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ABSTRACT 

The aim of this diploma thesis is to offer mechanisms for predicting the cause of a failure in 

a cluster of distributed state machines by using machine learning algorithms. The algorithm 

used to distribute those state machines is the raft consensus algorithm and the machine 

learning algorithms used and compared in this thesis are Decision Tree, Random Forest, 

Support Vector Machine (SVM), Adaptive Boosting and Extreme Gradient Boosting. The 

cluster was simulated using Mininet and ETCD instances and python scripts were developed 

to automate the process of causing random failures in the cluster and capturing the messages 

of the communicating members as well as to clean and prepare the dataset for the machine 

learning algorithms. Conclusively, after experimental simulations were run the machine 

learning algorithms showed promising results and it is estimated that this technique could be 

improved and then used in further research on the subject for real life testing and 

improvements on orchestration systems such as Kubernetes.  
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ΠΕΡΙΛΗΨΗ 

Ο στόχος της διπλωματικής είναι να παρέχει μηχανισμούς για την πρόβλεψη της αιτίας μιας 

αποτυχίας σε συστάδα κατανεμημένων μηχανών κατάστασης με την χρήση αλγορίθμων 

μηχανικής μάθησης. Ο αλγόριθμος που χρησιμοποιείται από την συστάδα είναι ο 

αλγόριθμος ομοφωνίας Raft και οι αλγόριθμοι μηχανικής μάθησης που χρησιμοποιούνται 

και συγκρίνονται στο κομμάτι της πρόβλεψης είναι οι Decision Tree, Random Forest, 

Support Vector Machine (SVM), Adaptive Boosting και Extreme Gradient Boosting. Η 

συστάδα προσομοιώνεται με την χρήση Mininet και ETCD και οι διαδικασίες πρόκλησης 

τυχαίων αποτυχιών και της λήψης των μηνυμάτων επικοινωνίας μεταξύ των μηχανών 

αυτοματοποιήθηκαν μέσω προγραμμάτων python όπως και για την εκκαθάριση και την 

προετοιμασία του dataset. Καταληκτικά, μετά από πειραματικές προσομοιώσεις οι 

αλγόριθμοι μηχανικής μάθησης έδειξαν πολύ θετικά αποτελέσματα για την εξέλιξη και 

βελτίωση της τεχνικής γεγονός που ανοίγει προοπτικές για περαιτέρω έρευνα πάνω σε 

πειραματισμούς πραγματικού υλικού εκτός προσομοιώσεων και σε συστήματα διαχείρισης 

συστάδων όπως το Kubernetes.  
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Chapter 1: Introduction 

1.1 Problem Statement and Motivation 

In a world of great technological advancement computers operate in every single aspect of 

everyday life for the betterment of society and palliation of bureaucracy burdens. Everyday 

computers and servers worldwide handle billions of user requests for both entertainment and 

work facets of life as well as government related responsibilities and services but given the 

scale of the users and the services provided no-one computer could possibly control all the 

traffic by offering both reliability and fast processing. The most widely used method to solve 

this issue is to use multiple computers to substitute for the one in order to load balance the 

requests and improve system-network latency and reliability. However, this solution ought 

to be seamless for the user and should not concern anyone beyond the developers and system 

administrators, which means that this process has to happen dynamically in real-time and 

usually without human-input. It becomes apparent that if thousands of requests flood a server 

in seconds or minutes, the load balancing acts should be performed by machines rather than 

people, which creates the need for software cluster management and monitoring. Currently, 

there are multiple software solutions that manage clusters and deal with the faults that may 

arise in their operation with some of them being Kubernetes, Docker Swarm, Microsoft 

Cluster Server and more. The way that software deal with cluster-failure recovery is different 

but the case of Kubernetes, which uses ETCD and the Raft protocol, will be of concern in 

this thesis. The aim of this thesis is to provide tools to predict the type of failure that a cluster 

with ETCD and Raft endured so that it could be possible to influence the way that the cluster 

recovers from that failure in a more optimized way rather than randomly as it happens now, 

and it is considered that this could improve cluster stability and performance. The predictive 

tools used are machine learning algorithms and more specifically: Decision Tree, Random 

Forest, Support Vector Machine (SVM), Adaptive Boosting και Extreme Boosting, which 

will be analyzed in the following sections below. 

 

1.2 Thesis Structure 

The structure of the thesis will be described in the following paragraphs so that each chapter 

has a clear distinction and purpose, therefore the reader is directed to read a brief overview 

of the chapters and/or use the table of contents for more direct navigation. 
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Chapter 2 will explain the theoretical background required so that the problem at hand is 

clear, and the purpose of the thesis is stated but more specifically in 2.2.1 and 2.2.2 there 

will be an introduction to computer clusters and data orchestration respectively. 

Additionally, in 2.2.3 and 2.2.4 the need for orchestration tools is discussed and the 

capabilities they offer are described. Moreover, in 2.2.5 the Raft algorithm is briefly 

explained and 2.3 it describes of the scripts that are utilized in this thesis so that the processes 

of extracting the data from the clusters and creating the datasets are automated with little 

interaction. 

 

Chapter 3 briefly explains the theoretical background of the machine learning algorithms 

used; however, it will not dwell too much in the mathematics side of the algorithms as it is 

not of particular interest in this thesis. Also, the training results of the different algorithms 

are presented with a comparison between them so that a potential better algorithm could 

stand out. All experiments were run in simulations of three cluster-nodes with the same exact 

datasets so that a valuable comparison could be possible. 

 

Finally, the conclusions of the thesis are being drawn as to which methods worked the best 

and how this could be researched and utilized further for influencing the Raft elections and 

optimizing the election results. 
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Chapter 2: Theoretical Background, Tools and Scripts 

2.1 Chapter Overview 

A brief overview of the theoretical background required will be explained so that computer 

clusters and Raft are clear enough subjects for the reader, so that they understand the 

following sections as well as the existing protocols of ETCD/Raft and why there is room for 

improvement in some areas of operation. Furthermore, the scripting process will be 

explained, as python scripts were developed in order to automate the process of extracting 

the data from the operation of ETCD/Raft and forming the dataset in a way best suited for 

the algorithms. Conclusively, in the following sections there will be mentions of the 

information and these tools mentioned in this chapter, so they are deemed essential to the 

overall understanding of the thesis. 

