

UNIVERSITY OF THESSALY

ELECTRICAL AND COMPUTER ENGINEERING

RESEARCH ON AND IMPLEMENTATION OF MACHINE

LEARNING ALGORITHMS FOR FAILURE PREDICTION

IN THE OPERATION OF THE RAFT CONSENSUS

ALGORITHM

Diploma Thesis

Nikolaos Christogiannis

Supervisor: Athanasios Korakis

Volos 2021

2

3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ΜΕΛΕΤΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΑΛΓΟΡΙΘΜΩΝ ΜΗΧΑΝΙΚΗΣ

ΜΑΘΗΣΗΣ ΓΙΑ ΤΗΝ ΠΡΟΒΛΕΨΗ ΑΠΡΟΣΔΟΚΗΤΩΝ

ΜΕΤΑΒΟΛΩΝ ΣΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ

ΚΑΤΑΝΕΜΗΜΕΝΟΥ ΑΛΓΟΡΙΘΜΟΥ ΣΥΝΑΙΝΕΣΗΣ RAFT

Διπλωματική Εργασία

Νικόλαος Χριστογιάννης

Επιβλέπων: Αθανάσιος Κοράκης

Βόλος 2021

4

5

Approved by the Examination Committee:

Supervisor Athanasios Korakis

Associate professor, Department of Electrical and Computer

Engineering, University of Thessaly (Volos)

Member Antonios Argyriou

Associate professor, Department of Electrical and Computer

Engineering, University of Thessaly (Volos)

Member Dimitrios Bargiotas

Associate professor, Department of Electrical and Computer

Engineering, University of Thessaly (Volos)

Approval Date: 22-9-2021

6

7

Acknowledgements

I would like to thank my supervisor Athanasios Korakis, Associate Professor in the

university of Thessaly as he entrusted me with this thesis and provided me all I needed to

complete this project. Additionally, I would like to profoundly thank Konstantinos Houmas,

a post-doctoral researcher at NITLAB for his immense support in this project, with his

knowledge and experience he guided me many times throughout this thesis.

Furthermore, I would like to thank my best friends Aris, Christos and Xrysostomos whom I

have known since childhood for their immeasurable support for anything and everything I

do and for being there whenever I needed them. Lastly, I would like to thank my parents,

my sister as well as my grandparents for their unconditional love and support and their wise

teachings…without which this thesis would not be possible. All of these people share a piece

of the success I will ever experience.

8

9

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΠΕΡΙ ΑΚΑΔΗΜΑΪΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΚΑΙ

ΠΝΕΥΜΑΤΙΚΩΝ ΔΙΚΑΙΩΜΑΤΩΝ

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω

ρητά ότι η παρούσα διπλωματική εργασία, καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι

κώδικες που αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια αυτής της εργασίας, αποτελεί

αποκλειστικά προϊόν προσωπικής μου εργασίας, δεν προσβάλλει κάθε μορφής δικαιώματα

διανοητικής ιδιοκτησίας, προσωπικότητας και προσωπικών δεδομένων τρίτων, δεν περιέχει

έργα/εισφορές τρίτων για τα οποία απαιτείται άδεια των δημιουργών/δικαιούχων και δεν

είναι προϊόν μερικής ή ολικής αντιγραφής, οι πηγές δε που χρησιμοποιήθηκαν περιορίζονται

στις βιβλιογραφικές αναφορές και μόνον και πληρούν τους κανόνες της επιστημονικής

παράθεσης. Τα σημεία όπου έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή/και πηγές άλλων

συγγραφέων, αναφέρονται ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και η

σχετική αναφορά περιλαμβάνεται στο τμήμα των βιβλιογραφικών αναφορών με πλήρη

περιγραφή. Αναλαμβάνω πλήρως, ατομικά και προσωπικά, όλες τις νομικές και διοικητικές

συνέπειες που δύναται να προκύψουν στην περίπτωση κατά την οποία αποδειχθεί,

διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν μου ανήκει διότι είναι προϊόν λογοκλοπής.

Ο Δηλών

ΝΙΚΟΛΑΟΣ ΧΡΙΣΤΟΓΙΑΝΝΗΣ

22/9/2021

10

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY

RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

11 points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference is

included in the bibliographic references section. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because it

is a product of plagiarism.

The Declarant

NIKOLAOS CHRISTOGIANNIS

22/9/2021

11

ABSTRACT

The aim of this diploma thesis is to offer mechanisms for predicting the cause of a failure in

a cluster of distributed state machines by using machine learning algorithms. The algorithm

used to distribute those state machines is the raft consensus algorithm and the machine

learning algorithms used and compared in this thesis are Decision Tree, Random Forest,

Support Vector Machine (SVM), Adaptive Boosting and Extreme Gradient Boosting. The

cluster was simulated using Mininet and ETCD instances and python scripts were developed

to automate the process of causing random failures in the cluster and capturing the messages

of the communicating members as well as to clean and prepare the dataset for the machine

learning algorithms. Conclusively, after experimental simulations were run the machine

learning algorithms showed promising results and it is estimated that this technique could be

improved and then used in further research on the subject for real life testing and

improvements on orchestration systems such as Kubernetes.

12

13

ΠΕΡΙΛΗΨΗ

Ο στόχος της διπλωματικής είναι να παρέχει μηχανισμούς για την πρόβλεψη της αιτίας μιας

αποτυχίας σε συστάδα κατανεμημένων μηχανών κατάστασης με την χρήση αλγορίθμων

μηχανικής μάθησης. Ο αλγόριθμος που χρησιμοποιείται από την συστάδα είναι ο

αλγόριθμος ομοφωνίας Raft και οι αλγόριθμοι μηχανικής μάθησης που χρησιμοποιούνται

και συγκρίνονται στο κομμάτι της πρόβλεψης είναι οι Decision Tree, Random Forest,

Support Vector Machine (SVM), Adaptive Boosting και Extreme Gradient Boosting. Η

συστάδα προσομοιώνεται με την χρήση Mininet και ETCD και οι διαδικασίες πρόκλησης

τυχαίων αποτυχιών και της λήψης των μηνυμάτων επικοινωνίας μεταξύ των μηχανών

αυτοματοποιήθηκαν μέσω προγραμμάτων python όπως και για την εκκαθάριση και την

προετοιμασία του dataset. Καταληκτικά, μετά από πειραματικές προσομοιώσεις οι

αλγόριθμοι μηχανικής μάθησης έδειξαν πολύ θετικά αποτελέσματα για την εξέλιξη και

βελτίωση της τεχνικής γεγονός που ανοίγει προοπτικές για περαιτέρω έρευνα πάνω σε

πειραματισμούς πραγματικού υλικού εκτός προσομοιώσεων και σε συστήματα διαχείρισης

συστάδων όπως το Kubernetes.

