UNIVERSITY OF THESSALY

ELECTRICAL AND COMPUTER ENGINEERING

RESEARCH ON AND IMPLEMENTATION OF MACHINE
LEARNING ALGORITHMS FOR FAILURE PREDICTION
IN THE OPERATION OF THE RAFT CONSENSUS
ALGORITHM

Diploma Thesis

Nikolaos Christogiannis

Supervisor: Athanasios Korakis

Volos 2021

ITANEIIIXTHMIO OEXXAAIAX

IHOAYTEXNIKH XXOAH

TMHMA HAEKTPOAOI'QN MHXANIKQN KAI MHXANIKQN
YIHOAOT'TXTQN

MEAETH KAI EGPAPMOI'H AAT'OPIOMOQN MHXANIKHX
MAGOHXHYX I'TA THN HPOBAEYH AITPOXAOKHTQN
METABOAQN XTH AEITOYPI'IA TOY
KATANEMHMENOY AATOPIOMOY XYNAINEXHX RAFT

Authopatikn Epyacio

Nuwodraog Xp1oToytivvng

Emprénov: ABavéaciog Kopdxng

Bohog 2021

Approved by the Examination Committee:

Supervisor Athanasios Korakis
Associate professor, Department of Electrical and Computer

Engineering, University of Thessaly (\VVolos)

Member Antonios Argyriou
Associate professor, Department of Electrical and Computer

Engineering, University of Thessaly (\Volos)
Member Dimitrios Bargiotas

Associate professor, Department of Electrical and Computer

Engineering, University of Thessaly (\Volos)

Approval Date: 22-9-2021

Acknowledgements

I would like to thank my supervisor Athanasios Korakis, Associate Professor in the
university of Thessaly as he entrusted me with this thesis and provided me all | needed to
complete this project. Additionally, I would like to profoundly thank Konstantinos Houmas,
a post-doctoral researcher at NITLAB for his immense support in this project, with his

knowledge and experience he guided me many times throughout this thesis.

Furthermore, 1 would like to thank my best friends Aris, Christos and Xrysostomos whom |
have known since childhood for their immeasurable support for anything and everything |
do and for being there whenever | needed them. Lastly, | would like to thank my parents,
my sister as well as my grandparents for their unconditional love and support and their wise
teachings...without which this thesis would not be possible. All of these people share a piece

of the success | will ever experience.

YIHEYOYNH AHAQIH TIIEPI AKAAHMAIKHE AEONTOAOITAL KAI
IINEYMATIKOQN AIKAIQMATQN

Me TAnpn ENlyvOON TOV GUVETEIDV TOV VOUOL TEPT TVELUOTIK®OV SIKAIOUATOV, ONAOVEO
pNTa OTL 1 TAPOVGO SIMAMUATIKY Epyacio, KaBMG Kol Ta NAEKTPOVIKE apyeio kot nyaiot
KOOIKEG OV avOTOYONKOV 1) TPOTOTOMONKAV GTO TAAICIOL QVTHG TG EPYACIG, OmOTEAEL
OTOKAEIGTIKA TPOIOV TPOGMOTIKNG LOL £pYAciag, OV TPOSPAALEL KAOE LOopEG diKoMLOTOL
SLOVONTIKNG 1010KTNGL0G, TPOCOTIKOTNTOG KO TPOCOTIKDOV OEG0UEVDV TPITWV, OEV TEPIEYEL
£pY0/E10OpEG TPITOV Yo Tar omoio amotteitan AdEl TOV OMNUOVPYDOV/SIKOOVY®V Kl OV
elvat Tpoidv PePIKNG N OAMKNG OVTLYPAPNC, OL TNYEG OE TOV YPNCILOTO 0KV TEPLopilovTal
oT1g PPAOYpaeKéS avapopég Kot HOVOV Kot TANPOUV TOVG KOVOVEG TNG EMIGTNLOVIKNG
napdbeong. Ta onuela dmov Exm ypnoipomomost WEeg, Kelpevo, apyeia 1/kat mnyég AoV
CLYYPAPEDYV, OVOPEPOVTOL EVOLAKPLTO OTO KEIWEVO HE TNV KATOAANAN TOPOTOUTY] KOt 1)
GYETIKN avo@opd mepthapfaveTol 6to TUNHA TOV BIBAMOYPAPIKOV OVOPOPOV LE TANPN
ePLypaer). AvaropBave TANPOS, ATOUIKA KOl TPOSMTIKE, OAEG TIC VOUKES KOt OLOKNTIKEG
GULVENELEG OV JVVOTAL VO TPOKVYOLV OTNV TEPIMTOON KOTA TNV omoic oamoderydet,

dlypovikd, 6TL 1 epyacio avTA 1| TUNHO TNG OEV OV aviKEL S1OTL Elvat TPOiIOV AOYOKAOTNC.

O AnAov
NIKOAAOX XPIXTOI'TANNHZ
22/9/2021

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY
RIGHTS

Being fully aware of the implications of copyright laws, | expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work /
contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
11 points where | have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference is
included in the bibliographic references section. | fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because it

is a product of plagiarism.

The Declarant

NIKOLAOS CHRISTOGIANNIS

22/9/2021

10

ABSTRACT

The aim of this diploma thesis is to offer mechanisms for predicting the cause of a failure in
a cluster of distributed state machines by using machine learning algorithms. The algorithm
used to distribute those state machines is the raft consensus algorithm and the machine
learning algorithms used and compared in this thesis are Decision Tree, Random Forest,
Support Vector Machine (SVM), Adaptive Boosting and Extreme Gradient Boosting. The
cluster was simulated using Mininet and ETCD instances and python scripts were developed
to automate the process of causing random failures in the cluster and capturing the messages
of the communicating members as well as to clean and prepare the dataset for the machine
learning algorithms. Conclusively, after experimental simulations were run the machine
learning algorithms showed promising results and it is estimated that this technique could be
improved and then used in further research on the subject for real life testing and

improvements on orchestration systems such as Kubernetes.

11

12

HEPIAHYH

O 016Y0¢ TG OIMAMUATIKNG EIVOL VO TOPEYEL UNYOVIGLLOVG Y, TNV TPOPAEYN TNG ouTiog Hog
AmOTVYI0G GE GLOTAJN KATOVEUNUEVOV UNYOVOV KOTAGTOONG UE TNV ¥pNon aAyopifuwmv
pnyovikng pabnone. O aAdyopiBpog mov ypnolponoteitor amd TV ovotddo glvar o
aAyopiBpoc opopaviag Raft kot ot adyopiBuor unyavikig nabnong mov ypnoiuorolobvtot
Kot cuykpivovtal oto Kouudtt g mpoPreyng sivar ov Decision Tree, Random Forest,
Support Vector Machine (SVM), Adaptive Boosting kot Extreme Gradient Boosting. H
oLoTado TpocopolmveTat e v xpnon Mininet kot ETCD kot ot dtodikacieg mpokAnong
TUYOU®V OTOTVYIOV KOL TNG AYNG TOV UNVOUATOV ETKOVOVIOG HETAED TV Unyavaov
avtopatomomdnkay pEcm Tpoypappdtev python érmg kot yio v ekkaddapion kKot v
npogTolacioo tov dataset. KotoAnktikd, HeTd omd TEWPAUATIKEG TPOCOUOLDGELS Ol
alyoplOpot pnyovikng panong €oei&av moAd Betikd amoteAéopata yoo v e€EMEN Ko
BeAtiowon g TEYVIKNG YEYOVOS OV OVOIYEL TPOOMTIKES Y10 TEPOUTEP® EPELVA TTAV® GE
TEPOUATIGLOVS TPOLYLOTIKOD VAIKOV EKTOC TPOGOUOIDGEMV KOl GE GLGTNLLATO dlaXEIPLONG

ovotadwv omwe to Kubernetes.

13

TABLE OF CONTENTS

ACKNOWIEUGEMENTS..ccciiiirieiieernnerreetiriniiiesssnnnreessesssesessssnnssssssssssssssssnnssssssssssssssssssssssssses 7
ABSTRACT .ceeeeeeceeeteieceeettteeetenneeeeetenseesesssssessssnsssssssssssssssssssssssssnsssssssnnsssssssnssannes 11
TIEPIAHWHc.uoeuueiiveiiiiniiisensisinnisssnsisisssesssssossssssssasisssssssssssssssssssssssssnsssssasssssassssns 13
TABLE OF CONTENTS ... o eeeeieeeettiiiereeeeneereeinseeeseenssesseennssssssnsssssssssssssssnssssssssnnnes 14
LT 7] (= 2 < =R 16
Chapter 1 : INtrOQUCHION...cceetieeereieecrrinereterersiesesssnnneeeeesssesessssnnnsssssssssssssssnnnssssssssssssns 19
1.1 Problem Statement and MOTIVALIONeeeeerreeiiiiicinininreeeeniiniesssenneeeessisssssssssnssessssseses 19
1.2 THESIS STIUCIUIE...uueeeeeerrieieerieereetesseesesssnneeeeesesssesssssnseesesssssesssssssssesssssssssssannsssesasssssns 19
Chapter 2 : Theoretical Background, Tools and SCriptSccceevvmerererrresiccrrnnneneeeeeennann. 21
2.1 CNAPLIEE OVEIVIEW..uueerrieiiiiiessrsnnreetesiisssssssnsesesssssssssssssnsessssssssssssssssssssssssssssssanssssssssases 21
2.2 Theoretical BaCKgroUNdccccvcceeeeeiiiiiiesnicnnnreeiiiiiesssssnseesessissssssssnsessssssssssssnssesssssssses 21
2.2.0 COMPUEET CIUSTEIS ..viiiiiiieeeiiiee e ettt e eeite e e stte e e e ste e e e e tteeestbeeaessbeeeeesteeesssaaaesstaaaeassaeesansseaesnsreeaans 21

