ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΓΡΟΤΙΚΩΝ ΛΕΚΑΝΩΝ ΑΠΟΡΡΟΗΣ ΥΠΟ ΣΥΝΘΗΚΕΣ ΚΛΙΜΑΤΙΚΗΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ ΚΑΙ ΑΛΛΑΓΗΣ

Γιάννης Τζαμπύρας
Περιβαλλοντολόγος M.Sc

Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων,
Τμήμα Πολιτικών Μηχανικών, Πανεπιστήμιο Θεσσαλίας
Πεδίον Άρεως, 38334 Βόλος
E-mail: jjabiras@gmail.com

Διδακτορική Διατριβή που υποβλήθηκε στο Τμήμα Πολιτικών Μηχανικών του
Πανεπιστημίου Θεσσαλίας

Βόλος, Μάρτιος 2022
ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΓΡΟΤΙΚΩΝ ΛΕΚΑΝΩΝ ΑΠΟΡΡΟΗΣ ΥΠΟ ΣΥΝΘΗΚΕΣ ΚΛΙΜΑΤΙΚΗΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ ΚΑΙ ΑΛΛΑΓΗΣ

Γιάννης Τζαμπύρας
Περιβαλλοντολόγος M.Sc
Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων,
Τμήμα Πολιτικών Μηχανικών, Πανεπιστήμιο Θεσσαλίας
Πεδίον Άρεως, 38334 Βόλος
E-mail: jjabiras@gmail.com

Τριμελής συμβουλευτική επιτροπή:
Αθανάσιος Λουκάς, Αναπληρωτής Καθηγητής Α.Π.Θ. (Επιβλέπων)
Νικήτας Μυλόπουλος, Καθηγητής Π.Θ.
Ελπίδα Κολοκυθά, Καθηγήτρια, Α.Π.Θ.

Βόλος, Μάρτιος 2022
DEVELOPMENT OF A WATER RESOURCES MANAGEMENT SYSTEM FOR AGRICULTURAL BASINS UNDER CLIMATE CHANGE AND VARIABILITY CONDITIONS

John Tzabiras

Advisory Committee
Assoc. Prof. Athanasios Loukas (AUTH) (Supervisor)
Prof. Nikitas Mylopoulos (UTH)
Prof. Elpida Kolokytha (AUTH)

Volos
2022
ΠΡΟΛΟΓΟΣ

Η ολοκλήρωση της Διδακτορικής διατριβής αποτελεί το επιστέγασμα μιας μακροχρόνιας ερευνητικής προσπάθειας δεδομένου ότι είναι η φυσική εξέλιξη και συνέχεια προπτυχιακών και μεταπτυχιακών σπουδών. Η πορεία αυτή εμπλουτίστηκε σε ερευνητικό επίπεδο, μέσω των ερευνητικών προγραμμάτων που συμμετείχα με περιοχή μελέτης την λεκάνη απορροής της λίμνης Κάρλας.

Η διατριβή εκπονήθηκε στο Τμήμα Πολιτικών Μηχανικών της Πολυτεχνικής Σχολής του Πανεπιστημίου Θεσσαλίας και ολοκληρώθηκε το Μάρτιο του 2022. Εμπνευστής της ιδέας για την ερευνητική μου ενασχόληση με την λεκάνη απορροής ήταν ο επιβλέπων καθηγητής μου κ. Αθανάσιος Λουκάς, Αναπληρωτής Καθηγητής του Τμήματος Τοπογράφων Μηχανικών του Α.Π.Θ, ο οποίος επιτέλεσε επιβλέπων και στη μεταπτυχιακή διατριβή και στη διπλωματική μου εργασία. Η ιδέα καθοδήγησή του και το απαράτυπο έθος του καθιστά στα μάτια μου ενα μεγάλο «δάσκαλο», ο οποίος έχει τη δυνατότητα να μεταμορφώσει έναν νέο άνθρωπο σε επιστήμονα δίνοντας του όχι μόνο την ακαδημαϊκή γνώση αλλά και εκείνες τις ηθικές αξίες που θα τον κάνουν χρήσιμο στην κοινωνία.

Σημαντική υπήρξε και η συνεισφορά του κ. Νικήτα Μυλόπουλου, Καθηγητή του Τμήματος Πολιτικών Μηχανικών του Π.Θ. και μέλος της τριμελής επιτροπής. Ήταν τόσο συνεχής η επιστημονική του υποστήριξη, που πραγματικά τον θεωρώ και αυτόν επιβλέποντα της διατριβής. Η βαθιά επιστημονική γνώση που κατέχει με βοήθησε να ξεπεράσω πολλά εμπόδια όλα αυτά τα χρόνια. Τους ευχαριστώ θερμά και νιώθω προνομιούχο που μου δόθηκε η δυνατότητα να έργαστώ δίπλα τους.

Καθοριστική υπήρξε και η συνεργασία μου με το τρίτο μέλος της τριμελούς επιτροπής την κ. Ελπίδα Κολοκυθά, Καθηγήτρια του Τμήματος Πολιτικών Μηχανικών του Α.Π.Θ., αλλά και με τους κ. Αρης Ψιλοβίκο, Καθηγητή του Τμήματος Γεωπονικής Σχολής του Ιεράς Ναυπηγείου του Α.Π.Θ. και κ. Χρήστο Καραβίτη, Καθηγητή του Γεωπονικού Πανεπιστημίου Αθηνών, οι οποίοι με υποστήριξαν στο επιστημονικό κομμάτι της βελτιστοποίησης. Είναι μεγάλη μου τιμή να απαρτίζεται η εφταμελής επιτροπή από ονόματα εξαιρετικών επιστημόνων και καθηγητών, όπως κ. Ευάγγελος Μπαλτάς, Καθηγητής της Σχολής Πολιτικών Μηχανικών Ε.Μ.Π και ο κ. Πανταξής Γεωργίου, Αναπληρωτής Καθηγητής της Σχολής Πολιτικών Μηχανικών του Α.Π.Θ. Από τον πανεπιστημιακό κύκλο δε θα μπορούσα να παραλείψω να ευχαριστήσω τους φίλους και συνεργάτες μου Λάμπρο Βασιλειάδη, Χρυσόστομο Φαφούτη, Παντελή Σιδηρόπουλο, Γιώργο Παπαϊωάννου, Πόπη Μηχαλόπουλου, Χρυσόστομος Παπαγεωργίου, Γιώργο Τζιάτζιο. Τέλος, θα ήθελα να ευχαριστήσω αισιοδοξώς την γυναίκα μου Ασπασία Σταματά, για τη συνεχιζόμενη ηθική συμπαράστασή, αισιοδοξία και κατανόηση που μου παρέχει απλόχερα.

Αφιερώνεται στο γιο μου Κωνσταντίνο-Ραφαήλ με πολλή αγάπη.
Πίνακας περιεχομένων

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ... 14
EXTENDED ABSTRACT .. 18
ΚΕΦΑΛΑΙΟ 1ο .. 22
1 ΕΙΣΑΓΩΓΗ .. 22
1.1 ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΣΕ ΑΓΡΟΤΙΚΕΣ ΛΕΚΑΝΕΣ ΑΠΟΡΡΟΗΣ 26
1.2 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΔΙΑΤΡΙΒΗΣ ... 27
1.3 ΠΑΡΟΥΣΙΑΣΗ ΚΑΙΝΟΤΟΜΩΝ ΣΤΟΙΧΕΙΩΝ ΤΗΣ ΕΡΕΥΝΑΣ .. 29
1.3.1 Ανάλυση καινοτόμων στοιχείων της έρευνας .. 32
2ο ΚΕΦΑΛΑΙΟ .. 37
2 ΚΛΙΜΑΤΙΚΗ ΜΕΤΑΒΟΛΗ ... 37
2.1 ΟΙ ΜΕΤΑΒΟΛΕΣ ΤΟΥ ΚΛΙΜΑΤΟΣ ΜΕΣΑ ΑΠΟ ΤΑ ΣΕΝΑΡΙΑ ΠΡΟΒΛΕΨΗΣ 37
2.2 ΚΛΙΜΑΤΙΚΑ ΣΕΝΑΡΙΑ SRES (Special Report on Emission Scenario) 39
2.2.1 Οι προβολές του μελλοντικού κλίματος της γης ... 41
2.3 ΚΛΙΜΑΤΙΚΑ ΣΕΝΑΡΙΑ RCPs (Representative Concentration Pathways) 44
2.4 ΣΥΓΚΡΙΣΗ ΣΕΝΑΡΙΩΝ SRES ΚΑΙ RCPs .. 47
2.5 ΚΛΙΜΑΤΙΚΗ ΜΕΤΑΒΟΛΗ ΣΤΗ ΜΕΣΟΓΕΙΟ ... 48
3ο ΚΕΦΑΛΑΙΟ .. 52
3 ΜΕΘΟΔΟΙ ΚΑΤΑΒΙΒΑΣΜΟΥ ΚΛΙΜΑΚΑΣ .. 52
3.1 ΜΟΝΤΕΛΑ ΠΑΓΚΟΣΜΙΑΣ ΚΥΚΛΟΦΟΡΙΑΣ GCMs ... 52
3.2 ΧΩΡΙΚΑ ΚΛΙΜΑΤΙΚΑ ΜΟΝΤΕΛΑ RCMs .. 53
3.3 ΣΤΑΤΙΣΤΙΚΟΣ ΚΑΤΑΒΙΒΑΣΜΟΣ ΚΛΙΜΑΚΑΣ ... 55
3.3.1 Βασικές μεθοδολογίες ... 55
3.3.2 Συνθήκες εφαρμογής στατιστικού καταβιβασμού κλιμακας ... 56
3.4 ΣΤΑΔΙΑ ΤΟΥ ΣΤΑΤΙΣΤΙΚΟΥ ΚΑΤΑΒΙΒΑΣΜΟΥ ΚΛΙΜΑΚΑΣ (ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) 59
3.5 ΔΥΝΑΜΙΚΟΣ ΚΑΤΑΒΙΒΑΣΜΟΣ ΚΛΙΜΑΚΑΣ (ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) 64
3.5.1 Η χρήση των RCMs σε μελέτες διερεύνησης επιπτώσεων ... 64
3.5.2 Η αβεβαιότητα στα RCMs .. 64
3.5.3 Βασικά πλεονεκτήματα κατά τη χρήση των RCMs ... 66
3.5.4 Προϋποθέσεις για τη χρήση των RCMs ... 67
3.5.5 Υποστηρικτικές μελέτες ... 67
3.5.6 Χωρικό περιεχόμενο μιας μελέτης .. 68
3.5.7 Φυσιογραφικά πλαίσια ... 69
3.5.8 Τύπος των απαιτούμενων κλιματικών πληροφοριών .. 69
3.5.9 Ανάπτυξη σεναρίων ... 70
3.5.10 Υποστήριξη από την ΕΔΕ ΑΕΘ ... 71
3.6 ΜΕΘΟΔΟΙ ΔΙΟΡΘΩΣΗΣ ΜΕΡΟΛΗΨΙΑΣ .. 73
4ο ΚΕΦΑΛΑΙΟ .. 76
4 ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΣΕ ΑΓΡΟΤΙΚΕΣ ΛΕΚΑΝΕΣ ΑΠΟΡΡΟΗΣ 76
4.1 ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΑΡΔΕΥΣΗΣ ... 76
4.2 ΔΙΑΧΕΙΡΙΣΗ ΑΓΡΟΤΙΚΟΥ ΝΕΡΟΥ .. 77
5ο ΚΕΦΑΛΑΙΟ ... 81
4.2.1 Περιγραφή των στόχων .. 77
4.3 ΣΥΛΛΟΓΗ ΚΑΙ ΑΠΟΘΗΚΕΥΣΗ ΝΕΡΟΥ ... 78
5 ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΔΙΚΤΥΟΥ ΚΑΙ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ ... 81
5.1 ΣΥΣΤΗΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΔΙΚΤΥΟΥ .. 81
5.2 ΑΝΑΓΚΕΣ ΣΕ ΝΕΡΟ ΤΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ .. 82
5.3 ΜΕΘΟΔΟΙ ΕΚΤΙΜΗΣΗΣ ΕΞΑΤΜΙΣΟΔΙΑΠΝΟΗΣ ΑΝΑΦΟΡΑΣ 84
5.4 ΔΟΡΥΦΟΡΙΚΕΣ ΜΕΘΟΔΟΙ ΕΞΑΤΜΙΣΟΔΙΑΠΝΟΗΣ ΚΑΛΛΙΕΡΓΕΙΑΣ 85
5.5 ΚΑΘΑΡΕΣ ΚΑΙ ΟΛΙΚΕΣ ΑΝΑΓΚΕΣ ΝΕΡΟ ΤΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ 86
5.6 ΜΕΘΟΔΟΙ ΑΡΔΕΥΣΗΣ-ΔΙΚΤΥΑ ΕΦΑΡΜΟΓΗΣ .. 89
5.6.1 Επιφανειακή άρδευση ... 89
5.6.2 Υπόγεια άρδευση .. 90
5.6.3 Μέθοδος καταϊόνισμον ... 91
5.6.4 Στάγδην άρδευση .. 91
5.7 ΑΝΟΙΚΤΟΙ ΑΓΩΓΟΙ (ΕΠΙΦΑΝΕΙΑΚΑ ΔΙΚΤΥΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΔΙΑΝΟΜΗΣ) .. 92
5.7.1 Ομοιόμορφη ροή .. 93
5.7.2 Ανοικτά αρδευτικά κανάλια ... 95
5.7.3 Μη μόνιμη ανοικτά αρδευτικά κανάλια .. 96
5.8 ΚΛΕΙΣΤΟΙ ΑΓΩΓΟΙ (ΥΠΟΓΕΙΑ ΔΙΚΤΥΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΔΙΑΝΟΜΗΣ) 98
5.8.1 Στρωτή ροή ... 98
5.8.2 Τυρβώδης ροή ... 99
5.8.3 Αρχή διατήρησης της ενέργειας .. 100
5.8.4 Γραμμικές και τοπικές απώλειες κλειστών αγωγών 101
5.9 ΣΥΣΤΗΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ .. 103
5.9.1 Περιγραφή υδρολογικού μοντέλου UTHBAL ... 104
5.9.2 Περιγραφή μοντέλου λειτουργίας και διαχείρισης ταμιευτήρα UTHRL 107
5.10 ΠΡΟΣΟΜΟΙΩΣΗ ΥΠΟΓΕΙΩΝ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ .. 112
5.11 ΠΡΟΣΟΜΟΙΩΣΗ ΥΠΟΓΕΙΩΝ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ .. 112
5.11.1 Μαθηματικό υπόβαθρο του MODFLOW ... 113
6 ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ-ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ .. 116
6.1 ΚΛΙΜΑΤΙΚΕΣ-ΥΔΡΟΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ... 117
6.2 ΓΕΩΛΟΓΙΑ-ΓΕΩΜОРΦΟΛΟΓΙΑ .. 118
6.3 ΥΔΡΟΓΕΩΛΟΓΙΑ ... 120
6.4 ΥΦΙΣΤΑΜΕΝΑ ΕΡΓΑ ΑΞΙΟΠΟΙΗΣΗΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ 121
6.5 ΚΑΛΛΙΕΡΓΕΙΕΣ ΚΑΙ ΧΡΗΣΕΙΣ ΝΕΡΟΥ ΣΤΗ ΥΔΡΟΛΟΓΙΚΗ ΛΕΚΑΝΗ ΚΑΡΛΑΣ 127
6.6 ΒΑΣΗ ΜΕΤΕΩΡΟLOGΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ... 129
6.6.1 Εκτίμηση μέσων επιφανειακών τιμών κλιματικών μεταβλητών 130
7 ΚΕΦΑΛΑΙΟ ... 136
7 ΕΦΑΡΜΟΓΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΔΙΚΤΥΟΥ (ΣΠΔ) ... 136
7.1 ΓΕΩΓΡΑΦΙΚΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ .. 137
7.1.1 Ψηφιοποίηση αρδευτικών δικτύων ... 138
7.1.2 Δημιουργία ψηφιακού μοντέλου εδάφους της περιοχής του δικτύου Τ.Ο.Ε.Β Πηνείου 140
7.2 ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ΤΗΛΕΠΙΣΚΟΠΗΣ ... 142
7.2.1 Ταξινόμηση χρήσεων γης .. 142
7.2.2 Άντληση πραγματικών τιμών εξατμισοδιαπνοής .. 144
7.2.3 Υπολογισμός υδατικών απαιτήσεων καλλιεργειών .. 146
7.3 ΥΔΡΑΥΛΙΚΑ ΜΟΝΤΕΛΑ ... 148
7.4 ΑΠΟΤΕΛΕΣΜΑΤΑ ... 152
7.4.1 Χωρική και χρονική ανάλυση βασικού ιστορικού σενάριού 153
7.4.2 Χωρική και χρονική ανάλυση εναλλακτικών διαχειριστικών σενάριων 160
8ο ΚΕΦΑΛΑΙΟ 170
8 ΕΦΑΡΜΟΓΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ ... 170
8.1 ΥΔΡΟΛΟΓΙΚΟ ΜΟΝΤΕΛΟ UTHBAL ΣΤΗ ΛΕΚΑΝΗ ΑΠΟΡΡΟΗΣ ΤΗΣ ΛΙΜΝΗΣ ΚΑΡΛΑΣ .. 170
8.1.1 Εφαρμογή του υδρολογικού μοντέλου στις δύο ζώνες .. 172
8.2 ΕΚΤΙΜΗΣΗ ΑΠΟΛΗΨΕΩΝ ΤΟΥ Τ.Ο.Ε.Β ΠΗΝΕΙΟΥ ΠΡΟΣ ΤΟΝ ΤΑΜΙΕΥΤΗΡΑ ΤΗΣ ΚΑΡΛΑΣ .. 175
8.3 ΜΟΝΤΕΛΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΑΜΙΕΥΤΗΡΑ (UTHRL) ... 178
8.4 ΠΡΟΣΟΜΟΙΩΣΗ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ .. 181
8.4.1 Γεωμετρία του υπόγειου υδροφορέα και κατάρτιση του καναλιού 181
8.4.2 Οριακές συνθήκες .. 182
8.4.3 Άντληση εισροών και εκροών υπόγειου υδροφορέα ... 183
8.4.4 Υδρογεωλογικές παράμετροι ... 184
8.4.5 Αρχικές συνθήκες .. 185
8.4.6 Ρύθμιση μοντέλου MODFLOW ... 186
8.4.7 Προσομοίωση υδραυλικής επικοινωνίας υπόγειου υδροφορέα-ταμιευτήρα 189
8.4.8 ΠΡΟΣΟΜΟΙΩΣΗ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ .. 190
8.5 ΔΙΑΧΕΙΡΙΣΤΙΚΟ ΜΟΝΤΕΛΟ WEAR ... 190
9ο ΚΕΦΑΛΑΙΟ 194
9 ΕΚΤΙΜΗΣΗ ΤΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ ΙΣΤΟΡΙΚΗΣ ΠΕΡΙΟΔΟΥ .. 194
9.1 ΔΙΑΧΕΙΡΙΣΤΙΚΑ ΣΕΝΆΡΙΑ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ ΚΑΡΛΑΣ .. 194
9.1.1 Άναπτυξη της βασικής στρατηγικής διαχείρισης δίχως επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου .. 194
9.1.2 Σενάριο μείωσης απωλειών των καναλιών ... 202
9.1.3 Σενάριο αλλαγής αρδευτικών μοντέλων άρδευσης .. 203
9.1.4 Σενάριο αντικατάστασης καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια τομάτας 205
9.1.5 Άναπτυξη της βασικής στρατηγικής διαχείρισης με επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου .. 206
9.1.6 Σενάριο μείωσης των απωλειών με τη λειτουργία του ταμιευτήρα της Καρλας και του μελλοντικού δικτύου άρδευσης .. 210
9.1.7 Σενάριο αλλαγής μεθόδων άρδευσης με επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου .. 211
9.1.8 Σενάριο αντικατάστασης καλλιέργειας βαμβακιού με θερμικηπιακή καλλιέργεια τομάτας με επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου .. 213

10ο ΚΕΦΑΛΑΙΟ.. 216
10 ΕΦΑΡΜΟΓΗ ΣΤΑΤΙΣΤΙΚΟΥ ΚΑΤΑΒΙΒΑΣΜΟΥ ΚΑΙ ΜΕΛΛΟΝΤΙΚΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ 216
10.1 ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΟΥ ΚΑΤΑΒΙΒΑΣΜΟΥ ΚΑΙ ΜΕΛΛΟΝΤΙΚΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ 217
10.1.1 Μοντέλα πιστηπότες γραμμικής παλινδρόμησης .. 218
10.1.2 Στοχαστική προσομοίωση των υπολειμματικών τιμών .. 223
10.1.3 Ανάπτυξη μελλοντικών μετεωρολογικών πλαισίων .. 227
10.2 ΑΠΟΤΕΛΕΣΜΑΤΑ .. 228
10.2.1 Ανάλυση ετήσιων αποτελεσμάτων .. 228
10.2.2 Ανάλυση μηνιαίων αποτελεσμάτων .. 231
10.2.3 Γενικά σχόλια .. 234

11ο ΚΕΦΑΛΑΙΟ.. 237
11 ΕΚΤΙΜΗΣΗ ΕΠΙΠΤΩΣΕΩΝ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΙΣ ΥΔΑΤΙΚΕΣ ΑΠΑΙΤΗΣΕΙΣ 237
11.1 ΕΚΤΙΜΗΣΗ ΜΕΛΛΟΝΤΙΚΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ ΚΑΙ ΜΕΛΛΟΝΤΙΚΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ 237
11.2 ΜΕΛΛΟΝΤΙΚΕΣ ΥΔΑΤΙΚΕΣ ΑΠΑΙΤΗΣΕΙΣ ΝΕΑΝΙΩΤΙΚΩΝ ΕΝΤΟΛΩΝ 240
11.2.1 Βασική στρατηγική διαχείρισης 1 (Σενάριο 1) : Υφιστάμενη κατάσταση 241
11.2.2 Σενάριο 1° : Υφιστάμενη κατάσταση και μείωση απωλειών αρδευτικών καναλιών 243
11.2.3 Σενάριο 1 : Υφιστάμενη κατάσταση και αλλαγή μεθόδων άρδευσης 244
11.2.4 Σενάριο 1° : Υφιστάμενη κατάσταση και αναδιάρθρωση καλλιεργειών 246
11.2.5 Βασική στρατηγική διαχείρισης 2 (Σενάριο 2) : Μελλοντική κατάσταση 247
11.2.6 Σενάριο 2° : Μελλοντική κατάσταση και μείωση απωλειών αρδευτικών καναλιών 249
11.2.7 Σενάριο 2 : Μελλοντική κατάσταση και αλλαγή μεθόδων άρδευσης 251
11.2.8 Σενάριο 2° : Μελλοντική κατάσταση και αναδιάρθρωση καλλιεργειών 253
11.3 ΣΧΟΛΙΑΣΜΟΣ............... 255

12ο ΚΕΦΑΛΑΙΟ.. 257
12 ΜΕΛΛΟΝΤΙΚΟ ΙΣΟΖΥΓΙΟ ΥΔΡΟΛΟΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ 257
12.1 ΙΣΤΟΡΙΚΗ ΠΕΡΙΟΔΟΣ ΑΝΑΦΟΡΑΣ 1980-2000 .. 257
12.2 Συνηθισμένη περίοδος κλιματικής αλλαγής 2030-2050 .. 258
12.3 Συνηθισμένη περίοδος κλιματικής αλλαγής 2080-2100 .. 262
12.4 ΓΕΝΙΚΑ ΣΧΟΛΙΑ .. 265

