
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FEDERATED DEEP LEARNING FOR SENTIMENT

ANALYSIS

Diploma Thesis

Nikolaos Karageorgos

Supervisor: Dimitrios Katsaros

Volos 2022

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FEDERATED DEEP LEARNING FOR SENTIMENT

ANALYSIS

Diploma Thesis

Nikolaos Karageorgos

Supervisor: Dimitrios Katsaros

Volos 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΟΜΟΣΠΟΝΔΗ ΒΑΘΙΑ ΜΑΘΗΣΗ ΓΙΑ ΑΝΑΛΥΣΗ

ΣΥΝΑΙΣΘΗΜΑΤΩΝ

Διπλωματική Εργασία

Νικόλαος Καραγεώργος

Επιβλέπων: Δημήτριος Κατσαρός

Βόλος 2022

v

Approved by the Examination Committee:

Supervisor Dimitrios Katsaros

Αssociate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member Dimitrios Rafailidis

Αssociate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member Georgios Thanos

Laboratory Teaching Staff, Department of Electrical and Computer

Engineering, University of Thessaly

vii

Acknowledgements

I would like to thank my supervisor, Associate Professor Dimitrios Katsaros, for his con-

stant guidance and valuable advice throughout this Thesis. I would also like to thank my

friends and family for their support throughout my studies.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Nikolaos Karageorgos

xi

xii Abstract

Diploma Thesis

FEDERATED DEEP LEARNING FOR SENTIMENT ANALYSIS

Nikolaos Karageorgos

Abstract

Nowadays social networks are on the rise, so a big volume of data is produced. The sen-

timent analysis of this data has become a powerful means of learning about users’ opinions

and has a wide range of applications. However, in order to build an efficient model for that

purpose, a large amount of data is needed and corporations are not always willing to share

their data due to user privacy issues. Federated learning resolves this problem by enabling

multiple client devices to collaboratively train a machine learning model while keeping their

data private locally. In this Thesis, we simulate a decentralized environment where textual

reviews of 3 different sources (IMDB, Amazon, Yelp) are stored in different nodes and col-

laboratively learn a sentiment classification model. For this purpose, we utilize the Federated

Averaging algorithm which is a client-server federated learning approach where a central

server aggregates the client model updates in order to construct the global model of the sys-

tem. Three different deep learning models were utilized to test our approach: a Multilayer

Perceptron with a global average pooling layer, a Bidirectional LSTM and a pretrained word

emdedding model. The last model outperformed the two other ones in most cases but not

with significant differences. The results of our experiments were quite satisfactory despite

the data heterogeneity and convincing that such approaches could work in real world scenar-

ios especially when there are enough data to reinforce the efficiency of the model so that it

can overcome possible barriers and limitations.

Περίληψη xiii

Διπλωματική Εργασία

ΟΜΟΣΠΟΝΔΗ ΒΑΘΙΑ ΜΑΘΗΣΗ ΓΙΑ ΑΝΑΛΥΣΗ

ΣΥΝΑΙΣΘΗΜΑΤΩΝ

Νικόλαος Καραγεώργος

Περίληψη

Στη σημερινή εποχή όπου τα δίκτυα κοινωνικής δικτύωσης βρίσκονται σε μεγάλη άνθηση,

ένας τέραστιος όγκος δεδόμένων δημιουργείται. Η ανάλυση των συναισθημάτων αυτών των

δεδομένων έχει γίνει ένα ισχυρό μέσο για την εξόρυξη πληροφορίων σε σχέση με την γνώμη

των χρηστών και έχει αποκτήσει ένα ευρύ πλήθος εφαρμογών. Ωστόσο, για να δημιουργηθεί

ένα αποτελεσματικό μόντελο για αυτό το σκοπό χρείαζεται ένα μεγάλο ποσοστό δεδομέ-

νων και οι εταιρείες δεν είναι πάντα διατεθειμένες να μοιραστούν τα δεδομένα τους για λό-

γους ιδιωτικότητας των χρηστών. Η Oμόσπονδη Mάθηση (Federated Learning) λύνει αυτό

το πρόβλημα καθώς επιτρέπει σε πολλαπλούς πελάτες να εκπαιδεύσουν συνεργατικά ενα

μοντέλο μηχανικής μάθησης κρατώντας τα δεδομένα τους ιδιωτικά τοπικά. Σε αυτή την ερ-

γασία προσομοιώνουμε ένα απογκεντρωμένο περιβάλλον όπου κριτικές από 3 διαφορετικές

πηγές (IMDB, Amazon, Yelp) αποθηκεύονται σε διαφορετικούς κόμβους και συνεργατικά

δημιουργούν ένα μοντέλο για την κατηγοριοποίηση των συναισθημάτων αυτών των κριτι-

κών. Για αυτό το σκοπό, χρησιμοποιείται ο αλγόριθμος Federated Averaging ο οποίος είναι

μια client-server προσέγγιση ομόσπονδης μάθησης όπου ένας κεντρικός server συλλέγει τις

ενημερώσεις των τοπικών μοντέλων απο τους πέλατες (clients) για να δημιουργήσει το ενιαίο

μοντέλο του συστήματος. Τρία διαφορετικά μοντέλα βαθιάς μάθησης χρησιμοπoιούνται για

ελέγξουμε την προσέγγιση μας: ένα Multilayer Perceptron με ένα global average pooling

layer, ένα bidirectional LSTM και ένα μοντέλο με προεκπαιδευμένο embedding layer. Τo

τελευταίο μοντέλο ξεπέρνα σε επίδοση τα υπολοιπά δύο αλλά όχι με μεγάλη διαφορά. Τα

αποτελέσματα των δοκιμών μας ήταν αρκετά ικανοποιητικά παρά την ετερογένεια των δεδο-

μένων και πειστικά πως τέτοιες προσεγγίσεις θα μπορούσαν να δουλέψουν σε περιπτώσεις

πραγραματικού κόσμου, ειδικά όταν υπάρχουν πολλά δεδομένα διαθέσιμα για ενισχύσουν

την αποτελεσματικότητα του μοντέλου ώστε να μπορέσει να ξεπεράσει πιθανά εμπόδια και

περιορισμούς.

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xvii

List of tables xix

Abbreviations xxi

1 Introduction 1

1.1 Thesis Subject . 1

1.2 Thesis Structure . 2

2 Background 5

2.1 Sentiment Analysis . 5

2.2 Deep Learning . 6

2.2.1 Neural Networks . 8

2.2.2 Recurrent Neural Networks . 15

2.2.3 Transfer Learning . 16

2.3 Federated Learning . 17

2.4 TensorFlow . 20

2.4.1 TensorFlow Federated . 20

xv

xvi Table of contents

3 Methodology 21

3.1 Related Work . 21

3.2 Data Compilation . 22

3.3 Data Preprocessing . 23

3.4 Neural network architectures for sentiment analysis 24

3.4.1 Multilayer Perceptron . 24

3.4.2 Bidirectional Long-Short-Term-Memory (LSTM) 25

3.4.3 Pre-trained word embedding model 27

3.5 Federated Learning Process . 28

3.5.1 Federated Averaging algorithm . 29

4 Experiments & Results 31

4.1 Experimental set-up . 31

4.2 Evaluation Metrics . 32

4.3 Results . 34

4.3.1 Overview . 34

4.3.2 3 clients case . 34

4.3.3 6 clients case . 36

4.3.4 9 clients case . 38

5 Conclusions 41

5.1 Summary & Conclusion . 41

5.2 Future work . 42

Bibliography 43

List of figures

2.1 ML and DL as subsets of AI . 6

2.2 Representation learning schemas . 8

2.3 Architecture of ANNs . 9

2.4 Linear activation functions . 11

2.5 Non-Linear activation functions . 12

2.6 Neural networks before and after applying dropout 14

2.7 Unrolled RNN. 15

2.8 LSTM gates architecture. 16

2.9 A client-server federated learning architecture example. 18

2.10 A peer-to-peer federated learning architecture example. 19

3.1 Bidirectional LSTM model diagram . 26

3.2 Federated learning general process in our setup 28

4.1 Illustration of the primary experiment of 3 clients 32

4.2 Confusion matrix for a binary classification problem 33

4.3 Accuracy on evaluation data for the first experiment of 3 clients 35

4.4 Accuracy on evaluation data for the experiment of 6 clients 37

4.5 Accuracy on evaluation data for the experiment of 9 clients 38

xvii

List of tables

3.1 MLP architecture summary . 24

3.2 Bidirectional LSTM architecture summary 25

3.3 Pre-trained word embedding model architecture summary 27

4.1 The number of reviews utilized in ours experiments from the 3 datasets . . 31

4.2 Results for the first experiment of 3 clients case 35

4.3 Results for the second and third experiment of 3 clients case 36

4.4 Results for the 6 clients case . 37

4.5 Results for the 9 clients case . 38

xix

Abbreviations

e.g. exempli gratia

etc. et cetera

NLP Natural Language Processing

AI Artificial Intelligence

ANN Artificial Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

ML Machine Learning

DL Deep Learning

FL Federated Learning

TFF TensorFlow Federated

xxi

Chapter 1

Introduction

1.1 Thesis Subject

Sentiment analysis is a process for determining a person’s opinion, attitude, or feeling