2.2.2 Data Storing and SYNChiNg iN CIUSTEIScciuiiiieiiiee ettt eeee e st e e e e eara e e eenae e e eareeeens 22

2.2.3 Cluster Management and Orchestration SYSTEMSccccuieeeiiiiieeeiiee et are e e aree e 25

2.2.4 KUDEINELES ANd EECeiiiieieiee ettt ee et e e e e e e et a e e e e e e e esaabaaeeeeeeesensnsaeeeaeesennnnnes 26
2.2.5The Raft AlGOITNM c...oiiiiiiieee ettt sttt s b e s b e s bt e s sbeeesneesane 28

2.3 TOOIS AN SCIIPLS ..uueveereeeeerieerrrrnreeteereeeesssssseseesssssessssssssessssssessssssssssssssssssssssssnssssssssasns 31

9] o o 11Tt [o [R PURTPRPN: 31

2.3.1 Artificial Cluster Failures in IMININET..........ccuiiieiiiiee et eetee e st e e e are e e eeaae e e s aaeaeens 31

PR B A DT | - [=)l o £ o] fo Jol =11 o T PPt 32

YU L0010 ¥ 1Y S ON 34
Chapter 3 : Machine Learning in Failure PrediCtionccceevvereeerersssscsssneennennnnnnnenns 35
] 0 oo (U3 o] o RSO UUORRRR PP 35
3.1 MAChINE LEAINING..ccccirrereereerieeeesineeeeeeeeeeessssenreeeeeseessssssnseeessssssesssssssssesssssssssssnnnsseses 36
3.1.1 Supervised and UnSUPervised LEArNiNgGcccuuuieeiiieiiiiiieee e eecitree e e e e esnireeee e e e e s sbrareeeeeeseennnnnes 36

3.1.2 Classification @and REGIESSIONuuuiiiiiee ettt e e et e e et e e e e e e s esataae e e e e e e s esbaaaeeaeeeseennnenes 37

3.2 Decision Tree in Failure PrediCtioN....iiiccccccrcceeeeeesiicccssrneeneesssssccsssenneesesssssssssnnnnnens 37
3.2.1 ThEOTretiCal OVEIVIEWeiiiiiieee ettt e et e e e e e e et e e e e e e s e s astaaseeeeeesesasaaeeeeeesennnnenes 37

3.2.2 Decision Tree Training RESUILSuviiiiiee ettt e e e et e e e e e e s baae e e e e e e sennnnnes 39

3.3 Random Forest in Failure PrediCtioN .. ccccccccccccsesesssssessssssssssssssssssssssssssssssssssssenns 42
3.3.1 ThEOTELICAl OVEIVIEWeeeiiiiiie ettt ee et e e et e e st e e e st e e e snte e e snaeeeesnsaeeeanseeeessnnneeesnreeenns 42

3.3.2 Random Forest Training RESUILSccccuviriiciieeeeiie et e s s re e e e e e snnee e e snreeeens 43

3.4 Support Vector Machines in Failure Prediction........cceereiiiiniiininenneniinnineseeeen, 44
3.4.1 ThEOretiCal OVEIVIEWeeiiiiieiee ettt e e e e e e et e e e e e e s e s antaaseeeeeessstbaaeeaeaesennnnenes 44

3.4.2 Support Vector Machines Training RESUILSueeeiiiiiiiiiiiiei ettt e e e e e 45

3.5 Adaptive Boosting in Failure PrediCtioncccccceeeeiiecersrcneeneesessiccsssenneeeessissessssnnnnnens 46
3.5.1 ThEOretiCal OVEIVIEWuiiiiiiie ettt e e e e e et e e e e e e s e s aata e s e e e e eessstataeeeeeesennnnenes 46

3.5.2 Adaptive Boosting Training RESUILSccciiiiiiiiiiiei et e e e e rarr e e e e e e eananes 47

3.6 Extreme Gradient Boosting in Failure Predictionccceevvevveeeiiiiseeenininineeniinseennennne

3.6.1 Theoretical Overview

3.6.2 Extreme Boosting Training RESUIESccc.eiiiiiiiiiiiiieeeeeee ettt

Conclusionsceceeereveuenns

Bibliographyccceeeuueeeee.

15

Figure Table

Figure 2.1: A graphic diagram of what a clustered architecture looks like. The head node is responsible of
tasking the other “slave” nodes of the work, and it is its responsibility to not overwhelm any-one node
as well as keep track of nodes that are down. Graph taken from
https://docs.anaconda.com/anaconda-ClUSTEI/ccuiiiieeciieiie ettt et anas 22

Figure 2.2: The IBM Blue Gene/P supercomputer installation at the Argonne Leadership Angela Yang
Computing Facility located in the Argonne National Laboratory, in Lemont, Illinois, USA. All modern
supercomputers utilize the power of clustered machines. Taken from
https://commons.wikimedia.org/wiki/File:IBM_Blue_Gene_P_supercomputer.jpg.......cceceeeeeeereeneens 23

Figure 2.3:A Microsoft cloud computing center in Quincy. This is what a modern data storage facility looks
like where millions of gigabytes are stored. Wash.Credit...Richard Duvall. Picture taken from
https://www.nytimes.com/2017/01/23/insider/where-does-cloud-storage-really-reside-and-is-it-

L3 Tol U] S o141 o] O PSPPSR USRS 25
Figure 2.4: An example of the Kubernetes dashboard when monitoring the cluster diagnostics.
Orchestration tools like this make cluster management much easier for the developers..................... 28

Figure 2.5: The (just-elected) leader S2 sends the append entries request in every other node in the cluster
as the first operation of its tenure. This is very important so that everyone has the same updated
information as the leader especially after a write in its database. Screenshot taken from

Rt PS://raft.GIENUD.IO/ oottt ettt e s et s e e et e e s tbeeetbe e s abeeeabeesabeeeabeesaneenaras 29
Figure 2.6: A Raft visualization with 5 servers. Server 1 is the leader and every other one is a follower.
Screenshot taken from https://raft.github.io/c..oovviiiiiiiiii e 30

Figure 2.7: A) To the left it can be seen that server 1 has now been deactivated and every other follower is
in timeout mode. When timeout ends, they send leadership vote requests. B) To the right a vote

response can be seen after timeout has passed. Screenshot taken from https://raft.github.io/......... 31
Figure 3.1: How deep learning is a subset of machine learning and how machine learning is a subset of
Artificial INTEIHGENCE (Al). .eveee et e e e e e ettt e e e et e e e e s abe e e eeataeesbbeee e ntaeeeesaaeessreaeans 36

Figure 3.2: A decision tree produced with the dataset of this thesis (even though this tree does not perform
well, this is just for visualization). The attribute of every non-leaf node can be seen at the top of each
block and the leaf nodes contain the more probable class for that tree path.cccceeiiiiieeiiieecnns 38

Figure 3.3: A figure produced with matplotlib that shows how the max tree depth affects the
testing/validation model accuracy, at some point after a depth of 6 the model accuracy starts to
plateau therefore a further increase is not deemed useful..........coouiiiiiiiiiiniiini e, 40

Figure 3.4: The model validation accuracy based on the increasing ccp_alpha parameter. The model reaches
peak performance right at the very beginning of this parameter, which is expected since the more
branches the tree has the more cases it can cover, whereas the greater the ccp_alpha the more
branches are DeING CUL OFf.ooo it e e et e e e et e e e e abe e e e enbaeeeennns 41

Figure 3.5: The plot of how the increasing min_impurity_decrease parameter affects the model validation
accuracy if max depth is 6 and ccp_alpha is 0.01. It is almost identical to figure 3.4 but has some
sharper lines, and this can be expected as both parameters work with the impurity decrease of a
Lo YT ATy o1 [A T gl T [ol o PSP 41

Figure 3.6: A visualization of the decision tree produced when ccp_alpha is set to zero and the max tree
(o 1T 00 a T Y= A o TN < TSP USURRROt 41

Figure 3.7: A visualization of the decision tree produced when ccp_alpha is set to 0.01 and the max tree
(o 1= o1 o T Y=Y o o TN TSRS 42

Figure 3.8: This is a visualization of a decision tree with a min_impurity_decrease of 0.02 and a ccp_alpha of
0.01. It is very clear that the more these parameters are increased the simpler the trees become, with
a cost in performance however as this iteration had an 84% classification score instead of a 90% that
the Previous MOl Nad.t e e e e e e e ta e e e e e e eeeantaaaeeeeeeanes 42

Figure 3.9: A random forest algorithm training visualization. More decision trees are considered more
robust than just a single one. Graph taken from https://medium.com/swlh/random-forest-
classification-and-its-implementation-d5d840dbeadO..............cceeeieeieiiiiiiii e 43

Figure 3.10: The plot of how the number of estimators affect the model performance. The plot shows that
the validation accuracy is not affected too much from the number of estimators and this could be
expected since the original decision tree performance was very go0d.ccccccvevvieeeeniieeeecieeescieeene 44

