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xii Abstract

Diploma Thesis

Model Order Reduction of Electromagnetic Models for Large

Integrated Circuits

Giamouzis Christos

Panagiotou Dimitra

Abstract

The increasing demand for accurate and inexpensive simulation of modern IC subsystems

constitutes a great challenge for the EDA industry. The simulation of such systems requires

solving large systems of equations with several millions or, in some cases, billions of units.

Model Order Reduction (MOR) techniques form a solution to the aforementioned problem

since they reduce the computational complexity of large mathematical models by replacing

the original models with reduced models. The new produced reduced models approximate

the behavior of the original models at the input/output ports but with significantly smaller

internal dimensions.

MOR methods are divided in two large categories, the Moment Matching (MM) tech-

niques and the system theoretic techniques. MM techniques are known for their computa-

tional efficiency, however they do not provide an a-priori error concerning the accuracy of

the produced reduced model. System theoretic techniques, like the Balanced Truncation (BT)

method, on the other hand, offer a reliable bound for the approximation error of the method

before the computation of the reduced model. Nevertheless, the BT algorithm involves ex-

pensive computations for the solution of the Lyapunov equation and considerable storage

demands for dense matrices of large models produced by solving the Lyapunov equations.

In this thesis, we present a new BT approach that deals with the above computational and

storaging limitations. The proposed approach implements an efficient low-rank solver for the

Lyapunov equation that uses the Extended Krylov Subspace (EKS) method, which handles

large electromagnetic models with greater accuracy compared to the default BT algorithm.

Keywords:
Model Order Reduction, Balanced Truncation, Krylov Subspace
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Διπλωματική Εργασία

Μείωση Τάξης Μεγέθους Ηλεκτρομαγνητικών Μοντέλων για Μεγάλα

Ολοκληρωμένα Κυκλώματα

Γιαμούζης Χρήστος

Παναγιώτου Δήμητρα

Περίληψη

Η αυξανόμενη ζήτηση για υπολογιστικά φθηνές προσομοιώσεις με ακριβή αποτελέσματα σε

σύγχρονα ολοκληρωμένα κυκλώματα αποτελεί μεγάλη πρόκληση για τη βιομηχανία ημια-

γωγών. Η προσομοίωση τέτοιων κυκλωμάτων απαιτεί την επίλυση μεγάλων συστημάτων

εξισώσεων με πολλά εκατομμύρια ή, σε ορισμένες περιπτώσεις, δισεκατομμύρια μονάδες.

Οι τεχνικές υποβιβασμού τάξης μοντέλου (Model Order Reduction - MOR) αποτελούν μια

λύση στο προαναφερθέν πρόβλημα, αφού μειώνουν την υπολογιστική πολυπλοκότητα μεγά-

λων μαθηματικών μοντέλων, ενώ παράλληλα τα νέα μοντέλα διατηρούν παρόμοια συμπερι-

φορά με τα αρχικά μοντέλα στις θύρες εισόδου/εξόδου.

Οι τεχνικές ΜΟR διακρίνονται σε δύο μεγάλες κατηγορίες, τις τεχνικές Moment Match-

ing (MM) και τις θεωρητικές τεχνικές συστήματος. Οι τεχνικές MM είναι γνωστές για την

υπολογιστική τους απόδοση, ωστόσο δεν παρέχουν την δυνατότητα υπολογισμού σφάλμα-

τος, αναφορικά με την ακρίβεια του παραγόμενου μειωμένου μοντέλου, πριν από τον υπο-

λογισμό του. Οι θεωρητικές τεχνικές συστημάτων, από την άλλη πλευρά, όπως η μέθοδος

εξισορρόπησης και αποκοπής (Balanced Truncation - BT) προσφέρουν αξιόπιστο εύρος δια-

κύμανσης του σφάλματος της μεθόδου πριν από τον υπολογισμό του μειωμένου μοντέλου.

Παρόλα αυτά, η μέθοδος BT απαιτεί ακριβούς υπολογισμούς για τη λύση των Lyapunov εξι-

σώσεων ενώ έχει σημαντικές απαιτήσεις μνήμης αφού αποθηκεύει πυκνούς πίνακες μεγάλων

ηλεκτρομαγνητικών μοντέλων που προκύπτουν από την επίλυση αυτών των εξισώσεων.

Σε αυτή τη διπλωματική εργασία, παρουσιάζουμε μία προσέγγιση BΤ που διαχειρίζεται

τις παραπάνω υπολογιστικές και αποθηκευτικές ανεπάρκειες. Η προτεινόμενη προσέγγιση

υλοποιεί έναν αποτελεσματικό μηχανισμό για την επίλυση των Lyapunov εξισώσεων που

χρησιμοποιεί τον υπόχωρο Κrylov (Extended Krylov Subspace - EKS) με σκοπό να χειριστεί

μεγάλα ηλεκτρομαγνητικά μοντέλα ταχύτερα και με μεγαλύτερη ακρίβεια σε σύγκριση με



xiv Περίληψη

τον αρχικό αλγόριθμο BΤ.

Λέξεις-κλειδιά:
Υποβιβασμός Τάξης Μοντέλου, Μέθοδος Εξισορρόπησης και Αποκοπής
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Chapter 1

Introduction

1.1 Motivation

The ever-expanding need for accurate simulation of large, and sometimes complex, in-

tegrated circuits (ICs) forms a great challenge for the semiconductor industry. Moore’s law,

especially, emphasizes this problem, while it states that the number of transistors on a sin-

gle microchip doubles every two years. In Figure 1.1, Moore’s law presented by [1] shows

Figure 1.1: Moore’s law.

a graphical representation of the increasing number of transistors in a single microchip over

time.

The dramatic outburst in circuit complexity was seen by the steadily shrinking of the

transistors’ size over the course of time. In the late 40s, the dimensions of transistors were

1



2 Chapter 1. Introduction

expressed at the scale of millimeter while in the early 2010s were commonly measured in

nanometers, a reduction at a scale of 100,000 units.

The simulation process is one of the most important tools for designing and understand-

ing large-scale ICs. In order for such ICs to be simulated, long-lasting and computationally

expensive simulations are needed. The semiconductor industry focus its efforts on simulating

large electromagnetic models in a short term of time with the maximum possible accuracy.

Research has shown that there is a lot of superfluous information in the model before the

simulation process that could be excluded without compromising the accuracy of the process.

Hence, it seems that one of the most efficient moves is to reduce the size of large electro-

magnetic models and eliminate the unnecessary details, while preserving the accuracy and

realism in the simulation process results.

Model Order Reduction (MOR) aims to reduce the computational complexity in various

mathematical models addressing numerical simulations. It is related with the idea of meta-

modeling in order to produce fast and real-time simulations for large-scale systems. MOR

methods are usually applied in the area of control systems, however, several definitions of

MOR can be distinguished by the context of the method. Figure 1.2 shows the modeling

complexity of the physical systems based on several analysis areas.

