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Diploma Thesis

DEVELOPING A

DISTRIBUTED FEDERATED LEARNING SYSTEM

OVER A DECENTRALIZED FILE SYSTEM

Christodoulos Pappas

Abstract

The rise of resourceful mobile devices that store voluminous and privacy-sensitive data

motivates the design of privacy-preserving machine learning protocols. One such protocol is

the Federated Learning (FL), a distributed machine learning scheme that enables devices to

collaboratively train amodel without sharing their data. In this thesis, we focus on the problem

of designing an efficient and practical decentralized federated learning protocol. First, we

introduce the InterPlanetary Learning System (e.g., IPLS), a new decentralized federated

learning system built on top of InterPlanetary File System (e.g., IPFS). Then, we further

improve the naive IPLS protocol by relaxing its assumption for direct communication and

letting devices communicate indirectly with each other. In addition, we make the protocol

robust against malicious aggregators and further improve some critical components of the

system.
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Διπλωματική Εργασία

ΧΤΙΖΟΝΤΑΣ ΕΝΑ

ΚΑΤΑΝΕΜΗΜΕΝΟ ΣΥΣΤΗΜΑ ΟΜΟΣΠΟΝΔΙΑΚΗΣ ΜΑΘΗΣΗΣ

ΠΑΝΩ ΑΠΟ ΕΝΑ

ΑΠΟΚΕΝΤΡΩΜΕΝΟ ΣΥΣΤΗΜΑ ΑΡΧΕΙΩΝ

Χριστόδουλος Παππάς

Περίληψη

Η πρόσφατη “έξαρση” υπολογιστικά ισχυρών κινητών συσκευών που αποθηκεύουν με-

γάλο όγκο προσωπικών δεδομένων, έδωσε το κίνητρο για την σχεδίαση privacy-preserving

προτοκόλων για μηχανική μάθηση. Ένα απο αυτά τα πρωτόκολλα είναι η ομοσπονδιακή

μάθηση η οποία επιτρέπει στις συσκευές να εκπαιδεύσουν συνεργατικά ένα μοντέλο μηχανι-

κής μάθησης χωρίς να μοιράσουν τα πρωσοπικά τους δεδομένα. Σε αυτήν την διπλωματική,

επικεντρωνόμαστε στην σχεδίαση ενός αποδοτικού και πρακτικού συστήματος αποκεντρω-

μένης ομοσπονδιακής μάθησης. Πρώτα εισαγάγουμε το Διαπλανητικό σύστημα μάθησης,

εάν νέο αποκεντρωμένο σύστημα μάθησης το οποίο είναι “χτισμένο” πάνω από το διαπλα-

νητικό σύστημα αρχείων. Μετέπειτα, βελτιώνουμε το ήδη υπάρχων πρωτόκολλο, με το να

“χαλαρώσουμε” την υπόθεση οτι οι συσκευές επικοινωνούν άμεσα μεταξύ, επιτρέποντας να

επικοινωνούν έμμεσα. Επιπλέον, κάνουμε το πρωτόκολλο μας ασφαλές ενάντια κακόβουλων

aggregators και επίσης βελτιώνουμε κάποια σημαντικά κομμάτια του συστήματος μας.

Λέξεις-κλειδιά:
Federated Learning, Machine Learning, IPFS
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Chapter 1

Introduction

1.1 Introduction

Traditionally, tremendous volumes of data must be collected, in an individual’s desktop

or server, to train a neural network or a machine learning model. However, in many applica-

tions, those data come from people, commonly containing some personal information about

them, and as a result, by collecting all of those data, part of the people’s privacy gets compro-

mised. In addition to that, with the establishment of data privacy regulations, e.g., the General

Data Protection Regulation (GDPR) 1, came the need to train machine learning models and

especially neural networks without “invading” the users’ private information. Lately, there

has been an enormous effort to provide such services both in research and industry through-

out the years. For example, many works enable the training of machine learning models on

encrypted data using various cryptographic primitives such as fully homomorphic encryption

or secure multi-party computation [3, 4, 5, 6]. However, none of them had such a significant

impact as the recently proposed Federated Learning [1, 7].

Federated learning is a relatively new privacy-preserving (or, more correctly, privacy-

aware) distributed machine learning paradigm that enables users to collaboratively train a

machine learning model without sharing their local data with no one. The federated learning

protocol is a simple, iterative protocol, in which, each iteration consists of four distinct steps.

The server (or aggregator) that stores the machine learning model selects several clients and

sends them the model’s parameters. Next, the selected clients train the model locally using

1https://ec.europa.eu/info/law/law-topic/data-protection/data-
protection-eu_el

1

https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_el
https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_el
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Figure 1.1: Figures from [1], displaying the total number of rounds vs time and the rounds
per hour vs time, in an actual deployment of federated learning. Observe, that in the best case,
each iteration lasts for 7 to 9 minutes.

their local data and produce some updates. Those updates can be the gradients of the param-

eters of the model or the parameters of the trained model. Finally, each selected client sends

those updates back to the server that aggregates them (e.g., averages them) and forms a new

updated global model. This process continues for many iterations until the model converges.

An observant reader might come to the realization that Federated learning is not some-

thing new, and in reality, it is a trivial data-parallel distributed machine learning protocol.

While that is true, there are several significant differences between Federated learning and

data-parallel distributed machine learning. First and foremost, in distributed machine learn-

ing, the workers (devices that train the model) are “strong” and reliable devices in terms of

computational capability and internet connectivity. That is not commonly true in federated

learning, in which workers are commonly IoT devices or smartphones that face intermittent

internet connectivity and lack of resources. Moreover, the number of workers in federated

learning is magnitudes of times larger than in distributed machine learning. Last but not least,

in contrast to federated learning, in distributed machine learning, the server holds the data and

distributes them to the workers. Those seemingly minor differences generate new problems
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Figure 1.2: Figures from [2], comparing two different blockchain-based federated learning
protocols with the centralized one.

that are often hard to solve. All in all, the purely distributed machine learning happens mainly

for performance gains in the training process, while federated learning happensmainly to deal

with privacy concerns. As it can be seen in Figure 1.1, federated learning doesn’t have strict

requirements in performance and iteration delay, and in reality a federated learning campaign

can last many days.

1.1.1 Centralization vs Decentralization

To date, federated learning is a highly centralized procedure. Although training of the

model is distributed among the devices (trainers), a centralized entity, the aggregator, must

exist that collects the gradients from the trainers and computes the new model. As in many

other systems, centralized federated learning has the inherent problem of a single point of

failure. Specifically, a single malicious server can perform various attacks that can easily

harm the accuracy or convergence rate of the model (e.g., adding noise to the updated model)

or even compromise the privacy of the users by learning some partial information about their

data. Although works exist to prevent some attacks [8, 9, 10], due to centralization, they can

not inherently deal with forking attacks, Denial of Service, or Sybil attacks.

To overcome the security problems arising from centralized nature of Federated learn-

ing, there are has been a noticeable effort to decentralize the process [2, 11, 12, 13, 14, 15].

In the vast majority of those works, decentralization comes through the means of using a

blockchain, as it can deal with all the security issues mentioned earlier of centralized FL. In
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blockchain-based FL, the blockchain (and consequently the miners) take the role of the ag-

gregator. Every miner has to receive the gradients from all the trainers, aggregate them, and

engage in an expensive consensus protocol to add the new updated model to the blockchain.

As it is evident (1.2), a blockchain-based solution faces some severe scalability limitations

and is significantly less efficient compared to the centralized FL.

InterPlanetary Learning System (e.g., IPLS) [16] has been proposed as a solution that

combines the best of those two worlds. Specifically, it wants to achieve the same or even

better efficiency as centralized FL and the same security guarantees as decentralized federated

learning. In IPLS, there are multiple non-colluding aggregators as with the blockchain-based

FL; however, the aggregation step is distributed among the aggregators, in contrast to the last

one. Moreover, we will show that carefully using cryptographic primitives, the aggregation

step can be verifiable, meaning that anyone having the updatedmodel and a succinct (constant

sized) proof can verify that the updated model is indeed computed honestly, without using

any expensive consensus protocol.

1.1.2 This work

In this work, we consider the scenario of an individual or a small enterprise that wants to

train a machine learning model via a federated learning protocol. However, those entities lack

the resources to set up a server that they fully trust to meet up the scalability requirements

of federated learning. Note that even if the model was about 10MB large and the number of

trainers on each iteration was 10.000 then the server would have to receive 100GB of data on

each iteration which is sometimes prohibited. In addition, the federated learning initiator does

not fully trust a third-party cloud service to offload its aggregation step due to the security

issues described above. A reasonable solution to this problem would be to let the initiator

offload the entirety of the federated learning protocol using the IPLS protocol to the devices,

and devote its limited resources to strictly necessary and crucial, lightweight operations.

1.1.3 Main contributions

To begin with, we extend the naive IPLS protocol, so that participants in the federated

learning process can communicate reliably and efficiently with each other, regardless their

networking limitations. This is done by communicating indirectly, throughout a decentralized

storage network. In addition we optimize this type of communication, to further reduce the
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aggregation time and in general the time needed for one IPLS round. Furthermore we make

our protocol secure against malicious aggregators by using homomorphic hashes. Last but

not least, we propose some additional modifications in our protocol, to make some important

IPLS components much more efficient.

Overall the main contributions of this work are:

1. Develop IPLS so that peers can communicate indirectly with each other, and deal with

some issues regarding mainly the efficiency of their communication.

2. Make IPLS secure against malicious aggregators.

3. Use various cryptographic primitives to make IPLS much more scalable.

4. Provide various measurements for some critical components of IPLS.
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1.2 Preliminaries

1.2.1 IPFS

InterPlanetary File System [17] is a distributed file system that enables devices to connect

to a peer-to-peer network and share files. In its simplest form, the IPFS network maintains a

Distributed Hash table (DHT) [18], which enables peers to find and retrieve files from other

peers in the system. Each file in IPFS is addressed by a secure IPFS hash, which is the SHA-

256 hash function by default. To retrieve a file from IPFS, a peer has to know beforehand

the hash of that file. Then, by using that hash, retrieve from the DHT the peers’ addresses

that store that file locally. Then the retriever uses a file exchange protocol (e.g., [19]) to

download the file. A commonmisconception about IPFS is that it provides permanent storage

and guarantees the availability of the files stored in the system. However, this is not true

because IPFS does not inherently has any file replication mechanism. Nevertheless, various

protocols do exist (e.g., IPFS cluster, Filecoin [20]) that enable file replication throughout the

system and offer file availability guarantees.

1.2.2 Blockchain-Based FL

A decentralized alternative to traditional federated learning, is blockchain-based feder-

ated learning. Authors in [21], present an extensive survey on blockchain-based (BCFL) fed-

erated learning, while trying to classify the systems in two significant categories, the fully

coupled BCFL [13],[12],[11], where trainers are also nodes in the blockchain and partici-

pate actively in the block generation and model aggregation, and Flexibly Coupled BCFL

[14],[15],[22] where trainers aren’t nodes of the blockchain but they just upload their up-

dates in the blockchain while miners are responsible for aggregating the trainers’ updates

and producing the global model. In the vast majority of those papers, the federated learning

process follows the same pattern, which is 1) the trainers when finish training of the model,

upload their gradients to the blockchain 2) the blockchain takes the role of the server in the

traditional federating learning and is responsible for aggregating those gradients. In more de-

tail, the first step is usually achieved by letting the trainers or their selected blockchain node

broadcast their gradients throughout all the other nodes of the blockchain. One noticeable

exception can be found in [12], where gradients are stored in the IPFS. The second step gets

carried through with selected nodes or even all the nodes in the blockchain network followed
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by a consensus protocol, to generate a new block containing the global new model.

Although BCFL can overcome the problems traditional Federated learning faces, issues

arise regarding the scalability, storage requirements and efficiency of such architectures.

To be more specific, in the majority of the works, trainers’ gradients must be stored in the

blockchain which depending on the model size and the number of trainers might lead to some

serious storage and scalability issues. In addition, to perform the aggregation, each aggregator

must download all the gradients stored in the blockchain resulting in unnecessary and redun-

dant operations that can add significant overhead on each training round. As a consequence,

though secure and robust, BCFL is an expensive alternative to centralized federated learning.