about a given issue. Text analytics and natural language processing are used in sentiment

analysis to detect and extract subjective information from sources. Interest in sentiment anal-

ysis has grown as a result of the emergence of social networks where users are allowed to

exchange opinions and share their thoughts about any topic. They may, for example, voice

their dissatisfaction about a product they acquired, discuss current events, or express their

opinions about politics. Business people usually rely on ratings, reviews recommendations

and other kinds of online opinion in order to spot potential opportunities and maintain their

reputations [1]. Furthermore, governments value public opinion analysis because it explains

human behavior and how people are influnced by others’ views. In addition, the inference of

user sentiment can be highly beneficial in the area of recommender systems to compensate

for the lack of clear user feedback on a delivered service. All the above emphasize the impor-

tance of an efficient model for sentiment classification and explains why AI researchers have

focused their interest on this domain. However, in order to build a robust machine learning

model a big amount of data is required.

In the big data era, more and more attention is payed to user’s privacy and data protection.

Data security has become a priority for both enterprises and individuals. Furthermore, in re-

cent years, data leaking has piqued the interest of governments and the public media. Internet

companiesmust not tamper or divulgewith the personal data they receive from users, and they

must verify that both the Internet company and the third party comply with user data protec-

1

2 Chapter 1. Introduction

tion standards while performing data transactions with third parties [2].As data privacy laws

in many countries become stricter, large-scale user sensitive information exchanges between

different organizations will no longer be permitted in the future. On the one hand, the adop-

tion of these laws and regulations safeguards users’ privacy, while on the other, it prevents

large data from being mined arbitrarily, limiting the development of artificial intelligence.

The above problem is addressed by federated learningwhich is amachine learningmethod

in which the training data is kept private and never leaves the client device In contrast to

standard Machine Learning (ML), where all data is shared centrally, FL uses only locally

computed updates that are communicated to the server by each device. The server integrates

these updates into a final global model. This method is praised for its ability to maintain pri-

vacy. When dealing with the real-world issues of heterogeneous data and devices, it relies on

distributed machine learning principles but goes beyond them in terms of privacy and per-

formance. There are a number of reasons why FL is gaining popularity among consumers

and enterprises. One factor is that this technique has the potential to reduce data privacy con-

cerns. The widespread availability of modern computing machines is a second cause (e.g.

mobile phones, tablets). A third reason is the advancements in Deep Learning, which are

now available to data-sensitive sectors thanks to FL [3].

In this Thesis, we store in different nodes of a decentralized environment textual reviews

of 3 different sources (IMDB, Amazon, Yelp) which could simulate 3 enterprises who want

to build collaboratively a sentiment classification model without exchanging their data.For

this purpose, we utilize the Federated Averaging algorithm which is a client-server federated

learning approach where a central server averages the client model updates in order to build

the global model. Three different deep learning models were utilized to test our approach:

a Multilayer Perceptron with a global average pooling layer, a Bidirectional LSTM and a

Pretrained word emdedding model.

1.2 Thesis Structure

This Thesis is organized as follows. In Chapter 2 is provided an extended introduction

to Deep Learning and Federated Learning. Chapter 3 discusses several related works, the

dataset compilation and preprocessing.Moreover, in this chapter our proposed neural network

models for sentiment analysis and our chosen federated learning protocol are introduced.

1.2 Thesis Structure 3

Chapter 4 presents our experiments and analyses their results. Finally, Chapter 5 summarizes

our work and proposes some directions for future work.

Chapter 2

Background

2.1 Sentiment Analysis

Sentiment analysis, also called as opinion mining, is the systematic identification, ex-

traction, quantification and study of emotional states and subjective information using text

analysis, natural language processing (NLP), computational linguistics and biometrics. Sen-

timent analysis is frequently used in customer service, marketing and healthcare to examine

the voice of the customer items such as survey replies, reviews, social media and healthcare

resources [4].

A common task in sentiment analysis, which we will be examining in this thesis, is the

process of categorizing a text’s polarity at the document, phrase, or feature/aspect level -

whether it expresses a favorable, unfavorable, or neutral view. Advanced ”beyond polarity”

sentiment classification examines emotional states such as satisfaction, rage, sadness, worry,

disgust and surprise.

The popularity of social media platforms such as blogs and social networking sites has

increased interest in sentiment analysis. Online opinion has become a kind of virtual cur-

rency for firms wanting to advertise their products, uncover new prospects, and manage their

reputations as a result of the increase of recommendations, reviews, ratings and other forms

of online materials. Many enterprises have began to utilize sentiment analysis to in order

to automate the task of separating out noise, comprehending discussions, selecting relevant

content, and acting on it [5].

Statistical methods, knowledge-based strategies, and hybrid approaches are the three pri-

mary categories of sentiment analysis approaches. Knowledge-based strategies use unam-

5

6 Chapter 2. Background

biguous affect words like happy, sad, fearful, and bored to classify text into affect categories.

Some knowledge sources not only list apparent affect terms, but also assign random words to

emotions based on their ”affinity”. Statistical methodologies involve machine learning tech-

niques such as semantic space models or word embedding models, latent semantic analysis,

support vector machines and deep learning methods which we use in this thesis.

2.2 Deep Learning

Deep Learning (DL) is a subtype of Machine Learning (ML) which is a subtype of Artifi-

cial Intelligence (AI) Figure 2.1. AI is a field of Computer Science which examines the ability

of machines to learn and perform tasks by simulating cognitive skills that are associated with

the human brain. In such manner, computers are able to do jobs that are normally in need of

human intelligence [6] AI employs both Machine Learning and Deep Learning methods to

accomplish its goals.

Figure 2.1: ML and DL as subsets of AI

Machine Learning is a field of study dedicated to understanding and developing ’learn-

ing’ processes which construct models utilizing training data in order to make predictions or

conclusions without being expressly coded to do so. In some ways, the distinction between

Deep Learning and Machine Learning is hazy. Deep Learning is a subset of a larger fam-

ily of machine learning techniques based on artificial neural networks. These methods are

2.2 Deep Learning 7

much more complex than normal ML approaches, as the term ”deep” refers to the depth of

network’s layers, and often require massive amounts of data.

Deep learning utilizes representation learning which can be:

• Supervised

Supervised learning utilizes matched inputs and desired outcomes (labeled data). For

every input, the learning task is to deliver the expected output. The mean-squared error

is a common cost aimed at lowering the average squared error between the inputs and

the targets of the model. Suitable tasks for supervised learning include classification

and regression. This is similar to learning with a ”teacher” in the manner of a function

that gives feedback frequently about the performance of the solutions obtained so far.

The problemwe address in this thesis utilizes supervised learning as it is a classification

task and the data is labelled; reviews of various contexts that have a positive or negative

sentiment.

• Unsupervised

The term ”unsupervised’ means acting without guidance or supervision and this refers

to the lack of labeled data. In unsupervised learning untagged data get analyzed in order

to extract patterns based on similarities or distinctions between them and in this ways

they are clustered into groups. Input data is provided with a cost function, some func-

tion based on the data and the network’s outcomes. The cost function is determined by

the problem (model domain) and any assumptions made in advance (properties, param-

eters and variables of the model). Clustering, filtering, compression and the estimate

of statistical are all examples of unsupervised learning tasks.

• Reinforcement

Reinforcement learning is interested in how intelligent beings should conduct in a given

environment to optimize the concept of cumulative reward. Such algorithms are cen-

tred on encouraging desired moves and penalizing unwanted behaviors. A reinforce-

ment learning agent acts and learns through experimentation (trial and error); e.g. an

algorithm can taught by continually playing a game until it reaches the game’s highest

marks. This type of learning is utilized in many areas such as information theory, game

theory, multi-agent systems and simulation-based optimization

8 Chapter 2. Background

Figure 2.2: Representation learning schemas

2.2.1 Neural Networks

The terminology Deep Learning is strongly connected to Artificial Neural Networks

(ANNs). ANNs were firstly introduced in the 1940s by Walter Pitts and Warren McCulloch

who suggested computing models that simulated biological neural networks [7].The initial

goal of the neural network technique was to develop a computing system that could address

problems in the same way as a human mind could. However, as time went on, researchers

began to focus on employing neural networks to fit certain tasks, deviating from the purely

biological perspective.