16

Figure 3.11: The attempt to find a hyperplane for a dataset with 2 features so that the samples can be
divided in different groups and the prediction process can be accurate. Taken from https://scikit-
learn.org/stable/modules/sVM.NEMIcoviiiiiiiiece et 45

Figure 3.12: A visualization of a 2D line and a 3D plane that segregate the data into their groups so that
accurate predictions can be possible. Graph taken from https://towardsdatascience.com/support-
vector-machine-introduction-to-machine-learning-algorithms-934a444fcad7ccccccvcveeeeccrveeeennnen. 45

Figure 3.13: A visualization of the training process of adaptive boosting. The miscalculations of the first
trained tree come into play in the training of the next tree and so on. Graph taken from
https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-
boosting-step-by-step-explained-95d49d1e2725c.ciiiiiiiiieiieeee ettt 46

Figure 3.14: The plot of the learning rate and how it affects the model performance. With the learning rate
having a default value of 1 the model shows little to no performance gains when the parameter is
AFOUNG That ValUB.....uiiiiieiii ettt s e e sae e e st e e sabe e sabeesabeesabeesabeesabeesaseens 47

Figure 3.15: The plot of the model and the effects of the tree depth increasing. As expected, the tree depth
does not influence the model too much as long as it is in the range of 4 to 10 levels. However, there is
a maximum in the performance in the tree depth = 9. ..o 49

Figure 3.16:The learning rate or the version of learning rate for xgboost “eta” and its effects on model
performance. It appears as if the model performs very well for anything below 0.6 for eta with a
MAXIMUM At AFOUNT 0.3 eiiieeeiiiieeeiee e ceite et ee e et e e et e e e sateeeessabeeesessaeeesasseaeessaeesansseeessnseeessssnesnnnns 49

17

18

Chapter 1: Introduction

1.1 Problem Statement and Motivation

In a world of great technological advancement computers operate in every single aspect of
everyday life for the betterment of society and palliation of bureaucracy burdens. Everyday
computers and servers worldwide handle billions of user requests for both entertainment and
work facets of life as well as government related responsibilities and services but given the
scale of the users and the services provided no-one computer could possibly control all the
traffic by offering both reliability and fast processing. The most widely used method to solve
this issue is to use multiple computers to substitute for the one in order to load balance the
requests and improve system-network latency and reliability. However, this solution ought
to be seamless for the user and should not concern anyone beyond the developers and system
administrators, which means that this process has to happen dynamically in real-time and
usually without human-input. It becomes apparent that if thousands of requests flood a server
in seconds or minutes, the load balancing acts should be performed by machines rather than
people, which creates the need for software cluster management and monitoring. Currently,
there are multiple software solutions that manage clusters and deal with the faults that may
arise in their operation with some of them being Kubernetes, Docker Swarm, Microsoft
Cluster Server and more. The way that software deal with cluster-failure recovery is different
but the case of Kubernetes, which uses ETCD and the Raft protocol, will be of concern in
this thesis. The aim of this thesis is to provide tools to predict the type of failure that a cluster
with ETCD and Raft endured so that it could be possible to influence the way that the cluster
recovers from that failure in a more optimized way rather than randomly as it happens now,
and it is considered that this could improve cluster stability and performance. The predictive
tools used are machine learning algorithms and more specifically: Decision Tree, Random
Forest, Support Vector Machine (SVM), Adaptive Boosting kot Extreme Boosting, which

will be analyzed in the following sections below.

1.2 Thesis Structure

The structure of the thesis will be described in the following paragraphs so that each chapter
has a clear distinction and purpose, therefore the reader is directed to read a brief overview

of the chapters and/or use the table of contents for more direct navigation.

19

Chapter 2 will explain the theoretical background required so that the problem at hand is
clear, and the purpose of the thesis is stated but more specifically in 2.2.1 and 2.2.2 there
will be an introduction to computer clusters and data orchestration respectively.
Additionally, in 2.2.3 and 2.2.4 the need for orchestration tools is discussed and the
capabilities they offer are described. Moreover, in 2.2.5 the Raft algorithm is briefly
explained and 2.3 it describes of the scripts that are utilized in this thesis so that the processes
of extracting the data from the clusters and creating the datasets are automated with little

interaction.

Chapter 3 briefly explains the theoretical background of the machine learning algorithms
used; however, it will not dwell too much in the mathematics side of the algorithms as it is
not of particular interest in this thesis. Also, the training results of the different algorithms
are presented with a comparison between them so that a potential better algorithm could
stand out. All experiments were run in simulations of three cluster-nodes with the same exact

datasets so that a valuable comparison could be possible.
Finally, the conclusions of the thesis are being drawn as to which methods worked the best

and how this could be researched and utilized further for influencing the Raft elections and

optimizing the election results.

20

Chapter 2: Theoretical Background, Tools and Scripts

2.1 Chapter Overview

A brief overview of the theoretical background required will be explained so that computer
clusters and Raft are clear enough subjects for the reader, so that they understand the
following sections as well as the existing protocols of ETCD/Raft and why there is room for
improvement in some areas of operation. Furthermore, the scripting process will be
explained, as python scripts were developed in order to automate the process of extracting
the data from the operation of ETCD/Raft and forming the dataset in a way best suited for
the algorithms. Conclusively, in the following sections there will be mentions of the
information and these tools mentioned in this chapter, so they are deemed essential to the

overall understanding of the thesis.

2.2 Theoretical Background

2.2.1 Computer Clusters

Modern computers have given the everyday user the ability to study and work from home,
deal with government related activities, entertain themselves, socialize with other people as
well as shop and game. Most of these aspects of life have started attracting more and more
people in the digital world and with the use of very powerful computers the case for
thousands, millions and potentially billions of everyday users for these services has been
rendered considerably more realistic. However, even the most powerful of the world's
supercomputers could not handle all the traffic that flows through the worldwide web every
day, therefore the need for multiple computers working together on the same tasks has risen.
Computer clusters are a set of computers usually used to replace a single computer in order
to improve stability and speed in data-processing and they are usually utilized by businesses
and web services so that the content they provide is always available regardless of the traffic
they get or the hardware limitations (memory etc.). As mentioned before, one of the key
benefits of using clustered machines is speed in processing because of the much greater
hardware power, which means that more users can concurrently use the services with less
latency therefore making the service much more responsive and easier to use without crashes
or delays. Almost every cluster utilizes this benefit for its service because of the needs of

modern online businesses and services with some very widely used ones being social-

21

networks and video streaming platforms etc. In these examples not only is the user-base very
big (millions or even billions) which enhances the need for more hardware resources, but the
users demand an instantaneous response in their requests because messages and emails can
not take hours or days to be sent and videos can not lag and freeze every minute or take hours
and days to load. Furthermore, another key benefit of the clustered architecture is the ability
to provide the users uninterrupted services in case of hardware or software failures in the
machines or also known as failover capabilities. Failover enhances the user experience and
in turn the service: if a node fails the service is still online and running with every other node
working properly and the user gets redirected to use another node in the cluster. Unlike
clusters, computer failures in non-cluster implementations could lead to the crash of the
whole service making it impossible to use, which means it is a bad business practice for
servers with large amounts of traffic and low latency demands. There is an issue with this
architecture however, the data between the server nodes must be frequently updated so that
they store the same data, and the end users always get the most up to date information, this

is a very important issue that will be discussed about further in 2.2.2.

Head Node

e
[
—
—

L 1]

| |
Client Machine Compute Node Compute Node Compute Node
)

Figure 2.1: A graphic diagram of what a clustered architecture looks like. The head node is responsible of tasking the
other “slave” nodes of the work, and it is its responsibility to not overwhelm any-one node as well as keep track of nodes

that are down. Graph taken from https://docs.anaconda.com/anaconda-cluster/

2.2.2 Data Storing and Synching in Clusters

As mentioned before clusters are used by high-end users that require their services to be
distributed in multiple computers both for low-latency and higher reliability and
accessibility. However, the cluster offers reliability not only because it can run after node

failures but because it can store the data in multiple physical memories so that the

22

https://docs.anaconda.com/anaconda-cluster/

information is secure in case of hardware failures or disasters (fires, floods etc.). Although
simple users usually do not require such mechanisms for data security, the reader might be
familiar with services like Google Drive, Microsoft OneDrive, Dropbox etc. which are cloud
products that offer data redundancy in case of data loss or hardware failure (even stolen or
lost devices) which offer likewise capabilities. As a sidenote it is recommended to the reader
that they perform frequent data backups in different physical memories (if not in cloud
services) because the value of personal data (photos, videos) is invaluable and can only be
measured when lost. Whereas simple users might not feel the need to back up their data (not
recommended) such practices can not be followed by enterprises or important services with
crucial information like health departments with electronic health records

»)

,;,‘,” S
1300 O¥]
gl 1™
[a a 3
qa 24
(= !
IS5 SH S

RS

K

Figure 2.2: The IBM Blue Gene/P supercomputer installation at the Argonne Leadership Angela Yang Computing Facility
located in the Argonne National Laboratory, in Lemont, Illinois, USA. All modern supercomputers utilize the power of

clustered machines. Taken from https://commons.wikimedia.org/wiki/File:IBM_Blue Gene P_supercomputer.jpg

or treasury departments that keep all the taxed individuals in check, or even banks that store
individuals bank accounts instead of in written form in books. Consequently, data storing is
extremely important in clusters, however an issue occurs if multiple machines work with the
same data but in isolated physical memories, the case of out of sync data. The problem of
data synching between cluster nodes might not be an obvious one, however if one delves a

little deeper in what kind of problems users can encounter when served by different nodes it