1.2.3 Pedersen Commitments

Pedersen commitment [23, 24] is a cryptographic commitment scheme that enables a

user to commit to a single element or vector of elements, into a constant sized digest, which

is commonly (256 bits). Pedersen commitments use a public group, in which finding the

discrete logarithm is “hard”. Such groups are the prime order groups. Let G be such a group,

and g be the generator of that group. Then Pedersen commitments can be described by the

two polynomial time algorithms (Gen,Commit) :

pp← Gen(1k,G,n). This algorithm take as input the security parameter k, and the size of

the vector n, and returns some public parameters. Those public parameters are simply random

group elements h1, h2, ..., hn ∈ G. This can be computed simply by selecting at random some

elements r1, r2, ..., rn ∈ |G| and then compute pp = {h1, h2, ..., hn} = {gr1 , gr2 , ..., grn} ∈

Gn. It is crucial that r1, r2, ..., rn must remain secret to any other entity in the system.

C← Commit(pp, ṽ). This algorithm takes as input the public parameters, the vector v⃗ to

be committed and returns a succinct (and commonly constant sized) digest C. This is com-

puted by C ← hv1
1 hv2

2 ...hvn
n ∈ G.

Pedersen commitments, are vector bindingmeaning than no adversary can find two dif-

ferent vectors v, v′ that result to the same commitment. Formally,

Pr

 v, v′ ← A(pp);

Commit(pp, v) = Commit(pp, v′)

 ≤ negl(k) (1.1)

The formal proof is located in the appendix. Moreover Pedersen commitments are homo-

morphic. That is becauseCommit(pp, v1)·Commit(pp, v2) = (hv11
1 hv12

2 ...hv1n
n )·(hv21

1 hv22
2 ...hv2n

n ) =
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hv11+v21
1 hv12+v22

2 ...hv1n+v2n
n ∈ G = Commit(pp, v1 + v2). In reality Pedersen commitments

are also hiding, however, this property is not needed in our work, so we can safely ommit its

formalization and the proof.

1.2.4 Vector Commitments

A Vector commitment is a cryptographic primitive that makes it possible to commit to an

ordered set of elements (commonly denoted as vector), and then someone can open that com-

mitment to a specific position of the ordered set. Vector commitments can be described by the

following tuple of probabilistic polynomial time algorithms (Gen,Commit, Open, V erify).

Specifically :

pp ← VC.Gen(1k,n). This algorithm take as input the security parameter k, and the size

of the vector n, and returns a set containing public parameters.

C, aux ← VC.Commit(pp, ṽ). This algorithm takes as input the public parameters, the

vector ṽ to be committed and returns a succinct (and commonly constant sized) digest C and

also some auxiliary information.

Wi,vi ← VC.Open(pp, aux, ṽ, i). This algorithm takes as input the public parameters

pp, the committed vector, and the position i ≤ n, and returns the element vi of the vector and

also a witnessWi, that vi is indeed the ith element of the committed vector.

0,1 ← VC.Verify(pp,C,vi,Wi, i). This algorithm takes as input the public parameters,

the commitment C, the element vi, its witnessWi and a position i. Returns 1 if the element

vi is indeed the ith element of the committed vector, otherwise returns 0.

As in every cryptographic primitive, vector commitments must fulfill some security guar-

antees. Firstly, we require that a vector commitment to be correct, meaning that in case vi is

indeed an element of an committed vector v⃗ with commitment C, then :

Pr

Wi, vi ← Open(pp, aux, v⃗, i);

1← V erify(pp, C, vi,Wi, i)

 = 1 (1.2)

Next we additionally require vector commitments to be position binding meaning that

no efficient adversary can correctly open a commitment on two different values at the same

position. Formally, given an probabilistic polynomial time adversary A, and public parame-

ters pp, the probability of finding two different values vi, v′i and two witnesses Wi,W
′
i , the
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probability that V erify(pp, C, vi,Wi, i) = V erify(pp, C, v′i,W
′
i , i) = 1 is negligible with

respect to the security parameter k. Specifically:

Pr


C,Wi,W

′
i , vi, v

′
i ← A(pp);

1← V erify(pp, C, vi,Wi, i)∧

1← V erify(pp, C, v′i,W
′
i , i)

 ≤ negl(k) (1.3)

Vector Commitment Based on RSA Assumption

Throughout recent years, there has been an “explosion” in the research of vector commit-

ment shemes [25, 26, 27, 28, 29, 30]. In this work we will use, the very simple constructions

introduced in [26]. Out of the two constructions presented in that paper, we will specifically

focus on the construction based on RSA assumption, because is much simpler and the size

of the public parameters is minimal. In more detail the construction is the following:

pp ← Gen(1k,n) Select two random primes p1, p2 of length n/2 and compute N = p1p2.

Then select n random distinct primes {ei}i∈[n], pick a random element g and compute Si =

g
∏

j∈[n]−i ej . Set pp = {N, e1, e2, ..., en, S1, S2, ..., Sn}

C, aux← Commit(pp, ṽ) Compute C =
∏

i∈[n] S
vi
i mod N . Set aux = {}.

Wi,vi ← Open(pp, aux, ṽ, i) Compute Wi =
∏

j∈[n]−i (S
vj
j )

1/ei mod N . Note that in

reality we can’t compute the square root of an element of a prime order group. Nonetheless

S
1/ei
j can be computed naively by finding S ′

j = g
∏

k∈[n]−{j,i} ei mod N .

0,1← Verify(pp,C,vi,Wi, i) Check if the Svi
i W ei

i mod N = C.

It is trivial to see that correctness property holds. To prove that the vector binding holds,

we make the hypothesis that there exist an adversary A that can win the vector binding game

with non-negligible probability. The we create an adversary B that uses A to break the RSA

assumption with non-negligible probability thus reaching contradiction. The detailed proof,

can be found in the Appendix A.

Another additional property of that construction, is that someone can not only open the

commitment to one position, but also to multiple positions. This “kind” of opening, is called

subvector opening. Let I ⊂ [n] be a set of indexes of the vector, then to open to the com-

mitment in I , we must compute the witness, which is WI =
∏

j∈[n]−I (S
vj
j )

1/eI mod N ,

where eI =
∏

i∈I ei. To verify that the subvector belongs to the vector, check the equation

C = (
∏

i∈I S
vi
i )W eI

I mod N .
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On Efficiency of RSA Vector Commitment

Naively, computing the public parameters, would requireO(n2) time, computing the com-

mitment would require O(n) time, computing a witnessWi would require O(n2) and verifi-

cation cost is O(1). Note that the computation of the commitment is done in O(n2) when we

do not have the Si. In reality those asymptotics are completely unacceptable. However we

can reduce those unacceptable asymptotics with various tricks 2.

To begin with, the complexity of opening to a position can be easily minimized. As-

suming that we want to open the position i, we have to find a more efficient way to com-

pute the S ′
j = g

∏
k∈[n]−{j,i} ei , ∀j ∈ [n] − i. Let e′ be the set of all primes except ei, thus

S ′
j = g

∏
k∈[n]−{j} e

′
i . Observe that for j = 0 to j = (n − 1)/2, all the values of S ′

j contain

in their exponent the product
∏

k∈((n−1)/2,...,n e
′
k, while for j = (n − 1)/2 to j = n, all the

values of S ′
j contain the product

∏
k∈1,...,(n−1)/2) e

′
k. Thus for each value of S ′

1,...,(n−1)/2 we

can compute g
∏

k∈(n−1)/2,...,n e′k only once. Continuing this idea recursively we end up with a

divide and conquer algorithmwith complexity isO((n−1)log(n−1)). The same way we can

compute subvector openings with complexityO((n−|I|)log(n−|I|)). This algorithm, firstly

“baptised” in [28], is called root factor, and although there is a more efficient algorithm, this

algorithm becomes of great importance later in this work.

We could develop a more efficient opening algorithm by the following way. First we

maintain two variables A and Wi, and initialize them with A = ge
′
1 and Wi = gv1 . Next we

compute Wi = W
e′2
i Av2 = ge

′
2v1ge1v2 and A = Ae′2 . We repeat this process until we finish

with all primes in e′. Note that the running time is O(n). The same way we can compute

subvector openings inO(n−|I|) time. As a result, from quadratic complexities we ended up

with linear ones, something that is significantly faster.

In addition, we could pre-compute all the witnesses, so that the opening time be con-

stant. To achieve that we apply a divide and conquer algorithm. First we compute the wit-

nessesW0,...,n/2,Wn/2+1,...,n of opening the first half of the vector and the last one. This can

be achieved in O(n) time. We continue recursively for the first and the last halves of the

vectors. For example in the second step of the recursion we compute W0,...,n/4, Wn/4,...,n/2,

Wn/2+1,...,3n/4,W3n/4+1,...,n . Finallywe end upwith the recursive equationT (n) = 2T (n/2)+

O(n). As a result precomputing all the proofs requiresO(nlogn) time which, while opening,

2An outstanding explanation of those tricks can be found in https://alinush.github.io/2020/
11/24/Catalano-Fiore-Vector-Commitments.html

https://alinush.github.io/2020/11/24/Catalano-Fiore-Vector-Commitments.html
https://alinush.github.io/2020/11/24/Catalano-Fiore-Vector-Commitments.html
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requires onlyO(1) time. In our implementation of the vector commitment, we require devices

to precompute the openings of their commitments.

Application of Vector commitments

Vector commitments can be used in various ways. One simple application of a vector

commitment is that of verifiable storage. Specifically, consider a client who holds a large

array of data, and wants to offload its data to a cloud server, and query it, whenever the client

needs to retrieve one or more positions of that array. However the client does not fully trust

the server that it will reply with the correct data. To “force” the server to behave honestly,

the client computes a vector commitment, keeps the digest, and stores the array to the server.

Whenever the client needs to get the elements in some position, queries the server which

replies with the element and a witness that belongs to the vector. The client accepts the reply

if the verification returns 1.





Chapter 2

Introduction to IPLS

2.1 IPLS Protocol in a nutshell

The InterPlanetary Learning System (IPLS) [16] is a decentralized federated learning

middleware that enables the training of a machine learning model in Federated manner but

without using a centralized server. The key concept of IPLS is to segment the parameters vec-

tor of the machine learning model into smaller partitions. This is exactly what happens with

large files in IPFS or bit-torrent. The partitions of the model are then separately maintained

and aggregated by different participants that are made responsible for these partitions, based

on the received gradients. More specifically, IPLS participants have the following roles:

1) Bootstrappers. In IPLS, a bootstrapper is the initiator of a federated learning task. When-

ever a participant wants to join the task, it must initially communicate with its bootstrapper.

Bootstrappers are assumed to have good network connectivity as they are required to have

periodic activity, e.g., to maintain participant registration for the tasks they have launched.

Bootstrappers also setup a private IPFS network, on which, they are also bootstrappers.

2) Aggregators are the participants that behave exactly like servers in centralized federated

learning but only for a small portion of the model. Aggregators can be responsible for one

or more partitions of the model. What an aggregator receives, from the trainers, is only the

gradients that it is responsible for. Upon receiving all gradients that it has to, then it aggre-

gates them (using summation) and produces the updated model for those partitions. Lastly it

communicates those partitions back to the trainers.

For robustness, security and efficiency purposes, it is important to have multiple aggre-

gators responsible for the same partition. If this is true, then each trainer selects only one

13
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Figure 2.1: Aggregation protocol of IPLS, with three participants that are both trainers and
aggregators responsible for distinct partitions.

Figure 2.2: Retrieval of the Up-to-date model in the same setup.

aggregator for each partition of the model, to send to it its gradients. Moreover whenever

an aggregator collected all its gradients, it aggregates them producing a partial update and

then communicates this partial update with all the other aggregators responsible for the same

partition.

Upon receiving all the partial updates for the partition it is responsible for, then further

aggregates them, computing the global updated partition which is sent back to the trainers.

3) Trainers are the participants who behave exactly like ordinary clients in the centralized

federated learning. They firstly download the up to date model. This is done by receiving

the update for each partition of the model. Then using the concatenation rule, they form the

new model which they are using for training based on their local data. At the end of the local

training, they produce some gradients which get segmented, and send each gradient partition

to its corresponding aggregator.

Figures 2.1 and 2.2 capture the main steps of the vanilla IPLS protocol. In those figures,

we assume that only three participants exist, and they are both trainers and aggregators. In

fact, in the first version of IPLS this was a strict requirement; however, in later versions,
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this is not mandatory. In 2.1, participants segment their gradients into three partitions upon

completing their training and send each gradient partition to the corresponding participant

responsible for that partition. The participants, upon collecting the gradients from the parti-

tions they are responsible for, aggregate those partitions. As figure 2.2 suggests, participants,

communicate back their updated partitions whenever aggregation is finished. Finally, when

the three updated partitions are collected, participants concatenate them and form the new

model.

