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DIMITRIOS SIMOS
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Abstract

Over the last years, there is a significant need for new transportation systems. In this context
many cities have expanded their transportation system by adding highway and railway
bridges. The dynamic interaction between the vehicle and the bridge, is a topic of high
interest, as it directly affects the safety and comfort of the passengers during travelling. The
design parameters of both vehicles and bridges, are a major factor effecting the dynamic
response of the system.

The present thesis studies the dynamic response of the vehicle-bridge interaction system
and presents the influence of the subsystems parameters in the final response. The localized
Lagrange multipliers method and the extended modified bridge system (EMBS) method,
with the aid of Newmark-p time-integration method, are two solving methods used for the
evaluation of the system’s response.

The investigation of the parameters effect in the systems response was carried out using two
models of the vehicle-bridge system. The vehicles models were introduced in MATLAB, while
the finite element model of the bridge was designed and analyzed in COMSOL Multiphysics
software. Finally, the simulation of the dynamic interaction of the two subsystems (vehicle-
bridge) was carried out in MATLAB, using self-written code developed specifically for the
purpose of this thesis.
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Hepiinyn

Ta tedeutala xpovia mapoucLaletal alodnTr) avaykn yla véa cuoThota PeTadopdg. ITo
TAALLOL0 AUTO TTOAAEC TOAELG OVA TOV KOO0 EMEKTELVOUV TO CUCTN MO LETADOPWY TOUG
XTL{OVTOG AUTOKLVNTOSPOULKEG KOl OLONPOSPOULKEG YEDUPEC. H HeAETN TNG SUVAULKAG
aAANAemidpaonc petal TnG yEduPAG KAL TWV OXNUATWY Tou Thv Staoyilouv anotelel Bépa
peyahou evdladpépovtog, adou ennpedlel GUeca TNV aoPAAELA KAL TNV AVESH TWV
emPBatwv. OL MapApeTPOL oXeSLAGUOU TOOO TWV OXNUATWY 000 KAl TwV YEPUPWY ,
amnoteAoUV KUpLapxo MOPAYOVTA WG IPOC TNV SUVAULKA aITOKPLON TOU GUGTHUOTOG.

H napouoa SIMAWHATLKN, LEAETA TNV Suva Lkl aAANAOEMiSpacn TOU GUCTHUATOG
OXNUOTOG-YEDUPOC KaL TAPOUCLATEL TNV ETILPPON SLAPOPWV MAPAUETPWY TWV
UTTOCUOTNHUATWY 0TNV TEALKA amokplon. H péBodog Twv ToTKwY TTOAAATAQCLACTWY TOU
Lagrange kal n HEBoS0¢ Tou EKTETAPEVOU OUOTHHATOG TG YEbupag (EMBS), pe tnv Bonbela
NG XPOVLKN G OAOKANpwonG HEow TNG LeBodou Tou Newmark-B, eivat ol Vo pEBodol tou
XPNOLLOTIOLOUVTAL VLo TOV UTIOAOYLOMO TNG QIOKPLONG TOU CUCTH ATOG.

H avaluon yla thv enidpacn Twv MapapéTpwy oTtnv SUVALKN artOKpLon TOU CUCTHUOTOG
TipayHaTonoliOnke yla U0 povtéda oxnuatog-yEdpupag. Ta LOVTEAQ TOU OXNHOTOG
avamntuxonkav otnv MATLAB, evw TO LOVTEAO TIEMEPACHEVWV OTOLXELWV TNG YEbUpOC
oxedlaotnke Kat avaluBnke oto Aoyloptkd tng COMSOL Multiphysics. TeAlkwg, n
nipocopoiwon tng Suvapikng aAAnAoenidpacng Twv U0 UMOCUCTNUATWY (OXAUATOC-
vEébupag) mpaypatono|Bnke otnv MATLAB, xpnolponolwvtog KwdLKa Tou avamtuxonke
£181KA yLa TOUG oKoToUG TNC SUTAWMATLKNG Epyaoiag.

Vi
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Chapter 1

1 Introduction

1.1 Background

In the last decades, there has been a significant need for new transportation systems due to
traffic problems in major cities of the word. This need has led to a rapid development of
highway communication around the word. The increasing number of bridges, the emergence
of new bridge’s structure, the need of improved, safer and faster means of transportation
(vehicles, trains etc.), require advanced and accurate simulation methods in order to study
the dynamics of a vehicle-bridge interaction system. When a vehicle runs across a bridge,
the weight of the vehicle, the irregularities of the bridge and even the acceleration or
braking of the vehicle can lead to excessive vibrations. Those vibrations will be transferred to
the bridge through the vehicle’s wheels and so on.

Following the pioneer works of Stokes (1849) and Willis (1849) in the mid-19 century, the
vibration of bridges caused by the passage vehicles has been investigated by a great number
of researchers. By modeling a moving vehicle as a moving load, moving mass, or moving
sprung mass considering the suspension effects, the dynamic response of bridges induced by
moving vehicles has been studied from time to time (Timoshenko 1950, Fryba 1972).

Nowadays finite element (FE) analysis offers the opportunity to study and solve the
interaction system of bridge and running vehicle with virtually no limit, in a detailed
description. Numerical studies in VBI aim primarily at the detailed numerical simulation of
involved vehicle-bridge system and at the accurate and efficient time-integration of the VBI
problem.

The examination of the dynamics of the interaction of the coupled system (VBI) and the
accurate prediction of the system’s responses remains a topic of high interest as in the
design phase it is necessary to ensure that all the parameters of the system are within a safe
range and provide both safety and comfort for the passengers and structural health for the
bridge.

1.2 Aim and structure of the study

The major goal of this study is to create and study a simplified model of vehicle-bridge
interaction system. The vehicle-bridge system is modeled in MATLAB interacting with
COMSOL Multiphysics, using self-written code. For comparison reasons, the response of the
system is studied with two solving methods (Lagrange and EMBS) where in both cases the
time-integration follows the Newmark-B method. The model will last be used to study the
influence of the model’s parameters in the system’s response.



Chapter 2

2 Theoretical modelling

2.1 Introduction

There is a great variety regarding to the complexity and design of a vehicle. However, when
in motion, every vehicle vibrates because of its mass, stiffness and damping properties.
Similarly, the variety of bridges considering their size, architecture, materials is even greater.
Still, regardless of the bridge’s features the passing vehicle excites the bridge to vibrations.
Throughout this study the vehicle elements are considered as rigid bodies with mass, and
they are interconnected with linear springs and dampers. It is also assumed that there is no
internal elastic deformation in the system and the wheels and body of the vehicle are
vibrating with small displacements. Finally, the bridge subsystem is modelled with Euler-
Bernoulli beam elements.

2.2 Kinetic model of vehicle subsystem

Let [m,], [c,] and [k, ] respectively denote the mass, damping and stiffness matrices of a
typical vehicle, and {u,,} the displacement vector of the vehicle. According to the Newtons
2" law of motion the vehicles equation of motion can be written as:

[m, 1 {iby [ ey ity [k J{u, WP {AN} = {F} (2.1)

where,

Ay (1) is the time varying vector of the contact forces between the vehicle and the
bridge/road

WYV is the contact direction matrix associating the contact forces with the DOFs of the
vehicle

F,, is the vector of the external forces

Note that the index N of the contact forces represents the total number of wheels, of the
equivalent vehicle model on each case.

The dimensions of the above matrices depend on the degrees of freedom of the vehicle
model. Assuming ndof's for the vehicle’s DOFs, the dimensions of the above matrices are:
[m,] = [¢,] = [ky] = [ndofs x ndofs]

{ity} = {1y} = {u,} = {F} = {ndofs x 1}

Lastly, assuming N_wheels (number of the wheels of the vehicle), the dimensions of [W"]
and {Ay} become:
[WY] = [ndofs x N_wheels] and specifically,

zeros(N_wheels ,ndofs — N_wheels)

Wl = [ eye(N_wheels)



where, zeros is a [N_wheels x (ndofs — N_wheels)] matrix full of zeros , eye is an
identity matrix with ones on the main diagonal (for the vertical direction case)

and

{Ax} = {N_wheels x 1}, as there is a contact force for each wheel on the vertical direction

2.3 Dynamic model of the bridge subsystem

Like the vehicle subsystem, the EOM of the bridge subsystem is:
[myp{itp} + [cpl{itp} + [Kpl{up} + [WP]{AN} = {Fp} (2.2)

Note that my, ¢}, and kj, are, respectively, the mass, damping and stiffness matrices of the
bridge and depend on the structural and geometrical characteristics of the bridge (see 2.3.1)

Fy is the external force vector

WP is the contact direction matrix connecting the contact forces with the DOFs of the bridge
The contact direction matrix of the bridge denotes the location of the vehicle’s wheels and is
used to transfer the forces from the wheels to the equivalent nodes of the bridge element at
each time step of the simulation. To formulate the W? matrix, Hermitian interpolation
functions for beam elements are being used (Appendix 3).

At this point it is quite important to point out that W?(xy) is a time varying matrix and
depends on the wheel’s location at each time. Assuming that the vehicle’s speed is constant
and the vehicle is in linear motion, the wheels position can be found as:

Xy = vt; — dN (23)

where,

Xxy: N-wheel’s position

v: vehicle’s velocity

t;: time of interest

dy: distance between the first and N-st wheel of the vehicle

To specify if the wheel acts on the bridge element during the time of interest, function h(x)
is introduced:

ez =1 (3)-n () (2.4

The h(x;) function consists of H(x),which is the Heaviside step function, that activates and
deactivates the action of a wheel on the bridge when a vehicle comes through.

Subsequently,



h(x,) = {1, wheel on bridge
*i) =10, wheel of f bridge

In order to evaluate the contact direction matrix W?(x;) at each time, h(x;) function is
integrated into W? (x;) by multiplying W? with h(x;) = 1 in case that the wheel acts on the
bridge or with h(x;) = 0 in case not.

