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Diploma Thesis

Model Order Reduction of Electromagnetic Models for Large

Integrated Circuits

Giamouzis Christos

Panagiotou Dimitra

Abstract

The increasing demand for accurate and inexpensive simulation of modern IC subsystems
constitutes a great challenge for the EDA industry. The simulation of such systems requires
solving large systems of equations with several millions or, in some cases, billions of units.
Model Order Reduction (MOR) techniques form a solution to the aforementioned problem
since they reduce the computational complexity of large mathematical models by replacing
the original models with reduced models. The new produced reduced models approximate
the behavior of the original models at the input/output ports but with significantly smaller
internal dimensions.

MOR methods are divided in two large categories, the Moment Matching (MM) tech-
niques and the system theoretic techniques. MM techniques are known for their computa-
tional efficiency, however they do not provide an a-priori error concerning the accuracy of
the produced reduced model. System theoretic techniques, like the Balanced Truncation (BT)
method, on the other hand, offer a reliable bound for the approximation error of the method
before the computation of the reduced model. Nevertheless, the BT algorithm involves ex-
pensive computations for the solution of the Lyapunov equation and considerable storage
demands for dense matrices of large models produced by solving the Lyapunov equations.

In this thesis, we present a new BT approach that deals with the above computational and
storaging limitations. The proposed approach implements an efficient low-rank solver for the
Lyapunov equation that uses the Extended Krylov Subspace (EKS) method, which handles
large electromagnetic models with greater accuracy compared to the default BT algorithm.
Keywords:

Model Order Reduction, Balanced Truncation, Krylov Subspace



Lepiinym xiil

Authopoatikny Epyacio
Meioon TaEng MeyéBovg Hriektpopoyvntik®ov Movtédmy yio Meyaia
Oroxkinpopéve Kokhopato

TINopoving Xprotog
Havaytotov AMpuntpa

Iepiinyn

H avéavopevn (amon yio vtoAoy1oTiKA gONVES TPOGOUOIDGELS LE aKPPT) OTOTELEGLOTO OE
oLYYPOVO OLOKANPOUEVE KUKADUOTO amoTelel LEYAAN TpoOKANGT Yo T Propnyavio nio-
yoyov. H npocopoinon tétoiwv kokAopdtov amottel v entivon peydimv cuotnudtomv
e€looE®V PE TOAAG EKOTOUUDOPLA 1), GE OPIOUEVEG TTEPUTTAOGELS, SIGEKATOUUDPLO LOVADEC.
Ot teyvicéc vroPipacpod taEng povtédov (Model Order Reduction - MOR) amotedotv ua
Ao 6T0 TPOAVAPEPHEY TPOPAN LA, 0LPOV LELOVOVY TNV VTOAOYIGTIKT TOADTAOKOTNTA LEYA-
AV LaONUOTIKOV LOVTEAWDV, EVO TOPAAANAL TO VEQ LOVTELD S1OTPOVV TOPOLLOL0. GUUTEPL-
QOpPa LEe T apyIKA LoVTEAD oTIC BOpEG £16000V/EGSOV.

Ot teyvikéc MOR Swakpivovron o 600 peydreg katnyopies, Tig texvikég Moment Match-
ing (MM) kot 11 BewpnTikég TEXVIKES cuoTnHaToC. Ot TEYViKEG MM glvan YvOOTEC Yo TV
VTOAOYLGTIKY] TOVG OTOO0GT], WGTOGO OEV TOPEXOLY TNV SLVATOTITO VITOAOYIGUOV GOAALLO-
TOG, AVAPOPIKA LLE TNV OKPIPELD TOV TOPUYOUEVOD UEIOUEVOL LOVTEAOL, TPV OO TOV LITO-
Aoyiopd tov. Ot BepnTiKéG TEXVIKES CLGTNUATOV, OO TNV GAAN TAEVPA, OT®G 1 LEBODOG
eElooppdmnong ko arokonng (Balanced Truncation - BT) ntpocpépovv a&idmieto £0pog ota-
KOLOVONG TOV GOAAULATOC TNG HeBOOOV TPV Ad TOV VITOAOYICUO TOL HELWUEVOD LOVTEAOD.
[Mapora avtd, n péBodog BT anartel akptBodc vroroyiopodc yio t Adon tev Lyapunov et
ODGEMV EVA £XEL CNUAVTIKES ATOLTNGELG VUG 0poD 0monkeDel TUKVOLG TivaKeg LEYOA®MV
NAEKTPOUOYVITIKOV LOVTEA®V TOL TPOKVTTOVY At TNV ETIALGT OVTOV TV EEIGOCEWMV.

e auTn TN OIMA®UOTIKY epyacia, Tapovctalovpe pia Tpocséyyion BT mov dwayepiletan
TIG TOPOTAVE VITOAOYIGTIKES Kot amodnkevtiké avendpkelec. H mpotevopevn npocéyyion
vAomotel évav AmOTEAEGUATIKO Unyavicpod yuo v emilvon tov Lyapunov e£lcdoewv mov
ypnotpomotel tov vdympo Krylov (Extended Krylov Subspace - EKS) pe okond va yeiprotet

peydio nAekTpopayvn Tk poviéda toyvtepa Kot pe peyaldtepn akpifeta oe ocvykpion pe



Xiv Hepiinyn

TOV apyIKo aiyopiOuo BT.

AéCearc-kAre0nd:
YroBiBacpog TaEnc Movtédov, MéBodog EEicoppdnnong kot Amokonng
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Chapter 1

Introduction

1.1 Motivation

The ever-expanding need for accurate simulation of large, and sometimes complex, in-
tegrated circuits (ICs) forms a great challenge for the semiconductor industry. Moore’s law,
especially, emphasizes this problem, while it states that the number of transistors on a sin-
gle microchip doubles every two years. In Figure [.1], Moore’s law presented by [[I] shows

2.,500,000,000
I

o Curve shows transistor
D0,000,00C count doubling avery
o years

a7 1280 18990 2000 2012

Figure 1.1: Moore’s law.

a graphical representation of the increasing number of transistors in a single microchip over
time.
The dramatic outburst in circuit complexity was seen by the steadily shrinking of the

transistors’ size over the course of time. In the late 40s, the dimensions of transistors were
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expressed at the scale of millimeter while in the early 2010s were commonly measured in
nanometers, a reduction at a scale of 100,000 units.