Figure 1.2: Flow chart of model order reduction.

MOR is divided in two large categories, the Moment Matching (MM) techniques first
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presented in [2] and techniques like Balanced Truncation (BT) presented in [3]. The first cat-

egory is well-established by dint of the computational efficiency of the reduced order models

(ROMs) that it produces. Notwithstanding, MM-produced ROMs are not based on an a-priori

error (which easily can be specified by the engineer) but are mainly based on the number of

matchingmoments. As a result, the error of the overall process is only available after the ROM

generation. On the other hand, BT-like methods offer competent results. Unfortunately, these

methods deal with expensive computations and storaging due to the solution of the Lyapunov

matrix equations.

Overall, MOR methods have proven their effectiveness in transforming large and com-

plexmathematical models into smaller and simpler ones. BT especially is a method with great

contribution in the research of the MOR area with noteworthy benefits. The most important

of them, presented in [4], is that they provide a global bound error, so as to determine the re-

duced order before the computation of the reduced model, while they handle expensive tasks

(e.g., solution of the Lyapunov equations) with low-rank approaches.

1.2 Contribution

To mitigate the computationally expensive task, we propose a low-rank solution of the

Lyapunov equation. The approach is based on Krylov subspaces approaches, where itera-

tively large dimensional subspaces are projected into lower ones in order to obtain the above

mentioned low-rank solution of the Lyapunov equations. In this thesis, we present a ROM

generation tool that uses BT techniques. Particularly, we present the default implementation

of BT and the implementation of BT that exploits Krylov subspace methods, with main focus

to reduce the scale of very large electromagnetic models and achieve low execution times and

great accuracy. 1 The contributions of this thesis are summarized below:

• We create a ROM tool that handles large-scale electromagnetic models, comprising of

several million units. The reduced-order matrices produced by our ROM tool display

great accuracy and very small dimension, according to user specifications.

• State-of-the-art C++ solvers for sparse and dense matrices were used to obtain excep-

tionally fast execution times.

1This research was conducted under the auspices of the Electronics Research Lab of University of Thessaly.

https://erl.e-ce.uth.gr/


4 Chapter 1. Introduction

• Experiments have proved that our tool achieves remarkably fast reduction of large

electromagnetic models consisting of millions of units, while providing great accuracy

compared to the original models.

1.3 Outline

The rest of the thesis is organised as follows. In Chapter 2, we present in detail the model-

ing of electrical circuits and their simulation process. In Chapter 3, we provide the theoretical

background of MOR, focusing on the BT method. In Chapter 4, we introduce computational

improvements of the BT method along with detailed notes concerning the implementation of

both the default and the proposed version of BT. Chapter 5 presents the experimental evalu-

ation of the proposed low-rank BT approach. Finally, in Chapter 6, we conclude this thesis.





Chapter 2

Modeling and Simulation

2.1 Model Equations for Electrical Circuits

All lumped electrical circuits consist of electrical elements such as resistors, inductors,

capacitors, current sources, and voltage sources. The modeling base of the dynamical behav-

ior for such electrical topologies, derives from Kirchoff’s laws along with the constitutive

relations of the electrical system’s elements. In this thesis, we consider the Modified Nodal

Analysis (MNA) modeling setup.

2.1.1 Modified Nodal Analysis

The MNA is one of the most common ways to model an electrical circuit. This modeling

technique considers a graph whose branches represent the circuit elements and the nodes rep-

resent the interconnections of these elements. An incidencematrixA0 describes this structure,

a graph with n nodes and b branches, with entries:

aij =


−1 if branch j leaves node i

1 if branch j enters node i

0 if branch j is not incident with node i

(2.1)

Note: The dimensions of matrix A0 is n× b.

In case the network graph is connected, the rows of matrix A0 are linearly dependent

and we can randomly choose one node and handle it as reference. By eliminating the corre-

sponding row for this node in matrix A0, a new reduced incidence matrix A is produced (the

5



6 Chapter 2. Modeling and Simulation

dimensions of the new matrix are ((n− 1)× b). The new reduced matrix A now has full row

rank.

Given that u(t) = [u1(t) u2(t) ... ub(t)]T is the vector of branch voltages, v(t) = [v1(t) v2(t)

... vn(t)] is the vector of all node potentials (except from the reference node) and i(t) = [i1(t)

i2(t) ... ib(t)]T is the current vector of b branches, then the topology’s equations are described

by Kirchoff’s law as follows:

Kirchhoff’s Voltage Law, KVL

u(t) = ATv(t) (2.2)

Kirchhoff’s Current Law, KCL

Ai(t) = 0 (2.3)

Suppose that the circuit elements are divided in two categories.

• Elements whose equations can be written as:

ik(t) = gkuk(t) + ck
duk(t)

dt
+ sk(t) (2.4)

, for circuits consisting of resistors, capacitors, and current sources.

• Elements whose equations cannot be written using the above form. They are addressed

to circuits consisting of inductors and voltage sources.

Let b1 be the number of elements belonging to the first category (G1) and b2 the elements

of G2, b = b1 + b2. If we seperate the incidence matrix A and the vectors u(t) and i(t) in

sub-matrices and sub-vectors belonging to the groups presented above, we have:

Kirchhoff’s Current Law, KCL

Ai(t) = 0 ⇔ A1i1 + A2i2 = 0 (2.5)

Kirchhoff’s Voltage Law, KVL
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u(t) = ATv(t) ⇔

u1 = AT
1 v(t)

u2 = AT
2 v(t)

(2.6)

Considering the above, the equations for the elements of the first category G1 can be

written as:

i1(t) = Gu1(t) + C
du1(t)

dt
+ s1(t) (2.7)

, where:

• G is a diagonal matrix b1×b1 with non−zero diagonal values where there are conduc-

tances,

• C is a diagonal matrix b1×b1 with non−zero diagonal values where there are capaci-

tors,

• s1(t) is the a vector b1 × 1 with non−zero values where there are current sources.

The equations for the elements of the second category G2 can be written as:

u2(t) = L
di2
dt

+ s2(t) (2.8)

, where:

• L is a diagonal matrix b2×b2 with non−zero diagonal values where there are inductors,

• s2(t) is the a vector b2 × 1 with non−zero values where there are voltage sources.