For better understanding of the contact direction matrix see section 4.4 (Application on a 2D
bridge)

Assuming ndofs_bridge for the bridge’s DOFs, the dimensions of the structure’s matrices

are:
[my] = [cp] = [kp] = [ndofs_bridge x ndofs_bridge]

[W?] = [ndofs_bridge x N_wheels]

{itp} = {0y} = {up} = {Fp} = {ndofs_bridge x 1}

{An} = {N_wheels x 1}

Where, ndofs_bridge = (ndofs per node) X (mesh elements + 1) (see section 4.4)

As mentioned earlier the mass, stiffness and damping matrices of the system are different,
depending on the structure system of interest. In the next section the structural matrices for
the case of Euler-Bernoulli beams are introduced.

2.3.1 Euler-Bernoulli beam

As mentioned in the beginning of this study, the bridge subsystem is modeled with Euler-
Bernoulli beams. As we can see in the literature [1] a general 3D beam element consists of
six Dofs per node (Figure 2-1). The longitudinal axis of the beam is denoted by x, and the two
transverse principal axes of the cross section of the beam by y and z. The six degrees of
freedom correspond to three translations and three rotations on each node, giving 12-DOFs
for a beam element.

{u} = (uyq Uyg Uzg Uxp Uyp uzB)T
{9} = <9xA eyA 0,4 Oxp ByB QzB)T



Figure 2-1 Nodal DOFs of three-dimensional beam element

The mass matrix [my] is:

_ mLel Ml

] = 220 |,

¥
6.

{‘;

B

(M)T
M3

ﬁe)-)\ TG}'B
A u}'A Tu}.B
B Uyg 9 B
o2 O— —» —x

(2.5)

Where L, is the length of the element and m is the mass per unit length. The submatrices

of Eq (2.5) are:

140 0 0
0 156 0
0 0 156
0 0 0
0 0 -22L,
0 220, O
70 0 0
0 54 0
0 0 50
=lo 0 0
0 0 13L,
0 -13L, O

0 0
0 0
0 —22L,
1401
p
0
A
0 41%
0 0
0 0
0 0
0 -13L,
(1)
p
0
A
0 -3L}
0 0




140 0 0 0 0 0
0 156 0 0 0 -22L,
0 0 156 0 22L, 0
_ 1401
Ms=] o 0 0 LA 0
A
0 0 22L, O 41% 0
0 -22L, O 0 0 412, |

Where A denotes the cross area and I}, the polar moment of inertia of the beam.

The stiffness matrix [kp] is:

_[Ky (KT
[kp] = [K; 1(23 ] (2.6)

The submatrices of Eq (2.6) are:

'EA
. 0 0 0 0 0
el
12EI, 0 0 0 6EI,
Lels Lel2
12EI —6EI
0 0 - =20
L L
K. = el el
' 0 0 0 Glx 0 0
Lel
6EI 4EI
0 0 i 20
L Le
6EI, 0 0 0 4EI,
Lelz Le
EA
—— 0 0 0 0 0
Lel
12EI, 6EI,
- L3 0 0 - L2
el el
0 0 12EI, 6EI, 0
K, = Le13 Lel2
2= GI,
0 0 0 - 0 0
Lel
0 0 _6E12y 0 2EI, 0
Lel Lel
6EI, 2EI,
0 2 0 0 I
el el




'EA
— 0 0 0 o0 0
Lel
12EI, 6EI,
0 — 0 0 -
el el
12EI 6EI
0 0 . 20
L L
K. = el el
3 GI,
0 0 0 0 0
Lel
6EI 4EI
0 0 2 20
Lel Lel
6EI 4EI
0 —— 0 0 z
| Lel Lel

Where E and G denote the elastic and shear modulus respectively, J the torsional constant,
and I,, and I, respectively the moments of inertia about the y- and z-axes of the element.

Last, before defining the damping matrix [cp], it should be noted that the damping of
structures can appear in various forms [2]. By classical damping, means that the damping
matrix of structure can be expressed as some linear combination of the mass and stiffness
matrices of the structure. In most cases, it is impractical to consider all the vibration modes
and damping ratios, so in this study Rayleigh damping is considered. Assuming Rayleigh
damping, only the first two modes of the structure are considered and the damping matrix
cb of the structure can be expressed in a general form as a combination of the mass matrix
mP and stiffness matrix k?, as:

[c?] = agfm?] + ay[K?] o
The Rayleigh coefficients @y and a4 can be determined only if the damping ratios {;, {; and
frequencies w;, w; are given for any two vibration modes, as:

-1 -1
ao w; " w;| (S
:z[ B ] {_} (2.8)
{a1} w; ' w;|
For the case when the frequencies of vibration of the first two modes, i.e.,i = 1and i = 2,
are given and the damping ratios for the two modes are assumed to be the same, i.e.,
{1 = {5 = {, the preceding equation reduces to:

()= orra ()

a) @ +wyl 1 (2.9)



Chapter 3

3 Solving methods

3.1 Introduction

The dynamics of VBI is a topic of special interest in bridge and vehicle engineering. The
prediction of the vehicle’s response, the monitoring of the bridge’s structural health, the
vehicle’s structural health as also the passenger’s comfort, all require solving the VBI system.
For this reason, many analytical and numerical methods have proposed throughout the
years, depending on the complexity of the system and the field of interest. Lagrange and
EMBS methods are two methods proposed by [3] and [4] in order to investigate the VBI
problem.

3.2 Alocalized Lagrange multipliers method to solve the VBI problem

3.2.1 Introduction

The localized Lagrange multipliers method is a numerical analysis presented in[5], [10]. This
method overcomes the limitations of coupled and iterative algorithms, as it does not lead to
time-dependent system matrices and does not require iterations at each time step. This
method introduces artificial auxiliary points at the contact interface, with the aid of which it
assigns two sets of Lagrange multipliers and states two sets of kinematic constrains between
the auxiliary points and the adjacent subsystems. The herein presented localized Lagrange
multipliers approach to solve the VBI problem is both accurate and computationally efficient,
as it solves the vehicle and bridge subsystems separately but preserves the compatibility of
the constrains at each time step.

3.2.2 Vehicle system modelling
The EOM of the vehicle subsystem presented in section 2.2 can also be written as:

Kszuv — W'UA‘U = F'U

(3.1)
where, Ksz is the polynomial differential operator of the vehicle:
2
off = m”W+c”a+k” (3.2)

mY, ¢V and kY are the mass, damping and stiffness matrices of the vehicle

d . . .
oy denotes time differentiation

FY, WYV, AV : as presented in general EOM of the vehicle (section 2.2)



3.2.3 Bridge system modelling
Likewise, the EOM of the bridge about its static equilibrium position, under its self-weight,
can be written as:

Ko ub —whab = FP (3.3)

where, K’;ff is the polynomial differential operator of the vehicle:
2

d p
b b b
Kesp =m i + cb at +k (3.4)

mP, cP, kPand F? : as presented in general EOM of the bridge (section 2.3)

3.2.4 Interaction solver

This study solves the VBI problem by formulation the EOMs of the vehicle and bridge
separately. It is assumed that the vehicle’s wheels are always in contact with the bridge and
no jump occurs during the interaction. This assumption in association with the auxiliary
points of the Lagrange method adds two sets of kinematic constrains and two sets of contact
forces in the problem.

Kinematic constrains:

W)’ +r. = u, (3.5)

And
(Wb)Tub —u (3.6)
—Yg
where 1. represents the vector that contains the vertical irregularities as presented in
(appendix)

For a contact to remain continuously closed for a finite duration, the partitioned boundary
accelerations should be equal with the global boundary acceleration it9. By differentiating
the kinematic constrains twice, with respect to time, the acceleration constrains can be

formed as:
d2
T (WDTu? +r.) = W)T Wu" +vir. = id (3.7)
And
d? T d?
& (wyw) = ((Wb) A 2w S 2w ) _as (38)



where ()’ denotes differentiation with respect to the location of the wheel, as W?(xy) varies
due to wheel’s location.

Effectively:

d d

EWb (x) = —Wb(vt) = vW'P(x)

d—Wb(x) = d —WP(vt) = v*W'P(x)

dt? de? (3.9)

d .
Erc(x) = vr. (x)

dZ

e = v’ (%)

Representing the effective contact direction matrices, Wy, s and Wg s are introduced:

d2
— T
Weep)' = W) i (3.10)

(weff) = (w") +2v(W’b) +v2(w"b)

(3.11)
So, the two sets of kinematic constrains on the acceleration level are:
(% T 2 " _ 3
(Wepp) w” +v%r."(x) = BVt (3.12)
(Wt ) ub = Ebirg
eff (3.13)
Lastly, due to Newton’s third law, the contact forces are equal:
T
(Ev)TAv — (Eb) Ab (3 14)

Where, E? and E? are identity [N_wheels x N_wheels] matrices referring to the vehicle
and bridge, respectively.

Collecting all equilibrium and compatibility equations of the VBI system together returns:
Dluv wb v v w9]"=[F* F* v2r.,” 0 0] (3.15)

where, D is a matrix differential operator defined as:

10



- o -w 0
0 K2 0 wb
T
D ={(-Wy; 0 0 0 EY (3.16)
o (wy)' o R
0 o &) (-®)" o |

The above equation contains a system of five equations, the EOM of the vehicle and the
bridge, the kinematic constrains and the compatibility condition. This system shows that the
vehicle and the bridge are independent (zero in D;,, D,;), so the vehicle and bridge
subsystems can be solved in parallel, reducing the computational cost of the analysis.

To do so, the contact forces must be estimated.

