in the top-level function
	Optimizations inside layer functions
	Area optimization with fixed-point bit-widths of variables
	Further memory optimizations

	Experiments and results
	Neural network benchmarks and datasets
	Accuracy and uncertainty of polynomial approximation activation functions
	Power, Performance and Area of the hardware implementations

	Conclusion
	Summary and conclusions
	Future work

	Bibliography
	APPENDICES
	Proof for Taylor expansion of tanh
	Algorithms for 2D convolutional layers