14

TABLE OF CONTENTS

Acknowledgements ... 7

ABSTRACT ... 11

ΠΕΡΙΛΗΨΗ .. 13

TABLE OF CONTENTS .. 14

Figure Table ... 16

Chapter 1 : Introduction ... 19

1.1 Problem Statement and Motivation .. 19

1.2 Thesis Structure .. 19

Chapter 2 : Theoretical Background, Tools and Scripts .. 21

2.1 Chapter Overview ... 21

2.2 Theoretical Background ... 21
2.2.1 Computer Clusters .. 21
2.2.2 Data Storing and Synching in Clusters .. 22
2.2.3 Cluster Management and Orchestration Systems .. 25
2.2.4 Kubernetes and etcd ... 26
2.2.5 The Raft Algorithm .. 28

2.3 Tools and Scripts .. 31
Introduction ... 31
2.3.1 Artificial Cluster Failures in Mininet .. 31
2.3.2 Dataset pre-processing ... 32
Summary .. 34

Chapter 3 : Machine Learning in Failure Prediction .. 35

Introduction ... 35

3.1 Machine Learning ... 36
3.1.1 Supervised and Unsupervised Learning .. 36
3.1.2 Classification and Regression .. 37

3.2 Decision Tree in Failure Prediction ... 37
3.2.1 Theoretical Overview .. 37
3.2.2 Decision Tree Training Results .. 39

3.3 Random Forest in Failure Prediction .. 42
3.3.1 Theoretical Overview .. 42
3.3.2 Random Forest Training Results ... 43

3.4 Support Vector Machines in Failure Prediction .. 44
3.4.1 Theoretical Overview .. 44
3.4.2 Support Vector Machines Training Results ... 45

3.5 Adaptive Boosting in Failure Prediction ... 46
3.5.1 Theoretical Overview .. 46
3.5.2 Adaptive Boosting Training Results .. 47

15

3.6 Extreme Gradient Boosting in Failure Prediction ... 47
3.6.1 Theoretical Overview .. 47
3.6.2 Extreme Boosting Training Results ... 48

Conclusions .. 50

Bibliography .. 51

16

Figure Table
Figure 2.1: A graphic diagram of what a clustered architecture looks like. The head node is responsible of

tasking the other “slave” nodes of the work, and it is its responsibility to not overwhelm any-one node
as well as keep track of nodes that are down. Graph taken from
https://docs.anaconda.com/anaconda-cluster/ .. 22

Figure 2.2: The IBM Blue Gene/P supercomputer installation at the Argonne Leadership Angela Yang
Computing Facility located in the Argonne National Laboratory, in Lemont, Illinois, USA. All modern
supercomputers utilize the power of clustered machines. Taken from
https://commons.wikimedia.org/wiki/File:IBM_Blue_Gene_P_supercomputer.jpg 23

Figure 2.3:A Microsoft cloud computing center in Quincy. This is what a modern data storage facility looks
like where millions of gigabytes are stored. Wash.Credit...Richard Duvall. Picture taken from
https://www.nytimes.com/2017/01/23/insider/where-does-cloud-storage-really-reside-and-is-it-
secure.html .. 25

Figure 2.4: An example of the Kubernetes dashboard when monitoring the cluster diagnostics.
Orchestration tools like this make cluster management much easier for the developers. 28

Figure 2.5: The (just-elected) leader S2 sends the append entries request in every other node in the cluster
as the first operation of its tenure. This is very important so that everyone has the same updated
information as the leader especially after a write in its database. Screenshot taken from
https://raft.github.io/ .. 29

Figure 2.6: A Raft visualization with 5 servers. Server 1 is the leader and every other one is a follower.
Screenshot taken from https://raft.github.io/ .. 30

Figure 2.7: A) To the left it can be seen that server 1 has now been deactivated and every other follower is
in timeout mode. When timeout ends, they send leadership vote requests. B) To the right a vote
response can be seen after timeout has passed. Screenshot taken from https://raft.github.io/ 31

Figure 3.1: How deep learning is a subset of machine learning and how machine learning is a subset of
artificial intelligence (AI). ... 36

Figure 3.2: A decision tree produced with the dataset of this thesis (even though this tree does not perform
well, this is just for visualization). The attribute of every non-leaf node can be seen at the top of each
block and the leaf nodes contain the more probable class for that tree path. 38

Figure 3.3: A figure produced with matplotlib that shows how the max tree depth affects the
testing/validation model accuracy, at some point after a depth of 6 the model accuracy starts to
plateau therefore a further increase is not deemed useful. .. 40

Figure 3.4: The model validation accuracy based on the increasing ccp_alpha parameter. The model reaches
peak performance right at the very beginning of this parameter, which is expected since the more
branches the tree has the more cases it can cover, whereas the greater the ccp_alpha the more
branches are being cut off. .. 41

Figure 3.5: The plot of how the increasing min_impurity_decrease parameter affects the model validation
accuracy if max depth is 6 and ccp_alpha is 0.01. It is almost identical to figure 3.4 but has some
sharper lines, and this can be expected as both parameters work with the impurity decrease of a
given split or branch. ... 41

Figure 3.6: A visualization of the decision tree produced when ccp_alpha is set to zero and the max tree
depth is set to 6. .. 41

Figure 3.7: A visualization of the decision tree produced when ccp_alpha is set to 0.01 and the max tree
depth is set to 6. .. 42

Figure 3.8: This is a visualization of a decision tree with a min_impurity_decrease of 0.02 and a ccp_alpha of
0.01. It is very clear that the more these parameters are increased the simpler the trees become, with
a cost in performance however as this iteration had an 84% classification score instead of a 90% that
the previous model had. .. 42

Figure 3.9: A random forest algorithm training visualization. More decision trees are considered more
robust than just a single one. Graph taken from https://medium.com/swlh/random-forest-
classification-and-its-implementation-d5d840dbead0 .. 43

Figure 3.10: The plot of how the number of estimators affect the model performance. The plot shows that
the validation accuracy is not affected too much from the number of estimators and this could be
expected since the original decision tree performance was very good. ... 44

17

Figure 3.11: The attempt to find a hyperplane for a dataset with 2 features so that the samples can be
divided in different groups and the prediction process can be accurate. Taken from https://scikit-
learn.org/stable/modules/svm.html ... 45

Figure 3.12: A visualization of a 2D line and a 3D plane that segregate the data into their groups so that
accurate predictions can be possible. Graph taken from https://towardsdatascience.com/support-
vector-machine-introduction-to-machine-learning-algorithms-934a444fca47 45

Figure 3.13: A visualization of the training process of adaptive boosting. The miscalculations of the first
trained tree come into play in the training of the next tree and so on. Graph taken from
https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-
boosting-step-by-step-explained-95d49d1e2725 ... 46

Figure 3.14: The plot of the learning rate and how it affects the model performance. With the learning rate
having a default value of 1 the model shows little to no performance gains when the parameter is
around that value... 47

Figure 3.15: The plot of the model and the effects of the tree depth increasing. As expected, the tree depth
does not influence the model too much as long as it is in the range of 4 to 10 levels. However, there is
a maximum in the performance in the tree depth = 9. ... 49

Figure 3.16:The learning rate or the version of learning rate for xgboost “eta” and its effects on model
performance. It appears as if the model performs very well for anything below 0.6 for eta with a
maximum at around 0.3... 49

18

19

Chapter 1: Introduction

1.1 Problem Statement and Motivation

In a world of great technological advancement computers operate in every single aspect of

everyday life for the betterment of society and palliation of bureaucracy burdens. Everyday

computers and servers worldwide handle billions of user requests for both entertainment and

work facets of life as well as government related responsibilities and services but given the

scale of the users and the services provided no-one computer could possibly control all the

traffic by offering both reliability and fast processing. The most widely used method to solve

this issue is to use multiple computers to substitute for the one in order to load balance the

requests and improve system-network latency and reliability. However, this solution ought

to be seamless for the user and should not concern anyone beyond the developers and system

administrators, which means that this process has to happen dynamically in real-time and

usually without human-input. It becomes apparent that if thousands of requests flood a server

in seconds or minutes, the load balancing acts should be performed by machines rather than

people, which creates the need for software cluster management and monitoring. Currently,

there are multiple software solutions that manage clusters and deal with the faults that may

arise in their operation with some of them being Kubernetes, Docker Swarm, Microsoft

Cluster Server and more. The way that software deal with cluster-failure recovery is different

but the case of Kubernetes, which uses ETCD and the Raft protocol, will be of concern in

this thesis. The aim of this thesis is to provide tools to predict the type of failure that a cluster

with ETCD and Raft endured so that it could be possible to influence the way that the cluster

recovers from that failure in a more optimized way rather than randomly as it happens now,

and it is considered that this could improve cluster stability and performance. The predictive

tools used are machine learning algorithms and more specifically: Decision Tree, Random

Forest, Support Vector Machine (SVM), Adaptive Boosting και Extreme Boosting, which

will be analyzed in the following sections below.