Solving Eq (3.16) as to A¥, AP and 19 , results:

-1

v {(Wfo)T(Kfo)_lwv 0 —E”]I
[f‘z =| 0 (ngf)T(Kgff)_lwb EP |
u
| (—EV)T (E?)" 0 ] (3.17)

(—Wfo)T(Kfo)_va —v?r.”

T -1
(W2s) (Kbp) FP
0

Also, from Eq (3.16), vehicle and bridge responses are:

[u”] _ | (e N 0 ) (F”] _[—W”

0 0]
b - b b

v
)lb
w9

) (3.18)

3.2.5 Time-integration
According to the Newmark-B method (Appendix), the velocities and accelerations of the
vehicle and bridge at time step t+At of time integration are, respectively:

{iv/b(+4t) — ao(uv/b(t+At) _ uv/b(t)) _ azuv/b(t) _ asuv/b(t) (3.19)
/b)) — gu/b® 4 g §iv/b® 4 g jjo/bEan (3.20)

Where, w?/5® and i?/P® are the equivalent velocities and accelerations of the vehicle
(superscript v) and of the bridge (superscript b) at current time step t. The parameters
a, to ay are the Newmark-f coefficients as presented in the Appendix.

Utilizing Egs (3.2), (3.4), (3.19) and (3.20), the products Ky u” (t+4t) ang Kgffub (t+40) of
Egs (3.1) and (3.3) at time £ + At become:
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2
<m % +c % + kﬂ) v (t+4t) — gy v (+At) _ opv @) _ prpv © (3.21)
2
<m % +c :t + kb> ub +46) — Eby b (t+4t) _ byb (&) _ g byb (O (3.22)
Where,
7P O = qu/P® 4 q, @b ® 4 g/ ® .
@b ® = qqu?/b® 4 a7/ ® 4 qziv/b® 5.24)
And
K’ = aym” + a;c” + kY 525
K? = agm® + a;c? + kP (3.26)

K" and K? are the equivalent stiffness matrices during time-integration

The last two products of Egs. (3.21) and (3.22) are considered as additional force vectors. As
they refer to the current time t, they can be considered as known for the next time step t +
At. So, they are shifted to the right-hand side of Eq. (3.18) together with the force vectors
Fv (448 gnq Fb (4448 £6rming the equivalent force vectors F¥ (t+40) gng Fb (t+4t) .

Fv (44t — gy (t+4t) 4 cvgv (O 4 iy O (3.27)
Fv+at) — pv e+t 4 viv(® 4 vy © (3.28)

Employing Eq. (3.19) to (3.22), becomes:

1 I G Y SR

l]} (t+At)
0 (I_{b)_l Fb 0 wbHan lbl (3.29)

T T
Similarly, the products (szf) u? (t+48 gng (ngf) ub ¢+48 of Egs. (3.12) and (3.13) at
time step t + At become:

(ngf)Tuv (t+40) — (o)Tyv (A0 _ (yv)Tr O, (3.30)
(ngf) ub(t+At) — (Wb)Tub(t+At) (Wb) =b (1) (3.31)

Where, W? and WP are the equivalent contact direction matrices during the integration of
the system:

12



W” = aOW”,
Wb = agW? + a,2vW'? + v2W'"b (3.32)

Finally, Eq (3.17) becomes:

v+ W) (Kv)twv 0 —Ev
— T (t+4t) f— 1 \—1

).b — 0 (Wb) (Kb) Wb (t+A4¢t) Eb

L9 (_EV)T (Eb)T

(_Wv)T(Rv)—lfv + wY (3-33)

(Wb)T (t+At) (I_(b)_lfb +w
0

Where vectors w? and w? contain additional terms produced during the time-integration:

wv = (—W”)T(—ﬁ” (t)) _ vzrcu
wh = (W) (=it ©) + 20(w)" (—itb ©) (3.34)

3.3 Extended Modified Bridge System method to decouple railway bridges

3.3.1 Introduction

This section relies on the work [6]. The goal is to examine the dynamics of the vehicle-bridge
systems in the vertical plane and break down the coupling mechanisms of VBI of MDOF
vehicle-MDOF bridge systems. The decoupling of the adopted MDOF configuration relies on
an asymptotic expansion analysis of the response of the coupled system in the vertical
plane. Based on the asymptotic expansion analysis of the coupled system response, the
study [6] brings forward the dominant coupling parameters and their relative importance on
the bridge response. The proposed decoupling EMBS method solves the bridge
independently of the vehicle by changing its mechanical system via additional damping,
stiffness and loading terms. The proposed decoupling formulations are applicable to any
bridge type.

3.3.2 Vehicle-Bridge interaction: problem formulation

This section formulates the equations of motion of an MDOF vehicle traversing a generic
MDOF bridge. As with Lagrange method, the goal is to examine the dynamics of vehicle-
bridge systems in the vertical plane and break down the coupling mechanisms of VBI of
MDOF vehicle-MDOF bridge systems.

13



3.3.3 Description of the VBI problem

Vehicle subsystem

As presented in section 2.2 the EOM of the vehicle corresponds to Eq. (2.1). In EMBS method
in order to facilitate the decoupling of the vehicle-bridge system, the EOM of the MDOF
vehicle is partitioned into the upper part (DOFs not in contact with the bridge) and the wheel’s
part (DOFs in contact with the bridge). The EOM of the vehicle is considered about its statically
deformed configuration under its self-weight.

So, Eq (2.1) becomes:
5 el i + [ty o [ ]+ [esyr v [ L] = ]

_ 5:] (3.35)

Where m, ¢ and k denote the mass, damping and stiffness matrices of the upper part
(subscript ()*) and of the wheels part (subscript ()*) of the vehicle, and the coupling
submatrices between the two parts (subscripts )%*" and O)"'%).

A(t) is the vector of the contact forces between the vehicle and bridge subsystems
WY is the contact direction matrix (of the wheels part), associating the contact forces with

the DOFs of the vehicle. Note that from eq (2.1) W? = [M(/)W] .

F* and FY are the external force vectors of the two parts of the vehicle, thus no external
excitation is considered and the vectors F* and F¥ are henceforth zero vectors.

Bridge subsystem

As presented in section (2.3) for the general model of a bridge subsystem, the EOM of the
bridge is:

[mp]{ity} + [epl{itp} + [kpl{up} + [WP{AN} = {Fp} (3.36)

All terms are already presented in section (2.3)

At this point it is essential to point out that the overdot indicates differentiation with respect
to the dimensional time t, while prime denotes differentiation with respect to the
dimensional location of the vehicle x.

Coupled VBI system
The EOM of the coupled vehicle-bridge system is:

mit+cu+ku—WA=F (3.37)
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Where m, ¢ and k are the corresponding mass, damping and stiffness matrices of the entire
system and u(t) is the displacement vector of the coupled system:

m* 0 ct v
m= [[ 0 mw] 0 ], c= [[CW'H c¥ ] 0],
0 mb 0 ch
kv k"'W] 0 ] (3.38)
k= |lkw* kY ,
0 kb

(3.39)

In this study a 2D vehicle (see applications (4.2), (4.3)) is considered where u" contains only
translational DOFs along the vertical direction, thus W"=E where E is the identity matrix.

] o

_ Wb Fb

W = and F =

(3.40)

To estimate the contact force A, as in Lagrange method, the study assumes “rigid contact”
between the wheels and the bridge. This assumption implies continuous contact, and
subsequently zero relative displacement/acceleration gy (x,t) = gy(x,t) = 0, between
the wheels and the bridge. The relative displacement between the two subsystems is:

gy = wWTu — r.= u” — (Wb)Tub -7, (3.41)

Where r.(x) is the irregularities vector, consisting of the irregularities r.(x;) at each point.
The irregularities, as in Lagrange method, are simulated as presented in the (Appendix). The
relative velocity gy (x, t) results by differentiating the relative displacement vector with
respect to time t:

. . . /T T.
gy =Wli+ vWTu—vr,/ =" —v(W?) ub — (WP) ub —vr,/ (3.42)
Accordingly, the relative acceleration is:
gy =WTlit + 2oW'Ti + v2W'"Tu — v?r,.” (3.43)

Applying the kinematic constrain on the acceleration level gy = 0 and substituting it into
the system’s EOM gives the contact force:

15



WTm™1(F — cit — ku)

A=-G"1
+2oW' T v*W'Tu — v?r/”

(3.44)

where G~1 is the mass participating in the contact interaction between the wheels and the
bridge.

G =W'm W = (m*)~' + (W?)" (mb) " (w?) (3.45)

Substituting the system matrices u, m, ¢, k, W and F, as well as the wheels response u" the
contact force A becomes:

A=6"1(m")1 (cw'"u" + v (w?) b + ch(Wb)’Tub + vcwrc’)

+6 1 (mw)1 (kw'"u" + kW(W”)Tub + k“"rc)

+G—1(Wb)T(mb)_1(Fb — chib — kbub) (3.46)
+ 67 (2o(w?) i+ w2 (W) w4 v, )

Subsequently, substituting A into Eq. (3.36) the bridge’s EOM becomes:
mbi? + [cb + W”G‘l(m“’)‘lcw(W”)T
+ w6 (zo(w?)" — () (m?) e )i
[+k2 + w6t amny (ver(w?) " + e (w?)')
+ w6 (w2 (w?)" - (w?)' (m) e )

-1
= F* — w6 (W?)' (m®) " P + v?r.")
— Wb (m™) (kW ut + VMt + kKYr, + vcvr,')

(3.47)

Dimensionless description

To identify the constituent mechanisms of the VBI on the mechanical system of the bridge,
this section formulates the EOMs of the vehicle and bridge subsystems in dimensionless
terms, as proposed by the authors [6]. As the interest is mainly on the bridge subsystem, the
dimensionless equations are expressed with reference to the length L, eigenfrequency w?
and generalized mass gmP of the first mode of the bridge.
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The dimensionless contact force is:

~ . . [T
A= Gmba? ¢ 1(m") ! (c“""ﬁ" . cW(W”)Tﬁ” +S,c¥(Wwh) ub
+ S,,CWRC')
T
+———= G (m") " (K u* + k¥ (WP) wb + KR
mb(wb)z ( (w?) C) (3.48)
. 1
G-1(wP b b _ .b55b )
gmbwb (W)( ) <wb)2LF -cu _Jku)
IIT~ 17}
+ W Gt (zs,,(wb) wb + 5,2 (Wwh)" @ +S,°R, )
Consisting of the dimensionless contact forces 4; = A—Z at each pointi
gmb(w?)"L
ub = —ub ut = —u" are the (dimensionless) displacement vectors of the bridge and of the

vehlcle s upper part, respectively, both scaled with respect to the bridge length L (Table 3-1).