To communicate, participants must establish direct communication links. That, for exam-

ple, can be achieved by using TCP or UDP, but IPLS uses the ipfs pub/sub protocol [31, 32],

because it can deal with intermittent connectivity issues, but also it can be used for different

types of communication, for example, multicasting or broadcasting. In addition, vanilla IPLS

used two different kinds of synchronization in the aggregation step. The first one was strictly

synchronous aggregation, in which an aggregator waits until it receives all the gradient par-

titions that it has to, and asynchronous aggregator, in which the aggregator, upon receiving

a gradient partition, instantly aggregates it and communicates back the newly updated par-

tition. In reality, asynchronous can be much more robust and sometimes faster than strictly

synchronous, but it might take many more rounds to converge.

On the communication complexity of the IPLS protocol. Let M be the model and |M | be

its size (e.g., in bytes). In the scenario of 2.1,2.2, we see that the model is segmented into three

partitions, and assume that the size of each partition is the same, (e.g., Partition_Size =

|M |/3). In both 2.1 and 2.2, each participant receives and sends data of size 2 · |M |/3, thus

totally the amounts of data each participant receives and sends is 4 · |M |/3 and 4 · |M |/3

respectively. Asymptotically, if each participant was responsible for only one partition and if

there were no other participants responsible for the same partition, then, forN participants in

the system, each participant would have to download data of size 2(N − 1)|M |/N ≈ 2|M |

and upload data of size 2(N−1)|M |/N ≈ 2|M |. As a result, the communication cost for each

participant is independent of the number of participants in the system. In reality, however, it

would be highly impractical to have only one aggregator responsible for the same partition

mainly for robustness reasons.

Dealing withmore aggregators responsible for the same partition.Whenever more aggre-

gators responsible for the same partition do exist, they somehow have to communicate with

each other in order to compute a “global” update for that partition. To achieve that, each ag-
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gregator, upon collecting the gradients from the trainers that selected him, aggregates them

and then multicasts that “partial”, via IPFS pub/sub, update to the aggregators responsible

for the same partition. It then waits until it receives the “partial” updates from all the other

aggregators responsible for the same partition.

System initialization. Before the beginning of an IPLS round or even before the beginning

of the entire IPLS process, a participant must learn 1) if it will become a trainer, aggregator,

or both, 2) if it becomes an aggregator, which partition/s should it be responsible for and

3) if it is trainer, which aggregator should it select, for each partition, to send its gradients.

In the vanilla IPLS protocol, a participant is an aggregator and trainer simultaneously. To

learn which partitions it will be responsible for, it follows a protocol explained in the next

paragraph. Finally, a participant, for each partition of the model it is not responsible for,

selects an aggregator at random to send him the gradients for that partition. Note that those

policies are very naive, and additional work can be done so that responsibilities assignment

and aggregators selection, so that to optimize some aspects of the IPLS system.

Responsibilities assignment protocol. At the very beginning of the IPLS protocol, the only

entity present is the bootstrapper of the project. What the bootstrapper does, is to receive re-

quests from participants interested in the project and provide them with useful information

about the project. Such information is, for example, the minimum number of partitions pmin,

an aggregator should be responsible for. When a participant enters the system, it first broad-

casts a message asking all other participants to provide it with their responsibilities. Then the

participant selects the pmin least “popular” partitions (e.g., those that fewer aggregators are

responsible for). Then the participant broadcasts its responsibilities. This sub-protocol, can

be performed periodically. Clearly, the bootstrapper could also select by himself the respon-

sibilities of the participants; however, by doing that, we would have to rely even more on a

central entity.

2.2 Implementation Details

To begin with, IPLS, offers an API that consists of four main methods, the ipls.init(·),

ipls.updatemodel(·), ipls.getmodel() and ipls.terminate(). The ipls.init(·), takes as input

various parameters that are mainly determined by the project and chosen by the bootstraper.

A participant calls the ipls.init(·), so that it can to join the project, learn about the respon-
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Figure 2.3: A simple representation of the interaction between the processes used in IPLS.
Each IPFS daemon has an IPFS API address, which is used by the IPLS middleware to com-
municate with it via the IPFS Java HTTPAPI. On the other hand, the IPLSmiddleware listens
to a port (e.g, 12000) and receives from that port, tasks from IPLS applications. Communi-
cation happens with IPC (e.g., sockets)

sibilities of other participants and also take some responsibilities. When the participant fin-

ished the model training, calls the ipls.updatemodel(·), which takes as input the gradients,

segments them into the proper partitions, and sends them to the selected aggregator, while

waiting to receive the updated partitions. The updated partitions are then stored in a cache.

ipls.getmodel(·), returns the cached updated partitions partitions, and reconstructs the up-

to-date model. Finally a participant can use ipls.terminate(), in order to leave the project.

To see in much more detail the API and its current implementation, visit Appendix B.

Regardless of its version, the dominant processes in IPLS are the IPFS daemon, the IPLS

middleware and the application. The IPFS daemon, is a process, that performs various net-

working functionalities in the level of IPFS. For example, the IPFS daemon is responsible for

downloading or adding files in the IPFS or executing the IPFS pub/sub protocol. The IPLS

middleware, is responsible for implementing the IPLS API. Moreover, the IPLS middleware

is responsible for executing the tasks of an aggregator, if the participant that runs the mid-

dleware is aggregator, something that is “learned” by the ipls.init(). Last but not least, the

application which uses the IPLS API, is the program written by the project initiator, and is

used to collect data, locally train the initiators model and updated the “global” model using

the IPLS API. Note that the application communicates with the IPLS middleware via IPLS

API, and the IPLS middleware with the IPFS daemon via IPFS java API. The middleware is

written in java, but IPLS APIs do exist for java and python.
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2.3 Convergence Rate and Accuracy Evaluation

To measure the performance of IPLS, in terms of convergence rate and accuracy, in di-

rect comparison with the centralized federated learning, we used the MNIST dataset [33].

The MNIST dataset contains 60.000 samples, each one representing an 28× 28 pixel image

of a digit between 0-9, which are uniformly distributed among the peers. We use MNIST to

train an Artificial Neural Network so that it can classify the digit an image represents. The

ANN we used has four layers (785× 500× 100× 10) which contains roughly 443.500 train-

able parameters. To simulate the interaction between peers, we used the Mininet 1 network

emulator.

In the first experiment 2.4, we measured the convergence of both synchronous and asyn-

chronous aggregation of IPLS and compared it with the convergence rate of the centralized

federated learning. Specifically, each peer (agent), is responsible for only one partition of

the model, and there are not peers responsible for the same partition. As it can be seen, the

performance of the synchronous IPLS is the exact same as the centralized federated learning.

On the other hand, as stated earlier, asynchronous aggregation needs more rounds, in order

to reach the same accuracy as synchronous and centralized federated learning.

Next, we measured the performance and resilience of IPLS, when peers face intermittent

connectivity issues 2.5. Specifically, we used eight peers and dynamically closed and opened

their internet connectivity using real traces. We measured the convergence rate of each peer

when there is only one peer responsible for a partition and when there are four peers respon-

sible for the same partition. Note that for those experiments, we only used asynchronous

aggregation because, with synchronous aggregation, the convergence rate would be the same

as if peers had perfect internet connectivity.

From figure 2.5, we can see that if there is only one peer responsible for a partition, then

we have the same convergence rate regardless the quality of the connectivity. However, when

peers face intermittent connectivity issues, the time needed to converge is significantly more

than having perfect connectivity. In contrast, we can see that if more peers are responsible

for the same partition, the convergence rate drastically changes. To begin with, the model

presents a slower convergence rate when more peers responsible for the same partition ex-

ist. However, when peers face intermittent connectivity issues, accuracy does not change too

much. In reality, the model needs less time to converge than if we had only one peer respon-

1http://mininet.org/
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20 Chapter 2. Introduction to IPLS

0.9

0.92

0.95

0.97

1 10 20 30 40 50

A
cc

ur
ac

y

Iteration

Replication ratio = 1 - perfect connectivity
Replication ratio = 4 - perfect connectivity

Replication ratio = 4 - imperfect connectivity

0.1

0.5

0.8
0.97

1 10 20 30 40 50

Figure 2.5: Robustness of IPLS in the presence of intermittent connectivity.



Chapter 3

IPLS over a Decentralized Storage

Network

3.1 Building IPLS on top of Decentralized Storage

3.1.1 Notation

Let A be the set of all aggregators in the system. We denote as Ai the set of aggregators

responsible for the partition i of the model, and aij , the aggregator j responsible for the parti-

tion i. Furthermore, we denote as T the set of all trainers and Tij the set of trainers that send

their gradients for the partition i to the aggregator aij . It is required that ∅ =
∩

j∈|Ai| Tij and

T =
∪

j∈|Ai| Tij . This means that aggregators responsible for the partition i receive gradients

for the partition i from distinct trainers. In practice, these sets can be formed and maintained

by a initialization protocol between IPLS participants in the beginning of each training round

as shown in 2 or by the bootstrapper itself. Also let p be the number of partitions the model

gets segmented.

3.1.2 Security Assumptions

In [16], authors assumed that all parties involved in the protocol were fully trusted. How-

ever, this is an unreasonable assumption to make. Although we can assume that the boot-

straper is trustworthy because he wants his federated learning campaign to “succeed”, mean-

ing that it wants the resulting machine learning model to have as high accuracy as possible,

this is not true for all the other entities. Aggregators, in some cases, might have incentives to

21
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behave maliciously. For example, they might perform the aggregation of the gradients with

much less accuracy than they should do or even deny receiving gradients from some trainers

to save some energy. Such attacks can significantly reduce the accuracy of the model and

its convergence rate, resulting in many additional Federated learning rounds and, in general,

slower completion time.

In addition, trainers can also perform various attacks. The most simple attack is poisoning

their gradients by just adding noise. However, some more sophisticated attacks can be per-

formed, for example, label flipping, resulting in significant misclassifications on the trained

model. Last but not least, IPFS nodes that consist of the decentralized storage network can

misbehave. IPFS nodes can send incorrect data to the retrievers or simply deny storing some

data to save space.

In this work, we will not consider the case where IPLS trainers might behave maliciously.

For an interested reader, [34, 35, 36, 37, 38] are some interesting works that try to deal with

this problem. Instead, we will assume in this work that IPLS aggregators might behave ma-

liciously in the sense that they can alter or drop gradients from some trainers. To deal with

such malicious behavior, IPLS must guarantee that an updated partition comes from all the

correct sum of the gradients sent from all the trainers. In addition, we assume that the IPFS

storage network guarantees the availability of data. That can be done by an incentivized stor-

age network ([20]) or IPFS protocols (i.e., IPFS cluster 1). However, we assume that IPFS

nodes might send incorrect data to the retrievers.

3.1.3 Indirect Communication Scheme

As with many other decentralized federated learning protocols [39, 40, 41] IPLS assumed

that participants could communicate directly with each other. However, especially for the

system setup of Federated learning, this assumption might not always hold. For various net-

working issues (e.g., Firewalls, NATs, volatile mobile IP addresses) or even because of the

type of network (e.g., 3G, 4G), participants, which commonly are smartphones or IoT de-

vices, can not always establish direct communication links. In addition, even if they could

establish direct communication links, their communication might be highly inefficient, espe-

cially in terms of energy consumption. Lastly, if an aggregator aij dropouts, then the trainers

Tij will have to send another aggregator their gradients, or else their contribution would be

1https://cluster.ipfs.io/

https://cluster.ipfs.io/
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lost.

To deal with the plethora of issues arising due to direct communication, we modify the

original IPLS protocol so that reliable communication happens indirectly through the means

of a decentralized storage network. Nodes that comprise the decentralized storage network are

the IPFS nodes, which commonly are relatively powerful devices (e.g., laptops or desktops)

with fast and stable internet connectivity. Those IPFS nodes run a full IPFS daemon connected

to a public or private IPFS network from a technical perspective. On the other hand, IPLS

participants might not run a full IPFS daemon locally, but they might be connected to an IPFS

gateway node. In practice, IPLS participants communicate with each other by uploading or

downloading their data (gradients, partial updates, or updates) to and from the decentralized

storage network.

3.1.4 Directory Service

To route and retrieve data from the IPFS storage network and verify their validity, IPFS

and also many other p2p file systems rely on a secure hash function (e.g., SHA-256). As

a result, IPLS participants have to know the secure hash of the data they have to download.

However, there is noway to learn such a hash function on their own. As a result, an entitymust

exist, that maps some addressing meta-information about the data to its corresponding IPFS

hash and other auxiliary information. It is crucial that this addressing information should be

known to all participants and should be easily computed. Such addressing meta-information

can be, for example, the id of the IPLS participant who uploaded the data.