1.2 Thesis Structure

The structure of the thesis will be described in the following paragraphs so that each chapter

has a clear distinction and purpose, therefore the reader is directed to read a brief overview

of the chapters and/or use the table of contents for more direct navigation.

20

Chapter 2 will explain the theoretical background required so that the problem at hand is

clear, and the purpose of the thesis is stated but more specifically in 2.2.1 and 2.2.2 there

will be an introduction to computer clusters and data orchestration respectively.

Additionally, in 2.2.3 and 2.2.4 the need for orchestration tools is discussed and the

capabilities they offer are described. Moreover, in 2.2.5 the Raft algorithm is briefly

explained and 2.3 it describes of the scripts that are utilized in this thesis so that the processes

of extracting the data from the clusters and creating the datasets are automated with little

interaction.

Chapter 3 briefly explains the theoretical background of the machine learning algorithms

used; however, it will not dwell too much in the mathematics side of the algorithms as it is

not of particular interest in this thesis. Also, the training results of the different algorithms

are presented with a comparison between them so that a potential better algorithm could

stand out. All experiments were run in simulations of three cluster-nodes with the same exact

datasets so that a valuable comparison could be possible.

Finally, the conclusions of the thesis are being drawn as to which methods worked the best

and how this could be researched and utilized further for influencing the Raft elections and

optimizing the election results.

21

Chapter 2: Theoretical Background, Tools and Scripts

2.1 Chapter Overview

A brief overview of the theoretical background required will be explained so that computer

clusters and Raft are clear enough subjects for the reader, so that they understand the

following sections as well as the existing protocols of ETCD/Raft and why there is room for

improvement in some areas of operation. Furthermore, the scripting process will be

explained, as python scripts were developed in order to automate the process of extracting

the data from the operation of ETCD/Raft and forming the dataset in a way best suited for

the algorithms. Conclusively, in the following sections there will be mentions of the

information and these tools mentioned in this chapter, so they are deemed essential to the

overall understanding of the thesis.

2.2 Theoretical Background

2.2.1 Computer Clusters

Modern computers have given the everyday user the ability to study and work from home,

deal with government related activities, entertain themselves, socialize with other people as

well as shop and game. Most of these aspects of life have started attracting more and more

people in the digital world and with the use of very powerful computers the case for

thousands, millions and potentially billions of everyday users for these services has been

rendered considerably more realistic. However, even the most powerful of the world`s

supercomputers could not handle all the traffic that flows through the worldwide web every

day, therefore the need for multiple computers working together on the same tasks has risen.

Computer clusters are a set of computers usually used to replace a single computer in order

to improve stability and speed in data-processing and they are usually utilized by businesses

and web services so that the content they provide is always available regardless of the traffic

they get or the hardware limitations (memory etc.). As mentioned before, one of the key

benefits of using clustered machines is speed in processing because of the much greater

hardware power, which means that more users can concurrently use the services with less

latency therefore making the service much more responsive and easier to use without crashes

or delays. Almost every cluster utilizes this benefit for its service because of the needs of

modern online businesses and services with some very widely used ones being social-

22

networks and video streaming platforms etc. In these examples not only is the user-base very

big (millions or even billions) which enhances the need for more hardware resources, but the

users demand an instantaneous response in their requests because messages and emails can

not take hours or days to be sent and videos can not lag and freeze every minute or take hours

and days to load. Furthermore, another key benefit of the clustered architecture is the ability

to provide the users uninterrupted services in case of hardware or software failures in the

machines or also known as failover capabilities. Failover enhances the user experience and

in turn the service: if a node fails the service is still online and running with every other node

working properly and the user gets redirected to use another node in the cluster. Unlike

clusters, computer failures in non-cluster implementations could lead to the crash of the

whole service making it impossible to use, which means it is a bad business practice for

servers with large amounts of traffic and low latency demands. There is an issue with this

architecture however, the data between the server nodes must be frequently updated so that

they store the same data, and the end users always get the most up to date information, this

is a very important issue that will be discussed about further in 2.2.2.

Figure 2.1: A graphic diagram of what a clustered architecture looks like. The head node is responsible of tasking the

other “slave” nodes of the work, and it is its responsibility to not overwhelm any-one node as well as keep track of nodes

that are down. Graph taken from https://docs.anaconda.com/anaconda-cluster/

2.2.2 Data Storing and Synching in Clusters

As mentioned before clusters are used by high-end users that require their services to be

distributed in multiple computers both for low-latency and higher reliability and

accessibility. However, the cluster offers reliability not only because it can run after node

failures but because it can store the data in multiple physical memories so that the

https://docs.anaconda.com/anaconda-cluster/

23

information is secure in case of hardware failures or disasters (fires, floods etc.). Although

simple users usually do not require such mechanisms for data security, the reader might be

familiar with services like Google Drive, Microsoft OneDrive, Dropbox etc. which are cloud

products that offer data redundancy in case of data loss or hardware failure (even stolen or

lost devices) which offer likewise capabilities. As a sidenote it is recommended to the reader

that they perform frequent data backups in different physical memories (if not in cloud

services) because the value of personal data (photos, videos) is invaluable and can only be

measured when lost. Whereas simple users might not feel the need to back up their data (not

recommended) such practices can not be followed by enterprises or important services with

crucial information like health departments with electronic health records

Figure 2.2: The IBM Blue Gene/P supercomputer installation at the Argonne Leadership Angela Yang Computing Facility

located in the Argonne National Laboratory, in Lemont, Illinois, USA. All modern supercomputers utilize the power of

clustered machines. Taken from https://commons.wikimedia.org/wiki/File:IBM_Blue_Gene_P_supercomputer.jpg

or treasury departments that keep all the taxed individuals in check, or even banks that store

individuals bank accounts instead of in written form in books. Consequently, data storing is

extremely important in clusters, however an issue occurs if multiple machines work with the

same data but in isolated physical memories, the case of out of sync data. The problem of

data synching between cluster nodes might not be an obvious one, however if one delves a

little deeper in what kind of problems users can encounter when served by different nodes it

https://commons.wikimedia.org/wiki/File:IBM_Blue_Gene_P_supercomputer.jpg

24

can be very enlightening. An example of this problem could be a failure in a bank server, if

the data of the bank transactions were not updated in another system, all transactions that

occurred in that timespan would not have been valid and would have to be performed again

which is very inconvenient and very unreliable. Another example is a cloud storage service

that has a crashed node, if that node had not updated at least one of the other nodes with the

new information, the data would be lost, and the user would lose track of all changes. Not

only that, but to add to that last example, the reader can imagine a single file stored on

multiple severs that many users have access to, something that has become very common in

this age. Would the users be in completely different geographical locations, the servers that

serve them will probably be very different for each user, however the data has to be

synchronized. Had those users made conflicting changes to the file, then some user`s edits

would be lost forever, or the system would not know which version to offer to the clients the

next time they request the file. The way this is solved in modern clusters is by using software

that manages the cluster and controls how the data is updated and how often, therefore the

process of backing up the data is automated, and the system is safer in case of failures. It is

important however to note that even when these programs are used, the data is not completely

secured in case of hardware or cluster failures and further methods are utilized for more

reliability and redundancy.

25

Figure 2.3:A Microsoft cloud computing center in Quincy. This is what a modern data storage facility looks like where

millions of gigabytes are stored. Wash.Credit...Richard Duvall. Picture taken from

https://www.nytimes.com/2017/01/23/insider/where-does-cloud-storage-really-reside-and-is-it-secure.html

2.2.3 Cluster Management and Orchestration Systems

Cluster management tools are software tools that help system administrators to monitor and

configure computer clusters according to their designs and the real time performance

metrics. The demand for cluster management tools is of great importance if one considers

the need to frequently update and resolve software issues in clustered nodes simultaneously.