 

2.2 Theoretical Background 

2.2.1 Computer Clusters 

Modern computers have given the everyday user the ability to study and work from home, 

deal with government related activities, entertain themselves, socialize with other people as 

well as shop and game. Most of these aspects of life have started attracting more and more 

people in the digital world and with the use of very powerful computers the case for 

thousands, millions and potentially billions of everyday users for these services has been 

rendered considerably more realistic. However, even the most powerful of the world`s 

supercomputers could not handle all the traffic that flows through the worldwide web every 

day, therefore the need for multiple computers working together on the same tasks has risen. 

Computer clusters are a set of computers usually used to replace a single computer in order 

to improve stability and speed in data-processing and they are usually utilized by businesses 

and web services so that the content they provide is always available regardless of the traffic 

they get or the hardware limitations (memory etc.). As mentioned before, one of the key 

benefits of using clustered machines is speed in processing because of the much greater 

hardware power, which means that more users can concurrently use the services with less 

latency therefore making the service much more responsive and easier to use without crashes 

or delays. Almost every cluster utilizes this benefit for its service because of the needs of 

modern online businesses and services with some very widely used ones being social-
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networks and video streaming platforms etc. In these examples not only is the user-base very 

big (millions or even billions) which enhances the need for more hardware resources, but the 

users demand an instantaneous response in their requests because messages and emails can 

not take hours or days to be sent and videos can not lag and freeze every minute or take hours 

and days to load. Furthermore, another key benefit of the clustered architecture is the ability 

to provide the users uninterrupted services in case of hardware or software failures in the 

machines or also known as failover capabilities. Failover enhances the user experience and 

in turn the service: if a node fails the service is still online and running with every other node 

working properly and the user gets redirected to use another node in the cluster. Unlike 

clusters, computer failures in non-cluster implementations could lead to the crash of the 

whole service making it impossible to use, which means it is a bad business practice for 

servers with large amounts of traffic and low latency demands. There is an issue with this 

architecture however, the data between the server nodes must be frequently updated so that 

they store the same data, and the end users always get the most up to date information, this 

is a very important issue that will be discussed about further in 2.2.2.  

 

Figure 2.1: A graphic diagram of what a clustered architecture looks like. The head node is responsible of tasking the 

other “slave” nodes of the work, and it is its responsibility to not overwhelm any-one node as well as keep track of nodes 

that are down. Graph taken from https://docs.anaconda.com/anaconda-cluster/  

2.2.2 Data Storing and Synching in Clusters 

As mentioned before clusters are used by high-end users that require their services to be 

distributed in multiple computers both for low-latency and higher reliability and 

accessibility. However, the cluster offers reliability not only because it can run after node 

failures but because it can store the data in multiple physical memories so that the 

https://docs.anaconda.com/anaconda-cluster/
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information is secure in case of hardware failures or disasters (fires, floods etc.). Although 

simple users usually do not require such mechanisms for data security, the reader might be 

familiar with services like Google Drive, Microsoft OneDrive, Dropbox etc. which are cloud 

products that offer data redundancy in case of data loss or hardware failure (even stolen or 

lost devices) which offer likewise capabilities. As a sidenote it is recommended to the reader 

that they perform frequent data backups in different physical memories (if not in cloud 

services) because the value of personal data (photos, videos) is invaluable and can only be 

measured when lost. Whereas simple users might not feel the need to back up their data (not 

recommended) such practices can not be followed by enterprises or important services with 

crucial information like health departments with electronic health records 

 

Figure 2.2: The IBM Blue Gene/P supercomputer installation at the Argonne Leadership Angela Yang Computing Facility 

located in the Argonne National Laboratory, in Lemont, Illinois, USA. All modern supercomputers utilize the power of 

clustered machines. Taken from https://commons.wikimedia.org/wiki/File:IBM_Blue_Gene_P_supercomputer.jpg  

or treasury departments that keep all the taxed individuals in check, or even banks that store 

individuals bank accounts instead of in written form in books. Consequently, data storing is 

extremely important in clusters, however an issue occurs if multiple machines work with the 

same data but in isolated physical memories, the case of out of sync data. The problem of 

data synching between cluster nodes might not be an obvious one, however if one delves a 

little deeper in what kind of problems users can encounter when served by different nodes it 

https://commons.wikimedia.org/wiki/File:IBM_Blue_Gene_P_supercomputer.jpg
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can be very enlightening. An example of this problem could be a failure in a bank server, if 

the data of the bank transactions were not updated in another system, all transactions that 

occurred in that timespan would not have been valid and would have to be performed again 

which is very inconvenient and very unreliable. Another example is a cloud storage service 

that has a crashed node, if that node had not updated at least one of the other nodes with the 

new information, the data would be lost, and the user would lose track of all changes. Not 

only that, but to add to that last example, the reader can imagine a single file stored on 

multiple severs that many users have access to, something that has become very common in 

this age. Would the users be in completely different geographical locations, the servers that 

serve them will probably be very different for each user, however the data has to be 

synchronized. Had those users made conflicting changes to the file, then some user`s edits 

would be lost forever, or the system would not know which version to offer to the clients the 

next time they request the file. The way this is solved in modern clusters is by using software 

that manages the cluster and controls how the data is updated and how often, therefore the 

process of backing up the data is automated, and the system is safer in case of failures. It is 

important however to note that even when these programs are used, the data is not completely 

secured in case of hardware or cluster failures and further methods are utilized for more 

reliability and redundancy.  
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Figure 2.3:A Microsoft cloud computing center in Quincy. This is what a modern data storage facility looks like where 

millions of gigabytes are stored. Wash.Credit...Richard Duvall. Picture taken from 

https://www.nytimes.com/2017/01/23/insider/where-does-cloud-storage-really-reside-and-is-it-secure.html  

 

2.2.3 Cluster Management and Orchestration Systems 

Cluster management tools are software tools that help system administrators to monitor and 

configure computer clusters according to their designs and the real time performance 

metrics. The demand for cluster management tools is of great importance if one considers 

the need to frequently update and resolve software issues in clustered nodes simultaneously. 