The simulation process is one of the most important tools for designing and understand-
ing large-scale ICs. In order for such ICs to be simulated, long-lasting and computationally
expensive simulations are needed. The semiconductor industry focus its efforts on simulating
large electromagnetic models in a short term of time with the maximum possible accuracy.
Research has shown that there is a lot of superfluous information in the model before the
simulation process that could be excluded without compromising the accuracy of the process.
Hence, it seems that one of the most efficient moves is to reduce the size of large electro-
magnetic models and eliminate the unnecessary details, while preserving the accuracy and
realism in the simulation process results.

Model Order Reduction (MOR) aims to reduce the computational complexity in various
mathematical models addressing numerical simulations. It is related with the idea of meta-
modeling in order to produce fast and real-time simulations for large-scale systems. MOR
methods are usually applied in the area of control systems, however, several definitions of
MOR can be distinguished by the context of the method. Figure shows the modeling

complexity of the physical systems based on several analysis areas.

Model Order Reduction

Optimization
technigues and

Frequency Time-Frequency
Domain Domain

Time
Domain
Chebychev Moment Matching] Neural Networks

Fuzzy Logic

Artificial Intelligence

Figure 1.2: Flow chart of model order reduction.

MOR is divided in two large categories, the Moment Matching (MM) techniques first
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presented in [2] and techniques like Balanced Truncation (BT) presented in [3[]. The first cat-
egory is well-established by dint of the computational efficiency of the reduced order models
(ROMs) that it produces. Notwithstanding, MM-produced ROMs are not based on an a-priori
error (which easily can be specified by the engineer) but are mainly based on the number of
matching moments. As aresult, the error of the overall process is only available after the ROM
generation. On the other hand, BT-like methods offer competent results. Unfortunately, these
methods deal with expensive computations and storaging due to the solution of the Lyapunov
matrix equations.

Overall, MOR methods have proven their effectiveness in transforming large and com-
plex mathematical models into smaller and simpler ones. BT especially is a method with great
contribution in the research of the MOR area with noteworthy benefits. The most important
of them, presented in [4], is that they provide a global bound error, so as to determine the re-
duced order before the computation of the reduced model, while they handle expensive tasks

(e.g., solution of the Lyapunov equations) with low-rank approaches.

1.2 Contribution

To mitigate the computationally expensive task, we propose a low-rank solution of the
Lyapunov equation. The approach is based on Krylov subspaces approaches, where itera-
tively large dimensional subspaces are projected into lower ones in order to obtain the above
mentioned low-rank solution of the Lyapunov equations. In this thesis, we present a ROM
generation tool that uses BT techniques. Particularly, we present the default implementation
of BT and the implementation of BT that exploits Krylov subspace methods, with main focus
to reduce the scale of very large electromagnetic models and achieve low execution times and

great accuracy. ® The contributions of this thesis are summarized below:

* We create a ROM tool that handles large-scale electromagnetic models, comprising of
several million units. The reduced-order matrices produced by our ROM tool display

great accuracy and very small dimension, according to user specifications.

* State-of-the-art C++ solvers for sparse and dense matrices were used to obtain excep-

tionally fast execution times.

I'This research was conducted under the auspices of the Electronics Research Lab of University of Thessaly.


https://erl.e-ce.uth.gr/
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» Experiments have proved that our tool achieves remarkably fast reduction of large
electromagnetic models consisting of millions of units, while providing great accuracy

compared to the original models.

1.3 Outline

The rest of the thesis is organised as follows. In Chapter 2, we present in detail the model-
ing of electrical circuits and their simulation process. In Chapter 3, we provide the theoretical
background of MOR, focusing on the BT method. In Chapter 4, we introduce computational
improvements of the BT method along with detailed notes concerning the implementation of
both the default and the proposed version of BT. Chapter 5 presents the experimental evalu-

ation of the proposed low-rank BT approach. Finally, in Chapter 6, we conclude this thesis.






Chapter 2

Modeling and Simulation

2.1 Model Equations for Electrical Circuits

All lumped electrical circuits consist of electrical elements such as resistors, inductors,
capacitors, current sources, and voltage sources. The modeling base of the dynamical behav-
ior for such electrical topologies, derives from Kirchoff’s laws along with the constitutive
relations of the electrical system’s elements. In this thesis, we consider the Modified Nodal

Analysis (MNA) modeling setup.

2.1.1 Modified Nodal Analysis

The MNA is one of the most common ways to model an electrical circuit. This modeling
technique considers a graph whose branches represent the circuit elements and the nodes rep-
resent the interconnections of these elements. An incidence matrix A, describes this structure,
a graph with n nodes and b branches, with entries:

.
—1 if branch j leaves node ¢

aij = § 1 if branch j enters node ¢ (2.1)

0 if branch j is not incident with node ¢
\

Note: The dimensions of matrix Ag is n X b.
In case the network graph is connected, the rows of matrix A, are linearly dependent
and we can randomly choose one node and handle it as reference. By eliminating the corre-

sponding row for this node in matrix Ay, a new reduced incidence matrix A is produced (the

5



6 Chapter 2. Modeling and Simulation

dimensions of the new matrix are ((n — 1) x b). The new reduced matrix A now has full row
rank.

Given that u(t) = [uy(t) ua(t) ... up(t)]” is the vector of branch voltages, v(t) = [v1(t) va(t)
... up(t)] is the vector of all node potentials (except from the reference node) and i(¢) = [i1(t)
ia(t) ... ip(t)]” is the current vector of b branches, then the topology’s equations are described

by Kirchoff’s law as follows:

Kirchhoff’s Voltage Law, KVL

u(t) = Alv(t) (2.2)

Kirchhoff’s Current Law, KCL

Ai(t) =0 (2.3)

Suppose that the circuit elements are divided in two categories.

* Elements whose equations can be written as:

duk(t)
dt

ir(t) = grux(t) + cx + sk (1) (2.4)

, for circuits consisting of resistors, capacitors, and current sources.