Whereas this would not have been an issue if the cluster had a small number of members,

modern clusters however could potentially support up to thousands of nodes as noted in [1]

therefore the manual way of installing and updating the nodes is not viable. These tools are

called orchestration tools because they orchestrate the clusters and automate their execution

as well as do everything that is necessary to make failed nodes run again and restore the

cluster to a healthy state. As a result of the great demand for such tools, there are several

solutions that make the job much easier for the teams of system administrators, with some

of them being open source and some of them being proprietary, but a few of the most widely

https://www.nytimes.com/2017/01/23/insider/where-does-cloud-storage-really-reside-and-is-it-secure.html

26

used ones are Kubernetes1 (Google), Docker2 (Swarm), Mesos3 (Apache), Microsoft Cluster

Server4 and more. Kubernetes has gotten popular quickly in the orchestration tools space

because it is open source, and it has been developed by Google in 2014 who have had

experience with this technology for many years and are a pioneer in this space, hence it is a

very competitive solution. Kubernetes offers a dashboard UI for developers to take

advantage of and monitor the cluster in a visual way, as well as detect anomalies in the

performance of the nodes. Amongst other capabilities, developers can monitor CPU/ RAM

frequency and usage, the number of CPU cores that are in use as well as the amount of time

they are running and their current status (alive or down) an example of which can be seen in

figure 2.4 below.

Moreover, users can utilize other software or packages for monitoring the cluster as well as

notification systems that warn the developers of imminent crashes or failures, even though

many of the recovery tasks are being taken care of by the automated system itself. For

example, a couple of the more well-known monitoring software are Prometheus5 and

Grafana6 which can be integrated into Kubernetes and provide the important metrics of the

cluster as well as issue warnings and keep cluster logs. Even though these tools are not going

to be of particular importance for this thesis, their existence and their use make clusters much

easier to handle and operate and they are considered important for the understanding of the

subject at hand.

2.2.4 Kubernetes and etcd

As previously mentioned in 2.2.3 above Kubernetes is an orchestration tool that helps

developers and system administrators keep a cluster healthy and the service it provides

uninterrupted. Additionally, a lot of features it comes with have been discussed with the

more relevant ones being self-healing, data orchestration and load-balancing, but all the

other ones are equally as important. Self-healing is a capability Kubernetes offers with which

it can kill processes in nodes that are misbehaving or have crashed (are unresponsive) and

can restart them while taking them off the list of healthy nodes until they are completely

responsive and ready to serve requests again. In addition to that, the administrators can put

1
 https://kubernetes.io/

2
 https://www.docker.com/

3
 http://mesos.apache.org/

4
 https://www.microsoft.com

5
 https://prometheus.io/

6
 https://grafana.com/

27

in place custom health check standards so that a node or the cluster are considered healthy

only when those standards have been met, which is especially useful in situations where

stability and reliability is of great importance to the service. Furthermore, the data

orchestration or data synching capabilities of the cluster, Kubernetes handles by utilizing

etcd7 which as noted in the official website is “a strongly consistent, distributed key-value

store that provides a reliable way to store data that needs to be accessed by a distributed

system or cluster of machines”. More specifically, as mentioned in [2] etcd manages the

configuration data, state data, and metadata for Kubernetes and the status of the cluster as

well as the status of the processes of each node. To add to that, etcd is considered “fully

replicated” which means that every node has its own database to store key-value pairs in, as

well as consistent since every single read will provide the most recent write that has been

performed to the data, but more on that in section 2.2.5. Another functionality of etcd is that

it is Highly Available (HA) which means that there is no single point of failure for an etcd

cluster, even if the master node goes offline. Lastly, etcd is fast but it is very dependent on

network and hard drive speeds since it performs writes in memory, but it is also a secure

platform because it is using Secure Sockets Layer (SSL) client security or Transport Layer

Security (TLS) which are optional and highly advised client authentication techniques.

As previously described in section 2.2.2 as well as in this section, if there is no specific

policy for the data-synchronization between the nodes there is a problem in what version of

the data is more recent or more precise, which could be detrimental for most businesses and

this kind of ambiguity can not be tolerated in a cluster if stability and reliability are to be

expected. This is a problem that would be very difficult to fix if all nodes write to their

databases and then the data must be merged, whereas etcd avoids this approach altogether

and uses the Raft protocol for handling of “writes” in the logs and the database of the cluster.

Raft is essential to etcd for making it a robust database that can withstand failures, but more

on Raft will be discussed in section 2.2.5 below.

7 https://etcd.io/

28

Figure 2.4: An example of the Kubernetes dashboard when monitoring the cluster diagnostics. Orchestration tools like this

make cluster management much easier for the developers.

2.2.5 The Raft Algorithm

This section is a culmination of many of the sections above, not only because it is essentially

the protocol this thesis aims to enhance but because it provides the reliability and consistency

to etcd that was mentioned in 2.2.4. The Raft algorithm8 as explained in [3] (developed based

on the Paxos algorithm seen in [4]) is the way etcd manages to consistently provide the most

recent “write” to the data when requested as opposed to an older or outdated version, the

mechanism of which will be described in this section. Firstly, the Raft algorithm assigns to

a node in the cluster the position of “leader” to designate that node as the more updated and

informed one, with every other node in the cluster being a follower of that leader. The way

this leader is picked is by random elections between the cluster nodes, with some node or

nodes announcing their candidacy for leadership and expecting the vote responses from the

other nodes. Additionally, every time a new election takes place (hence a leader change has

occurred), a new term is established by the algorithm and if there is a consensus in the voting

process then a new leader will have been elected and every other node would be a follower,

however if there is no consensus then the elections start over and a new term is established.

One way that it is attempted to avoid cases of leaderless elections (undecisive elections) is

by requiring that the cluster have an odd number of nodes so that if all nodes are online there

8 https://raft.github.io/

29

is always going to be a leader elected (obviously a node can not vote for more than one

candidate). As was previously mentioned in the sections above, amongst other benefits, the

cluster acts as a load balancer for the service that is being provided, and the leader has its

followers take the incoming read requests so that it is not overloaded. In a case of a write

request however, the leader gets the changed data and asks that every follower replicates that

data and appends it to its log and requests a successful response of that replication, and only

when and if that process updates the majority of the cluster with the new data it then

replicates the data to its own local storage/log.

Figure 2.5: The (just-elected) leader S2 sends the append entries request in every other node in the cluster as the first

operation of its tenure. This is very important so that everyone has the same updated information as the leader especially

after a write in its database. Screenshot taken from https://raft.github.io/

Thus, since the leader has the most updated data at any single point in its database and the

read requests end up to the followers, it is wise to consider that a “read” in a follower node

could give misleading or false data back to a client. Because of that, Raft demands that every

“read” that is requested from a follower node goes through the leader first, therefore if a new

and updated version of the data is available then that will be the version that will be

forwarded to the client. As a result of the above, if a follower crashes or goes offline the

cluster will be safe since no data loss will be expected, even though stability might suffer

before the problem is sorted. In contrast to a follower failure however, if a leader fails that

is very important for the cluster, and that is when new elections are triggered. The type of

failure is not necessarily the node going offline and crashing, but it could be a delay in a link

(that connects two nodes) of the cluster being greater than the tolerated standard or a cut off

link. The way this change in status is observed is because Raft has communicative messages

between the cluster members to designate and differentiate cluster functions some of which

is the election announcement, or the log replication success/request and the heartbeat

https://raft.github.io/

30

messages. These messages are very commonly used in the computer networks field, and they

are used for nodes to know the status of their communication partners, an example of which

is the routers in the worldwide web. The routers exchange “hello” messages to keep track of

online and offline links so that they can re-route traffic in case of unreachable nodes as well

as optimize the traffic balancing in case of dynamic routing algorithms. All these messages

are very important in this thesis as they designate the failures in the cluster before a leader

election has started, and their use is important to decide what failure has occurred. To add to

that, the way they prove useful is because whenever the nodes send heartbeat messages, they

expect a reply of acknowledgment of that message from the other node(s) as a way to indicate

that they are still alive. If the timeout period of the heartbeat messages passes, then they

request that new leader elections shall start as they assume that the leader is down and this

is the key feature that the machine learning algorithms could tap into, the lack of replies in

the communication between cluster-nodes.