Whereas this would not have been an issue if the cluster had a small number of members, 

modern clusters however could potentially support up to thousands of nodes as noted in [1] 

therefore the manual way of installing and updating the nodes is not viable. These tools are 

called orchestration tools because they orchestrate the clusters and automate their execution 

as well as do everything that is necessary to make failed nodes run again and restore the 

cluster to a healthy state. As a result of the great demand for such tools, there are several 

solutions that make the job much easier for the teams of system administrators, with some 

of them being open source and some of them being proprietary, but a few of the most widely 

https://www.nytimes.com/2017/01/23/insider/where-does-cloud-storage-really-reside-and-is-it-secure.html
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used ones are Kubernetes1 (Google), Docker2 (Swarm), Mesos3 (Apache), Microsoft Cluster 

Server4 and more. Kubernetes has gotten popular quickly in the orchestration tools space 

because it is open source, and it has been developed by Google in 2014 who have had 

experience with this technology for many years and are a pioneer in this space, hence it is a 

very competitive solution. Kubernetes offers a dashboard UI for developers to take 

advantage of and monitor the cluster in a visual way, as well as detect anomalies in the 

performance of the nodes. Amongst other capabilities, developers can monitor CPU/ RAM 

frequency and usage, the number of CPU cores that are in use as well as the amount of time 

they are running and their current status (alive or down) an example of which can be seen in 

figure 2.4 below. 

Moreover, users can utilize other software or packages for monitoring the cluster as well as 

notification systems that warn the developers of imminent crashes or failures, even though 

many of the recovery tasks are being taken care of by the automated system itself. For 

example, a couple of the more well-known monitoring software are Prometheus5 and 

Grafana6 which can be integrated into Kubernetes and provide the important metrics of the 

cluster as well as issue warnings and keep cluster logs. Even though these tools are not going 

to be of particular importance for this thesis, their existence and their use make clusters much 

easier to handle and operate and they are considered important for the understanding of the 

subject at hand. 

2.2.4 Kubernetes and etcd 

As previously mentioned in 2.2.3 above Kubernetes is an orchestration tool that helps 

developers and system administrators keep a cluster healthy and the service it provides 

uninterrupted. Additionally, a lot of features it comes with have been discussed with the 

more relevant ones being self-healing, data orchestration and load-balancing, but all the 

other ones are equally as important. Self-healing is a capability Kubernetes offers with which 

it can kill processes in nodes that are misbehaving or have crashed (are unresponsive) and 

can restart them while taking them off the list of healthy nodes until they are completely 

responsive and ready to serve requests again. In addition to that, the administrators can put 

 
1
 https://kubernetes.io/ 

2
 https://www.docker.com/ 

3
 http://mesos.apache.org/ 

4
 https://www.microsoft.com 

5
 https://prometheus.io/ 

6
 https://grafana.com/ 
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in place custom health check standards so that a node or the cluster are considered healthy 

only when those standards have been met, which is especially useful in situations where 

stability and reliability is of great importance to the service. Furthermore, the data 

orchestration or data synching capabilities of the cluster, Kubernetes handles by utilizing 

etcd7 which as noted in the official website is “a strongly consistent, distributed key-value 

store that provides a reliable way to store data that needs to be accessed by a distributed 

system or cluster of machines”. More specifically, as mentioned in [2] etcd manages the 

configuration data, state data, and metadata for Kubernetes and the status of the cluster as 

well as the status of the processes of each node. To add to that, etcd is considered “fully 

replicated” which means that every node has its own database to store key-value pairs in, as 

well as consistent since every single read will provide the most recent write that has been 

performed to the data, but more on that in section 2.2.5. Another functionality of etcd is that 

it is Highly Available (HA) which means that there is no single point of failure for an etcd 

cluster, even if the master node goes offline. Lastly, etcd is fast but it is very dependent on 

network and hard drive speeds since it performs writes in memory, but it is also a secure 

platform because it is using Secure Sockets Layer (SSL) client security or Transport Layer 

Security (TLS) which are optional and highly advised client authentication techniques.  

As previously described in section 2.2.2 as well as in this section, if there is no specific 

policy for the data-synchronization between the nodes there is a problem in what version of 

the data is more recent or more precise, which could be detrimental for most businesses and 

this kind of ambiguity can not be tolerated in a cluster if stability and reliability are to be 

expected. This is a problem that would be very difficult to fix if all nodes write to their 

databases and then the data must be merged, whereas etcd avoids this approach altogether 

and uses the Raft protocol for handling of “writes” in the logs and the database of the cluster. 

Raft is essential to etcd for making it a robust database that can withstand failures, but more 

on Raft will be discussed in section 2.2.5 below. 

 
7 https://etcd.io/ 
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Figure 2.4: An example of the Kubernetes dashboard when monitoring the cluster diagnostics. Orchestration tools like this 

make cluster management much easier for the developers. 

2.2.5 The Raft Algorithm 

This section is a culmination of many of the sections above, not only because it is essentially 

the protocol this thesis aims to enhance but because it provides the reliability and consistency 

to etcd that was mentioned in 2.2.4. The Raft algorithm8 as explained in [3] (developed based 

on the Paxos algorithm seen in [4]) is the way etcd manages to consistently provide the most 

recent “write” to the data when requested as opposed to an older or outdated version, the 

mechanism of which will be described in this section. Firstly, the Raft algorithm assigns to 

a node in the cluster the position of “leader” to designate that node as the more updated and 

informed one, with every other node in the cluster being a follower of that leader. The way 

this leader is picked is by random elections between the cluster nodes, with some node or 

nodes announcing their candidacy for leadership and expecting the vote responses from the 

other nodes. Additionally, every time a new election takes place (hence a leader change has 

occurred), a new term is established by the algorithm and if there is a consensus in the voting 

process then a new leader will have been elected and every other node would be a follower, 

however if there is no consensus then the elections start over and a new term is established. 

One way that it is attempted to avoid cases of leaderless elections (undecisive elections) is 

by requiring that the cluster have an odd number of nodes so that if all nodes are online there 

 
8 https://raft.github.io/ 
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is always going to be a leader elected (obviously a node can not vote for more than one 

candidate). As was previously mentioned in the sections above, amongst other benefits, the 

cluster acts as a load balancer for the service that is being provided, and the leader has its 

followers take the incoming read requests so that it is not overloaded. In a case of a write 

request however, the leader gets the changed data and asks that every follower replicates that 

data and appends it to its log and requests a successful response of that replication, and only 

when and if that process updates the majority of the cluster with the new data it then 

replicates the data to its own local storage/log.  