13ο ΚΕΦΑΛΑΙΟ.. 268
13 ΜΕΛΛΟΝΤΙΚΟ ΥΔΑΤΙΚΟ ΙΣΟΖΥΓΙΟ ΤΑΜΙΕΥΤΗΡΑ ΚΑΡΑΛΑΣ 268
13.1 ΙΣΤΟΡΙΚΗ ΠΕΡΙΟΔΟΣ ΑΝΑΦΟΡΑΣ 1980-2000 .. 268
13.2 ΣΥΝΟΛΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2030-2050 .. 272
13.2.1 Σενάριο κλιματικής αλλαγής SRES B1 .. 272
13.2.2 Σενάριο κλιματικής αλλαγής SRES A1B .. 274
13.2.3 Σενάριο κλιματικής αλλαγής SRES A2 .. 277
13.3 ΣΥΝΟΛΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2080-2100 .. 279
13.3.1 Σενάριο κλιματικής αλλαγής SRES B1 .. 279
ΚΕΦΑΛΑΙΟ ΕΚΤΙΜΗΣΗ ΜΕΛΛΟΝΤΙΚΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ
ΜΕΤΑΔΙΟΡΘΩΣΗ ΜΕΡΟΛΗΨΙΑΣ ΤΩΝ GCMs
ΠΕΔΙΟ ΑΒΕΒΑΙΟΤΗΤΑ ΠΑΓΚΟΣΜΙΟΥ ΚΛΙΜΑΤΙΚΟΥ ΜΟΝΤΕΛΟΥ
ΑΝΑΛΥΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΤΩΝ ΚΛΙΜΑΤΙΚΩΝ
ΓΕΝΙΚΑ ΣΧΟΛΙΑ
ΣΥΝΘΕΤΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2080
ΣΥΝΘΕΤΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2030
ΙΣΤΟΡΙΚΗ ΠΕΡΙΟΔΟΣ ΑΝΑΦΟΡΑΣ 1980
ΥΔΑΤΙΚΟ ΙΣΟΖΥΓΙΟ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ
ΥΔΡΑΥΛΙΚΟ ΥΨΟΣ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ
ΕΙΣΡΟΕΣ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ
ΚΑΡΛΑΣ
14.1 ΕΙΣΡΟΕΣ ΣΤΟΝ ΥΠΟΓΕΙΟ ΥΔΡΟΦΟΡΕΑ
14.1.1 Κατείσδυση
14.1.2 Επιστροφή από την αρδευση
14.1.3 Πλευρικές εισροές
14.1.4 Εισροές από τον ταμιευτήρα
14.2 ΕΚΡΟΕΣ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ
14.3 ΥΔΑΤΙΚΟ ΙΣΟΖΥΓΙΟ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ ΓΙΑ ΤΑ ΣΕΝΑΡΙΑ 1, 1α, 1β,
1γ
14.4 ΥΔΑΤΙΚΟ ΙΣΟΖΥΓΙΟ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ ΓΙΑ ΤΑ ΣΕΝΑΡΙΑ 2, 2α, 2β, 2γ....299
14.5 ΥΔΡΑΥΛΙΚΟ ΥΨΟΣ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ
14.5.1 Υδραυλικό ύψος υπόγειου υδροφορέα για τα σενάρια 1,2
14.5.2 Υδραυλικό ύψος υπόγειου υδροφορέα για τα σενάρια 1α,2α
14.5.3 Υδραυλικό ύψος υπόγειου υδροφορέα για τα σενάρια 1β,2β
14.5.4 Υδραυλικό ύψος υπόγειου υδροφορέα για τα σενάρια 1γ,2γ
15ο ΚΕΦΑΛΑΙΟ
15 ΥΔΑΤΙΚΟ ΙΣΟΖΥΓΙΟ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ
15.1 ΙΣΤΟΡΙΚΗ ΠΕΡΙΟΔΟΣ ΑΝΑΦΟΡΑΣ 1980-2000
15.2 ΣΥΝΘΕΤΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2030-2050
15.2.1 Σενάριο κλιματικής αλλαγής SRES B1
15.2.2 Σενάριο κλιματικής αλλαγής SRES A1B
15.2.3 Σενάριο κλιματικής αλλαγής SRES A2
15.3 ΣΥΝΘΕΤΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2080-2100
15.3.1 Σενάριο κλιματικής αλλαγής SRES B1
15.3.2 Σενάριο κλιματικής αλλαγής SRES A1B
15.3.3 Σενάριο κλιματικής αλλαγής SRES A2
15.4 ΓΕΝΙΚΑ ΣΧΟΛΙΑ
16ο ΚΕΦΑΛΑΙΟ
16 ΑΝΑΛΥΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΤΩΝ ΚΛΙΜΑΤΙΚΩΝ
ΜΟΝΤΕΛΩΝ
16.1 ΠΕΔΙΟ ΑΒΕΒΑΙΟΤΗΤΑΣ ΠΑΓΚΟΣΜΙΟΥ ΚΛΙΜΑΤΙΚΟΥ ΜΟΝΤΕΛΟΥ
16.2 ΔΙΟΡΘΩΣΗ ΜΕΡΟΛΗΨΙΑΣ ΤΩΝ GCMs
16.3 ΜΕΤΑ-ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΞΟΔΟΥ RCM
16.3.1 Στατιστικοί μετασχηματισμοί
16.3.2 Μετασχηματισμοί που προέρχονται από την κατανομή (Distribution Derived
Transformations, DIST)
16.3.3 Μη Παραμετρικοί μετασχηματισμοί
16.3.4 Παραμετρικοί μετασχηματισμοί
16.4 ΕΚΤΙΜΗΣΗ ΜΕΛΛΟΝΤΙΚΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ
16.5 ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΔΡΑΥΛΙΚΗΣ ΕΝΟΤΗΤΑΣ ...367
16.5.1 Υδρολογικό ισοζύγιο ..367
16.5.2 Υδατικό ισοζύγιο ταμιευτήρα ...368
16.5.3 Μοντέλο υπόγειας υδρολογίας ...368
16.5.4 Σχολιασμός αβεβαιότητας κλιματικών μοντέλων ...371
17ο ΚΕΦΑΛΑΙΟ ..373
17 ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΑΙ ΠΡΟΤΑΣΕΙΣ ..373
17.1 ΓΕΝΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΔΙΑΤΡΙΒΗΣ ...373
17.2 ΕΙΔΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΔΙΑΤΡΙΒΗΣ ..375
17.3 ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ..381
ΧΡΗΜΑΤΟΔΟΤΗΣΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ - ΔΗΜΟΣΙΕΥΣΕΙΣ382
ΧΡΗΜΑΤΟΔΟΤΗΣΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ ..382
ΔΗΜΟΣΙΕΥΣΕΙΣ ..382
i) Δημοσιεύσεις σε επιστημονικά περιοδικά ..382
ii) Δημοσιεύσεις σε Πρακτικά Συνεδρίων μετά από κρίση κειμένου383
ΒΙΒΛΙΟΓΡΑΦΙΑ ..385
Η Διδακτορική Διατριβή ασχολείται με την διαχείριση υδατικών ροών (επιφανειακών και υπόγειων) σε αγροτικές λεκάνες απορροής με εντατικοποιημένη χρήση αρδευτικού νερού υπό συνθήκες κλιματικής μεταβλητότητας και αλλαγής. Απότερος σκοπός ισχύος ή αρδευτικού νερού και την πρόβλεψη μελλοντικών διαχειριστικών σεναρίων σύμφωνα με μελλοντικές κλιματικές συνθήκες. Το σύστημα περιλαμβάνει συζευγμένα μοντέλα προσομοίωσης και διαχείρισης των υδατικών ροών σε επίπεδο αρδευτικού δικτύου και στη συνέχεια συνεπεία υδατικής καταστάσεως, να σχεδιάζει και να εφαρμόζει συστηματικές διαχειριστικές ενοποιήσεων.

Το σύστημα βαθμονομήθηκε και επαληθεύτηκε στην λίμνη της Κάρλας αλλά μπορεί να χρησιμοποιηθεί σε επίπεδο αρδευτικού δικτύου και στη συνέχεια συνεπεία υδατικής καταστάσεως, στη συνέχεια συνεπεία υδατικής καταστάσεως, να σχεδιάζει και να εφαρμόζει συστηματικές διαχειριστικές ενοποιήσεων, αποτελεί από το σύστημα προσομοίωσης τον (ΣΔΔ) και το σύστημα προσομοίωσης αρδευτικού δικτύου τον (ΣΠΔ). Χρήζει αναφοράς η λειτουργία δύο αρδευτικών δικτύων στην περιοχή, ένα αρδευτικό δίκτυο Ανωτέρας του Ο.Ε.Β Πηνειού και δεύτερο το νέο αρδευτικό δίκτυο του Ο.Ε.Β Κάρλας το οποίο κατασκευάστηκε στα πλαίσια του έργου ανασύστασης της Τάμιευτήρα της Κάρλας. Η ειδική και γενική αυτή προσέγγιση της διαχείρισης των υδατικών ροών αποτελεί ένα βασικό στοιχείο και κανονικής αυτής προσέγγισης.

Το ΣΠΔ (Σύστημα Πληροφοριών Δικτύων) χρησιμοποιεί μοντέλα προσομοίωσης της λειτουργίας των δύο δικτύων το οποίο εν συνεχεία συζευγνύονται με ένα διαχειριστικό μοντέλο. Βασικό εργαλείο του συστήματος αποτελεί το γεωγραφικό σύστημα πληροφοριών στο οποίο ενσωματώνεται η βάση δεδομένων της πληροφορικής και καθίσταται δυνατή η εκτίμηση των υδατικών απαιτήσεων της λεκάνης απορροής ή της λεκάνης απορροής και της υδατικής εξατμιστικής ενοποιήσεως της λεκάνης απορροής. Χρησιμοποιείται ο αλγόριθμος ενεργειακού ίσοτος επιφάνειας για έδαφος SEBAL (Surface Energy Balance for Land) για να ανεπάγγλη τιμές πραγματικής εξατμιστικής χρησιμοποιόντας υψηλής ανάλυσης εικόνες του LANDSAT TM για την καλλιεργητική περίοδο 2007. Οι μηνιαίες τιμές εξατμιστικής χρησιμοποιούνται ως δεδομένα εισόδου στο μοντέλο Cropwat και τα αποτελέσματα του Cropwat ως
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης - Περίληψη

Πανεπιστήμιο Θεσσαλίας Τμήμα Πολιτικών Μηχανικών

δεδομένα εισόδου για το διαχειριστικό μοντέλο WEAP. Το σενάριο βάσης που αναπτύχτηκε βασίζεται στην πραγματική κατάσταση του δικτύου του Τ.Ο.Ε.Β Πηνείου για την καλλιεργητική περίοδο 2007. Το ΣΠΔ βαθμονομήθηκε με τη χρήση παρατηρημένων τιμών του 2007 και η παραμετροποίηση του δικτύου έγινε με την πραγματική λειτουργία του δικτύου. Η λειτουργία του δικτύου του Τ.Ο.Ε.Β Πηνείου γίνεται με το μοντέλο Technologismiki ενώ η λειτουργία του δικτύου του Τ.Ο.Ε.Β Κάρλας με το μοντέλο WaterCad.

Από την άλλη το ΣΠΛ (Σύστημα Προσομοίωσης Λεκάνης Απορροής) αξιολογεί την δυναμική των υδατικών πόρων καθώς και τη ζήτηση νερού σε διάφορες αρδευτικές ζώνες. Το σύστημα περιλαμβάνει διασυνδεδεμένα μοντέλα για την εκτίμηση των υδατικών πόρων (επιφανειακών και υπόγειων) της λεκάνης απορροής, τα υδροτεχνικά έργα, τις υδατικές χρήσεις και την διαχείριση νερού για διάφορες στρατηγικές διαχείρισης νερού σε συνθήκες μη λειτουργίας της Κάρλας αλλά και σε συνθήκες λειτουργίας του. Το ΣΠΛ (Σύστημα προσομοίωσης λεκάνης απορροής) περιλαμβάνει α) το μοντέλο υδατικού ισοζυγίου του Πανεπιστημίου Θεσσαλίας UTHBAL (University of Thessaly water BALance model) για την εκτίμηση των επιφανειακού υδρολογικού ισοζυγίου και την εκτίμηση της κατείσδυσης προς τον υδροφόρο, β) το μοντέλο ταμιευτήρα/λίμνης του Πανεπιστημίου Θεσσαλίας UTHRL (University of Thessaly Reservoir/Lake model) που προσομοιώνει το τρόπο λειτουργίας του ταμιευτήρα, γ) το μοντέλο προσομοίωσης λιμνών/υπόγειου υδροφορέα LAK3 (Lake/Aquifer simulation model) και δ) το μοντέλο υπόγειων υδατικών πόρων MODFLOW για την προσομοίωση του υπόγειου υδροφορέα.

Οι επιπτώσεις της κλιματικής αλλαγής στα υδρομετεωρολογικά δεδομένα εκτιμήθηκαν από το στατιστικό καταβιβασμό των αποτελεσμάτων ενός κλιματικού μοντέλου παγκόσμιας ατμοσφαιρικής κυκλοφορίας (Global Climate Model, GCM) με μια μεθοδολογία στατιστικού καταβιβασμού κλίμακας, με την οποία εκτιμήθηκαν οι μηνιαίες χρονικές σειρές θερμοκρασίας και βροχόπτωσης για μελλοντικές περιόδους. Τα αποτελέσματα του κλιματικού μοντέλου CGCM3 του Καναδικού Κέντρου για την Ανάλυση των Κλιματικών Προσομοιώσεων (Canadian Centre for Climate Modeling Analysis) για τρία σενάρια εκπομπών αερίων του θερμοκηπίου, δηλαδή SRES B1, SRES A1B και SRES A2, χρησιμοποιήθηκαν για τον προσδιορισμό των συνεπειών των μεταβαλλόμενων κλιματικών σήματος στις μετεωρολογικές μεταβλητές βροχόπτωσης και θερμοκρασίας. Η μεθοδολογία αναπτύχθηκε για την ιστορική περίοδο 1980-2000 και στη συνέχεια εφαρμόστηκε για δύο συνθετικές χρονικές περιόδους 2030-2050 και 2080-2100. Η ιστορική και οι μελλοντικές περιόδοι συγκρίθηκαν σε επίπεδο μηνός αλλά και έτους χρησιμοποιώντας διάφορα στατιστικά κριτήρια όπως ο μέσος και η τυπική απόκλιση. Η ανάλυση έδειξε
ότι το σήμα της κλιματικής αλλαγής επηρεάζει σε μικρό ποσοστό τη βροχόπτωση και ακόμα μικρότερο τη θερμοκρασία. Δύο στρατηγικές λειτουργίας των κύριων τεχνικών έργων συνδυάστηκαν με τρεις στρατηγικές ζήτησης νερού. Τελικά οκτώ (8) στρατηγικές ζήτησης νερού εξετάστηκαν για παρατηρημένες κλιματικές συνθήκες και είκοσι τέσσερις (24) στρατηγικές για συνθήκες μελλοντικού κλίματος. Τα αποτελέσματα έδειξαν ότι υπό την υπάρχουσα διαχείριση η έλλειμμα νερού στη λεκάνη απορροής της λίμνης Κάρλας είναι σημαντικό και θα γίνει εξαιρετικής σημασίας στο μέλλον όταν οι επιπτώσεις της κλιματικής αλλαγής είναι μέτριες.

Τέλος, έγινε ανάλυση αβεβαιότητας του συστήματος χρησιμοποιώντας αποτελέσματα Παγκόσμιων Κλιματικών Μοντέλων και Περιοχικών Κλιματικών Μοντέλων (Regional Climate Models, RCMs), από τα οποία διορθώθηκε η μεροληψία με τη μέθοδο quantile mapping. Πέντε (5) διαφορετικά συζευγμένα μοντέλα GCM+RCM, χρησιμοποιήθηκαν για την εκτίμηση της αβεβαιότητας.

Τα κύρια βήματα της Διατριβής είναι:

- Ανάπτυξη γεωγραφικού συστήματος πληροφοριών το οποίο περιλαμβάνει χάρτες της Γεωγραφικής Υπηρεσίας Στρατού, ορθοφωτοχάρτες του Υπουργείου Γεωργίας, δορυφορικές εικόνες του κτηματολογίου, χάρτη του Τ.Ο.Ε.Β Πηνειού, χάρτης της μελέτης επανασύστασης της λίμνης Κάρλας, το ψηφιακό μοντέλο εδάφους, και ψηφιοποιημένα αρδευτικά δίκτυα.
- Ανάπτυξη της βάσεως δεδομένων τηλεπισκόπησης η οποία περιλαμβάνει δορυφορικές εικόνες υψηλής ευκρίνειας του LANDSAT TM
- Αντλήση πραγματικών τιμών εξατμισοδιαπνοής με την χρήση του αλγόριθμου SEBAL (Surface Energy Balance Algorithm for Land)
- Εκτίμηση των υδατικών αναγκών και των απαιτήσεων άρδευσης σε ιστορικές συνθήκες με το μοντέλο CROPWAT
- Προσομοίωση της λειτουργίας του δικτύου του Τ.Ο.Ε.Β Πηνειού με το μοντέλο Technologismiki
- Προσομοίωση της λειτουργίας του δικτύου του Τ.Ο.Ε.Β Κάρλας με το μοντέλο WaterCad.
- Σύζευξη των υδρολογικών μοντέλων με το διαχειριστικό μοντέλο WEAP
- Ανάπτυξη δεδομένων εισαγωγής για τις ιστορικές και μελλοντικές κλιματικές συνθήκες: Αρχικά εκτιμώντας τη μέση επιφανειακή βροχόπτωση, θερμοκρασία και δυνητική εξατμισοδιαπνοή για την λεκάνη απορροής της λίμνης Κάρλας. Στατιστικός καταβιβασμός κλιμακών των παραπάνω μετεωρολογικών μεταβλητών χρησιμοποιώντας μια στοχαστική μεθοδολογία καταβιβασμού με βάση τα αποτελέσματα του μοντέλου CGCM3 και ανάπτυξη τριών σκηνών κλιματικής μεταβολής με βάση τρία κοινωνικοοικονομικά SRES σενάρια.
Διδακτορική Διατριβή: Τζαμπύρας Ιωάννης

Περίληψη

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

- Εκτίμηση των υδατικών αναγκών και των απαιτήσεων άρδευσης σε μελλοντικές κλιματικές συνθήκες με το μοντέλο CROPWAT

- Εκτίμηση των επιφανειακών υδρολογικών διεργασιών και υπολογισμός της (κατείσδυσης) φόρτισης του υπόγειου υδροφορέα με τη χρήση του μοντέλου υδατικού ισοζυγίου του Πανεπιστημίου Θεσσαλίας UTHBAL (University of Thessaly water BALance model)

- Ανάπτυξη του μοντέλου προσομοίωσης για τη λειτουργία του ταμιευτήρα με τη χρήση του μοντέλου ταμιευτήρα/λίμνης του Πανεπιστημίου Θεσσαλίας UTHRL (University of Thessaly Reservoir/Lake model)

- Εφαρμογή του μοντέλου προσομοίωσης λίμνης/υπόγειου υδροφορέα LAK3 (Lake/Aquifer simulation model)

- Ανάπτυξη του μοντέλου προσομοίωσης του υπόγειου υδροφορέα (με τη χρήση του μοντέλου υπόγειων υδατικών πόρων MODFLOW)

- Ανάλυση αβεβαιότητας του συστήματος με τη χρήση της μεθόδου ποσοτικής χαρτογραφησης για τον καταβιβασμό των βροχόμετρικών και θερμοκρασιακών δεδομένων αλλά και χρήση δεδομένων εισόδου από τα κλιματικά μοντέλα CNRM-CM5.1, EC-EARTH.2, IPSL-CM5, HadGEM2-ES και MPI-ESM
EXTENDED ABSTRACT

ABSTRACT

This study is dealing with water resources management (surface and groundwater) in rural watersheds with intensified use of irrigation water under climate change conditions. The ultimate purpose was the creation of an integrated water resources simulation and management system for agricultural basins where irrigation is the main water use and the projection of future water management scenarios according to future climate conditions. The system includes coupled simulation and water management models which allow the user to prevent difficult hydrological schemes, to plan and apply irrigation water management strategies.

The system was calibrated and validated at Lake Karla watershed, located in Thessaly, Greece but the overall methodology can be used as basis for future analysis everywhere. In this study the water resources management is simulated at irrigation district level (open channels network or pressurized) and then is integrated at watershed level. The system practically consists of the district information system (DIS) and the watershed information system (WIS). In the study region two irrigation networks are operating, the surface irrigation network of the Local Administration of Land Reclamation (LALR) of Pinios and the new closed pipe irrigation network of Lake Karla LALR which was constructed within the restoration of Lake Karla reservoir project. This special and general approach of water management constitutes a basic element of innovation.

The DIS uses simulation models of the two irrigation networks which are coupled with a water management model. A geographical information system (GIS) constitutes a basic tool of the system in which the remote sensing data base is coorporated and in this way the basin water demands are calculated with a specific model. Surface Energy Balance Algorithm for Land (SEBAL) is used to derive monthly actual evapotranspiration (ET) values from Landsat TM imagery. The methodology was developed using high quality Landsat TM images during 2007 growing season. Monthly ET values are then used as an input to CROPWAT model and the outputs of CROPWAT model are then used as input for WEAP model. The developed main scenario is based on the actual situation of the surface irrigation network of the Local Administration of Land Reclamation (LALR) of Pinios for the year of 2007. The DIS is calibrated with observed data of this year and the district parameterization is conducted based on the actual operation of the network. The operation of the surface
irrigation network of Pinios LALR is simulated using Technologismiki Works, while the operation of closed pipe irrigation network of Lake Karla LALR is simulated using Watercad.

On the other hand, WIS evaluates water resources potential and water demands at irrigation zones for present and future climate conditions. The system includes coupled model components for estimation of surface water and groundwater resources of the watershed, operation of hydrotechnical projects (reservoir operation and irrigation works), estimation of water uses and water management for various water resources management strategies under the current status without the operation of the reservoir and the future status with the operation of the reservoir. The WIS (Watershed Information System) includes: i) the University of THessaly water BALance model (UTHBAL) for the simulation of the surface hydrological processes and the estimation of the groundwater recharge (UTHBAL model) ii) the University of Thessaly Reservoir/Lake model for the simulation of the reservoir operation (UTHRL) iii) the lake-aquifer simulation model (LAK3) and iv) the groundwater model for the aquifer’s simulation (MODFLOW).

The climate change component is approached with the use of a statistical downscaling method to estimate monthly precipitation and temperature time series for future climate periods. The outputs of the Canadian Centre for Climate Modeling Analysis Global Circulation Model CGCM3 were applied for three socioeconomic scenarios, namely SRES B1, SRES A1B and SRES A2 for the assessment of climate change impact on precipitation and temperature. The methodology has been developed for the historical period 1980-2000 and applied for two future periods 2030–2050 and 2080–2100. Historical and future periods were compared for monthly and annual basis using various statistical criteria such as the mean and standard deviation. Results showed that climate change will have minor impacts on precipitation and even smaller impacts on temperature.

Two operational strategies of hydro-technical project development are coupled with three water demand strategies. Overall, eight water management strategies are evaluated for present climate conditions and twenty four water management strategies for future climate conditions have been evaluated. The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is large and it is expected to become critical in the future, even though the impact of climate change on the meteorological parameters is very moderate. Furthermore, an uncertainty analysis was conducted using a different statistical downscaling approach and the outcomes of five global circulation model (GCMs). The results showed that the water management system operates successfully regardless the climatic input data.
Finally, uncertainty analysis was conducted using GCM and RCM outputs on which a bias correction took place by use of quantile mapping. Five (5) different coupled models GCM+RCM were used for the uncertainty estimation.

The main steps of the dissertation were:

- Development of a Geographical Information System (GIS) which includes maps of the Geographical Service of the Army, orthophoto maps of the Ministry of Agriculture, satellite images of the cadastral map of LALR Pinios, maps of the study for the reconstruction of Lake Carla, the Digital Elevation Model, and digital soil model and digitized irrigation networks.
- Development of the remote sensing database which includes LANDSAT TM high resolution satellite imagery.
- Derivation of real evapotranspiration values using the SEBAL algorithm (Surface Energy Balance Algorithm for Land).
- Calculation of water needs and irrigation requirements in historical conditions with the CROPWAT model.
- Simulation of the operation of the surface network of Pinios LALR with the Technologismiki model.
- Simulation of the operation of the new network of Lake Karla LALR with the WaterCad model.
- Coupling of hydrological models with the WEAP management model.
- Development of input data for historical and future climatic conditions: Initially estimating the average surface rainfall, temperature and potential evaporation for the catchment area of Lake Carla. Statistical downscaling of the above meteorological variables using a stochastic downscaling methodology that uses the results of the CGCM3 model and development of three climate change scenarios based on three socio-economic SRES scenarios (A1B, A2, and B1) for two future periods, one medium term 2030–2050 and one long term 2080–2100.
- Assessment of water needs and irrigation requirements in future climatic conditions with the CROPWAT model.
- Assessment of surface hydrological processes and calculation of (penetration) charge of the underground aquifer using the water balance model of the University of Thessaly UTHBAL (University of Thessaly water BAlance model).
- Development of the simulation model for the operation of the reservoir using the reservoir / lake model of the University of Thessaly UTHRL (University of Thessaly Reservoir / Lake model).
• Development of the simulation model for the operation of the reservoir using the reservoir / lake model of the University of Thessaly UTHRL (University of Thessaly Reservoir / Lake model)
• Application of the LAK3 lake / underground aquifer simulation model (Lake / Aquifer simulation model)
• Development of the groundwater simulation model (using the MODFLOW groundwater resources model)
• Uncertainty analysis using the quantile mapping method for the downscaling of rainfall and temperature data and use of the input data of the climate models CNRM-CM5.1, EC-EARTH.2, IPSL-CM5, HadGEM2-ES and MPI –ESM.
ΚΕΦΑΛΑΙΟ 1ο

1 ΕΙΣΑΓΩΓΗ

Είναι γεγονός ότι η κλιματική αλλαγή είναι η σημαντικότερη σύγχρονη απειλή που αντιμετωπίζει ο πλανήτης. Η θερμοκρασιακή αύξηση του πλανήτη οφείλεται κυρίως στον άνθρωπο. Το μεγαλύτερο ποσοστό της θερμοκρασιακής ανάδοου πραγματοποιήθηκε από την αυξάνοντα απαξίωση. Η θερμοκρασιακή αύξηση του εκπομπής των αερίων του θερμοκηπίου και τους θεωρείς αεροζώλια, οι εκπομπές των οποίων εξαρτώνται από την ανθρώπινη δραστηριότητα. Η συνέχεια της ίδιας λογικής είναι πολύ πιθανό δημιουργήσει κλιματικές ανυπακοίασεις και αλλαγές όπως προκρίνει η επιστημονική κοινότητα.

Τις τελευταίες 420 χιλιετίες η γη βίωσε παραπάνω από τέσσερις κλιματικές περιόδους. Ο τελευταίος κύκλος παγετώνων άρχισε πριν από 120 χιλιετίες και σταμάτησε πριν από 16 χιλιετίες ενώ αντικαταστάθηκε από θερμές μέρες που επικράτησαν ως τις μέρες μας. Ο ισχυρός δεσμός ανάμεσα σε θερμοκηπιακά αέρια που χαρακτηρίζονται από φυσική έκλυση, όπως το διοξείδιο του άνθρακα (CO2) και το μεθανίο (CH4), και του Ανταρκτικού κλίματος κατά τη διάρκεια της τελευταίας κλιματικής περιόδου έχει γίνει εμφανής και στις τέσσερις κλιματικές περιόδους συμπληρώνοντας και τις 420 χιλιετίες. Από τον αιώνα της βιομηχανικής επανάστασης, οι ανθρωποποιημένες δραστηριότητες επιτάχυναν την αύξηση της συγκέντρωσης των συγκεκριμένων αερίων, στα σημαντικά επίπεδα του παρόντος. Η άνοδος αυτή προκάλεσε αντίστοιχη άνοδο της παγκόσμιας επιφάνειας θερμοκρασίας, από 0,4°C και 0,8°C από το 1860.