Neural networks have since been capable of helping people in real-life scenarios with

complex tasks. They can be trained and learn nonlinear and complex relationships between

inputs and outputs, draw inferences and generalizations, discover hidden links, predictions

and patterns, model data of high volatility and variances to forecast unusual events.As a

follow-up, they have been used to serve a variety of tasks e.g.computer vision, natural lan-

guage processing, speech recognition, social network analysis and medical diagnosis [8]. But

how exactly do ANNs work?

ANNs along with their architecture, as mentioned above, are derived from the human

brain and they simulate how actual human neurons work and interact. Their basic structure

consists of an input layer, one or more hidden layers in between and an output layer as de-

picted in Figure 2.2. In case there are more than one hidden layers in the ANN, it is char-

acterized as a Deep Neural Network [9]. These layers consist of artificial neurons and try to

capture correlations and patterns between the data they have to examine. These neurons, also

2.2.1 Neural Networks 9

Figure 2.3: Architecture of ANNs

called as nodes, are the network’s central processing units. Through the input layer, which

connects to the hidden layers, the data is fed into the neural network. An artificial neuron is a

small unit that is linked to the others and has a weight and a threshold associated with it. In-

put signals are transmitted to the hidden layers and are multiplied by the weights of the links

they pass through. The hidden layers perform some transformations and adjustments using

the activation functions and in such manner they decide how much a signal should continue

propagating into the network so as to impact the final outcome [10] .

The connections between nodes are weights which can take negative or positive values.

This represents how important effect has the input of the previous node on the outcome of the

following node. Updating the weights of a model is the principal technique for the learning

process of a neural network. Features with weights which have values close to zero seem to

have less influence on the prediction task in comparison to features with weights that have

higher values. A neural network is taught when provided with feedback about whether it

made the right adjustments or not. The training can be terminated when predefined criteria

have been met after enough of these modifications. [11].

Activation functions

Activation functions, also called as Transfer functions, are an essential component of

neural network’s structure. They define the neuron’s output. The output of the activation

function is called forward propagation. Activation functions perform arithmetic operations in

10 Chapter 2. Background

order to decide whether a neuron’s output is essential to the network and needs to be activated.

The primary purpose is to turn the cumulative weighted input of the neuron into an output

value that may be forwarded to the next hidden layer or output of the model. The activation

function employed in the output layer determines the type of predictions the network can

make.

Activation functions can be divined into to two main categories which are Linear Acti-

vation Function and Non Linear Activation functions.

• Linear Activation Function

The linear activation function (or else identity function) is the function in which the

activation is proportionate to the input (weighted sum of the nodes). It makes no ad-

justments to the input and just gives the value it was given. It has a standard form with

the following formula: f(x) = ax+b (shown schematically in Figure 2.4). In case this

activation function is used at all nodes, it behaves like linear regression [12].

As a form of the linear activation function is also classified the binary step function

which is given by the formula:

f(x) =

 0 x < 0

1 x ≥ 0
(2.1)

• Non-Linear Activation Functions

The most commonly utilized activation functions are non-linear functions.The primary

element that make them efficient is that they are differentiable and can address the

Vanishing Gradient problem. They make it simple for a neural network model to adjust

to diverse types of data and distinguish between distinct outputs. Some primary non-

linear activation functions are presented below:

- Sigmoid:

The Sigmoid Function curve is shaped like the letter S as it is derived from its name.

They are widely used for networks where probabilities need to be predicted as outputs.

They are suitable for this task as they return values in the range 0 to 1 which is the

same range of the values that probabilities take [13]. The sigmoid function is defined

by the formula:

2.2.1 Neural Networks 11

Figure 2.4: Linear activation functions

f(x) =
1

1 + e−x
(2.2)

It’s a differentiable function with a smooth gradient from which it is observed that

only the gradient values in the range -3 to 3 are meaningful, and the graph becomes

significantly flatter in other regions. This signifies that the function will have very

weak gradients for values less than -3 or more than 3. The network has been taught

well when the gradient value approximates zero.

- Tanh:

The Tanh function, also called as hyperbolic tangent, is quite similar to the sigmoid

activation function, and also has the S-shape with a -1 to 1 output range difference.The

output is closer to 1 as greater is the positive input value; the closer the output to -1.0 as

smaller is the negative input value. It is defined for all real input data and has a positive

derivative at each point. The tanh function is defined by the formula:

f(x) =
ex − e−x

ex + e−x
(2.3)

- ReLU:

12 Chapter 2. Background

ReLU (Rectified Linear Unit) differs mainly from other activation functions because it

does not activates all of the neurons simultaneously. This means that the neurons will

only be muted if the outcome of the linear function is less than 0. It converges consider-

ably faster than the sigmoid and tanh functions because just a little number of neurons

stay active. Therefore,ReLU is the most extensively utilized activation function, espe-

cially for hidden layers [14]. Leaky ReLU and Parameterised ReLU are versions of the

ReLU function that address specific problems that the original function cannot handle

efficiently. The tanh function is defined by the formula:

f(x) = x+ = max(0, x) (2.4)

Figure 2.5: Non-Linear activation functions

Loss functions

Neural networks utilize loss functions in their process of learning. By using them they

can determine how accurately a certain algorithm fits the data. If predictions differ signifi-

cantly from actual findings, a large value is returned by the loss function. Some optimization

function helps loss function to learn to decrease prediction error over training time. [15]. The

loss function is used to compute the gradients that are utilized to adjust the parameters of the

2.2.1 Neural Networks 13

neural network. It’s how the Neural Network gets trained, and it’s how we determine how

well or inadequately the model is doing.

In terms of the types of problems we encounter in the actual world, loss functions can

be divided into two categories: classification and regression. Our objective in classification

challenges is to forecast the respective probability of all classes included in the problem.

Common functions for classification tasks are Cross-Entropy based Loss Functions. As far

as regression is concerned, on the contrary, the goal is to predict the continuous value for a

given set of independent features using a learning method. For regression problems the most

common utilized functions are the Mean Absolute Error (MAE) and the Mean Squared Error

(MSE) [16].

Optimizers

The concept of loss indicates how well a model performs, as it was mentioned above.

Optimization is the process of minimizing the loss so that the model works better. Optimizers

are techniques for adjusting the parameters of a neural network in order to reduce losses. By

reducing the loss function, optimizers are used to address optimization problems.

There are plenty different types of optimizers but some of the most primary ones that

were overviewed in this project are:

• Gradient Descent: The most common yet extensively used optimization approach is

gradient descent. It’s often utilized in methods for classification and linear regression.

Backpropagation process in neural network uses also the gradient descent algorithm.

Gradient descent is a first-order optimizationmethodwhich relies on the loss function’s

first order derivative. It determines in which direction the weights should be altered in

order for the function to reach a minimum. The loss is passed from one layer to the

next through backpropagation and the parameters of the models are updated when the

gradients of the entire data are computed [17]. This means that if the data is massive

this process can last for a long amount of time.

• Stohastic Gradient Descent: It is a variation of Gradient descent. It attempts to ad-

just the parameters of the network more often. This adjustments are made when each

training sample’s loss has been calculated. In such manner, this optimization method

reaches convergence faster [18].

14 Chapter 2. Background

• Adam: This optimizer keeps track of each network parameter’s learning rate and ad-

justs it independently throughout training. It adapts the learning rate for each weight

depending on estimated first and second gradients [19].

• Adagrad: This optimizer adjusts the learning rate to the parameters, making smaller

updates for frequently appearing features and larger updates for rarely occuring features

[20]. This makes Adagrad a suitable optimizer for dealing with sparse data.

Dropout

During the training of a randomly selected group, dropout describes the act of ignoring

neurons. With ”disregarding,” we mean that a neural network is forced to develop more re-

silient properties that can be applied to several random subsets of other neurons. During a

forward or backward pass, these units are not taken into account [21]. It’s a technique for

reducing overfitting. A model suffers from overfitting when a model works admirably on the

training data, but not so well on the evaluation data. Because large networks take time to

build, it’s difficult to avoid overfitting by combining predictions from multiple neural net-

works at test time. This is a problem that Dropout is grappling with. This approach has been

identified to improve neural net performance in a variety of applications. In our models in

this work we employ dropout layers to avoid overfitting.