 

Figure 2.5: The (just-elected) leader S2 sends the append entries request in every other node in the cluster as the first 

operation of its tenure. This is very important so that everyone has the same updated information as the leader especially 

after a write in its database. Screenshot taken from https://raft.github.io/ 

Thus, since the leader has the most updated data at any single point in its database and the 

read requests end up to the followers, it is wise to consider that a “read” in a follower node 

could give misleading or false data back to a client. Because of that, Raft demands that every 

“read” that is requested from a follower node goes through the leader first, therefore if a new 

and updated version of the data is available then that will be the version that will be 

forwarded to the client. As a result of the above, if a follower crashes or goes offline the 

cluster will be safe since no data loss will be expected, even though stability might suffer 

before the problem is sorted. In contrast to a follower failure however, if a leader fails that 

is very important for the cluster, and that is when new elections are triggered. The type of 

failure is not necessarily the node going offline and crashing, but it could be a delay in a link 

(that connects two nodes) of the cluster being greater than the tolerated standard or a cut off 

link. The way this change in status is observed is because Raft has communicative messages 

between the cluster members to designate and differentiate cluster functions some of which 

is the election announcement, or the log replication success/request and the heartbeat 

https://raft.github.io/
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messages. These messages are very commonly used in the computer networks field, and they 

are used for nodes to know the status of their communication partners, an example of which 

is the routers in the worldwide web. The routers exchange “hello” messages to keep track of 

online and offline links so that they can re-route traffic in case of unreachable nodes as well 

as optimize the traffic balancing in case of dynamic routing algorithms. All these messages 

are very important in this thesis as they designate the failures in the cluster before a leader 

election has started, and their use is important to decide what failure has occurred. To add to 

that, the way they prove useful is because whenever the nodes send heartbeat messages, they 

expect a reply of acknowledgment of that message from the other node(s) as a way to indicate 

that they are still alive. If the timeout period of the heartbeat messages passes, then they 

request that new leader elections shall start as they assume that the leader is down and this 

is the key feature that the machine learning algorithms could tap into, the lack of replies in 

the communication between cluster-nodes. 

 

Figure 2.6: A Raft visualization with 5 servers. Server 1 is the leader and every other one is a follower. Screenshot taken 

from https://raft.github.io/  

 

https://raft.github.io/
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Figure 2.7: A) To the left it can be seen that server 1 has now been deactivated and every other follower is in timeout mode. 

When timeout ends, they send leadership vote requests. B) To the right a vote response can be seen after timeout has passed. 

Screenshot taken from https://raft.github.io/  

 

2.3 Tools and Scripts  

Introduction 

The dataset for a machine learning application requires a great amount of data for the 

algorithm to train well enough, but the number of that data is not preset, and one can only 

experiment with the data in order to get the best results. In this thesis, there was 

experimentation with many dataset sizes, but the optimal size was considered at 1000 

failures, which in turn means that there would have to be a way to automatically extract 

many messages from the cluster members. That is why scripts were developed which 

randomly create artificial failures based on which node the leader is and what type of failure 

would cause a new election and the end of a term as well as reform that data and repurpose 

it as a dataset. The nodes were simulated in Mininet, and the Raft algorithm was utilized by 

using the etcd-Raft Example9. Raft only handles clusters with an odd number of members 

so the experiments that will be of concern are with three nodes in the cluster.  

 

2.3.1 Artificial Cluster Failures in Mininet 

In the beginning, the script that had to be developed was the one that would create random 

failures in the cluster so that a dataset with hundreds or thousands of term changes could be 

created. A Mininet topology of the nodes interconnected with a switch has been created with 

 
9 https://github.com/etcd-io/etcd 

https://raft.github.io/
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hardcoded IP and MAC addresses so that they can be discoverable in the cluster. Because 

Mininet does not allow direct node to node connections, for the failures that require the link 

between two nodes to go offline, the proactively set switch table gets changed and the flows 

that connect the two nodes (that simulate the link that needs to go down) get removed from 

the switch table. The reasoning behind this logic is to let every other node be able to 

communicate with the node with the failed link so to simulate that only that link has a 

connectivity problem. In the beginning of the process, the script starts up the Mininet 

simulation described above and runs the Raft Example algorithm in every node while saving 

the output of those commands it in separate txt files, which it then scans to find leader 

changes between the nodes and attempts to synchronize all of them so that there is no error 

in the process. Once the leader has been identified properly then it randomly creates an 

artificial failure by either shutting down the link of the interconnected nodes or by shutting 

down the node-leader. It is essential that in every sample there is a leader change, so that the 

algorithms do not train on useless data and thus every time a failure is caused, the script 

either chooses a link that is connected to the leader or the leader itself as the failure. The 

failures and their metadata (terms and interfaces) are also being kept in files so that they can 

be utilized further in the future for the automation of the dataset making process. Moreover, 

the script starts tcpdump programs in order to capture the traffic between the nodes and saves 

it in pcap files which are then used in order to transform the exchanged Raft messages into 

humanly readable txt files.  

At this point another script had to be developed that extracted the Raft algorithm message 

metadata from the TCP packets that were captured with TCPDUMP and saved that metadata 

in txt files so that they could be the dataset used in the machine learning algorithms. Every 

Raft message is converted into a single line of data that contains the message receiver, 

message sender, message term, message time, message vote response and type and the last 

heartbeat message received is also appended. This file is the type of input that the pre-

processing script requires so that the dataset can be formed properly, and it can be exported 

in the appropriate form, more on which in section 2.3.2. 

 

2.3.2 Dataset pre-processing 

The script developed for the automation and formation of the dataset for this thesis was based 

on the messages exchanged and extracted from the Raft algorithm and the scripts developed 

in 2.2. The input of the script is a .txt file that contains one line for every message captured 
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during the run of the algorithm, and the metadata that was maintained were: receiver, sender, 

term, message time, message type of each packet and the last heartbeat message that was 

sent. The file containing all the artificial failures is used to coordinate and synchronize the 

txt file with the failures so that there is no mistake during the dataset formation process. The 

idea was that every bit of information described above would be a column in the dataset for 

the machine learning algorithms to train on, and every one of these columns would contain 

crucial information as to which link had failed based on the exchanged messages. 

Information like receiver and sender indicate the node of the cluster that either received or 

sent the message respectively, and term, time indicate the term and time that the message 

was sent at. The message type is an important indicator of what type of operation Raft is 

trying to enable, and since there are some signs that a new election might be carried out 

hence a failure of some kind has occurred in the cluster this field is very useful. The different 

message types are noted with different integer number but of greater importance are 

considered of being the heartbeat messages which just verify that nodes are alive. 