της περιόδου. Ωστόσο δεν έχει καταγραφεί σημαντική εξέλιξη του La Nina που να συνοδεύεται με εντυπωσιακά ζεστά καλοκαίρι όπως το 1999. Αναφορικά με την υπότοπωση, επαληθεύτηκε ότι η υπότοπωση της επιφάνειας του πλανήτη μεγαλώνει στο μεγαλύτερο μέρος του Βόρειου Ήμισυφαιρίου ειδικά στα μεγάλα και μεσαία γεωγραφικά πλάτη αντίθετα πολλές περιοχές έγιναν ξηρότερες. Οι μελλοντικές κλιματικές μεταβολές θα επηρεάσουν βασικές διεργασίες του υδρολογικού κύκλου οπότε και τις ανθρώπινες δραστηριότητες. Τα παγκόσμια μοντέλα κυκλοφορίας προβάλλουν, ότι μέσω της θερμοκρασιακής ανάδοσης και της ελάττωσης των υποτοπώσεων, θα προκυψει αμιγώς ιδιαίτερη ζήτηση, και ως επακόλουθο θα πως συνεπής οι περιστατικές ιδιαίτερης ελίτωσης. Η κλιματική αλλαγή έχει σοβαρές επιπτώσεις στο αστικό και αγροτικό περιβάλλον (Feilberg and Mark, 2016) οι οποίες θα επιδράσουν σε κάθε δραστηριότητα που έχει σχέση με το νερό (Molle and Berkoff, 2009). Οι συνέπειες της αλλαγής του κλίματος στην ποσότητα του νερού προβάλλονται ως τα πλέον σημαντικά περιβαλλοντικά πρωτοπορίες (IWA, 2015). Επομένως η ορθολογική διαχείριση του νερού θα μπορεί να λαμβάνει υπόψη ένα μακρόπρο διαπλασία και σημαντική της συνιστώσα αποτελεί η μεταβολή του κλίματος (Russo, et al., 2014, Mourato et al., 2015).

Αρκετές εργασίες που δημοσιεύτηκαν μελετούν τις συνέπειες και τα μέτρα αντιμετώπισης της κλιματικής αλλαγής των υπό κατάσταση με νερό, και κυρίως την αγροτική παραγωγή (Schlenker et al., 2007; Fisher et al., 2012; Chartzoulakis and Bertaki, 2015). Το νερό του αστικού τομέα είναι βεβαίως πολύ σημαντικό και η ικανοποίηση της ζήτησης υπό συνήθεις μεταβαλλόμενου κλίματος θα μπορεί να πραγματοποιηθεί μέσω της ορθολογικής διαχείρισης. Από την άλλη, σε ό,τι αφορά το αρδευτικό νερό και τη συστή διαχείριση του κάτω από συνήθεις μεταβαλλόμενου κλίματος, το μεγαλύτερο μέρος της επιστημονικής κοινότητας συμφωνεί ότι η αμιγώς και αποδοτικότερη χρησιμοποίηση του νερού συνδέεται με τα ποιοτικά τρόφιμα (Fischer et al., 2007; Sun et al., 2008; Palmer et al., 2008; Alcamo et al., 2007; McDonald and Givertz, 2013). Οι Calzadilla et al. (2014) εκτιμούν τις συνέπειες των κλιματικών μεταβολών στην κοινονικοοικονομική κατάσταση αγροτικών περιοχών και προτείνουν μέτρα αντιμετώπισης.

Στη διατριβή αυτή λαμβάνει χώρα μια γενική παρουσίαση των σημαντικότερων μεταβολών του κλίματος της γης οι οποίες ενδέχεται να πραγματοποιηθούν κατά τις αναλύσεις του IPCC (Intergonernal Panel on Climate Change), περιγράφονται τα σεναρία κλιματικής αλλαγής SRES μέσα από την έκθεση του IPCC ενώ στο τέλος της διατριβής παρουσιάζονται και τα σενάρια RCPs από την έκθεση του IPCC. Πιο συγκεκριμένα αναφέρονται τα κοινονικοοικονομικές πτυχές σεναρίων, δηλαδή τα σημεία που επικεντρώνεται κάθε σενάριο, όπως η ταχεία οικονομική ανάπτυξη και αντίστοιχη περιβαλλοντική κατάπρεση ή μια βιώσιμη παγκόσμια εξέλιξη που λαμβάνει υπόψη την περιβαλλοντική συνιστώσα. Επίσης για τη σύνδεση των
επιστημονικών προβολών του κλίματος με την περιοχή μελέτης γίνεται μια ανάλυση των επιπτώσεων της μεταβολής του κλίματος μέσα στα όρια της Μεσογείου, αναφέρονται οι κυριότερες κλιματικές παράμετροι και διατριβή εισχωρεί ειδικότερα σε κλιματικές επιδράσεις που έχουν παρατηρηθεί στην Ελλάδα σε διάφορες περιοχές. Γίνεται εφικτό με τον τρόπο αυτό να σχηματίσει ο αναγνώστης μια σφαιρική άποψη σφαιρική άποψη για τις κλιματικές μεταβολές στην περιοχή που εμπίπτει η μελετούμενη υδρολογική (Κάρλα).

Είναι σαφές ότι οι κλιματικές συνθήκες συνδέονται με άρρητο τρόπο με τους υδατικούς πόρους καθώς οποιαδήποτε μεταβολή του κλίματος αντικατοπτρίζεται στη διαθεσιμότητα των υδατικών πόρων. Η ενταπηκοποίηση των ανθρωπογενών δραστηριοτήτων, και η αλλόγιστη χρήση των φυσικών πόρων οδήγησαν στον καπιταλιστικό μοντέλο ανάπτυξης της πρόσφατης περιόδου. Ετσι λοιπόν το περιβάλλον αντιμετωπίζεται σαν ατομική ιδιοκτησία, που πρέπει να παρέχει πρώτες ύλες για συνεχή ανάπτυξη. Από την άλλη, εξελίχτηκε η ανάπτυξη θέσεων οικολογικά φιλικών που μιλούσαν κατά της τεχνολογικής προώθησης και της οικονομικής ανάπτυξης, αφού τις θεωρούσαν υπαίτιες για την περιβαλλοντική κατάπτωση (Redclift, 1993). Τη χρυσή τομή του προβλήματος αποτελεί η θεωρία η οποία είναι γνωστή ως Ολοκληρωμένη και Βιώσιμη Διαχείριση Υδατικών Πόρων, που σαφώς ενοεί την τεχνολογική και οικονομική ανάπτυξη λαμβάνοντας όμως υπόψη περιβαλλοντικούς περιορισμούς. Παρακάτω περιγράφονται τα βασικά στάδια της προσέγγισης αυτής, που είναι ταχέως εξελισσόμενη, μεταμορφώνεται και εφαρμόζει στις μεταβαλλόμενες απαιτήσεις.

Η "Διαχείριση Υδατικών Πόρων" περιλαμβάνει τις μεθοδολογίες και τους τομείς που είναι απαραίτητοι στα πλαίσια της βιώσιμης διαχείρισης του διαθέσιμου νερού, έτσι ώστε να καλυφθούν οι υδατικές ανάγκες με τον βέλτιστο τρόπο (Mylòpoulos, 2006). Περιέχει επομένως τόσο την επιστημονικότητα, όσο και την επιχειρησιακή επέμβαση και τα πολιτικά μέσα, που αποβλέπουν στη μεταμόρφωση των υδατικών πόρων, ώστε να παρουσιαστεί το μεγαλύτερο κέρδος από την χρήση τους, σε συμφωνία κριτηρίων, προτεραιοτήτων και στόχων οι οποίοι έχουν τεθεί (Serageldin, 1995). Η προσέγγιση αυτή δεν εστιάζει στο επιστημονικό κομμάτι της υδρολογίας όπως έχει καθιερωθεί (καταγραφή και ανάλυση για την καθαρότητα και επάρκεια χωρικά και χρονικά) αφού περιλαμβάνει και μέτρα διαχείρισης των αποβλήσεων. Με αυτό τον τρόπο η υδρολογική και η κοινωνικοοικονομική πτυχή, συνδέονται και μπορούν γίνουν ένα εργαλείο για την καθέρωση ιστοτικής πολιτικής, σύμφωνα με την οποία θα επιχειράται το βέλτιστο αποτέλεσμα. Είναι λοιπόν ξεκάθαρο ότι ο τομέας της Διαχείρισης Υδάτινων Πόρων αποτελεί ένα σύγχρονο επιστημονικό πακέτο το οποίο περιλαμβάνει πληθώρα κλάδων όπως της υδρολογίας, της υδραυλικής, της υδρογεωλογίας, της γεωλογίας, της οδομεταφοράς, της μετεωρολογίας, της πληροφορικής, της κοινωνικολογίας, της πολιτικής επιστήμης, των οικονομικών, της
νομικής, της στατιστικής και της θεωρίας πιθανοτήτων, της επιχειρησιακής έρευνας και της ανάλυσης συστημάτων, με στόχο την αμβλύνση διαφορών στις παρουσιάζονται, που να οδηγήσει στα πιο εφαρμόσιμα πολιτικά μέτρα. Η Διαχείριση Υδάτινων Πόρων διαφέρει από τον τομέα της Οικονομικής Θεωρίας, όπως το νερό συγκρίνοντας με τα λοιπά αγαθά.

Η έννοια της Βιώσιμης ή Αειφόρου ανάπτυξης ή διαχείρισης, παρουσιάζει μια ανάπτυξη με σεβασμό στους φυσικούς πόρους. Περιγράφει μελλοντικές πολιτικές και δράσεις που στοχεύουν τόσο στην εξυπηρέτηση των τρέχοντων απαιτήσεων όσο και στην διατήρηση της διαθεσιμότητας των φυσικών πόρων για χρησιμοποίησή τους από μελλοντικές γενιές. Η ικανοποίηση των υδατικών αναγκών εφείλει να πραγματοποιείται σεβόμενη την αξία του ύδατος ως ανεκτήμενου φυσικού πόρου που επιβάλλεται να βρισκεται σε συνεχή επάρκεια. Με αυτό το τρόπο η υδατική επάρκεια γίνεται ακόμα δυσκολότερη. Η κατανάλωση των υδατικών πόρων δε μπορεί να είναι ταχύτερη από την ετήσια ανανέωση, στα πλαίσια του φυσικού υδρολογικού κύκλου (Μυλόπουλος, 2006). Η αντιμετώπιση της μελλοντικής κατανάλωσης ως μια υπάρχουσα χρήση νερού θα δώσει τη δυνατότητα για να καταστεί η διαχείριση βιώσιμη.

Είναι βέβαιο ότι στο κομμάτι της διαχείρισης ο άνθρωπος μπορεί να επέμβει μόνο στην κατανάλωση και τη χρήση νερού, όχι όμως στη φυσική προσφορά του, επομένως κρίσιμη συνιστώσα αποτελεί η διαχείριση της ζήτησης του νερού. Η πραγματοποίηση των παραπάνω σταθερών, επιτυγχάνεται μέσω της βέλτιστης διαχείρισης στα διαθέσιμα υδατικά αποθέματα (Tate, 2001). Οι απαιτήσεις σε νερό είναι μεταβαλλόμενες, και είναι σαφές ότι η προσφερόμενη από το φυσικό ποσότητα δεν είναι άπειρη. Τα μέτρα που στοχεύουν την βελτίστη αποδοτικότητα στις υδατικές χρήσεις, και την κατανάλωση των μικρότερης δυνατής ποσότητες, αποτελούν βασικό κομμάτι της Διαχείρισης της Ζήτησης. Η ορθολογική διαχείριση συμβάλλει στη μείωση της ζήτησης και λογίζεται ως προσφορά (Κολοκυθά, 1999).

Η Βιώσιμη Διαχείριση της Ζήτησης όπως γίνεται αντιληπτό από τα παραπάνω ενσωματώνει στο κομμάτι του υδατικού πολιτικών στόχων και πολιτικές που στοχεύουν στην επάρκεια νερού. Αυτό είναι πολύ δύσκολο να επιτυγχάνει διότι συγκρούεται με τις διαφορετικές χρήσεις νερού. Οι διάφορες χρήσεις νερού έρχονται σε σύγκρουση σε αρκετές περιπτώσεις. Σε αυτό το κομμάτι έρχεται να απαντήσει η ολοκληρωμένη διαχείριση υδατικών πόρων. Ο προγραμματισμός λοιπόν θα πρέπει να εμπεριέχει το σύνολο των παραμέτρων, των απαιτήσεων, και των στόχων, και όχι μεμονωμένα. Είναι σαφές έτσι, ότι όταν αναφερόμαστε σε διαχείριση υδατικών πόρων μιλάμε για ένα διεπιστημονικό πεδίο.
1.1 ΔΙΑΧΕΙΡΙΣΗ ΥΛΑΣΙΚΩΝ ΠΟΡΩΝ ΣΕ ΑΓΡΟΤΙΚΕΣ ΛΕΚΑΝΕΣ ΑΠΟΡΡΟΦΗΣ

Είναι χρήσιμο να μετατοπίσει η σκέψη από την αύξηση της παραγωγικότητας της γη στην αύξηση της παραγωγικότητας του νερού σε ό, τι αφορά τις περιοχές με ελλείψεις νερού. Για κάθε σταγόνα νερού, θα πρέπει να στοχεύσουμε στην αύξηση της προστιθέμενης αξίας και της ευημερίας που προκύπτει από τη χρήση του. Στη γεωργία, αυτό σημαίνει προώθηση πρακτικών που επιτυγχάνουν μεγαλύτερη παραγωγή ανά μονάδα νερού που καταναλώνεται από τη γεωργία. Στο πλαίσιο μιας λεκάνης απορροφής ποταμού, αυτό σημαίνει εξασφάλιση καθαρού νερού για πόσιμο και βιομηχανία. Σημαίνει σοφή κατανομή μεταξύ τομέων και χρήσεων νερού. Σημαίνει διασφάλιση αρκετού νερό για το περιβάλλον. Ένας από τους καλύτερους τρόπους απελευθέρωσης νερού για άλλες χρήσεις είναι η βελτίωση της παραγωγικότητας του νερού στη γεωργία. Με περισσότερη συγκομιδή από κάθε σταγόνα, υπάρχει ανάγκη για λιγότερες σταγόνες. Στη γεωργία υπάρχει σημαντικό περιθώριο για την αύξηση της παραγωγικότητας του νερού. Αύξηση της παραγωγικότητας μπορεί να επιτευχθεί μέσω βελτιωμένων γεωργικών πρακτικών και βελτιωμένων υπηρεσιών παροχής νερού. Βάζοντας όμως την παραγωγικότητα του νερού στην προοπτική της λεκάνης απορροφής, βλέπουμε ότι έχει να κάνει με τη βοήθεια του περιβάλλοντος και τη βοήθεια των φυτών ανθρώπων να αξιοποιήσουμε στο έπακρο έναν περιορισμένο πόρο. Η αύξηση της γεωργικής παραγωγικότητας του νερού θα απελευθερώσει περισσότερο νερό για τη φύση, θα μείωσε την ελλείψη δίνοντας περισσότερες ευκαιρίες σε φυτών, και με επίκεντρο τη φτώχεια, μπορεί να βελτιώσουν τα εισοδήματα και τα μέσα διαβιοσύνης τους.

Βελτίωση των υπηρεσιών άρδευσης. Η παροχή αξιόπιστων υπηρεσιών αρδευσης είναι κλειδί για τη βελτίωση της απόδοσης της άρδευσης. Με μια αξιόπιστη υπηρεσία, οι αγρότες επενδύουν περισσότερο σε βελτιωμένες τεχνολογίες και πρακτικές, και έτσι μπορούν να παράγουν περισσότερα. Με αναξιόπιστες υπηρεσίες, οι αγρότες επιλέγουν στρατηγικές που ελαχιστοποιούν τους κινδύνους και επομένως δεν είναι απαραίτητη κερδοφόρες ή παραγωγικές. Και αγρότες οι δικαίως δεν είναι διατεθειμένοι να πληρώσουν για κακές υπηρεσίες. Πολλές προηγούμενες προσπάθειες στην άρδευση επικεντρώθηκαν στην αποκατάσταση και τον εκσυγχρονισμό ή την παροχή υποδομής για να διασφαλιστεί ότι υπάρχει επαρκής ικανότητα για τον έλεγχο του νερού για την παροχή περισσότερης ευελιξίας στον εφοδιασμό των αγροτών. Πιστεύουμε ότι σε πολλά συστήματα άρδευσης με κακή απόδοση, η παροχή ενός σταθερού, προβλέψιμου υδάτινου περιβάλλοντος αποτελεί πρώτη προτεραιότητα, πολύ πάνω από την παροχή της χορηγίας για ενέλκτες υπηρεσίες. Αυτό μπορεί αρχικά να μεταφραστεί σε σχετικά απλές διαδικασίες λειτουργίας και δομές. Όταν οι κοινότητες πάρουν το νερό άρδευσης υπό έλεγχο, θα
έρθει η επόμενη αποζημίωση της ζήτησης και της εφαρμογής πιο ευέλικτων συστημάτων.

Πώς μπορούν να πραγματοποιηθούν αξιόπιστες υπηρεσίες; Δημιουργία μηχανισμών λογοδοσίας πάροχον και χρηστών είναι ένα πρώτο βασικό βήμα. Αυτό απαιτεί σαφείς κανόνες για την παροχή υπηρεσιών στα σημεία παράδοσης μεταξύ παρόχων και χρηστών και μηχανισμοί προσφυγής σε περίπτωση που υπάρχουν υπηρεσίες που δεν προβλέπονται ανά συμφωνία. Πολλά επίπεδα υπηρεσιών, από την παροχή νερού σε σταθερή ποσότητα, σε περιστροφική βάση, για την παροχή νερού κατόπιν ζήτησης, είναι ικανά να υποστηρίζουν τη παραγωγική γεωργία. Όταν γίνεται η μετάβαση σε συστήματα κατ' απαίτηση, το κόστος, η πολυπλοκότητα των λειτουργιών και η συντήρηση συνήθως αυξάνεται. Η συμμετοχή παρόχων υπηρεσιών και χρηστών, είναι σημαντική για την ανάπτυξη σαφών ορισμών για το επιθυμητό επίπεδο υπηρεσιών. Σε προηγουμένως δυσλειτουργηκές περιοχές, η στόχευση για απλές, χαμηλό κόστους προδιαγραφές υπηρεσιών είναι μια καλή στρατηγική για την επίτευξη αξιόπιστων υπηρεσιών. Ο σχεδιασμός υποδομής ακολουθεί τις προδιαγραφές υπηρεσιών. Δεν πρέπει να υπογρεύει τον τύπο της παροχής υπηρεσιών. Στο σχεδιασμό νέον και εκσυγχρονισμένων συστημάτων, γίνονται πολλά λάθη που κάνουν τα συστήματα άρδευσης να είναι μη διαχειρίσιμα. Το επίμονο πρόβλημα του μη υπάρξει υποδομής υπηρεσιών βιώσιμο νερού δεν θα εξαφανιστεί με απλές βελτιώσεις των συνηθισμένων έργων. Είναι σαφές ότι ένα ουσιαστικό πρόβλημα απαιτεί μια θεμελιώδη λύση.

1.2 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΔΙΑΤΡΙΒΗΣ

Ο στόχος της διατριβής είναι να αξιολογήσει τις πρακτικές διαχείρισης υδατικών πόρων για αντιμετώπιση των συνεπειών της μεταβολής του κλίματος στην υδρολογική λεκάνη της λίμνης Κάρλας. Η υδρολογική λεκάνη της Κάρλας, που εντοπίζεται στην ανατολική Θεσσαλία, είναι μια έντονα καλλιεργούμενη γεωργική περιοχή. Η ένταση και η εκτεταμένη γεωργία καλλιεργειών που απαιτούν νερό, όπως το βαμβάκι, είχε ως αποτέλεσμα την αύξηση άντλησης υπόγειων υδάτων, τόσο του ρυμού άντλησης όσο και του ανεξέλεγκτου αριθμού γεωρήσεων, γεγονότα που επακόλουθα οδήγησαν σε μια δραματική πτώση του υδρόφορου ορίζοντα. Ο υδροφορέας της λεκάνης της λίμνης Κάρλας είναι εξυπηρετεί εδώ και αρκετές δεκαετίες ένα μεγάλο τμήμα του θεσσαλικού κάμπου και αποτελεί ένα χαρακτηριστικό παράδειγμα υπεράντλησης υπόγειων νερών. Η λίμνη Κάρλα κατέλαβε το μεγαλύτερο μέρος του ανατολικότερου τμήματος της Θεσσαλικής πεδιάδας. Ηταν ένας πολύ σημαντικός υγρότοπος και μια φυσική δεξαμενή, η αποθήκευση νερών και τροφοδοτούσε τον υπόγειο υδροφορέα. Δυστυχώς, τεχνικές μελέτες προκρίνουν την αποστράγγιση της
λίμνης και την κατασκευή ταμιευτήρια αντί της λίμνης για λόγους αντιπλημμυρικούς αλλά και για την αποκάλυψη αγροτεμαχιών. Αν και η λίμνη αποστραγγιόταν το 1962, ο ταμιευτήρια κατασκευάστηκε πρόσφατα. Η καθυστέρηση δημιουργήσει περιβαλλοντικούς περιορισμούς, όπως το γεγονός ότι μειώθηκε ο φυσικός εμπλούτισμός του υπόγειου υδροφορέα και η μεγιστοποίηση της άντλησης υδάτων, που είχαν ως απότοκο μια δραματική μείωση του υδροφόρου ορίζοντα. Η πτώση στάθμης στις περιοχές με την πιο έντονη άντληση έφτασε τα 80 m τα τελευταία 25 χρόνια (Sidiropoulos et al. 2013). Το σχέδιο για την αποκατάσταση της λίμνης Κάρλας ξεκίνησε και ολοκληρώθηκε πριν από μερικά χρόνια και προέβλεπε τη δημιουργία ενός ταμιευτήρια 38 km² στο κατάντι τμήμα της φυσικής λίμνης, κατασκευάζοντας δύο αναχώματα, ένα στην ανατολική πλευρά και ένα στη δυτική πλευρά της λίμνης. Αυτή η ενέργεια αποκατάσταση που πραγματοποιήθηκε αναμένεται να αντιστρέψει τη πτώση του υδροφόρου ορίζοντα και άλλων δυσμενής περιβαλλοντικά προβλήματα που προκαλούνται από την αποζημίωση της λίμνης (Sidiropoulos et al. 2015).