23

https://commons.wikimedia.org/wiki/File:IBM_Blue_Gene_P_supercomputer.jpg

can be very enlightening. An example of this problem could be a failure in a bank server, if
the data of the bank transactions were not updated in another system, all transactions that
occurred in that timespan would not have been valid and would have to be performed again
which is very inconvenient and very unreliable. Another example is a cloud storage service
that has a crashed node, if that node had not updated at least one of the other nodes with the
new information, the data would be lost, and the user would lose track of all changes. Not
only that, but to add to that last example, the reader can imagine a single file stored on
multiple severs that many users have access to, something that has become very common in
this age. Would the users be in completely different geographical locations, the servers that
serve them will probably be very different for each user, however the data has to be
synchronized. Had those users made conflicting changes to the file, then some user’s edits
would be lost forever, or the system would not know which version to offer to the clients the
next time they request the file. The way this is solved in modern clusters is by using software
that manages the cluster and controls how the data is updated and how often, therefore the
process of backing up the data is automated, and the system is safer in case of failures. It is
important however to note that even when these programs are used, the data is not completely
secured in case of hardware or cluster failures and further methods are utilized for more

reliability and redundancy.

24

Figure 2.3:A Microsoft cloud computing center in Quincy. This is what a modern data storage facility looks like where
millions of gigabytes are stored. Wash.Credit...Richard Duvall. Picture taken from

https://www.nytimes.com/2017/01/23/insider/where-does-cloud-storage-really-reside-and-is-it-secure.html

2.2.3 Cluster Management and Orchestration Systems

Cluster management tools are software tools that help system administrators to monitor and
configure computer clusters according to their designs and the real time performance
metrics. The demand for cluster management tools is of great importance if one considers
the need to frequently update and resolve software issues in clustered nodes simultaneously.
Whereas this would not have been an issue if the cluster had a small number of members,
modern clusters however could potentially support up to thousands of nodes as noted in [1]
therefore the manual way of installing and updating the nodes is not viable. These tools are
called orchestration tools because they orchestrate the clusters and automate their execution
as well as do everything that is necessary to make failed nodes run again and restore the
cluster to a healthy state. As a result of the great demand for such tools, there are several
solutions that make the job much easier for the teams of system administrators, with some

of them being open source and some of them being proprietary, but a few of the most widely

25

https://www.nytimes.com/2017/01/23/insider/where-does-cloud-storage-really-reside-and-is-it-secure.html

used ones are Kubernetes® (Google), Docker? (Swarm), Mesos® (Apache), Microsoft Cluster
Server* and more. Kubernetes has gotten popular quickly in the orchestration tools space
because it is open source, and it has been developed by Google in 2014 who have had
experience with this technology for many years and are a pioneer in this space, hence it is a
very competitive solution. Kubernetes offers a dashboard Ul for developers to take
advantage of and monitor the cluster in a visual way, as well as detect anomalies in the
performance of the nodes. Amongst other capabilities, developers can monitor CPU/ RAM
frequency and usage, the number of CPU cores that are in use as well as the amount of time
they are running and their current status (alive or down) an example of which can be seen in
figure 2.4 below.

Moreover, users can utilize other software or packages for monitoring the cluster as well as
notification systems that warn the developers of imminent crashes or failures, even though
many of the recovery tasks are being taken care of by the automated system itself. For
example, a couple of the more well-known monitoring software are Prometheus® and
Grafana® which can be integrated into Kubernetes and provide the important metrics of the
cluster as well as issue warnings and keep cluster logs. Even though these tools are not going
to be of particular importance for this thesis, their existence and their use make clusters much
easier to handle and operate and they are considered important for the understanding of the

subject at hand.

2.2.4 Kubernetes and etcd

As previously mentioned in 2.2.3 above Kubernetes is an orchestration tool that helps
developers and system administrators keep a cluster healthy and the service it provides
uninterrupted. Additionally, a lot of features it comes with have been discussed with the
more relevant ones being self-healing, data orchestration and load-balancing, but all the
other ones are equally as important. Self-healing is a capability Kubernetes offers with which
it can kill processes in nodes that are misbehaving or have crashed (are unresponsive) and
can restart them while taking them off the list of healthy nodes until they are completely

responsive and ready to serve requests again. In addition to that, the administrators can put

! https://kubernetes.io/

2 https://www.docker.com/

3 http://mesos.apache.org/

4 https://www.microsoft.com
5 https://prometheus.io/

6 https://grafana.com/

26

in place custom health check standards so that a node or the cluster are considered healthy
only when those standards have been met, which is especially useful in situations where
stability and reliability is of great importance to the service. Furthermore, the data
orchestration or data synching capabilities of the cluster, Kubernetes handles by utilizing
etcd’ which as noted in the official website is “a strongly consistent, distributed key-value
store that provides a reliable way to store data that needs to be accessed by a distributed
system or cluster of machines”. More specifically, as mentioned in [2] etcd manages the
configuration data, state data, and metadata for Kubernetes and the status of the cluster as
well as the status of the processes of each node. To add to that, etcd is considered “fully
replicated” which means that every node has its own database to store key-value pairs in, as
well as consistent since every single read will provide the most recent write that has been
performed to the data, but more on that in section 2.2.5. Another functionality of etcd is that
it is Highly Available (HA) which means that there is no single point of failure for an etcd
cluster, even if the master node goes offline. Lastly, etcd is fast but it is very dependent on
network and hard drive speeds since it performs writes in memory, but it is also a secure
platform because it is using Secure Sockets Layer (SSL) client security or Transport Layer
Security (TLS) which are optional and highly advised client authentication techniques.

As previously described in section 2.2.2 as well as in this section, if there is no specific
policy for the data-synchronization between the nodes there is a problem in what version of
the data is more recent or more precise, which could be detrimental for most businesses and
this kind of ambiguity can not be tolerated in a cluster if stability and reliability are to be
expected. This is a problem that would be very difficult to fix if all nodes write to their
databases and then the data must be merged, whereas etcd avoids this approach altogether
and uses the Raft protocol for handling of “writes” in the logs and the database of the cluster.
Raft is essential to etcd for making it a robust database that can withstand failures, but more

on Raft will be discussed in section 2.2.5 below.

7 https://etcd.io/

27

® 0 ® @ pods - Kubernetes Dashboard X +

& C O O localhosts r i 1e ices/htty $ - 1 fpod spac ! o % 51 @
kubernetes Q Search + CREATE 2]
= Workloads > Pods

Nodes

Persistent Volumes CPU usage Memory usage

Roles

Storage Classes b oot
Namespace 3 2

2 0.060| éZEUM\
kube-system ~ O 0030 2 1asm
[)
- 11:10 113 118 1:20 1:24 ﬁ:‘!ﬂ 1:13 1:16 1:20 11:24
Overview
Time Time

Workloads

Cron Jobs Pods =

Daemon Sets

Name Node Status estarts Age * CPU (cores) Memory (bytes

Deployments o ! e . mer)

Jobs @ ‘kubemetes-dashboard7b9c7b minikube Running 0 27 minutes Ao [RERZTIV—

GG @ heapsterghqbr minikube Running 0 27 minutes 0 I s 00ami =

Replica Sets

@ influxdb-grafana-77c7p minikube Running 0 27 minutes I WL i osm =
Replication Controllers
Srrresn @ kubeschedulerminikube minikube Running 0 20 hours D oo B ocomi =

Discavery and Load Balancing @ etcdminikube minikube Running 0 20 hours o015 I s: 445 i

Figure 2.4: An example of the Kubernetes dashboard when monitoring the cluster diagnostics. Orchestration tools like this

make cluster management much easier for the developers.

2.2.5 The Raft Algorithm

This section is a culmination of many of the sections above, not only because it is essentially
the protocol this thesis aims to enhance but because it provides the reliability and consistency
to etcd that was mentioned in 2.2.4. The Raft algorithm® as explained in [3] (developed based
on the Paxos algorithm seen in [4]) is the way etcd manages to consistently provide the most
recent “write” to the data when requested as opposed to an older or outdated version, the
mechanism of which will be described in this section. Firstly, the Raft algorithm assigns to
a node in the cluster the position of “leader” to designate that node as the more updated and
informed one, with every other node in the cluster being a follower of that leader. The way
this leader is picked is by random elections between the cluster nodes, with some node or
nodes announcing their candidacy for leadership and expecting the vote responses from the
other nodes. Additionally, every time a new election takes place (hence a leader change has
occurred), a new term is established by the algorithm and if there is a consensus in the voting
process then a new leader will have been elected and every other node would be a follower,
however if there is no consensus then the elections start over and a new term is established.
One way that it is attempted to avoid cases of leaderless elections (undecisive elections) is

by requiring that the cluster have an odd number of nodes so that if all nodes are online there

8 https://raft.github.io/

28

is always going to be a leader elected (obviously a node can not vote for more than one
candidate). As was previously mentioned in the sections above, amongst other benefits, the
cluster acts as a load balancer for the service that is being provided, and the leader has its
followers take the incoming read requests so that it is not overloaded. In a case of a write
request however, the leader gets the changed data and asks that every follower replicates that
data and appends it to its log and requests a successful response of that replication, and only
when and if that process updates the majority of the cluster with the new data it then

replicates the data to its own local storage/log.