To overcome this issue, we introduce the directory service, whose primary responsibility

is to map such addressing information to the corresponding hash of the data into a directory

maintained strictly by the directory service. In IPLS, such addressing information can be

described by the tuple (uploader_id, type, partition_id), where uploader id is the IPFS id of

the IPLS participant who uploaded the corresponding data, the “type” is a string that indicates

if the data are gradients or updates, and the partition_id is an integer indicating the partition

of the model that the data belong. Note that in IPLS, the directory service maps the tuple

mentioned above with the IPFS hash of the data and their Pedersen commitment. The reason

why the directory service stores the Pedersen commitment will be evident in later sections.

In general, we require the directory service to be immutable, meaning that no one can

write a new hash to a tuple already written in the directory. If the directory service were
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not immutable, then aggregators or IPFS nodes would easily tamper with the mappings of

the directory and replace the hashes of correct data (e.g., gradients) with hashes of poisoned

data. It is also easy to observe that both the writes and reads should be relatively fast because

the efficiency of communication between IPLS participants depends on how efficient the

directory service is. One natural question that arises is who will take the responsibility of

becoming the directory service. The bootstraper can become the directory service because,

in reality, the directory service receives magnitudes times less data than all the aggregators

combined, and the bootstraper will behave honestly because he wants his federated learning

campaign to succeed. Though, a blockchain can also take the role of becoming the directory

service. Keep in mind that in IPLS, the blockchain takes the role of a directory service and

not the role of the aggregator.

3.1.5 Modified IPLS protocol

Each IPLS round in our modified IPLS protocol, can be described in three distinct phases,

the preprocessing phase, the training phase and the aggregation phase. Figures 3.1 and

3.2 capture the main steps of the protocol while algorithms 1 and 2 give a much more detailed

description of the tasks performed by each entity in the system.

Preprocessing phase

This phase starts at the beginning of a new IPLS round. In this phase, the directory service

clears all the entries of its directory that correspond to gradient writes (i.e., they are of the

form (uploader_id, “gradient”, partition_id)). Next, from the IPLS participants that are

online, it generates the sets A,Ai, T and Tij and informs IPLS participants about their new

responsibilities. Note that the way those sets are generated is out of the scope of this work

and is left for future work. Also, keep in mind that those sets can be determined solely by the

IPLS participants, as it happens with [16].

Furthermore, the directory service selects a time Ttrain,Taggr, which are nothingmore than

long integers presenting time in UTC. Ttrain is used so that IPLS trainers will know when the

training phase stops, and Taggr is used the same way but for the aggregation phase. Keep

in mind that whenever Ttrain elapses, then the directory service stops receiving writes for

gradients from the trainers. In the end, the directory service broadcast to all IPLS participants

a message containing the Ttrain, Taggr and the IPLS round indicating the beginning of the
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Figure 3.1: Figure depicting one iteration of the IPLS protocol, with only one aggregator
responsible for the ith partition and three trainers. Themain steps of the protocol are 1.Upload
the gradients to the IPFS network, 2.Write to the directory service, 3. aggregator queries the
directory service, 4. Receives the hashes of the gradients, 5.,6. retrieves them from the IPFS
7. aggregates them and uploads the update to the IPFS, 8. the directory service verifies the
validity of the update before written to the directory

training phase.

Training Phase

Whenever IPLS trainers receive the message broadcasted by the directory service, they

read the directory service to get the hash of the updated partition for each partition of the

model. This is done by reading from the directory the tuples (“update”, i), ∀i ∈ [P ]. When-

ever those hashes are retrieved, trainers use the ipfs.get(·), with input, the hash for each

partition to retrieve the updated partition from the IPFS network. After collecting all the up-

dated partitions, they construct the machine learning model using the concatenation rule and

train it using their local data (i.e., M = U[1]||U[2]||...||U[p]).

When training is completed, then each trainer checks if his current time is less than Ttrain.

If this is false, they abort and wait for the next round. Otherwise, they get the gradients of the

trained model, which currently are simply the parameters of the trained model. Next, they

segment the gradients into the corresponding partitions; for each partition, they append the

number 1 and then call the ipls.add(·), for each gradient partition to upload it to the IPFS

network. The function ipls.add(·), first computes the IPFS hash and the Pedersen commit-
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Figure 3.2: A snapshot of how trainers download the up-to-date model. They simply query the
directory service and upon receiving the hash of each partition they retrieve the updates from
the IPFS network. Finally they reconstruct the model by concatenating the updated partitions.

ment of its input. Then given a predetermined IPFS node, each trainer sends to it the input

data and waits to get an acknowledgment from the IPFS node that it stored the data in the

IPFS network (by calling ipfs.add(·)). Note that this procedure can be done in parallel for

each partition of the model.

Whenever the acknowledgment is received, then the trainer sends to the directory service

a message containing the addressing information and the hash of the gradient partition ( i.e.

(trainer_id, “gradient, i), Hash(G[i]), Commit(G[i])). Upon receiving that message, the

directory service checks 1) if the current time is more than Ttrain, 2) if a mapping with the

same addressing information is already written to the directory. If none of them is true the

directory simply sets D[(trainer_id, “gradient, i)]→ Hash(G[i]), Commit(G[i]).

The directory service also maintains for each aggregator aij a queue, which stores the

IPFS hashes for the partition i for each trainer in Tij . At the training phase, each aggregator

aij polls the directory service simply by reading all the IPFS hashes from its queue (Qaij ). For

example consider that in a given time, Qaij = [Hash1, Hash2, Hash3]. In the first poll aij

will receiveHash1, Hash2, Hash3, and the directory service will clear the queueQAij
= [].

If nothing is put in the QAij
until the next poll, then in the next poll, aij will receive nothing

from the directory service.

Whenever aggregators receive new hashes from the directory service, they simply use the

function ipfs.get(·), to download the gradient partition that corresponds to the given hash.
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Aggregation Phase

Aggregation phase is dominated only by the aggregators and the directory service while

the trainers remain idle waiting for the next IPLS round. At the very beginning of the aggre-

gation phase, the directory service, for each partition i computes the digest of the updated

partition which is Commit(U [i]) =
∏

j∈T Commit(Gj[i]) and also the digest of the partial

update for each Commit(PUj[i]) = Aij which is
∏

k∈Tij
Commit(Gk[i]). Note that those

computations are very efficient and add only a minor overhead.

Each aggregator aij , at the start of the aggregation phase, sends its last query to receive the

remaining hashes of the gradient partitions from Tij , if any. Then it receivesCommit(PUj[i])

∀j ∈ Ai − aij from the directory service. Whenever aij downloads all the gradients from

Tij , aggregates them, and computes its “partial” update PUj[i] =
∑

k∈Tij
Gk[i], which is

uploaded to the IPFS network by calling ipls.add(PUj[i]). Instead of using the directory

service to make the IPFS hash of the computed partial update “publicly known”, each aij

multicasts the IPFS hash of Pj[i] to all the other aggregators ∈ Ai. Whenever an aggregator

responsible for partition i receives a hash from an another aggregator inAi, aij , it downloads

the partial update, computes its Pedersen commitment (Commit(PUj[i])), and then checks it

is equal with that given by the directory service CommitDS(PUj[i]). If Commit(PUj[i]) =

CommitDS(PUj[i]), then with overwhelming probability, the partial update from aj[i] is the

correct one. In case the equation did not hold, then the aggregator downloads the gradients

for the partition i been uploaded from the trainers in Tij , and uploads the correct PUj[i].

Whenever an aggregator for the partition i computed the U[i], uploads it to the IPFS net-

work and sends its IPFS hash to the directory service. If the directory service has not received

any write for the U[i], it downloads it and checks if Commit(U [i]) = Commit(Urecv[i]). If

the equation holds, the directory service stores the tuple (“update, i)→ Hash(Urecv[i]), and

stops receiving writes for updates of the partition i. Whenever the updated partitions for all

the partitions are gathered, the directory service informs the system that the IPLS round is

finished and a new one begins. As it is obvious, the training process can finish before Taggr.

In reality, Taggr is used mainly for robustness guaranting that the training process will not

stall permanently. This can happen whenever there is only one aggregator responsible for a

partition, and this aggregator goes offline.
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Algorithm 1 Functions of the directory service and IPFS nodes

1: function directory_service(D = {}, A, T )
2: msg ← recv()
3: if msg.tag = grad_write ∧ tcurrent < ttrain then
4: if msg.addr /∈ D then
5: D[msg.addr]← msg.Hash,msg.Commit
6: t← msg.addr.trainer_id
7: i← msg.addr.partition
8: aij ← get_Aggr(t)
9: Qaij

.append(msg.Hash)
10: end if
11: end if
12: if msg.tag = upd_write ∧ tcurrent < taggr then
13: if msg.addr /∈ D then
14: i← msg.addr.partition
15: U ← ipfs.get(msg.Hash)
16: if Comm(U) =

∏
t∈T Comm(Gt[i]) then

17: D[msg.addr]← msg.Hash
18: end if
19: end if
20: end if
21: if msg.tag = read then
22: i← msg.partition
23: aij ← msg.sender
24: send(aij , Qaij )
25: Qaij

.clear()
26: end if
27: if Ended(Ttrain) then
28: for each aij ∈ A do
29: Comm(PUj [i])←

∏
t∈Tij

Comm(Gt[i])

30: Bcast(Ai, PUj [i])
31: end for
32: end if
33: end function
34:
35:
36: function ipfs_node
37: while True do
38: msg ← recv()
39: ipfs.add(msg.data)
40: end while
41: end function
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Algorithm 2 Algorithms for one FL training iteration

1: function upload(addr, data,WriteDs)
2: cid← hash(data)
3: put(ipfs_peer, data)
4: if WriteDs = True then
5: send(directory, [addr, cid])
6: else
7: pub(Ai, [addr, cid])
8: end if
9: end function
10:
11: function trainer(M,At)
12: gradU ← train(M) ▷ train model and produce gradient updates
13: if tcurrent > ttrain then ▷ Abort if didn’t train it in time
14: Abort iteration i
15: end if
16: for each i ∈M.parts do ▷ Upload gradient updates ∀ partition
17: upload((id, i, iter, gradient), [gradU [i], 1], T rue)
18: end for
19: Ttrain,taggr ← wait_new_round()
20: for each i ∈M.parts do ▷ get updated partitions
21: while cid == NILL do ▷ check the DS until you get the Cids
22: cid← send(directory, (“update“, i))
23: end while
24: modU [i]← download(cid) ▷ download updated partitions
25: modU [i]← modU [i][: size− 1]/modU [i][size− 1]
26: end for
27: M ← modU ▷ build next fully updated model
28: end function
29:
30: function aggregator(Ai, Ta, taggr)
31: while Tij ̸= ∅ do ▷ get gradient updates from my trainers
32: cids← send(directory, (a, i)) ▷ Check if new Cids commited
33: for each (t, cidt) ∈ Cids do
34: gradU i[t]← download(cidt) ▷ Download gradients
35: Tij ← Tij − t
36: end for
37: end while
38: modelU i[a]←

∑
gradU i[t] ▷ own updated partition

39: upload((id, i, iter, partial_update),modelU i[a], False)
40: Commi ← recv(directory)
41: while tcurr < taggr ∧Ai ̸= ∅ do ▷ sync with Ai −Aij

42: cid, a′ ← recv(Ai) ▷ Check if new Cids commited
43: modelU i[a′]← download(cid)
44: if Commi[a

′] = Commit(modelU i[a′]) then
45: Ai ← Ai − a′

46: end if
47: end while
48: modelGlobU i ←

∑
modelU i[a′] ▷ globally updated partition

49: upload((i, iter, update),modelGlobU i, T rue)
50: end function
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3.2 Merge And Download Mechanism

As it might have been obvious from the description of the protocol, the data each aggre-

gator has to receive grow linearly with the number of aggregators responsible for the same

partition Ai and the number of trainers Tij . However, it is possible to further reduce the data

the aggregator has to download. To achieve that we take observe that there is a possibility

that an IPFS node, might hold gradients from multiple trainers that belong to the same Tij .

As a consequence, the aggregator instead of downloading from the IPFS node the gradients

one-by-one, it could simply request to the IPFS node aggregate those gradients on its behalf,

and send him the aggregated result. This mechanism is called Merge and Download 3.3.

To further utilize that concept, we allow aggregators, at the beginning of each iteration

or in a couple iterations, to select a set of IPFS nodes. For an aggregator aij , this set of IPFS

nodes is called providers of aij and it is symbolized as Pij . Trainers in Tij send their gradients

for partition i, they choose one IPFS node inPij and send to it their gradients for the partition i.