Figure 2.6: Neural networks before and after applying dropout

2.2.2 Recurrent Neural Networks 15

2.2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs), due to their internal memory, are the state-of-the-

art method for time-series or sequential data. RNNs get their name from the fact that they

apply the same function for every element of a sequence, with the output being reliant on

previous calculations [22]. They contain loops that allow data to persist. The inputs are all

interconnected together as it shown in Figure 2.6.

Figure 2.7: Unrolled RNN.

During training, however, typical recurrent neural networks encounter the problem of

vanishing gradients. Values in a very lengthy sequence may have long-term dependence.

Because of the nature of the training process, it’s probable that a conventional recurrent neu-

ral network won’t be able to learn these dependencies when memorizing these sequences.

Creating versions of regular recurrent neural networks that change how these gradients are

calculated is one approach to this challenge.

Long Short-Term Memory (LSTM)

The solution to the above problem of vanishing gradients is given by a improved variation

of RNNs which are called Long Short-Term Memory (LSTM) networks. These networks

make it easier to recollect knowledge from the past memory as the gradients are controlled

by several gates in the long short termmemory cell. These gates are the Input gate, the Output

gate and the Forget gate (Figure 2.7).

The Input gate determines how the memory will be altered. The Sigmoid function will

determine which data will be sent on to the next layers, while the Tanh function will provide a

weight to the input based on its importance to the network. The Forget gate determines which

data should be dismissed. The Sigmoid function is in charge of this procedure; it returns a

number in the range [0, 1] by looking at both the previous state and the input. If the number

16 Chapter 2. Background

Figure 2.8: LSTM gates architecture.

is 0, it is omitted; however, if the number is 1, it is kept. Finally, the memory and the block’s

input will define the output gate. The Sigmoid function decides which values are allowed to

pass, whereas the Tanh function gives weight to those that do [23].

In our project we utilize a Bidirectional LSTM. It differs from a traditional LSTMbecause

it processes inputs in two directions, one from the past to the future and the other from the

future to the past, allowing it to maintain information from both the future and the past..

2.2.3 Transfer Learning

Transfer learning is a ML research subject that entails storing knowledge obtained from

one problem and using it in a another different but related task [24]. This knowledge can be

either weights or embeddings.

The notion is known as a pre-trained model in the case of weights. Simply explained, a

pre-trained model is one that has already been trained to handle a similar problem by some-

one else. Rather than starting from scratch to tackle a comparable problem, the model trained

on the previous problem is used as a starting point. For instance, in the case of developing a

self-learning automobile, many years could be spent in order to develop an efficient image

recognitionmodel from the beginning but it would be easier to utilize Google’s pre-trained in-

ception model which was trained on ImageNet dataset to detect images in those photographs.

Although a pre-trained model might not be extremely efficient in a specific application, it

2.3 Federated Learning 17

saves a big amount of effort and time by not having to address the problem from scratch. A

way to fine-tune a pre-trained model is feature extraction. This method utilizes as a feature

extraction mechanism a pre-trained model. For the new dataset it uses as a fixed feature ex-

tractor the complete network.It achieves that by removing the output layer. Another method

is to use the entire architecture of the pre-trained model by initializing the weights randomly

and then retrain the model using our dataset [25].

Ιn the case of the embeddings, the notion is known as pre-trained word embeddings which

we utilize in this project. As they are trained on massive datasets, pre-trained word embed-

dings capture the syntactic and semantic meaning of a word. They are able to improve a NLP

model’s results. These word embeddings are efficiently useful because they are difficult to

learn from beginning for two primary reasons. The first one is the sparseness of training data

as the majority of real-world problems include a dataset with a substantial number of infre-

quent words. These datasets’ embeddings are not capable of producing the accurate represen-

tation of the word. To accomplish this, the dataset needs have a big vocabulary. Frequently

recurring words help to create a diverse vocabulary. Second, the number of Trainable Pa-

rameters increases while learning word embeddings from the beginning. As a consequence,

the training procedure takes longer. Learning embeddings from the ground up may leave

uncertainty of how the words should be represented [26].

2.3 Federated Learning

Federated learning , often referred to as collaborative learning, is a machine learning

method that entails training an algorithm across multiple decentralized servers or edge de-

vices that keep local data private without exchanging them. This method is different from

standard centralized machine learning methods, which all need local data samples to be com-

piled to a single central server, and it also differs from more traditional decentralized varia-

tions, which often presume that local datasets are identically distributed [27].

This technique allows numerous clients devices to develop a common, strong machine

learning model without communicating their data, allowing crucial issues like data access

rights, security, access to heterogeneous data and data pricacy to be addressed. Defense, IoT,

telecommunications, and healthcare are just a several of the industries where it’s applied.

Federated learning is utilizing numerous local data samples stored in local nodes to train

18 Chapter 2. Background

a machine learning algorithm, such as deep neural networks which we utilize to train in this

project, without explicitly sharing data samples. The general idea is developing local models

on local private datasets and periodically trading parameters (e.g. the network’s weights and

biases) between local nodes to produce a global model maintained by all nodes.

The principal distinction between distributed and federated learning is the hypothesis

made about the features of local data, as distributed learning was designed to parallelize

computing capacity, whereas federated learning was composed to be used for training on

heterogeneous data samples. While distributed learning also tries to train a single model over

numerous servers, a common implicit hypothesis is that the local data are independent and

identically distributed (i.i.d.) and of nearly similar size. None of these concepts are applicable

for federated learning because data are often heterogeneous and can vary in size by multiple

orders of magnitude.

A federated learning system might or might not include a central coordinator-server and

based on this difference it can be divided into to two primary categories:

• Centralized federated learning (client-server model)

The coordinator in this case is a central aggregation server which is responsible for the

communication process of training between the local nodes. The data of the local data

owners does not leave the local nodes under this architecture.

Figure 2.9: A client-server federated learning architecture example.

2.3 Federated Learning 19

This method not only protects user privacy and data security, but it also reduces the

amount of time it takes to transfer raw data. The communication between the central

aggregating server and the local nodes can be encrypted. [28].

• Decentralized federated learning (peer-to-peer model)

A peer-to-peer federated learning architecture can be created without the need for a

coordinator. As shown in Figure 2.7, this provides an additional layer of security by

allowing the parties to communicate directly without the help of a third party. Increased

security is a benefit of this architecture, but the cost of encrypting and decrypting mes-

sages could be higher.

Figure 2.10: A peer-to-peer federated learning architecture example.

Iterative process

Federated learning is based on an iterative process, referred to as a federated learning

round, which is divided up into an atomic collection of client-server interchanges to assure

the efficiency of a final, global machine learning model. Every round of this process entails

sending the current central model state to the nodes participating, training local models on

these nodes to generate a set of possible model updates at every node, and finally combining

these local updates into a single overall update and adapting it to the central model [29].

20 Chapter 2. Background

2.4 TensorFlow

TensorFlow is a free software platform for machine learning. It includes a flexible and

large wide range of libraries, community resources and tools that allow developers to build

fast and deploy ML model and academics to work on new advancements in ML [30]. Ten-

sorFlow οffers a collection of workflows for creating and training applications in Python or

JavaScript, and for deploying them in the browser, in the cloud, on-device or on-prem, no

matter what language is used.

2.4.1 TensorFlow Federated

TensorFlow Federated (TFF) is an openly accessible framework for decentralized ma-

chine learning and other operations. TFF was designed to enable open study and experimen-

tation with Federated Learning (FL), a machine learning method in which a shared global

model is trained across several clients who maintain their training data privately. FL has

been used to train forecasting models for mobile keyboards without having to submit sensi-

tive typing data to servers, for instance [31].

TFF offers the possibility to developers to examine with new algorithms as well as simu-

late the integrated federated learning algorithms on their data and models. For various types

of inquiry, researchers will find starting points and entire examples. Non-learning computa-

tions, such as federated analytics, can be implemented using TFF’s building pieces.

In this project, we utilize the TFF framework to simulate our decentralized environment

and implement the Federated Averaging algorithm.

Chapter 3

Methodology

3.1 Related Work

Theoretical work isn’t the only thing that piques researchers’ interest in federated learn-

ing. The development and deployment of federated learning algorithms and systems is like-

wise a burgeoning field of study.