AppendEntries request

from S2 S1
to S5
sent -6.330ms 2 123456780910
deliver +6.133ms S1 \ \ \
term 2 % : ;
previndex 0 S5) @82 S2 ‘ ‘ |
2 |
prevlerm 0 - :
entries] 33.‘, | ‘ ‘ ‘ |
commitindex 0 Cor o
$4, HEER
A
ss[[T TTTT]
2 2
drop

S4 S3

Figure 2.5: The (just-elected) leader S2 sends the append entries request in every other node in the cluster as the first
operation of its tenure. This is very important so that everyone has the same updated information as the leader especially
after a write in its database. Screenshot taken from https://raft.github.io/

Thus, since the leader has the most updated data at any single point in its database and the
read requests end up to the followers, it is wise to consider that a “read” in a follower node
could give misleading or false data back to a client. Because of that, Raft demands that every
“read” that is requested from a follower node goes through the leader first, therefore if a new
and updated version of the data is available then that will be the version that will be
forwarded to the client. As a result of the above, if a follower crashes or goes offline the
cluster will be safe since no data loss will be expected, even though stability might suffer
before the problem is sorted. In contrast to a follower failure however, if a leader fails that
is very important for the cluster, and that is when new elections are triggered. The type of
failure is not necessarily the node going offline and crashing, but it could be a delay in a link
(that connects two nodes) of the cluster being greater than the tolerated standard or a cut off
link. The way this change in status is observed is because Raft has communicative messages
between the cluster members to designate and differentiate cluster functions some of which

is the election announcement, or the log replication success/request and the heartbeat

29

https://raft.github.io/

messages. These messages are very commonly used in the computer networks field, and they
are used for nodes to know the status of their communication partners, an example of which
is the routers in the worldwide web. The routers exchange “hello” messages to keep track of
online and offline links so that they can re-route traffic in case of unreachable nodes as well
as optimize the traffic balancing in case of dynamic routing algorithms. All these messages
are very important in this thesis as they designate the failures in the cluster before a leader
election has started, and their use is important to decide what failure has occurred. To add to
that, the way they prove useful is because whenever the nodes send heartbeat messages, they
expect a reply of acknowledgment of that message from the other node(s) as a way to indicate
that they are still alive. If the timeout period of the heartbeat messages passes, then they
request that new leader elections shall start as they assume that the leader is down and this
is the key feature that the machine learning algorithms could tap into, the lack of replies in

the communication between cluster-nodes.

S1

@ 123456738910
StTTTTTTTT]
ss @ =2 s2[TT1 1 [[1]]
2 733“][mm
s [TTTTTTT]
ss[[TTTTTTT]

> ©

S4 S3

i @
© 2

Figure 2.6: A Raft visualization with 5 servers. Server 1 is the leader and every other one is a follower. Screenshot taken
from https://raft.github.io/

30

https://raft.github.io/

S1

RequestVote reply
. S5
S3

-11.251ms

deliver +1.481ms
S4

term 3
Figure 2.7: A) To the left it can be seen that server 1 has now been deactivated and every other follower is in timeout mode.

granted true

When timeout ends, they send leadership vote requests. B) To the right a vote response can be seen after timeout has passed.
Screenshot taken from https://raft.github.io/

2.3 Tools and Scripts

Introduction
The dataset for a machine learning application requires a great amount of data for the

algorithm to train well enough, but the number of that data is not preset, and one can only
experiment with the data in order to get the best results. In this thesis, there was
experimentation with many dataset sizes, but the optimal size was considered at 1000
failures, which in turn means that there would have to be a way to automatically extract
many messages from the cluster members. That is why scripts were developed which
randomly create artificial failures based on which node the leader is and what type of failure
would cause a new election and the end of a term as well as reform that data and repurpose
it as a dataset. The nodes were simulated in Mininet, and the Raft algorithm was utilized by
using the etcd-Raft Example®. Raft only handles clusters with an odd number of members
so the experiments that will be of concern are with three nodes in the cluster.

2.3.1 Artificial Cluster Failures in Mininet

In the beginning, the script that had to be developed was the one that would create random
failures in the cluster so that a dataset with hundreds or thousands of term changes could be
created. A Mininet topology of the nodes interconnected with a switch has been created with

% https://github.com/etcd-io/etcd

31

https://raft.github.io/

hardcoded IP and MAC addresses so that they can be discoverable in the cluster. Because
Mininet does not allow direct node to node connections, for the failures that require the link
between two nodes to go offline, the proactively set switch table gets changed and the flows
that connect the two nodes (that simulate the link that needs to go down) get removed from
the switch table. The reasoning behind this logic is to let every other node be able to
communicate with the node with the failed link so to simulate that only that link has a
connectivity problem. In the beginning of the process, the script starts up the Mininet
simulation described above and runs the Raft Example algorithm in every node while saving
the output of those commands it in separate txt files, which it then scans to find leader
changes between the nodes and attempts to synchronize all of them so that there is no error
in the process. Once the leader has been identified properly then it randomly creates an
artificial failure by either shutting down the link of the interconnected nodes or by shutting
down the node-leader. It is essential that in every sample there is a leader change, so that the
algorithms do not train on useless data and thus every time a failure is caused, the script
either chooses a link that is connected to the leader or the leader itself as the failure. The
failures and their metadata (terms and interfaces) are also being kept in files so that they can
be utilized further in the future for the automation of the dataset making process. Moreover,
the script starts tcpdump programs in order to capture the traffic between the nodes and saves
it in pcap files which are then used in order to transform the exchanged Raft messages into
humanly readable txt files.

At this point another script had to be developed that extracted the Raft algorithm message
metadata from the TCP packets that were captured with TCPDUMP and saved that metadata
in txt files so that they could be the dataset used in the machine learning algorithms. Every
Raft message is converted into a single line of data that contains the message receiver,
message sender, message term, message time, message vote response and type and the last
heartbeat message received is also appended. This file is the type of input that the pre-
processing script requires so that the dataset can be formed properly, and it can be exported

in the appropriate form, more on which in section 2.3.2.

2.3.2 Dataset pre-processing

The script developed for the automation and formation of the dataset for this thesis was based
on the messages exchanged and extracted from the Raft algorithm and the scripts developed

in 2.2. The input of the script is a .txt file that contains one line for every message captured

32

during the run of the algorithm, and the metadata that was maintained were: receiver, sender,
term, message time, message type of each packet and the last heartbeat message that was
sent. The file containing all the artificial failures is used to coordinate and synchronize the
txt file with the failures so that there is no mistake during the dataset formation process. The
idea was that every bit of information described above would be a column in the dataset for
the machine learning algorithms to train on, and every one of these columns would contain
crucial information as to which link had failed based on the exchanged messages.
Information like receiver and sender indicate the node of the cluster that either received or
sent the message respectively, and term, time indicate the term and time that the message
was sent at. The message type is an important indicator of what type of operation Raft is
trying to enable, and since there are some signs that a new election might be carried out
hence a failure of some kind has occurred in the cluster this field is very useful. The different
message types are noted with different integer number but of greater importance are
considered of being the heartbeat messages which just verify that nodes are alive.
Consequently, if there are many heartbeat messages to one node from a node this could be
an indication of a failed link whereas many heartbeats from many nodes could indicate that
a node has crashed. The differentiation and prediction of the failures based on the previous
messages is what machine learning is tasked to do in this thesis by training on the dataset of
artificial failures. However, a valid concern would be, what is the optimal number of
messages to look back to in order to decern what kind of failure has happened and after some
experimenting the optimal number was found to be 20 messages before the first heartbeat
message that appears to have a new term. Therefore, a new script had to be developed so
that the txt file could be reformed, and a clean-up process could be possible. This script
searches the dataset for a new term-heartbeat pair and captures the previous 20 messages of
that heartbeat as a history for that failure and then it changes all of these messages to make
their data in relative form. More specifically, time and terms are considered zero for the
oldest “history” message and all the other messages are adapted relatively to that change
with both negative and positive numbers, however message type. vote response as well as
sender and receiver were not changed. In addition to that, these messages are reformed into
a single row of the dataset and another field of data is added: the failure type. The failure
type is taken from the file that has been kept from the operation of the scripts in 2.3.1 and
the failures are synchronized to the reformation processes of this script. Every column has a
distinct name, so for example the term for the oldest message (which is the first message

from left to right in the dataset) is term19, for the time it is timel9 etc. The script ends when

33

the user-set number of term-changes have been iterated and changed, therefore the new data
samples have been formed which in this case are 1000 and a new dataset-csv file is exported

that is ready to be used by multiple algorithms.

Summary

In summary, a leader in Raft holds its position until a failure occurs that renders the node
unreachable to some other node, in which case an election shall commence that will lead to
a new leader. The elections are decided by the votes of the node members and the leader is
drawn randomly, without any optimization as to which one would be the most efficient
choice. However, this could lead to another election if the new leader faces the same
problems that the old leader did and to decern which leader would be the best option, the
different failures must be distinct. As a result, in this thesis the cluster failures analyzed are
link failures and node failures, with link failures being the ones that prevent the transmission
of data between two cluster nodes because of a failure in the link connecting them and the
node failures being the ones that have to do with the operation of the computer-node (crashes,
physical failures etc.). Conclusively, this thesis aims to provide the tools to perform failure
prediction based on the messages exchanged between the cluster nodes so that a more

optimized leader election can be achieved.