Whenever gradients from allTij were selected then the aggregator aij sends amerge request to

its providers who aggregate its stored gradients and send back to the aggregator their results.

Note that the aggregator instead of downloading data proportional to |Tij| it now downloads

data proportional to |Pij|. The same mechanism can be applied for the partial updates. To be

more specific a set of IPFS nodes Pi can be selected in order to store the partial updates for

the partition i of the model.

A natural question that arises, is how large the Pij should be. If Pij was too small, in the

extreme case |Pij| = 1, then the single IPFS node would become congested by receiving all

the gradient partitions from Tij , while the data the aggregator would have to receive would

be the minimum. On the other hand, if |Pij| was extremely large, then the uploading delay

from trainers perspective would be low, however the merge and download would probably

have no significant impact, because the probability that an IPFS provider hold many gradients

from Tij would be small. The number of Providers that can lead to optimal aggregation time

is
√
|Tij|, as we will show next. If we assume that all IPFS nodes have roughly the same

download speed d then the time it takes for an aggregator aij to download all its data is τ =

Partition_Size · (|Tij|/(d|Pij|)+ |Pij|/b), where b is the download speed of the aggregator.

To minimize τ , we compute ∂τ
∂Pij

= 0, which results to b · |Tij|/d = |Pij|2, which confirms

our previous observation.
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Figure 3.3: Figure depicting merge and download concept with three IPFS providers. The
aggregator sendsmerge request to his providers (1.) and then it receives the aggregated results
(2.).

3.3 Experimental Evaluation

To conduct the experiments and measure the performance of the modified IPLS proto-

col, we used a testbed which consists of AWS c5ad.12xlarge instance running Ubuntu 18.04

LTS with 48 virtual CPUs and 96GB RAM. Regarding the functionalities of the protocol,

we measured the impact of the number of aggregators responsible of the same partition, in

terms of aggregation speed, the impact of merge and download scheme with variable num-

ber of IPFS providers and also the efficiency of writes in the directory service with variable

number of partitions. In order to make the measurements as realistic as possible, we used the

mininet emulator and assumed that both trainers and aggregators have the same bandwidth

capabilities.

3.3.1 Aggregation Performance vs. Variable |Ai|

In this experiment, wemeasured the performance of the aggregation with variable number

of aggregators responsible for the same partition. For those experiments we deployed 16

trainers, 8 IPFS nodes and variable number of aggregators. We segmented the model into 4

partitions of size 1.1 MB each, and each aggregator was responsible for only one partition of
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Figure 3.4: Total aggregation delay (top) and total size of data received by an aggregator
(bottom) in each iteration, vs. the number of aggregators assigned to each partition.

the model. Firstly, we used 4 aggregators and as a result |Ai| = 1 for each i. Then we used

8 aggregators so that |Ai| = 2, and so on until reaching |Ai| = 4. Last but not least IPLS

participants had communication bandwidth of 20MBps.

Note that in figure 3.4 the total aggregation delay is the time from the beginning of the

iteration until the computation of the updated partition. In the Figure 2, the y axis represents

the amounts of data been received by a single aggregator in an IPLS iteration. Before going

into the details of our results, it would be wise to find the theoretical asymptotics of the

aggregators. If we roughly assume that an aggregator is responsible for only one partition,

and each aggregator for the same partition receives approximately equal number of gradients,

then the amounts of data each aggregator has to download is Daij = ( |T |
|Ai| + |Ai| − 1) ·

Partition_Size and the delay would be approximately Taggr = Daij/BW , where BW is

the bandwidth of the aggregator.

As can be easily verified, both figures in 3.4 agree with our theoretical assumption. To be

more specific, we can see that as the number of aggregators responsible for the same partition

increases, both the aggregation delay and the downloaded data significantly decrease. More-

over, as the number of aggregators for the same partition increases, so does the overhead for
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Figure 3.5: Aggregation (top) and uploading (bottom) delays
with variable number of providers.

synchronization, which is simply the download and aggregation of the partial updates. In fact,

if we continued our experiment, we would observe that the both the total aggregation delay

and the data received would start increasing again.

3.3.2 Impact of Merge and Download

To measure the impact of merge and download mechanism, we contacted an experiment,

that consists of 16 trainers, an aggregator responsible for a partition of size 1.3MB and a

variable number of IPFS Providers. Both the trainers and the aggregator have bandwidth of

10MBps while IPFS providers had bandwidth of 100MBps. In those experiments, we mea-

sured the aggregation delay, which is the time interval in which the aggregator receives the

first write from a trainer in the directory service, until it computes the updated partition. In

addition, we measured the uploading delay, which is the time needed for a trainer to upload

its partition to the IPFS network.

From our theoretical result, it is expected that with 4 IPFS providers, we will have the

minimum total aggregation time, because both uploading delay and aggregation delay will

be small. That can easily be verified by the Figure 3.5, because the aggregation delay with
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Figure 3.6: Write delay with 0% and 5% packet loss and variable number of partitions

4 IPFS providers is relatively the same as the aggregation delay with 1 or 2 IPFS providers.

Moreover, the uploading delay with 4 IPFS providers is similar to the uploading delay of

8 trainers, while with 1 IPFS provider, we can see that it becomes congested receiving the

gradients from the trainers.

In addition, we used this experiment, to compare merge and download, with simple in-

direct communication (8 (naive)) and also direct communication (8 (direct)). As it can be

seen, purely indirect communication, gives the worst aggregation delay. However, keep in

mind, that this happens mainly because the aggregator downloads sequentially the gradients,

by using ipfs.get()method, which adds significant overheads, probably due to querying the

IPFS DHT. We could make the downloading much more efficient, by concurrently down-

loading many files by using multiple threads. Overall, the results of this experiment show

that if we want to deploy indirect communication between IPLS participants, then Merge

and Download is a crucial mechanism for the efficiency of the IPLS protocol.

3.3.3 Performance of Directory Service

In this experiment, we measured the performance of the writes in the directory service, by

inspecting the time it takes for a trainer to send the write message to the directory service, until

it receives the acknowledgment that its write is done correctly. We conducted this experiment

with 1000 trainers, and a directory service that it had bandwidth of 100MBps. To make the

writes as fast as possible, we made a modification in the original protocol and instead of

sending write messages via pub/sub we are sending them over UDP. That is because IPFS

pub/sub is built over TCPwhich may add noticeable overhead [32]. Roughly, as shown in 3.6,

write delay depends linearly to the number of model partitions, and as it is obvious the less
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we partition the model, the faster the writes. Moreover, due to retransmissions and timeouts,

the write delay with 5% packet loss in the network, is much larger than the write delay with

0% packet loss. All in all, we can see that even with a moderately large number of trainers,

the writes remain quite fast even with 5% packet loss.





Chapter 4

On the Efficiency of Directory Service

4.1 Matrix commitments /Hierarchical vector commitments

We introduce a new cryptographic scheme called matrix commitment. As its name sug-

gests, a matrix commitment scheme enables committing to an order set of vectors instead of

elements. As in vector commitments, matrix commitments can be described by the tuple of

four probabilistic polynomial time algorithms (Gen,Commit, Open, V erify).

pp←MC.Gen(1k,n,m). Takes as input the security parameter k, and also the dimension

of the matrix. Return some public parameters.

C, aux ← MC.Commit(pp,M). Takes as input the public parameters and the matrix

M ∈ Dm×n and return a constant sized digest and also some auxiliary information.

Wi,Mi ← MC.Open(pp, aux,M, i). Takes as input the matrix M, the auxiliary infor-

mation, the public parameters pp, and also the index of the row we want to open. Returns the

ith row of the matrix and also a witnessWi thatMi is indeed the ith row of the matrix.

0,1←MC.Verify(pp,C,Mi,Wi, i). Returns 1, ifMi is the ith row of the matrix, else 0.

Let m be the number of rows and n be the number of columns. In IPLS setting, we set m

to be the number of partitions, and n be the number of elements of each partition. Usually, it

holds that m ≤ n.

Matrix commitments must fulfill the correctness property as defined in the equation 1.2

37
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for elements but also for rows and columns.Matrix commitments must be row bindingmean-

ing that given an PPT adversary A and public parameters pp, the probability of finding two

different rows of the matrix M⃗i, M⃗ ′
i and two witnessesWi,W

′
i , is negligible with respect to

the security parameter k. Formally,

Pr


C,Wi,W

′
i ,Mi,M

′
i ← A(pp);

1←MC.V erify(pp, C,Mi,Wi, i)∧

1←MC.V erify(pp, C,M ′
i ,W

′
i , i)

 ≤ negl(k) (4.1)

Last but not least, we require Matrix commitments to be additivelly homomorphic, meaning

that Commit(pp,M1) · Commit(pp,M2) = Commit(pp,M1 +M2).

4.1.1 Matrix Commitment Based on RSA Assumption

Before discussing our proposed construction, it is important to clarify that we can con-

struct matrix commitments in a trivial way, by simply using vector commitments that enable

subvector openings. For example, commit could be used as it is and in the open we could sim-

ply compute the witness of opening a subvector that represents the row of the corresponding

matrix. Someone could also precompute the witness of each row of the matrix, in the commit

algorithm, so that open would have O(1) complexity. In the vector commitment based on

RSA Assumption for example, we could precompute the witnesses of each row, the same

way as we compute the witnesses for each position, but halting prematurely in themth level

of the recursion. That, would require O(m ·n · log(m)) time. In reality, we would like some-

thing that its complexity depends solely onm and not n. The construction we present bellow,

offers faster witness precomputation, but with the requirement that m < n. Concisely, our

scheme combines integer commitment schemes [42, 43], with the RSA vector commitment

scheme presented in 1.1.3. In fact, we use integer commitments to commit each individual

row of the matrix, and then, use the RSA based vector commitment to “bind” them together.

pp←MC.Gen(1k,n,m). Take input the security parameter k, and also the dimension of

the matrix. Select two random safe primes p1, p2 of length n/2 and compute N = p1p2. Then

select n random distinct integers {ri}i∈[n] ∈ ZN , and n random distinct primes {e′i}i∈[m].

Then pick a random element g ∈ Z∗
N and compute Si = g2ri . The reason why we multiply ri
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by 2, is because we want Si ∈ QR[N ] (i.e the group of quadratic residues) as in [43] 1. Set

pp = {N, e′1, e
′
2, ..., e

′
m, S1, S2, ..., Sn}.

C, aux←MC.Commit(pp,M). For each row of thematrix computeCi =
∏

i∈[n] S
vi
i modN .

Finally compute C =
∏

i∈[m] C
∏

j∈[m]−i e
′
j

i mod N . Set aux = {C1, C2, ..., Cm}.

Wi,Mi ← MC.Open(pp, aux,M, i). Compute Wi =
∏

j∈[m]−i C
∏

k∈[n]−{i,j} e
′
k

j mod N .

ReturnWi and the ith row of the committed matrix M.

0,1 ← MC.Verify(pp,C,Mi,Wi, i). Compute Ci =
∏

k∈[n] S
Mik
k mod N and finally

check if C
∏

k∈[n]−i e
′
k

i W
e′i
i = C.