Google firstly introduced federated learning (FL) in 2016, which has since been further

improved by other studies [32]. The authors have already identified imbalanced and non-

IID (independent and identically distributed) data, as well as a large number of participating

devices with varied levels of trustworthiness and potentially significant transmission costs,

as the field’s defining problems. Over the last few years, the study field has been driven by

questions and concerns about changing amounts of user data gathered from different distri-

butions, differences in bandwidth and computational capability, as well as communication

costs and privacy hazards [29].

Therefore, there are various federated learning open-source projects that are rapidly in-

creasing and each one attempts to address a specific issue on federated learning. Open-

Mined/PySyft [33], TensorFlow-Encrypted [34] and FederatedAI Technology Enabler (FATE)

[35] focus on supporting methods of secure computation through homomorphic encryption.

Other frameworks like Tensorflow-Federated [31], LEAF [36] and coMind [37], aimed to-

wards capturing the realities, challenges, and complexities of practical federated learning

environments, offer settings for simulating federated learning computations and aggregated

analytics over decentralized data.

Many works have focused their interest on applying federating learning algorithms like

21

22 Chapter 3. Methodology

FedSGD [32] and FedAvg [38] on NLP problems such as language model training [39], mo-

bile keyboard prediction [40], , spoken language understanding [41] and and news recom-

mendation [42]. A relevant work to ours is that of [43] which uses a federated averaging

variation to train LSTM models to perform sentiment analysis on tweets from a decentral-

ized version of dataset Sentiment140 using LEAF. Another related study [44] proposes a

client-server federated algorithm for sentiment classification of customers’ reviews from dif-

ferent public benchmarks with the consideration of the huge embedding size properties of text

vectors utilizing transfer learning. In this project, we are inspired by the paradigm from [45]

to apply federated learning for sentiment analysis on three datasets with customers’ reviews

of different context using the Federated Averaging algorithm, where information, including

model weights and losses, are exchanged between the server and clients.

3.2 Data Compilation

In terms of the reproducibility of outcomes, the datasets selection is critical. This moti-

vated the selection of three of the most widely used datasets for NLP research. This choice

of datasets defined the NLP task of our project which is binary sentiment classification. The

datasets that were selected are:

• IMDB

This dataset was obtained from Kaggle [46]. It contains 50,000 highly polarized movie

reviews for binary sentiment classification. There is also supplementary unlabeled data

available for use.

• Amazon

This dataset was acquired from [47]. It is a massive dataset as it contains 34,686,770

Amazon reviews on 2,441,053 products from 6,643,669 users. It was compiled from

he Stanford Network Analysis Project (SNAP). The subset that is labeled for binary

sentiment classification includes 1,800,000 samples for training and 200,000 samples

for testing in every sentiment category.

• Yelp

This dataset was obtained from [48]. This is also a huge dataset as it includes about

7,000,000 online reviews of restaurants and hotels for sentiment analysis.

3.3 Data Preprocessing 23

3.3 Data Preprocessing

Text preprocessing is typically an essential step for natural language processing (NLP)

tasks. It converts text into a more suitable form so that ML or DL algorithms can perform bet-

ter. We apply some basic preprocessing techniques for text reviews to our datasets following

the paradigm from [49]. These techniques are:

• Lowercase. A common preprocessing method that converts all texts to lowercase. Be-

cause the identical words are fused, the problem’s dimensionality is decreased.

• Removal of numbers. Numbers do not generally contain any sentiments, so they

should be removed; nonetheless, this should be done after emotional icon substitu-

tion and wrongspelling correction because some of them contain numbers, such as 8-),

:-3 etc.

• Removal of punctuation. Punctuation does not normally impact the sentiment, there-

fore it should be deleted to reduce noise. However, because some punctuation contains

sentiment, it may reduce classification performance in those circumstances, such as :),

;), :D are positive icons that impact sentiment in reviews. This step will be used after

the emoticon symbols have been replaced in our project.

• Emoticons replacement. Emotional icons have been commonly utilized in reviews

to represent readers’ feelings, so it is important to express the sentiment of them. The

positive and negative icons are replaced with ”pos” and ”neg” lexicons in our scenario.

• Removal of stop words. Stop words are function words; they normally have little

meaning and don’t convey much emotion, but they appear frequently in texts. To re-

duce dimensionality and computational expense, as well as increase performance, they

should be deleted. Depending on the application, the set of these words isn’t completely

predetermined. Stop words were determined in our project based on term frequencies

and inverse document frequencies weights in the datasets obtained.

To apply these basic preprocessing techniques to our data we utilize a Text Vectorization

layer. This layer after applying these standarizations is used to divine each input into sub-

strings, rejoin substrings into tokens, index these tokens (assign a single int value with each

token) and convert each sample utilizing this index into a vector of ints. With a method of

24 Chapter 3. Methodology

this layer we construct a vocabulary for the data that is being applied to. Depending on the

setup parameters for this layer, this vocabulary can be limitless or capped; in case there are

more single values in the input data samples than the maximum vocabulary size, the most

frequently occuring phrases will be selected to generate the vocabulary. In our case we have

set our vocabulary size to 10000 features. After aplying this Text Vectorization layer to the

data, their representation can be read by an Embedding layer or Dense layer.

3.4 Neural network architectures for sentiment analysis

For our task which is binary sentiment classification of reviews we have chosen to train

three different neural network models, a Multilayer Perceptron with a global average pool-

ing as hidden layer, a Bidirectional LSTM and a Pre-trained word embedding model. These

models will be trained on the data of each node where a different dataset is being stored, their

parameters will be exchanged between the nodes for the federated learning process and their

performance will be compared and discussed.

3.4.1 Multilayer Perceptron

Table 3.1: MLP architecture summary

Layer type Output Shape Parameters

Embedding (None, None, 16) 160016

Dropout (None, None, 16) 0

GlobalAveragePooling1D (None, 16) 0

Dropout (None, 16) 0

Dense (None, 1) 17

Total trainable parameters: 160,033

After the data is preprocessed as discussed in paragraph 3.3 is suitable to be fed into the

neural network for training. In this neural network, to construct the classifier, the layers are

placed sequentially in the following order:

1. An Embedding layer is used as the first layer. This layer looks up for each word-index

3.4.2 Bidirectional Long-Short-Term-Memory (LSTM) 25

an embedding vector from the integer-encoded reviews. As the model trains, these

vectors are created. A dimension is added to the output array by the vectors.

2. After that, a GlobalAveragePooling1D layer averaging across the sequence dimension

gives a fixed-length output vector for every case. This enables the model to deal with

variable-length input in the most straightforward manner feasible.

3. A fully-connected (Dense) layer which has 16 hidden units is used to transmit this

fixed-length output vector.

4. The last layer has a single output node and is densely connected.

3.4.2 Bidirectional Long-Short-Term-Memory (LSTM)

Table 3.2: Bidirectional LSTM architecture summary

Layer type Output Shape Parameters

Embedding (None, None, 64) 64000

Bidirectional LSTM (None, 128) 66048

Dense (None, 64) 8256

Dropout (None, 64) 0

Dense (None, 1) 65

Total trainable parameters: 138,369

The data can be supplied into the neural network for training after it has been preprocessed

as described in paragraph 3.3. This model is built in this order:

1. The first layer is an embedding layer. Each word is stored in an embedding layer by one

vector. It converts sequences of word indices to vector sequences when invoked. These

vectors can be learned. Words with similar meanings often have also similar vectors

after training (on enough data).

The analogous action of sending through a Dense layer a one-hot encoded vector is

substantially more inefficient than this index-lookup.

26 Chapter 3. Methodology

Figure 3.1: Bidirectional LSTM model diagram

2. By iterating through the elements, a recurrent neural network (RNN) handles sequence

input. The outputs of one timestep are passed to the input of the following timestep by

RNNs.

The Bidirectional wrapper can also be utilized with an RNN layer. The input is propa-

gated backwards and forward via the RNN layer, and then the output is concatenated.

The fundamental advantage of a bidirectional RNN is that the signal does not have to

be processed from the start of the input all the way through every timestep to impact the

outcome. While the fundamental drawback of a bidirectional RNN is that it is difficult

to stream predictions when new words are appended to the end.

3. The twoDense layers perform some final processing after the RNN has transformed the

sequence to a single vector, then transform from this vector representation to a single

logit as the classification output.