By replacing the first equation of Eq. (2.6) to Eq. (2.7), and then to Eq. (2.5), we have

A1GAT
1 v(t) + A1CAT

1

dv(t)

dt
+ A2i2(t) = −A1s1(t) (2.9)

Furthermore, if we replace the second equation of Eq. (2.6) to Eq. (2.8), we have

A2v(t)− L
di2(t)

dt
= s2(t) (2.10)

Eq. (2.9) forms a system of (n − 1) equations and (n − 1) + b2 unknown variables,

while Eq. (2.10) forms a system of b2 equations and (n − 1) + b2 unknown variables. The

combination of the two forms presented above, gives a new [(n− 1) + b2] × [(n− 1) + b2]

system:
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A1GAT
1 A2

AT
2 0

v(t)

i2(t)

+

A1CAT
1 0

0 −L

 dv(t)
dt

di2(t)
dt

 =

−A1s1(t)

s2(t)

 (2.11)

which constitutes the MNA system.

In the case of DC analysis, we exclude the time factor and the MNA system takes the

form: A1GAT
1 A2

AT
2 0

v

i2

 =

−A1s1

s2

 (2.12)

2.2 Simulation

The term circuit simulation describes the process of predicting and verifying the behav-

ior and the performance of the circuit. Since the ever-expanding growth of the semiconductor

industry, a great need for faster and cost-effective simulators has risen. The fabrication de-

mands accurate simulations of the ICs’ behavior, before the phase of fabrication, in order for

possible problems to be spotted and fixed.

Generally, there are two different approaches to the simulation process. At one end of

the spectrum, there are analog simulators offering accurate representations of the electrical

circuit, but they are usually used only for small circuits. At the other end of the spectrum,

digital simulators make use of functional representations (described by hardware languages)

of the electrical circuit. Analog simulators offer higher accuracy for small circuits, but digi-

tal simulators offer the highest capacity and performance. For large-scale electrical circuits,

digital simulators are preferred.

2.2.1 Transient Analysis

In transient analysis, a circuit’s behavior is simulated over a period of time (which is

defined by the user) [5]. The accuracy of this process depends on the simulation time and the

number of the internal time steps. In the case of transient analysis or response-time analysis in

anMNA system (presented in Chapter 2.1) with circuit elements such as capacitors, resistors,

and inductors, the system has the below form:
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A1GAT
1 A2

AT
2 0

v(t)

i2(t)

+

A1CAT
1 0

0 −L

 dv(t)
dt

di2(t)
dt

 =

−A1s1(t)

s2(t)

 (2.13)

The above system is a first-order system of linear equations with constant coefficients:

G̃x(t) + C̃
dx(t)

dt
= e(t) (2.14)

If we define a start time for the x(t) factor t0 (x(t0) = x0), then the problem can be described as:

G̃x(t) + C̃ dx(t)
dt

= e(t)

x(t0) = x0

The problem is defined as an initial value problem (IVP) and under constraints has a

unique solution x(t) in a time interval [t0 , tf ].

The solution for an IVP problem is usually computed with arithmetic approaches in a

time interval [t0 , tf ], for discrete times t0 < t1 < t2 < ... < tm ≡ tf . The solution can be

found by computing an estimate x(tk) of x(t) for every discrete time tk (k = 1,2,..,m), starting

from the initial condition x(t0) = x0. The value hk = tk− tk−1 is called time step or sampling

step at the tk time. If the time points were selected to be spaced equally, then the time step is

constant and the computation of x(tk) for every time point tk (k = 1,2,..,m) can be performed

by one of the below two approaches, for dx(tk)
dt

in the system of Eq. (2.14).

• Backward Euler (BE) or Implicit Euler approach

dx(tk)

dt
≈ 1

h
[x(tk)− x(tk−1)]

The above MNA system of Eq. (2.14) takes the form:

(G̃+
1

h
C̃)x(tk) = e(tk) +

1

h
C̃x(tk−1), k = 1, 2, ...,m

• Trapezoidal (TR) approach

1

2

[
dx(tk)

dt
+

dx(tk−1)

dt

]
≈ 1

h
[x(tk)− x(tk−1)]

The system is now transformed to the below linear system:
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G̃[x(tk)− x(tk−1)] + C̃

[
dx(tk)

dt
+

dx(tk−1)

dt

]
︸ ︷︷ ︸

2[x(tk)−x(tk−1)]/h

= e(tk) + e(tk−1) ⇔

(
G̃+ 2

h
C̃
)
x(tk) = e(tk) + e(tk−1)−

(
G̃− 2

h
C̃
)
x(tk−1), k = 1, 2, ...,m

The TR approach is more accurate for a given step (or allows bigger steps to achieve the

same accuracy) and is usually preferred as the default method. However, in certain cases, it

presents an undesirable phenomenon, called ”ringing”, making it less accurate in non-smooth

transitions, in which cases the backward Euler is preferred.





Chapter 3

Model Order Reduction

The simulation of complex and large-scale systems is a challenge for the semiconductor

industry, especially nowadays, where the majority of the systems present those character-

istics. The functional simulation of such systems demands solving equations with dimen-

sion scale that exceeds millions or even billions of units. Different MOR techniques were

introduced, to overcome this problem by downscaling the original models. Generally, MOR

Figure 3.1: Moder οrder reduction on LTI systems.

methods are divided into two categories, the MM techniques ([6], [7], [8], [9]) and the system

theoretic techniques ([4], [10]).

MM methods (i.e., Krylov subspace approaches) handle the downscaling procedure by

creating a subspace (Krylov subspace) of much smaller dimensions and then project the orig-

inal system onto the new subspace. To obtain the Krylov subspace, this method uses moments

of the original transfer function to approximate the reduced transfer function. The MMmeth-

ods are well-established due to their contribution in efficient computational production of

11
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new reduced-order models. Except from the computational performance, these techniques

lead to stable reduced models and ensure an acceptable accuracy.

Despite the above advantages, MM techniques, in contrast to system theoretic methods,

do not offer an a-priori error and the efficiency of the algorithm can only be estimated after

the generation of the ROM. Furthermore, the quality of the reduced system depends solely

on the quality of the produced Krylov subspace. MM techniques, also fail to preserve signif-

icant properties of the system, such as the passivity and the stability of the system. System

theoretic methods, and especially the BT method [3], were proposed to overcome some of

the inadequacies of the MM techniques.

BT method offers greater accuracy by preserving important properties, such as the sys-

tem’s stability [11], while providing an a-priori error between the transfer function of the

original and the reduced model [12]. The main focus of the BT method is to discard-truncate

states that contribute less in terms of observability and controllability. In order to achieve this,

it truncates the smallest Hankel singular values (HSVs). However, the BT algorithm consists

of computationally expensive methods, such as the solution of the Lyapunov equations, while

dealing with storage issues because of the dense matrices produced from their solution.