Το σύστημα που αναπτύχθηκε για να επιτυχήσει οι στόχοι της διατριβής είναι ένα σύνολο μαθηματικών συνεπιμένων μοντέλων. Τα μοντέλα που υιοθετούνται πρέπει να εκανονοικούν την ανάγκη για ολοκληρωμένη διαχείριση υδάτινων πόρων. Ως εκ τούτου, με βάση την τεχνική κρίση υιοθετούνται μοντέλα για επιχειρησιακή χρήση και βιώσιμη διαχείριση υδάτινων πόρων. Δύο επιχειρησιακές στρατηγικές ανάπτυξης υδρο-τεχνικών έργων συνδυάζονται με τρεις στρατηγικές θέσης νερού. Συνολικά, αυτά τις στρατηγικές διαχείρισης νερού αξιολογούνται υπό αναφορά κλιματικές συνθήκες και είκοσι τέσσερις στρατηγικές διαχείρισης νερού για μελλοντικές κλιματικές συνθήκες. Τα κύρια βήματα της διατριβής περιγράφονται σε παραδείγματα και αναλύονται στις ακόλουθες ενότητες:

- Ανάπτυξη γεωγραφικού συστήματος πληροφοριών το οποίο περιλαμβάνει χάρτες της Γεωγραφικής Υπηρεσίας Στρατού, ορθοφωτογράφος του Υπουργείου Γεωργίας, δορυφορικές εικόνες του κτηματολογίου, χάρτη του Τ.Ο.Ε.Β Πηνειού, χάρτες της μελέτης επαναστάθηκας της λίμνης Κάρλας, το ψηφιακό μοντέλο εδάφους, και ψηφιοποιημένα αρδευτικά δίκτυα.
- Ανάπτυξη της βάσης δεδομένων τηλεπισκόπησης η οποία περιλαμβάνει δορυφορικές εικόνες υψηλής ευκρίνειας του LANDSAT TM
- Αντλήση πραγματικών τιμών εξατμισοδιαπονοής με την χρήση του αλγόριθμου SEBAL (Surface Energy Balance Algorithm for Land)
- Εκτίμηση των υδατικών αναγκών και των απαιτήσεων άρδευσης σε ιστορικές συνθήκες με το μοντέλο CROPWAT
- Προσομοίωση της λειτουργίας του επιφανειακού δικτύου του Τ.Ο.Ε.Β Πηνειού με το μοντέλο Technologismiki
• Προσομοίωση της λειτουργίας του δικτύου του Τ.Ο.Ε.Β Κάρλας με το μοντέλο WaterCad.
• Σύζευξη των υδρολογικών μοντέλων με το διαχειριστικό μοντέλο WEAP
• Ανάπτυξη δεδομένων εισαγωγής για τις ιστορικές και μελλοντικές κλιματικές συνθήκες: Αρχικά εκτιμώντας τη μέση επιφανειακή βροχόπτωση, θερμοκρασία και δυνητική εξατμιστική εκπομπή της λεικάνης Κάρλας. Στατιστικός καταβιβασμός κλίμακας των παραπάνω μετεωρολογικών μεταβλητών χρησιμοποιώντας μια στοχαστική μεθοδολογία καταβιβασμού με βάση τα αποτελέσματα του μοντέλου CGCM3 (Tzabiras et al. 2015) και ανάπτυξη τριών σεναρίων κλιματικής μεταβολής με βάση τρία κοινωνικοοικονομικά SRES σενάρια (A1B, A2 και B1) για δύο μελλοντικές περιόδους, μία μεσοπρόθεσμη περίοδο 2030-2050 και μία μακροπρόθεσμη 2080-2100.
• Εκτίμηση των υδατικών αναγκών και των απαιτήσεων άρδευσης σε μελλοντικές κλιματικές συνθήκες με το μοντέλο CROPWAT
• Εκτίμηση των επιφανειακών υδρολογικών διεργασιών και υπολογισμός της (κατεύθυνσης) φόρτισης του υπόγειου υδροφόρου με τη χρήση του μοντέλου υδατικού τοιχογράφη του Πανεπιστημίου Θεσσαλίας UTHBAL (University of Thessaly water BALance model)
• Ανάπτυξη του μοντέλου προσομοίωσης για τη λειτουργία του ταμιευτήρα με τη χρήση του μοντέλου ταμιευτήρα/λίμνης του Πανεπιστημίου Θεσσαλίας UTHRL (University of Thessaly Reservoir/Lake model)
• Εφαρμογή του μοντέλου προσομοίωσης λιμνής/υπόγειου υδροφόρου LAK3 (Lake/Aquifer simulation model)
• Ανάπτυξη του μοντέλου προσομοίωσης του υπόγειου υδροφόρου (με τη χρήση του μοντέλου υπόγειων υδατικών πόρων MODFLOW)
• Ανάλυση αβεβαιότητας του συστήματος με τη χρήση της μεθόδου οσοφως και θερμοκρασιακό χαρτογράφησης για την υπολογισμό των βροχήμετρων και θερμοκρασιακών δεδομένων αλλά και χρήση δεδομένων εισόδου από τα μοντέλα CNRM-CM5.1, EC-EARTH.2, IPSL-CM5, HadGEM2-ES και MPI-ESM

1.3 ΠΑΡΟΥΣΙΑΣΗ ΚΑΙΝΟΤΟΜΩΝ ΣΤΟΙΧΕΙΩΝ ΤΗΣ ΕΡΕΥΝΑΣ

Η έρευνα του πραγματοποιήθηκε στοχεύει στην ανάπτυξη ενός ολοκληρωμένου συστήματος διαχείρισης υδατικών πόρων σε επίπεδο λεικάνης.
απορροής. Η διαχείριση, είναι ίσως το σημαντικότερο κομμάτι της ανάπτυξης και επιχειρησιακής εφαρμογής των έργων υδατικών πόρων. Τα προβλήματα που σχετίζονται με το νερό είναι πάρα πολλά: πλημμύρες, λειψυδρίες, ρύπανση, μόλυνση, υψηλό κόστος ανάπτυξης και βελτίωσης κλπ. Ωστόσο χωρίς να υποβαθμίζουμε τη σημασία της τεχνικής επίλυσης των θεμάτων, γίνεται αντιληπτό ότι η διαχείριση τους είναι περισσότερο θέμα χάραξης πολιτικής και λήψης των αποφάσεων. Αυτό που συχνά αποκαλείται «διαδικασία επίλυσης προβλημάτων» μπορεί να αναγνωρισθεί σαν την διαδικασία διαχείρισης που έχει πολλά, καθώς σημεία με τη διαδικασία σχεδιασμού. Αποτελείται συνοπτικά από (Grigg, N.S., 1996):

- καθορισμό στόχων
- εύρεση εναλλακτικών λύσεων
- αξιολόγηση λύσεων
- εφαρμογή των επιλεγμένων λύσεων.

Η διαχείριση επιμένει, των υδατικών πόρων είναι αλληλέγγυη όπως προαναφέρθηκε, με την πολιτική. Πρακτικά όμως δεν χρειάζεται ένας διαχειριστής να είναι πολιτικός, αλλά σίγουρα θα πρέπει να έχει τη δυνατότητα να λειτουργεί στο πολιτικό πέδιο. Ακόμη θα πρέπει να υπάρχει η επιστημονική γνώση, καθώς τα προβλήματα είναι πολύπλοκα (π.χ. πλημμύρες, λειψυρίες, δίκτυα, ποιότητα νερού κλπ.). Η έρευνα που υλοποιήθηκε έρχεται να λειτουργήσει πια εργαλείο για την ορθολογική λήψη αποφάσεων. Δεδομένου ότι τα συστήματα διαχείρισης υδατικών πόρων ανήκουν στην υδρο-πληροφορική η παρούσα διατριβή ανήκει στο ευρύτερο γνωστικό πέδιο της διαχείρισης υδατικών πόρων αφού καλύπτει θέματα γεωγραφικών πληροφοριών, εκτιμήσεων υδατικών αναγκών, προσομοιώσεων δικτών διανομής νερού, μετεωρολογικών πληροφοριών, υδρολογικών, κλιματικών και διαχειριστικών μοντέλων.

Στα πλαίσια της διατριβής αυτής δημιουργήθηκε ένα ολοκληρωμένο σύστημα προσομοίωσης υδρολογικών λεκανών με κυριάρχη χρήση νερού την αγροτική, υπό συνθήκες κλιματικής αλλαγής και μεταβλητότητας το οποίο μπορεί να χρησιμοποιηθεί επιχειρησιακά από διάφορους φορείς αφού δεν υφίστανται τέτοιου είδους συστήματα τόσο στην περιοχή μελέτης όσο και σε ολόκληρη τη χώρα. Η έμφαση επικεντρώθηκε σε βραχυπρόθεσμες και μεσοπρόθεσμες προγνώσεις ώστε τα αντίστοιχα μέτρα και πολιτικές εφαρμοστούν προκειμένου να μπορούν να ανατραπούν οι επιπτώσεις της μεταβολής του κλίματος.

Το σύστημα αυτό, αναπτύχτηκε με state of the art μεθοδολογίες που ασχολούνται με την προσομοίωση και διαχείριση και εφαρμόστηκε μιλάει των επιχειρησιακών του δυνατοτήτων. Επίσης, δεν αποκλείεται μόνο στην διαχείριση των υδατικών πόρων μιας λεκάνης κάτω από τρέχουσες κλιματικές και διαχειριστικές συνθήκες, αλλά αποβλέπει και στη δημιουργία πιθανών σεναρίων. Επιπρόσθετα, στο εργαλείο αυτό συμπεριλήφθηκε το σύνολο των τεχνικών πληροφοριών αναφορικά με
το έργο της επανασύστασης της λίμνης, με στόχο την καταλληλότητά του, για επιχειρησιακή εφαρμογή. Σε πολλές καταστάσεις που σχετίζονται με τους υδατικούς πόρους της υδρολογικής λεκάνης παρέχει απαντήσεις που λειτουργούν συνεργατικά στην ανάπτυξη διαχειριστικών στρατηγικών, που δεν περιλαμβάνονται στο έργο της επανασύστασης. Παράδειγμα αποτελεί η μείωση των απωλειών των καναλιών των δικτύων η οποία μπορεί να προσδώσει ενεργειακό, υδρολογικό αλλά και οικονομικό όφελος.

Εκτός από την περιοχή υπό μελέτη, το σύστημα μπορεί να εφαρμοστεί σε οποιαδήποτε υδρολογική λεκάνη με σκοπό την αειφορική διαχείριση των υδατικών πόρων της. Το εργαλείο αυτό είναι διακριτοποιημένο χορωδιακό και χρησιμοποιεί συζευγμένα μοντέλα, έχοντας τη δυνατότητα να προσεγγίσει τις υδρολογικές καταστάσεις με μεγαλύτερη λεπτομέρεια. Το σύστημα προσομοιώνει τόσο τις αρδευτικά δίκτυα όσο και την υδρολογική λεκάνη, τους υδατικούς πόρους της και τις μεταξύ τους αλληλεπιδράσεις. Η δυνατότητα αυτή αποτελεί μια καινοτόμη διαδικασία στη διαχείριση υδατικών πόρων. Έτσι, ο χρήστης έχει επίγνωση της υδρολογικής λειτουργίας της λεκάνης και μπορεί να επιλέξει ορθολογικότερο τρόπο διαχείρισης. Αυτό βέβαια απαιτεί έναν τεράστιο πληροφοριακό όγκο στον οποίο βασίζεται η λειτουργία των μοντέλων.

Οι πρωτοτυπείς σε αυτή την εργασία είναι μερικές ή ολικές, και πολλές εμπεριέχονται σε δημοσιεύσεις σε αυτούσια μορφή όποιας παρουσιάζονται στη διατριβή ή σε πρότερα βήματα. Μερικές καινοτομίες παρουσιάζονται επιγραμματικά παρακάτω ενώ σε επόμενο στάδιο περιγράφονται αναλυτικά και σχολιάζονται.

- Η εκτίμηση των υδατικών αναγκών των καλλιεργειών με τη χρήση τηλεπισκόπησης για εφαρμογή σε επιχειρησιακή διαχείριση υδατικών πόρων
 (Vasiliades et al., 2015, Tzabiras et al., 2017)
- Η ανάπτυξη του συστήματος διαχείρισης δικτύων και η ολοκλήρωση του σε σύστημα διαχείρισης λεκάνης απορροής
 (Loukas et al., 2014, Tzabiras et al., 2017)
- Η ανάπτυξη μεθοδολογίας καταβιβασμού κλιμακικών υδρολογικών παραμέτρων
 (Vasiliades et al. 2013, Tzabiras et al., 2016, Loukas et al., 2007a, 2008)
- Η ανάπτυξη και αξιολόγηση συστήματος διαχείρισης υδατικών πόρων στην υδρολογική λεκάνη της Κάρλας για να ανατραπούν οι πιθανές επιπτώσεις της κλιματικής αλλαγής
 (Tzabiras et al., 2016, 2017)
- Η ανάλυση αβεβαιότητας της μεθοδολογίας με εφαρμογή ποσοτικής χαρτογράφησης και χρήση των αποτελεσμάτων πέντε διαφορετικών παγκοσμίων μοντέλων κυκλοφορίας (GCMs).
1.3.1 Ανάλυση καινοτόμων στοιχείων της έρευνας

Πραγματοποιήθηκε μια ολοκληρωμένη εκτίμηση των υδατικών αναγκών των καλλιεργειών συνδυάζοντας τη βάση δεδομένων τηλεπισκόπησης, το μοντέλο CROPWAT, τη λειτουργία του δικτύου μεταφοράς (δίκτυο Τ.Ο.Ε.Β) και το δίκτυο διανομής. Ο Τοπικός Οργανισμός Εγγείων Βελτιώσεων Πιεσού έχει προγραμματίσει την άρδευση διαφορετικά από τις δυνατότητες σχεδιασμού του συστήματος. Κάτι αντίστοιχο λαμβάνει χώρα και με το αντιλοστάσιο της Κάρλας. Είναι χαρακτηριστικό ότι τα αντιλοστάσια παροχετέαυτο με μια μέση παροχή 1250 m³/hr ενώ η μέγιστη δυνατότητα είναι 1500 m³/hr. Από την άλλη, στην περίπτωση του αντιλοστασίου της Κάρλας η μέση παροχή είναι 2500 m³/hr και θα τροφοδοτεί τον ταμιευτήρα της Κάρλας με περίπου 100 hm³ ετησίως. Ο χάρτης χρήσεων της 2007 που προέκυψε με τηλεπισκοπικές μεθόδους είναι η βάση για τη συνολική ανάλυση. Χρησιμοποιήθηκε η ταξινόμηση χρήσεων γης για τον προσδιορισμό της έκτασης της κάθε καλλιέργειας. Οι υδατικές ανάγκες της λεκάνης απορροής καλύπτονται από το επιφανειακό δίκτυο του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πιεσού και μέσω άντλησης του υπόγειου υδροφορέα της υδρολογικής λεκάνης της Κάρλας. Ωστόσο υπάρχουν τμήματα της λεκάνης απορροής κάτω από τα οποία δεν εκτίνεται ο υπόγειος υδροφορέας της Κάρλας αλλά για τις ανάγκες της μελέτης θεωρήθηκε ότι εξυπηρετούνται από τον υπόγειο υδροφορέα της Κάρλας. Επίσης στην περιοχή γύρω από τον ταμιευτήρα κατασκευάστηκε το νέο δίκτυο του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Κάρλας για την άρδευση των εκτάσεων γύρωθην του ταμιευτήρα, οπότε οι εκτάσεις αυτές αποτελούν μια ζώνη τρόπου ανάλυσης. Στην περίπτωση της Κάρλας χαρίστηκε σε επιμέρους ζώνας στις οποίες υπολογίστηκαν διαφορετικές μηνιαίες υδατικές απαιτήσεις σε χιλιόμετρα. Το επιφανειακό δίκτυο αποτελείται από χωμάτινης κατασκευής ανοικτούς τάφρους, τραπεζοειδούς διατομής, που μπορούν να μεταφέρουν μεγάλες ποσότητες νερού. Τα προβλήματα των τάφρων αυτών είναι η απάτηση συνεχούς συντήρησης τους, λόγω της βλάστησης που εμφανίζεται, των απολεούσων από την διήρκη και την εξατμιστική από τους τάφρους πόλο της μεγάλης ελεύθερης επιφάνειας (Υδρομέντορ, 2015). Οσο η μεταφορά και η διανομή του νερού τόσο και η εφαρμογή της άρδευσης έχουν πολύ μεγάλες απόλυτες σε νερό που εξαρτάνται από τον τρόπο μεταφοράς και τον τρόπο εφαρμογής (μέθοδος άρδευσης). Η συνολική απόδοση των δικών αποτελείται από το γινόμενο της αποδοτικότητας μεταφοράς και της αποδοτικότητας εφαρμογής (Παπαζαφειρίου, 1999). Με τον τρόπο αυτό εκτιμώνται οι υδατικές απόλυσες για την άρδευση. Στην στάθηκη άρδευση το νερό εφαρμόζεται στο χωρίο σε μικρές ποσότητες με μορφή σταγώνων, έτσι ώστε κάθε φυτό να εφοδιάζεται, χωρίστα, με την απαιτούμενη ποσότητα σε νερό. Στον καταιγισμό το νερό εφαρμόζεται σε όλη την επιφάνεια του εδάφους σαν τεχνητή απομίμηση της βροχής.
και διηθείται στο έδαφος κατακόρυφα υπό ακόρεστες συνθήκες. Η μέθοδος εξασφαλίζει ομοιόμορφη κατανομή στην καλλιέργεια χωρίς να εμφανίζει επιφανειακή απορροή και λίμνεσμα νερού στην επιφάνεια. Επετηθεί δεν υπήρξαν διαθέσιμα στοιχεία για τις μεθόδους άρδευσης στη Θεσσαλία θεωρήθηκε ότι τα στοιχεία του Τ.Ο.Ε.Β Πηνειού το 2003 εξακολουθούν να ισχύουν. Έτσι για το σύνολο των αγροτεμαχίων των αιτήσεων θεωρήθηκε ότι 43,1% των αρδευόμενων εκτάσεων αρδεύεται με κατασκευάσμα με μια μέση απόδοση 0,80, και το 56,9% των αρδευόμενων εκτάσεων αρδεύεται με στάγδην άρδευση με μια μέση απόδοση 0,90. Η μέση απόδοση της εφαρμογής της άρδευσης υπολογίσθηκε ως ο σταθμισμένος μέσος όρος των αποδόσεων των δύο μεθόδων για όλα τα αγροτεμάχια ίση με 0,86.

Η ανάπτυξη του συστήματος διαχείρισης δικτύων και η ολοκλήρωσή του σε σύστημα διαχείρισης λεκάνης απορροής είναι επίσης μια προτοτυπία. Η προσομοίωση της λειτουργίας του επιφανειακού δικτύου του Τ.Ο.Ε.Β Πηνειού έγινε με το μοντέλο Technologismiki το οποίο παρέχει πληροφορία σε επίπεδο πρωτεύοντος και δευτερεύοντος κλάδου. Από την άλλη η προσομοίωση της λειτουργίας του δικτύου του Τ.Ο.Ε.Β Κάρφιας έγινε με το μοντέλο WaterCad. Η ψηφιοποίηση και διασταυρολόγηση των δύο δικτύων επιτρέπει στο διαχειριστή να έχει πρόσβαση σε κρίσιμες πληροφορίες όπως η διατομή ενός κλάδου, η στάθμη του ύδατος σε αυτόν τον κλάδο, η ποσότητα νερού που εξέρχεται από μια εκροή. Επιπρέπει επίσης δεδομένων ότι έχει αυτοματοποιηθεί το τρέξωμο διαφόρων σεναρίων έτσι ώστε να προλαμβάνονται δύσκολες υδρολογικές καταστάσεις όπου η ικανοτητα μεταφοράς του δικτύου μπορεί να πιεστεί και δίνει τη δυνατότητα να σχεδιάζονται παρεμβάσεις για την καλύτερη λειτουργία του. Η σύζευξη των δύο υδρολογικών μοντέλων με το διαχειριστικό μοντέλο WEAP αποτελεί ένα καινοτόμο στοιχείο στη διαδικασία λήψης αποφάσεων αφού ο διαχειριστής έχει διάθεση του πληροφορικικού που τον βοηθούν να διανέμει το νερό με τη βέλτιστη λύση ανά περίπτωση. Πιο συγκεκριμένα μπορεί να αλλάξει την ποσότητα που διοχετεύεται από τα αντιλοπτάσια ή τους ταμιευτήρες και με τον τρόπο αυτό να εξοικονομήσει ενέργεια και νερό.

Επίσης η παρούσα διατριβή δίνει έμφαση στον στατιστικό καταβιβασμό κλίμακας υδρομετεωρολογικών παραμέτρων και παροστάζει επίσης στοιχεία καινοτομίας. (Tzabiras et.al 2015). Τα βασικά στάδια της μεθόδου ήταν: στάδιο ανάλυσης συσχέτισης (μεταξύ των υποψηφίων μεταβλητών πρόγνωσης (predictors)), στάδιο βηματικής πολλαπλής γραμμικής παλινδρόμησης (stepwise multiple linear regression) και στάδιο στοχαστικής προσομοίωσης των υπολοίπων βροχήπτωσης και θερμοκρασίας. Η τρίτη έκδοση (CGCM3) του παγκόσμιου του Καναδικού Κέντρου (Canadian Center for Climate Modelling and Analysis) για Κλιματικά Μοντέλα και Ανάλυση (CCCma) χρησιμοποιήθηκε η οποία έχει τα ίδια συστατικά όσον αφορά τους οικειονόμους σε σχέση με την δεύτερη έκδοση του μοντέλου αλλά υιοθετεί νέες πλήρως αναβαθμισμένες πληροφορίες για την ατμόσφαιρα. Η επιτυχής επίλυση των
μεταβλητών predictor για καταβιβασμό κλίμακας έγκειται σε τρεις σημαντικούς παράγοντες. Οι μεταβλητές πρέπει να (1) παράγονται με αξιόπιστο τρόπο από το GCM, (2) να διαθέσιμα τα στοιχεία από τη βάση δεδομένων GCM και (3) είναι συσχετισμένες με την επιφανειακή μεταβλητή ενδιαφέροντος (βροχόπτωση ή θερμοκρασία). Με τη χρήση αυτών των κριτηρίων χρησιμοποιήθηκε πληροφορία μηνιαίου βήματος για 46 μεταβλητές του μοντέλου CGCM3. Καλό είναι να αναφέρθει ότι το σύνολο των μεταβλητών που αντλήθηκε από το CGCM3 για το πείραμα 20CM3 και αναφορικά με το χρονικό διάστημα 1850-2000. Το στάδιο επιλογής των μεταβλητών πρόγνωσης είναι καίριο σε μια μεθοδολογία στατιστικής υποκλίμακωσης υδρομετεορολογικών μεταβλητών διότι η επιλογή. Πρόκειται για μια σύνθετη διαδικασία και στηρίζεται στην στατιστική ανάλυση των ανεξάρτητων μεταβλητών και της εξαρτημένης μεταβλητής που στην παρούσα μελέτη είναι η βροχόπτωση και η θερμοκρασία. Τελικά οι μεταβλητές που επιλέχθηκαν για την περίπτωση της βροχόπτωσης ήταν η εξερευνήση μεγάλου μήκους κύματος ροή από την κορυφή της ατμόσφαιρας (Toa outgoing longwave flux) Rlt (w/m2) και η επιφανειακή ανατολική πίεση προς τα κάτω (Surface downward eastward stress) Tauu (Pa) ενώ προστέθηκαν δόδεκα ψευδομεταβλητές (dummies) για να δοθεί έμφαση στον κάθε μήνα (Ειδική Γραμματεία Υδάτων, 2013).

Τα σενάρια διαχείρισης υδατικών πόρων εκτιμώνται πιο εύκολα με τη χρήση δεδομένων σταθμικής πρόβλεψης και γίνεται έτσι εφικτή η εκτίμηση της αβεβαιότητας του σεναρίου. Η χρησιμοποίηση των τεχνητών δεδομένων που προέκυψαν από σταθμιστικές προσομοιώσεις δεν προστέθηκε πληροφορίες στην ιστορική περίοδο. Ωστόσο, λαμβάνοντας υπόψη το σταθμιστικό χαρακτήρα των ιστορικών δεδομένων μπορούμε να έχουμε μια αποτίμηση της αβεβαιότητας που περιβάλλεται στις προσομοιώσεις των υδατικών πόρων.

Θα πρέπει να αναφερθεί ότι χρησιμοποιήθηκε το μοντέλο AR(1) για να προσομοιωθούν και να αναπαρασημοθούν συνθετικές ετήσιες χρονοσειρές βροχόπτωσης και θερμοκρασίας (Srikanthan and McMahon, 1985). Το μοντέλο αυτό έχει εφαρμοστεί σε διάφορους βροχομετρικούς σταθμούς στην περιοχή της Θεσσαλίας και απέδεικνυται κατασκευή σταθμιστική προσομοίωση μετεωρολογικών δεδομένων σε ετήσια χρονικό βήμα. Τα υπόλοιπα που προκύπτουν από την εφαρμογή μιας μεθόδου βηματικής πολλαπλής παλινδρόμησης προσομοιώνονται με τη χρήση των σταθμιστικού μοντέλου με σκοπό τη δημιουργία τεχνητών δεδομένων. Οι συνθετικές μηνιαίες χρονοσειρές κλιματικών δεδομένων αναπαράγηκαν μέσος της τροποποιημένης μεθόδου τημπέτων επιμετρησμού (modified method of fragments).