34

Chapter 3: Machine Learning in Failure Prediction

Introduction

Machine learning is a very quickly evolving field in computer science and the promise is
that it can help humanity reach great levels of optimization and accurate prediction in
multiple areas of life. Machine learning is already capable of detecting useful patterns in
data that humans could not have or would need very long hours of doing so and an example
of that is machine learning in tax audits which can accurately and consistently flag tax
evading individuals. Deep learning which is another approach in the Artificial Intelligence
(Al) field, enables the capability of translating audio to text and vice versa, detecting and
identifying objects in photos or videos such as fruit detection in farmer crops or human-
animal detection in self-driven cars and many more applications are now possible because
of machine learning and deep learning or their encompassing umbrella: Al. That is why this
technology is being used in this area, because the prediction of cluster failures and the
possible automation of the response to such failures could be detrimental to the stability of
systems that more and more encompass people’s everyday lives. These predictions could be
made by humans, but the speed and consistency are thought of being incomparable to a
machine, let alone a machine learning application which learns by its own mistakes and can
improve.

The previous chapters were a theoretical explanation of the subjects and the tools that will
be tackled in the experiments that will be discussed in this chapter below, as multiple
machine learning algorithms will be trained on the dataset that the scripts from section 2.3
developed and formed, and the results of those experiments will be presented in the sections
that follow. The tools utilized to accommodate the failure predictions are machine learning
algorithms that train on hundreds or thousands of sets of data-samples that are exchanged
between the nodes in cases of failures and in turn leader elections. The machine learning
algorithms used for the predictions are decision trees, random forest, support vector
machines, adaptive boosting, extreme gradient boosting. These algorithms were all trained
on the same datasets so that the results could be comparable to each other, and the best

performing algorithms could stand out.

One last note, every single experimentation in the following sections will be of clusters

simulated in Mininet with 3 nodes in the clusters, because Raft can only work with an odd

35

number of nodes, thus the other acceptable configurations would be with five, seven, nine
etc.

3.1 Machine Learning

Artificial Intelligence:
Mimicking the intelligence or

behavioural pattern of humans
or any other living entity.

Machine Learning:
Atechnique by which a computer
can "learn" fromdata, without
using a complex setofdifferent
rules. This approach is mainly
based on training a model from
datasets.

Deep Learning:
Atechnique to perform
machine learning

inspired by our brain's
own network of
neurons.

Figure 3.1: How deep learning is a subset of machine learning and how machine learning is a subset of artificial

intelligence (Al).

3.1.1 Supervised and Unsupervised Learning

The way machine learning algorithms learn is not the same for every single one of them
since some have a supervised learning approach where others have an unsupervised learning
approach. The difference between the two is that in the first category the developers have to
harvest data, label it, and then feed it to the algorithm so that it can train and provide accurate
predictions, however in the second category labeling is not required and instead the
algorithm is trying to cluster the data by itself. In more detail, labeling data is the act of
giving the dataset the correct predicted value so that the algorithm can train on the given
input (one or multiple columns) and attempt to form the correct given output. For example,
an interesting way to understand how the training process works is by considering an
unknown equation that can be formed if given inputs it exports the desired outputs. The
equation would need many different data points so that it can model data more accurately,
especially if it is not linear which most machine learning applications are not. In this thesis
the algorithms used are supervised learning algorithms, since as it has been explained in

section 2.3 the data have the correct failure types that have occurred in the training process

36

so that the algorithm can learn to accurately predict them. Unsupervised learning was not
thought of being particularly useful in this thesis as many of the data samples are quite
similar and it was thought that the human label could prove very useful for the data

distinction.

3.1.2 Classification and Regression

Another important distinction when using machine learning algorithms is whether the
algorithm is a classification, or a regression algorithm and their differences will be explained
below. A classification algorithm is used when the predicted variables are in distinct classes,
whereas a regression algorithm is used when the predicted variables are continuous values.
For example, if the predicted variable is a true or false statement or there are multiple states,
but it is required that only one of them be the output then a classification algorithm is used.
In contrast to that, if the predicted variable is a continuous number such as money or
temperature then the algorithm shall be a regression one. As a result of the above, in this
thesis the algorithms used will be classification algorithms since the predicted variable is the
“failure type” and that can only be a specific value and not a number in between (a
combination of failures is obviously not accepted). In most of the machine learning
problems, the predicted value is usually referred to as a “target” value or the “y” from the
function denotation in mathematics and in this thesis this variable is the failure type of each
sample that was caused artificially in Mininet. The algorithms can not understand from
words and phrases what link has gone offline or what node has crashed therefore these values
had to be one-hot-encoded which means that every type of failure was translated to an integer
starting from 0. That is the way that this field appears in the dataset and that is the appropriate
way that target values in classification problems appear in datasets.

3.2 Decision Tree in Failure Prediction

3.2.1 Theoretical Overview

The reason decision trees are very useful in machine learning is because they visualize the
results of the training process and can export it as an inverted tree (root is up and leaves are
down) so that the developers can understand the decision-making process. Every node of the
tree has an expression that attempts to divide the data into groups, to the left of that node it
is a positive correlation to that expression whereas to the right of that node it is a negative

correlation. Every node's expression is called an attribute of the decision tree and the leader

37

node on the top of the tree is called the root node, where every node that does not branch
into other child-nodes is called a leaf node with every other node being a decision node. All
decisions start from the root node and by evaluating every sample's correlation to the
attribute of the node, the prediction can be obtained by following the directions of the tree

and finally to the leaf node which contains the predicted class.

LastHeartbeatFrom <= 1.5
entropy = 2.582
samples = 899
value = [154, 153, 156, 157, 149, 130]

class = 1-2
Trt:y Vilse

from6 <= 1.5 LastHeartbeatFrom <= 2.5

entropy = 1.84 eniropy = 2.164

samples = 388 samples = 511

value = [154, 14, 8, 108, 104, 0] value = [0, 139, 148, 49, 45, 130]
class =1 class = 3
entropy = 1.587 entropy = 1.073 entropy = 1.435 entropy = 1.403
samples = 230 samples = 158 samples = 252 samples = 259
value = [26, 4, 3, 100, 97, 0] value = [128, 10, 5, 8, 7, 0] value = [0, 139, 0, 49, 0, 64] value = [0, 0, 148, 0, 45, 66]
class =1-2 class = 1 class =2 class = 3

Figure 3.2: A decision tree produced with the dataset of this thesis (even though this tree does not perform well, this is just
for visualization). The attribute of every non-leaf node can be seen at the top of each block and the leaf nodes contain the

more probable class for that tree path.

The way decision trees work is by using algorithms to decide whether a node shall be split
into children-nodes, or it shall remain a leaf node and the way it is decided is by evaluating
the node’s purity after a split. Purity is a measure of how the samples in the node are divided
in between the predicted classes, and if a split of a parent node leads the children- nodes to
have a more “pure” collection of samples in its path then the split is deemed valuable and
it’s purity increases, but in decision trees the way this is calculated is by either evaluating
impurity or the Gini-impurity'® or Entropy-Information Gain. Entropy is the measure of
disorder or impurity in the samples and if a node of a tree has a somewhat even split of
sample classes, then the sample is not pure, since there is no detectable path to a final class
prediction and the entropy is increased. If, however, the classes are almost distinct from each
other then the entropy is small because there is little disorder in the samples and if one were
to pick a datapoint in random it would be more probable for them to pick a specific class.
Information gain is equal to 1 — Entropy making it therefore the opposite of entropy, since
when entropy is high Information Gain gets smaller and vice versa. For example, if a dataset

is targeted at predicting the gender of an input sample and there is information about the

10 https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity

38

subject’s race in the dataset, then it is obvious that that attribute would not help at all in the
decision-making process since race would not determine the subject’s gender in a broad and
inclusive dataset. Therefore, with the previous example the purity would not increase, or the
impurity would increase thus the split would not be a valuable split for the tree to perform
and it would be better for that node to be left as it were. It is important to note that the
algorithms that decide on splitting do not have to make the best split every time and could
be randomized, however there is a parameter which can demand that all of the attributes are
considered every time so that the best split can be found. Even though the algorithm sets
defaults in many of its parameters the split gain can be overridden by the developer so that
the splitting process be made more strict or loose. Additionally, one other area where the
tree can be improved upon is the pruning of the tree once it has been fully formed. Pruning
as in real-life trees is the act of cutting of branches of the decision tree by evaluating their
impurity, as they could be leading the tree to overfitting and not promoting it to grow in a
healthier way. In the experimental sections of this thesis, it will be obvious that even though
pruning does not enhance model performance, it clears up the trees in an important way
making it much easier to inspect the trees. Finally, the mathematics side of the algorithm is
out of the scope of this thesis thus for more on the Gini-impurity and the algorithms
concerning splitting the reader can be directed here [5].