It is trivial to see that the scheme is correct and also homomorphic. It is homomorphic, be-

causeMC.Commit(M1) ·MC.Commit(M2) =
∏

i∈[m] C
∏

j∈[m]−i e
′
j

1i ·
∏

i∈[m] C
∏

j∈[m]−i e
′
j

2i =∏
i∈[m] (C1iC2i)

∏
j∈[m]−i e

′
j =

∏
i∈[m] (

∏
j∈[n] S

M1ij+M2ij

i )
∏

j∈[m]−i e
′
j = MC.Commit(M1 +

M2)

Proof of Row Binding Property

To prove that the scheme is row binding, we introduce a probabilistic polynomial time

adversaryA that can win the row binding gamewith non-negligible probability in the security

parameter. Let P [W ] be that probability. We create an adversary B that wants to win an RSA

challenge and uses as a subroutine the adversaryA. Specifically,B receives from a challenger

a triplet of values (N, e, g) and wants to find y s.t ye = g modN . B selects n,m, computes Si

the exact way as MC.Gen() would work, but selecting g as a base. Then selects at random

i′ ∈ [n], and sets e′i′ ← e. As a result pp ← {N, e′1, e
′
2, ..., e

′
m, S1, ..., Sn}. Then calls A(pp),

and receives rowsMi,M
′
i ,Wi,W

′
i , C. Then he checks if the rows are different. If this is true,

then C
∏

k∈[n]−i e
′
k

i W
e′i
i = C

′
∏

k∈[n]−i e
′
k

i W
′e′i
i , or (Ci/C

′
i)

∏
k∈[n]−i e

′
k = (W ′

i/Wi)
e′i

In caseW ′
i = Wi, then there must beCi = C ′

i, withMi ̸= M ′
i . However by [43] we know

that findingMi,M
′
i s.tMi ̸= M ′

i∧Ci = C ′
i, is equivalent to factoring themodulus N,meaning

that we can obtain a non-trivial factor 2. We call that event DLOG and PDLOG be the proba-

1We could also pick simply any random number ri, as it happens with [42]. However, [42] does not prove
the binding property of the commitment scheme when we commit to a vector

2Alternatively, [28, 44] we can see that this can happen only with negligible probability
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Figure 4.1: A simple resemble of the recursion, when computing C12, C13, ..., C1m from C1.
Note that in the paradigm, m = 9 so we need to find 8 elements for C1. In addition, we
represent Cek1ek2 ...

i with Ci, {ek1 , ek2 , ...} .

bility that happens. Otherwise, ifW ′
i ̸= Wi, then B can compute δ =

∑
j∈[n] 2rj(Mij −M ′

ij),

and result in gδ
∏

k∈[n]−i e
′
k = (W ′

i/Wi)
e′i . Since gcd(δ

∏
k∈[n]−i e

′
k, e

′
i) = 1, we can efficiently

compute α, β such that αδ
∏

k∈[n]−i e
′
k + βe′i = 1. By applying shamir’s trick [45] we obtain

g = (g(αδ
∏

k∈[n]−i e
′
k)(W ′

i/Wi)
β)e

′
i . As a result B returns y = g(αδ

∏
k∈[n]−i e

′
k)(W ′

i/Wi)
β to the

challenger. Let PRSA, be the probability that B wins the RSA challenge. Because the chal-

lenge is uniformly distributed so does e. As a result, the public parameters pp B generates,

will the same distribution as if they where in honestly generated. Thus PRSA = P [W ∧ i =

i′ ∧ ¬DLOG] = P [W ] · P [i = i′]P [¬DLOG] = P [W ](1− PDLOG)/m

Complexity Evaluation

Considering the above construction, MC.Commit can be computed naively in O(n ·

m) + O(m2) time, the opening of one row is computed in O(m2) time, and the verification

is done in O(n +m) time. However as in vector commitment example, there can be a little

space for some improvement.

Note that we could pre-compute the proofs for each row of the matrix in the following

way.Having {C1, C2, ..., Cm}, we can compute inO(m2log(m)) timem2 elements {C12, C13,

..., C1m, ..., Cm(m−1)} = {C
∏

k∈[n]−{1,2} e
′
k

1 , C
∏

k∈[n]−{1,3} e
′
k

1 , ..., C
∏

k∈[n]−{m,m−1} e
′
k

m }. This can be

done, by computing using the root factor for each Ci, with prime set e′′i ← e′− e′i as it can be

seen in 4.1. Computing the root factor for an commitment Ci takesO(mlogm), thus for all m

commitments we will needO(m2logm) time. Then to find the witness of a row of the matrix

we can computeWi =
∏

j∈[m]−i CjimodN , which can be done inO(m) field multiplications.

Thus we can pre-compute the witnessWi for each row of the matrix in O(m2(log(m) + 1))

time. This procedure can be embedded in the Commit algorithm, and the auxiliary parame-
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ters could simply contain the witness for each row of the matrix. In that case, the Open will

simply be executed in O(1) time.

Witnesses Aggregation

This construction also enables witness aggregation. Let M1,M2 be two matrices, C1,C2

their corresponding matrix commitments, andW1i,W2i be the witnesses of opening the row i

of the matrix. Then, it holds thatW1i ·W2imodN , is the opening witness for the row i of the

matrixM1+M2. To see why this is the case, letC3 be the commitment of the matrixM1+M2,

thenW1i·W2imodN =
∏

j∈[m]−i (C1jC2j)
∏

k∈[n]−{i,j} e′kmodN =
∏

j∈[m]−i C
∏

k∈[n]−{i,j} e′k
3j modN .
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4.2 Mitigating the Load of the Directory Service

Based on the current deployment of the directory service, whenever each trainer writes

to the directory, it has to send the IPFS hash and the Pedersen commitment of each gradient

partition and its addressing information. For example, approximately for each partition, a

trainer has to send to the directory service his IPFS id (256 bits), the partition id (32 bits), the

hash of that partition (256 bits), and its Pedersen commitment (256 bits). Thus, the trainer has

to write 800bits (100bytes) for each partition. Totally for each trainer, the directory service

has to receive D = (64 + 4) · p + 32 bytes = 68p + 32 bytes. For example, let p = 500, then D

= 34032 bytes ≈ 34KB. In contrast, if p = 1000, then D ≈ 64KB which is twice as much.

Back with p = 500, although 34KB might seem like a small amount of data, imagine that for

103 trainers, the directory service has to receive 34MB in each iteration, and for p = 106,

roughly 34GB. In other words, not only the load of the directory service scales linearly to the

number of trainers, which comes naturally, but also to the number of partitions.

In addition, what makes the task of the directory service even more intense is that aggre-

gators have to frequently read from it the hashes of the gradients that they have to download.

That is, because aggregators periodically poll the directory service, which in each query has

to make a lookup to its data structures and reply accordingly. In this chapter, we present some

modifications to the original protocol, in which we try to make the role of the directory ser-

vice as “lightweight” as possible. Firstly, we minimize the data the directory service receives

by making the length of the write messages for each trainer constant and independent of the

number of partitions. Next, we minimize the load of the directory service in terms of reads by

distributing the entirety of the directory to the IPFS nodes, who are responsible for replying

to queries in a verifiable manner. In this chapter, we assume that the messages come from the

directory service are signed meaning that everyone can verify that a message indeed origi-

nates from the directory service. That can be easily achieved by utilizing a digital signature

algorithm.

4.2.1 Minimizing the amount of data the directory service receives

As seen from the previous simple example, the amount of data the directory service re-

ceives depends on the number of partitions and the number of IPLS trainers. Although there

is no way to make the load of the directory service independent of the number of trainers, it is
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Figure 4.2: Figure depictingwhat the trainers do beforewriting to the directory. They compute
the vector commitment of the hash of each gradient partition and also the matrix commitment
of the gradient partitions (1.,2.). Then upload the auxiliary information (e.g., witnesses and
the actual hashes) of the commitment schemes to the IPFS network (3.), and the Vector and
Matrix commitment to the directory (4.)

possible to make it independent of the number of partitions. In other words, the IPLS protocol

can be modified so that instead of receiving data of size O(p|T |), it will receive data of size

only O(|T |). Intuitively, this can be achieved by forcing trainers to make write as there was

only one partition, which represents all the partitions of the model.

Considering IPFS hashes, the trainers, instead of sending all the p hashes of the model

to the directory service they can just send only a vector commitment of those hashes. Let

Hashi, be the IPFS hash of the ith partition of the model, then trainers can compute C ←

V C.Commit(pp, [Hash1, ..., Hashp]), and send only C to the directory service while send-

ing [Hash1, ..., Hashp] to the IPFS nodes as it can be seen by 4.2. That can easily be done

by broadcasting them using the IPFS pub/sub protocol. The directory service for each tuple

of the form (trainer_id, “gradients, i) maps it to the C it received and the corresponding

Pedersen commitment for the partition i. To retrieve the Hashi, the aggregator responsible

for the partition i, will retrieve from the directory service the commitment C. Then it will ask

one of the IPFS nodes to send it theHashi and a witness that theHashi indeed belongs to the

position i of the commitment C. To achieve that, IPFS nodes use the V C.Open() algorithm

described earlier. Note that this comes in two flavors. Either the trainer sends only the IPFS

hashes to the IPFS nodes, and lets them compute the witnesses, or each trainer precomputes

all the witnesses and also sends them so that IPFS nodes would not have to compute anything.

Last but not least, the aggregator, before downloading the gradient partition, verifies that the

Hashi is a valid element calling V C.V erify() using as C the commitment it read from the
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directory service. The protocol’s security lies in the fact that the Vector Commitment used is

secure, meaning that no IPFS node can open the vector commitment to a different hash and

thus will be forced to send the correct one.

What remains is to apply the same concept to the Pedersen commitments. At first glance,

it might be tempting to do the exact same thing as we did for the IPFS hashes. If we did that,

the directory service would have a commitment C ← V C.Commit(pp, [Commit(G[1]), ...

, Commit(G[p)]) for each trainer. However, by having such commitments, the directory

would be incapable of computing the product of the Pedersen commitments, which are needed

for verification purposes, but only their sum, something that is useless. Simply put, the direc-

tory servicewill not be able to compute at the beginning of the aggregation phaseComm(U [i])

∀i ∈ [p] and Comm(PUj[i])∀aij . Keep in mind that the security of our protocol relies on

computing and distributing those commitments honestly.

To overcome that issue, we use the proposed matrix commitment scheme, where the

model is represented as a matrix M whose rows are the partitions of the model. In more

detail, each trainer t computes the matrix commitment Ct, aux←M.Commit(pp, P ). Then

it sends the commitment Ct to the directory service and the auxiliary information to the IPFS

nodes.Whenever an aggregator aij queries the directory service, it will also getCt. Whenever

it asks an IPFS node for a hash of a gradient partition i, it will also get a witness that the gra-

dient partition is the ith row of the Ct. To compute the commitments of the updated partitions

or the partial updates, the directory service simply computes Comm(U) ←
∏

t∈T Ct and

Comm(Pj[i]) ←
∏

t∈Tij
Ct, ∀aij . To verify an updated partition U[i], the aggregator sends

to the directory service a witnessWU [i] that the U[i] is the ith row of the Comm(U). Keep in

mind thatWU [i] can easily be computed by aggregating the witnesses (look 4.1.1).

For example, imagine that there is only one aggregator responsible for partition i, and

three trainers. The trainers will send to the directory service C1,C2 and C3 and the director

service will compute Ct = MC.Comm(U) =
∏

i∈[3] CimodN . The aggregator will receive

those commitments from the directory service andwill also receiveW1i,W2i andW3i from the

IPFS nodes, and upon downloading and aggregating the gradient partitions, it also aggregates

the witnesses and computesWU [i] =
∏

j∈[3] WjimodN . Then the aggregator writes the update

to the directory and also sendsWU [i]. The directory service, before writing to the directory the

update for the ith partition, it checks ifMC.V erify(pp, Ct, U [i],WU [i], i) = 1. The security

of the protocol, derives from the row binding property of the Matrix Commitment scheme.
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Figure 4.3: Figure depicting how the directory service offloads reads to the IPFS nodes. In
a nutshell, the directory computes the current state of the directory (1.) and its secure digest
(2.). Then sends the directory to the IPFS nodes (3.) and its digest to all the IPLS nodes (4.).
To make a query, the IPLS node simply asks an IPFS node (5.), receiving an answer with a
witness that the answer is correct (6.)

Figure 4.2 captures the main steps trainers have to follow to write to the directory service.

4.2.2 “Offloading” Queries to the IPFS Nodes

Except from writes that mainly come from the trainers, the directory service also has to

receive and reply to tremendous amounts of queries that mainly originate from aggregators.

“Offloading” the responsibility of replying to queries, from the directory service to the IPFS

Nodes, can significantly benefit the system’s efficiency in total. That is because the workload

of answering queries gets distributed among the IPFS nodes, thus enabling faster response

times. However, “offloading” such a functionality is not a trivial task. For example, if the di-

rectory was simply replicated among the IPFS nodes, then IPFS nodes, based on our security

assumptions, could reply to participant’s queries with invalid answers. Thus, in some way,

IPFS nodes must be “forced” to reply correctly to the queries, or, in other words, give the

IPLS participants the capability of verifying the validity of the answers.

The key concept is to let the directory service compute a constant digest of the entirety of
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Figure 4.4: Figure depicting how the representation of the directory using a Merkle tree with
four aggregators. The digest of the directory is theH1. Whenever the a11 receives the hashes
from an IPFS node, the IPFS node has to additionally send Ha21 and H3. a11, verifies the
validity of the answer by computing H2 = H(H(a11||reply)||Ha21) and checking if H1 =
H(H2||H3).

the directory and communicate that digest to all IPLS participants. Then participants can use

this digest to verify the correctness of the IPFS node’s answer. To simplify the explanation,

assume that the directory service computes such a digest at the beginning of the aggregation

phase. Later, we will show how this can be extended by erasing that assumption. Moreover,

because the vast majority of queries come from aggregators, we will focus on these kinds

of queries. However, queries from trainers can be extended similarly. Last but not least, we

will ignore the modifications been made in 4.2.1, and we will assume that the answers to

the queries are the same as in 3.1.5, although the proposed protocol is “compatible” with the

modifications of 4.2.1, and those two protocols can be combined easily.