Consequently, if there are many heartbeat messages to one node from a node this could be 

an indication of a failed link whereas many heartbeats from many nodes could indicate that 

a node has crashed. The differentiation and prediction of the failures based on the previous 

messages is what machine learning is tasked to do in this thesis by training on the dataset of 

artificial failures. However, a valid concern would be, what is the optimal number of 

messages to look back to in order to decern what kind of failure has happened and after some 

experimenting the optimal number was found to be 20 messages before the first heartbeat 

message that appears to have a new term. Therefore, a new script had to be developed so 

that the txt file could be reformed, and a clean-up process could be possible. This script 

searches the dataset for a new term-heartbeat pair and captures the previous 20 messages of 

that heartbeat as a history for that failure and then it changes all of these messages to make 

their data in relative form. More specifically, time and terms are considered zero for the 

oldest “history” message and all the other messages are adapted relatively to that change 

with both negative and positive numbers, however message type. vote response as well as 

sender and receiver were not changed. In addition to that, these messages are reformed into 

a single row of the dataset and another field of data is added: the failure type. The failure 

type is taken from the file that has been kept from the operation of the scripts in 2.3.1 and 

the failures are synchronized to the reformation processes of this script. Every column has a 

distinct name, so for example the term for the oldest message (which is the first message 

from left to right in the dataset) is term19, for the time it is time19 etc. The script ends when 
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the user-set number of term-changes have been iterated and changed, therefore the new data 

samples have been formed which in this case are 1000 and a new dataset-csv file is exported 

that is ready to be used by multiple algorithms. 

Summary 

In summary, a leader in Raft holds its position until a failure occurs that renders the node 

unreachable to some other node, in which case an election shall commence that will lead to 

a new leader. The elections are decided by the votes of the node members and the leader is 

drawn randomly, without any optimization as to which one would be the most efficient 

choice. However, this could lead to another election if the new leader faces the same 

problems that the old leader did and to decern which leader would be the best option, the 

different failures must be distinct. As a result, in this thesis the cluster failures analyzed are 

link failures and node failures, with link failures being the ones that prevent the transmission 

of data between two cluster nodes because of a failure in the link connecting them and the 

node failures being the ones that have to do with the operation of the computer-node (crashes, 

physical failures etc.). Conclusively, this thesis aims to provide the tools to perform failure 

prediction based on the messages exchanged between the cluster nodes so that a more 

optimized leader election can be achieved.  
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Chapter 3: Machine Learning in Failure Prediction 

Introduction 

Machine learning is a very quickly evolving field in computer science and the promise is 

that it can help humanity reach great levels of optimization and accurate prediction in 

multiple areas of life. Machine learning is already capable of detecting useful patterns in 

data that humans could not have or would need very long hours of doing so and an example 

of that is machine learning in tax audits which can accurately and consistently flag tax 

evading individuals. Deep learning which is another approach in the Artificial Intelligence 

(AI) field, enables the capability of translating audio to text and vice versa, detecting and 

identifying objects in photos or videos such as fruit detection in farmer crops or human-

animal detection in self-driven cars and many more applications are now possible because 

of machine learning and deep learning or their encompassing umbrella: AI. That is why this 

technology is being used in this area, because the prediction of cluster failures and the 

possible automation of the response to such failures could be detrimental to the stability of 

systems that more and more encompass people`s everyday lives. These predictions could be 

made by humans, but the speed and consistency are thought of being incomparable to a 

machine, let alone a machine learning application which learns by its own mistakes and can 

improve.  

The previous chapters were a theoretical explanation of the subjects and the tools that will 

be tackled in the experiments that will be discussed in this chapter below, as multiple 

machine learning algorithms will be trained on the dataset that the scripts from section 2.3 

developed and formed, and the results of those experiments will be presented in the sections 

that follow. The tools utilized to accommodate the failure predictions are machine learning 

algorithms that train on hundreds or thousands of sets of data-samples that are exchanged 

between the nodes in cases of failures and in turn leader elections. The machine learning 

algorithms used for the predictions are decision trees, random forest, support vector 

machines, adaptive boosting, extreme gradient boosting. These algorithms were all trained 

on the same datasets so that the results could be comparable to each other, and the best 

performing algorithms could stand out. 

 

One last note, every single experimentation in the following sections will be of clusters 

simulated in Mininet with 3 nodes in the clusters, because Raft can only work with an odd 
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number of nodes, thus the other acceptable configurations would be with five, seven, nine 

etc. 

 

3.1 Machine Learning 

 
Figure 3.1:  How deep learning is a subset of machine learning and how machine learning is a subset of artificial 

intelligence (AI). 

3.1.1 Supervised and Unsupervised Learning 

The way machine learning algorithms learn is not the same for every single one of them 

since some have a supervised learning approach where others have an unsupervised learning 

approach. The difference between the two is that in the first category the developers have to 

harvest data, label it, and then feed it to the algorithm so that it can train and provide accurate 

predictions, however in the second category labeling is not required and instead the 

algorithm is trying to cluster the data by itself. In more detail, labeling data is the act of 

giving the dataset the correct predicted value so that the algorithm can train on the given 

input (one or multiple columns) and attempt to form the correct given output. For example, 

an interesting way to understand how the training process works is by considering an 

unknown equation that can be formed if given inputs it exports the desired outputs. The 

equation would need many different data points so that it can model data more accurately, 

especially if it is not linear which most machine learning applications are not. In this thesis 

the algorithms used are supervised learning algorithms, since as it has been explained in 

section 2.3 the data have the correct failure types that have occurred in the training process 
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so that the algorithm can learn to accurately predict them. Unsupervised learning was not 

thought of being particularly useful in this thesis as many of the data samples are quite 

similar and it was thought that the human label could prove very useful for the data 

distinction. 

3.1.2 Classification and Regression 

Another important distinction when using machine learning algorithms is whether the 

algorithm is a classification, or a regression algorithm and their differences will be explained 

below. A classification algorithm is used when the predicted variables are in distinct classes, 

whereas a regression algorithm is used when the predicted variables are continuous values. 

For example, if the predicted variable is a true or false statement or there are multiple states, 

but it is required that only one of them be the output then a classification algorithm is used. 

In contrast to that, if the predicted variable is a continuous number such as money or 

temperature then the algorithm shall be a regression one. As a result of the above, in this 

thesis the algorithms used will be classification algorithms since the predicted variable is the 

“failure type” and that can only be a specific value and not a number in between (a 

combination of failures is obviously not accepted). In most of the machine learning 

problems, the predicted value is usually referred to as a “target” value or the “y” from the 

function denotation in mathematics and in this thesis this variable is the failure type of each 

sample that was caused artificially in Mininet. The algorithms can not understand from 

words and phrases what link has gone offline or what node has crashed therefore these values 

had to be one-hot-encoded which means that every type of failure was translated to an integer 

starting from 0. That is the way that this field appears in the dataset and that is the appropriate 

way that target values in classification problems appear in datasets. 