Different approaches have been proposed to handle the memory requirements and the

computational overhead of the BT method. These approaches address the problem either by

limiting the frequency reduction window of the method [13] or by solving the Lyapunov

equations in a low-rank factorized form. The last approach has two alternatives. The first

one is the Alternating Direction Implicit (ADI) and the second alternative is the Extended

Krylov Subspace (EKS) approach. The ADI method presents fast convergence but in order

to achieve that, certain input shift parameters are needed. In addition, these input parameters

rely on unclear heuristics and their selection may affect the convergence of the entire algo-

rithm. Projection-type methods, on the other side, do not rely on specific parameters and also

they form a well-studied and straightforward implementation. The EKS approach uses two

complementary subspaces to achieve fast convergence. For this thesis, we consider the EKS

approach as the low-rank solution of the Lyapunov equations.
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3.1 Balanced Truncation

Consider an MNA system with m (inductive) branches, n nodes, p inputs, and q outputs,

which translates into an RLC circuit in the time domain:

 Gn E

−ET 0

v(t)

i(t)

+

Cn 0

0 M

v̇(t)

i̇(t)

 =

B1

0

u(t)

y(t) =
(
L1 0

)v(t)

i(t)

+Du(t)

(3.1)

, where:

• Gn ∈ Rn×n is the conductance matrix,

• Cn ∈ Rn×n is the node capacitance matrix,

• M ∈ Rm×m is the branch inductance matrix,

• E ∈ Rn×m is the node-to-branch incidence matrix,

• v ∈ Rn is the vector of node voltages,

• i ∈ Rm is the vector of inductive current sources,

• B1 ∈ Rn×p is the input-to-state connectivity matrix,

• u ∈ Rp is the vector of the input excitations from the current sources,

• y ∈ Rq is the vector of the output measurements,

• L1 ∈ Rq×n is the state-to-output connectivity matrix,

• D ∈ Rq×p is the input-to-output connectivity matrix.

Note that below we denote v̇ ≡ dv(t)
dt

and i̇ ≡ di(t)
dt
.

Without loss of generality, we make the assumption that all voltage sources were trans-

formed to Norton-equivalent current sources. In addition, we suppose that all outputs are

obtained as node voltages at the nodes.
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The model order is denoted as N ≡ m + n, the state vector as x(t) ≡

v(t)

i(t)

 , and also

G ≡ −

 Gn E

−ET 0

 , C ≡

Cn 0

0 M

 , B ≡

B1

0

 , L ≡
(
L1 0

)
Then, the above MNA system of Eq. (3.1) can be written in the following form (descriptor

form):

C
dx(t)

dt
= Gx(t) +Bu(t)

y(t) = Lx(t) +Du(t)

(3.2)

The main focus of a MOR procedure is to produce a reduced-order model:

C̃
dx̃(t)

dt
= G̃x̃(t) + B̃u(t)

ỹ(t) = L̃x̃(t) +Du(t)

(3.3)

, where:

• G̃, C̃ ∈ Rr×r,

• B̃ ∈ Rr×p,

• L̃ ∈ Rq×r.

Consider that the order r≪N and the output error is bounded ∥ỹ(t)−y(t)∥2 < ϵ∥u(t)∥−

2, for a given vector u(t) and supposing that ϵ is a small number. The above bounded error

can be written equivalently in the frequency domain as ∥ỹ(s) − y(s)∥2 < ϵ∥u(s)∥ − 2 via

the Plancherel’s theorem [14]. If the transfer functions of the original and the reduced model

in the frequency domain are:

H(s) = L(sC −G)−1B +D ˜H(s) = L(sC̃ − G̃)−1B̃ +D

Then the error in the frequency domain is:

∥ỹ(s)− y(s)∥2 = ∥H̃(s)u(s)−H(s)u(s)∥2 ≤ ∥H̃(s)−H(s)∥∞∥u(s)∥2 (3.4)

where the ∥.∥∞ is the H∞ norm of the rational transfer function, or the L2 matrix norm.

Hence, in order for the error to be bounded, it is essential to bound the distance between the

transfer functions ||H̃(s)−H(s)||∞ < ϵ.
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Related MOR methods, and particularly the BT method, use the observability and con-

trollability Gramian matrices P, Q such that:

P =

∫ ∞

0

exp(C−1Gt)C−1BBTC−T exp(C−1Gt)Tdt

Q =

∫ ∞

0

exp(C−1Gt)TLTLexp(C−1Gt)dt

(3.5)

which are equivanlently obtained by the solution of the Lyapunov equations [12]

(C−1G)P+P(C−1G)T = −(C−1B)(C−1B)T

(C−1G)TQ+Q(C−1G) = −LTL
(3.6)

taking into consideration that the C matrix is nonsingular.

Generally, the controllability Gramian matrix P presents the input-to-state behavior, ex-

pressly the degree to which the inputs can control the states, while the observability Gramian

matrixQ presents the state-to-output behavior, that is the degree that the states are observable

at the outputs. The main focus of BT is to truncate the states that are difficult to reach but

easy to observe. Nevertheless, in the original system’s model, there are states that are easy to

observe and difficult to reach and backwards. So before truncating the original model, it is

essential to transform it into a new coordinate system that every state has the same degree of

difficulty to be reached and to be observed. To achieve the above, there is such transformation

Tx(t), which directs to a new transformed model:

TCT−1d(Tx(t))

dt
= TGT−1(Tx(t)) +TBu(t)

y(t) = LT−1(Tx(t)) +Du(t)

(3.7)

, therefore preserving the transfer function H(s) and leads to [12]:

P = Q = diag(σ1, σ2, ...., σN) (3.8)

, where σi, i = 1, ..., N are the HSVs of the origial model. HSVs stand for the square

root of the eigenvalues of the product PQ (σi =
√

λi(PQ), i = 1, ..., N) for all coordi-

nate sytems of the state space. In the new transformed balanced model, the states are easier

to observe and reach, and correspond to the greatest HSVs. The distance between the origi-

nal and the reduced-order transfer function can be estimated by the truncated N − r HSVs

(corresponding to the smallest HSVs) and is bounded as:

||H(s)− H̃(s)||∞ ≤ 2(σr+1 + σr+2 + ...+ σN) (3.9)
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Eq. (3.9) defines the a-priori criterion in order to select the reduced order r given a desired

output error tolerance ϵ and constitutes one of the most significant advantages of BT com-

pared to other MOR methods. The main steps of BT are presented in Algorithm 1.

Algorithm 1MOR by Balanced Truncation
1: Compute the solution of the Lyapunov equations (3.6) in order to obtain the Gramian

matrices P andQ

2: Calculate the eigenvalue decomposition of PQ, or compute the singular value decom-

position (SVD) for the product of the Cholesky factorsP = ZPZ
T
P andQ = ZQZ

T
Q, i.e.,

ZT
PZQ = UΣV

3: Compute the transformations matrices T(r×N) = Σ
−1/2
(r×r)V(r×N)Z

T
Q and

T−1
(N×r) = ZPU(N×r)Σ

−1/2
(r×r), and the corresponding truncated reduced-order

matrices as C̃ = T(r×N)CT−1
(N×r), G̃ = T(r×N)GT−1

(N×r),

B̃ = T(r×N)B, L̃ = LT−1
(r×N)

Despite the advantages of BT, this method has significant computational and memory

cost, which hampers its applicability to large-scale models (where N exceeds a few thousand

states). The solution of the Lyapunov equation, the SVD [15], and the Cholesky [16] factor-

ization, as mentioned in the introduction of this chapter, are all computationally expensive

procedures with complexity in the range ofO(N3). In addition, the BT method involves the

storage of dense matrices P and Q, despite of the density of the original matrices C,G, B,

L.