To begin with, for each aggregator aij , the directory service maintains a queue Qaij that

contains the IPFS hashes added from the last query of the aggregator. At the beginning of

the aggregation phase, the directory service computes the hash of the concatenation of the ele-

ments of that queue and also the id of the aggregator (e.g.,H(aij||Hash1||Hash2||...||Hashk))

using a secure hash function. Then, the directory service creates a constant-sized digest of

the directory, defined as CD. That can be done 1) by using vector commitments, by assigning

every position, to only one aggregator, or 2) by simply using a Merkle tree [? ] as seen from

4.4. Note that vector commitments can be slower than Merkle trees; though, Merkle trees

have logarithmic-sized witnesses in contrast to the constant-sized witnesses of the vector

commitments. Next, the directory broadcasts to the participants the digest CD, while dis-

tributing the directory to the IPFS nodes. Then the IPFS nodes, upon receiving a query from

an aggregator aij , compute/find the witness Waij , and send the hashes and the witness. To

verify the validity of the reply, the aggregator uses the hashes and the witness it just received
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and also the CD, it computes the v ← H(aij||Hash1||Hash2||...||Hashk) and checks if

V C.V erify(pp, v, CD,Waij) = 1.

We can erase the constrain of restricting aggregators to query the directory only after the

training phase by letting the directory service compute the digest of the current state of the

directory periodically throughout the training phase and publish it to the participants. One

slight modification is that the directory service does not remove any element from the aggre-

gator’s queues. Instead, this responsibility is “transferred” to the IPFS nodes, who maintain

their local queue for an aggregator that queries them. If an IPLS participant makes a query

while holding an out-of-date digest, then the IPFS node replies with the up-to-date condition

of the directory and additionally sends the aggregator the up-to-date digest. As made clear

earlier, the digest is signed by the directory service so that participants would be assured

that the digest is authentic. Algorithms 3 and 4 contain the core logic of the protocol. As we

can see, the directory service does nothing more than simply receiving writes from trainers,

periodically updating the Cd, and sending the updates to the IPFS nodes and also the new

digest to the IPLS nodes. Note that the directory service does not have to send the updates

to every single node but to only a tiny number of them. The efficiency of the distribution

of the directory updates among IPFS nodes is guaranteed by the pub/sub protocol. As it can

be seen in Algorithm 3, each IPFS node maintains two different sets of queues, where each

queue element of the set belongs to an aggregator. The Q set of queues is append only and

is mainly used to compute the new digest of the directory, while the TQ is used the exact

same way as the directory service used its queue in section 3.1.5. As it seems from the al-

gorithmic description, IPFS nodes have to recompute the digest of the directory, and also

compute the witnesses. However this might not be always the case. In fact the directory ser-

vice can pre-compute all the witnesses so that IPFS nodes could open the digest with O(1)

time complexity. In that case however, the directory service has to send much more data.

Also computing the witnesses in some cases might not be very computational expensive, as

it happens with Merkle trees.
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Algorithm 3 Algorithm for the directory service

1: function directory_service(D = {}, A, T )
2: while Tcurr < Taggr do
3: sleep(Tperiod) ▷Wait for Tperiod while receiving writes and updating D
4: Dnew ← D
5: Q← update_queues(Dnew −Dold) ▷ Update the queues by appending the new writes
6: state_vector ← [hash(Qa11

), ..., hash(Qakp
)]

7: Cd, aux← V C.Commit(pp, state_vector) ▷ Compute the digest of the new state
8: pub(IPFS_Nodes,Dnew −Dold) ▷ Publish the updates to the IPFS nodes
9: pub(IPLS_Nodes, Cd) ▷ Publish the new digest to the IPLS nodes
10: Dold ← D
11: end while
12: end function
13:
14:
15: function ipfs_node
16: while True do
17: msg ← recv()
18: if msg.tag == query then ▷ In case the message is query
19: aij ← msg.sender ▷ Get the id of the aggregator
20: Wi ← V C.open(pp, aux, state_vector, aij) ▷ Compute the witness
21: send(aij , [Cd, seq,Wi, TQaij ]) ▷ Send the new hashes if any with the witness
22: TQaij = []
23: end if
24: if msg.tag == ds_update then ▷ In case the message comes from the DS
25: seq ← msg.seq
26: D = D ∪msg.D′ ▷ Update the Directory
27: Q← update_queues(D) ▷ Update the queues
28: TQ← append_updates(D′)
29: state_vector ← [hash(Qa11

), ..., hash(Qakp
)]

30: Cd, aux = V C.Commit(pp, state_vector) ▷ Compute the digest
31: end if
32: end while
33: end function

Algorithm 4 Algorithms for one FL training iteration

1: function read(IPFS_Node, data, seq, aij , recv_hashes)
2: send(IPFS_Node, [aij)
3: msg ← recv(IPFS_Node)
4: if msg.seq < seq then ▷ In case the sequence number returned by the IPFS node is smaller then abort

and find a new IPFS node
5: abort
6: else
7: recv_hashes.append(msg.hashes)
8: v ← Hash(recv_hashes)
9: if V C.V erify(pp, v,msg.Ct,msg.Waij ) = 1 then
10: returnmsg.hashes ▷ If the verify is successful return the hashes
11: else
12: abort ▷ Else abort and find another IPFS node
13: end if
14: end if
15: end function
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Figure 4.5: Time needed to compute and open all witnesses vs. number of partitions, in log-
arithmic scale

4.3 Experimental Evaluation

To conduct the experiments andmeasure the performance of the cryptographic algorithms

been used, we used a Dell-Inspiron laptop, with Intel® Core™ i7-7700HQ CPU@ 2.80GHz

× 8 and 16GB RAM. Specifically, we conducted experiments measuring the performance of

the vector commitment scheme based on RSA assumption with different number of partitions

but also with variable partition sizes and also the time needed for the directory service or IPFS

nodes to compute the constant digest of the directory and precompute all the witnesses. In

addition, we measured the performance of the proposed matrix commitment scheme in both

single threaded and multi-threaded environment.

4.3.1 RSA Based Vector Commitment Efficiency

In this experiment, we measure the performance of the RSA Based Vector commitment,

whenever it is used by the trainers to commit to the IPFS hashes of each gradient partition.

Specifically, we measure the time it takes for a trainer to compute the commitment of the

vector of IPFS hashes, and also precompute all the witnesses, with variable number of model

partitions. As it is obvious, the smaller the number of partitions the faster the compute times.

However, even for a relatively large number of partitions (e.g 2048), we can see that the

overhead of computing the vector commitment and the witness of each element is very low,

roughly one second only as we can confirm by looking at 4.5. Note that this overhead could

be easily minimized by computing only the commitment and not the witnesses. In that case

however, IPFS nodes would have to compute the witness for every single query, which in

some cases could be an overkill.
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Number of aggregators RSA Vector Commitment Witness size Merkle tree Witness size

2048 128 bytes 352 bytes
4096 128 bytes 384 bytes
8192 128 bytes 416 bytes
16384 128 bytes 448 bytes

Table 4.1: Witness size of RSA based vector commitment scheme and Merkle tree, on dif-
ferent number of aggregators.

4.3.2 RSA Vector Commitments Vs Merkle Trees

In section 4.2.2, we mentioned that the directory service can express the entirety of the

directory, by using a vector commitment scheme or simply a Merkle Tree. In this experiment,

we measured the time needed to compute the digest of the directory, the exact same way as

it has been described in 4.2.2, with variable number of aggregators. Also whenever as in the

previous example, the committing the directory using a vector commitment scheme, means

that the directory not only computes the commitment but also the the witnesses. From the

Figure 4.6, it becomes apparent that Merkle trees, completely outperform the RSA based

vector commitment scheme.

Even for large number of aggregators, computing the digest of the directory using merkle

trees is far less than one second, in fact 380 ms, comparing to a Vector commitment tree,

which is always more than 1 second even with small number of aggregators. It is crucial for

the performance of the system, the computation time of the directory to be small, because

rate which the directory service publishes the new “version” of the directory, depends on that

time. For example, if we had 16384 aggregators, and the directory used a VC scheme, then

the directory service can publish a new version of the directory at least every 20 seconds. On

the other hand however, the witnesses of the VC scheme are constant regardless the number

of aggregator, where in contrast the size of the witness in the Merkle tree is logarithmic but

in any case fairly small as table 4.3.2 suggests. Overall, we can conclude that Merkle trees

for directory representation should be preferred over RSA based vector commitments mainly

for efficiency purposes.
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Figure 4.6: Time needed to compute and open all witnesses using a VC scheme and a Merkle
Tree vs. number of aggregators, in logarithmic scale

4.3.3 On the efficiency of Matrix Commitments

In this subsection, we measured the performance of our proposed Matrix Commitment

construction. Inmore detail, we explicitly focus onmeasuring 1) the computation time needed

to calculate the matrix commitment digest, 2) the time needed for computing the witness for

each row of the matrix. We used a model of approximately one million parameters 3, and we

segmented it in different number of partitions (i.e different number of rows). Specifically we

segmented the model into (m= ) 128,256 and 512 partitions (rows), each one of with (n= )

8192,4048 and 2024 parameters respectively. In addition, we used multiple threads in order

parallelize both the commitment computation but also the witnesses extraction, consequently

reducing runtime costs as it will become obvious later.

First things first, it is clear that the time needed to compute the digest of the Matrix with

|M | elements, is the same regardless how the matrix is organized (e.g number of rows and

columns). What changes is the time needed to compute all the witnesses on different number

of rows. As it can be seen in Figures 4.7, with the increasing number of rows, the overhead

in computing all the witnesses, becomes a significant bottleneck. This is mainly due to the

O(m2logm) time complexity, making the scheme seemingly impractical for a large number

of rows. Further research should be conducted so that the time complexity will be minimized

fromO(m2logm) toO(mlogm). Quantitatively, the time it takes to compute the matrix com-

mitment for an 8MB model, is roughly 30 seconds. Note that this time is linear to the size of

the model, so, for a 16MB model, it would take 60 seconds. To compute all the witnesses,

for 128 rows, the time it takes is only 3 seconds, while for 256 and 512 rows is 14 seconds

and 67 seconds respectively.

31,048,576 parameters to be specific, which is a model of size roughly 8MB
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To mitigate the severe computational overhead, we parallelize the algorithms introduced

in 5, by simply utilizing the pthreads C library 4. To parallelize the computation of the digest,

we simply segmented the model into equal length chunks, the same number as threads in

the system. Each thread computes in parallel the commitment of the chunk that it has. When

all partial commitments computed from the thread then the main thread simply multiplies

them to compute the final digest. To parallelize the witness extraction algorithm, each thread

performed the “root-factor” algorithm for a selected row commitment Ci. When a thread

completes the computation of the “root-factor” for the Ci, it selects another C ′
i until other

commitment of a row is left. In our experiments, we computed the digest and the witnesses

using 1,2 and 4 threads. As it becomes obvious from the figures 4.7, when we use 2 threads,

the computations time is reduced by half, and when we use 4 threads the computations time

is almost 1/4 the computations time when using only one thread.

4https://man7.org/linux/man-pages/man7/pthreads.7.html
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Figure 4.7: Aggregation (top) and uploading (bottom) delays with variable number of
providers.





Chapter 5

Conclusion

In this work, we managed to introduce a practical and scalable decentralized and p2p

federated learning system.We achieved that by relaxing the communication requirements and

letting peers communicate indirectly over a decentralized storage network. In addition, we

made IPLS byzantine aggregator robust. In contrast to the blockchain-based solutions, where

redundancy in the aggregation is a strict requirement so that the aggregation will be robust,

we overcome this problem by using homomorphic commitments. Using such cryptographic

tools makes the aggregation step not only faster and scalable but also much more efficient in

terms of energy and resource consumption. Although IPLS is much more practical than its

counterparts, there is plenty of space for improvement, and many things can be done.

To begin with, it is critical to use much more efficient cryptographic schemes and search

for an asymptotically faster matrix commitment scheme. In addition, although the directory

service can be deployed as a single trusted entity for some applications, this is not true for

other essential applications. As a result, a distributed directory service must be developed,

which will have roughly the same efficiency as a centralized directory service.Moreover, data

availability is not guaranteed by IPFS on its own, as mentioned earlier, and experimenting

with different protocols that make availability of data achievable, is crucial. Last but not least,

it is important to explore ways to deal with malicious trainers.
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Appendix A

Cryptographic proofs

In this appendix chapter, we give the formal proofs of vector binding and position binding

of the Pedersen commitments and vector commitments respectively.