 

3.2 Decision Tree in Failure Prediction 

3.2.1 Theoretical Overview 

The reason decision trees are very useful in machine learning is because they visualize the 

results of the training process and can export it as an inverted tree (root is up and leaves are 

down) so that the developers can understand the decision-making process. Every node of the 

tree has an expression that attempts to divide the data into groups, to the left of that node it 

is a positive correlation to that expression whereas to the right of that node it is a negative 

correlation. Every node`s expression is called an attribute of the decision tree and the leader 
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node on the top of the tree is called the root node, where every node that does not branch 

into other child-nodes is called a leaf node with every other node being a decision node. All 

decisions start from the root node and by evaluating every sample`s correlation to the 

attribute of the node, the prediction can be obtained by following the directions of the tree 

and finally to the leaf node which contains the predicted class.  

 

Figure 3.2: A decision tree produced with the dataset of this thesis (even though this tree does not perform well, this is just 

for visualization). The attribute of every non-leaf node can be seen at the top of each block and the leaf nodes contain the 

more probable class for that tree path. 

The way decision trees work is by using algorithms to decide whether a node shall be split 

into children-nodes, or it shall remain a leaf node and the way it is decided is by evaluating 

the node`s purity after a split. Purity is a measure of how the samples in the node are divided 

in between the predicted classes, and if a split of a parent node leads the children- nodes to 

have a more “pure” collection of samples in its path then the split is deemed valuable and 

it`s purity increases, but in decision trees the way this is calculated is by either evaluating 

impurity or the Gini-impurity10 or Entropy-Information Gain. Entropy is the measure of 

disorder or impurity in the samples and if a node of a tree has a somewhat even split of 

sample classes, then the sample is not pure, since there is no detectable path to a final class 

prediction and the entropy is increased. If, however, the classes are almost distinct from each 

other then the entropy is small because there is little disorder in the samples and if one were 

to pick a datapoint in random it would be more probable for them to pick a specific class. 

Information gain is equal to 1 – Entropy making it therefore the opposite of entropy, since 

when entropy is high Information Gain gets smaller and vice versa. For example, if a dataset 

is targeted at predicting the gender of an input sample and there is information about the 

 
10 https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity 
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subject’s race in the dataset, then it is obvious that that attribute would not help at all in the 

decision-making process since race would not determine the subject’s gender in a broad and 

inclusive dataset. Therefore, with the previous example the purity would not increase, or the 

impurity would increase thus the split would not be a valuable split for the tree to perform 

and it would be better for that node to be left as it were. It is important to note that the 

algorithms that decide on splitting do not have to make the best split every time and could 

be randomized, however there is a parameter which can demand that all of the attributes are 

considered every time so that the best split can be found. Even though the algorithm sets 

defaults in many of its parameters the split gain can be overridden by the developer so that 

the splitting process be made more strict or loose. Additionally, one other area where the 

tree can be improved upon is the pruning of the tree once it has been fully formed. Pruning 

as in real-life trees is the act of cutting of branches of the decision tree by evaluating their 

impurity, as they could be leading the tree to overfitting and not promoting it to grow in a 

healthier way. In the experimental sections of this thesis, it will be obvious that even though 

pruning does not enhance model performance, it clears up the trees in an important way 

making it much easier to inspect the trees. Finally, the mathematics side of the algorithm is 

out of the scope of this thesis thus for more on the Gini-impurity and the algorithms 

concerning splitting the reader can be directed here [5]. 

3.2.2 Decision Tree Training Results 

For the training of the decision tree, some hyperparameters have been altered after some 

experimentation so that the more optimal results could be obtained. Firstly, the max_depth 

of the tree has been set to 6 so that the tree will not overfit to the training data and grow 

branches that contain needless attribute splits. This number was reached after many tree 

depths were iterated until there was a plateau in the graphed results as can be seen in figure 

3.3 below, even though depths of 9 or 10 show somewhat of an improvement it was 

considered that the very small increase in testing-validation performance would not be a 

good tradeoff to potential overfitting issues. To add to that, the splitter was set as the “best” 

as to indicate that the best split will be performed for every node in the tree and the test_size 

split has been set to 10% or 10% of the data is the testing samples and 90% is the training 

samples as it was the one that produced the best validation model accuracy. Lastly, for the 
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score accuracy the scikit-learn function accuracy_score 11 is being used, as it will in every 

other training experiment except specified otherwise. 

 

Figure 3.3: A figure produced with matplotlib that shows how the max tree depth affects the testing/validation model 

accuracy, at some point after a depth of 6 the model accuracy starts to plateau therefore a further increase is not deemed 

useful. 

 

Finally, another two parameters have been set as to obtain the best results from training with 

the first one being the ccp_alpha (cost complexity pruning alpha) parameter which is the 

parameter used in order to set the threshold for the branches that have to be cut off if they 

are not deemed necessary based on the impurity decrease evaluations. The ccp_alpha 

parameter is quite useful for the tree to be simpler and more concise as well as for combating 

overfitting issues, nonetheless it shall not be set arbitrarily since it can cause a significant 

loss of performance if set too high (many useful branches will be clipped) as seen in figure 

3.4 below. In spite of not losing or gaining any performance by setting the ccp_alpha 

parameter at a very small value, (based on figure 3.4 the minimum value is 0.01) one would 

wonder why it is being used in the first place and the answer can be observed by the 

visualization of the trees produced by the decision tree algorithm in figures 3.6 and 3.7. The 

latter is the min_impurity_decrease parameter which is the minimum threshold for the 

impurity decrease of a node when it is split and if it is lower than the threshold the split is 

not performed, and some experimentation can be seen in figure 3.5 below. Lastly, it shall be 

noted that Entropy is being used instead of Gini-impurity for the training results of this 

section as it was seen to show significantly better results. The algorithm used was in python 

 
11 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html 



41 

 

from the package scikit-learn12 seen in [6] where exemplary code and instructions to use the 

decision tree classifier13 were given for anyone to use for free. 

 

 

Figure 3.4: The model validation accuracy based on the increasing ccp_alpha parameter. The model reaches peak 

performance right at the very beginning of this parameter, which is expected since the more branches the tree has the more 

cases it can cover, whereas the greater the ccp_alpha the more branches are being cut off. 

 
Figure 3.5: The plot of how the increasing min_impurity_decrease parameter affects the model validation accuracy if max 

depth is 6 and ccp_alpha is 0.01. It is almost identical to figure 3.4 but has some sharper lines, and this can be expected 

as both parameters work with the impurity decrease of a given split or branch. 