Figure 2.6: A Raft visualization with 5 servers. Server 1 is the leader and every other one is a follower. Screenshot taken

from https://raft.github.io/

https://raft.github.io/

31

Figure 2.7: A) To the left it can be seen that server 1 has now been deactivated and every other follower is in timeout mode.

When timeout ends, they send leadership vote requests. B) To the right a vote response can be seen after timeout has passed.

Screenshot taken from https://raft.github.io/

2.3 Tools and Scripts

Introduction

The dataset for a machine learning application requires a great amount of data for the

algorithm to train well enough, but the number of that data is not preset, and one can only

experiment with the data in order to get the best results. In this thesis, there was

experimentation with many dataset sizes, but the optimal size was considered at 1000

failures, which in turn means that there would have to be a way to automatically extract

many messages from the cluster members. That is why scripts were developed which

randomly create artificial failures based on which node the leader is and what type of failure

would cause a new election and the end of a term as well as reform that data and repurpose

it as a dataset. The nodes were simulated in Mininet, and the Raft algorithm was utilized by

using the etcd-Raft Example9. Raft only handles clusters with an odd number of members

so the experiments that will be of concern are with three nodes in the cluster.

2.3.1 Artificial Cluster Failures in Mininet

In the beginning, the script that had to be developed was the one that would create random

failures in the cluster so that a dataset with hundreds or thousands of term changes could be

created. A Mininet topology of the nodes interconnected with a switch has been created with

9 https://github.com/etcd-io/etcd

https://raft.github.io/

32

hardcoded IP and MAC addresses so that they can be discoverable in the cluster. Because

Mininet does not allow direct node to node connections, for the failures that require the link

between two nodes to go offline, the proactively set switch table gets changed and the flows

that connect the two nodes (that simulate the link that needs to go down) get removed from

the switch table. The reasoning behind this logic is to let every other node be able to

communicate with the node with the failed link so to simulate that only that link has a

connectivity problem. In the beginning of the process, the script starts up the Mininet

simulation described above and runs the Raft Example algorithm in every node while saving

the output of those commands it in separate txt files, which it then scans to find leader

changes between the nodes and attempts to synchronize all of them so that there is no error

in the process. Once the leader has been identified properly then it randomly creates an

artificial failure by either shutting down the link of the interconnected nodes or by shutting

down the node-leader. It is essential that in every sample there is a leader change, so that the

algorithms do not train on useless data and thus every time a failure is caused, the script

either chooses a link that is connected to the leader or the leader itself as the failure. The

failures and their metadata (terms and interfaces) are also being kept in files so that they can

be utilized further in the future for the automation of the dataset making process. Moreover,

the script starts tcpdump programs in order to capture the traffic between the nodes and saves

it in pcap files which are then used in order to transform the exchanged Raft messages into

humanly readable txt files.

At this point another script had to be developed that extracted the Raft algorithm message

metadata from the TCP packets that were captured with TCPDUMP and saved that metadata

in txt files so that they could be the dataset used in the machine learning algorithms. Every

Raft message is converted into a single line of data that contains the message receiver,

message sender, message term, message time, message vote response and type and the last

heartbeat message received is also appended. This file is the type of input that the pre-

processing script requires so that the dataset can be formed properly, and it can be exported

in the appropriate form, more on which in section 2.3.2.

2.3.2 Dataset pre-processing

The script developed for the automation and formation of the dataset for this thesis was based

on the messages exchanged and extracted from the Raft algorithm and the scripts developed

in 2.2. The input of the script is a .txt file that contains one line for every message captured

33

during the run of the algorithm, and the metadata that was maintained were: receiver, sender,

term, message time, message type of each packet and the last heartbeat message that was

sent. The file containing all the artificial failures is used to coordinate and synchronize the

txt file with the failures so that there is no mistake during the dataset formation process. The

idea was that every bit of information described above would be a column in the dataset for

the machine learning algorithms to train on, and every one of these columns would contain

crucial information as to which link had failed based on the exchanged messages.

Information like receiver and sender indicate the node of the cluster that either received or

sent the message respectively, and term, time indicate the term and time that the message

was sent at. The message type is an important indicator of what type of operation Raft is

trying to enable, and since there are some signs that a new election might be carried out

hence a failure of some kind has occurred in the cluster this field is very useful. The different

message types are noted with different integer number but of greater importance are

considered of being the heartbeat messages which just verify that nodes are alive.

Consequently, if there are many heartbeat messages to one node from a node this could be

an indication of a failed link whereas many heartbeats from many nodes could indicate that

a node has crashed. The differentiation and prediction of the failures based on the previous

messages is what machine learning is tasked to do in this thesis by training on the dataset of

artificial failures. However, a valid concern would be, what is the optimal number of

messages to look back to in order to decern what kind of failure has happened and after some

experimenting the optimal number was found to be 20 messages before the first heartbeat

message that appears to have a new term. Therefore, a new script had to be developed so

that the txt file could be reformed, and a clean-up process could be possible. This script

searches the dataset for a new term-heartbeat pair and captures the previous 20 messages of

that heartbeat as a history for that failure and then it changes all of these messages to make

their data in relative form. More specifically, time and terms are considered zero for the

oldest “history” message and all the other messages are adapted relatively to that change

with both negative and positive numbers, however message type. vote response as well as

sender and receiver were not changed. In addition to that, these messages are reformed into

a single row of the dataset and another field of data is added: the failure type. The failure

type is taken from the file that has been kept from the operation of the scripts in 2.3.1 and

the failures are synchronized to the reformation processes of this script. Every column has a

distinct name, so for example the term for the oldest message (which is the first message

from left to right in the dataset) is term19, for the time it is time19 etc. The script ends when

34

the user-set number of term-changes have been iterated and changed, therefore the new data

samples have been formed which in this case are 1000 and a new dataset-csv file is exported

that is ready to be used by multiple algorithms.

Summary

In summary, a leader in Raft holds its position until a failure occurs that renders the node

unreachable to some other node, in which case an election shall commence that will lead to

a new leader. The elections are decided by the votes of the node members and the leader is

drawn randomly, without any optimization as to which one would be the most efficient

choice. However, this could lead to another election if the new leader faces the same

problems that the old leader did and to decern which leader would be the best option, the

different failures must be distinct. As a result, in this thesis the cluster failures analyzed are

link failures and node failures, with link failures being the ones that prevent the transmission

of data between two cluster nodes because of a failure in the link connecting them and the

node failures being the ones that have to do with the operation of the computer-node (crashes,

physical failures etc.). Conclusively, this thesis aims to provide the tools to perform failure

prediction based on the messages exchanged between the cluster nodes so that a more

optimized leader election can be achieved.

35

Chapter 3: Machine Learning in Failure Prediction

Introduction

Machine learning is a very quickly evolving field in computer science and the promise is

that it can help humanity reach great levels of optimization and accurate prediction in

multiple areas of life. Machine learning is already capable of detecting useful patterns in

data that humans could not have or would need very long hours of doing so and an example

of that is machine learning in tax audits which can accurately and consistently flag tax

evading individuals. Deep learning which is another approach in the Artificial Intelligence

(AI) field, enables the capability of translating audio to text and vice versa, detecting and

identifying objects in photos or videos such as fruit detection in farmer crops or human-

animal detection in self-driven cars and many more applications are now possible because

of machine learning and deep learning or their encompassing umbrella: AI. That is why this

technology is being used in this area, because the prediction of cluster failures and the

possible automation of the response to such failures could be detrimental to the stability of

systems that more and more encompass people`s everyday lives. These predictions could be

made by humans, but the speed and consistency are thought of being incomparable to a

machine, let alone a machine learning application which learns by its own mistakes and can

improve.