* Elements whose equations cannot be written using the above form. They are addressed

to circuits consisting of inductors and voltage sources.

Let b; be the number of elements belonging to the first category (G) and b, the elements
of Gy, b = by + by. If we seperate the incidence matrix A and the vectors u(t) and i(t) in

sub-matrices and sub-vectors belonging to the groups presented above, we have:

Kirchhoff’s Current Law, KCL

Kirchhoff’s Voltage Law, KVL
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up = ATw(t)
u(t) = ATv(t) & (2.6)
uy = ALw(t)
Considering the above, the equations for the elements of the first category G1 can be

written as:

du1 (t)

, where:

* G is a diagonal matrix b; xb; with non—zero diagonal values where there are conduc-

tances,

» (' is a diagonal matrix b; xb; with non—zero diagonal values where there are capaci-

tors,
* s1(t) is the a vector b; X 1 with non—zero values where there are current sources.

The equations for the elements of the second category G2 can be written as:

»
us(t) = Lﬁ + sy(t) (2.8)

, where:
* L isadiagonal matrix by X by with non—zero diagonal values where there are inductors,

* so(t) is the a vector by x 1 with non—zero values where there are voltage sources.

By replacing the first equation of Eq. (2.6) to Eq. (2.7), and then to Eq. (2.3), we have

dv(t)
dt

A GATv(t) + A, CAT + Agig(t) = —Ays1() (2.9)

Furthermore, if we replace the second equation of Eq. (2.6) to Eq. (2.§), we have

dis (1)

AQU(t) —L dt

= 55(t) (2.10)

Eq. (£.9) forms a system of (n — 1) equations and (n — 1) + b, unknown variables,
while Eq. (2.10) forms a system of b, equations and (n — 1) + by unknown variables. The
combination of the two forms presented above, gives a new [(n — 1) + by] X [(n — 1) + by]

system:
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dv
AGAT A fu(t)| | JACAT 0| |G| A (2.11)

AT 0| |iat) 0 —L| |%W N0

which constitutes the MNA system.
In the case of DC analysis, we exclude the time factor and the MNA system takes the
form:
AlGA{ Ag (% —Al S1

= (2.12)
Ag 0 ’iQ So

2.2 Simulation

The term circuit simulation describes the process of predicting and verifying the behav-
ior and the performance of the circuit. Since the ever-expanding growth of the semiconductor
industry, a great need for faster and cost-effective simulators has risen. The fabrication de-
mands accurate simulations of the ICs’ behavior, before the phase of fabrication, in order for
possible problems to be spotted and fixed.

Generally, there are two different approaches to the simulation process. At one end of
the spectrum, there are analog simulators offering accurate representations of the electrical
circuit, but they are usually used only for small circuits. At the other end of the spectrum,
digital simulators make use of functional representations (described by hardware languages)
of the electrical circuit. Analog simulators offer higher accuracy for small circuits, but digi-
tal simulators offer the highest capacity and performance. For large-scale electrical circuits,

digital simulators are preferred.

2.2.1 Transient Analysis

In transient analysis, a circuit’s behavior is simulated over a period of time (which is
defined by the user) [5]. The accuracy of this process depends on the simulation time and the
number of the internal time steps. In the case of transient analysis or response-time analysis in
an MNA system (presented in Chapter 2.1)) with circuit elements such as capacitors, resistors,

and inductors, the system has the below form:



2.2.1 Transient Analysis 9

dv
weal o] [un] | [acar o | [52] = 213)
ap oflem] [ o —rf [f50] 0 [ w0

The above system is a first-order system of linear equations with constant coefficients:
~ ~ dx(t
Ga(t) + O%) = ¢(t) (2.14)

If we define a start time for the x(t) factor ¢, (X(¢g) = ), then the problem can be described as:

Ga(t) + CLW — e(t)
z(to) =

The problem is defined as an initial value problem (IVP) and under constraints has a
unique solution x(t) in a time interval [ , tf].

The solution for an IVP problem is usually computed with arithmetic approaches in a
time interval [?, , t¢], for discrete times ¢y < ¢; < ¢ < ... < t,,, = ty. The solution can be
found by computing an estimate x(Z) of x(t) for every discrete time ¢; (k = 1,2,..,m), starting
from the initial condition x(¢y) = z¢. The value hj, = t; —t;_1 is called time step or sampling
step at the ¢, time. If the time points were selected to be spaced equally, then the time step is
constant and the computation of x(;) for every time point ¢; (k = 1,2,..,m) can be performed

by one of the below two approaches, for da( t’“) in the system of Eq. (2.14).

» Backward Euler (BE) or Implicit Euler approach

e E[x(tk) — z(tk-1)]

The above MNA system of Eq. (2.14) takes the form:

1~ 1~
(G + 5. Chalty) = e(te) + 3 Calti ), b = 1,2,..m

h

* Trapezoidal (TR) approach

1 dx(tk) 1 dx(tk,l)

1
2| dt |~y o) —alio)]

The system is now transformed to the below linear system:
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Gla(te) — 2(te )] + C [df"é;’“) 4 dm(fl’;‘l)] —ety) + eltp ) &

(. /
e

2[z(tr)—z(tk—1)]/h

(é + %é) 2(ty) = e(ty) + e(tpr) — (é - %é) 2(ter), k=1,2,....m

The TR approach is more accurate for a given step (or allows bigger steps to achieve the
same accuracy) and is usually preferred as the default method. However, in certain cases, it
presents an undesirable phenomenon, called ringing”, making it less accurate in non-smooth

transitions, in which cases the backward Euler is preferred.






Chapter 3

Model Order Reduction

The simulation of complex and large-scale systems is a challenge for the semiconductor
industry, especially nowadays, where the majority of the systems present those character-
istics. The functional simulation of such systems demands solving equations with dimen-
sion scale that exceeds millions or even billions of units. Different MOR techniques were

introduced, to overcome this problem by downscaling the original models. Generally, MOR

A x(t| +| B EIF' q= L x(t) n

— |
M6 -

Figure 3.1: Moder order reduction on LTI systems.

methods are divided into two categories, the MM techniques ([6], [7], [8], [9]) and the system
theoretic techniques ([4], [[10]).