 

 

Figure 3.6: A visualization of the decision tree produced when ccp_alpha is set to zero and the max tree depth is set to 6.  

 
12 https://scikit-learn.org/stable/index.html 
13 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html 
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Figure 3.7: A visualization of the decision tree produced when ccp_alpha is set to 0.01 and the max tree depth is set to 6.  

The model with a ccp_alpha of 0.01 and a min_impurity_decrease of 0.01 with a max_depth 

of 6 gave the best validation results of 90% of classification accuracy with a 93% training 

accuracy. Although the aforementioned parameters helped in the visualization of the tree 

(one or the other they did not have to be used together as they produced nearly identical 

results) they did not help with the performance of the tree in any significant way, and that 

may have to do with the fact that the tree probably did not overfit to the training data since 

the max_depth was not unlimited.  

 

 

Figure 3.8: This is a visualization of a decision tree with a min_impurity_decrease of 0.02 and a ccp_alpha of 0.01. It is 

very clear that the more these parameters are increased the simpler the trees become, with a cost in performance however 

as this iteration had an 84% classification score instead of a 90% that the previous model had. 

3.3 Random Forest in Failure Prediction 

3.3.1 Theoretical Overview 

The closest algorithm that could provide a better accuracy than simple decision trees is a 

random forest algorithm, since it is built for being more robust. The way the random forest 

algorithm works is by training multiple decision trees by using random sets of the features 

of the dataset (not necessarily all of them) and by giving the input samples to all of them and 

then getting predictions by every-one of them. The trees, therefore, vote what the final 

predicted class is which is considered much more robust, since at the end of the prediction 

process there are multiple votes in the pool and if only some of them have overfitting 

problems or they have low accuracy then the other ones can make up for that. 
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Figure 3.9: A random forest algorithm training visualization. More decision trees are considered more robust than just a 

single one. Graph taken from https://medium.com/swlh/random-forest-classification-and-its-implementation-

d5d840dbead0  

Unlike simple decision trees, in random forest the splitting is random, and it is not concerned 

to find the best split, which in turn enhances the randomness of every tree so that the model 

has very differently built trees that will hopefully predict the same class. The number of the 

trees used in the forest can be set by the user, however the more the trees the more the 

computational complexity the algorithm requires, thus this parameter shall not be abused as 

the algorithm will be rendered impossible to run in real-time. Consequently, one could point 

out that random forest takes advantage of multiple other classifiers and brings them together 

for its own prediction and thus this method is called an “ensemble” method and it is possible 

to utilize multiple classifiers and not just decision trees. Furthermore, the method of training 

every model in parallel is called “bagging” in machine learning terms and it entails that every 

classifier in the forest is trained on a random subset of the data. Unlike random forest there 

are classifiers that utilize ensemble methods but without the use of bagging but with the 

utilization of boosting which will be described in section 3.5. 

3.3.2 Random Forest Training Results 

As the hyperparameters are concerned, the n_estimators parameter is the number of trees in 

the forest, and it was set at 200 trees after some experimentation on how it affects model 

performance (see figure 3.10), but as far as the min_impurity_decrease and ccp_alpha are 

concerned their values were kept the same as in the decision tree section in 3.2.2 since the 

main classifier is the decision tree and both of them were used since it appeared that a 

consistent increase of 1 or 2 percentage points of validation accuracy were gained. The 

https://medium.com/swlh/random-forest-classification-and-its-implementation-d5d840dbead0
https://medium.com/swlh/random-forest-classification-and-its-implementation-d5d840dbead0
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max_depth was not set and was left to default which is “None” or unlimited and the test_size 

was left to 10% and the criterion for splits was the “entropy” method. For the training part 

of this section the scikit-learn package was used and more specifically the random forest 

classifier14, and some of the code that is presented proved useful to train the dataset. 

 

Figure 3.10: The plot of how the number of estimators affect the model performance. The plot shows that the validation 

accuracy is not affected too much from the number of estimators and this could be expected since the original decision tree 

performance was very good. 

As for the final model performance, the random forest had a validation performance of 91% 

up against a training performance of 97% which shows that there is still some form of model 

overfitting because of the difference in the two accuracies.  

3.4 Support Vector Machines in Failure Prediction 

3.4.1 Theoretical Overview 

The Support Vector Machines algorithm or SVM is essentially plotting every single point of 

the sample or every feature-column field of the sample to an Nth-dimensional space when 

the features are N, so in this case in the 20th since the features are 20. The classification part 

and the training part of the algorithm is trying to form a hyperplane that can segregate the 

data in groups according to the labels the algorithm has been given. The optimal solution of 

the hyperplane is the one that has the maximum distance between the data points and the 

hyperplane. As a result of that, it is obvious that there is no visualization for the training 

results of SVM`s for datasets with more than 3 features since there is no visualization of 

anything beyond the 3D space. Finally, the SVM classifier was taken from the scikit-learn 

package the link of which can be found here15 where the mathematics side of the classifier 

 
14 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
15 https://scikit-learn.org/stable/modules/svm.html 
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is described in detail as well as code examples are presented and the hyperparameters are 

explained. 

 

 

Figure 3.11: The attempt to find a hyperplane for a dataset with 2 features so that the samples can be divided in different 

groups and the prediction process can be accurate. Taken from https://scikit-learn.org/stable/modules/svm.html  

 
Figure 3.12: A visualization of a 2D line and a 3D plane that segregate the data into their groups so that accurate 

predictions can be possible. Graph taken from https://towardsdatascience.com/support-vector-machine-introduction-to-

machine-learning-algorithms-934a444fca47 

3.4.2 Support Vector Machines Training Results 

As for the training results for the SVM algorithm there were 2 runs, the first one with the 

SVC with a linear kernel and a parameter of regularization C = 1.5 (after some 

experimentation it was the optimal choice) and that model gave a 98% training accuracy 

with an 89% validation accuracy. The latter run was with the model is with the LinearSVC 

model with parameters: penalty = ‘l2’ and a loss function of “squared_hinge” with a dual of 

False and a C of 0.2. This iteration gave an 84% validation accuracy and a 92% training 

https://scikit-learn.org/stable/modules/svm.html
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
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accuracy. Therefore, the first run was the better model of the two, however SVM did not 

show any improvement over the decision trees or the random forest.  