Όπως αναφέρθηκε το ΣΠΛ (Σύστημα πληροφοριών λεκάνης απορροής) περιλαμβάνει a) το μοντέλο υδατικού ισοζύγιου του Πανεπιστημίου Θεσσαλίας UTHBAL (University of Thessaly water BALance model) για την προσομόιωση των υδρολογικών διεργασιών επιφανείας και τον υπολογισμό της (κατεύθυνσης) φόρτισης
του υπόγειου υδροφορέα β) το μοντέλο ταμιευτήρα/λίμνης του Πανεπιστημίου Θεσσαλίας UTHRL (University of Thessaly Reservoir/Lake model) για την προσομοίωση της λειτουργίας του ταμιευτήρα γ) το μοντέλο προσομοίωσης λίμνης/υπόγειου υδροφορέα LAK3 (Lake/Aquifer simulation model) και δ) το μοντέλο υπόγειων υδατικών πόρων MODFLOW για την προσομοίωση του υπόγειου υδροφορέα. Στη διατριβή αυτή έγινε χρήση του υδρολογικού μοντέλου UTHBAL σε ημικατανεμημένη μορφή (Υδρομέντωρ, 2015). Το μοντέλο UTHBAL αναπτύχθηκε στο Πανεπιστήμιο Θεσσαλίας και εφαρμόστηκε σε υδρολογικές λεκάνες στην Κύπρο (Λουκάς και συνεργάτες, 2003), στην Κρήτη (Christodoulaki et al., 2003; Christodoulaki et al., 2004), στη Θεσσαλία (Λουκάς και συνεργάτες, 2005a; Loukas et al., 2006), στη λεκάνη απορροφής της Κάρλας (Loukas et al., 2008a; Sidiropolous, 2013) και στη διασυνοριακή λεκάνη απορροφής του Νέστου (Καμπράκιου, 2006). Τα δεδομένα που δέχεται ως είσοδο και οι υπολογισμένες υδρολογικές μεταβλητές (όπως αυτές της απορροφής, της πραγματικής εξατμισσιόνας, της εδαφικής υγρασίας, της φόρτισης του υδροφορέα) ή τα αποτελέσματα του μοντέλου εισάγονται ή εξαγόνται, επίσης σε αδρομερή μορφή για κάθε μία υδρολογικά ομοιογενής υψομετρική ζώνη. Οι υπολογισμοί του μηνιαίου υδρολογικού ισοζυγίου πραγματοποιούνται ζειχονιστά σε κάθε υδρολογική ζώνη ενώ η απορροφή της λεκάνης είναι ίση με το σύνολο της υπολογισμένης απορροφής όλων των ζώνων. Το μοντέλο εφαρμόστηκε στη λεκάνη της Κάρλας με έκταση περίπου 1220 km² και δεν απαιτείται διόδευση της απορροφής διαμέσου του τμήματος της λεκάνης που περιλαμβάνει τον Πηνειο τοπαλόμ. Είναι σαφές ότι σε μεγάλες λεκάνες απορροφής, όπου η χρονική υστέρηση της απορροφής είναι μεγαλύτερη από το χρονικό βήμα απαιτείται μέσω διόδευσης η απορροφή να οδηγηθεί προς το σημείο εξόδου. Η σύνδεση με το μοντέλο ταμιευτήρα UTHRL πραγματοποιείται διότι το UTHRL δέχεται ως δεδομένα τιμές μηνιαίων εισροών και απώλειες και κάνει υπολογισμούς των μηνιαίων εκροών του ταμιευτήρα. Η επιφανειακή απορροφή της λεκάνης απορροφής προέρχεται από το UTHBAL, η εισροή από τον ταμιευτήρα από τη μελέτη έργων για την πλήρωση του ταμιευτήρα της Κάρλας από τον Πηνειο και οι απόλυσες για άρδευση από την εκτίμηση των υδατικών απαιτήσεων όπως αναφέρθηκε προηγούμενα. Το μοντέλο UTHRL ρυθμίστηκε για την περίοδο 1960-2009 αλλά για τις ανάγκες της διατριβής εφαρμόστηκε και για την ιστορική περίοδο 1980-2000. Επιπρόσθετα η ρύθμιση MODFLOW έγινε για την περίοδο από το 1987 εώς το 1997. Η υδραυλική αγωγιμότητα αποτέλεσε τη βάση πάνω στην οποία ρυθμίστηκε το μοντέλο. Τα ιστορικά υδραυλικά ύψη προέκυψαν από 24 πηγάδια παρατήρησης με βάση τα σποία οριστήκαν οι αρχικές οριακές συνθήκες. Η ρύθμιση αυτή με συνδιαστική εφαρμογή της γεωστατιστικής προσέγγισης της υδραυλικής αγωγιμότητας και της ροής του υπόγειου νερού. Δεδομένου ότι οι δεγκαμπολητικές τιμές της υδραυλικής αγωγιμότητας ήταν γνωστές, υπήρχε η απαίτηση ρύθμισης, του ημιβαριογράμματος, το οποίο δίνει την περιγραφή των

Το μοντέλο λαμβάνει το σύνολο των μηνιαίων εισροών και εκροών του ταμιευτήρα και κάνει εκτίμηση των μηνιαίων τιμών των υπόγειων διαφυγών. Η επιφανειακή απορροή της λεκάνης και η βροχόπτωση προήλθαν από το UTHBAL, ενώ η εισροή από τον ταμιευτήρα από τη μελέτη απαιτούμενων έργων για την τροφοδότηση της λίμνης Κάρλας από τον ποταμό Πηνειό (Υδρετμε Ε.Ε., 2004). Η εξάτμιση προήλθε από το UTHIRL και οι απολήψεις για άρδευση από τη μελέτη έργων μεταφοράς και διανομής νερού λίμνης Κάρλας (Ν. Μαυρονικόλασ, Δ. Κάρκας & Συνεργάτες, Υδρετμε Ε.Ε. και άλλοι, 2004).
2 ΚΛΙΜΑΤΙΚΗ ΜΕΤΑΒΟΛΗ

Τα τελευταία χρόνια γίνεται λόγος ότι το κλίμα της γης βρίσκεται σε μία διαρκή μεταβολή. Πρόσφατα το αντιλαμβανόμαστε μέσω των μεταβολών στην εποχική εναλλαγή, τα ακραία κλιματικά γεγονότα και τις θερμοκρασιακές και βροχομετρικές αλλαγές. Οι μεταβολές αυτές δεν αποτελούν αποκλειστικά τη νέα σύγχρονης εποχής. Ηδη με τη λήξη της εποχής των παγετώνων, πριν από 16 αιώνες, ακολούθησε ένα θερμό δίστημα, το οποίο εξακολουθεί να λαμβάνει χώρα μέχρι τις μέρες μας. Από το 1800 η αύξηση της συγκέντρωσης για το διοξείδιο του ανθρακα (CO2) και το μεθάνιο (CH4) ήταν γεγονός, και στην εποχή μας τα επίπεδα τους έφτασαν σε πρωτοφανή επίπεδα. Η διακυβερνητική επιτροπή για την κλιματική αλλαγή (IPCC) αναφέρει ότι η αύξηση των εκπομπών των αερίων του θερμοκηπίου στήμανε ένα μετέπειτα αύξηση των θερμοκρασιών, που κυμαίνεται μεταξύ 0,40°C και 0,80°C από το 1860. Ο ρυθμός αύξησης της θερμοκρασίας των 200 εκατομμυρίων είναι υπερβολικά μεγάλος για να αποδοθεί σε φυσικά αίτια, ιδίως από το 1975 και μετά. Το IPCC αναπτύσσει διάφορα σενάρια εκπομπών (π.χ. IS92 – IPCC, 1992; τα σενάρια SRES – IPCC, 2001; και τα RCPs – IPCC, 2014) τους έως το 2100, και διάφορες προεκτάσεις τους μέχρι το 2300, ώστε να υπάρχει πληροφόρηση για τις επικείμενες μεταβολές. Τα σενάρια παρέχουν πληροφορίες σχετικά με τα επίπεδα των μελλοντικών συγκέντρωσεων (των αερίων του θερμοκηπίου) και στηρίζονται σε αντίστοιχα κοινωνικοοικονομικά σενάρια. Οι εξελίξεις των σεναρίων επιβάλλονται για να μη μπορούν να αφορούν συνεπείες από τις επιστημονικές εξελίξεις αναφορικά με το κλιματικό σύστημα και να υιοθετούν τα καινούρια δεδομένα των μεταβολών του κλίματος, των συνεπειών και της προσαρμογής (IPCC, 2014). Ένα μεγάλο μέρος της επιστημονικής κοινότητας μελετάει την κλιματική μεταβολή και τις επιπτώσεις της, σε όλα τα επίπεδα της ανθρώπινης ζωής, και μέσα σε αυτό το πλαίσιο αυτή η διατριβή ενσωματώνει την κλιματική αλλαγή και την επίπτωσή της στη μελλοντική χρήση αρδευτικού νερού.

2.1 ΟΙ ΜΕΤΑΒΟΛΕΣ ΤΟΥ ΚΛΙΜΑΤΟΣ ΜΕΣΑ ΑΠΟ ΤΑ ΣΕΝΑΡΙΑ ΠΡΟΒΛΕΨΗΣ
Η ανθρώπινη εξέλιξη μέσα από τους αιώνες πραγματοποιήθηκε με απερίσκεπτη εκμετάλλευση των διαθέσιμων φυσικών πόρων και οδήγησε σε υποβιβασμό του περιβάλλοντός. Η οικονομική και τεχνολογική εξέλιξη προκάλεσε άνοδο των εκπομπών των αερίων του θερμοκηπίου και των αεροζώλων. Η εκμετάλλευση των περιβαλλοντικών ουσιών δεν άρεσε στην ατμόσφαιρα και οδήγησε σε περιόδους αναπτυξιακού και οικολογικού ρευματισμού.

Ο Σμάντε Άρρένιος (1812) το κλίμακα της ανθρώπινης καταστροφής της ατμόσφαιρας καταλάβηκε και οδήγησε στην επανάληψη του περιβάλλοντος. Ο Ζαν Ζαν Φουρί (1822) έμεινε στο πρώτο στην παγκόσμια θερμοκηπική καταστροφή και προειδοποιήσεις για την ανθρωποκρίσιμη καταστροφή της ανθρώπινης καταστροφής. Η ανθρωποκρίσιμη καταστροφή της ανθρώπινης καταστροφής έγινε και στην παγκόσμια θερμοκηπική καταστροφή της ανθρώπινης καταστροφής. Η ανθρωποκρίσιμη καταστροφή της ανθρώπινης καταστροφής έγινε και στην παγκόσμια θερμοκηπική καταστροφή της ανθρώπινης καταστροφής. Η ανθρωποκρίσιμη καταστροφή της ανθρώπινης καταστροφής έγινε και στην παγκόσμια θερμοκηπική καταστροφή της ανθρώπινης καταστροφής. Η ανθρωποκρίσιμη καταστροφή της ανθρώπινης καταστροφής έγινε και στην παγκόσμια θερμοκηπική καταστροφή της ανθρώπινης καταστροφής. Η ανθρωποκρίσιμη καταστροφή της ανθρώπινης καταστροφής έγινε και στην παγκόσμια θερμοκηπική καταστροφή της ανθρώπινης καταστροφής. Η ανθρωποκρίσιμη καταστροφή της ανθρώπινης καταστροφής έγινε και στην παγκόσμια θερμοκηπική καταστροφή της ανθρώπινης καταστροφής.
2.2 ΚΛΙΜΑΤΙΚΑ ΣΕΝΑΡΙΑ SRES (Special Report on Emission Scenario)

Το IPCC διαμόρφωσε ένα σετ σεναρίων εκπομπής, ως αντικατάσταση των σεναρίων IS92. Αυτό το σετ σεναρίων περιγράφεται, όπως αναφέρθηκε από την ειδική αναφορά του IPCC (IPCC, 2001) για τα σενάρια εκπομπής. Τέσσερα πλάνα δημιουργήθηκαν για να περιγράψουν αποτελέσματα τις σχέσεις μεταξύ των κατευθυντήριων γραμμών των εκπομπών και πως εξελίσσονται οι εκπομπές αυτές αλλά και να συνδράμουν στην ποσοτικοποίηση των σεναρίων. Τα 40 τελικά σενάρια περιλαμβάνουν βασικές δημογραφικές, οικονομικές και τεχνολογικές κατευθυντήριες δυνάμεις αναφορικά με τα αέρια του θερμοκηπίου. Και τα τέσσερα πλάνα εργασίας εκπροσώπωνται από καθένα σενάριο. Όλα τα σενάρια που στηρίζονται στο ίδιο πλαίσιο συνθέτουν τα οικογενειακά σενάρια. Γενικά όμως δεν περιλαμβάνουν τα σενάρια περαιτέρω κλιματικές δράσεις δηλαδή δεσμεύσεις για τήρηση του πλάνου του Οργανισμού Ηνωμένων Εθνών στο συνέδριο κλιματικής αλλαγής ή την εκπλήρωση των στόχων που απορρέουν από το Πρωτόκολλο του Κιότο. Βέβαια, οι συγκεντρώσεις των αερίων του θερμοκηπίου και γενικά οι εκπομπές συνδέονται με πολιτικές αποφάσεις που σχεδιάζονταν για άλλους σκοπούς πέραν της κλιματικής αλλαγής. Ακόμη, οι εκπομπές μπορούν να επηρεαστούν άμεσα από διοικητικές πρακτικές όπως η δημογραφική αλλαγή, η κοινωνικοοικονομική εξέλιξη, η τεχνολογική καινοτομία, η διαχείριση των πόρων αλλά και της μόλυνσης. Οι επιδράσεις αυτές εμπεριέχονται εκτενώς στα σενάρια.

Τα τέσσερα σενάρια που περιέχονται στο SRES πουλίστηκαν σε σχέση τα βασικά σενάρια που αναλύονται στα περιόδημα του ΑΟΓCM. Για τη διερεύνηση των επιπτώσεων που προκαλούν οι διαφορές ανάμεσα στα πρωταρχικά και τελευταία σενάρια. Τα τέσσερα βασικά και τα επιλεγμένα σενάρια αναλύθηκαν μελετήθηκαν με
τη χρήση ενός απλού κλιματικού μοντέλου. Στην περίπτωση τριών από τα τέσσερα επιλεγμένα (A1Β, A2, και B2) η μεταβολή της θερμοκρασίας μεταξύ αρχικού και επιλεγμένου είναι ίδια. Αυτό που διαφέρει αφορά τη μεταβολή στις κανονικοποιημένες τιμές της περιόδου 1990-2000 που είναι ίδια σε όλες τις περιπτώσεις. Το αποτέλεσμα είναι μια μεγάλη μεταβολή στην αρχή της περιόδου. Βέβαια, υπάρχουν αντιδίκτιες μέσα στις κατευθυντήριες δυνάμεις οι οποίες εξασθενούν ως το 2100 ωστόσο η θερμοκρασιακή μεταβολή στις δύο περιπτώσεις είναι της τάξης κάτω του 2%. Στο σενάριο B1 όμως η αλλαγή είναι μεγαλύτερη, καταλήγοντας σε αλλαγή της θερμοκρασιακής μεταβολής το 2100 ίση με 20%.

Παρακάτω περιγράφονται τα τέσσερα επιλεγμένα σενάρια εκπομπής.

Α2. Το πλάνο εργασίας A2 προκύπτει μια παγκόσμια ανοιχτόγενεια. Κύριοι στόχοι αποτελούν είναι η επάρκεια πόρων και η συντήρηση των εθνικών ταυτοτήτων. Η χωρική κατανομή της πληθυσμιακής αύξησης συγκλίνει με βραδύ ρυθμό, με αποτέλεσμα τη συνεχόμενη αύξηση του πληθυσμού. Η οικονομική εξέλιξη έχει σαφή όρια και ο ρυθμός της είναι πολύ πιο ετερογενής.

Β1. Το πλάνο εργασίας B1 όσον αφορά την πληθυσμιακή αύξηση είναι παρόμοιο με το A1, με ταυτόχρονα έντονη αλλαγή στα οικονομικά δεδομένα η οποία τείνει σε μια οικονομία ισορροπημένη, με μικρότερη χρήση πόρων και την χρήση πράσινης τεχνολογίας. Ο στόχος είναι η ανάπτυξη με σεβασμό στον ειρηνικό χωρίς ουστό σε επιμέλειες και στα ανθρωπογενειακά δραστηριότητες.

2.2.1 Οι προβολές του μελλοντικού κλίματος της γης

Μια πληθώρα επιστημονικών εργασιών προβάλλουν μια σημαντική αύξηση της παγκόσμιας επιφανειακής θερμοκρασίας. Ο ανθρώπινος παράγοντας δεδομένου της μεγιστοποίησης της χρήσης των φυκιών πόρων αλλά και με την επιμονή για οικονομική ανάπτυξη αποτελεί τον κύριο υπεύθυνο. Είναι σαφές ότι η ραγδαία οικονομική ανάπτυξη και οι ανθρωπογενεικές δράσεις που τον συνοδεύουν έχουν δημιουργήσει τις συνθήκες το φαινόμενο του θερμοκηπίου.

Σχήμα 2.1. α) αποτελέσματα που χρησιμοποιούν ανθρωπογενεικά προέλευσις δύναμη β) προβολές της μέσης παγκόσμιας θερμοκρασίας για τα έξι ενδεικτικά σενάρια SRES με τη χρήση κλιματικού μοντέλου (IPCC, 2001)
Οι προβλέξεις στο μέλλον δείχνουν ότι οι εκπομένες αερίων του θερμοκηπίου επίκειται να μεγαλώσουν. Για παράδειγμα τα μοντέλα υπολογίζουν ότι για τα περισσότερα αέρια πέραν του CO₂ ως το 2100 οι εκπομένες εμφανίζουν διαφορές ανάμεσα στα έξι αντιπροσωπευτικά σενάρια, αλλά σε όλα παρουσιάζεται η αυξητική τάση. Όσον αφορά τα έμμεσα αέρια του θερμοκηπίου (NOX, CO, VOC), συμπεριλαμβάνοντας και το μεθάνιο υπολογίζεται να μεταβάλλουν τη ρίζα υδροξυλίου (OH) στην τροπόσφαιρα, απο -20% ως +6%. Δεδομένου ότι το υδροξυλίου (OH) είναι πολύ σημαντικό για την χημεία της τροπόσφαιρας, οι αλλαγές που συμβαίνουν στα αέρια θερμοκηπίου CH4 και ΗFCs μπορούν να συγκρίθουν αλλά δεν είναι εξίσου σημαντικές. Επιπρόσθετα, η αύξηση των εκπομένων των αερίων του θερμοκηπίου θα επηρεάσει τον πλάνη περιβαλλοντικά όχι μόνο από τη σκοπιά της κλιματικής μεταβολής. Τα έξι αντιπροσωπευτικά σενάρια περιγράφουν όλο το φάσμα των μεταβολών που απορρέουν από τα σενάρια SRES. Γίνεται προφανές κατανόηση ότι η αύξηση των συγκεντρώσεων των αερίων του θερμοκηπίου στην ατμόσφαιρα θα προκαλέσει μεταβολές και σε διάφορες μετεωρολογικές παραμέτρους όπως αυτές της βροχόπτωσης και της θερμοκρασίας.

Αναμένεται άνοδος της παγκόσμιας θερμοκρασίας μεταξύ 1,4°C και 5,8°C (Σχήμα 2.2) για την περίοδο από 1990 ως 2100. Θεωρείται ότι οι ηπειρωτικές περιοχές θα δεχτούν αυτή την αύξηση ταχύτερα σε σχέση με τις θαλάσσιες και αυτό θα γίνει περισσότερο έντονο στα βόρεια γεωγραφικά πλάτη. Οι μεταβολές που προβάλλονται για τους υδρατμούς και την εξάτμιση αντικατοπτρίζουν την τάση για μεταβολή της βροχόπτωσης. Το AOGCM αλλά και τα SRES A2 και B2 δείχνουν ότι η βροχόπτωση πιθανότατα να αυξηθεί τόσο τους καλοκαιρινούς όσο και τους χειμερινούς μήνες σε περιοχές με υψηλό γεωγραφικό πλάτος. Τη χειμερινή περίοδο οι αυξήσεις θα είναι εμφανείς και σε βορειότερες περιοχές με μεσαία γεωγραφικά πλάτη, όπως η τροπική Αφρική, η Ανταρκτική ενώ την καλοκαιρινή περίοδο στη νοτιοανατολική Ασία. Για την Αυστραλία, την κεντρική Αμερική και τη νότια Αφρική προβάλλονται μειώσεις στη βροχόπτωση.
Σχήμα 2.2. Παρουσίαση του εσωτερικού του μοντέλου σε χωρική κατανομή της βροχόπτωσης.

(IPCC, 2001).

Ακόμη αναμένονται σημαντικές αλλαγές στη συχνότητα ακραίων μετεωρολογικών γεγονότων. Πιο συγκεκριμένα ο αριθμός των θερμών ημερών και των θερμικών κυμάτων προβάλλεται να αυξηθεί κοντά στις ημειροτοκικές περιοχές ενώ το αντίθετο αναμένεται να συμβεί για τον αριθμό των παγωμένων ημερών και των ψυχρών κυμάτων. Προβάλλεται ότι θα αυξηθεί η συχνότητα, η ένταση και η διάρκεια των βροχοπτώσεων. Από την άλλη κατά τις καλοκαιρινές περιόδους οι μεσοκαιρικές περιοχές να γίνουν ξηρότερες.

Η πληθώρα των μοντέλων συγκλίνει ότι στο βόρειο ημισφαίριο οι δυνάμεις κυκλοφορίας θα εξασθενίσουν και θα οδηγήσουν σε μικρότερη επιφανειακή θέρμανση του Βόρειου Ατλαντικού. Βέβαια σε περιπτώσεις που η THC αμβλύνεται, εξακολουθεί να υφίσταται θέρμανση πάνω από τον ευρωπαϊκό χώρο που προκύπτει από τις αυξημένες συγκεντρώσεις αερίων του θερμοκηπίου. Επίσης ορισμένα μοντέλα προβάλλουν μια αντίστοιχη με το el Nino αντίδραση σε περιοχές του τροπικού Ειρηνικού και η θρημοκρασία επιφάνειας της θάλασσας στις κεντρικές και ανατολικές περιοχές του ισημερινού Ειρηνικού αυξηθούν πιο πολύ από τις αντίστοιχες δυτικές με ταυτόχρονη μετατόπιση της βροχόπτωσης προς την ανατολή.
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 2ο: Κλιματική μεταβολή

Σχήμα 2.3. Μέση παγκόσμια άνοδος του επιπέδου της θάλασσας για την περίοδο 1990-2100 (IPCC, 2001).

Οι αλλαγές στον ηπειρωτικό και θαλάσσιο πάγο αλλά και της χιονοκάλυψης μαρτυρούν την επερχόμενη κλιματική αλλάγη. Δηλαδή το ύψος των παγετώνων και των παγικυστών θα συνεχίσει να υποχωρεί κατά τον 21ο αιώνα ενώ το χιόνι και οι θαλάσσιοι παγετώνες του Βόρειου Ημισφαιρίου θα μειωθεί περαιτέρω. Γίνεται κατανοητό ότι κάτι τέτοιο θα δηγήσει σε μια επακόλουθη αύξη της στάθμης των θαλασσών. Όλα τα σενάρια SRES, δείχνουν μια άνοδο του επιπέδου της θάλασσας μεταξύ 0,09 και 0,88 m για την ίδια περίοδο (Σχήμα 2.3.) (IPCC, 2001). Δεν είναι παράλογο ότι μέχρι το 2100, πολλά μέρη με χαμηλή θαλάσσια στάθμη θα έχουν άνοδο θαλάσσιας στάθμης μελλοντικά.

2.3 ΚΛΙΜΑΤΙΚΑ ΣΕΝΑΡΙΑ RCPs (Representative Concentration Pathways)

Είναι δεδομένο ότι και στα σενάρια SRES έτσι κάθε RCP (Representative Concentration Pathway) περιλαμβάνει αρχικές τιμές καθώς και προβλέψεις ανάπτυξης για κάθε αέριο του θερμοκηπίου ως το 2100, με βάση την κοινονικοοικονομική ανάπτυξη, τους ενεργειακούς πόρους αλλά και την πληθυσμιακή αύξηση. Μέσα στο σετ δεδομένων ενσωματώνονται πραγματικές ιστορικές πληροφορίες. Παρόλο που οι προβλέψεις για το κοινονικοοικονομικό περιβάλλον έχουν βιβλιογραφική προέλευση η ανάπτυξη δρόμων εκπομπής δεν στηρίζεται σε κοινονικοοικονομικές πληροφορίες. Τα κύρια σενάρια που διαμορφώθηκαν είναι τέσσερα τα RCP2.6, RCP4.5, RCP6.0 και RCP8.5, που περιγράφουν διαδοχικά τις επόμενες εώς τις δυσμενέστερες
προβολές στο μέλλον. Οι βασικές πτυχές του κάθε σενάριου περιγράφονται παρακάτω:

- **RCP2.6**: Η ομάδα IMAGE της PBL (Υπηρεσίας Περιβαλλοντικής Αξιολόγησης της Ολλανδίας) ήταν υπεύθυνη για την ανάπτυξη αυτού του σενάριου. Το «μονοπάτι» αυτό απορρέει από βιβλιογραφικά σενάρια που καταλήγουν σε χαμηλές εκπομπές (Van Vuuren et al., 2011). Η ακτινοβολία φτάνει τα 3,1 W/m² μέχρι το 2050 και χαμηλώνει στα 2,6 W/m² ως 2100. Η μείωση αυτής της ακτινοβολίας επιτυγχάνεται με μείωση των εκπομπών (και των έμμεσες εκπομπές ρύπων) σε βάθος χρόνου. Λαμβάνεται δηλαδή υπόψην η συνιστώσα της κλιματικής συμμόρφωσης.

- **RCP4.5**: Η ανάπτυξη του σενάριου τού είχε η μαδαίο μέφρα της GCAM στην Pacific Northwest National Laboratory’s Joint Global Change Research Institute (JGCRI), των Η.Π.Α. Είναι το σενάριο σταθερότητας στο οποίο η σταθερότητα της ολικής εκπεμπόμενης ακτινοβολίας γίνεται υποχρεωτικά λίγο μετά το 2100, χωρίς να ξεπεραστεί μακρόπροθεσμό επίπεδο ακτινοβολίας (Clarke et al. 2007; Smith and Wigley 2006; Wise et al. 2009).

- **RCP6.0**: Η ομάδα AIM στο Εθνικό Ινστιτούτο Περιβαλλοντικών Μελετών (NIES) στην Ιαπωνία ανέπτυξε αυτό. Είναι το σενάριο σταθερότητας στο οποίο η σταθερότητα της ολικής ακτινοβολίας επεκτείνεται μετά το 2100 με την ενσωμάτωση τεχνολογικών πρακτικών στην ελάττωση των εκπομπών αερίων θερμοκηπίου (Fujino et al. 2006; Hijioka et al. 2008).

- **RCP8.5**: Το μοντέλο MESSAGE και το Ολοκληρωμένο Πλαίσιο Αξιολόγησης του IIASA (Διεθνές Ινστιτούτο Ανάλυσης Εφαρμοσμένων Συστημάτων) της Αυστρίας χρησιμοποίηθηκαν διαμόρφωση του σενάριου. Όσο περνάει ο χρόνος οι εκπομπές αερίων του θερμοκηπίου αυξάνονται, και θεωρείται ενδεικτικά των βιβλιογραφικών σενάριων που περιγράφουν αύξηση των εκπομπών (Riahi et al. 2007). Είναι το ακραίο σενάριο, στο οποίο δε λαμβάνονται μέτρα κατά της κλιματικής μεταβολής και οδηγεί σε αύξηση των συγκεντρώσεων των αερίων του θερμοκηπίου.

Σε όλα τα σενάρια υπάρχουν μεταβολές στις ίδιες κλιματικές παραμέτρους, αλλά ο ρυθμός με τον οποίο πραγματοποιούνται είναι πολύ διαφορετικός.
Σχήμα 2.4. Παρουσίαση εκπομπών διοξειδίου του άνθρακα (λόγο εκμετάλλευσης ορυκτών καυσίμων και τσιμέντου) (Fuss et al., 2014)

Σχήμα 2.5. Προβλεπόμενες μεταβολές ετήσιας (αριστερά) και καλοκαιρινής (δεξιά) βροχόπτωσης κατά τη διάρκεια της περιόδου από 2071 ως 2100 συγκρινόμενες με τις αντίστοιχες μεταβολές της ιστορικής περιόδου από 1971 ως 2000 (σενάριο RCP 8.5) (Jacob et al., 2014).