Assume ky is the stiffness and ¢}, is the damping of the primary suspension system of the
generic vehicle. Introducing the contact matrix W*, of the upper and wheels part of the
system, the coupling k*" and c*" submatrices can be written as:

K" = KSW* and c*¥ = cjW* (3.49)

Where W* matrix varies according to the vehicle model. See sections (4.2) and (4.3) for
quarter car model and 10-Dof vehicle.

Substituting the matrices m", k%, ¢ and k™", ¢ the dimensionless contact force
becomes:

. C .
A=—s 6t (wa+ (W)@ +5,(W?) @ + ,R;)

+ ic.'—l (W + (wh)' @ + R )

o1
gmbwb ‘1(Wb)( by~ ( cbub_ﬁkbub) (3.50)

1 N N ,
o6 (2s,(w?)" > + s2(w?) " + SZR)

As shown on Table (3-1), Cis the impedance ratio of the primary suspension system of the
vehicle, where gmPw? is the bridge’s mechanical impedance, denoting the resistance of the
bridge to vibrations because of its mass. K represents the stiffness ratio of the primary
suspension system of the vehicle with respect to the stiffness of the fundamental mode of
the bridge. It can be noticed from eq (3.50) that the contact force depends solely on the
primary suspension system of the vehicle, connecting the bogies and the wheels, and
includes the response of the bridge and of the vehicle’s upper part u* (but not the response
of the wheels part u").
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Table 3-1 Dimensionless groups of the coupled vehicle-bridge system

group description group description
1 Dimensionless mY Mass ratio
wt= Zuu vehicle M=—7
gm
displacement
vector
1 Dimensionless kY Stiffness ratio
@b =—ub e
L bridge — gmb(wh)?
displacement
vector
Mb = 1 Scaled bridge mass = C,‘,’ Impedance ratio
gm? matrix gmPw?
ch — 1 b Scaled bridge 0= _P Eigenfrequency ratio
gmbwB damping matrix wb
b _ 1 Scaled bridge = Cy Damping ratio of
gmb(w?)? stiffness matrix 2mY wP vehicle’s primary
suspension system
b — 1 Scaled bridge force v m% Mass ratio of vehicle
gmP(wP)? vector ~ gm? wheels
R = 1 , Scaled irregularities | T = m5¢ Dimensionless time
c— 7'
L vector
RS =7/ Scaled slope of 5 = |4 Speed parameter
irregularities vector YT wbL
R, =Lr." Scaled curvature of

irregularities vector
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Accordingly, the dimensionless EOM of the bridge becomes:
. 12 1 -1 .
Mbub + (cb + CWepp + 28, Wepp ——5 Wepp(m”) cb) b
! b”
+ (Kb + CS, Wi+ KWy + SEW S,
1 -1
b b b\ b
T Tab)? Wers(m®) "k )" (3.51)
~ K cs 52
_Tb br—-1 vV pr vV prn
=F"—-W°G <WRC+WRC+WRC>

1 -1 « ~ 2
— ng”(mb) FP — Wy (Ku* + Cu®)

Where M?, C? and K? are the dimensionless (scaled) mass, damping and stiffness matrices
of the bridge, and F? is the dimensionless force vector acting on the bridge due to the
vehicle’s self-weight. For brevity reasons, the following dimensionless matrices are
introduced:

1 : T
Werr = G W6 (W")
: 1 . T
Wi = Wwba 1L(wh)

144 1 IIT
b _ br-172 b
Werr = Gmb W' 6L (w?)

1 T (3.52)
_ b—1(yb
Wepp = —SWP6H(W?)
! 1 [T
_ bo-1 b
Wepp = —SWPGTIL(W?)
1
* b -1 *
2’” = WW G'w
The dimensionless EOM of the vehicle’s upper part is:
e g
gmb gmPwb gmP (wh)?
. /T
= —c(w)' ((W”)Tﬁ” +S,(WP) u’ + SvR’c) (3.53)
— KW ((W?)' @ +R,)
The EOM of the bridge can be written as:
bb b b b ~b _ b ~u s
M2 + (€ + €,(x,8,)) 11 + (K + Ky (x,5,)) 0 = F” + Fy (%, i) .54)
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Eq (3.54) shows that the effect of VBI on the bridge can be expressed via three terms:
an additional damping matrix term C;(x, §,,) , an additional stiffness matrix term K;(x, S,,)

and an additional loading vector term F,(ﬁ", ﬁ").

The additional terms are:

' 1 -1
’ " 1 -1
F(u*, ) = -whG! K o Cvp S0 (5:59)
\au,u")=- mv c+mw c+mb c

1 -1 « ~ 2
— mw’;ﬂ(mb) f? — w(Ku* + cu®)

The additional damping term corresponds to a time-varying additional damping matrix, mainly
dependent on the impedance ratio C of the primary suspension system of the suspension’s
system of the vehicle. The additional stiffness term is also time-varying, as it depends on the
location of the vehicle on the bridge. Lastly, the additional loading vector includes additional
forces acting on the bridge due to irregularities, as well as due to the response of the
traversing vehicle. Note that the vehicle response appears solely in the additional loading
vector.

Decoupling methodology

The formulation of eq (3.54) is exact and informative regarding the constituent mechanisms
of the VBI on the mechanical system of the bridge. However, it still involves the fully coupled
system. The present section, as presented by the researchers in [6], examines further the
MDOF vehicle-MDOF bridge system and estimates the response of the bridge as an asymptotic
expansion about a small dimensionless parameter € (corresponding to a vehicle to bridge
frequency ratio Q). This allows to determine the relative importance of the constituent VBI
mechanisms and decouple the vehicle-bridge system by eliminating the vehicle response from
the EOM of the bridge.

Asymptotic expansion of the coupled EOMs

Consider a frequency w?, corresponding to the vehicle’s primary suspension system, defined
as:

v

w?P = m_l:’ - kY= m? (wP)? (3.56)

Where m” is the vehicle’s total mass and kj, is the stiffness of the primary suspension system.
Accordingly, the damping of the primary suspension system is:
v

c
Y — 2mVwP P p—-_ P
¢p = 2m WP = ¢ 2m’ wP (3.57)
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Where {? is the corresponding damping ratio of the primary suspension system of the vehicle.
Note that w? does not necessarily correspond to any of the natural frequencies of the vehicle.
Let M = m”/gmb denote the vehicle to bridge mass ratio and 2 = wP/wP the
eigenfrequency ratio. With the aid of {P, M and Q, and considering that C = 2MQ{? and
K = MQ?, the EOM of the bridge becomes:
) / 1 -1 2
Mbub + (cb + 2ZMOSPW g + 25, Wepp — —5 Wep(m”) cb) b
+ (Kb +2ZMQPS, WY, + MO?WY + S2WE,,
1 -1
b b b\sb
—Wweff(m ) k )u

- M0? 2MQIPS LY
=Fb —whg? ( R+ ¢ “R. + —';R'c'>
m

(3.58)

mY mv

- mw’;ﬂ(mb)_lﬂ — W (MOPT + 2MOGPiY)

Accordingly, the EOM of the vehicle’s upper part is:

. 1
—m"u* + cut + ——— k"ut
gmP mbwb mP (wb)?

= —2MqP(WH)T (wP) i (3.59)
1T
- Mo(W*)T ((wb) ub + R;) [2¢PS, + 2]

In practice, the frequency ratio Q of the vehicle’s primary suspension system with respect to
the fundamental frequency of the bridge obtains small values. That converts the original VBI
problem into a perturbation problem with small parameter e=Q. For 0 < £ < 1, assume that
the bridge response from eq (3.58) has an asymptotic expansion of the form:

= uh + euil + 208 + 0(£?)
P = b + il + 2l + 0(&3) (3.60)

ub = b + il + 2l + 0(&3)

Substituting eq (3.60) into the bridge’s EOM and keeping only the zero-order terms in g, the
zero-order EOM of the bridge is:

kS ’ 1 -1 -
Mbuf + (cb + 28, Wepr — —5 Wepy(m®) cb) g
14 1 -1 ~
+ (kP + 3wty — oz Werr(m”) k”) i (3.61)

_Fb _whg-1 ﬁRu _ 1 wb ( b)_lFb
- mb ¢ (a)b)z eff\mM
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Which includes the external forces acting on the bridge due to the vehicle’s self-weight F?,
neglecting though other dynamic characteristics of the vehicle, such us the stiffness and
impedance ratios and the vehicle’s response. In conclusion, the only vehicle parameters that
affect the zero-order response of the bridge are the vehicle’s mass and moving speed.
Likewise, the zero-order response of the vehicle’s upper part is:

1 ~u
mb(wb)z© M0~ (3.62)

For small mass of the wheels m" with respect to the generalized mass of the bridge
gm? (MY = m"/gm?
(1/gmb)G‘1 converges to the dimensionless mass of the wheels, therefore:

K 1), the dimensionless mass participating in the contact

1
gmb

T (N G ) R

Where E is the identity matrix. Subsequently, the EOM of the bridge reduces to:

bZb o bsib bsib _ b
M°uy + C°ug + K°ug = F (3.64)

Which solely depends on F?, as the terms associated with the dimensionless contact mass
(1/gmb)G_1 vanish from eq (3.61). This expression corresponds to the well-known moving
load method [1]. So, eq (3.64) shows that the moving load method is a zero-order
approximation of the bridge response (for small stiffness and impedance C ratios of the
primary suspension system of the vehicle), under the additional assumption of small,
normalized mass of the wheels with respect to the bridge’s generalized mass (MY =

mw/gmb <« 1) . In other words, the moving load method is valid under assumptions, which
often are not satisfied.