The previous chapters were a theoretical explanation of the subjects and the tools that will

be tackled in the experiments that will be discussed in this chapter below, as multiple

machine learning algorithms will be trained on the dataset that the scripts from section 2.3

developed and formed, and the results of those experiments will be presented in the sections

that follow. The tools utilized to accommodate the failure predictions are machine learning

algorithms that train on hundreds or thousands of sets of data-samples that are exchanged

between the nodes in cases of failures and in turn leader elections. The machine learning

algorithms used for the predictions are decision trees, random forest, support vector

machines, adaptive boosting, extreme gradient boosting. These algorithms were all trained

on the same datasets so that the results could be comparable to each other, and the best

performing algorithms could stand out.

One last note, every single experimentation in the following sections will be of clusters

simulated in Mininet with 3 nodes in the clusters, because Raft can only work with an odd

36

number of nodes, thus the other acceptable configurations would be with five, seven, nine

etc.

3.1 Machine Learning

Figure 3.1: How deep learning is a subset of machine learning and how machine learning is a subset of artificial

intelligence (AI).

3.1.1 Supervised and Unsupervised Learning

The way machine learning algorithms learn is not the same for every single one of them

since some have a supervised learning approach where others have an unsupervised learning

approach. The difference between the two is that in the first category the developers have to

harvest data, label it, and then feed it to the algorithm so that it can train and provide accurate

predictions, however in the second category labeling is not required and instead the

algorithm is trying to cluster the data by itself. In more detail, labeling data is the act of

giving the dataset the correct predicted value so that the algorithm can train on the given

input (one or multiple columns) and attempt to form the correct given output. For example,

an interesting way to understand how the training process works is by considering an

unknown equation that can be formed if given inputs it exports the desired outputs. The

equation would need many different data points so that it can model data more accurately,

especially if it is not linear which most machine learning applications are not. In this thesis

the algorithms used are supervised learning algorithms, since as it has been explained in

section 2.3 the data have the correct failure types that have occurred in the training process

37

so that the algorithm can learn to accurately predict them. Unsupervised learning was not

thought of being particularly useful in this thesis as many of the data samples are quite

similar and it was thought that the human label could prove very useful for the data

distinction.

3.1.2 Classification and Regression

Another important distinction when using machine learning algorithms is whether the

algorithm is a classification, or a regression algorithm and their differences will be explained

below. A classification algorithm is used when the predicted variables are in distinct classes,

whereas a regression algorithm is used when the predicted variables are continuous values.

For example, if the predicted variable is a true or false statement or there are multiple states,

but it is required that only one of them be the output then a classification algorithm is used.

In contrast to that, if the predicted variable is a continuous number such as money or

temperature then the algorithm shall be a regression one. As a result of the above, in this

thesis the algorithms used will be classification algorithms since the predicted variable is the

“failure type” and that can only be a specific value and not a number in between (a

combination of failures is obviously not accepted). In most of the machine learning

problems, the predicted value is usually referred to as a “target” value or the “y” from the

function denotation in mathematics and in this thesis this variable is the failure type of each

sample that was caused artificially in Mininet. The algorithms can not understand from

words and phrases what link has gone offline or what node has crashed therefore these values

had to be one-hot-encoded which means that every type of failure was translated to an integer

starting from 0. That is the way that this field appears in the dataset and that is the appropriate

way that target values in classification problems appear in datasets.

3.2 Decision Tree in Failure Prediction

3.2.1 Theoretical Overview

The reason decision trees are very useful in machine learning is because they visualize the

results of the training process and can export it as an inverted tree (root is up and leaves are

down) so that the developers can understand the decision-making process. Every node of the

tree has an expression that attempts to divide the data into groups, to the left of that node it

is a positive correlation to that expression whereas to the right of that node it is a negative

correlation. Every node`s expression is called an attribute of the decision tree and the leader

38

node on the top of the tree is called the root node, where every node that does not branch

into other child-nodes is called a leaf node with every other node being a decision node. All

decisions start from the root node and by evaluating every sample`s correlation to the

attribute of the node, the prediction can be obtained by following the directions of the tree

and finally to the leaf node which contains the predicted class.

Figure 3.2: A decision tree produced with the dataset of this thesis (even though this tree does not perform well, this is just

for visualization). The attribute of every non-leaf node can be seen at the top of each block and the leaf nodes contain the

more probable class for that tree path.

The way decision trees work is by using algorithms to decide whether a node shall be split

into children-nodes, or it shall remain a leaf node and the way it is decided is by evaluating

the node`s purity after a split. Purity is a measure of how the samples in the node are divided

in between the predicted classes, and if a split of a parent node leads the children- nodes to

have a more “pure” collection of samples in its path then the split is deemed valuable and

it`s purity increases, but in decision trees the way this is calculated is by either evaluating

impurity or the Gini-impurity10 or Entropy-Information Gain. Entropy is the measure of

disorder or impurity in the samples and if a node of a tree has a somewhat even split of

sample classes, then the sample is not pure, since there is no detectable path to a final class

prediction and the entropy is increased. If, however, the classes are almost distinct from each

other then the entropy is small because there is little disorder in the samples and if one were

to pick a datapoint in random it would be more probable for them to pick a specific class.

Information gain is equal to 1 – Entropy making it therefore the opposite of entropy, since

when entropy is high Information Gain gets smaller and vice versa. For example, if a dataset

is targeted at predicting the gender of an input sample and there is information about the

10 https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity

39

subject’s race in the dataset, then it is obvious that that attribute would not help at all in the

decision-making process since race would not determine the subject’s gender in a broad and

inclusive dataset. Therefore, with the previous example the purity would not increase, or the

impurity would increase thus the split would not be a valuable split for the tree to perform

and it would be better for that node to be left as it were. It is important to note that the

algorithms that decide on splitting do not have to make the best split every time and could

be randomized, however there is a parameter which can demand that all of the attributes are

considered every time so that the best split can be found. Even though the algorithm sets

defaults in many of its parameters the split gain can be overridden by the developer so that

the splitting process be made more strict or loose. Additionally, one other area where the

tree can be improved upon is the pruning of the tree once it has been fully formed. Pruning

as in real-life trees is the act of cutting of branches of the decision tree by evaluating their

impurity, as they could be leading the tree to overfitting and not promoting it to grow in a

healthier way. In the experimental sections of this thesis, it will be obvious that even though

pruning does not enhance model performance, it clears up the trees in an important way

making it much easier to inspect the trees. Finally, the mathematics side of the algorithm is

out of the scope of this thesis thus for more on the Gini-impurity and the algorithms

concerning splitting the reader can be directed here [5].

3.2.2 Decision Tree Training Results

For the training of the decision tree, some hyperparameters have been altered after some

experimentation so that the more optimal results could be obtained. Firstly, the max_depth

of the tree has been set to 6 so that the tree will not overfit to the training data and grow

branches that contain needless attribute splits. This number was reached after many tree

depths were iterated until there was a plateau in the graphed results as can be seen in figure

3.3 below, even though depths of 9 or 10 show somewhat of an improvement it was

considered that the very small increase in testing-validation performance would not be a

good tradeoff to potential overfitting issues. To add to that, the splitter was set as the “best”

as to indicate that the best split will be performed for every node in the tree and the test_size

split has been set to 10% or 10% of the data is the testing samples and 90% is the training

samples as it was the one that produced the best validation model accuracy. Lastly, for the

40

score accuracy the scikit-learn function accuracy_score 11 is being used, as it will in every

other training experiment except specified otherwise.

Figure 3.3: A figure produced with matplotlib that shows how the max tree depth affects the testing/validation model

accuracy, at some point after a depth of 6 the model accuracy starts to plateau therefore a further increase is not deemed

useful.