MM methods (i.e., Krylov subspace approaches) handle the downscaling procedure by
creating a subspace (Krylov subspace) of much smaller dimensions and then project the orig-
inal system onto the new subspace. To obtain the Krylov subspace, this method uses moments
of the original transfer function to approximate the reduced transfer function. The MM meth-

ods are well-established due to their contribution in efficient computational production of

11
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new reduced-order models. Except from the computational performance, these techniques

lead to stable reduced models and ensure an acceptable accuracy.

Despite the above advantages, MM techniques, in contrast to system theoretic methods,
do not offer an a-priori error and the efficiency of the algorithm can only be estimated after
the generation of the ROM. Furthermore, the quality of the reduced system depends solely
on the quality of the produced Krylov subspace. MM techniques, also fail to preserve signif-
icant properties of the system, such as the passivity and the stability of the system. System
theoretic methods, and especially the BT method [3], were proposed to overcome some of

the inadequacies of the MM techniques.

BT method offers greater accuracy by preserving important properties, such as the sys-
tem’s stability [|11]], while providing an a-priori error between the transfer function of the
original and the reduced model [[12]. The main focus of the BT method is to discard-truncate
states that contribute less in terms of observability and controllability. In order to achieve this,
it truncates the smallest Hankel singular values (HSVs). However, the BT algorithm consists
of computationally expensive methods, such as the solution of the Lyapunov equations, while

dealing with storage issues because of the dense matrices produced from their solution.

Different approaches have been proposed to handle the memory requirements and the
computational overhead of the BT method. These approaches address the problem either by
limiting the frequency reduction window of the method [[13] or by solving the Lyapunov
equations in a low-rank factorized form. The last approach has two alternatives. The first
one is the Alternating Direction Implicit (ADI) and the second alternative is the Extended
Krylov Subspace (EKS) approach. The ADI method presents fast convergence but in order
to achieve that, certain input shift parameters are needed. In addition, these input parameters
rely on unclear heuristics and their selection may affect the convergence of the entire algo-
rithm. Projection-type methods, on the other side, do not rely on specific parameters and also
they form a well-studied and straightforward implementation. The EKS approach uses two
complementary subspaces to achieve fast convergence. For this thesis, we consider the EKS

approach as the low-rank solution of the Lyapunov equations.
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3.1 Balanced Truncation

Consider an MNA system with m (inductive) branches, n nodes, p inputs, and q outputs,

which translates into an RLC circuit in the time domain:

G, E v(t) N Cn O v(t) _ B, ult)
—-E” 0/ \i@® 0o M/ \i
(3.1)
v(t)
y(t) = (L1 0) . + Du(t)
, Where:
* (G, € R™" is the conductance matrix,
» (), € R™™" is the node capacitance matrix,
o M € R™*"™ is the branch inductance matrix,
* E € R™™ is the node-to-branch incidence matrix,
* v € R" is the vector of node voltages,
* 3 € R™ is the vector of inductive current sources,
* By € R"*? is the input-to-state connectivity matrix,
» u € RP? is the vector of the input excitations from the current sources,
* y € R?is the vector of the output measurements,
* [, € R?*" is the state-to-output connectivity matrix,
* D e R?*? is the input-to-output connectivity matrix.
du(t) di(t)

Note that below we denote v = T and i = 5

Without loss of generality, we make the assumption that all voltage sources were trans-

formed to Norton-equivalent current sources. In addition, we suppose that all outputs are

obtained as node voltages at the nodes.
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v(t
The model order is denoted as N = m + n, the state vector as x(t) = , and also
i(t)
G, FE C, 0 By
G=-— O = ,B = ,LE<L1 0)
—ET 0 0 M 0

Then, the above MNA system of Eq. (B.1]) can be written in the following form (descriptor

form):
Cdx—(t) = Gx(t) + Bu(?)
dt (3.2)

y(t) = Lx(t) + Du(t)
The main focus of a MOR procedure is to produce a reduced-order model:
dx(t) =

—= = Gx(t) + Bu(t) )

y(t) = Lx(t) + Du(t)

C

, where:
. G,C eR™,
« Be R,
« L e R,

Consider that the order r < N and the output error is bounded ||7(t) —y(t)||2 < €||u(t)|| —
2, for a given vector u(t) and supposing that ¢ is a small number. The above bounded error
can be written equivalently in the frequency domain as ||g(s) — y(s)|l2 < €[|u(s)| — 2 via
the Plancherel’s theorem [|14]. If the transfer functions of the original and the reduced model

in the frequency domain are:

H(s) = L(sC —G)'B+ DH(s) = L(sC — G)"'\B+ D
Then the error in the frequency domain is:
15(s) = y(s)lla = 1 H(s)uls) = H(s)u(s) |2 < [|H(s) — H(s)llolluls)l|2 (3.4)

where the ||.||o is the H., norm of the rational transfer function, or the £, matrix norm.
Hence, in order for the error to be bounded, it is essential to bound the distance between the

transfer functions ||H(s) — H(s)||e < .
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Related MOR methods, and particularly the BT method, use the observability and con-

trollability Gramian matrices P, Q such that:

P:/ exp(C'Gt)C'BB C Teap(C'Gt)  dt
0

0 (3.5)
Q= / exp(C'Gt) 'L Lexp(C ' Gt)dt
0
which are equivanlently obtained by the solution of the Lyapunov equations [[12]
(C'GP+P(C'G)" =—(C'B)(C'B)" 56

(C'G)'Q+Q(C'G) = -L'L
taking into consideration that the C matrix is nonsingular.

Generally, the controllability Gramian matrix P presents the input-to-state behavior, ex-
pressly the degree to which the inputs can control the states, while the observability Gramian
matrix QQ presents the state-to-output behavior, that is the degree that the states are observable
at the outputs. The main focus of BT is to truncate the states that are difficult to reach but
easy to observe. Nevertheless, in the original system’s model, there are states that are easy to
observe and difficult to reach and backwards. So before truncating the original model, it is
essential to transform it into a new coordinate system that every state has the same degree of
difficulty to be reached and to be observed. To achieve the above, there is such transformation

Tx(t), which directs to a new transformed model:

gg}ﬁﬂc:TGT“HTM®)+TBu@)
dt (3.7)

y(t) = LT 1 (Tx(t)) + Du(t)

TCT !