The first order in € bridge’s EOM is:
1 .
MPauf + (c +28,Whp ——Wh(m?) e )u’l’

" 1
b 2 b b
(K +S Weff Car? Wiir(m ) 'k )

= —2MQP (W‘g’*fﬁo + S, WYl + WY ik (3.65)

S
br-1"V pr
+ WG WRC)

22



The vehicle’s upper part first-order response is:

.. 1 .
m*uy + ——— c*uy +

mb mbwb mb (wb)? k*uf
. [T .
= —2mgrw )" (w)'ig - s, (w?) " uh+ 5,8, 0O
Lastly, the second order in € response of the bridge is:
2 ’ 1 -1 2
" 1 -1 ~
(3.67)

= 2M3P (W15 + S, WY 18 + Wy i)

1
— M( zlfﬁo + WWbG_IRC)

To demonstrate the effect of different orders of € on bridge response, the authors of [5] have
examined the response of a Skidtrask bridge traversed by a one-vehicle Pioneer passenger
train (Figure 3-1). By doing so they concluded that smaller orders of the bridge response have
a higher effect on the total response of the bridge and that the first two orders (iig + sﬁll’)
of the bridge response provide a very good approximation of the solution.

3.3.4 Extended Modified Bridge System (EMBS) method

As mentioned above, the asymptotic expansion analysis about the small dimensionless
parameter €=Q reveals the terms that should be included in the EOM of the bridge. As shown
in the Figure (3-1) at least all terms up to first order in € should be considered. This allows to
eliminate the vehicle response from the EOM of the bridge. Based on the expressions of the
zero and first order response of the bridge and neglecting higher order terms with minor
influence on the bridge response, the writers [6] proposed a decoupled MDOF EOM for the
bridge system. The proposed formula depends on the self-weight of the vehicle (acting on the
bridge) F?, the impedance ratio of the vehicle’s primary suspension system C, the normalized
mass of the wheels M,, and the speed parameter §,,, neglecting terms associated with the
stiffness ratio K and vehicle’s response.
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Figure 3-1 Validation of the proposed method [6]

The EOM of the bridge with the EMBS method becomes:

MPib + (Cb + CEMBs)ilb + (Kb + KEMBS)ub = F? + Fgyps (3.68)

Where,
! 1 -1 . .
Cemps = CWeps + ZSVWZ” - ngff(mb) c?, additional damping
matrix
" 1 -1 . .
Kgups = CS,Wefp + S?,W’;ﬂ - ngff(mb) k? , additional stiffness
matrix (3.69)
_ 1 b P s b -1 (CSv 52 .
Fgups = _mw"”(m ) F° —w°aG (WR’C +WRICI) , additional
load vector
Time-integration

As in Lagrange method (section 3.2.5), in order to estimate the response of the vehicle-bridge
system Newmark-p method is being used. According to (Appendix B):

[Keff] = aolM] + ay[C] + [K], (3.70)

{Pesrl,, e = Plrrac + [M] (ao{U}t + ay{U}, + a3{i]}t) (3.71)
+ €] (@ V) + ag (), + as{0},)
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-1
{U}esae = [Kegy] {Peff}t+At (3.72)
Where according to eq (3.68),
[M] = M”,[C] = C" + Cgyps , [K] = K® + Kgups , {P} = F* + Fgyps (3.73)

During the time-integration the time dependent above matrices (3.69) are formed as:

/ 1 -1
Cemps = cw” (t+4t) + 2valb (t+At) —Wb (t+4t) mb) ch

eff eff b Werr
! A 11 (t+A4t) 1 b A -1
Kgups = CS,Wop /4 + S2Why, o wii49 (mb) " kb
1 obran . b\ 1pb(e+a 3.74
Fgmps = — (wb)zLWeff (mP) P (t+raD (3.74)

2
_ Wb (t+At)G—1 <ﬁ R:; + ibR:,‘,>
m gm

w

All the parameters from Egs. (3.70)~(3.73) are now fully defined and the dynamic response
of the system can be estimated using Newmark-f3 (Appendix B).
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Chapter 4

4 Applications and MATLAB simulation

4.1 Introduction

The procedure of the simulation of the VBI system can be summarized as detailed bellow.
Firstly, the vehicle model is introduced in MATLAB, constructing the matrices m,, k,, ¢, and
WYV in the form of eqgs (3.1) and (3.54) for Lagrange and EMBS solving methods. Then the
bridge model is designed in COMSOL Multiphysics software where the user can choose from
a variety of structural elements (beams, trusses, etc.)[7], define the geometry and the
structural features and built the final structure model. Afterwards, the mass, stiffness,
damping my, kj,, ¢, matrices, along with several other information for the bridge subsystem,
are exported from COMSOL to MATLAB. The VBI system is now fully defined and the time-
integration of the simulation follows the Newmark-$ method, leading to the dynamic
response of the system.

4.2  Sprung mass model

This model represents an undamped quarter car model with 2 degrees of freedom including
body mass bouncing and wheel/axle mass bouncing (Figure 4-1). The kinetic equilibrium
function of the vehicle for all degrees of freedom, according to the Newton’s 2nd law, is:

Equation of motion for the wheel:

mwill + Cv(ill — uz) + kv(ul - uz) = Fv (41)

Car body bounce motion:

valz + Cv(ilz - u1) + kv(uz - ul) =0 (42)

Corresponding to the general form (2.1) for the vehicle subsystem, Egs. (4.1) and (4.2)
become:

mY 0 i‘ll Cy —Cy ill kv —kv] {ul} _ {Fself — Al }
[ 0 Mv] {uz} + —Cy Gy Huz} + [—kv k, [liy) 0 (43)

where,
Fv =Fself+'11:

Fgeif = Mgeipg is the force vector corresponding to self-weight of the vehicle

Mgy = (M? + m") is the self-weight of the sprung mass system
g =9.81 Lﬂz] is the acceleration of gravity

Uy U, : vertical displacements for the wheel and the car body

26



Note that for only 1-wheel WV = [(1)] and {Ay} = 1;

soWPAy = [);)1] (see eq (2.1)), where WY Ay, is already shifted in the right hand of eq (4.3)

To examine the dynamics of the above vehicle model interacting with a bridge model, using
Lagrange and EMBS methods, Eq. (4.3) should be formed in the standards of Eq. (3.1) and

(3.35) respectively.

So, for the Lagrange method we define:

mv:[n(l)w 0],Cv_ Cy _Cv]’kv:[kv

MY [ Rl R o -k,
F, = _Mself

And for the EMBS method:

mt=M" m"=m",
cY = cWW = Wt = W = ¢V

kY = KWW = WA = kW = kY

w* = [1]

w* = [1] — since there is only one wheel

Figure 4-1 Sprung mass model

Table 4-1 Vehicle's model parameters

= [y =

Car body mass Wheel mass Suspension system | Suspension system
MY (kg) mY (kg) stiffness damping
k¥ (k_N) - (kN . S)
m m
5750 0.01 1595 0
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4.3  Train vehicle model

The presented vehicle model is commonly used to describe the passenger car of a train
vehicle[8],[9]. The vehicle is supported on two double-axes bogies at each end and is
modelled as a 10-DOF lumped mass system, comprising the vehicle body mass and its
moment of inertia (m,J.),the two bogie masses and the associated moments of inertia
(m,J,), and four wheelset unsprung masses (m,,). The bogie sideframe mass is linked with
the wheel unsprung mass through the primary suspension springs (ks1, €51) and linked with
the vehicle body mass through the secondary suspension springs (ks2, €52) (Figure 4-2).

———— = —— i —— - -

me . Je O _I U,

T
kstcsz {.} ksZ)CSZ
01

kslncsl
Uy

Figure 4-2 10-DOFs vehicle model
Equations of motion for the vehicle subsystem
Car body bounce

Mcile + 2C5p 0 + 2kgpue — Csp(Ueq +hep) — ko (U +upz) =0 (4.4)
Car body pitch

Jebc + 2¢52120, + 2k 53126, — Csplc(Uer + W) — ksple(uer + Uz) = 0 (4.5)
Bogie 1 bounce

Meiipy + (5o + 2¢51)Up1 + (ko + 2ks1)Upy — Co1 (g + Thy2) (4.6)

- ksl (uwl + uwz) - Csz(ac + lcéc) - ksz (uc + lcec) =0

28



Bogie 1 pitch

JeOe1 + 2¢51 12041 + 2ks1120,1 — el (yy + ) — ksple (g + typ) = 0

Bogie 2 bounce

Meiley + (Cs2 + 2¢51) U + (ksa + 2ks1)Upy — o1 Uz + Uypa)