3.4.3 Pre-trained word embedding model 27

3.4.3 Pre-trained word embedding model

Table 3.3: Pre-trained word embedding model architecture summary

Layer type Output Shape Parameters

KerasLayer (None, 50) 48190600

Dense (None, 16) 816

Dropout (None, 16) 0

Dense (None, 1) 17

Total trainable parameters: 48,191,433

The layers are stacked sequentially to build the classifier:

1. The first layer is a layer from TensorFlow Hub. This layer utilizes a pre-trained Saved

Model to associate a sentence into its embedding vector. The pre-trained word em-

bedding model that we use (google/nnlm-en-dim50/2) [50] divides the sentence into

tokens, embeds each token separately, and then combines the embedding. The embed-

ding_dimension is 50 for this model.

2. A fully-connected (Dense) layer that has 16 hidden units is used to route this fixed-

length output vector.

3. With a single output node, the final layer is densely connected.

Using a pre-trained text embedding as the first layer has numerous advantages. We do

not have to perform any text preprocessing as we did on the first two models (as discussed

in paragraph 3.3) as we benefit from tranfser learning. Moreover, the embedding has a pre-

defined size, so it is easier to process. On the other hand, one drawback of the pre-trained

text embedding model is that we have a very large embedding dimension and many more

trainable parameters as we have adopted a much larger vocabulary and this may improve our

task but it can take much longer to train our model.

28 Chapter 3. Methodology

3.5 Federated Learning Process

The nodes are trained on their data and communicate their model parameter updates in

every federated iterative learning round. In the methodology we have chosen to use, aggre-

gation is handled by a central server, while local nodes undertake local training in response

to the central server’s commands.

The learning procedure can be summarized by the following five steps as follows, assum-

ing a federated round constituted of one iteration of the learning process:

1. Initialization: One of the deep learning model we have introduced is chosen based on

the server inputs and trained and initialized on local nodes. The nodes are then turned

on and wait for the calculation assignments to be assigned by the central server.

2. Server-client model transfer: Local nodes are selected to begin training on local data

and the current model is sent to these nodes.

3. Configuration: The central server instructs nodes to train the model on their local

datasets according to a predetermined schedule.

4. Reporting: For aggregation, each node delivers its local model to the server. The model

changes are sent back to the nodes by the central server, which aggregates the received

models.

5. Termination: The central server combines the updates and constructs the final global

model after a termination criterion is fulfilled (e.g., a maximum training rounds are

reached or the accuracy surpasses a threshold).

Figure 3.2: Federated learning general process in our setup

3.5.1 Federated Averaging algorithm 29

3.5.1 Federated Averaging algorithm

Particularly, we follow the above protocol utilizing the Federated Averaging (FedAvg)

algorithm which was proposed by [38]. FedAvg is a variation of FedSGD that enables local

nodes to execute multiple batch updates on local datasets and trade updated weights rather

than gradients. The reasoning behind this generalization is that in FedSGD, averaging the

gradients is strictly identical to averaging the weights themselves if all local nodes start from

the same initialization. Furthermore, averaging tuned weights from the same starting does

not always degrade the performance of the final averaged model.

Algorithm 1 The FEDERATED AVERAGING algorithm. The K clients are denoted by k; E

is the number of local epochs, B is the local minibatch size and n is the learning rate.

One important note about the Federated Averaging algorithm is that it has two optimizers:

a client optimizer and a server optimizer. The client optimizer is only used on each client to

perform local model updates. The server optimizer is utilized to adjust the global model with

the averaged update.

Chapter 4

Experiments & Results

4.1 Experimental set-up

We create a simulated environment in which isolated data is held in several nodes in order

to test our proposed approaches. In each node is contained one subset of the three datasets

we selected (IMBD, Yelp, Amazon). From all datasets we utilize approximately 12000 data

samples (reviews) so as to simulate a realistic federated learning environment where several

clients want to build a system , contributing the same amount of data. The statistics of the

data that were used for our experiments are reported in Table 3.4 below.

Table 4.1: The number of reviews utilized in ours experiments from the 3 datasets

Dataset Positive reviews Negative reviews Total reviews

IMDB 6500 5600 12100

Amazon 6000 6200 12200

Yelp 5700 6300 12000

We perform 5 experiments utilizing the above data:

1. In our first primary experiment, we store the 12000 data samples of each dataset sep-

arately in 3 nodes to build our federated learning model as illustrated below in Figure

3.4.

2. We repeat the first scenario but this time we store approximately 6000 data samples of

each dataset separately in 3 nodes.

31

32 Chapter 4. Experiments & Results

3. We repeat the first scenario but this time we store approximately 3000 data samples of

each dataset separately in 3 nodes

4. Next, we use approximately 6000 data samples of each dataset to store separately in 6

nodes

5. Lastly, we use approximately 4000 data samples of each dataset to store separately in

9 nodes

For all of them, we pick randomly 15% of the data that is stored in each node to use as

evaluation data.We perform all experiments for each neural networkmodel that was overseen

in paragraph 3.4.

The fourth and fifth experiments are carried out to find out if the same data splitted into

more nodes can produce proportionate results to the first one.

Figure 4.1: Illustration of the primary experiment of 3 clients

4.2 Evaluation Metrics

The testing method follows after the training of a deep learning model. At this point, we

must evaluate our model using previously unseen data. This is accomplished by employing

4.2 Evaluation Metrics 33

several evaluation metrics that are appropriate for various types of problems. In the evalua-

tion of our experiments we take into account only the federated (server’s aggregated model)

metrics - the average metrics of all batches of data trained and tested across all clients in the

federated learning round. Local metrics alone cannot be taken as sign to check if our federated

learning system is progressing.

To begin, we have to define the Confusion Matrix for this binary classification task. For

this purpose we need to specify these four conditions:

• True Positives (TP): It shows the number of samples that belong to the positive class

and classified correctly as positives.

• True Negatives (TN): It shows the number of samples that belong to the negative class

and classified correctly as negatives.

• False Positives (FP): It shows the number of samples that belong to the negative class

and classified incorrectly as positives.

• False Negatives (FN): It shows the number of samples that belong to the positives

class and classified incorrectly as negatives.

Figure 4.2: Confusion matrix for a binary classification problem

So for our problem we define the following metrics that are derived from the above

information:

1. Accuracy: It represents the ratio of the correctly forecasted samples to the total

number of samples. This is the most often used metric, however it is not very

suitable for dealing with unbalanced data. It’s calculated using the following for-

mula:

34 Chapter 4. Experiments & Results

Accuracy =
TP + TN

TP + FP + FN + TN

2. Precision: It expresses the ratio of the correctly forecasted positive samples to

the total number of samples that were predicted as positive.

Precision =
TP

TP + FP

3. Recall: It expresses the ratio of the correctly predicted positive samples to the

total number of samples that are actually positive.

Recall =
TP

TP + FN

4. F1−score: It expresses the weighted average of Recall and Precision. This score

is more suitable when dealing with unbalanced data because it takes both false

negatives and false positives into account.

F1− score =
2 ·Recall · Precision

Recall + Precision

4.3 Results

4.3.1 Overview

In this paragraph, we present the results obtained by the deep learning models that were

proposed in paragraph 3.4 for each of the cases proposed in paragraph 4.1. We discuss the

perfomance of training and testing them in our federated dataset cases and draw some general

conclusions. One problem that models suffered from in several cases was that of overfitting

where the model works admirably on the training data, but not so well on the evaluation data.

We tried to resolve this problem by using dropout layers in all model architectures which

worked for most of these cases.

4.3.2 3 clients case

After hyperparameter tuning, we selected Adam as client and server optimizer for each

deep learning model and ran 3 epochs of local training. For the MLP with the global average

4.3.2 3 clients case 35

pooling we used the values 0.001 and 0.06 as learning rates of the client and server optimiz-

ers. For the Bidirectional LSTM we used the values 0.0008 and 0.01 respectively. For the

pretrained word embedding model we chose the values 0.001 and 0.003 respectively. Gener-

ally, we observed that using a smaller learning rate value for the client optimizer and a higher

learning rate value for the server optimizer leads to an optimal performance.

Figure 4.3: Accuracy on evaluation data for the first experiment of 3 clients

Table 4.2: Results for the first experiment of 3 clients case

Model Accuracy F1-score

MLP 81.2% 81.9%

Bidirectional LSTM 76.3% 76.9%

Pretrained word embedding model 83.9% 83.6%

In the 3 clients case where 12000 data samples are stored in each client the performance of

our models in terms of accuracy was quite satisfactory. The first and second model (MLP and

bidirectional LSTM) reached convergence after approximately 20 federated learning rounds

resulting in 81.2% and 76.3% accuracy respectively. The highest accuracy of 83.9% was

reached by the third model (pretrained word embedding model) after approximately 35 fed-

erated learning rounds. Nevertheless, the third model training took a much longer amount of

36 Chapter 4. Experiments & Results

time because of its very large embedding size and high number of trainable parameters.