Finally, another two parameters have been set as to obtain the best results from training with

the first one being the ccp_alpha (cost complexity pruning alpha) parameter which is the

parameter used in order to set the threshold for the branches that have to be cut off if they

are not deemed necessary based on the impurity decrease evaluations. The ccp_alpha

parameter is quite useful for the tree to be simpler and more concise as well as for combating

overfitting issues, nonetheless it shall not be set arbitrarily since it can cause a significant

loss of performance if set too high (many useful branches will be clipped) as seen in figure

3.4 below. In spite of not losing or gaining any performance by setting the ccp_alpha

parameter at a very small value, (based on figure 3.4 the minimum value is 0.01) one would

wonder why it is being used in the first place and the answer can be observed by the

visualization of the trees produced by the decision tree algorithm in figures 3.6 and 3.7. The

latter is the min_impurity_decrease parameter which is the minimum threshold for the

impurity decrease of a node when it is split and if it is lower than the threshold the split is

not performed, and some experimentation can be seen in figure 3.5 below. Lastly, it shall be

noted that Entropy is being used instead of Gini-impurity for the training results of this

section as it was seen to show significantly better results. The algorithm used was in python

11 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

41

from the package scikit-learn12 seen in [6] where exemplary code and instructions to use the

decision tree classifier13 were given for anyone to use for free.

Figure 3.4: The model validation accuracy based on the increasing ccp_alpha parameter. The model reaches peak

performance right at the very beginning of this parameter, which is expected since the more branches the tree has the more

cases it can cover, whereas the greater the ccp_alpha the more branches are being cut off.

Figure 3.5: The plot of how the increasing min_impurity_decrease parameter affects the model validation accuracy if max

depth is 6 and ccp_alpha is 0.01. It is almost identical to figure 3.4 but has some sharper lines, and this can be expected

as both parameters work with the impurity decrease of a given split or branch.

Figure 3.6: A visualization of the decision tree produced when ccp_alpha is set to zero and the max tree depth is set to 6.

12 https://scikit-learn.org/stable/index.html
13 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

42

Figure 3.7: A visualization of the decision tree produced when ccp_alpha is set to 0.01 and the max tree depth is set to 6.

The model with a ccp_alpha of 0.01 and a min_impurity_decrease of 0.01 with a max_depth

of 6 gave the best validation results of 90% of classification accuracy with a 93% training

accuracy. Although the aforementioned parameters helped in the visualization of the tree

(one or the other they did not have to be used together as they produced nearly identical

results) they did not help with the performance of the tree in any significant way, and that

may have to do with the fact that the tree probably did not overfit to the training data since

the max_depth was not unlimited.

Figure 3.8: This is a visualization of a decision tree with a min_impurity_decrease of 0.02 and a ccp_alpha of 0.01. It is

very clear that the more these parameters are increased the simpler the trees become, with a cost in performance however

as this iteration had an 84% classification score instead of a 90% that the previous model had.

3.3 Random Forest in Failure Prediction

3.3.1 Theoretical Overview

The closest algorithm that could provide a better accuracy than simple decision trees is a

random forest algorithm, since it is built for being more robust. The way the random forest

algorithm works is by training multiple decision trees by using random sets of the features

of the dataset (not necessarily all of them) and by giving the input samples to all of them and

then getting predictions by every-one of them. The trees, therefore, vote what the final

predicted class is which is considered much more robust, since at the end of the prediction

process there are multiple votes in the pool and if only some of them have overfitting

problems or they have low accuracy then the other ones can make up for that.

43

Figure 3.9: A random forest algorithm training visualization. More decision trees are considered more robust than just a

single one. Graph taken from https://medium.com/swlh/random-forest-classification-and-its-implementation-

d5d840dbead0

Unlike simple decision trees, in random forest the splitting is random, and it is not concerned

to find the best split, which in turn enhances the randomness of every tree so that the model

has very differently built trees that will hopefully predict the same class. The number of the

trees used in the forest can be set by the user, however the more the trees the more the

computational complexity the algorithm requires, thus this parameter shall not be abused as

the algorithm will be rendered impossible to run in real-time. Consequently, one could point

out that random forest takes advantage of multiple other classifiers and brings them together

for its own prediction and thus this method is called an “ensemble” method and it is possible

to utilize multiple classifiers and not just decision trees. Furthermore, the method of training

every model in parallel is called “bagging” in machine learning terms and it entails that every

classifier in the forest is trained on a random subset of the data. Unlike random forest there

are classifiers that utilize ensemble methods but without the use of bagging but with the

utilization of boosting which will be described in section 3.5.

3.3.2 Random Forest Training Results

As the hyperparameters are concerned, the n_estimators parameter is the number of trees in

the forest, and it was set at 200 trees after some experimentation on how it affects model

performance (see figure 3.10), but as far as the min_impurity_decrease and ccp_alpha are

concerned their values were kept the same as in the decision tree section in 3.2.2 since the

main classifier is the decision tree and both of them were used since it appeared that a

consistent increase of 1 or 2 percentage points of validation accuracy were gained. The

https://medium.com/swlh/random-forest-classification-and-its-implementation-d5d840dbead0
https://medium.com/swlh/random-forest-classification-and-its-implementation-d5d840dbead0

44

max_depth was not set and was left to default which is “None” or unlimited and the test_size

was left to 10% and the criterion for splits was the “entropy” method. For the training part

of this section the scikit-learn package was used and more specifically the random forest

classifier14, and some of the code that is presented proved useful to train the dataset.

Figure 3.10: The plot of how the number of estimators affect the model performance. The plot shows that the validation

accuracy is not affected too much from the number of estimators and this could be expected since the original decision tree

performance was very good.

As for the final model performance, the random forest had a validation performance of 91%

up against a training performance of 97% which shows that there is still some form of model

overfitting because of the difference in the two accuracies.

3.4 Support Vector Machines in Failure Prediction

3.4.1 Theoretical Overview

The Support Vector Machines algorithm or SVM is essentially plotting every single point of

the sample or every feature-column field of the sample to an Nth-dimensional space when

the features are N, so in this case in the 20th since the features are 20. The classification part

and the training part of the algorithm is trying to form a hyperplane that can segregate the

data in groups according to the labels the algorithm has been given. The optimal solution of

the hyperplane is the one that has the maximum distance between the data points and the

hyperplane. As a result of that, it is obvious that there is no visualization for the training

results of SVM`s for datasets with more than 3 features since there is no visualization of

anything beyond the 3D space. Finally, the SVM classifier was taken from the scikit-learn

package the link of which can be found here15 where the mathematics side of the classifier

14 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
15 https://scikit-learn.org/stable/modules/svm.html

45

is described in detail as well as code examples are presented and the hyperparameters are

explained.

Figure 3.11: The attempt to find a hyperplane for a dataset with 2 features so that the samples can be divided in different

groups and the prediction process can be accurate. Taken from https://scikit-learn.org/stable/modules/svm.html

Figure 3.12: A visualization of a 2D line and a 3D plane that segregate the data into their groups so that accurate

predictions can be possible. Graph taken from https://towardsdatascience.com/support-vector-machine-introduction-to-

machine-learning-algorithms-934a444fca47

3.4.2 Support Vector Machines Training Results

As for the training results for the SVM algorithm there were 2 runs, the first one with the

SVC with a linear kernel and a parameter of regularization C = 1.5 (after some

experimentation it was the optimal choice) and that model gave a 98% training accuracy

with an 89% validation accuracy. The latter run was with the model is with the LinearSVC

model with parameters: penalty = ‘l2’ and a loss function of “squared_hinge” with a dual of

False and a C of 0.2. This iteration gave an 84% validation accuracy and a 92% training

https://scikit-learn.org/stable/modules/svm.html
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

46

accuracy. Therefore, the first run was the better model of the two, however SVM did not

show any improvement over the decision trees or the random forest.