2.4 ΣΥΓΚΡΙΣΗ ΣΕΝΑΡΙΩΝ SRES ΚΑΙ RCPs

Η Ειδική Έκθεση για τα Σενάρια Εκπομπών (SRES) είναι μια ομάδα 40 σεναρίων που αναπτύχθηκαν από τη Διακυβερνητική επιτροπή για την Κλιματική Αλλαγή. Κάθε σενάριο χωρίζεται σε μία από τις τέσσερις «οικογένειες» (A1, A2, B1, B2), καθεμία με κοινά θέματα (π.χ.: Αλλαγές πληθυσμού, πηγές ενέργειας, οικονομική ανάπτυξη κ.λπ.). Στην περίπτωση της οικογένειας A1, υπάρχουν 4 «ομάδες» σεναρίων που βασίζονται στην πιθανότητα μια συγκεκριμένη πηγή ενέργειας να γίνει πιο κυριαρχη (π.χ.: Αλλαγές πληθυσμού, πηγές ενέργειας, οικονομική ανάπτυξη κ.λπ.). Στην περίπτωση της οικογένειας A1, υπάρχουν 4 «ομάδες» σεναρίων που βασίζονται στην πιθανότητα μια συγκεκριμένη πηγή ενέργειας να γίνει πιο κυριαρχη (π.χ.: Αλλαγές πληθυσμού, πηγές ενέργειας, οικονομική ανάπτυξη κ.λπ.). Οι πολιτικές ή τα νομοθετήματα δεν έχουν καμία επίδραση στην εξέλιξη αυτών των σεναρίων. Τα σενάρια βασίζονται σε κοινωνικοοικονομικούς συνθήκες. Αυτή η ρύθμιση απαιτεί κάθε μεμονωμένο σενάριο (σενάριο εκπομπής, σενάριο επιβολής ακτινοβολίας, σενάριο κλιματικού μοντέλου) να διαμορφωθεί σε σειρά με το προηγούμενο σενάριο. Εάν υπάρχει αλλαγή σε οποιοδήποτε προηγούμενο σενάριο, ολόκληρη η οικονομία πρέπει να οριστεί από την αρχή. Αυτό καθιστά τη διαδοχική προσέγγιση χρονοβόρα. Από την άλλη οι αντιπροσωπευτικές πορείες συγκέντρωσης (RCP) Είναι μια ομάδα 4
μεμονωμένων σεναρίων που αναπτύχθηκε από την IPCC το 2014 για να αντικαταστήσει τα SRES. Κάθε σενάριο αποτελείται από μια συγκεκριμένη προβολή ακτινοβολίας και κάνει υποθέσεις για τον μελλοντικό πληθυσμό, το ΑΕΠ, τη χρήση ενέργειας κ.λπ. με βάση την ακτινοβολία.

Τα RCPs χρησιμοποιούν μια παράλληλη προσέγγιση στην ανάπτυξη των σεναρίων τους. Η παράλληλη προσέγγιση επιτρέπει την εφαρμογή αλλαγών πολιτικής, δεδομένου ότι τα κοινωνιοοικονομικά σενάρια δεν αποτελούν το σημείο εκκίνησης για τα RCP. Τα σενάρια βασίζονται σε προβολές ακτινοβολίας. Αυτό επιτρέπει την παράλληλη ανάπτυξη κοινωνιοοικονομικών σεναρίων, εκπομπών και κλίματος. Με αυτόν τον τρόπο, μπορούν να γίνουν αλλαγές σε ένα μεμονωμένο σενάριο χωρίς να χρειάζεται να οριστεί από την αρχή ολόκληρη η σειρά.

Συγκρίνοντας τις συγκεντρώσεις διοξείδίου του άνθρακα και την παγκόσμια αλλαγή θερμοκρασίας μεταξύ των σεναρίων SRES και RCP, το SRES A1fI είναι παρόμοιο με το RCP 8.5, το SRES A1B με το RCP 6.0 και το SRES B1 με το RCP 4.5. Το σενάριο RCP 2.6 είναι πολύ χαμηλότερο από οποιοδήποτε σενάριο SRES επειδή περιλαμβάνει την επιλογή χρήσης πολιτικών για την επίτευξη καθαρών αρνητικών εκπομπών διοξειδίου του άνθρακα πριν από το τέλος του αιώνα, ενώ τα σενάρια SRES όχι (Snover et al., 2013).

2.5 ΚΛΙΜΑΤΙΚΗ ΜΕΤΑΒΟΛΗ ΣΤΗ ΜΕΣΟΓΕΙΟ

Στη διατριβή αυτή εκτελείται στατιστικός καταβιβασμός κλίμακα που αναλύονται στο επόμενο κεφάλαιο υπάρχει στοιχεία που επιφέρει ότι είναι μια διαδικασία που επικεντρώνεται στο παγκόσμιο σήμα κλιματικής αλλαγής να κατεβάσει στο πικό επίπεδο. Για το λόγο αυτό κρίνεται δόκιμη γίνεται περιγραφή των επιπτώσεων της κλιματικής αλλαγής στη Μεσόγειο και προγνωστικές στην καλλιέργεια της Κάρλας. Πληθώρα μελετών κλιματικής αλλαγής ανά την Ευρώπη συμφωνεί ότι η θερμοκρασία και η υδρολογική λεκάνη της Κάρλας εντοπίζεται επιπλέον στη Νότια Ευρώπη και προγνωστικές σε διάφορες περιοχές της Ελλάδας στα όρια της.
άνοδος που προβάλλεται για το χειμώνα στην περιοχή της Βόρειας Ευρώπης εμφανίζεται μεγαλύτερη από την καλοκαιρινή, ενώ όσον αφορά τη Νότια Ευρώπη η καλοκαιρινή θερμοκρασιακή αύξηση θα είναι λίγο ισχυρότερη από την χειμερινή. Αναφορικά με τη βροχόπτωση, οι περισσότερες εργασίες προβάλλουν αύξηση κατά τη χειμερινή περίοδο στην περιοχή της Βόρειας Ευρώπης και μικρά δείγματα καλοκαιρινής αύξησης της βροχόπτωσης. Κατά τον 20ο αιώνα παρατηρήθηκε μια αύξηση της βροχόπτωσης στη Βόρεια Ευρώπη γεγονός το οποίο λαμβάνεται υπόψη από πολλά μοντέλα. Από την άλλη η επιστημονική κοινότητα συμφωνεί στο ότι η καλοκαιρινή θερμοκρασία στην περιοχή της Νότιας Ευρώπης πιθανόν να μειωθεί ενώ οι ενδείξεις για μια αύξηση της βροχοπτώσεων του καλοκαιριού είναι πολύ μικρά. Υπάρχει γενικά διάσταση απόψεων σχετικά με τη μεταβολή του κλίματος στις περιοχές της Μεσογείου και πιο συγκεκριμένα στην Ελλάδα. Δεν είναι απλή διαδικασία και δεν αποτελεί ασφαλές συμπέρασμα να εκτιμήσουμε τις χαμηλότερες κλιματικές απορρυθμίσεις σε αυτή της τάξη της κλίμακα. Ωστόσο είναι ευρέως αποδεκτό από πληθώρα εργασιών ότι θα υπάρξει αυξηθεί θερμοκρασιακή αύξηση στα επόμενα χρόνια.

Θερμοκρασία

i. Μεσόγειος

Η θερμοκρασία της Μεσογείου μπορεί να παρουσιάσει αύξηση της τάξης των 3,5ο C ως τα μέσα του αιώνα αν θεωρηθεί βέβαιος ο διπλασιασμός της συγκέντρωσης του διοξειδίου του άνθρακα (CO²). Το εύρος της θερμοκρασιακής αύξησης παρουσιάζει μεταβολές (2,0ο C ως 6,0ο C μέχρι το 2100) (Climatic Changes in Mediterranean). Η πιθανότητα αύξησης της θερμοκρασίας προβάλλεται για τη βασική της περιοχής σε σύγκριση με το ηπειρωτικό κομμάτι της Μεσογείου. Οι περιοχές που εμφανίζουν την μεγαλύτερη άνοδο θερμοκρασίας και επομένως θα είναι περισσότερο ευάλωτες είναι οι νοτιότερες της Μεσογείου. Η θερμοκρασιακή αύξηση στην περιοχή της Μεσογείου, την περίοδο του καλοκαιριού είναι εμφανός μεγαλύτερη από την αντίστοιχη στην περιοχή της Βόρειας Ευρώπης.

ii. Ελλάδα

Η μέση αύξηση θερμοκρασιας αναμένεται να είναι από 0,9ο C ως 2ο C, και προβάλλεται να είναι λίγο μεγαλύτερη τους καλοκαιρινούς μήνες σε σχέση με τους χειμερινούς (Climatic Changes in Mediterranean). Οι αυξήσεις αυτές για τον 21ο αιώνα, παρουσιάζονται παρακάτω στον πίνακα 2.1.

Βροχόπτωση

i. Μεσόγειος

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

49
Η πληθώρα των μελετών δείχνει μείωση της βροχόπτωσης το καλοκαίρι στη Μεσόγειο. Αντιθέτως, στο βορείτερο κομμάτι της Μεσογείου πολλά μοντέλα εκτιμούν ότι οι βροχοπτώσεις θα αυξηθούν αλλά όχι τόσο όσο στη Βόρεια Ευρώπη.

Είναι ευρέως αποδεκτό ότι οι μεταβολές της βροχόπτωσης σε περιοχικό επίπεδο είναι πολύ δύσκολο να περιγραφούν. Υπάρχουν σημαντικές διαφορές ανάμεσα στα μοντέλα τον τρόπο μεταβολής της βροχόπτωσης στη Μεσόγειο. Κοινή απόδοχη λαμβάνει ωστόσο η άποψη ότι θα υπάρξει άνωξη της βροχόπτωσης για γεωγραφικά πλάτη μεταξύ 40° ή 45° N, ενώ στις Νότιες περιοχές προβάλλεται μείωση της βροχόπτωσης (Climatic Changes in Mediterranean).

ii. Ελλάδα.

Υπάρχει μια πολυμορφία αποτελεσμάτων μελετών που σχετίζονται με τον προσδιορισμό των συνεπειών της αλλαγής κλίματος στη βροχόπτωση στην περιοχή της Ελλάδας. Βέβαια, μια εμφανής ελάττωση της βροχόπτωσης κατά την καλοκαιρινή περίοδο είναι η πιθανότερη κατάσταση για τις περισσότερες από αυτές.

Οι περιοχές της ανατολικής και νότιας Ελλάδας και ειδικότερα η περιοχή της Αττικής, της Θεσσαλίας, της Θεσσαλονίκης και της ανατολικής Πελοπονήσου πιθανολογείται ότι θα υποστούν μείωση της ετήσιας βροχόπτωσης. Οι εκτιμημένες μεταβολές της βροχόπτωσης για τον 21ο αιώνα, παρουσιάζονται στον πίνακα 2.2.

Ακραία καιρικά φαινόμενα

Ενδεχομένως να υπάρχει μια δυσπιστία για την εκτίμηση της κλιματικής μεταβλητότητας σε τέτοιες κλίμακες αλλά είναι αποδεκτό ότι η συχνότητα των ακραίων φαινομένων θα αυξηθεί ειδικότερα δε των ξηρασιών στην περιοχή της Μεσογείου. Δηλαδή το θερμό περιβάλλον της περιοχής ενισχύει την άποψη ότι οι ψηλές θερμοκρασίες θα γίνουν ψηλότερες και οι χαμηλές χαμηλότερες. Η μείωση της βροχόπτωσης ενδέχεται να προκαλέσει πιο συχνές ξηρασίες.

Επίπεδο θαλάσσιας στάθμης

Η άνοδος του μέσου επιπέδου της στάθμης της θάλασσας εκτιμάται σε 5 cm ανά δέκα χρόνια. Ειδικότερα εκτιμάται άνοδος 50 cm περίπου ως το έτος 2100 (με ένα εύρος μεταξύ 20 και 86 cm) (Climatic Changes in Mediterranean). Οι πιο ευάλωτες περιοχές θεωρούνται το δέλτα του Νείλου, η Βενετία και η Θεσσαλονίκη.
Πίνακας 2-1 Εκτιμήσεις θερμοκρασιακών μεταβολών κατά τη διάρκεια του 21ο αιώνα (IPCC, 2001)

<table>
<thead>
<tr>
<th>Πίνακας</th>
<th>Εκτιμήσεις και σημειώσεις</th>
<th>2000</th>
<th>2010</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winter</td>
<td>Summer</td>
<td>Annually</td>
<td>Winter</td>
</tr>
<tr>
<td>North Europe</td>
<td>Winter temperature increase is greater than the respective increase in summer</td>
<td>2.5 to 4°C</td>
<td>1 to 3°C</td>
<td></td>
</tr>
<tr>
<td>South Europe</td>
<td>Summer temperature increase is slightly greater than the respective increase in winter</td>
<td>Increase 1.5 to 3.5°C</td>
<td>Increase 2 to 4.5°C</td>
<td></td>
</tr>
<tr>
<td>Mediterranean</td>
<td>Summer temperature increase is slightly greater than the respective increase in winter</td>
<td>Increase 0.5 to 2°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>Summer temperature increase is slightly greater than the respective increase in winter</td>
<td>Increase 0.5 to 2°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας 2-2 Εκτιμήσεις βροχομετρικών μεταβολών κατά τη διάρκεια του 21ο αιώνα (IPCC, 2001)

<table>
<thead>
<tr>
<th>Πίνακας</th>
<th>Εκτιμήσεις και σημειώσεις</th>
<th>2000</th>
<th>2010</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winter</td>
<td>Summer</td>
<td>Annually</td>
<td>Winter</td>
</tr>
<tr>
<td>North Europe</td>
<td>Increase in winter and summer is slightly greater than the respective increase in summer</td>
<td>Increase 0 to -20%</td>
<td>Increase 0 to -20%</td>
<td>Increase 0 to -20%</td>
</tr>
<tr>
<td>South Europe</td>
<td>Decrease in summer and increase in winter is slightly greater than the respective increase in winter</td>
<td>Decrease</td>
<td>Increase</td>
<td>Decrease</td>
</tr>
<tr>
<td>Mediterranean</td>
<td>Great decrease in summer and increase in winter to the north</td>
<td>Decrease</td>
<td>Increase -10%</td>
<td>Increase 0 to -20% at first</td>
</tr>
<tr>
<td>Greece</td>
<td>Decrease of the summer precipitation. Indicators for increase in northern Greece only.</td>
<td>Only few studies concerning the future precipitation regime in Greece have been found and most of them offer conflicting evidence; local climate change precipitation may change.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 ΜΕΘΟΔΟΙ ΚΑΤΑΒΙΒΑΣΜΟΥ ΚΛΙΜΑΚΑΣ

3.1 ΜΟΝΤΕΛΑ ΠΑΓΚΟΣΜΙΑΣ ΚΥΚΛΟΦΟΡΙΑΣ GCMs

Τα GCMs (Global Circulation Models) αποτελούν σημαντικό εργαλείο για τις απαιτήσεις της παρούσας διατριβής δεδομένου ότι σκοπό της αποτελούν οι υδατικοί πόροι της υδρολογικής λεκάνης της Κάρλας και η διαχείρισή τους κάτω από συνθήκες κλιματικής αλλαγής και μεταβλητότητας. Τα πεδία ορισμού των GCMs είναι τεράστια και μας προμηθεύουν με πλανητικής χωρικής κλιμάκας πληροφορίες για το κλίμα. Είναι μοντέλα που αναπτύσσονται σε μεγάλα ερευνητικά εργαστήρια και δίνουν τη δυνατότητα αποθηκευτών οι κλιματικές πληροφορίες. Ειδικότερα, μπορεί κανείς να πει ότι στην ουσία είναι προβολές στο μέλλον ατομοφιαρικών ή οικειόν της καταθήκης υπολογισμού των γενικών και επικεκτικών ουσιών των συνθηκών SRES. Η απόκτηση πληροφοριών από τα παγκόσμια κλιματικά μοντέλα συνεπάγεται ότι το αποτέλεσμα της κλιματικής αλλαγής σε μια περιοχή και τα κλιματικά χαρακτηριστικά διαφορετικών περιοχών προσφέρονται για την διεξαγωγή διαφυσικών και δυναμικών διαδικασιών στη δομή του μοντέλου.

Ωστόσο, οι περιορισμοί που υπάρχουν σε προσεγγίσεις όπως χρησιμοποιούνται κλιματικές πληροφορίες που προκύπτουν από GCMs είναι αρκετά σημαντικοί. Είναι γεγονός ότι τέτοιοι είδους μοντέλα δεν έχουν τη δυνατότητα να προσφέρουν πληροφορίες σε μικρότερες κλιμάκες και λογικά αδυνατούν να περιγράψουν κλιματικές διεργασίες σε επίπεδα μικρότερα από φατνία. Για παράδειγμα, η επιρροή
της βροχής σε μια ευρεία κλίμακα μπορεί να οφείλεται σε ένα μικρότερο πεδίο βούνού (με κλίμακα πιο μικρή από φατνίο). Επιπρόσθετα, πολλές εργασίες έχουν δείξει ότι τα GCMs δεν μπορούν να δώσουν αξιόπιστες κλιματικές πληροφορίες στην μικρότερη κλίμακα που παράγουν αποτελέσματα. Ωστόσο, παρά τους πειραματισμούς που υπάρχουν τα παγκόσμια κλιματικά μοντέλα είναι το βασικό εργαλείο για χωρική διακριτοποίηση η οποία θα χρησιμοποιηθεί για διερεύνηση επιπτώσεων.

3.2 ΧΩΡΙΚΑ ΚΛΙΜΑΤΙΚΑ ΜΟΝΤΕΛΑ RCMs

Τα χωρικά κλιματικά μοντέλα (RCMs) βασίζονται στη χρήση αρχικών συνθηκών, σε πρόσφατες μετεωρολογικές μεταβλητές συναρτήσεις του χρόνου και σε συνθήκες επιφανειακών ορίων. Συνήθως τα στοιχεία κατεύθυνσης προέρχονται από παγκόσμια κλιματικά μοντέλα ή από αρχεία παρατηρήσεων και ενσωματώνουν τις επιδράσεις τόσο των αεροζών δύο και των αερίων του θερμοκηπίου. Ο σχεδιασμός λοιπόν προϋποθέτει ότι το GCM θα αποδώσει την παγκόσμια κυκλοφορία σε μεγάλες κλίμακες ενώ το RCM θα χρησιμοποιηθεί για: a) την εκτίμηση των δυνάμεων σε μικρότερο επίπεδο από το παγκόσμιο μοντέλο, και β) τον εμπλουτισμό της προσομοίωσης των διεργασιών της ατμόσφαιρας και των μεταβλητών του κλίματος σε μικρότερες κλίμακες.

Υπάρχουν δύο σημαντικά εμπόδια τα οποία είναι πρώτον ότι οι αποτελέσματα των σφαιρικών στα στοιχεία κατεύθυνσης προέρχονται από GCMs, και δεύτερον ότι δεν υπάρχουν αλληλεπιδράσεις ανάμεσα στο χωρικό και παγκόσμιο κλίμα. Στη πράξη, σε μια επιστημονική προσεγγίσεις, θα πρέπει να αποτελεί ο πρόος με τον οποίο επελέγονται οι φυσικές παράμετροι, το μέγεθος του πεδίου καθώς και το εύρος της ανάλυσης του μοντέλου, η μέθοδος που ενσωματώνονται οι μεγάλες κλίμακες μετεωρολογικές συνθήκες και τέλος η εσωτερική ανοιχτείᾳ που προκύπτει από μια γραμμικής δυνάμεις ανεξάρτητες των ορίων ισχύος (Giorgi and Mearns,1991,1999; Ji και Vernekar 1997). Πολλά περιλαμβάνει πραγματοποϊθήκαν σε περιορισμένο εύρος ύπαρξεις συνθήκες (6 όρες ή και περισσότερο) όπως επιτάσσει ότι παγκόσμιος ήχος (RCM) έχει απαιτείται το στενό συνεργασία μεταξύ των ερευνητών του εκάστοτε μοντέλου (παγκόσμιος ή χωρικός) για να πραγματοποιηθούν προσομοίωσες με χωρικά κλιματικά μοντέλα.

Το IPCC προσφέρει δεδομένα υψηλής χωρικής ανάλυσης. Η δημιουργία κατανοητόν στατιστικών στοιχείων για το κλίμα προϋποθέτει την αναγνώριση των συστηματικών σφαιρικών στατιστικών στα μοντέλα που σχετίζονται με την κλιματική αλλαγή ενώ
ούτως ώστε να καταστεί εφικτό τα μοντέλα ατμόσφαιρας να ισορροπήσουν με τις συνθήκες εδάφους θα πρέπει να υιοθετηθούν μικροχρόνια πειράματα.

Σε μια επιστημονική προσέγγιση ο τρόπος και τα κριτήρια που επιλέγεται η περιοχή ανάλυσης δεν αποτελεί μια απλή εργασία. Η αύξηση στο μέγεθος μιας περιοχής ανάλυσης είναι δυνατόν να προκύψει λόγω ταυτόχρονης μείωσης της επίδρασης της πίεσης του ορίου και με τον τρόπο αυτό να κυριαρχήσουν οι διεργασίες του εσωτερικού μοντέλου σε συγκεκριμένες περιόδους άλλα και μεταβλητές. Επομένως, η επίλυση των χωρικών μοντέλων μπορεί να πραγματοποιηθεί χωρίς τη βάση δεδομένων-αδημογονίας η σποίδες δισκολεύει την ερμηνεία των καταβιβασμένων μεταβλητών. Η περιοχή θα πρέπει να έχει επαρκή έκταση ούτως ώστε η επίδραση των τοπικών παραγόντων και η ενισχυμένη ανάλυση να μην μετριάζονται ή να επηρεάζονται από τις οριακές συνθήκες.

Οι επιδράσεις των φυσικών δυνάμεων διαμορφώνονται από τις επιφανειακές δυνάμεις της γης, των οικειον και το θαλάσσιο πάγο. Με μεγαλύτερη ανάλυση επιτυγχάνεται καλύτερη προσέγγιση του υδρολογικού κύκλου δεδομένου ότι η τοπογραφία είναι λεπτομερέστερη. Τα κυκλωνικά συστήματα και οι κάθετες ταχύτητες περιγράφονται πιο διεξοδικά αν επιλεγεί το μεγαλύτερο φάσμα των ατμοσφαιρικών διεργασιών όπως αυτό μπορεί να προκαλέσει ανεπάρκειες στην προσομοίωση του τοπικού κλίματος.

Οι φυσικές διεργασίες υπεισέρχονται στα RCMs από μία καλά αξιολογημένη υπάρχουσα περιοχή με πειροημένο μέγεθος και τροποποιημένη κατάλληλα για χρήση σε μελέτες κλιματικές ή εξάγονται άμεσα το GCM. Όταν συμβαίνει το πρώτο όλες οι ομάδες παραμετροποίησης βαθμονομούνται και πιστοποιούνται με βάση τις απαιτήσεις της προσομοίωσης. Όμως με αυτόν τον τρόπο η ανάλυση των διαφόρων χωρικού-παγκόσμιου μοντέλου είναι πολύπλοκη, αφού οι διαφορές δεν σχετίζονται μόνο με την προσομοίωση. Στη δεύτερη περίπτωση υπάρχει κοινή κλίμακα αναφοράς, έτσι όμως οι φυσικές διεργασίες που αναπτύσσονται για τα GCMs μπορεί να καταστούν πολύ αόριστη για λεπτομερεις αναλύσεις με χωρικά κλιματικά μοντέλα και να πρέπει να επανακαθοριστούν. Βέβαια και στις δύο περιπτώσεις υπάρχει ικανοποιητική απόδοση οπότε η επιλογή εξαρτάται από τον μελετητή. Ωστόσο σε μελέτες επιπτώσεων κλιματικής μεταβολής εφόσον δεν υπάρχει περιορισμός στον τύπο της ανάλυσης η δεύτερη περίπτωση έχει τη δυνατότητα να μεγιστοποιήσει τη συμφωνια χωρικού-παγκόσμιου μοντέλου στις δυνάμεις ακτινοβολίας.

Τις τελευταίες δεκαετίες πληθώρα εφαρμογών κατέστησε αναγκαία τη χρήση οικειόνων χωρικών κλιματικών μοντέλων. Βέβαια η χρήση τέτοιων μοντέλων είναι αρκετά περιορισμένη σε σχέση με τα αντίστοιχα ατμοσφαιρικά. Τα μοντέλα αυτά χρειάζονται μια πολύ λεπτή ανάλυση, μερικών δεκάδων χιλιομέτρων ή και μικρότερη.
3.3 ΣΤΑΤΙΣΤΙΚΟΣ ΚΑΤΑΒΙΒΑΣΜΟΣ ΚΛΙΜΑΚΑΣ

Η ανάλυση των GCMs είναι πολύ τραχιά (εκατοντάδες χιλιόμετρα) ενώ των RCMs μερικές δεκάδες χιλιόμετρα. Βέβαια οι περισσότερες μελέτες διερεύνησης των επιπτώσεων της κλιματικής αλλαγής απαιτούν αξιόπιστες πληροφορίες σε πολύ μικρότερες κλίμακες από τις παραπάνω.

Ένας εύκολος τρόπος για να ενσωματωθεί το σήμα της κλιματικής μεταβολής σε τοπική μικρή κλίμακα είναι να εφαρμοστούν οι προβολές στο μέλλον από τα GCMs σε μια βάση παρατηρημένων δεδομένων τοπικής κλίμακας (για μια συγκεκριμένη περιοχή μελέτης) η οποία είναι γνωστή ως μέθοδος παράγοντα μεταβολής. Είναι μια μεθοδολογία που εφαρμόζεται δεν υπάρχουν αποτελέσματα από RCM, σε μελέτες ευαισθησίας και όταν επιβάλλεται να υπάρχει γρήγορη διαμόρφωση του σήματος της κλιματικής αλλαγής. Οι πληροφορίες για την κλιματική αλλαγή σε αναλύσεις επιπτώσεων είναι δυνατό να ενσωματωθεί με περισσότερο πολύπλοκες μεθοδολογίες άλλα αυτό συνήθως προϋποθέτει την ύπαρξη ενός μόνο GCM. Σε αυτό το στάδιο το βασικό είναι η παροχή μιας βάσης δεδομένων και κατευθυντήριων γραμμών για πως εφαρμόζονται οι μεθοδοι καταβιβασμού κλίμακας στα κλιματικά μοντέλα.