3.5 Adaptive Boosting in Failure Prediction 

3.5.1 Theoretical Overview 

Adaptive boosting is another ensemble algorithm that uses decision trees as its main 

classifier, even though that combination looks a lot like the random forest algorithm unlike 

the latter this algorithm as its name suggests uses boosting instead of bagging which means 

that the way the model trains is much different than the parallelized way that random forest 

uses. In boosting the algorithm takes the previous classifier`s mistakes and uses them for its 

own training and this happens sequentially for every decision tree in the algorithm, therefore 

at the end of the training process the algorithm has tried to fix many of the errors and 

mistakes of the original trees. More specifically, after the first tree has been trained the 

wrongly predicted data points get a weight greater than the others (the original weights are 

1/N where N is the number of samples) and the greater the tree weight the less decision 

power that tree gets in the final voting process, hence the lower the weight or the more correct 

predictions a tree makes the more leverage it gets towards the final prediction. Obviously, 

this algorithm can not run in parallel thus it will take longer if the number of trees is big, and 

it might not be possible to run in a real-time scenario. 

 

Figure 3.13: A visualization of the training process of adaptive boosting. The miscalculations of the first trained tree come 

into play in the training of the next tree and so on. Graph taken from https://towardsdatascience.com/basic-ensemble-

learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725  

 

https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725
https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725
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3.5.2 Adaptive Boosting Training Results 

The algorithm can be obtained by the scikit-learn website and in this thesis the adaptive 

boosting classifier16 is used. As far as the parameters are concerned, the max_depth was set 

to 6 and the ccp_alpha to 0.1 with n_estimators being 200 and the learning_rate left to the 

default value of 1 after experimentation showed little to no gains if it changed (see figure 

3.14) and lastly the test_size was kept at 10% of the dataset. Most of the parameters have 

already been introduced, the learning_rate however has not, so what this parameter does is 

it affects the magnitude of the weights of each boosting iteration. The greater the learning 

rate the greater the contribution of the trees hence this parameter shall be used with caution 

as the weaker trees could have more decisive power if its value is increased too much from 

its default value of 1.  

The model results were the best until this point of the experimentation with a 92-93% 

classification accuracy for validation testing and a 95-96% accuracy for training. This is to 

be expected as the ensemble methods are much stronger than the simpler models, however 

since the original “weak” predictors were not as weak, it is not a great performance uplift. 

 

Figure 3.14: The plot of the learning rate and how it affects the model performance. With the learning rate having a default 

value of 1 the model shows little to no performance gains when the parameter is around that value. 

3.6 Extreme Gradient Boosting in Failure Prediction 

3.6.1 Theoretical Overview 

Extreme Gradient Boosting or Extreme Boosting is quickly becoming very popular and very 

competitive in the machine learning competitions online because as its name suggests it 

pushes to the extreme what is possible with boosting algorithms. Even though the main idea 

 
16 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html 
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is the same as with adaptive boosting algorithms which have not been explored in this thesis, 

extreme boosting uses a gradient as its loss function instead of the Gini impurity or entropy 

as simple decision trees do and as the author of the algorithm has stated: “… xgboost used a 

more regularized model formalization to control over-fitting, which gives it better 

performance.”17 when prompted to compare the two. Extreme boosting relies heavily on 

mathematics and that is why it is performing well in competitions as well as running faster 

than other algorithms while at the same time utilizing less resources. Nonetheless, more on 

how extreme boosting works (or xgboost as it is often called) can be seen here [7]. 

3.6.2 Extreme Boosting Training Results 

Finally, as for xgboost, the scikit-learn API was used along with the xgboost package18 taken 

from PyPi19 which contains the steps on how to install and redirects the users to the 

documentation20. As for the parameters, the number of estimators has not really impacted 

the performance of the models too much and that is because the numbers used were above 

at least 100 estimators which is usually good enough, besides that in this implementation 

400 estimators were set after some experiments. The max depth was set to 6 as every other 

tree-related algorithm and the eta or the learning rate version of xgboost was set to 0.3 again 

after some experiments were run and their results can be seen in figures 3.15 and 3.16. The 

objective parameter was set to “multi:softprob” as no difference was shown whence it 

changed. Lastly, the actual model performance results were the best out of all the algorithms 

compared in this thesis, and unlike some other algorithms xgboost did not require a lot of 

configurations before it performed in the top echelon of the competition. More specifically, 

the model had a 100% training accuracy which gives red flags as to overfitting, however the 

training accuracy reached 96%. Although the tree depth does not increase performance by a 

lot, as seen in figure 3.15 there is a maximum for tree depth of 9 and by making this change 

the model can reach a maximum of 97% of testing/validation accuracy. Conclusively, the 

algorithm was the most stable and consistent out of all the algorithms as well as the fastest 

of the ensemble algorithms, maybe even all. 

 
17 https://www.quora.com/What-is-the-difference-between-the-R-gbm-gradient-boosting-machine-and-

xgboost-extreme-gradient-boosting/answer/Tianqi-Chen-1?srid=8Ze 
18 https://pypi.org/project/xgboost/ 
19 https://pypi.org 
20 https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier 
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Figure 3.15: The plot of the model and the effects of the tree depth increasing. As expected, the tree depth does not influence 

the model too much as long as it is in the range of 4 to 10 levels. However, there is a maximum in the performance in the 

tree depth = 9. 

 

 

Figure 3.16:The learning rate or the version of learning rate for xgboost “eta” and its effects on model performance. It 

appears as if the model performs very well for anything below 0.6 for eta with a maximum at around 0.3. 
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Conclusions 

In this thesis the subjects of computer clusters and orchestration systems was tackled, and 

machine learning tools were developed and used in order to improve the Raft algorithm 

which handles the etcd elections in a cluster environment. After using a Mininet simulation 

with the raft-example implementation of etcd and by using custom scripts that enable 

artificially caused failures so that the communication messages between the cluster-nodes 

could be extracted, machine learning algorithms were used upon these datapoints with good 

performance. All of the models reached very good levels of performance but the standout 

algorithm in both terms of configuration and classification accuracy was the Extreme 

Gradient Boosting algorithm or xgboost as it is often referred as. This model outperformed 

all the other models and was by far the most consistent in its performance and it is estimated 

that it is a very good candidate for any future work on this subject, even in real-time 

performance evaluations. All the simulations used three nodes in the clusters, however with 

some configurations the work of this thesis could be expanded for five, seven, nine and so 

on, with another improvement being the utilization of the full version of etcd and not of the 

raft-example version. Conclusively, future work could be done based on this thesis so that 

not only more nodes are in the training dataset and thus the machine learning 

experimentation, but so that the benefits of such predictions could improve and influence the 

Raft elections in a real Kubernetes environment and its performance benefits could be 

measured in a more realistic scenario. 
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