, therefore preserving the transfer function H(s) and leads to [[12]:

P = Q = diag(o1, 09, ....,0N) (3.8)

, Where 0;,7 = 1,..., N are the HSVs of the origial model. HSVs stand for the square
root of the eigenvalues of the product PQ (0; = /\(PQ),i = 1,..., N) for all coordi-
nate sytems of the state space. In the new transformed balanced model, the states are easier
to observe and reach, and correspond to the greatest HSVs. The distance between the origi-
nal and the reduced-order transfer function can be estimated by the truncated N — r HSVs

(corresponding to the smallest HSVs) and is bounded as:

[H(s) = H(s)||oo < 2(0r41 + Orja+ .. 4 0x) (3.9)



16 Chapter 3. Model Order Reduction

Eq. (3.9) defines the a-priori criterion in order to select the reduced order r given a desired
output error tolerance € and constitutes one of the most significant advantages of BT com-

pared to other MOR methods. The main steps of BT are presented in Algorithm [I].

Algorithm 1 MOR by Balanced Truncation
1: Compute the solution of the Lyapunov equations (B.6) in order to obtain the Gramian

matrices P and Q

2: Calculate the eigenvalue decomposition of PQ, or compute the singular value decom-
position (SVD) for the product of the Cholesky factors P = ZpZ}, and Q = ZgZ/,, i.c.,
7217, =UXV

3: Compute the transformations matrices T .. = E(_Tlx/f)V(TX N)Zg and
T(_]\lfxr) ZPU(NXT)E&lx/f), and the corresponding truncated reduced-order
matrices as C = T(TxN)CT(’]\l,XT), G = T(rxN)GT&\leT),
= - -1
B=T,.nB, L= LT(MN)

Despite the advantages of BT, this method has significant computational and memory
cost, which hampers its applicability to large-scale models (where N exceeds a few thousand
states). The solution of the Lyapunov equation, the SVD [|15], and the Cholesky [[16] factor-
ization, as mentioned in the introduction of this chapter, are all computationally expensive
procedures with complexity in the range of O(N?). In addition, the BT method involves the
storage of dense matrices P and Q), despite of the density of the original matrices C, G, B,
L.

Notwithstanding, in most cases the number of inputs and outputs is much smaller than the
number of states (p, q < N), meaning that the products of BB” and L”L will have lower
than N rank (this also holds for the Gramian matrices P and Q). Considering the previous
observation, it follows that P and Q can be approximated by low-rank products (instead of
the full Cholesky factorization of the default algorithm), such as P ~ ZpZ7% and Q ~ Zg Zg
where Zp, Zg € RV*" and N < k. This way, the memory requirements and the complex-
ity of the SVD procedure are significantly reduced, leaving the solution of the Lyapunov

equations as the main task that adds computational overhead.






Chapter 4

Computational Improvements in

Balanced Truncation MOR

In this chapter, we present our approach on a BT implementation using an EKS low-rank
iterative method. To this end, we discuss all steps in detail for an efficient implementation of
the proposed algorithm, that we used in our ROM generation tool.

The main part of low-rank Krylov subspace methods for computing approximate solu-
tions of large-scale Lyapunov equations like (B.6), is to iteratively project them onto a lower-
dimensional subspace, and then solve the produced small-scale equations. Each iteration in-
creases the dimension of the projection subspace, until convergence is attained.

Consider a subspace K, where K9 is a projection whose columns span K. The small-
scale Lyapunov equation is derived by projecting the large-scale matrix onto the approxima-

tion subspace K, i.e.,

MX + XM” = —RR” 4.1)

, where K eV*k (k << N),M = KOWTG-KY, R =KUTB, G = C!G.

After solving (B.1)), an approximate solution Y = KOXK®WT is found on subspace K.
The residual R = GoY + YG(Tj + BB is orthogonal to K, which is also referred to as the
Galerkin condition [[17].

Note that the above procedure is independent of the chosen subspace, but its effective-
ness and convergence are seriously influenced by the selection. In some studies, the standard
Krylov subspace was used as the approximation subspace, but this method usually requires
many iterations until a good approximation of the solution is obtained []18]. This leads to a

much higher final rank on the solution (reduced size), as well as longer execution time. On

17
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the other hand, the EKS proves to be more efficient, and also achieves faster convergence in
comparison to that of the standard Krylov subspace method [|19].
The standard Krylov subspace is defined as

K1(Ge, Be) = span{B¢, GeBe, GEBg, . .., GE 'Be} (4.2)
, where:
Gc=C'G, Bc=C'B
which can be enriched with information from the subspace ICk(Gal, B¢), corresponding to

the inverse matrix Gal leading to:

K¢ (Ge,Be) = Ki(Ge, Be) + Ki(Ggt, Be) =
span{Bc, G¢'Bc, GeBe, G*Be, GEBc, . . ., (4.3)
G." VB¢, GE B}

which is known as the EKS.

The only compromise is that the matrix G¢ requires inversion in the means of the EKS
method, which is not required in the standard Krylov subspace method. Nevertheless, despite
this additional step, the EKS method still competes with the computational efficiency of the
standard Krylov subspace method. In fact, during the iterative process, G5' is not explicitly

required.

4.1 Proposed Algorithm

The EKS method starts by the pair {B, GngC} and generates a sequence of extended
subspaces K¢ (G¢, B¢) of increasing dimensions, solving the projected Lyapunov equation
in each iteration, until a sufficiently accurate approximation of the solution of Eq. (B.6) is

obtained. The complete EKS method is given in Algorithm ).