Notwithstanding, in most cases the number of inputs and outputs is much smaller than the

number of states (p,q ≪ N), meaning that the products of BBT and LTL will have lower

than N rank (this also holds for the Gramian matrices P and Q). Considering the previous

observation, it follows that P and Q can be approximated by low-rank products (instead of

the full Cholesky factorization of the default algorithm), such asP ≈ ZPZ
T
P andQ ≈ ZQZ

T
Q

where ZP , ZQ ∈ RN×k and N ≪ k. This way, the memory requirements and the complex-

ity of the SVD procedure are significantly reduced, leaving the solution of the Lyapunov

equations as the main task that adds computational overhead.





Chapter 4

Computational Improvements in

Balanced Truncation MOR

In this chapter, we present our approach on a BT implementation using an EKS low-rank

iterative method. To this end, we discuss all steps in detail for an efficient implementation of

the proposed algorithm, that we used in our ROM generation tool.

The main part of low-rank Krylov subspace methods for computing approximate solu-

tions of large-scale Lyapunov equations like (3.6), is to iteratively project them onto a lower-

dimensional subspace, and then solve the produced small-scale equations. Each iteration in-

creases the dimension of the projection subspace, until convergence is attained.

Consider a subspace K, where K(j) is a projection whose columns span K. The small-

scale Lyapunov equation is derived by projecting the large-scale matrix onto the approxima-

tion subspaceK, i.e.,

MX+XMT = −RRT (4.1)

, whereK(j) ∈N×k (k << N ),M = K(j)TGCK
(j),R = K(j)TB,GC ≡ C−1G.

After solving (4.1), an approximate solution Y = K(j)XK(j)T is found on subspaceK.

The residualR = GCY+YGT
C +BBT is orthogonal toK, which is also referred to as the

Galerkin condition [17].

Note that the above procedure is independent of the chosen subspace, but its effective-

ness and convergence are seriously influenced by the selection. In some studies, the standard

Krylov subspace was used as the approximation subspace, but this method usually requires

many iterations until a good approximation of the solution is obtained [18]. This leads to a

much higher final rank on the solution (reduced size), as well as longer execution time. On

17
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the other hand, the EKS proves to be more efficient, and also achieves faster convergence in

comparison to that of the standard Krylov subspace method [19].

The standard Krylov subspace is defined as

Kk(GC ,BC) = span{BC ,GCBC ,G
2
CBC , . . . ,G

k−1
C BC} (4.2)

, where:

GC ≡ C−1G, BC ≡ C−1B

which can be enriched with information from the subspace Kk(G
−1
C ,BC), corresponding to

the inverse matrixG−1
C leading to:

KC
k (GC ,BC) = Kk(GC ,BC) +Kk(G

−1
C ,BC) =

span{BC ,G
−1
C BC ,GCBC ,G

−2
C BC ,G

2
CBC , . . . , (4.3)

G
−(k−1)
C BC ,G

k−1
C BC}

which is known as the EKS.

The only compromise is that the matrix GC requires inversion in the means of the EKS

method, which is not required in the standard Krylov subspace method. Nevertheless, despite

this additional step, the EKS method still competes with the computational efficiency of the

standard Krylov subspace method. In fact, during the iterative process,G−1
C is not explicitly

required.

4.1 Proposed Algorithm

The EKS method starts by the pair {BC ,G
−1
C BC} and generates a sequence of extended

subspaces KC
k (GC ,BC) of increasing dimensions, solving the projected Lyapunov equation

in each iteration, until a sufficiently accurate approximation of the solution of Eq. (3.6) is

obtained. The complete EKS method is given in Algorithm 2.

4.2 Implementation Details

In this subsection, we present the details concerning the efficient implementation of the

default BT and the proposed low-rank BT methods. The dense and sparse matrix representa-

tion and the implemented procedures, utilize types andmethods from the Eigen library (C++).
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Algorithm 2 Extended Krylov Subspace method (EKSM) for low-rank solution of Lyapunov

equations
Input:GC ≡ C−1G,BC ≡ C−1B (orGT

C , LT )

Output: Z such that P ≈ ZZT

1: j = 1; p = size_col(BC)

2: K(j) = Orth([BC ,G
−1
C BC ])

3: while j < maxiter do

4: M = K(j)TGCK
(j); R = K(j)TBC

5: SolveMX+XMT = −RRT forX ∈2pj×2pj

6: if converged then

7: S = Chol(X)

8: Z = K(j)S

9: break

10: end if

11: k1 = 2p(j − 1); k2 = k1 + p; k3 = 2pj

12: K1 = [GCK
(j)(:, k1 + 1 : k2),G

−1
C K(j)(:, k2 + 1 : k3)]

13: K2 = Orth(K1) w.r.t K(j)

14: K3 = Orth(K2)

15: K(j+1) = [K(j),K3]

16: j = j + 1

17: end while

Furthermore, a collection of state-of-the-art solvers were employed, so as to achieve faster

convergence and overall results.

4.2.1 Matrix products with inverse of sparse matrix

Algorithm 2 involves the inverse G−1
C of the sparse system matrix GC . Regrettably, it

should be noted that inverting a sparse matrix will produce a dense matrix, and is also a very

expensive computational operation that should be avoided if it is not explicitly needed. In

our case, however, the inverse matrix GC is only used in products with the N × p matrix

B (initially) and then with the N × pj matrix K(j) in step 12 for each iteration j (where

p,pj ≪ n, and the iteration count is typically very small). Therefore, the inputs to Algorithm
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2 are not actually GC ≡ C−1G, BC ≡ C−1B, but the sparse system matrices G, C, B

(or GT , CT , LT ), since these products can be implemented by solving the linear systems

CY = R andGY = R (or CTY = R,GTY = R), using any sparse solver.

4.2.2 Orthogonalization

For steps 2 and 14 of Algorithm 2, householder QR transformations [20] are employed,

using the correspoding methods of the Eigen library. The orthogonalization in step 13, how-

ever, needs to be performed with respect toK(j). For this purpose, a Gram-Schmidt procedure

[20] is used, which is described in Algorithm 3.