- ksl(uw3 + uw4) - CSZ(aC - lcéc) - ksz (uc - lcgc) =0

Bogie 2 pitch

Je0is + 2¢51 1205 + 2ks1 12015 — cs1le (s + Tpa) — kst le (s + Uy) = 0

Wheels equations

My, iy + €51 (g — Upr) + Kgq g — Ugy) — slltétl — kg1 le0 + A4 = Foelf

My, + €51 (W — Upr) + Kgq Uy — Ugy) + Csllte:tl + kg1 le0 + A, = Foelf
My, ilys + €51 (W3 — Upp) + Kgq Uy — Upp) — Cs1tht2 — k110 + A3 = Foelf
My, lyy + Cs1 (s — W) + Ko Uys — Uep) + Cs1 1Oy + k1110 + A4 = Foelf

Matrix form of Egs. (4.6)~(4.12)
Vehicle mass matrix

m, 0 0 0 0 0 O 0

o /. 0 0 0 O O 0

0 0 mi,; 0 0 O O 0

o o o0 Jj, 0 O O 0

{0 o0 o 0 m O O 0

™=lo 0 0 0 0 J/, 0 0

o o o 0 0 0 m, O

o 0 0 0 0 O 0 m,

0O 0 0 0 0 O O 0

[0 0 0 0 0 0 o 0

c1.7

[2Cs 0 —Cqy 0 —Cg 0
0 2,12 —cyl, 0 Csole 0
—Csp  —Cgqale Cop + 2¢ 0 0 0
0 0 0 2c4, 12 0 0
_|—Cs2  Cs2lc 0 0 Csp + 2¢41 0

1o 0 0 0 0 2cq, 12
0 0 —Cs1 —Cs1lt 0 0
0 0 —Cs1 Cs1lt 0 0

0 0 0 0 —Cs1 —Cs1 1t

L 0 0 0 0 —Cs1 —Cs1ly
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0
0

—Cs1
—Cs1le

(4.7)
(4.8)
(4.9)
(4.10)
0 -
0
0
0
0
0
0
0
0
mW
0 0
0 0
—Cq1 0
Cs1le 0
0 —Cq1
0 _Csl lt
0 0
Cs1 0
0 Cs1
0 0

0
0
0
0
—Cs1

_Csllt
0




2k, 0 —ks,
0 stz lg _ksz lc
_ksz _ksz lc ksZ + stl
0 0 0
_ksz kszlc 0
0 0 0
0 0 —kg
0 0 —kgy
0 0 0
0 0 0
e ([ Uc
6, 6,
i’ltl utl
O¢1 O¢1
iL. = 1:1.1:2 \ u, =4 Lftz 4
s T be
Uy Uy
Uy Uy
thy3 U3
\ilyy4/ \Lyy4/
( 0
0
0
0
0
F, =+ 0
Fself - /11
Fself - /12
Fself - /13
KFself - /14

0 —ks,
0 kszlc
0 0
2k 12 0
0 kg, + 2kgq
0 0
—kgyl; 0
kgl 0
0 _ksl
0 _ksl
r Uc
Oc
Ut
B¢
u, =4 zz \
Uw1
U2
Uw3
\Uy 4/

Corresponding to Lagrange method
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[T == =)

(=]

2k 12

_ksllt
_ksllt

0

0
_ksl
_ksllt
0
0
ks1
0
0
0

0

0
_ksl
ksile

0

0

0

ks1

0

0

¢ ,where Fgop = —(m. +0.5m; + 0.25m.) g

o o o

0
_ksl
_ksl lt
0
0
ks1
0

In order to correspond to the Lagrange and EMBS methods forms (3.1) and (3.35), the above
matrices should be written as presented below:

m,, ¢,, and k,, matrices already correspond in the specifications, so only W7, AV and FV are
clarified:

o o o

0
_ksl
_ksl lt
0
0
0
ks1




zeros(ndofs — N_wheels)

vV —
w _[ eye(N_wheels)

|2

and FY

And for the EMBS method the equivalent matrices are clarified as:

_ZCSZ 0 —Cg2 0 —Cg2
0 2 Cs2 lg —Cs2 lc 0 Cs2 lc
v = —Cs2 —Cs2 lc Cs2 +2€51 0 0
0 0 0 2¢s 12 0
—Cg2 Cszlc 0 0 Csop + chl
L 0 0 0 0 0
[ 0 0 0 0 ]
| 0 0 0 0 |
—C —C 0 0
@\ ek o o |
| 0 0 —Cs1 —Cs1 |
|. 0 0 _Csllt _cslltJ
cs1 0 0 0
aw_ |0 €1 0 0
0 0 ¢4 O
0 0 0 cy
_stz 0 —ksz 0 —ksz
0 2 ksZ l% _ksZ lc 0 ksZ lc
Kt = _ksz _kszlc ksZ + stl 0 0
0 0 0 2k, 12 0
—ks2 ks2l. 0 0 ksz + 2ksq
L 0 0 0 0 0
0 0 0 0
|[ 0 0 0 0 ]|
_ksl _ksl 0 0
== 00 ek o o |
l 0 0 —ks1 —ks1 J
0 0 —ks1ly —ksql;
ki O 0 0
|0 ka 0 0

0 0 kg O
0 0 0 kg

m* =diag{m.J.,m,J, m,J}
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m* =diag{m,,m,,m,,m,}

0o -1 L/L 0 0]
w00 -1 -1/t 0 o |
“lo o o 0 -1 /L]
lo o o o -1 1/

Table 4-2 Parameters of the 10-DOFs vehicle model

Parameter Value
Car body mass m, 34230 (kg)
Bogie mass m; 2760 (kg)
Wheel mass m,, 1583 (kg)

Car body mass inertia J.
Bogie mass inertia J;
Primary suspension stiffness kgq
Primary suspension damping ¢y
Secondary suspension stiffness kg,
Secondary suspension damping Cgo
Half-distance between bogies [,

Half wheelbase [;

1.624x 10° (kg -m?)
2500 (kg - m?)
807.5 (kN /m)
7.5 (kN - s/m)
182.7 (kN /m)

16.35 (kN - s/m)
8.875 (m)
1.50 (m)

4.4 Simply supported bridge model

In this study the simply supported bridge is modelled as a 2D structure (Figure 4-3) with
Euler-Bernoulli beam elements (Figure 4-4). The finite element model of the bridge is

developed and analyzed using COMSOL Multiphysics simulation software.
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i
Pinned Support

“
Roller Support

Figure 4-3 2D simply supported bridge

In the 2D bridge case, the 2D beam element consists of 2Dofs per node, one in the vertical
direction u,, and one rotation 6, (Figure 4-4). The general form of the EOM of the bridge
remains the same but the mass, stiffness and damping matrices presented in Egs (4.11),
(4.12) and (4.13) are adapted in order to serve the 2D beams properties. Subsequently, the
mass matrix [my], the stiffness matrix [kp] and the damping matrix [cp] become:

156 22L 54 —13L (4.11)
[ b]zi 22L 4L*> 13L -3L*
420| 54 13L 156 -22L
—13L -3L% —-22L 4L%

12 6L —-12 6L (4.12)
[ky] = EIl 6L 412 -—6L 2L?
L3|-12 —6L 12 —6L
6L 2L> -6L 4L?

[c?] = ap[mP] + a4 [K?] (4.13)

where coefficients ag and a4 are estimated from eq (Appendix)

The above matrices are extracted from COMSOL, for the entire bridge structure. COMSOL
Multiphysics also gives the ability to extract the mesh information of the model. That
information contain details about the elements, nodes and degrees of freedom of the
model. The nodes position (coordinates) and the equivalent DOFs of the node, in addition to
the vehicle’s position, are some of the most principal parameters for the VBI system’s
definition.

The detection of the vehicle’s position on the structure and the equivalent element that acts
on, are constantly renewed and estimated.

The contact direction matrix [Wb] from eq (2.2) for the 2D simply supported bridge can be
evaluated with the help of shape functions for a 2D beam element, as presented bellow.
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BRIDGE

FE BRIDGE MODEL

Xj_1 S xy(t) £ x5

92A
Node (j-1)

1‘) Node( j)
B 923

1
1
1
4
]
1

xy(t) — xj_

1
1
VBI ELEMENT "
o La = (- x-1)

Figure 4-4 Euler-Bernoulli beam element

In the beam local system, the displacements, u, and rotations, 8, are interpolated as:

Uya Uya (4.14)
uy Oza( _ 04
{f) = N2 Ns Ny Nl {70 0 = INTJ .20

ezB ezB

The shape functions are used to transfer the forces from the wheels to the equivalent nodes
of the bridge element at each time step of the simulation. So as the vehicle’s N-wheel moves
through the beam elements the equivalent Ay contact force acts on a specific element. To
specify that element we estimate the wheel’s position through eq (2.3) for time t; and locate
it to the nodes coordinates of the structure, accordingly. As the active beam element is now
known, with the help of the mesh information, extracted from COMSOL Multiphysics, the
degrees of freedom that correspond to the active beam element can also be specified.
Through this process the W? contact direction matrix can be estimated at each time, as:

Uj_q

0j-1 . . .

u (- where j-1 and j denote the nodes of the active element

0, )

WP (x;) = [N]

W"(x;) isa [ndofs_bridge x N_wheels] matrix where the only nonzero entries in the
matrix correspond to the DOFs of the bridge deck in contact with the vehicle’s wheels.
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Table 4-3 Parameters of the bridge model

Span length L Mass per unit Moment of Young’s Poisson’s
kg . . .
(m) length m (ﬁ) mert;a modulus ratio
I (m*) E(GPa) v
25 2303 2.90 2.87 0.2
4.5 Results

45.1 Sprung mass and simply supported bridge interaction

This section presents the dynamic responses of the interaction between the sprung mass
model, presented in section 4.2, and the simply supported bridge, presented in section 4.4
(Figure 4-5) and examines the influence of several parameters of the model.

uzf__ Mc<
kU

RS

w

N
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7.
7

(b)
Figure 4-5 Sprung mass-bridge (a) travelling the bridge (b) interaction

The dynamic response of the sprung mass-bridge system results after simulating the VBI
model in MATLAB, as mentioned in the introduction. Using the solving methods proposed in
sections 3.2 and 3.3 the above results arise.