4.2 Implementation Details

In this subsection, we present the details concerning the efficient implementation of the
default BT and the proposed low-rank BT methods. The dense and sparse matrix representa-

tion and the implemented procedures, utilize types and methods from the Eigen library (C++).
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Algorithm 2 Extended Krylov Subspace method (EKSM) for low-rank solution of Lyapunov

equations
Input: G¢ = C™'G, B = C'B (or GL, LT)

Output: Z such that P ~ ZZT

I: j=1;p=size_col(B¢)

2: KWV = Orth([Be, G5'Bcl])

3: while j < maxiter do

4: M=KOTG,K?; R =KWIB,

5: Solve MX + XM7” = —RRT for X &2i*2pj

6: if converged then
7: S = Chol(X)
8: Z =KYS

9: break

10: end if

11: kv =2p(j —1); ke = k1 + p; ks = 2pj

122 Ky = [GeKY (k41 k), GEKY(: ky + 11 k)]
13: K, = Orth(K;) wrt KU

14: K; = Orth(Ks)

15: KU+ — [K(j),Kg]

16 j=j+1

17: end while

Furthermore, a collection of state-of-the-art solvers were employed, so as to achieve faster

convergence and overall results.

4.2.1 Matrix products with inverse of sparse matrix

Algorithm [ involves the inverse Ggl of the sparse system matrix G¢. Regrettably, it
should be noted that inverting a sparse matrix will produce a dense matrix, and is also a very
expensive computational operation that should be avoided if it is not explicitly needed. In
our case, however, the inverse matrix G¢ is only used in products with the N x p matrix
B (initially) and then with the N x pj matrix K in step 12 for each iteration j (where

P, Pj < n, and the iteration count is typically very small). Therefore, the inputs to Algorithm



20 Chapter 4. Computational Improvements in Balanced Truncation MOR

are not actually G = C!G, B = C !B, but the sparse system matrices G, C, B
(or GT, CT, LT), since these products can be implemented by solving the linear systems

CY =Rand GY = R (or CTY = R, GTY = R), using any sparse solver.

4.2.2 Orthogonalization

For steps 2 and 14 of Algorithm [}, householder QR transformations [20] are employed,
using the correspoding methods of the Eigen library. The orthogonalization in step 13, how-
ever, needs to be performed with respect to K). For this purpose, a Gram-Schmidt procedure

[20] is used, which is described in Algorithm [3.

Algorithm 3 Orthogonalization w.r.t. another matrix
Input: K1, KU, #ports p

Output: K2
1: fork;=1,...,jdo
2: ko =2p(ky —1); k3 = 2pk;
30 K2=K1-KW( ky+1:k)KOT(: ky 4+ 1 k3)K1

4: end for

4.2.3 Lyapunov solver

The solution of the continuous-time Lyapunov equations (B.g), for the purpose of this the-
sis, was based on the Bartels-Stewart method [21]] and is presented in Algorithm f. Consider
solving an equation in the form of AX + XAT + Q = 0. In the case of default BT, the A
factor stands for the product C~'G, the X factor stands for P, and finally, the Q stands for
the product (C~'B)(C~!B)?, concerning the solution of matrix P. For the solution of ma-
trix Q, the A factor stands for the product (C~1G)T, the X factor stands for Q, and finally,
the B stands for the product L7L. The Lyapunov solver, in any case, returns dense matrices
and so the produced matrices P and Q are also dense, despite the density status of the input

matrices C, G, B, and L.

4.2.4 Convergence criterion

The solution X €*** of Eq. (#.1]) can be back-projected to the N-dimensional space to

give an approximate solution P = KWXKWUWT for the original large-scale equation (B.6).
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Algorithm 4 Lyapunov solver
Input: A, Q

Output: X

1: Apply Schur decomposition (presented in [22]) on A, to obtain the Schur T triangular
matrix TA and the Schur U matrix ZA

2: Transform the right-hand side by computing F = ZA” - Q - ZA

3: Initialize an identity matrix idx with dimensions equal to the dimensions of the original
matrix A and a vector containing the diagonal elements of matrix TA (referred as p)

4: Apply backward substitution to obtain the transformed solution Y

5: fork=n:—-1:1do

6: rhs=F(,k)+Y -TAT(; k)

7. TA(idz) = p+ TA" (k, k)

8: Y (:, k) = TA\(—rhs)

9: end for

10: Transform solution back by estimating X = ZA - Y - ZAT

An appropriate stopping criterion is the residual of Eq. (B.6) with the approximate solution

to reach a certain threshold in magnitude, i.e.,

|GcP + PGe + BeBE|
IBeBE|

< tol 4.4)

However, it has been proved [[19] that the above criterion is actually equal to || R* MX]||,
which can be computed much more efficiently, and thus the stopping criterion is transformed
to:

IR"MX]|| < tol 4.5)

A tolerance of tol = 10719 is typically sufficient in practice to acquire a good approximation

of the solution.

4.2.5 Cholesky Factorization

Generally, the Cholesky factorization demands as inputs Symmetric Positive Definite
(SPD) matrices, in order to produce an upper triangular matrix U, such that the product U7 .U
equals to the original matrix. In both Algorithms [l and [, the Cholesky factorization is per-

formed on the final solutions of the Lyapunov equations. A necessary and sufficient condition
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for the Lyapunov solver to produce unique and SPD matrices, when solving an equation in
the form of AX + XAT + Q = 0, is that the matrix A’s eigenvalues have positive real
parts and the matrix Q is SPD as presented in [23]. However, in the case of Q = BB (or
Q = B¢BY), where Bis N x p and p < N, the matrix is low-rank and does not satisfy the
necessary conditions to be SPD. Thus, the Cholesky factorization is replaced by the LDLT
decomposition [24] and the Cholesky factors are replaced by the appropriate computations
with the produced LDLT factors (Zp = Lp - DI%; and Zg = Lq - Dg, where Lp, L are the
permuted lower triangular matrices L for matrix P and () respectively, and Dp, D, are the

diagonal matrices, such that P = Lp - Dp - L and Q = Lg - Dq - L{)).

4.2.6 Lower-rank solution

The matrix X in the solution P = K XKUT has a final rank of 2pj, where j is the final
iteration count and is often numerically positive semi-definite [25]. If that is the case, it is
possible to replace step 7 of Algorithm 2 to reduce the rank of the final solution even further.
More precisely, let X = WDWT? be the eigendecomposition of the 2m x 2m matrix X,
with D having all the diagonal entries sorted in decreasing order. A new size k is determined
(k < 2py) by truncating all the values in D, that are less than a specified threshold (in this
case 10~!2). Furthermore, by only keeping the corresponding k& columns of W and discarding

the rest, the new more reduced approximation can be calculated as Z = KU JWD?:.