Table 4.3: Results for the second and third experiment of 3 clients case

Model Accuracy F1-score

MLP (second experiment) 80.6% 81.1%

MLP (third experiment) 80.2% 80.9%

Bidirectional LSTM (second experiment) 76.0% 76.5%

Bidirectional LSTM (third experiment) 76.2% 76.6%

Pretrained word embedding model (second experiment) 82.9% 83.1%

Pretrained word embedding model (third experiment) 82.2% 82.6%

By performing the second and third experiment of the 3 clients case where less data sam-

ples are stored in the 3 clients (in each client 6000 samples in the second and 3000 samples in

the third), we observe that the performance of the models in terms of accuracy and f1-score

drops a little in most cases, not significantly. Generally, this is something that was expected

theoretically because the more data that is used to train a deep learning model , the more

patterns it captures which can lead to better performance. The amount of data that is utilized

to train a model has an important role in its efficiency and robustness.

4.3.3 6 clients case

After hyperparameter tuning, we selected Adam as client and server optimizer for each

deep learning model and ran 3 epochs of local training. For the first model we used the values

0.005 and 0.03 as learning rates of the client and server optimizers. For the second model

we used the values 0.0005 and 0.01 respectively. For the third model we chose the values

0.001 and 0.002 respectively. Generally, for each model the learning rate values of the client

optimizer increased a little and the learning rate values of the server optimizer decreased a

little.

4.3.3 6 clients case 37

Figure 4.4: Accuracy on evaluation data for the experiment of 6 clients

Table 4.4: Results for the 6 clients case

Model Accuracy F1-score

MLP 80.5% 81.0%

Bidirectional LSTM 75.8% 76.1%

Pretrained word embedding model 83.2% 83.1%

In the 6 clients case the same 12000 data samples as in the 3 clients case are used but

are divined into 3 more clients. So 2 clients now hold each the half of the data samples that

were held by 1 node in the first case. What we expected theoretically happens in practice. The

models reach almost the same performance as in the 3 nodes case after more federated learn-

ing rounds. The first and second model reach convergence after approximately 30 federated

learning rounds (almost 10 more rounds than the 3 clients case) resulting in 80.5% and 75.8%

accuracy respectively and the third reaches 83.2% after approximately 40 rounds (almost 10

more rounds than the 3 clients case). All models performed almost the same with a maximum

difference of 0.7% from the 3 clients case performances. This is something logical as they

were trained on the same data that were splitted into more clients; which also explains the

need of the models for more federated learning rounds in order to converge.

38 Chapter 4. Experiments & Results

4.3.4 9 clients case

After hyperparameter tuning, we selected Adam as client and server optimizer for each

deep learning model and ran 3 epochs of local training. For the first model we used the values

0.008 and 0.02 as learning rates of the client and server optimizers. For the second model we

used the values 0.0008 and 0.01 respectively. For the third model we chose the values 0.001

and 0.002 respectively.

Figure 4.5: Accuracy on evaluation data for the experiment of 9 clients

Table 4.5: Results for the 9 clients case

Model Accuracy F1-score

MLP 80.3% 81.0%

Bidirectional LSTM 75.5% 76.0%

Pretrained word embedding model 83.0% 82.8%

In the 9 clients case the same 12000 data samples as in the 3 clients case are used but

are divined into 6 more clients. So 3 clients now hold each the half of the data samples that

were held by 1 client in the first case. What we expected theoretically happens in practice.

The models reach almost the same performance as in the 3 clients and 6 clients after more

federated learning rounds. The first and secondmodel reach convergence after approximately

4.3.4 9 clients case 39

40 federated learning rounds (almost 20 more rounds than the 3 clients case and 10 more

rounds than the 6 clients case) resulting in 80.2% and 75.4% accuracy respectively and the

third model reaches 83.1% after approximately 48 rounds (almost 18 more rounds than the

3 clients case and 8 more rounds than the 6 clients case). All models performed almost the

same with a maximum difference of 0.9% from the 3 clients case performances.

Generally, from the above experiments we can observe that as the number of clients that

is utilized to store the same data increases so does the number of federated learning rounds

needed to reach the same performance.

Chapter 5

Conclusions

5.1 Summary & Conclusion

In this Thesis we dealt with the task of training federated deep learning models over de-

centralized data for sentiment analysis on online reviews of different context. The motivation

behind this was to use a privacy-preserving learning approach so that clients would not have

to exchange their data in order to build together a deep learning model. For this purpose,

a client-server federated learning approach was used where a central server aggregates the

client model updates in order to build the federated global model. The data that were utilized

came from 3 different domains: IMDB, Amazon and Yelp. Three different deep learning

model architectures were utilized to test our approach: a Multilayer Perceprton with a global

average pooling layer, a Bidirectional LSTM and a Pretrained word emdedding model. The

results of our experiments were quite satisfactory despite the heterogeneity of data due to the

fact that they come from different sources. The last model outperformed the two other ones

in most cases with not significant difference. However, the pretrained model took a much

longer time to be trained because of its very large embedding dimension. Generally, it was

observed that the amount of data that is utilized to train a model has an important role in

its efficiency and robustness. Furthermore, the results of trials were convincing enough that

such approaches could work in real-world circumstances, especially when enough data is

available to reinforce the model’s efficiency and allow it to overcome potential barriers and

constraints.

41

42 Chapter 5. Conclusions

5.2 Future work

In the future, this research could be expanded by utilizingmore data from different sources

to store in different clients. In this way, we could implement a more realistic training loop

where clients are sampled to be trained on in accordance to how much they have contributed

to the training process of the global model so far. Furthermore, issues concerning the privacy

preservation of the decentralized data, e.g. the homomorphic encryption of the client updates

for their transfer to the server, could be explored.

Bibliography

[1] Tse Liuy Chin-Ting Changzy Chuan-Ju Wangz, Ming-Feng Tsaiy. Financial sentiment

analysis for risk prediction. Department of Computer Science Program in Digital Con-

tent and Technology National Chengchi University Taipei, page 116, 2013.

[2] XG Li, H Li, FH Li, and H Zhu. A survey on differential privacy. Journal of Cyber

Security, 3(5):92–104, 2018.

[3] Jibon Naher Matiur Rahman Minar. Recent advances in deep learning: An overview.

2018.

[4] Sentiment analysis definition. https://en.wikipedia.org/wiki/

Sentiment_analysis.

[5] Sentiment analysis: Concept, analysis and applications. https://

towardsdatascience.com/sentiment-analysis-concept-

analysis-and-applications-6c94d6f58c17.

[6] What is artificial intelligence. https://www.ibm.com/cloud/learn/what-

is-artificial-intelligence.

[7] Pitts W McCulloch, W.S. A logical calculus of the ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[8] What are neural networks and why they matter. https://www.sas.com/el_gr/

insights/analytics/neural-networks.html#technical.

[9] Deep neural networks. https://www.techopedia.com/definition/

32902/deep-neural-network.

43

https://en.wikipedia.org/wiki/Sentiment_analysis
https://en.wikipedia.org/wiki/Sentiment_analysis
https://towardsdatascience.com/sentiment-analysis-concept-analysis-and-applications-6c94d6f58c17
https://towardsdatascience.com/sentiment-analysis-concept-analysis-and-applications-6c94d6f58c17
https://towardsdatascience.com/sentiment-analysis-concept-analysis-and-applications-6c94d6f58c17
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://www.sas.com/el_gr/insights/analytics/neural-networks.html#technical
https://www.sas.com/el_gr/insights/analytics/neural-networks.html#technical
https://www.techopedia.com/definition/32902/deep-neural-network
https://www.techopedia.com/definition/32902/deep-neural-network

44 Bibliography

[10] Deep learning neural networks explained in plain english. https://www.

freecodecamp.org/news/deep-learning-neural-networks-

explained-in-plain-english/.

[11] Deep learning neural networks. https://www.ibm.com/cloud/learn/

neural-networks.

[12] Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learning ac-

tivation functions to improve deep neural networks. 12 2014.

[13] https://www.v7labs.com/blog/neural-networks-activation-functionsactivation-

function. https://www.v7labs.com/blog/neural-networks-

activation-functions#activation-function.

[14] Fundamentals of deep learning – activation functions and when to use them? https:

//www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-

learning-activation-functions-when-to-use-them/.