Algorithm 3 Orthogonalization w.r.t. another matrix
Input:K1,K(j), #ports p

Output:K2

1: for k1 = 1, ..., j do

2: k2 = 2p(k1 − 1); k3 = 2pk1

3: K2 = K1−K(j)(:, k2 + 1 : k3)K
(j)T (:, k2 + 1 : k3)K1

4: end for

4.2.3 Lyapunov solver

The solution of the continuous-time Lyapunov equations (3.6), for the purpose of this the-

sis, was based on the Bartels-Stewart method [21] and is presented in Algorithm 4. Consider

solving an equation in the form of AX + XAT + Q = 0. In the case of default BT, the A

factor stands for the product C−1G, the X factor stands for P, and finally, the Q stands for

the product (C−1B)(C−1B)T , concerning the solution of matrix P. For the solution of ma-

trix Q, theA factor stands for the product (C−1G)T , theX factor stands for Q, and finally,

the B stands for the product LTL. The Lyapunov solver, in any case, returns dense matrices

and so the produced matrices P and Q are also dense, despite the density status of the input

matrices C,G,B, and L.

4.2.4 Convergence criterion

The solution X ∈k×k of Eq. (4.1) can be back-projected to the N-dimensional space to

give an approximate solution P = K(j)XK(j)T for the original large-scale equation (3.6).
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Algorithm 4 Lyapunov solver
Input:A,Q

Output:X

1: Apply Schur decomposition (presented in [22]) on A, to obtain the Schur T triangular

matrix TA and the Schur U matrix ZA

2: Transform the right-hand side by computing F = ZAT ·Q · ZA

3: Initialize an identity matrix idx with dimensions equal to the dimensions of the original

matrixA and a vector containing the diagonal elements of matrix TA (referred as p)

4: Apply backward substitution to obtain the transformed solutionY

5: for k = n : −1 : 1 do

6: rhs = F(:, k) +Y ·TAT (:, k)

7: TA(idx) = p+TAT (k, k)

8: Y(:, k) = TA\(−rhs)

9: end for

10: Transform solution back by estimatingX = ZA ·Y · ZAT

An appropriate stopping criterion is the residual of Eq. (3.6) with the approximate solution

to reach a certain threshold in magnitude, i.e.,

||GCP+PGC +BCB
T
C ||

||BCBT
C ||

≤ tol (4.4)

However, it has been proved [19] that the above criterion is actually equal to ||RTMX||,

which can be computed much more efficiently, and thus the stopping criterion is transformed

to:

||RTMX|| ≤ tol (4.5)

A tolerance of tol = 10−10 is typically sufficient in practice to acquire a good approximation

of the solution.

4.2.5 Cholesky Factorization

Generally, the Cholesky factorization demands as inputs Symmetric Positive Definite

(SPD)matrices, in order to produce an upper triangular matrixU, such that the productUT ·U

equals to the original matrix. In both Algorithms 1 and 2, the Cholesky factorization is per-

formed on the final solutions of the Lyapunov equations. A necessary and sufficient condition
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for the Lyapunov solver to produce unique and SPD matrices, when solving an equation in

the form of AX + XAT + Q = 0, is that the matrix A’s eigenvalues have positive real

parts and the matrix Q is SPD as presented in [23]. However, in the case of Q = BBT (or

Q = BCB
T
C), where B is N × p and p ≪ N , the matrix is low-rank and does not satisfy the

necessary conditions to be SPD. Thus, the Cholesky factorization is replaced by the LDLT

decomposition [24] and the Cholesky factors are replaced by the appropriate computations

with the produced LDLT factors (ZP = LP ·D
1
2
P and ZQ = LQ ·D

1
2
Q, where LP , LQ are the

permuted lower triangular matrices L for matrix P and Q respectively, and DP , DQ are the

diagonal matrices, such that P = LP ·DP · LT
P and Q = LQ ·DQ · LT

Q).

4.2.6 Lower-rank solution

The matrixX in the solutionP = K(j)XK(j)T has a final rank of 2pj, where j is the final

iteration count and is often numerically positive semi-definite [25]. If that is the case, it is

possible to replace step 7 of Algorithm 2 to reduce the rank of the final solution even further.

More precisely, let X = WDWT be the eigendecomposition of the 2m × 2m matrix X,

withD having all the diagonal entries sorted in decreasing order. A new size k is determined

(k ≪ 2pj) by truncating all the values in D, that are less than a specified threshold (in this

case 10−12). Furthermore, by only keeping the corresponding k columns ofW and discarding

the rest, the new more reduced approximation can be calculated as Z = K(j)WD
1
2 .

4.2.7 Solvers

As mentioned before, there exists a workaround, in calculating the inverse matricesC−1

and G−1
C , since they are only used in products with relatively small matrices, that ends up

solving linear equations. These involve the original system matrices, which usually consist

of a very large number of nodes, but very small density. Considering that, it is essential to

find an efficient way to store them and use them for computations.

Since the whole process is iterative, the solvers used have to be rather fast and accurate in

order to speed up convergence. The Eigen C++ library [26] offers a variety of such solvers,

both iterative and direct, which can be tested to find the best option for this purpose.

At first, the attention goes to iterative solvers, since they are well-known for their low

memory requirements and they are generally considered to be faster with small compromises
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in accuracy. The Eigen C++ library offers both Bi-Conjugate Gradient (BiCG) and Conju-

gate Gradient (CG) implementations with an option for preconditioners, such as the Jacobi

preconditioner or the IncompleteLUT, for non-SPD and SPD matrices respectively. How-

ever, after some iterations were performed, the condition of the matrices was deteriorating,

resulting in bad convergence or no convergence at all and solver failure.

Considering the dissapointing results of the iterative methods and the need for high ac-

curacy, direct methods had to be employed. There was a need to support both SPD and non-

SPD matrices, therefore various LLT and LU implementations were tested, respectively. The

fastest and more accurate solvers, for our purpose, were found to be the PardisoLU and Par-

disoLLT solvers from the Intel MKL library, which are also supported by the Eigen library

itself.





Chapter 5

Experimental Evaluation

5.1 Experimental Setup

To evaluate our method, we implemented a ROM tool that is able to load the desired

models, produce the reduced systems by using either Algorithm 1 or Algorithm 2, and, fi-

nally, perform transient analysis on both the original and reduced systems to compare their

results. For the evaluation process, we used benchmarks that were extracted from real elec-

trical models with lots of mutual inductances, using an industrial tool, as well as the transient

IBM power grid benchmarks[27]. Their characteristics are shown in Table 5.1, where we

can see all the electrical elements of each circuit as well as the total size of the MNA matri-

ces. Also, the names RLCk_1 to RLCk_3 represent the circuits from the industrial tool and

ibmpg1t to ibmpg4t represent the transient IBM power grids.