Βασική παραδοχή του στατιστικού καταβιβασμού κλίμακας είναι ότι το χωρικό-τοπικό κλίμα επηρεάζεται από: τις κλιματικές συνθήκες (μεγάλης κλίμακας), και τα τοπολογικά χαρακτηριστικά (δηλαδή χαρακτηριστικά τοπογραφίας, κατανομής θάλασσας-γης, και χρήσης γης: von Storch 1995, 1999). Έτσι, τα τοπικά δεδομένα εξάγονται πρώτα και διαμορφώνουν ένα μοντέλο στατιστικής σύνθεσης μεγάλης κλίμακας εξαρτημένων μεταβλητών και ανεξάρτητων μεταβλητών. Επειτα τα αποτελέσματα εξόδου του GCM ενσωματώνονται στο στατιστικό μοντέλο και προκύπτουν οι ανάλυσες επιπτώσεων στις μεταβλητές τοπικής κλίμακας. Αυτό αποτελεί ένα βασικό πλεονέκτημα αυτών των μεθόδων αφού εφαρμόζονται απευθείας στην εξόδο του GCM και έτσι απαιτούν μικρό όγκο υπολογισμών. Το κύριο θεωρητικό μειονέκτημα τους είναι το γεγονός ότι τα στατιστικά μοντέλα που δημιουργούνται έχουν πληροφορίες τόσο ιστορικές όσο και πιθανές μελλοντικές κάτι συμβαίνει και στα δυναμικά μοντέλα όσον αφορά τη φυσική τους παραμετροποίηση.

3.3.1 Βασικές μεθοδολογίες

Στο στατιστικό καταβιβασμό κλίμακας βαθμονομούνται και πιστοποιούνται σχέσεις ποσοτικές μεταξύ των εξαρτημένων και τοπικών ανεξάρτητων μεταβλητών. Οι πιο βασικές μεθοδολογίες περιγράφονται παρακάτω:
- Μέθοδοι ταξινόμησης καιρού κατά τις οποίες γίνεται ομαδοποίηση των ημερών σε διάφορους τύπους καιρού ή καταστάσεις ανάλογα με τα κοινά χαρακτηριστικά τους.

- Μοντέλα συμμεταβολής-συσχέτισης που κάνουν χρήση μέσων όρων οι οποίοι εμφανίζουν γραμμικές ή μη σχέσεις ανάμεσα στις εξαρτημένες και τις ανεξάρτητες μεταβλητές. Οι πιο κοινές μεθοδολογίες χρησιμοποιούν την μέθοδο της πολλαπλής συμμεταβολής (Murphy, 1999), της κανονικής ανάλυσης συσχέτισης (CCA) (von Storch et al., 1993), και των τεχνητών νευρονικών δικτύων τα οποία ανήκουν στη κατηγορία της μη γραμμικής συμμεταβολής (Crane and Hewitson, 1998).

- Οι γεννήτριες καιρού (weather generators) είναι μοντέλα που αναπαριστούν με ακρίβεια τα χαρακτηριστικά της τοπικής μεταβλητής (μέσο, διάμεσο, τυπική απόκλιση) ενώ δεν κάνουν το ίδιο για όλη τη χρονοσειρά (Wilks and Wilby, 1999). Στηρίζονται σε διαδικασίες Markov για τις υγρές-ξηρές ημέρες για να εμφανίσουν τα διάφορα επεισόδια βροχοπτώσεως.

Μείζονος σημασίας είναι η γνώση ορισμένων βασικών παραδοχών στον καταβιβασμό θεώρησης σε οπτικοακουστικά εξόδου παγκόσμιων κλιματικών μοντέλων (Hewitson and Crane, 1996; Giorgi et al., 2001):

- Οι εξαρτημένες μεταβλητές που συνδέονται με την τοπική ανεξάρτητη μεταβλητή πρόγνωσης θα πρέπει να υπάρχουν σε υφιστάμενες τοπικές κλίμακες ώστε να είναι δυνατή η αντίδραση που θα καταβιβαστεί.
- Το στατιστικό μοντέλο που δημιουργείται θα πρέπει να παραμένει έγκυρο και πέραν της περιόδου βαθμολόγησης.
- Η επιλογή των εξαρτημένων μεταβλητών πρόγνωσης (predictors) θα πρέπει να γίνεται έτσι ώστε να ενσωματώνεται η συνιστώσα της κλιματικής αλλαγής με το βέλτιστο τρόπο.
- Οι εξαρτημένες μεταβλητές που χρησιμοποιούνται για την προβολή του μέλλον δεν πρέπει να είναι κλιματολογικά άσχετες με αυτές που χρησιμοποιούνται κατά το στάδιο βαθμολόγησης του στατιστικού μοντέλου.

3.3.2 Συνθήκες εφαρμογής στατιστικού καταβιβασμού κλίμακας

Γενικά το πιο απλό είναι να πει κανείς ότι τα GCMs δίνουν πολύ γενικά την μελλοντική μεταβολή των κλιματικών μεταβλητών (π.χ. βροχόπτωση, θερμοκρασία) που οφείλεται στο φαινόμενο του θερμοκηπίου. Για το λόγο αυτό οι μέθοδοι καταβιβασμού κλίμακας θεωρούνται απαραίτητοι επειδή το σήμα της κλιματικής
αλλαγής απαιτείται σε μικρότερη κλίμακα συγκριτικά με την έξοδο του GCM. Παρακάτω αναλύονται οι προϋποθέσεις του στατιστικού καταβιβασμού κλίμακας.

3.3.2.1 Φαινόμενα που επιβάλλεται ο καταβιβασμός κλίμακας

Η στατιστική υποκλιμάκωση (στατιστικός καταβιβάσμος κλίμακας) μπορεί να χρησιμοποιηθεί με επιτυχία σε φυσιογραφικά πολύπλοκες περιοχές με έντονες κλίσεις (νησιά, βουνά ή θαλάσσια ύφασμα) καθώς η συνοπτική κλίμακα μεταβολή επηρεάζεται αρκετά. Είναι γεγονός ότι οι μέθοδοι στατιστικής υποκλιμάκωσης κλίμακας σε σημειώνουν διαφορές όπως η διάβρωση του εδάφους είναι μικρότερη από να εκδοθεί συγκριτικά με την έξοδο του GCM. Παρακάτω αναλύονται οι προϋποθέσεις του στατιστικού καταβιβασμού κλίμακας.

3.3.2.2 Καταστάσεις που δεν απαιτούν στατιστικό καταβιβασμό κλίμακας

Η πλήθωρα των εφαρμογών που ασχολείται με το στατιστικό καταβιβασμό κλίμακας έχει εφαρμοστεί σε εύκρατους κλίματα περιοχές, ενώ είναι πολύ λίγες οι περιπτώσεις που εφαρμόστηκε σε μικρότερες ή υπόχρεες τοπικές περιοχές. Επομένως, η εφαρμογή περιορίζεται σε περιοχές όπου υπάρχει ρόλος δεδομένων. Επομένως, η εφαρμογή περιορίζεται σε περιοχές όπου υπάρχει ρόλος δεδομένων. Δηλαδή ενώ τα RCMs έχουν τη δυνατότητα να εφαρμόσουν οποιοδήποτε δεδομένα, η υπόγεια εφαρμογή περιορίζεται σε περιοχές όπου υπάρχει ρόλος δεδομένων. Στις περισσότερες περιπτώσεις ο στατιστικός καταβιβασμός κλίμακας αδυνατεί να περιγράψει την επίδραση του εδάφους, όποτε αυτή προέρχεται από το GCM. Πρακτικά αυτό συνεπάγεται ότι ευαισθησία των μεθόδων αυτών σε ανοιχτόμορφο εδάφος θα είναι χαμηλή. Εύκολα συμπεριλαμβάνει κάποιος ότι ο στατιστικός καταβιβασμός κλίμακας όταν υπάρχουν ασταθείς παράγοντες δε να πρέπει να βρίσκει πεδίο εφαρμογής. Αυτό
ενδέχεται να είναι μια βασική υπόθεση αν εμπλουτιστεί με αλλαγές στην ατμοσφαιρική κυκλοφορία ή ξηρακικές αλλαγές του κλίματος όπως η πτώση του Ατλαντικού θερμικού ορίου κυκλοφορίας (Vellinga and Wood, 2002). Η χρήση μόνο των εξαρτημένων μεταβλητών θα ενσωματώσει μόνο αυτή την πτυχή της κλιματικής αλλαγής και θα αποτύχει να συλλαβεί τη μακροχρόνια μεταβλητότητα ακόμα και σε παρατηρημένα δεδομένα (Wilby, 1997).

3.3.2.3 Άλλες μέθοδοι ανάπτυξης σεναρίων κλιματικής αλλαγής

Βέβαια εκτός από το στατιστικό καταβασμό κλίμακας και τα χωρικά κλιματικά μοντέλα υπάρχουν και κάποιες εναλλακτικές μέθοδοι για τη δημιουργία κλιματικών σεναρίων. Οι πιο κοινές μεθοδολογίες είναι η χωρική παρεμβολή των δεδομένων του GCM σε τοπικά κλίμακα, η ανάλυση ευαισθησίας των μοντέλων (γνωστή και ως bottom-up προσέγγιση), η κατασκευή χρονικών αναλυτικών με τη χρήση ιστορικών δεδομένων, ο υπολογισμός ποσοστιαίων μεταβολών των αποτελεσμάτων του GCM και η εφαρμογή των μεταβολών αυτών στις ιστορικές παρατηρημένες τιμές δεδομένων (μέθοδος Δέλτα ή Delta Downscaling).

Μια πολύ γνωστή διαδικασία για την διερεύνηση των επιπτώσεων της κλιματικής αλλαγής σχολείται με τους "παράγοντες μεταβολής". Σε πρώτο στάδιο, η κλιματολογία αναφοράς αναγνωρίζεται για την περιοχή μελέτης. Αυτό μπορεί να αποτελεί μία μακροπρόθεσμη περιόδο όπως η εικοσαετία 1980-2000, ή μια χρονοσειρά μετεωρολογικής μεταβλητής. Κατόπιν, γίνεται ο υπολογισμός των μεταβολών στην εν λόγω μεταβλητή όπως προκύπτει από την έξοδο του GCM σε σφατίου που περιλαμβάνει ολόκληρη ή ή μέρες την περιοχή μελέτης.

Βέβαια οι ανεπάρκειες της μεθόδου είναι αρκετές όπως για παράδειγμα ότι το διαφορα μεταξύ συνθετικού και ιστορικού σεναρίου έγκειται μόνο στο μέσο, το μέγιστο και το ελάχιστο ενώ το εύρος και τη μεταβλητότητα παραμένουν ίδια. Επίσης, γίνεται η παραδοχή ότι η χωρική κατανομή διατηρεί πανομοιότητα. Επιπρόσθετα, η μέθοδος δεν ενδεικνύει για χρονοσειρές βροχόπτωσης διότι η μεταβολή της παρατηρημένης βροχόπτωσης με βάση το GCM επειδή η μεταβολή της από τις βροχομετρικές μεταβολές του παγκόσμιου κλιματικού μοντέλου είναι πιθανό να αλλάξει τις υγρές μέρες, την ένταση ακραιών φαινομένων, και να δημιουργήσει ακόμα και τιμές βροχόπτωσης κάτω του μηδέν! Επίσης όταν μεταβάλλεται η χρονοσειρά βάσης, η χρονική ακολουθία παραμένει σταθερή γεγονός που σημαίνει ότι η μέθοδος είναι ακατάλληλη για συνθήκες με μεταβολές στη διάρκεια υγρής / ξηρής ημέρας, όπως στην ημίξηρη και άνοδη υδρολογία όπου οι επιπτώσεις της βροχόπτωσης στην
απορροή και στη διάρκεια αυτής είναι μη γραμμικές. Πρόκειται λοιπόν για μια λιποβαρή προσέγγιση.

3.4 ΣΤΑΔΙΑ ΤΟΥ ΣΤΑΤΙΣΤΙΚΟΥ ΚΑΤΑΒΙΒΑΣΜΟΥ ΚΛΙΜΑΚΑΣ (ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ)

Τα βασικά στάδια του στατιστικού καταβιβασμού κλίμακας, στα οποία στηρίχτηκε και η παρούσα διατριβή αναλύονται σε αυτό το σημείο. Οι κύριες κατευθύνσεις για στατιστική υποκλιμάκωση παρέχονται από τους Wilby et al., (2004).

Σε σχέση με τα χωρικά κλιματικά μοντέλα, η εφαρμογή στατιστικού καταβιβασμού κλίμακας απαιτεί την κατανόηση των φυσικών διεργασιών αλλά και προϋποθέτει την υπαρξία απλής λογικής. Βέβαια, η ακρίβεια των σεναρίων ενδυναμώνεται με την χρήση κριτηρίων ορθής εφαρμογής. Παρακάτω φανερώνονται ορισμένα από τα κυριότερα στάδια (Σχήμα 3.1.).

![Σχήμα 3.1.](image-url)

i) Προσδορισμός των στόχων

Η ύπαρξη επαρκούς αρχείου και ποιότητας δεδομένων διαδραματίζει βασικό ρόλο στον στατιστικό καταβιβασμό κλίμακας όπως επίσης ο διαθέσιμος χρόνος, και οι μετεωρολογικές πληροφορίες. Καλά είναι σε τέτοιου είδους προσεγγίσεις να υπάρχει αρχική ανάλυση από κάτω (bottom up) της κλιματολογίας της περιοχής μελέτης (Beersma et al., 2000).

ii) Αξιολόγηση της βάσης δεδομένων

Είναι γεγονός ότι η ύπαρξη ανεξάρτητων και εξαρτημένων μεταβλητών υψηλής ποιότητας χρονικά μεταβαλλόμενων και ειδικά για μελλοντικές περιόδους είναι απαραίτητη για τη διενέργεια στατιστικής υποκλιμάκωσης. Είναι γνωστό ότι πολύ λίγοι μετεωρολογικοί σταθμοί έχουν αρχείο δεδομένων που είναι πλήρες ή ακριβείς. Για το λόγο αυτό η αντιμετώπιση των δεδομένων με κενά είναι πολύ σημαντική σε αυτές τις εφαρμογές.

Είναι ευτυχές ότι έχουν δημιουργηθεί πολλά κέντρα κλιματικών μοντέλων που εργάζονται με τα επιθυμητά σε εξαρτημένους μεταβλητών πρόγνωσης (predictors).

iii) Προσδορισμός του μοντέλου.

Βασικό βήμα αποτελεί ο καθορισμός της μεθόδου τα εφαρμοστεί. Από διάφορες εργασίες έχει προκύψει ότι η επιτυχία του στατιστικού καταβιβασμού κλίμακας βασίζεται στην επιλογή της εφαρμογής αλλά και της περιοχής μελέτης. Στη πράξη το μοντέλο που θα χρησιμοποιθεί αντικατοπτρίζει τόσο τα δεδομένα που είναι διαθέσιμα όσο και τις συνθήκες του προβλήματος.

Σε πολλές εργασίες πρώτα γίνεται η ανάλυση δεδομένων και στη συνέχεια βαθμονομείται το μοντέλο. Το πιο κρίσιμο σημείο είναι το χρονικό βήμα του μοντέλου (π.χ. οριακός ημερήσιος, μηνιαίος μέσος) έτσι τα μοντέλα στατιστικής υποκλιμάκωσης καλό είναι να αναπτύσσονται για κάθε μήνα, περιόδο και έτος. Ορισμένες φορές, οι κλασσικές κλιματικές περιόδου (Δεκέμβριος-Ιανουάριος-Φεβρουάριος κ.ο.κ) μπορεί να μην περιγράφουν φυσικά φαινόμενα η διαστήματα που υπάρχουν στη βάση δεδομένων και να πρέπει να επανακαθοριστούν. Επίσης κλάσεις δεδομένων με περιοδικούς ορισμούς που στηρίζονται στις συνθήκες του ιστορικού κλίματος μπορεί να μην έχουν σημασία σε διαφοροποιημένο κλίμα. Έτσι, οι παράμετροι του μοντέλου είναι θεμιτό να μπορούν να μεταβληθούν σε κλίμακες μικρότερης της περιοχής. Βέβαια, υπάρχουν φορές (π.χ. στατιστικά καταβιβασμένη βροχόπτωση σε μημέζη περιοχή) θηρίνεται απαραίτητη η ομαδοποίηση των δεδομένων σε περιόδους μόνο για
την εξασφάλιση αρκετών γεγονότων (υγρής-ήμερας) ώστε να βαθμονομηθεί το μοντέλο.

iv) Επιλογή των μεταβλητών predictors

Οι εξαρτημένες μεταβλητές πρόγνωσης (predictors) είναι πολύ σημαντικές για την επιτυχή δημιουργία ενός στατιστικά καταβιβασμένου αληθοφανούς σεναρίου. Η συσχέτιση των εξαρτημένων μεταβλητών μπορεί να κυμαίνεται σε χαμηλά επίπεδα (π.χ. ημερήσια βροχόπτωση), ή να είναι μεταβαλλόμενη. Επίσης ορισμένες φορές χρήσιμες μεταβλητές παρέλθουν λόγω της χαμηλής συσχέτισης με το ιστορικό αρχείο. Στη περίπτωση της βροχόπτωσης που αφορά και τη παρουσία διατριβή η μεταβλητή της υγρασίας ενδέχεται να έχει σημαντική επιρροή στο αποτέλεσμα, με τη μεταβολή του έμφυτου των μελλοντικών αλλαγών και της ταυτότητάς τους (Hewitson, 1999; Charles et al., 1999b).

Τελικά, το στάδιο αυτό περιορίζεται από το αρχείο δεδομένων των GCMs επειδή το εύρος της επανάληψης είναι μεγαλύτερο από τις μεμονωμένες εφαρμογές του GCM. Με αυτό τον τρόπο, διαδικασίες όπως η ανάλυση συσχέτισης, η πολλαπλή βηματική παλινδρόμηση (stepwise regression), ή το κριτήριο πληροφορίας ανταποκρίνονται αξιόλογα στην επιλογή των καταλληλότερων εξαρτημένων μεταβλητών από ένα υποψήφιο δείγμα (Charles et al., 1999b; Wilby et al., 2003). Η κατάλληλη μεταβλητή predictor έχει ισχυρή σύνδεση με την μεταβλητή στόχο, η έννοια της είναι φυσική, το GCM την εμφανίζει με αξιόπιστο τρόπο, και αυχενιστεί την πολυετή κλιματική μεταβλητότητα. Επιπρόσθετα, οι μεταβλητές αυτές οφείλουν να περιγράφονται με αθροιστικό τρόπο τη κλιματική μεταβολή συμπληρώνοντας όλα τα παραπάνω κριτήρια, γιατί με την αποσπώσεις ενός προκύπτει ένα ανεπαρκές κλιματικό σενάριο.

v) Πεδίο υποκλιμάκωσης

Όσον αφορά τον ορισμό του πεδίου και τις διαστάσεις του, αυτά είναι απαραίτητα για εφαρμογή των μεθόδων υποκλιμάκωσης σε τοπικές μετεωρολογικές μεταβλητές (με βάση τις πλευρικές μετεωρολογικές οριακές συνθήκες των χωρικών κλιματικών μοντέλων). Σε ένα μικρό πεδίο εξαρτημένων μεταβλητών η επιρροή του GCM στο τελικό σενάριο είναι πιο άμεση. Η ικανότητα των GCMs να αναπαράγουν το ιστορικό κλίμα διαφοροποιείται αναλόγως τα μοντέλα και παρουσιάζει ανομοιομορφία στο χώρο και στο χρόνο, οπότε ο ορισμός της θέσης του πεδίου είναι πολύ σημαντικός (Lambert and Boer, 2001).
Η βελτιστήτηση επιλογής για την τοποθεσία του πεδίου στηρίζεται εάν ένα βαθμό από το θεωρητικό επίπεδο που το GCM λειτουργεί επαρκώς. Συνήθως αποτελείται από έναν επαρκή αριθμό φατνίων (Widmann and Bretherton, 2000). Τελικά, η επεισοδιονομική κοινότητα συμφωνεί πως μια σωστή επιλογή θέσης και διαστάσεων πεδίου μπορεί να διαφέρει ανάλογα την περιοχή και είναι αρμοδίον να επιλεγεί πώς η χωρική κλίμακα των εξαρτημένων-ανεξάρτητων μεταβλητών ενδέχεται να τροποποιείται κάτω από μεταβαλλόμενες κλιματικές διεργασίες.

vi) Βελτιστοποίηση των δεδομένων και μεταβολή της διάστασης των φατνίων.

Η ανάπτυξη του σετ που θα περιλαμβάνει τις υποψήφιες εξαρτημένες μεταβλητές πρόγνωσης (predictors) είναι ένα σύνθετο θέμα το οποίο απαιτεί να εξαχθούν τα δεδομένα, να αλλαγθεί η διάσταση των φατνίων και να βελτιστοποιηθούν. Τα φατνία στα οποία αναφέρονται τις παρατηρημένες ή ιστορικές δεδομένες χωρικά δεν συνάδουν με τη χρονοδιάδοση των φατνίων του παγκόσμιου κλιματικού μοντέλου οπότε απαιτείται η τροποποίηση της διάστασης τους.

Η βελτιστοποίηση-κανονικοποίηση των δεδομένων εφαρμόζεται πολύ συχνά σε τέτοιες εφαρμογές πριν από την ανάπτυξη των μοντέλων. Αυτό γίνεται για να μειωθούν οι ανομοιομορφίες που παρουσιάζει ο μέσος και η διακύμανση στις εξαρτημένες μεταβλητές. Πρόκειται για αφαίρεση από το μέσο και στη συνέχεια διαίρεση με την τυπική απόκλιση της χρονοσειράς της μεταβλητής predictor. Οι περιορισμοί σε αυτού τη διαδικασία είναι η επιλογή της ιστορικής περιόδου και το μέσο εύρος αυτής (μηνιαίο, περιοδικό, ή ετήσιο). Η περίοδος 1980-2000 που χρησιμοποιείται σε αυτή την διατριβή είναι αρκετά μεγάλη ώστε να αιχμαλωστιστούν οι κλιματικές συνθήκες με αξιόπιστο τρόπο, ωστε αναφέρεται σε πολύ πρόσφατο παρελθόν ώστε να έχει ενσωματωμένη μια ισχυρή πτυχή της κλιματικής αλλαγής.

vii) Επαλήθευση του μοντέλου χρησιμοποιώντας ανεξάρτητα δεδομένα

Η αυθαίρετη εφαρμοσική στατιστικού καταβασμού κλιμακών ειδικά στην περίπτωση της γραμμικής ή μη γραμμικής παλινδρόμησης αποτελεί ένα σημαντικό σφάλμα. Επομένως, η αξιολόγηση των μεθόδων στατιστικής υποκλιμάκισης (και φυσικά των χωρικών κλιματικών μοντέλων) είναι με τη χρήση ανεξάρτητων δεδομένων είναι μονόδρομος.

Ο καλύτερος τρόπος για επαλήθευση της απόδοσης του μοντέλου στηρίζεται στον διαχωρισμό του αρχείου δεδομένων: το ένα τμήμα για την ανάπτυξη και το άλλο για επαλήθευση. Γενικά αυτή η διαδικασία χρησιμοποιείται για αρχεία δεδομένων με μεγάλη διάρκεια (30 έτη και πάνω). Η επαλήθευση του στατιστικού μοντέλου μπορεί
να εφαρμόζεται με πιο αξιόπιστο τρόπο σε μικρότερα αρχεία δεδομένων ή αντιπροσωπευτικά αρχεία. Δηλαδή, η βαθμονόμηση μπορεί να γίνει με τη χρήση ζηρών ετών και να επαληθεύεται με τη χρήση υγρών ετών ή αντίθετα. Ακόμη η επαλήθευση μπορεί να πραγματοποιηθεί με τη σύγκριση περιόδων με διαφορετικά στατιστικά χαρακτηριστικά (Zorita and von Storch, 1999), ή με σύγκριση με τα αποτελέσματα από τα χωρικά κλιματικά μοντέλα (Murphy, 1999).

viii) Δημιουργία σεναρίων καταβιβασμού κλίμακας

Το επόμενο στάδιο είναι η δημιουργία συνθετικών κλιματικών σεναρίων δεδομένων ώστε να αποτελέσματα για περισσότερες από μία μεταβλητές όπως για παράδειγμα βροχόπτωση, μέγιστη και ελάχιστη θερμοκρασία, ηλιακή ακτινοβολία, σχετική υγρασία και ταχύτητα του ανέμου (Parlange και Katz, 2000). Όμως, στις περιπτώσεις όπου υπάρχει ανεξαρτήτως των μεταβλητών predictor είναι σκόπιμο να διερευνηθεί η διατήρηση των εσωτερικών περιορισμών (p.c. η μέγιστη ημερήσια θερμοκρασία έχει υψηλότερη τιμή πάντοτε την τιμή της ελάχιστης). Η μελέτη της εξάρτησης μεταξύ των θαλάσσιων υγρών μετά της ποτάμιας ροής και της βροχόπτωσης είναι μια συνδεδεμένη διαδικασία, οπότε η παραπάνω διερύνηση κρίνεται απαραίτητη (Svensson and Jones, 2002).