[15] Loss functions in machine learning. https://towardsdatascience.com/

common-loss-functions-in-machine-learning-46af0ffc4d23.

[16] Common loss function and how they work. https://builtin.com/machine-

learning/common-loss-functions.

[17] Various optimization algorithms for training neural network. https:

//towardsdatascience.com/optimizers-for-training-neural-

network-59450d71caf6.

[18] An overview of gradient descent optimization algorithms. https:

//ruder.io/optimizing-gradient-descent/index.html#

stochasticgradientdescent.

[19] Jimmy Ba Diederik P. Kingma. Adam: A method for stochastic optimization. Pub-

lished as a conference paper at the 3rd International Conference for Learning Repre-

sentations, San Diego, 2017.

[20] Hazan E. Singer Y. Duchi, J. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://www.v7labs.com/blog/neural-networks-activation-functions#activation-function
https://www.v7labs.com/blog/neural-networks-activation-functions#activation-function
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://builtin.com/machine-learning/common-loss-functions
https://builtin.com/machine-learning/common-loss-functions
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://ruder.io/optimizing-gradient-descent/index.html#stochasticgradientdescent
https://ruder.io/optimizing-gradient-descent/index.html#stochasticgradientdescent
https://ruder.io/optimizing-gradient-descent/index.html#stochasticgradientdescent

Bibliography 45

[21] Dropout in (deep) machine learning. https://medium.com/

@amarbudhiraja/https-medium-com-amarbudhiraja-learning-

less-to-learn-better-dropout-in-deep-machine-learning-

74334da4bfc5.

[22] A guide to rnn: Understanding recurrent neural networks and lstm networks.

https://builtin.com/data-science/recurrent-neural-

networks-and-lstm.

[23] Understanding rnn and lstm. https://aditi-mittal.medium.com/

understanding-rnn-and-lstm-f7cdf6dfc14e.

[24] Dan; Warnick Sean West, Jeremy; Ventura. Spring research presentation: A theoretical

foundation for inductive transfer. Brigham Young University, College of Physical and

Mathematical Sciences, 2007.

[25] Transfer learning and the art of using pre-trained models in deep learning.

https://www.analyticsvidhya.com/blog/2017/06/transfer-

learning-the-art-of-fine-tuning-a-pre-trained-model/?utm_

source=blog&utm_medium=pretrained-word-embeddings-nlp.

[26] An essential guide to pretrained word embeddings for nlp practitioners.

https://www.analyticsvidhya.com/blog/2020/03/pretrained-

word-embeddings-nlp/.

[27] Federated learning. https://en.wikipedia.org/wiki/Federated_

learning.

[28] H. B. McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated

learning of deep networks using model averaging. ArXiv, abs/1602.05629, 2016.

[29] Brendan Avent Aurélien Bellet-Mehdi Bennis Arjun Nitin Bhagoji Kallista Bonawitz

Zachary Charles Graham Cormode Rachel Cummings Rafael G.L. D’Oliveira Hubert

Eichner Salim El Rouayheb David Evans Josh Gardner Zachary Garrett Adrià Gascón

Badih Ghazi Phillip B. Gibbons Marco Gruteser Zaid Harchaoui Chaoyang He Lie He

Zhouyuan Huo Ben Hutchinson Justin Hsu Martin Jaggi Tara Javidi Gauri Joshi Pe-

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://builtin.com/data-science/recurrent-neural-networks-and-lstm
https://builtin.com/data-science/recurrent-neural-networks-and-lstm
https://aditi-mittal.medium.com/understanding-rnn-and-lstm-f7cdf6dfc14e
https://aditi-mittal.medium.com/understanding-rnn-and-lstm-f7cdf6dfc14e
https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/?utm_source=blog&utm_medium=pretrained-word-embeddings-nlp
https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/?utm_source=blog&utm_medium=pretrained-word-embeddings-nlp
https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/?utm_source=blog&utm_medium=pretrained-word-embeddings-nlp
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
https://en.wikipedia.org/wiki/Federated_learning
https://en.wikipedia.org/wiki/Federated_learning

46 Bibliography

ter Kairouz, H. BrendanMcMahan. Advances and open problems in federated learning.

Published in Foundations and Trends in Machine Learning Vol 4 Issue 1.s.

[30] Tensorflow: An end-to-end open source machine learning platform. https://www.

tensorflow.org.

[31] Tensorflow federated: A framework for machine learning on decentralized data.

https://www.tensorflow.org/federated.

[32] Reza Shokri and Vitaly Shmatikov. Privacy preserving deep learning. Proceedings of

the 22nd ACM SIGSAC conference on computer and communications security, page

1310–1321.

[33] T. ryffel, federated learning with pysyft and pytorch, march 2019. https://blog.

openmined.org/upgrade-to-federated-learning-in-10-lines/.

[34] Tensorflow encrypted. https://github.com/tf-encrypted/tf-

encrypted.

[35] Webank ai department, federated ai technology enabler (fate). https://github.

com/FederatedAI/FATE.

[36] Leaf: A benchmark for federated settings. https://leaf.cmu.edu/.

[37] comindorg: a framework for federated average settings. https://github.com/

coMindOrg/federated-averaging-tutorials.

[38] H. BrendanMcMahan and al. Communication-efficient learning of deep networks from

decentralized data. 2016.

[39] Mingqing Chen, Ananda Theertha Suresh, Rajiv Mathews, Adeline Wong, Cyril Al-

lauzen, Françoise Beaufays, and Michael Riley. Federated learning of n-gram language

models, 2019.

[40] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beau-

fays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated

learning for mobile keyboard prediction, 2019.

https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org/federated
 https://blog.openmined.org/upgrade-to-federated-learning-in-10-lines/
 https://blog.openmined.org/upgrade-to-federated-learning-in-10-lines/
https://github.com/tf-encrypted/tf-encrypted
https://github.com/tf-encrypted/tf-encrypted
https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://leaf.cmu.edu/
https://github.com/coMindOrg/federated-averaging-tutorials
https://github.com/coMindOrg/federated-averaging-tutorials

Bibliography 47

[41] Zhiqi Huang, Fenglin Liu, and Yuexian Zou. Federated learning for spoken language

understanding. In Proceedings of the 28th International Conference on Computational

Linguistics, pages 3467–3478, Barcelona, Spain (Online), December 2020. Interna-

tional Committee on Computational Linguistics.

[42] TaoQi, FangzhaoWu, ChuhanWu, YongfengHuang, andXingXie. Privacy-preserving

news recommendation model learning, 2020.

[43] Galina Momcheva and Plamena Tsankova. Sentiment detection with fedmd: Federated

learning via model distillation. 12 2020.

[44] De-Chuan Zhan Yunfeng Shao Bingshuai Li Shaoming Song Xin-Chun Li, Lan Li. Pre-

liminary steps towards federated sentiment classification. 2020.

[45] Yuanhe TianYan SongHanQin, Guimin Chen. Improving federated learning for aspect-

based sentiment analysis via topic memories. 2021.

[46] Imdb dataset of 50k movie reviews. https://www.kaggle.com/datasets/

lakshmi25npathi/imdb-dataset-of-50k-movie-reviews.

[47] Nlp datasets fast.ai. https://course.fast.ai/datasets#nlp.

[48] Yelp open dataset an all-purpose dataset for learning. https://www.yelp.com/

dataset.

[49] Chun-Liang Wu and Song-Ling Shin. Machine learning based classification for senti-

mental analysis of imdb reviews. Stanford University, 2019.

[50] Pretrained text embedding nnlm-en-dim50 from tensorflow hub. https://tfhub.

dev/google/nnlm-en-dim50/2.

https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://course.fast.ai/datasets#nlp
https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://tfhub.dev/google/nnlm-en-dim50/2
https://tfhub.dev/google/nnlm-en-dim50/2

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Thesis Subject
	Thesis Structure

	Background
	Sentiment Analysis
	Deep Learning
	Neural Networks
	Recurrent Neural Networks
	Transfer Learning

	Federated Learning
	TensorFlow
	TensorFlow Federated

	Methodology
	Related Work
	Data Compilation
	Data Preprocessing
	Neural network architectures for sentiment analysis
	Multilayer Perceptron
	Bidirectional Long-Short-Term-Memory (LSTM)
	Pre-trained word embedding model

	Federated Learning Process
	Federated Averaging algorithm

	Experiments & Results
	Experimental set-up
	Evaluation Metrics
	Results
	Overview
	3 clients case
	6 clients case
	9 clients case

	Conclusions
	Summary & Conclusion
	Future work

	Bibliography