Table 5.1: Circuit benchmarks and their characteristics

Benchmark Total size #nodes #resistors #capacitors #inductors #mutual ind. #ports

RLCk_1 5431 3084 2998 1282 2347 136271 2

RLCk_2 21800 12166 34635 31131 9634 23639237 6

RLCk_3 39346 22059 51128 41871 17289 91627306 11

ibmpg1t 54265 25082 40801 10774 277 0 20

ibmpg2t 164897 37168 245163 36838 330 0 20

ibmpg4t 1214288 266906 1826589 265944 962 0 20

Our ROM tool uses a configuration file as input, where all the parameters for the process

are specified by the user. These parameters include the input matrices, the desired order, the

25
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tolerance for the convergence of the iterative process of Algorithm 2, as well as, the step and

the endtime for the transient analysis. A detailed example of the configuration file is shown

in Figure 5.1. While testing the circuits, we had to tailor these parameters for each one, in

order to receive optimal results. In fact, for the transient analysis, we needed to have enough

resolution to be able to compare the behaviour of the systems. In Table 5.2, we point out all

the input parameters used for each of the circuits. For the implementation of the low-rank BT

MOR procedure, discussed in Chapter 4, we decided to support both the usage of the standard

Krylov subspace approach and the EKS approach, and compare their results.

Our goal was to achieve at least 99% reduction, while maintaining the deviation in sim-

ulation between the original and the reduced system at only 1%. The metrics to define the

deviation of the transient responses of both systems were the percentages of Mean Relative

Error (MRE) and Maximum Relative Error (MAX_RE). All experiments took place on a

Linux workstation, equipped with an 8-core Intel Xeon Silver 4309Y processor at 2.8GHz

and 64GB of memory.

Figure 5.1: Input configuration file example.
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Table 5.2: Input parameters for the evaluation of each circuit

Benchmark Desired order Tolerance
Transient analysis

Step Endtime

RLCk_1 54 1e-14 1e-19 2e-17

RLCk_2 210 1e-14 1e-19 2e-17

RLCk_3 363 1e-14 1e-19 2e-17

ibmpg1t 320 1e-14 1e-11 1e-8

ibmpg2t 500 1e-14 1e-11 1e-8

ibmpg4t 620 1e-14 1e-11 1e-8

5.2 Accuracy Results

The accuracy results are reported in Table 5.3, where ”ROM order” is the final size of

the reduced systems after the lower rank solution was applied, MRE and MAX_RE are the

deviation after running transient analysis, as mentioned above, and ”Reduction (%)” is the

difference in size of the original to the reduced model.

Table 5.3: Reduction accuracy results between using standard and extendedKrylov subspaces

Circuit
Standard Krylov subspace low-rank BT EKS low-rank BT

ROM order MRE (%) MAX_RE (%) Reduction (%) ROM order MRE (%) MAX_RE (%) Reduction (%)

RLCk_1 23 0.141 0.242 99.58 52 0.281 0.6 98.95

RLCk_2 110 0.107 0.288 99.49 102 0.116 0.431 99.53

RLCk_3 170 0.106 0.344 99.57 175 0.178 0.536 99.56

ibmpg1t 157 0.0022 0.07 99.71 177 0.0014 0.218 99.67

ibmpg2t 255 0.031 0.05 99.85 184 2.71e-5 0.0003 99.89

ibmpg4t 321 0.00079 0.036 99.97 121 0.01 0.07 99.99

By observing the accuracy results of Table 5.3, we can see that our proposedmethodology

offers a significant reduction, higher that 99% most of the times, with very acceptable errors

in transient analysis. We also notice a difference in the behaviour of the method between the

RLCk models and the IBM power grids, where the latter produced exceptional results with

the use of the EKS method, in comparison to the standard Krylov subspace and vice versa.

Specifically, our tool managed to achieve even a 99.99% reduction with only 0.01%MRE on

the ibmpg4t benchmark using the EKS. On the other hand, the usage of the standard Krylov

subspace provides, at worst, MRE lower than 0.141%with a reduction of over 99.49% across

all benchamrks.

In general, we come to the conclusion that the reduced size does not depend that much
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on the initial size of the system. Nevertheless, it is more relevant to the number of ports and

the condition of the matrices G and C, which affect the number of iterations that it takes for

the Algorithm 2 to cοnverge and produce the smallest possible error.

Figure 5.2: Comparison in transient analysis of RLCk_2 between original and reducedmodels

at port 6 using the standard Krylov subspace.

5.3 Runtime and Memory Results

To examine the performance of our method, we calculated the execution time and peak

memory of our tool, as presented in Table 5.4. Note that for all the results, in our tool, we used

the PardisoLU as a sparse solver, which may be fast and accurate, but also consumes a lot of

memory to achieve that. Again, we immediately notice the impact of the mutual inductances

in the results, where the peak memory usage of the RLCk_2 circuit over-exceeds the one of

the ibmpg2t benchmark, even though it has a much smaller amount of nodes. Moreover, the

execution time is greatly affected by that dense matrix and can be a great challenge to achieve

adequate performance for such circuits.

When we compared the use of the standard Krylov subspace to the EKS, in terms of

performance, the EKS produced better results overall. We should mention, however, that
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Figure 5.3: Comparison in transient analysis of RLCk_3 between original and reducedmodels

at port 7 that demonstrates the produced 0.344% MAX_RE.

Figure 5.4: Transient response of ibmpg2t’s port 19 between original and reduced models

using EKS for 5e-14 s.
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it takes only half iterations for the EKS to reach the same size compared to the standard

Krylov. Also, the EKS method converges faster in most situations. This proves that the EKS

method has leading performance, despite the fact that we have to deal with the inverse system

matrices.

Table 5.4: Reduction performance results using our optimized implementation of the methods

Circuit
Standard Krylov subspace low-rank BT EKS low-rank BT

Reduction time Peak memory
Transient analysis time

Reduction time Peak memory
Transient analysis time

usage Original ROM usage Original ROM

RLCk_1 2.73 s 1.04 GB 11.89 s 2.23e-5 s 3.74 s 0.83 GB 11.89 s 5.42e-5 s

RLCk_2 108.61 s 12.22 GB 89.9 s 0.0001 s 74.29 s 12.26 GB 89.9 s 0.0001 s

RLCk_3 768.96 s 39.12 GB 406.4 s 0.0009 s 457.66 s 28.87 GB 406.4 s 0.0003 s

ibmpg1t 14.48 s 1.07 GB 3.73 s 0.0003 s 13.1 s 1.16 GB 3.73 s 0.00034 s

ibmpg2t 94.92 s 4.61 GB 18.33 s 0.00042 s 44.04 s 3.52 GB 18.33 s 0.00031 s

ibmpg4t 1098.26 s 41.21 GB 185.18 s 0.0006 s 165.8 s 16.95 GB 185.18 s 0.00014 s
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Conclusions

The implemented ROM generation tool handles real-world large-scale electromagnetic

models, consisting of several thousands elements. The above mentioned tool, provides both

the default BT and the improved low-rank implementation of the BT algorithm. Bothmethods

were tested based on their performance and the accuracy that they offer. The implementation

of BT and low-rank BT was based on Eigen library (C++) and was optimised by the exploita-

tion of state-of-the-art solvers.