3.2.2 Decision Tree Training Results

For the training of the decision tree, some hyperparameters have been altered after some
experimentation so that the more optimal results could be obtained. Firstly, the max_depth
of the tree has been set to 6 so that the tree will not overfit to the training data and grow
branches that contain needless attribute splits. This number was reached after many tree
depths were iterated until there was a plateau in the graphed results as can be seen in figure
3.3 below, even though depths of 9 or 10 show somewhat of an improvement it was
considered that the very small increase in testing-validation performance would not be a
good tradeoff to potential overfitting issues. To add to that, the splitter was set as the “best”
as to indicate that the best split will be performed for every node in the tree and the test_size
split has been set to 10% or 10% of the data is the testing samples and 90% is the training

samples as it was the one that produced the best validation model accuracy. Lastly, for the

39

score accuracy the scikit-learn function accuracy_score * is being used, as it will in every

other training experiment except specified otherwise.

How Tree Max Depth Affects Model Accuracy

Figure 3.3: A figure produced with matplotlib that shows how the max tree depth affects the testing/validation model
accuracy, at some point after a depth of 6 the model accuracy starts to plateau therefore a further increase is not deemed

useful.

Finally, another two parameters have been set as to obtain the best results from training with
the first one being the ccp_alpha (cost complexity pruning alpha) parameter which is the
parameter used in order to set the threshold for the branches that have to be cut off if they
are not deemed necessary based on the impurity decrease evaluations. The ccp_alpha
parameter is quite useful for the tree to be simpler and more concise as well as for combating
overfitting issues, nonetheless it shall not be set arbitrarily since it can cause a significant
loss of performance if set too high (many useful branches will be clipped) as seen in figure
3.4 below. In spite of not losing or gaining any performance by setting the ccp_alpha
parameter at a very small value, (based on figure 3.4 the minimum value is 0.01) one would
wonder why it is being used in the first place and the answer can be observed by the
visualization of the trees produced by the decision tree algorithm in figures 3.6 and 3.7. The
latter is the min_impurity_decrease parameter which is the minimum threshold for the
impurity decrease of a node when it is split and if it is lower than the threshold the split is
not performed, and some experimentation can be seen in figure 3.5 below. Lastly, it shall be
noted that Entropy is being used instead of Gini-impurity for the training results of this

section as it was seen to show significantly better results. The algorithm used was in python

1 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

40

from the package scikit-learn'? seen in [6] where exemplary code and instructions to use the

decision tree classifier'® were given for anyone to use for free.

How ccp_alpha affects Model Accuracy

Model Accuracy
8

000 ool obz op3 004 005 o0s 0D7 008 009 olo ol oiz 013 013 0is 0l 017 018 i3 02
<p_alpha

Figure 3.4: The model validation accuracy based on the increasing ccp_alpha parameter. The model reaches peak
performance right at the very beginning of this parameter, which is expected since the more branches the tree has the more

cases it can cover, whereas the greater the ccp_alpha the more branches are being cut off.

How min_impurity_decrease affects Model Accuracy

cy

WModel Accurat

000 DO 0O 003 004 0DS 006 007 008 009 010 0l11 012 013 01a 015 016 017 018 019 020
min_impurity_decrease

Figure 3.5: The plot of how the increasing min_impurity_decrease parameter affects the model validation accuracy if max
depth is 6 and ccp_alpha is 0.01. It is almost identical to figure 3.4 but has some sharper lines, and this can be expected

as both parameters work with the impurity decrease of a given split or branch.

Figure 3.6: A visualization of the decision tree produced when ccp_alpha is set to zero and the max tree depth is set to 6.

12 https://scikit-learn.org/stable/index.html
13 https://scikit-learn.org/stable/modules/generated/sklearn.tree. Decision TreeClassifier.html

41

Figure 3.7: A visualization of the decision tree produced when ccp_alpha is set to 0.01 and the max tree depth is set to 6.

The model with a ccp_alpha of 0.01 and a min_impurity_decrease of 0.01 with a max_depth
of 6 gave the best validation results of 90% of classification accuracy with a 93% training
accuracy. Although the aforementioned parameters helped in the visualization of the tree
(one or the other they did not have to be used together as they produced nearly identical
results) they did not help with the performance of the tree in any significant way, and that
may have to do with the fact that the tree probably did not overfit to the training data since

the max_depth was not unlimited.

Figure 3.8: This is a visualization of a decision tree with a min_impurity_decrease of 0.02 and a ccp_alpha of 0.01. It is

very clear that the more these parameters are increased the simpler the trees become, with a cost in performance however

as this iteration had an 84% classification score instead of a 90% that the previous model had.

3.3 Random Forest in Failure Prediction

3.3.1 Theoretical Overview

The closest algorithm that could provide a better accuracy than simple decision trees is a
random forest algorithm, since it is built for being more robust. The way the random forest
algorithm works is by training multiple decision trees by using random sets of the features
of the dataset (not necessarily all of them) and by giving the input samples to all of them and
then getting predictions by every-one of them. The trees, therefore, vote what the final
predicted class is which is considered much more robust, since at the end of the prediction
process there are multiple votes in the pool and if only some of them have overfitting

problems or they have low accuracy then the other ones can make up for that.

42

Stepl:

decisiontreel.fit(Subset1) decisiontree2.fit(Subset2) decisiontree_n.fit(Subset n)

using a random using a random using a random
Step2: subset of features subset of features subset of features
to split the tree to split the tree to split the tree

1 n

decisiontreel.pred(Test Set) decisiontree2.pred(Test Set) decisiontree_n.pred(Test Set)

Stepd:

Final Prediction: Use the Majority Vote for Each Candidate in the Test set
Figure 3.9: A random forest algorithm training visualization. More decision trees are considered more robust than just a
single one. Graph taken from https://medium.com/swih/random-forest-classification-and-its-implementation-
d5d840dbead0

Unlike simple decision trees, in random forest the splitting is random, and it is not concerned
to find the best split, which in turn enhances the randomness of every tree so that the model
has very differently built trees that will hopefully predict the same class. The number of the
trees used in the forest can be set by the user, however the more the trees the more the
computational complexity the algorithm requires, thus this parameter shall not be abused as
the algorithm will be rendered impossible to run in real-time. Consequently, one could point
out that random forest takes advantage of multiple other classifiers and brings them together
for its own prediction and thus this method is called an “ensemble” method and it is possible
to utilize multiple classifiers and not just decision trees. Furthermore, the method of training
every model in parallel is called “bagging” in machine learning terms and it entails that every
classifier in the forest is trained on a random subset of the data. Unlike random forest there
are classifiers that utilize ensemble methods but without the use of bagging but with the

utilization of boosting which will be described in section 3.5.

3.3.2 Random Forest Training Results

As the hyperparameters are concerned, the n_estimators parameter is the number of trees in
the forest, and it was set at 200 trees after some experimentation on how it affects model
performance (see figure 3.10), but as far as the min_impurity_decrease and ccp_alpha are
concerned their values were kept the same as in the decision tree section in 3.2.2 since the
main classifier is the decision tree and both of them were used since it appeared that a

consistent increase of 1 or 2 percentage points of validation accuracy were gained. The

43

https://medium.com/swlh/random-forest-classification-and-its-implementation-d5d840dbead0
https://medium.com/swlh/random-forest-classification-and-its-implementation-d5d840dbead0

max_depth was not set and was left to default which is “None” or unlimited and the test_size
was left to 10% and the criterion for splits was the “entropy” method. For the training part
of this section the scikit-learn package was used and more specifically the random forest

classifier'4, and some of the code that is presented proved useful to train the dataset.

How the number of estimators affect model accuracy
100

an

85

7

&0

acy

Model Accurs
&

200 600
Number of estimators in the forest

Figure 3.10: The plot of how the number of estimators affect the model performance. The plot shows that the validation
accuracy is not affected too much from the number of estimators and this could be expected since the original decision tree

performance was very good.

As for the final model performance, the random forest had a validation performance of 91%
up against a training performance of 97% which shows that there is still some form of model

overfitting because of the difference in the two accuracies.

3.4 Support Vector Machines in Failure Prediction

3.4.1 Theoretical Overview

The Support Vector Machines algorithm or SVM is essentially plotting every single point of
the sample or every feature-column field of the sample to an N -dimensional space when
the features are N, so in this case in the 20" since the features are 20. The classification part
and the training part of the algorithm is trying to form a hyperplane that can segregate the
data in groups according to the labels the algorithm has been given. The optimal solution of
the hyperplane is the one that has the maximum distance between the data points and the
hyperplane. As a result of that, it is obvious that there is no visualization for the training
results of SVM's for datasets with more than 3 features since there is no visualization of
anything beyond the 3D space. Finally, the SVM classifier was taken from the scikit-learn

package the link of which can be found here!® where the mathematics side of the classifier

4 hitps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
15 https://scikit-learn.org/stable/modules/svm.html

44

is described in detail as well as code examples are presented and the hyperparameters are

explained.

-10 A

T T

4 5 6 7 8 9 10

Figure 3.11: The attempt to find a hyperplane for a dataset with 2 features so that the samples can be divided in different

groups and the prediction process can be accurate. Taken from https://scikit-learn.org/stable/modules/svm.html

A hyperplanein R%isa line A hyperplanein R3isa

———pm-
_______ r '
Y x '

Figure 3.12: A visualization of a 2D line and a 3D plane that segregate the data into their groups so that accurate

predictions can be possible. Graph taken from https://towardsdatascience.com/support-vector-machine-introduction-to-

machine-learning-algorithms-934a444fcad7

3.4.2 Support Vector Machines Training Results

As for the training results for the SVM algorithm there were 2 runs, the first one with the
SVC with a linear kernel and a parameter of regularization C = 1.5 (after some
experimentation it was the optimal choice) and that model gave a 98% training accuracy
with an 89% validation accuracy. The latter run was with the model is with the LinearSVC
model with parameters: penalty = ‘12’ and a loss function of “squared_hinge” with a dual of

False and a C of 0.2. This iteration gave an 84% validation accuracy and a 92% training

45

https://scikit-learn.org/stable/modules/svm.html
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

accuracy. Therefore, the first run was the better model of the two, however SVM did not

show any improvement over the decision trees or the random forest.