4.2.7 Solvers

As mentioned before, there exists a workaround, in calculating the inverse matrices C~*
and Ggl, since they are only used in products with relatively small matrices, that ends up
solving linear equations. These involve the original system matrices, which usually consist
of a very large number of nodes, but very small density. Considering that, it is essential to
find an efficient way to store them and use them for computations.

Since the whole process is iterative, the solvers used have to be rather fast and accurate in
order to speed up convergence. The Eigen C++ library [26] offers a variety of such solvers,
both iterative and direct, which can be tested to find the best option for this purpose.

At first, the attention goes to iterative solvers, since they are well-known for their low

memory requirements and they are generally considered to be faster with small compromises



4.2.7 Solvers 23

in accuracy. The Eigen C++ library offers both Bi-Conjugate Gradient (BiCG) and Conju-
gate Gradient (CG) implementations with an option for preconditioners, such as the Jacobi
preconditioner or the IncompleteLUT, for non-SPD and SPD matrices respectively. How-
ever, after some iterations were performed, the condition of the matrices was deteriorating,
resulting in bad convergence or no convergence at all and solver failure.

Considering the dissapointing results of the iterative methods and the need for high ac-
curacy, direct methods had to be employed. There was a need to support both SPD and non-
SPD matrices, therefore various LLT and LU implementations were tested, respectively. The
fastest and more accurate solvers, for our purpose, were found to be the PardisoLU and Par-
disoLLT solvers from the Intel MKL library, which are also supported by the Eigen library
itself.






Chapter 5

Experimental Evaluation

5.1 Experimental Setup

To evaluate our method, we implemented a ROM tool that is able to load the desired

models, produce the reduced systems by using either Algorithm [I] or Algorithm [}, and, fi-

nally, perform transient analysis on both the original and reduced systems to compare their

results. For the evaluation process, we used benchmarks that were extracted from real elec-

trical models with lots of mutual inductances, using an industrial tool, as well as the transient

IBM power grid benchmarks[27]. Their characteristics are shown in Table [.1,, where we

can see all the electrical elements of each circuit as well as the total size of the MNA matri-

ces. Also, the names RLCk 1 to RLCk 3 represent the circuits from the industrial tool and

ibmpglt to ibmpg4t represent the transient IBM power grids.

Table 5.1: Circuit benchmarks and their characteristics

Benchmark | Total size | #nodes | #resistors | #capacitors | #inductors | #mutual ind. | #ports
RLCk 1 5431 3084 2998 1282 2347 136271 2
RLCk 2 21800 12166 34635 31131 9634 23639237 6
RLCk 3 39346 22059 51128 41871 17289 91627306 11
ibmpglt 54265 25082 40801 10774 277 0 20
ibmpg2t 164897 37168 245163 36838 330 0 20
ibmpg4t 1214288 | 266906 | 1826589 265944 962 0 20

Our ROM tool uses a configuration file as input, where all the parameters for the process

are specified by the user. These parameters include the input matrices, the desired order, the

25
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tolerance for the convergence of the iterative process of Algorithm P}, as well as, the step and
the endtime for the transient analysis. A detailed example of the configuration file is shown
in Figure B.1. While testing the circuits, we had to tailor these parameters for each one, in
order to receive optimal results. In fact, for the transient analysis, we needed to have enough
resolution to be able to compare the behaviour of the systems. In Table 5.2, we point out all
the input parameters used for each of the circuits. For the implementation of the low-rank BT
MOR procedure, discussed in Chapter i, we decided to support both the usage of the standard
Krylov subspace approach and the EKS approach, and compare their results.

Our goal was to achieve at least 99% reduction, while maintaining the deviation in sim-
ulation between the original and the reduced system at only 1%. The metrics to define the
deviation of the transient responses of both systems were the percentages of Mean Relative
Error (MRE) and Maximum Relative Error (MAX_ RE). All experiments took place on a
Linux workstation, equipped with an 8-core Intel Xeon Silver 4309Y processor at 2.8GHz

and 64GB of memory.

set_working directory Sbenchmarks/
set_output_directory DatpatftestS_RLC_resaltsﬁ
[/ Cn

set_capacitance file RLC/test3/Cn _mat.bin

ff Gn

set_conductance file RLC/test3/Gn_mat.bin

[l M

set_inductance_file RLC/test3/M mat.bin

ff E

set_node _to _branch file RLC/test3/E_mat.bin

f/ B

set_input_to_state_file RLC/test3/B_mat.bin

f/cmd spec: set_threads <number of threads>
set_threads la

f{cmd spec: set_desired order <size>
set_desired order 385

S/ SIMOLATION system and times //

Sicmd spec: Eet_sim system <original |[mor|all>
set_sim system all

ffcmd spec: set_simmlation <gtep endtimex
set_simulation le-19%s 2e-17s

ffcmd spec: set_tolerance <tol>
set_tolerance le-14

Sicmd spec: set_mor type < bt _init | bt low rank | bt _low rank ks >
set_mor type bt low rank

Figure 5.1: Input configuration file example.
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Table 5.2: Input parameters for the evaluation of each circuit

Benchmark | Desired order | Tolerance Transient analysis

Step | Endtime
RLCk 1 54 le-14 le-19 2e-17
RLCk 2 210 le-14 le-19 2e-17
RLCk 3 363 le-14 le-19 2e-17
ibmpglt 320 le-14 le-11 le-8
ibmpg2t 500 le-14 le-11 le-8
ibmpg4t 620 le-14 le-11 le-8

5.2 Accuracy Results

The accuracy results are reported in Table 5.3, where ”ROM order” is the final size of
the reduced systems after the lower rank solution was applied, MRE and MAX RE are the
deviation after running transient analysis, as mentioned above, and “Reduction (%)” is the

difference in size of the original to the reduced model.