A.1 Cryptographic Assumptions

A.1.1 RSA Assumption

Let N ← Gen(1k), be a probabilistic polynomial time algorithm that returns a number

N, which is a product of at least two primes of size at least k each. The RSA assumption,

states that given a number e relatively prime to ϕ(N) and a random y ∈ Z∗
N , it is “hard” to

find x s.t xe = y modN . Formally, it is believed that for any probabilistic polynomial time

adversary A, that :

Pr


N ← Gen(1k);

e, y ← Z∗
N ;

x← A(N, e, y)

 ≤ negl(k) (A.1)

A.1.2 Discrete Logarithm Assumption

Let (G, g, p) ← Gen(1k), be a probabilistic polynomial time algorithm that returns de-

scription of the group G, a generator g of the group G, and its order p which is a prime

number. The discrete logarithm assumption, states that for any probabilistic polynomial time

adversary A, given (G, g, p) and a group element y, it find a number a ∈ Zp s.t y = ga only

with negligible probability in k. Formally:
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Pr


(G, g, p)← Gen(1k);

ga ← G;

a← A(G, g, ga, p)

 ≤ negl(k) (A.2)

A.2 Vector Binding Proof

As equation 1 states, it should be “infeasible” for all probabilistic polynomial time (e.g.,

PPT) adversaries A, to find two different vectors, that their commit results to the same Peder-

sen commitments. To prove this statement, we can create a new adversary B. That adversary

receives from an challenger the parameters of a discrete log problem. Those parameters are

the prime order group G, a generator of the group g, and also an element of the group h. Note

than in reality it is considered hard to find x, s.t gx = h. In other words it holds that

Pr[DLog] = Pr[x← B(G, g, h); gx = h] ≤ negl(k).

For contradiction, imagine that an PPT adversary A exists, who wins the vector binding

challenge with non-negligible probability. This means that

Pr[W ] = Pr[v, v′ ← A(pp);Commit(pp, v) = Commit(pp, v′) ∧ v ̸= v′] > 1/p(k),

where p(·) is a polynomial function. We will show how to construct an PPT adversary B,

who “uses” the adversary A, so that B can win the discrete log challenge with non-negligible

probability. This is done by the following simple steps:

1. B receives from the challenger the (G, g, h).

2. B creates the public parameters of the Pedersen Commitment scheme. It selects the

number of elements n, choose randomly i ∈ [n], and then choose randomly n-1 ele-

ments r1, ..., ri−1, ri+1, ..., rn. Then set pp = {gr1 , ..., gri−1 , h, gri+1 , ..., grn}. It is im-

portant to mention that pp, must have the same distribution as if it would have been

computed by simply calling Gen(·). Observe that this is true because h is randomly

uniform.

3. B uses A by giving him the public parameters that it computed. Upon calling A(pp),

it takes two vectors v and v’. First it checks if Commit(pp,v) = Commit(pp,v’). If the
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equation does not hold then abort. Otherwise check if vi ̸= v′i.

4. The last equation holds with probability at least 1/n. Then B computes hvi−v′i =

g
∑

k∈[n]−i rk(v
′
k−vk). By doing that it can find x = (vi−v′i)

−1
∑

k∈[n]−i rk(v
′
k − vk), which

is returned to the challenger.

Note, that the pp, can be computed in polynomial time, A(pp) runs in polynomial time

and also (vi − v′i)
−1 can be efficiently computed in polynomial time. As a result B runs

in polynomial time. It is straightforward that the probability that B succeeds is Pr[DLog] ≥

Pr[W ]/n. However we now thatPr[DLog] is negligible and as we assumed earlierPr[W ]/n

is non-negligible, thus reaching a contradiction. As a result for any PPT adversary, Pr[W ] ≤

negl(k).

A.3 Position Binding Proof

As equation 2 states, it should be “infeasible” for all PPT adversaries A, to compute two

different values that open to the same position of the same vector commitment. For this proof

we consider an PPT adversary B, that wants to solve the RSA challenge with non-negligible

probability. Specifically, B receives from an RSA challenger the challenge which is the tuple

(N, z, e). Note that B has to find y, s.t ye = z, with non-negligible probability.

For contradiction, imagine that a PPT adversary A exists that wins the position binding

challenge with non-negligible probability. This means that Pr[W ] = Pr[vi, v
′
i,Wi,W

′
i , C ←

A(pp);V C.V erify(pp, vi,Wi, C, i) = V C.V erify(pp, v′i,W
′
i , C, i) = 1 ∧ vi ̸= v′i] >

1/p(k), where p(·) is a polynomial. We will show how B can use A so that to win the RSA

challenge thus reaching in contradiction. Specifically, B executes the following algorithm:

1. B receives from the challenger the (N, z, e).

2. B selects n and computes pp ← G(1k, n). Then it selects k ∈ [n] and sets ek = e.

Moreover it sets g = z. As a result Si = z
∏

k∈[n]−i ek ∀i ∈ [n].

3. B runs the adversaryA, by giving him the public parameters. It then takes vi, v′i,Wi,W
′
i , i, C

and checks if k = i, vi ̸= v′i andV C.V erify(pp, vi,Wi, C, i) = V C.V erify(pp, v′i,W
′
i , C, i) =

1. If this is not true then B aborts.
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4. Otherwise, it knows that Svi
i W ei

i = S
v′i
i W ei

i , which can be written as (W ′
i/Wi)

ei =

S
vi−v′i
i = z(vi−v′i)

∏
k∈[n]−i ek . Note that gcd((vi − v′i)

∏
k∈[n]−i ek,ei) = 1. Thus applying

schamir’s trick B gets z = zαei(W ′
i/Wi)

βei = (zα(W ′
i/Wi)

β)ei . Note that ifWi = W ′
i ,

then we can factor with non-negligible probability.

5. B returns to the RSA challenger y = zα(W ′
i/Wi)

β .

It is not hard to see that B runs on polynomial time. The probability that B succeeds is

Pr[W ]/n which is non-negligible, which contradicts the RSA assumption. As a result for

every PPT adversary A, Pr[W ] ≤ negl(k).
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Running IPLS

To run multiple IPLS nodes and experiment with the IPLS middleware on your com-

puter, you must install the IPFS. Instructions on downloading IPFS are given in https:

//docs.ipfs.io/install/ipfs-desktop/#ubuntu. Next, you must set up as

many IPFS daemons as many IPLS participants and IPFS storage nodes you want to have

in our system. For example, if you want to run an experiment with 10 IPLS participants (in-

cluding the IPLS bootstrapper/Directory service) and 5 IPFS storage nodes, then you need

to set up 15 IPFS daemons. You can set up several IPFS nodes locally by following the

guidelines of https://stackoverflow.com/questions/40180171/how-to-

run-several-ipfs-nodes-on-a-single-machine. Then, youmust set up a pri-

vate IPFS network and add all nodes just created in that private network. Follow the guidelines

ofhttps://medium.com/@s_van_laar/deploy-a-private-ipfs-network-

on-ubuntu-in-5-steps-5aad95f7261b. When IPFS nodes setup is finished, then

start running them by typing “ipfs daemon –enable-pubsub-experiment” in your terminal. To

download IPLS, youmust visit thehttps://github.com/ChristodoulosPappas/

IPLS-Java-API and import the project into your IDE. Note that the easiest way to run the

IPLS middleware is by using your IDE, but you can also convert the middleware into a .jar

program. Moreover, you should download the IPLS python API from https://github.

com/ChristodoulosPappas/IPLS-python-API.

To conduct various experiments with IPLS, first, you have to start the IPLS middleware.

That is done by running the Middleware.java, which takes seven parameters. Those parame-

ters are:

• The port number (-p), the IPLS middleware listens and receives tasks from the appli-
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cation.

• The number of partitions (-pa) the model will get segmented. Note that all IPLS par-

ticipants must segment the model in the same number of partitions.

• The minimum number of partitions (-mp) a peer should be responsible for. If a peer is

not responsible for any partition (e.g, trainers) then -mp = 0.

• The number of IPLS participants (-n) must enter the project before it begins. For exam-

ple, if -n=3, the Directory service (or IPLS bootstrapper) waits until 3 IPLS participants

enter the project.

• Indicator of indirect communication (-i). If -i=0, then all IPLS participants must com-

municate directly. Else if -i=1, all IPLS participants must communicate indirectly using

the decentralized storage network.

• The training time (-training). This is the time IPLS trainers have in order to finish their

training. For example, if -training=10, then IPLS trainers have 10 seconds to train the

model and upload their gradients.

• Indicator if merge and download is used (-aggr). If -aggr=0, then aggregators do not

use merge and download. Until now, merge and download is an experimental feature;

thus, it is highly recommended not to be used.

For example, “-p 12000 -pa 3 -mp 0 -n 3 -i 1 -training 10 -aggr 0” is valid example of param-

eters assignment. The example indicates that an IPLS middleware listens to the port 12000,

segments the model in 3 partitions, is responsible for no partition, communicates indirectly as

any other IPLS participant, has to train its model in 10 seconds, and merge and download is

not used. To start an IPFS node, someone simply needs to start theDecentralized_Storage.java

class, with program parameter the IPFS address API of the IPFS daemon that is going to be-

come the IPFS storage node (e.g, “/ip4/127.0.0.1/tcp/5006” or “/ip4/127.0.0.1/tcp/5001”).

Using the IPLS python API, someone can create their own IPLS application. The API

consists simply of the following two methods:

• init(api_ipfs_address,model_file,bootstrappers,model_size,model,is_bootstrapper).

This function is used to initialize the IPLS middleware and ask it to join the IPLS

project. This method is given as input the IPFS address API of the IPFS daemon, which
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the IPLS middleware will communicate, the model_file where the initial model pa-

rameters are stored, and the list of the IPLS bootstrappers (commonly, there is only

one bootstrapper). In addition, it also takes as input the size of the model, the model

(commonly the compiled Keras or TensorFlow model), and a flag whether the IPLS

middleware will act as a bootstrapper or not.

• fit(model,X,Y,batch_size,iter). This method takes as input the Keras model, the local

data of the node X, the corresponding labels Y, the batch size, and the number of it-

erations the IPLS participant will run. This method should be seen as the fit() method

Keras or TensorFlow have. The difference is that inside IPLS fit, the actual IPLS API

is used to train the model in a Federated learning fashion.

Note that the API is a class, so a constructor is needed. The object’s constructor takes only

one input: the port the IPLS middleware is listening to. An example of how to write an IPLS

application is given in ipls_example.py.

To run IPLS locally, first of all, someone has to start all the IPFS daemons, then start

the IPLS middlewares and the IPFS storage nodes. Each middleware and IPFS storage node

must be assigned to only one IPFS daemon. This assignment is done by using the IPFS API

addresses. Then first run the IPLS application for the bootstrapper and afterward run all the

other IPLS applications. For example, if someone wants to run the ipls_example.py, with 3

IPLS participants, one bootstrapper, and 2 IPFS storage nodes, he should start 6 IPFS dae-

mons. Then start 4 IPLS middlewares with the following parameters:

• -p 12000 -pa 3 -mp 0 -n 3 -i 1 -training 10 -aggr 0

• -p 12001 -pa 3 -mp 1 -n 3 -i 1 -training 10 -aggr 0

• -p 12002 -pa 3 -mp 1 -n 3 -i 1 -training 10 -aggr 0

• -p 12003 -pa 3 -mp 1 -n 3 -i 1 -training 10 -aggr 0

Then start 2 IPFS storage nodes (e.g., start 2 different Decentralized_Storage processes

with parameters ip4/127.0.0.1/tcp/5005 and ip4/127.0.0.1/tcp/5006). Finally run the IPLS

application by executing:

1. python3 ipls_example.py 0 4 /ip4/127.0.0.1/tcp/5001 1 My_IPFS_ID

2. python3 ipls_example.py 1 4 /ip4/127.0.0.1/tcp/5002 0 Bootstrapper_ID
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3. python3 ipls_example.py 2 4 /ip4/127.0.0.1/tcp/5003 0 Bootstrapper_ID

4. python3 ipls_example.py 3 4 /ip4/127.0.0.1/tcp/5004 0 Bootstrapper_ID

Where Bootstrapper_ID is the IPFS id of the bootstrapper (e.g, 12D3KooWCyJZJphf9 z1Dbd2sJ

KYc11PVV2RBVA9HQjNz26oMANgR).
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