3.5 Adaptive Boosting in Failure Prediction

3.5.1 Theoretical Overview

Adaptive boosting is another ensemble algorithm that uses decision trees as its main

classifier, even though that combination looks a lot like the random forest algorithm unlike

the latter this algorithm as its name suggests uses boosting instead of bagging which means

that the way the model trains is much different than the parallelized way that random forest

uses. In boosting the algorithm takes the previous classifier`s mistakes and uses them for its

own training and this happens sequentially for every decision tree in the algorithm, therefore

at the end of the training process the algorithm has tried to fix many of the errors and

mistakes of the original trees. More specifically, after the first tree has been trained the

wrongly predicted data points get a weight greater than the others (the original weights are

1/N where N is the number of samples) and the greater the tree weight the less decision

power that tree gets in the final voting process, hence the lower the weight or the more correct

predictions a tree makes the more leverage it gets towards the final prediction. Obviously,

this algorithm can not run in parallel thus it will take longer if the number of trees is big, and

it might not be possible to run in a real-time scenario.

Figure 3.13: A visualization of the training process of adaptive boosting. The miscalculations of the first trained tree come

into play in the training of the next tree and so on. Graph taken from https://towardsdatascience.com/basic-ensemble-

learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725

https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725
https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725

47

3.5.2 Adaptive Boosting Training Results

The algorithm can be obtained by the scikit-learn website and in this thesis the adaptive

boosting classifier16 is used. As far as the parameters are concerned, the max_depth was set

to 6 and the ccp_alpha to 0.1 with n_estimators being 200 and the learning_rate left to the

default value of 1 after experimentation showed little to no gains if it changed (see figure

3.14) and lastly the test_size was kept at 10% of the dataset. Most of the parameters have

already been introduced, the learning_rate however has not, so what this parameter does is

it affects the magnitude of the weights of each boosting iteration. The greater the learning

rate the greater the contribution of the trees hence this parameter shall be used with caution

as the weaker trees could have more decisive power if its value is increased too much from

its default value of 1.

The model results were the best until this point of the experimentation with a 92-93%

classification accuracy for validation testing and a 95-96% accuracy for training. This is to

be expected as the ensemble methods are much stronger than the simpler models, however

since the original “weak” predictors were not as weak, it is not a great performance uplift.

Figure 3.14: The plot of the learning rate and how it affects the model performance. With the learning rate having a default

value of 1 the model shows little to no performance gains when the parameter is around that value.

3.6 Extreme Gradient Boosting in Failure Prediction

3.6.1 Theoretical Overview

Extreme Gradient Boosting or Extreme Boosting is quickly becoming very popular and very

competitive in the machine learning competitions online because as its name suggests it

pushes to the extreme what is possible with boosting algorithms. Even though the main idea

16 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

48

is the same as with adaptive boosting algorithms which have not been explored in this thesis,

extreme boosting uses a gradient as its loss function instead of the Gini impurity or entropy

as simple decision trees do and as the author of the algorithm has stated: “… xgboost used a

more regularized model formalization to control over-fitting, which gives it better

performance.”17 when prompted to compare the two. Extreme boosting relies heavily on

mathematics and that is why it is performing well in competitions as well as running faster

than other algorithms while at the same time utilizing less resources. Nonetheless, more on

how extreme boosting works (or xgboost as it is often called) can be seen here [7].

3.6.2 Extreme Boosting Training Results

Finally, as for xgboost, the scikit-learn API was used along with the xgboost package18 taken

from PyPi19 which contains the steps on how to install and redirects the users to the

documentation20. As for the parameters, the number of estimators has not really impacted

the performance of the models too much and that is because the numbers used were above

at least 100 estimators which is usually good enough, besides that in this implementation

400 estimators were set after some experiments. The max depth was set to 6 as every other

tree-related algorithm and the eta or the learning rate version of xgboost was set to 0.3 again

after some experiments were run and their results can be seen in figures 3.15 and 3.16. The

objective parameter was set to “multi:softprob” as no difference was shown whence it

changed. Lastly, the actual model performance results were the best out of all the algorithms

compared in this thesis, and unlike some other algorithms xgboost did not require a lot of

configurations before it performed in the top echelon of the competition. More specifically,

the model had a 100% training accuracy which gives red flags as to overfitting, however the

training accuracy reached 96%. Although the tree depth does not increase performance by a

lot, as seen in figure 3.15 there is a maximum for tree depth of 9 and by making this change

the model can reach a maximum of 97% of testing/validation accuracy. Conclusively, the

algorithm was the most stable and consistent out of all the algorithms as well as the fastest

of the ensemble algorithms, maybe even all.

17 https://www.quora.com/What-is-the-difference-between-the-R-gbm-gradient-boosting-machine-and-

xgboost-extreme-gradient-boosting/answer/Tianqi-Chen-1?srid=8Ze
18 https://pypi.org/project/xgboost/
19 https://pypi.org
20 https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier

49

Figure 3.15: The plot of the model and the effects of the tree depth increasing. As expected, the tree depth does not influence

the model too much as long as it is in the range of 4 to 10 levels. However, there is a maximum in the performance in the

tree depth = 9.

Figure 3.16:The learning rate or the version of learning rate for xgboost “eta” and its effects on model performance. It

appears as if the model performs very well for anything below 0.6 for eta with a maximum at around 0.3.

50

Conclusions

In this thesis the subjects of computer clusters and orchestration systems was tackled, and

machine learning tools were developed and used in order to improve the Raft algorithm

which handles the etcd elections in a cluster environment. After using a Mininet simulation

with the raft-example implementation of etcd and by using custom scripts that enable

artificially caused failures so that the communication messages between the cluster-nodes

could be extracted, machine learning algorithms were used upon these datapoints with good

performance. All of the models reached very good levels of performance but the standout

algorithm in both terms of configuration and classification accuracy was the Extreme

Gradient Boosting algorithm or xgboost as it is often referred as. This model outperformed

all the other models and was by far the most consistent in its performance and it is estimated

that it is a very good candidate for any future work on this subject, even in real-time

performance evaluations. All the simulations used three nodes in the clusters, however with

some configurations the work of this thesis could be expanded for five, seven, nine and so

on, with another improvement being the utilization of the full version of etcd and not of the

raft-example version. Conclusively, future work could be done based on this thesis so that

not only more nodes are in the training dataset and thus the machine learning

experimentation, but so that the benefits of such predictions could improve and influence the

Raft elections in a real Kubernetes environment and its performance benefits could be

measured in a more realistic scenario.

51

Bibliography

[1] R. Long and M. Różacki, "https://cloud.google.com," Google.com, 23 6 2020.

[Online]. Available: https://cloud.google.com/blog/products/containers-

kubernetes/google-kubernetes-engine-clusters-can-have-up-to-15000-nodes.

[Accessed 15 9 2021].

[2] "https://www.ibm.com/cloud/learn/etcd," https://www.ibm.com, 18 12 2019. [Online].

Available: https://www.ibm.com/cloud/learn/etcd. [Accessed 15 9 2021].

[3] D. Ongaro and J. Ousterhout, "In Search of an Understandable Consensus Algorithm,"

Stanford University, California, 2014.

[4] R. VAN RENESSE and D. ALTINBUKEN, "Paxos Made Moderately Complex," 17 2

2015. [Online]. Available: https://doi.org/10.1145/2673577. [Accessed 15 9 2021].

[5] N. S. Chauhan, "kdnuggets," https://www.kdnuggets.com, 14 1 2020. [Online].

Available: https://www.kdnuggets.com/2020/01/decision-tree-algorithm-

explained.html. [Accessed 15 9 2021].

[6] F. P. e. al, "Scikit-learn: Machine Learning in Python," Journal of Machine Learning

Research, vol. 12, pp. 2825-2830, 2011.

[7] . T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," 13 8 2016.

[Online]. Available: https://doi.org/10.1145/2939672.2939785. [Accessed 15 9 2021].