Table 5.3: Reduction accuracy results between using standard and extended Krylov subspaces

o Standard Krylov subspace low-rank BT EKS low-rank BT
Cireuit ROM order | MRE (%) | MAX_RE (%) | Reduction (%) | ROM order | MRE (%) | MAX RE (%) | Reduction (%)
RLCk_1 23 0.141 0.242 99.58 52 0.281 0.6 98.95
RLCk_2 110 0.107 0.288 99.49 102 0.116 0.431 99.53
RLCk_3 170 0.106 0.344 99.57 175 0.178 0.536 99.56
ibmpglt 157 0.0022 0.07 99.71 177 0.0014 0.218 99.67
ibmpg2t 255 0.031 0.05 99.85 184 2.71e-5 0.0003 99.89
ibmpg4t 321 0.00079 0.036 99.97 121 0.01 0.07 99.99

By observing the accuracy results of Table 5.3, we can see that our proposed methodology
offers a significant reduction, higher that 99% most of the times, with very acceptable errors
in transient analysis. We also notice a difference in the behaviour of the method between the
RLCk models and the IBM power grids, where the latter produced exceptional results with
the use of the EKS method, in comparison to the standard Krylov subspace and vice versa.
Specifically, our tool managed to achieve even a 99.99% reduction with only 0.01% MRE on
the ibmpg4t benchmark using the EKS. On the other hand, the usage of the standard Krylov
subspace provides, at worst, MRE lower than 0.141% with a reduction of over 99.49% across
all benchamrks.

In general, we come to the conclusion that the reduced size does not depend that much
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on the initial size of the system. Nevertheless, it is more relevant to the number of ports and
the condition of the matrices G and C, which affect the number of iterations that it takes for

the Algorithm 2 to converge and produce the smallest possible error.

Transient analysis of node 6

0.0010 q === Qriginal
BT

0.0008

0.0006

Voltage (V)

0.0004

0.0002

0.0000

T T T T T T T T T
000 025 050 075 100 125 150 175 2.00
Time (s) le—17
Figure 5.2: Comparison in transient analysis of RLCk 2 between original and reduced models

at port 6 using the standard Krylov subspace.

5.3 Runtime and Memory Results

To examine the performance of our method, we calculated the execution time and peak
memory of our tool, as presented in Table 5.4. Note that for all the results, in our tool, we used
the PardisoLU as a sparse solver, which may be fast and accurate, but also consumes a lot of
memory to achieve that. Again, we immediately notice the impact of the mutual inductances
in the results, where the peak memory usage of the RLCk 2 circuit over-exceeds the one of
the ibmpg2t benchmark, even though it has a much smaller amount of nodes. Moreover, the
execution time is greatly affected by that dense matrix and can be a great challenge to achieve
adequate performance for such circuits.

When we compared the use of the standard Krylov subspace to the EKS, in terms of

performance, the EKS produced better results overall. We should mention, however, that
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Transient analysis of node 7
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Figure 5.3: Comparison in transient analysis of RLCk 3 between original and reduced models

at port 7 that demonstrates the produced 0.344% MAX RE.

le—5 Transient analysis of node 19

Voltage (V)

m— Original
BT

Time (s) le—14

Figure 5.4: Transient response of ibmpg2t’s port 19 between original and reduced models

using EKS for 5e-14 s.
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it takes only half iterations for the EKS to reach the same size compared to the standard
Krylov. Also, the EKS method converges faster in most situations. This proves that the EKS

method has leading performance, despite the fact that we have to deal with the inverse system

matrices.

Table 5.4: Reduction performance results using our optimized implementation of the methods

Cireuit Standard Krylov subspace low-rank BT EKS low-rank BT

Reduction time | Peak memory Transient analysis time Reduction time | Peak memory Transient analysis time

usage Original ROM usage Original ROM

RLCk 1 2.73s 1.04 GB 11.89 s 2.23e-5s 3.74s 0.83 GB 11.89s 5.42e-5s
RLCk_2 108.61s 12.22 GB 89.9s 0.0001 s 74.29 s 12.26 GB 899 s 0.0001 s
RLCk_3 768.96 s 39.12 GB 406.4 s 0.0009 s 457.66 s 28.87 GB 406.4 s 0.0003 s
ibmpglt 14.48 s 1.07 GB 3.73s 0.0003 s 13.1s 1.16 GB 3.73s 0.00034 s
ibmpg?2t 94.92 s 4.61 GB 18.33s 0.00042 s 44.04 s 3.52GB 18.33 s 0.00031 s
ibmpgat 1098.26 s 41.21 GB 185.18 s 0.0006 s 1658 s 16.95 GB 185.18 s 0.00014 s







Chapter 6

Conclusions

The implemented ROM generation tool handles real-world large-scale electromagnetic
models, consisting of several thousands elements. The above mentioned tool, provides both
the default BT and the improved low-rank implementation of the BT algorithm. Both methods
were tested based on their performance and the accuracy that they offer. The implementation
of BT and low-rank BT was based on Eigen library (C++) and was optimised by the exploita-
tion of state-of-the-art solvers.

The overall experimental evaluation of the tool shows a clear improvement in model
accuracy and performance, as well as it retains the benefits of specified error bounds. Efficient
computational approaches have been provided, so as to improve in a greater degree the overall
performance in runtime and memory. In general, the improved BT, using the standard Krylov
subspace version, achieves model reduction at a scale of 99% with MRE of 0.141% and
MAX_ RE 0f 0.242% for an electromagnetic model of 5431 nodes and final reduced order of
23 nodes. For the same benchmark and the same method, we reach approximately 1GB peak
memory usage, and reduction time of 2.73 seconds. The EKS approach of the improved BT,
achieves an MRE 0f 0.282% and a MAX_ RE 0f 0.6% for the same original benchmark (5432
nodes) with a reduced order of 52 nodes. The reduction time was risen to 3.74 seconds and
the peak memory usage is estimated to 0.8GB.

Concluding the above, our ROM generation tool preserves the a-priori error offered by
the BT method, while dealing with expensive computational tasks and storage limitations. At
the same time, the performance, in runtime and memory, and the accuracy of the method is

significantly improved, compared to that of the default BT algorithm.
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