3.5 Adaptive Boosting in Failure Prediction

3.5.1 Theoretical Overview

Adaptive boosting is another ensemble algorithm that uses decision trees as its main
classifier, even though that combination looks a lot like the random forest algorithm unlike
the latter this algorithm as its name suggests uses boosting instead of bagging which means
that the way the model trains is much different than the parallelized way that random forest
uses. In boosting the algorithm takes the previous classifier's mistakes and uses them for its
own training and this happens sequentially for every decision tree in the algorithm, therefore
at the end of the training process the algorithm has tried to fix many of the errors and
mistakes of the original trees. More specifically, after the first tree has been trained the
wrongly predicted data points get a weight greater than the others (the original weights are
1/N where N is the number of samples) and the greater the tree weight the less decision
power that tree gets in the final voting process, hence the lower the weight or the more correct
predictions a tree makes the more leverage it gets towards the final prediction. Obviously,
this algorithm can not run in parallel thus it will take longer if the number of trees is big, and

it might not be possible to run in a real-time scenario.

(Dataset Repeat
Stepl: decisiontreel.fit{Dataset) decisiontreei.fit(Same Dataset with updated weight)
1 T 2
Step2: calculate the weighted error rate of decision treel calculate the weighted error rate of decision tree2
Step3: calculate this decision treel's weight in the ensemble calculate this decision tree2's weight in the ensemble
Step4: increase the weight of wrongly classifed points increase the weight of wrongly classifed points
[Same Dataset, but with updated weight Same Dataset, but with updated weight

Figure 3.13: A visualization of the training process of adaptive boosting. The miscalculations of the first trained tree come
into play in the training of the next tree and so on. Graph taken from https://towardsdatascience.com/basic-ensemble-

learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725

46

https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725
https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725

3.5.2 Adaptive Boosting Training Results

The algorithm can be obtained by the scikit-learn website and in this thesis the adaptive
boosting classifier'® is used. As far as the parameters are concerned, the max_depth was set
to 6 and the ccp_alpha to 0.1 with n_estimators being 200 and the learning_rate left to the
default value of 1 after experimentation showed little to no gains if it changed (see figure
3.14) and lastly the test_size was kept at 10% of the dataset. Most of the parameters have
already been introduced, the learning_rate however has not, so what this parameter does is
it affects the magnitude of the weights of each boosting iteration. The greater the learning
rate the greater the contribution of the trees hence this parameter shall be used with caution
as the weaker trees could have more decisive power if its value is increased too much from
its default value of 1.

The model results were the best until this point of the experimentation with a 92-93%
classification accuracy for validation testing and a 95-96% accuracy for training. This is to
be expected as the ensemble methods are much stronger than the simpler models, however

since the original “weak” predictors were not as weak, it is not a great performance uplift.

00 How learning rate affects Model Accuracy

a5
£

a0 ol 0z 03 04 0.5 0.6 0.7 L2 0.8 Lo 11 12 13 14 15 16 L7 18 18 2.0 21 2.2 23 2.4 2.5 26 27 2.8 2.9
leamning Rate

Figure 3.14: The plot of the learning rate and how it affects the model performance. With the learning rate having a default

value of 1 the model shows little to no performance gains when the parameter is around that value.

3.6 Extreme Gradient Boosting in Failure Prediction

3.6.1 Theoretical Overview

Extreme Gradient Boosting or Extreme Boosting is quickly becoming very popular and very
competitive in the machine learning competitions online because as its name suggests it

pushes to the extreme what is possible with boosting algorithms. Even though the main idea

16 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. AdaBoostClassifier.html

47

Is the same as with adaptive boosting algorithms which have not been explored in this thesis,
extreme boosting uses a gradient as its loss function instead of the Gini impurity or entropy
as simple decision trees do and as the author of the algorithm has stated: ... xgboost used a
more regularized model formalization to control over-fitting, which gives it better
performance.”?” when prompted to compare the two. Extreme boosting relies heavily on
mathematics and that is why it is performing well in competitions as well as running faster
than other algorithms while at the same time utilizing less resources. Nonetheless, more on

how extreme boosting works (or xgboost as it is often called) can be seen here [7].

3.6.2 Extreme Boosting Training Results
Finally, as for xgboost, the scikit-learn APl was used along with the xgboost package'® taken

from PyPi'® which contains the steps on how to install and redirects the users to the
documentation?. As for the parameters, the number of estimators has not really impacted
the performance of the models too much and that is because the numbers used were above
at least 100 estimators which is usually good enough, besides that in this implementation
400 estimators were set after some experiments. The max depth was set to 6 as every other
tree-related algorithm and the eta or the learning rate version of xghoost was set to 0.3 again
after some experiments were run and their results can be seen in figures 3.15 and 3.16. The
objective parameter was set to “multi:softprob” as no difference was shown whence it
changed. Lastly, the actual model performance results were the best out of all the algorithms
compared in this thesis, and unlike some other algorithms xgboost did not require a lot of
configurations before it performed in the top echelon of the competition. More specifically,
the model had a 100% training accuracy which gives red flags as to overfitting, however the
training accuracy reached 96%. Although the tree depth does not increase performance by a
lot, as seen in figure 3.15 there is a maximum for tree depth of 9 and by making this change
the model can reach a maximum of 97% of testing/validation accuracy. Conclusively, the
algorithm was the most stable and consistent out of all the algorithms as well as the fastest

of the ensemble algorithms, maybe even all.

7 https:/iwww.quora.com/What-is-the-difference-between-the-R-gbm-gradient-boosting-machine-and-
xgboost-extreme-gradient-boosting/answer/Tiangi-Chen-1?srid=8Ze

18 https://pypi.org/project/xgboost/

19 https://pypi.org

20 https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost. XGBClassifier

48

How tree depth affects Model Accuracy

Model Accuracy
g

Figure 3.15: The plot of the model and the effects of the tree depth increasing. As expected, the tree depth does not influence
the model too much as long as it is in the range of 4 to 10 levels. However, there is a maximum in the performance in the
tree depth = 9.

How eta affects Model Aceuracy

Model Accuracy
g

00 01 0.2 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 13 20
et or leaming rate

Figure 3.16:The learning rate or the version of learning rate for xgboost “eta” and its effects on model performance. It

appears as if the model performs very well for anything below 0.6 for eta with a maximum at around 0.3.

49

Conclusions

In this thesis the subjects of computer clusters and orchestration systems was tackled, and
machine learning tools were developed and used in order to improve the Raft algorithm
which handles the etcd elections in a cluster environment. After using a Mininet simulation
with the raft-example implementation of etcd and by using custom scripts that enable
artificially caused failures so that the communication messages between the cluster-nodes
could be extracted, machine learning algorithms were used upon these datapoints with good
performance. All of the models reached very good levels of performance but the standout
algorithm in both terms of configuration and classification accuracy was the Extreme
Gradient Boosting algorithm or xgboost as it is often referred as. This model outperformed
all the other models and was by far the most consistent in its performance and it is estimated
that it is a very good candidate for any future work on this subject, even in real-time
performance evaluations. All the simulations used three nodes in the clusters, however with
some configurations the work of this thesis could be expanded for five, seven, nine and so
on, with another improvement being the utilization of the full version of etcd and not of the
raft-example version. Conclusively, future work could be done based on this thesis so that
not only more nodes are in the training dataset and thus the machine learning
experimentation, but so that the benefits of such predictions could improve and influence the
Raft elections in a real Kubernetes environment and its performance benefits could be

measured in a more realistic scenario.

50

Bibliography

[1] R. Long and M. Roézacki, "https://cloud.google.com," Google.com, 23 6 2020.
[Online]. Available: https://cloud.google.com/blog/products/containers-
kubernetes/google-kubernetes-engine-clusters-can-have-up-to-15000-nodes.
[Accessed 15 9 2021].

[2] "https://www.ibm.com/cloud/learn/etcd,” https://www.ibm.com, 18 12 2019. [Online].
Available: https://www.ibm.com/cloud/learn/etcd. [Accessed 15 9 2021].

[3] D. Ongaro and J. Ousterhout, "In Search of an Understandable Consensus Algorithm,"
Stanford University, California, 2014.

[4] R. VAN RENESSE and D. ALTINBUKEN, "Paxos Made Moderately Complex,” 17 2
2015. [Online]. Available: https://doi.org/10.1145/2673577. [Accessed 15 9 2021].

[5] N. S. Chauhan, "kdnuggets," https://www.kdnuggets.com, 14 1 2020. [Online].
Available: https://www.kdnuggets.com/2020/01/decision-tree-algorithm-
explained.html. [Accessed 15 9 2021].

[6] F. P. e. al, "Scikit-learn: Machine Learning in Python," Journal of Machine Learning
Research, vol. 12, pp. 2825-2830, 2011.

[7] . T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System,” 13 8 2016.
[Online]. Available: https://doi.org/10.1145/2939672.2939785. [Accessed 15 9 2021].

o1