0.5 %107 Midpoint Displacement
EMBS method
Lagrange method
D _"\\
Ay
\\
\
05 \
|"|
~— ‘\.
E
=
\\ .I-I
25 L L 1 — 1 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time(s)
(a)
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Figure 4-6 Vertical (a) displacement, (b) acceleration of the midpoint of the bridge
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car body acceleration
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wheel acceleration
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EMBS method
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Figure 4-8 Wheel's (a) displacement (b) acceleration

As we can see in Figure (4-6) the two solving methods (EMBS and Lagrange) present quite
similar results. However, in Figures (4-8(a)) we can see the results of Lagrange method diverge
from those of EMBS. As it seems the response of the car body and wheel of the system in the
Lagrange method tend to increase constantly, in contrast to the EMBS method where the
vehicle’s response seems more reasonable. Comparing the results from Figures ((4-6)~(4.8))
with those of [1],[10] for the same vehicle-bridge system we lead to the conclusion that EMBS
method is more accurate

Verification

To verify the simulated responses a static calculation could be carried out. According to the
Euler-Bernoulli beam theory and in the situation where a point load is on the middle of a
simply supported bridge [11], we can get:

dv P ( L) (4.15)
dxt " EI1°\* 72
By integration:
d*v P 9( L) N (4.16)
dx3 EIC\*T2)TAa
d’v P L L (4.17)
o = (m3)0(x—3) raxre
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2

dv_Pl( L) 9( L)+c1 2 4 (4.18)
o E 2% x X+ cyx

2 2 2
P1 L\? L\ ¢ c, (4.19)
[ —— —_ — _ .3 _4 .2
v(x) EI6<x 2) 9<x 2)+ 6x + X +c3x+cy
So, for the case of simply supported bridge the boundary conditions are:
v(0)=v(L)=0 (4.20)
v"'(0)=v"(L)=0
Subsequently for eq (4.8) and (4.6),
P1 L 3 L C1 Cy
—_ (o_Z Y\ a3, 202 _
0 EI6<O 2) 9(0 2)+6O +20 +c30+¢c,, forv(0)=0
- ¢4 =0sincef(x) =0ifx<0
0—P<O L)Q(O L) 0 "0)=0
=z7\073 —3 + 10+ ¢y, forv =
= C2 = 0
P1 L\? L\ ¢ c,
O=EE<L—§> 9(L—§>+€L3+7L2+C3L+C4, forv(L) =0
PLZ . .
— ¢3 = —— since (1) = 0, for Euler-Bernoulli beams
16EI
P L L N
0 :E(L_E>9<L_§>+C1L+C2 forv"(L) =0
N - _F
i iy
Eventually,
L PL3 (4.21)

Where for the quarter car model and the simply supported bridge of our model
M? = 5750 [kg],m" = 0.01 [kg],E = 2.87 [GPa],L = 25[m] and I = 2.9 [m*]

P = (MY + m")g, point load resulting from the vehicle’s weight

So,

v(x=1%)=-2.2062 x 10~3[m]

40



In Figure (4-9) we can see the midpoint displacement of the bridge the time that the vehicle
is located in the middle of the beam. The corresponding values from Lagrange and EMBS
methods are u, = —2.05 X 1073[m] and u, = —2.07 x 10~3[m], respectively and
come to quite good agreement with the analytical solution.

05 %103 Midpoint Displacement
embs method
lagrange multipliers method |/
ol 7 |
= \ 7
-15¢ \-/’_'“\\\ ]
.!::::\ u
o ._.:_\::\ Ll i
% /b
\—// ~—
_2-5 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time(s)

Figure 4-9 Vertical displacement of the midpoint of the bridge

Influence of speed

The bellow plots present the response of the system in case where the vehicle’s speed is
initially 100[km/h] and increases by a factor of 2 and 3. All the other parameters remain the
same.
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Figure 4-10 Speed influence in (a) displacement (b) acceleration of the bridge's midpoint
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Figure 4-11 Speed influence in (a) displacement (b) acceleration of the car body
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As the simulation’s results show, the speed of the vehicle has a significant effect on the
dynamic response of the system. Figures (4-10) show that by increasing the vehicle’s speed
by 2 and 3 times, the maximum value of the midpoint displacement increases by 1.1 and 1.4,
respectively. An even bigger increase on the displacement response (by factors 1.69 and 2) is
noted by the car body of the vehicle. The accelerations of the bridge and vehicle

Figures (4-11) also increase by increasing the vehicle’s speed, where the car body of the
system presents the biggest variation (by factors 4.6 and 8.3).

Influence of mass

This time the vehicle’s system mass is doubled and all the other parameters referring to the
vehicle and the bridge remain the same.
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Figure 4-12 Influence of vehicle’s mass in the bridge’s midpoint (a) displacement (b) acceleration
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car body acceleration
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Figure 4-13 Influence of vehicle’s mass in the car’s body (a) displacement (b) acceleration

(b)

As expected, any change in the vehicle’s mass corresponds immediately in the dynamic
response of the system. By increasing the vehicle’s mass, Figures (4-13),(4.14) show that both
the bridge and vehicle subsystems display an increase in their responses. Specifically, it’s
worth mentioning that the midpoint displacement of the bridge is doubled just like the mass
of the vehicle. This fact can easily be explained for the case of the sprung mass vehicle and
the simply supported bridge by just observing Eq. (4.10).
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Influence of vehicle’s suspension stiffness
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Figure 4-14 Midpoint (a) displacement (b) acceleration for different suspension stiffness
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Figure 4-15 Car's body (a) displacement (b) acceleration for different suspension stiffness
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As can be seen from figure (4-14) the influence of the suspension stiffness of the vehicle on
the bridge response is generally quite small. Someone could even suppose that the effect of
the suspension stiffness of the moving vehicle could be ignored in a practical design. Although,
after examining Figure (4-15) comes to notice that by changing the vehicle’s stiffness could
lead to essential increase in the vertical acceleration of the car body of the vehicle, a very
negative fact for the riding comfort of the passengers.

Influence of irregularities

Irregularities effect on bridge response
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Figure 4-16 Midpoint (top) displacement, (bottom) acceleration considering road discontinuities/roughness
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Figure 4-17 Car's body (a) displacement, (b) acceleration considering road discontinuities/roughness
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From Figure (4-16) can be noticed that for the case of moderate vertical irregularities
(Appendix A) the influence on the bridge response is negligible. The range and the maximum
values of the bridge’s midpoint displacement and acceleration Figure (4-16) remain almost
the same. On the other hand, the irregularity profile of the bridge can drastically increase
the level of the vibrations in the vehicle subsystem. As it can be seen in Figure (4-17) the
displacement and mostly the acceleration of the car body of the vehicle present steep
increase when the surface of the bridge is not smooth (class 4 and 6 irregularities). Note that
those increases in the displacement and acceleration of the car body occur for
discontinuities of small amplitudes (O () =10~3mm), pointing out that even small
discontinuities on the bridge have a major impact in the vehicle’s response.

4.5.2 Train vehicle and simply supported bridge interaction
In the previous section we examined a simply (2-DOF) vehicle interacting with a simply

supported bridge. In this section, a more complex model is presented for the vehicle
subsystem interacting with the same bridge model (Figure 4-18).

(a)
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|

7

(b)

Figure 4-18 (a) train vehicle travelling a simply supported bridge (b) VBI interaction system

The following results represent the responses of the VBI system during and after the time of
their interaction. The below responses correspond to the values of Table (4-3) for an
undamped bridge. In figures (4-20),(4-21) we can examine the upper’s part response of the
vehicle where we notice that the car body of the vehicle presents smaller values than the
bogies, for both vertical displacements and accelerations. It is also noticed that the bogies
responses converge faster than those of the car’s body. Those notifications come to an
agreement with the fact that the passengers of the vehicle are placed in the car body. So, for
the car body to provide both comfort and safety to the passengers, the vibration of the VBI
is mainly absorbed by the primary suspension system and the bogies.
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Figure 4-19 Midpoint (a) displacement (b) acceleration of the bridge
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Figure 4-20 (a) displacement, (b) acceleration response for the upper part of the vehicle (car body, bogies)
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Influence of structural damping

The previous simulation is repeated for the case where the structural damping of the bridge
is considered, as presented in section 2.3.1.

6 %107 Midpoint Displacement

zero damping
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Figure 4-22 Midpoint (a) displacement (b) acceleration considering structural damping
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As expected by including the structural damping of the bridge subsystem, the bridge’s
response is directly affected. Figure (4-22(a)) shows that the bridge’s midpoint displacement
is mainly affected after the departure of the vehicle, where the bridge’s response constantly
converges during the time of the simulation. Moreover, it is interesting to point out that the
bridge’s midpoint acceleration changes significantly. Comparing Figure (4-19(b)) and (4-
22(b)) we notice that the bridge’s midpoint acceleration amplitude is smaller and more
importantly the total response is much smoother.

Influence of vehicle’s suspension damping

In this case we examine the influence of the primary and secondary damping of the vehicle’s
suspension system. As expected from increasing the value of the primary and secondary
suspension damping, the amplitude of the vehicle’s displacement appears to decrease for
the upper part of the vehicle (car body and bogies). At this point, we should note that the
car’s body response is mostly affected by the secondary suspension while the responses of
the bogies are similar effected by both primary and secondary suspension changes

Figure (4-23),(4-24).
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Car body acceleration
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5 Conclusion and future work

5.1 Conclusion

In order to dodge traffic problems in the past years, many cities have expanded their
transportation system by adding more and more highway and railway bridges, where
citizens can travel by their own vehicles or very frequently by railway trains. For that reason,
the investigation of the VBI dynamics is very important to ensure safety and comfort during
travelling. In this context, this study examines the influence of various parameters of the
vehicle and bridge. This examination is carried out using Lagrange and EMBS method to
solve the VBI system and Newmark-f time-integration method to simulate the
corresponding response in MATLAB software.