The overall experimental evaluation of the tool shows a clear improvement in model

accuracy and performance, as well as it retains the benefits of specified error bounds. Efficient

computational approaches have been provided, so as to improve in a greater degree the overall

performance in runtime and memory. In general, the improved BT, using the standard Krylov

subspace version, achieves model reduction at a scale of 99% with MRE of 0.141% and

MAX_RE of 0.242% for an electromagnetic model of 5431 nodes and final reduced order of

23 nodes. For the same benchmark and the same method, we reach approximately 1GB peak

memory usage, and reduction time of 2.73 seconds. The EKS approach of the improved BT,

achieves anMRE of 0.282% and aMAX_RE of 0.6% for the same original benchmark (5432

nodes) with a reduced order of 52 nodes. The reduction time was risen to 3.74 seconds and

the peak memory usage is estimated to 0.8GB.

Concluding the above, our ROM generation tool preserves the a-priori error offered by

the BT method, while dealing with expensive computational tasks and storage limitations. At

the same time, the performance, in runtime and memory, and the accuracy of the method is

significantly improved, compared to that of the default BT algorithm.

31





Bibliography

[1] Wil M.P. van der Aalst. Data scientist: The engineer of the future, 2014.

[2] Allan Odabasioglu, Mustafa Celik, and Lawrence T. Pileggi. Prima: Passive reduced-

order interconnect macromodeling algorithm. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 17, 1998.

[3] Joel R. Phillips, Luca Daniel, and L. Miguel Silveira. Guaranteed passive balancing

transformations for model order reduction. volume 22, 2003.

[4] Boyuan Yan, Sheldon X.D. Tan, and Bruce McGaughy. Second-order balanced trun-

cation for passive-order reduction of rlck circuits. IEEE Transactions on Circuits and

Systems II: Express Briefs, 55, 2008.

[5] Dennis Fitzpatrick. Chapter 7 - transient analysis. In Dennis Fitzpatrick, editor, Analog

Design and SimulationUsingOrCADCapture and PSpice (Second Edition), pages 117–

129. Newnes, second edition edition, 2018.

[6] Danish Rafiq and Mohammad Abid Bazaz. Model order reduction via moment-

matching: A state of the art review, 2021.

[7] Lihong Feng, Peter Benner, and Jan G. Korvink. System-level modeling of mems by

means of model order reduction (mathematical approximations) - mathematical back-

ground, 2013.

[8] Matthew B. Stephanson. High-order moment-matching mor with impedance bound-

aries for signal integrity analysis. Applied Computational Electromagnetics Society

Journal, 33, 2018.

[9] Chrysostomos Chatzigeorgiou, Dimitrios Garyfallou, George Floros, Nestor Evmor-

fopoulos, and George Stamoulis. Exploiting extended krylov subspace for the reduc-

33



34 Bibliography

tion of regular and singular circuit models. In 2021 26th Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 773–778, 2021.

[10] Ulrike Baur, Peter Benner, and Lihong Feng. Model order reduction for linear and

nonlinear systems: A system-theoretic perspective. Archives of Computational Methods

in Engineering, 21, 2014.

[11] Lars Pernebo and Leonard M. Silverman. Model reduction via balanced state space

representations. IEEE Transactions on Automatic Control, 27, 1982.

[12] A. C. Antoulas, D. C. Sorensen, and Y. Zhou. On the decay rate of hankel singular

values and related issues. Systems and Control Letters, 46, 2002.

[13] Olympia Axelou, Dimitrios Garyfallou, and George Floros. Frequency-limited reduc-

tion of rlck circuits via second-order balanced truncation. In SMACD / PRIME 2021;

International Conference on SMACD and 16th Conference on PRIME, pages 1–4, 2021.

[14] K. Gröchenig. Foundations of time-frequency analysis, 2003.

[15] Numerical Methods in Electromagnetism. 2000.

[16] B. Carpentieri, I. S. Duff, L. Giraud, and M. Magolu Monga Made. Sparse symmet-

ric preconditioners for dense linear systems in electromagnetism. Numerical Linear

Algebra with Applications, 11, 2004.

[17] K. Jbilou and A. J. Riquet. Projection methods for large lyapunov matrix equations.

Linear Algebra and Its Applications, 415:344–358, 6 2006.

[18] K. Jbilou. Adi preconditioned krylov methods for large lyapunov matrix equations.

Linear Algebra and Its Applications, 432:2473–2485, 5 2010.

[19] V. Simoncini. A new iterativemethod for solving large-scale lyapunovmatrix equations.

SIAM Journal on Scientific Computing, 29:1268–1288, 2007.

[20] Gene H. (Gene Howard) Golub and Charles F. Van Loan. Matrix computations. Johns

Hopkins University Press, 1983.

[21] Ignacio Blanquer, Héctor Claramunt, Vicente Hernández, and Antonio M. Vidal. Solv-

ing the generalized lyapunov equation by the bartels-stewart method using standard



Bibliography 35

software libraries for linear algebra computations �. IFAC Proceedings Volumes,

31:387–392, 7 1998.

[22] Jeremy Levesley. Functions of matrices: Theory and computation. Bulletin of the Lon-

don Mathematical Society, 41, 2009.

[23] Eugene L. Wachspress. Trail to a lyapunov equation solver. Computers and Mathemat-

ics with Applications, 55, 2008.

[24] Wei guoWang andYiminWei. Mixed and componentwise condition numbers formatrix

decompositions. Theoretical Computer Science, 681, 2017.

[25] L. Grasedyck. Existence of a low rank or �-matrix approximant to the solution of a

sylvester equation. Numerical Linear Algebra with Applications, 11:371–389, 5 2004.

[26] Eigen. http://eigen.tuxfamily.org.

[27] Chong-Min. Kyung, ACM Digital Library., and ACM Special Interest Group on De-

sign Automation. Proceedings of the 2008 Asia and South Pacific Design Automation

Conference. IEEE Computer Society Press, 2008.

http://eigen.tuxfamily.org

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Motivation
	Contribution
	Outline

	Modeling and Simulation
	Model Equations for Electrical Circuits
	Modified Nodal Analysis

	Simulation
	Transient Analysis


	Model Order Reduction
	Balanced Truncation

	Computational Improvements in Balanced Truncation MOR
	Proposed Algorithm
	Implementation Details
	Matrix products with inverse of sparse matrix
	Orthogonalization
	Lyapunov solver
	Convergence criterion
	Cholesky Factorization
	Lower-rank solution
	Solvers


	Experimental Evaluation
	Experimental Setup
	Accuracy Results
	Runtime and Memory Results

	Conclusions
	Bibliography