As the simulation results show, the speed of the vehicle has a noteworthy impact in the
dynamic responses of the system. In general, when the vehicle travels with high velocities
the vibrations present higher amplitude. Similar results occur in case the vehicle’s mass
increases. Moreover, it should be noted that changes in the suspension system can have
crucial effect in the acceleration responses of the vehicle, which directly acts on the riding
comfort and safety of the passengers. One more factor that threatens the passenger’s
comfort is the road irregularities, where even small discontinuities on the bridge’s surface
can cause significant elevation in the car’s body response.

The influence of both vehicle’s and bridge parameters indicate the importance of studying
the dynamics of VBI system and design both vehicles and bridges considering the safety of
the passengers.

5.2 Future work

Nowadays, due to novel materials and construction methods, there is a substantial variation
in bridge structures and vehicles. In this thesis, the dynamics of VBI system is simulated for a
two-dimensional model for the vehicle. The model of the bridge’s subsystem is also
simplified to a simply supported Euler-Bernoulli beam. For this reason, a fully (3D)
representation for both vehicle and bridge could examine the VBI system mechanisms in a
more complete way. Last but not least, more solving methods should be considered in order
to validate the accuracy of the simulation’s responses.
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Appendix A

Simulation of Bridge Irregularities

Road irregularities are commonly considered to be one of the main factors affecting the
dynamic response of the bridge and the vehicle system. There are random vertical road
irregularities (elevation irregularities) resulting from the construction and maintenance of the
road that led to deviations from the ideal geometry of the road layout. In this study elevation
irregularity is studied, which in mainly caused by wear, initial installation errors, degradation
of support materials, improper clearances, bridge support or pier settlement and their
combinations. The modes of irregularity can be expressed as stationary processes in space,
specifically, as random functions in terms of the longitudinal coordinate x. In road engineering,
the irregularity is frequently characterized by the one-sided power spectral density (PSD)
function of the road geometry [1],[12]. The PSD function used in the study for the elevation
irregularity is given as follows:

A, 0% (A.1)
(22 + 22) (02 + )

Sv,a (-Q) =

Where 2 = 1/L, denotes the spatial frequency (Hz) and L, is the length of the irregularity
(m). Table tade contains the values for the coefficients involved in eqs tade, which are
equivalent to Classes 4, 5 and 6 of track classification used by the Federal Railroad
Administration (FRA). The track classes refer to track designations that range from 1 to 6, with
class 6 indicating the best and class 1 the worst. However, the PSD function cannot be directly
used in time-domain analysis because of its frequency-based nature. To overcome the
problem, the spectral representation method was implemented to generate the vertical
profile and alignment irregularity of the road from the PSD functions as described in eqs () .
By applying the spectral representation method, the deviations in the vertical profile, 7,,(x),
of the track can be written along the longitudinal axis x as:

\/_1"21 (A.2)
r,(x) =Vv2 ) Apcos(2,x+ a,)
n=0

Where N denotes the total number of discrete spatial frequencies considered, and (2,, is the
nth discrete frequency, which is computed as

02, —2) (A.3)

2, =nA=n N
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Where (2, and (2; respectively denote the uppermost and lowest frequencies considered, and
n=12,..,N—1.
The coefficients A,, are defined as:

A0:0

1 4
A = \/<; Sv'a(A.Q) + 6_11'51“1(0)) AN

A, = \/(%S,,,a(ZA.Q) + 6111_5,,,,1(0)> A0 (A.4)

1

The independent random phase angles a,, (n = 1,2, ..., N — 1) are uniformly distributed in
the range [0,21]. The results presented below are computed for FRA track Classes 4,5 and 6
(fig ()).

In the simulation, the following are assumed: £2; = 0.0209 rad/m ,0, = 12.5664 rad/m
and N = 3540.

Note that if the length for the irregular track needed in analysis exceeds the sampling length
which is selected in the study, the same irregularities should be used repeatedly in certain
manner until the entire length of the track is fully covered. In order to compute the
irregularity profile needed for the analysis the longitudinal coordinate x should be equal with
the vehicle’s position at each time, i.e., x = v * t where v is the vehicle’s speed and t is the
current time of interest. If the original profile has been established for different x the values
from eq () should be computed through interpolation.

Table A-1 Track PSD model parameters

Quality (FRA class) Very poor (4) Poor (5) Moderate (6)

Ay (m) 2.39 x 107°  9.35x 107°  1.50 x 107°
Qs (rad/m) 1.130 0.821 0.438
Q. (rad/m) 2.06 x 1072 2.06 x 1072 2.06 x 102
Q.(rad/m) 0.825 0.825 0.825
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Appendix B

Newmark’s-f8 method

A great number of dynamic problems encountered in engineering appears in the form of
second-order differential equations. As so in the VBI problem the systems EOMs are being
solved with Newmark’s- method. In a multi degrees of freedom problem, finite difference
methods are often called to solve the second-order differential equations, which have been
referred to as the direct integration methods. Newmark’s- method represents a special
category of finite difference methods that have frequently been used by engineers and
researchers in solving the second-order differential equations. The following is a summary of
the method proposed by Newmark (1959), as presented in [1],[13].

In a step-by-step nonlinear analysis, we are interested in the behavior of the system within
the incremental step from time t to t+At, where At denotes a small-time increment. The
following are the equations of motion for the system at time t+At:

[M]{U}Hm + [C]{i]}tﬂ" + [K{U}trac = {P}erac (B.1)

Where:

[M], [C] and [K] denote the mass, damping and stiffness matrices

{U},{U} and {U} denote the acceleration, velocity and displacement vectors
{P} the applied load vector

The method proposed by Newmark is a single-step method, which requires only information
of the system at time t. The following are the two basic equations proposed by Newmark for
determining the displacements and velocities of the system at time t+At:

{Uesae = (U} +{U} At + [(; — p’) {0}, + ﬁ{f]}t“‘t] (4t)? (B.2)

{0}, = 0}, + |- {0}, +¥{0},, ] At (.3)

Where a dot denotes differentiation with respect to time t. The parameter 5 denotes the
variation of acceleration during the incremental step from t to t + At. Different values of 8
imply different schemes of interpolation for the acceleration over a time step. The values

B = 0 indicates a scheme equivalent to the central difference method, the value § = 0.25 is
a constant average acceleration method, and the value § = 1/6 is a linear acceleration
method. On the other hand, the parameter y relates to the property of numerical or
artificial damping introduced by discretization in time domain. For the case with y < 0.5,
there exist some artificial negative damping, while for y > 0.5, artificial positive damping
will occur. The method has been demonstrated to be unconditionally stable under the
conditions when y > 0.5 and § > 0.25(0.5 + y)2. Throughout this study, the combination
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y = 0.5and § = 0.25 will be selected.

From eq (), the accelerations and velocities of the system at time t+At can be solved as:

{v}t“‘t = ag({U}¢s2¢ — {U}e) — az{U}t - ag{U}t (B.4)

{U}t+At - {U}t t aﬁ{v}t + a7{0}t+4t (B.5)

Where the coefficients ag~ay are given as follows:

__1 S -1 -1 _ =Y _ B.6
ao—ﬁmz,al—’mt,az—Mt,ag—zﬂ 1’a4_B 1 ( )

At
as =5 (L—2) a5 = 4t(1 -7, a; = yat
Substituting the preceding expression () into () yields the equivalent stiffness equations

[Kef /{03 trae = {Pegr},, (8.7)

Where the effective stiffness matrix [Keff] and the effective load vector {Peff}t+4t are

defined as follows:

[Kefr] = aolM] + a,[C] + [K], (B.8)
{Pesr),, 1, = Plesac + M1 (@o{U}, + a2 (U}, + a5 {01},
+1€1 (U}, + as (0}, + as{0},)

From (), the system’s displacements {U} at time t + At can be solved as:

{U}trae = [Keff]_l{Peff}HAt (52
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Appendix C
Shape functions

3D beam
In the beam local system, the displacements, u ,and rotations 0, are interpolated as

(7]
(o) = V1 (c.1)

Where the subscript refers to the two nodes of the element.

and N is a matrix of shape functions.

Wi 0 0 0 0 0 N, O 0 0 0 0]
|0 N3 0 0 0 Ns 0 N, O 0 0 N
nj=|0 0 Ni 0 -Ng 0 0 0 N, 0 -N; 0]
lo o o M, o o o o o M, o0 O]
lo o M; o M; o o o M, 0 Mg O]
lo -Mm; 0 o o Mg 0 -M, 0 0 o0 M

The shape functions for the Euler-Bernoulli case are expressed in the local coordinate §, as:

Ni=1-§ Ny=¢ (C.2)
N3y =1-3§+28 N, =3§ —28 Ny =L, (§ - 28 +38)

No = La(—§%+§°)

My=1-¢§M; =8

My=—(8—¢§%) My=-(§-82)
Ms=1-—48 +38 Mgy = —2& + 3&2

Where L., is the length of the beam element

And

&= (xn —xj-1)/(Lep) (C.3)

Where, xy is the position of the N-wheel of the vehicle and x;_4 is the coordinate of the left

node of the beam element that interacts with the N-wheel at the time, which is extracted
from the COMSOL software, as mentioned above. Subsequently, £ ranges from O to 1.
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Note that the axial extension and the twist around the beam axis are represented by a linear
shape function (N, N5, My, M,) while the bending displacement and corresponding rotation
is represented by cubic shape functions, (N3, Ny, Ng, Ng, M3, M,, Mg, M) , the Hermitian
shape functions.
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