Για την επόμενη αξιόπιστη αποτελεσμάτων ο στατιστικός καταβιβασμός κλίμακας οφείλει να πραγματοποιείται με πληθώρα παγκόσμιων κλιματικών μοντέλων ώστε να αυξηλογηθεί η αβεβαιότητα που προκύπτει από διαφορετικά κοινωνιοοικονομικά σενάρια και από τα ίδια τα μοντέλα (Mearns et al., 2001). Οι εξαρτημένες μεταβλητές πρόγνωσης (predictor) διαφορετικών GCMs βελτιστοποιούνται με την ίδια μέθοδο και περιγράφουν κοινά φαινόμενα οπότε, τα στατιστικά μοντέλα μπορούν να βαθμονομηθούν με τη χρήση των ίδιων παραγόντων (μεταβλητών) με διαφορετική όμως προέλευση.

viii) Προστιθέμενη αξία της υποκλιμάκωσης

Είναι μείζονος σημασίας να διερευνηθεί κατά πόσο μια μεθοδολογία στατιστικού καταβιβασμού κλίμακας μπορεί να προσφέρει αθροιστικά στην έρευνα εξάγοντας συμπεράσματα πέραν αυτών που προκύπτουν από το GCM. Ο καλότερος τρόπος είναι να επαληθεύει μια μέθοδος και συνεπώς το παγκόσμιο κλιματικό μοντέλο είναι με βάση ιστορικές κλιματικές συνθήκες (Hay et al., 2000).
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης
-Κεφάλαιο 3ο: Μέθοδοι καταβιβασμού κλίμακας

3.5 ΔΥΝΑΜΙΚΟΣ ΚΑΤΑΒΙΒΑΣΜΟΣ ΚΛΙΜΑΚΑΣ (ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ)

3.5.1 Η χρήση των RCMs σε μελέτες διερεύνησης επιπτώσεων

Παρ’ ότι τα RCMs χρησιμοποιούνται αρκετά χρόνια η ανάπτυξη κλιματικών σεναρίων με αυτά είναι μια σχετικά πρόσφατη διαδικασία. Ένα αμφιλεγόμενο ζήτημα είναι το κατά πόσο η χρήση τους παράγει υψηλής ανάλυσης εκτιμήσεις ισχυρών διαφοροποιήσεις από την τραχύτερη ανάλυση του GCM από το οποίο προήλθε μέρος των εκτιμήσεων στα χωρικά κλιματικά μοντέλα.

3.5.2 Η αβεβαιότητα στα RCMs

Σε μελέτες διερεύνησης των επιπτώσεων της κλιματικής αλλαγής υπεισέρχονται στα διάφορα στάδια αβεβαιότητες οι οποίες αθροιστικά συμβάλλουν στην τελική αβεβαιότητα της μελέτης. Συνήθως οι αβεβαιότητες αυτές εμφανίζονται στις παρακάτω καταστάσεις (από Mearns et al., 2001).

- Προσδιορισμός των διαφορετικών κλιματικών σεναρίων
- Κατά την μεταμόρφωση των εκπομπών σε αντίστοιχες συγκεντρώσεις
- Όταν εκείνες οι συγκεντρώσεις μεταφράζονται σε κλιματικές διεργασίες
- Όταν προσομοιώνεται η αντίδραση σε μια ορισμένη δύναμη
- Όταν η έξοδος του μοντέλου μεταφράζεται σε επιπτώσεις
- Όταν προσομοιώνονται οι επιπτώσεις
Σχήμα 3.2. Αβεβαιότητα χωρικού κλιματικού μοντέλου (Mears et al., 2001)

Βέβαια έχουν αναπτυχθεί μέθοδοι που μπορούν να παράγουν αξιόπιστα αποτελέσματα σε αυτή τη μετάβαση από στάδιο σε στάδιο. Δηλαδή τα RCMs είναι δυνατούς να λογιστούν τόσο τμήμα της κλιματικής προσομοίωσης όσο και των διαδικασιών όπου χρησιμοποιούνται για εισροή στην ανάλυση επιπτώσεων. Είναι σαφές ότι τα αποτελέσματα της κλιματικής μεταβολής σε μια μεγάλη κλίμακα μπορούν να χρησιμοποιηθούν για τη δημιουργία δεδομένων σε μια μικρότερη κλίμακα που είναι απαραίτητη στις μελέτες επιπτώσεων. Τα αποτελέσματα σε μια τέτοια μικρή κλίμακα εμπεριέχουν τη δική τους αβεβαιότητα με τον ίδιο τρόπο που εμπεριέχουν αβεβαιότητα διαφορετικά RCMs που έχουν τη ίδια πηγή πρέλευσης.

Δεδομένου του μικρού αριθμού σεναρίων που αναπτύσσονται σε μελέτες επιπτώσεων η αντιμετώπιση της αβεβαιότητας είναι αρκετά δύσκολη. Βέβαια έχει προταθεί και εφαρμοστεί η θεώρηση ενός περιγραφικού κλιματικού φάσματος (Mears et al., 2001) ή η ενσωμάτωση πιθανολογικών μεθόδων για την ανάλυση του μεγάλου έργου της πιθανότητας κλιματικής μεταβολής που προκύπτει από την αβεβαιότητα (Jones, 2000; Mears et al., 2001).

Η αβεβαιότητα στα διάφορα στάδια μιας μεθοδολογίας και το πόσο επιδρά αυτή σε διάφορες μεταβλητές διαφοροποιείται αναλόγως με τις συνθήκες της εκάστοτε ανάλυσης. Επειδή οι διαφορές ανάμεσα στα μοντέλα είναι μεγαλύτερες στην περίπτωση της βροχόπτωσης σε σύγκριση με τη θερμοκρασία (Giorgi et al., 2001), η συνιστώσα της αβεβαιότητας σε μια αλλαγή της θερμοκρασίας μπορεί να αποδωθεί στο ρυθμό του φαινόμενου της θερμοκρασίας ενώ στη βροχόπτωση μπορεί να προέρχεται από τις διαφορές που προβάλλονταν και σχετικά μοντέλα για την κλιματική αλλαγή.
Η αβεβαιότητα στα χωρικά κλιματικά μοντέλα θα πρέπει να συνδυάζεται με άλλες πηγές αβεβαιότητας. Μέχρι σήμερα η επιστημονική κοινότητα έχει κατηγοριοποιήσει την αβεβαιότητα σε δύο βασικά πεδία: την αβεβαιότητα των σεναρίων εκπομπής και την αβεβαιότητα στο πως συμπεριφέρονται τα κλιματικά μοντέλα σε εξωτερικές δυνάμεις (Visser et al., 2000; Wigley and Raper, 2001).

3.5.3 Βασικά πλεονεκτήματα κατά τη χρήση των RCMs

Τα GCMs παρέχουν δεδομένα σε μεγάλη κλίμακα δεν είναι όμως τόσο ακριβή σε τοπική και χωρική κλίμακα. Για το λόγο αυτό αποτελεί ένα βασικό ζήτημα αν η χρήση των RCMs μπορεί να προεξοδεύσει στοιχεία για φαινόμενα που λαμβάνουν χώρα σε δισεπίλυτες κλίμακες αλλά και την επίδρασή τους στις κλιματικές διεργασίες που χρησιμοποιούν εισοδήματα από τα GCMs.

Ένα σημαντικό πλεονέκτημα της χρήσης των χωρικών κλιματικών μοντέλων είναι η δυνατότητα τους να περιγράφουν φυσικές διεργασίες σε μικρή κλίμακα ειδικά σε περιοχές όπου υπάρχει υψηλή χωρική ανομοιομορφία (p.χ. τοπογραφία, συνθήκες της επιφάνειας του εδάφους). Είναι γεγονός ότι σε πολλές περιπτώσεις τόσο η τοπογραφία όσο και οι χρήσεις της τροποποιούν το πώς κατανέμονται στο χώρο οι κλιματικές μεταβλητές και δημιουργούν φαινόμενα που δεν είναι δυνατά να αχμαλωτίστοσαν από τα GCMs. Ωστόσο, η χρήση των χωρικών κλιματικών μοντέλων επιβάλλεται για να περιγράφουν αυτές εκείνες που διεργασίες και είναι αποδεδειγμένα ότι η προσομοίωση του πως κατανέμεται μια μεταβλητή και η θερμοκρασία στο χώρο γίνεται ευκολότερη με τη χρήση χωρικών μοντέλων (Giorgi et al., 2001).

Η χωρική ανάλυση υψηλής κλίμακας αχμαλωτίζει με αξιόπιστο τρόπο τις χωρικές και τοπικές ατμοσφαιρικές διεργασίες. Χαρακτηριστικά είναι η υπερτροπικά συστήματα, οι ψυχρές μάζες, τα βαρομετρικά, οι θαλάσσιοι άνεμοι, τα φαινόμενα αέριας κυκλοφορίας και τα ακραία γεγονότα. Επίσης οι δυνάμεις που περιγράφονται από τα GCMs σε κλίμακα φατνίου ή και μικρότερη όπως οι νεφώσεις και η δημιουργία βροχόπτωσης μπορούν να περιγραφούν με καλύτερο τρόπο υψηλής ανάλυσης εφαρμογές.

Δεδομένης της σύνδεσης των χρονικών και χωρικών κλιμάτων στα ατμοσφαιρικά φαινόμενα τα χωρικά κλιματικά μοντέλα έχουν τη δυνατότητα να ενισχύουν τις πληροφορίες των GCMs σε μικρές χωρικές κλίμακες (p.χ. θερμήσεις). Επομένως οι τεχνικές υψηλής χωρικής ανάλυσης είναι καταλληλες για πιο λεπτομερή προσομοίωση για παράδειγμα της θερμήσεως συγχώνεται της βροχόπτωσης ή της κατανομής της, της ταχύτητας του ανέμου, το χρόνο άφιξης μιας καταιγίδας, τη χρονική στιγμή έναρξης ενός μουσώνα και την χρονική κατανομή του.
3.5.4 Προϋποθέσεις για τη χρήση των RCMs

Μια σειρά από σημαντικά ζητήματα αναδεύονται κατά τη χρήση χωρικών κλιматικών μοντέλων Δεδομένων ότι εμπλέκονται πολλοί παράγοντες σε κάθε περίπτωση δεν μπορούν τα ζητήματα αυτά να προσδιοριστούν με ακρίβεια, γίνεται όμως να καθοριστεί ένα βασικό πλάνο.

Το είδος της ανά περίπτωση μελέτης καθορίζει και το εύρος χρησιμοποίησης των χωρικών κλιματικών μοντέλων. Για το λόγο αυτό έχει γίνει ο διαχωρισμός σε δύο βασικούς τύπους μελετών. Οι ερευνητικές και οι υποστηρικτικές μελέτες οι οποίες χρησιμοποιούνται από τα κέντρα λήψης αποφάσεων. Όσον αφορά τους στόχους μιας ερευνητικής μελέτης αυτοί είναι η γνώση των επιπτώσεων της κλιματικής μεταβολής και η χρήση της καταλληλότερης μεθόδου. Όμως η χρήση τέτοιων μελετών βοηθά στην απάντηση ενός μόνο ερωτήματος ανάμεσα σε τόσα πολλά που αναδεύονται και έτσι δεν αναλύει την ανταπόκριση της σύνολο της. Όταν αναζητούνται λύσεις σε θέματα κλιματικών σενάριων η απαίτηση για μικρότερη κλίμακα αυξάνεται. Σε αντίθεση, όταν μελετάται το σύστημα επίδρασης η απαίτηση αυτή μειώνεται. Η συγκριτική ανάλυση διαφορετικών κλιματικών μοντέλων ή η ανάλυση ευαισθησίας συστημάτων μπορεί να είναι τέτοιες μελέτες. Ειδικότερα παρακάτω περιγράφονται οι παράγοντες που θα πρέπει να αναλύονται πριν την εφαρμογή των χωρικών κλιματικών μοντέλων.

• Η ετερογένεια του εδάφους είναι σημαντική στις μεταβλητές των μεταβλητών
• Οι τροποποιήσεις στη διακύμανση και οι ακρία των δεδομένων μπορεί να ανταποκρίνονται καλύτερα σε μικρή κλίμακα καθώς η πραγματοποίηση επίσης μόνο σε αυτή
• Τα σενάρια που προκύπτουν από τα RCMs είναι ρεαλιστικά ουστόσο αυτά που προκύπτουν από τη λογική των σεναρίων των GCMs.
• Παρά το παραπάνω πλεονέκτημα δεν έχει απαντηθεί αν τα RCMs μπορούν να ενσωματώσουν τα αποτελέσματα τους στα πιο γενικά GCMs.

3.5.5 Υποστηρικτικές μελέτες

Οι υποστηρικτικές μελέτες εστιάζουν στην απάντηση καίριων ερωτήματος τα οποία μπορούν να χρησιμοποιηθούν από τα κέντρα λήψης αποφάσεων (διάφορες κυβερνήσεις και βιομηχανίες) για την ανάπτυξη μέτρων αντιμετώπισης των πιθανών συνεπειών της αλλαγής του κλίματος. Οπότε τα τελικά συμπεράσματα μιας τέτοιας είδους μελέτης θα πρέπει να είναι δικαιολογημένα και η συνολική αβεβαιότητα της
διαδικασίας να έχει αναλυθεί. Οπότε τα RCMs μπορούν να προσφέρουν σημαντικές λύσεις σε περιπτώσεις που τα σενάρια που προέρχονται από τα GCMs παρουσιάζουν παράλογα αποτελέσματα (για παράδειγμα λόγω τοπογραφικών ανομαλιών ή χαμηλής αποδοτικότητας στην ανάλυση των ακραίων φαινομένων) ή η συμβολή τους είναι χαμηλή όταν τα σενάρια που προέρχονται από τα GCMs είναι αξιόπιστα και η αβεβαιότητα αμελητέα.

3.5.6 Χωρικό περιεχόμενο μιας μελέτης

Είναι αποδεκτό ότι ο καθορισμός στης χωρικής κλίμακας μιας μελέτης εξαρτάται από το αν υπάρχει η απαίτηση για αποτελέσματα σε μικρή κλίμακα. Με βάση λοιπόν τη χωρική κλίμακα οι διάφορες μελέτες μπορούν να ταξινομηθούν ως εξής:

- Μελέτες σε παγκόσμια κλίμακα
- Μελέτες σε επίπεδο μεγάλου κράτους ή ηπείρου
- Μελέτες χωρικές (σε υπό-ηπειρωτική κλίμακα ή επίπεδο μικρού κράτους)
- Μελέτες σε τοπική κλίμακα

Μελέτες σε παγκόσμια κλίμακα. Σε αυτή την περίπτωση οι απαιτήσεις για δεδομένα σε μικρή κλίμακα είναι αμελητέες. Αφού η εφαρμογή τους πραγματοποιείται σε παγκόσμια κλίμακα τότε και τα αντίστοιχα κλιματικά σενάρια εξάγονται στην ίδια κλίμακα. Σε αυτές τις περιπτώσεις το επίκεντρο είναι η ανάλυση της αβεβαιότητας και η επίδραση του συστήματος.

Μελέτες σε ανάλυση μεγάλου κράτους ή ηπείρου. Είναι χαρακτηριστικά τέτοιας περίπτωσης το πρόγραμμα PRUDENCE, το πρόγραμμα OURANOS στον Καναδά και τις ENSEMBLES προσομοιώσεις που παράγονται για τις ηπειρωτικές Η.Π.Α (π.χ. Giorgi et al., 1998; Pan et al., 2001) και την Αυστραλία (Whetton et al., 2001). Τα αποτελέσματα των χωρικών κλιματικών μοντέλων έχουν παραχθεί σε ηπειρωτική κλίμακα.

Μελέτες χωρικές (σε υπό-ηπειρωτική κλίμακα ή επίπεδο μικρού κράτους). Σε αυτές τις περιπτώσεις επιβάλλονται αποτελέσματα σε μικρή κλίμακα αφού ορισμένα μικρά κράτη είναι μικρότερα και από την κλίμακα των GCMs ή περιγράφονται από έναν περιορισμένο αριθμό φατνίων. Η σημασία της αντιπροσώπευσης ενός κράτους στα κλιματικά σενάρια των παγκόσμιων κλιματικών μοντέλων είναι ένα μείζονος σημασίας πολιτικού ζήτημα.
Μελέτες σε τοπική κλίμακα. Τα χωρικά κλιματικά μοντέλα σε αυτή τη κλίμακα θα μπορούσαν ενδεχομένως να χρησιμοποιηθούν, ωστόσο μια μεθοδολογία στατιστικού καταβιβασμού κλίμακας σε μια τέτοια περίπτωση θα ήταν περισσότερο αξιόπιστος. Βέβαια και ένας συνδυασμός του δύο, δηλαδή ο στατιστικός καταβιβασμός του αποτελέσματος του χωρικού κλιματικού μοντέλου θα ήταν ακόμη καλύτερος.

3.5.7 Φυσιогραφικά πλαίσια

Τα πιο κοινά φυσιογραφικά πλαίσια για την εφαρμογή χωρικών κλιματικών μοντέλων είναι περιοχές με μικρή έκταση και πολύπλοκη οριογραμμή ή περιοχές αντιπροσωπευτικές των διεργασιών της ατμόσφαιρας.

Στην πρώτη περίπτωση η ανάλυση συνήθως είναι μεγάλη όπως συμβαίνει στο Αιγαίο και τη Μεσόγειο, την Καραβική ή τη Μαγαδασκάρη κ.τ.λ. Είναι γεγονός ότι το έδαφος και οι οικείοι έχουν διαφοροποιημένες θερμικές ιδιότητες, και δώσεις από το GCM. Βέβαια δεν έχει αποδειχθεί ότι τα σενάρια που αναπτύσσονται και μπορούν να περιγράψουν μικρά νησιά διαφοροποιούνται σημαντικά συγκριτικά με αυτά που δεν έχουν αυτή τη δυνατότητα. Επίσης δεν έχει καθοριστεί κάποιος περιορισμός σχετικά με το ελάχιστο απαιτούμενο μέγεθος. Για παράδειγμα, υπάρχουν ορισμένα πολύ μικρά νησιά στα οποία η κλιματική αλλαγή μετέτρεψε την ισχυρή θάλασσας σε κανονικά διαφοροποιημένες οριογραμμές, με το νόμο ότι κανένα νησί δεν θα θεωρηθεί μηδαμίνη. Σε αυτές τις περιπτώσεις μια μεθοδολογία στατιστικού καταβιβασμού κλίμακας ίσως αποδώσει καλύτερα.

Άλλες περιπτώσεις όπου συναντάται σύνθετο ανάγλυφο είναι οι Αλπείς, ο Καύκασος, τα Βραχώδη Όρη, ο Καταλανικός κ.τ.λ. Σε μεγάλες πεδιάδες είναι απαιτούμενη η πληροφορία για τις ατμοσφαιρικές διεργασίες. Κλιμακικές μεταβλητές ισχυρώς είναι κατάλληλες για αυτή τη διαδικασία. Σε μια εμπειριστικά μελετήθηκαν μελέτες χωρική πληροφορία επιβάλλεται να δίνεται σε κλίμακα 50 km εώς 300 km.

3.5.8 Τύπος των απαιτούμενων κλιματικών πληροφοριών

Ορισμένες κλιματικές μεταβλητές αναλύονται καλύτερα σε συνθήκες υψηλής χωρικής ανάλυσης ενώ άλλες όχι. Είναι γνωστό ότι μεταβλητές οι οποίες σχετίζονται με την επιφάνεια του εδάφους όπως η θερμοκρασία και η βροχόπτωση περιγράφονται καλύτερα από τα χωρικά κλιματικά μοντέλα σε σχέση με τις ατμοσφαιρικές
Διδακτορική Διατριβή: Τζαμπύρας Ιωάννης
- Κεφάλαιο 3ο: Μέθοδοι καταβιβασμού κλίμακας

Διδακτορική Διατριβή: Τζαμπύρας Ιωάννης
- Κεφάλαιο 3ο: Μέθοδοι καταβιβασμού κλίμακας

3.5.9 Ανάπτυξη σεναρίων

Είναι επιβεβλημένος ένας μελετητής που δεν ασχολείται με την διεξαγωγή πειραμάτων με χωρικά κλιματικά μοντέλα να πρέπει να έχει την επιστημονική βάση να καταλάβει τις απαιτήσεις μιας διαδικασίας ανάπτυξης κλιματικών σεναρίων με τη χρήση των RCMs. Παρακάτω περιγράφονται οι διαδικασίες και η διαχείριση των αποτελεσμάτων των χωρικών κλιματικών μοντέλων έτσι ώστε να καταστεί δυνατό να αποτελέσουν εισρές σε μελέτες ανάλυσης επιπτώσεων της κλιματικής αλλαγής.

3.5.9.1 Ανάλυση των διαδικασιών

Η εφαρμογή των χωρικών κλιματικών μοντέλων για την δημιουργία κλιματικών σεναρίων εξαρτάται από πολλούς παράγοντες και απαιτεί την κατάλληλη τεχνογνωσία σε προσομοιώσεις. Δηλαδή ένα χωρικό κλιματικό μοντέλο δεν μπορεί να εφαρμοστεί σαν ένα μαύρο κουτί (black box) και οι προβολές του επιβάλλεται να επαληθεύονται.

Ένα σημαντικό πλεονέκτημα κατά την εφαρμογή μελετών εκτίμησης των συνεπειών κλιματικής αλλαγής είναι μπορούν να περιγράψουν με αξιόπιστο τρόπο τις χωρικές λεπτομέρειες του τρέχοντος κλίματος και τις ανεπάρκειες που γεννώνται από τα μοντέλα είναι εφικτό να αμβλυνθούν. Ένας αποδεκτός τρόπος είναι η χρήση μοντέλου με ορισμένες συνθήκες που προέρχονται από τα ιστορικά παρατηρήματα
δεδομένα. Τα πειράματα καλούνται «πειράματα τέλειων οριακών συνθηκών» (PBC Perfect Boundary Condition) και είναι συγκρίσιμα με πραγματικές παρατηρήσεις.

Η έκταση αλλά και η κλίμακα ενός χωρικού κλιματικού μοντέλου είναι ένα μείζονος σημασίας ζήτημα. Η περιοχή ανάλυσης ιδανικά θα πρέπει να είναι επαρκώς μεγάλη ώστε να μπορεί το RCM να περιγράψει τα κυκλοφορικά στοιχεία σε μέση κλίμακα αλλά και να περιλάβει σημεία όπου οι φυσικές διεργασίες είναι σημαντικές για το τοπικό κλίμα. Ακόμη η τοποθέτηση του πεδίου μελέτης όσο το δυνατόν μικρότερα από τα πλευρικά ήρια εγγράφει την ελαχιστοποίηση των πλασματικών οριακών επιδράσεων. Βέβαια, το μέγεθος των υπολογισμών για το τρέξιμο ενός RCM αυξάνει αναλόγως με το μέγεθος της περιοχής μελέτης. Επομένως η λύση είναι η εύρεση μιας χρυσής τομής μεταξύ του μεγέθους των υπολογισμών και ελάχιστου μεγέθους της περιοχής μελέτης ώστε να περιγράφονται επαρκώς οι φυσικές διεργασίες. Τα πειράματα PBC είναι ένα σωστό βήμα προς αυτή τη κατεύθυνση.

Από τα παραπάνω προκύπτει τα πειράματα PBC να πραγματοποιούνται και να επεξεργάζονται πριν την οριστικοποίηση του RCM. Επιπρόσθετα αυτά τα πειράματα επιβάλλονται να διεξάγονται για πολλά χρόνια η ακόμη καλύτερα δεκαετίες για να υπάρχει καλύτερη απεικόνιση των κλιματικών διεργασιών στο μοντέλο.

Μετά την πιστοποίηση και επαλήθευση ενός RCM το επόμενο βήμα είναι η επαλήθευσή του μέσα στο αντίστοιχο GCM. Αυτό επιτυγχάνεται με τρέχοντες κλιματικές συνθήκες και την σύγκριση με το ιστορικό αρχείο. Ακόμη η προσομοίωση επιβάλλεται να είναι πολυτελής για την εξαγωγή σημαντικών στατιστικών στοιχείων. Αυτές οι προσομοιώσεις και η σύγκριση τους με τα πειράματα PBC διευκολύνουν τον οντόποιμο σφαιρικών προερχόμενων από τις οριακές συνθήκες του GCM (Pan et al., 2001).

Τα πειράματα ελέγχου PBC δεν είναι καλό να περιλαμβάνουν πολλές μεταβλητές (π.χ. θερμοκρασία, βροχόπτωση, ατμοσφαιρικές διεργασίες, ενέργεια στην επιφάνεια του εδάφους, κ.α.) ή να εφαρμόζονται σε διάφορες χρονικές ή χωρικές κλίμακες. Η συμβολή των πειραμάτων ελέγχου στην αξιολόγηση των πληροφοριών των RCMs σε σχέση GCMs είναι πολύ σημαντική. Τα πειράματα αυτά μπορούν να αναδείξουν πως μια προσομοίωση με RCM μπορεί να βελτιώσει την ανάλυση της προσομοίωσης του GCM.

Με την ολοκλήρωση των πειραμάτων ελέγχου μπορεί να ξεκινήσει η προσομοίωση. Σε αντιστοιχία με τα PBC, οι προσομοιώσεις θα πρέπει να είναι εξίσου μεγάλες από 5 ως 10 χρόνια αλλά και μεγαλύτερες από 20 ως 30 χρόνια ώστε να μπορούν να εξαχθούν επαρκή στατιστικά στοιχεία. Μικρότερες προσομοιώσεις μπορούν να περιγράψουν σε ένα βαθμό τις φυσικές διεργασίες αλλά μειώνουν σημαντικά τη στατιστική ανάλυση. Επιβάλλεται να αναλύονται διάφορες μεταβλητές σε τέτοιου είδους προσομοιώσεις, εννοώντας εκτός από τις μεταβλητές που
απαιτούνται για την εκάστοτε εφαρμογή, μεταβλητές που βοηθούν στην ολοκληρωμένη κατανόηση των φυσικών δυνάμεων. Ο συνδυασμός του γεγονότος αυτού με τα πειράματα ελέγχου μπορεί να διαχωρίσει το κλιματικό σήμα από το θόρυβο μέσα στο μοντέλο.

Είναι σαφές ότι τα σφάλματα που υπεισέρχονται στα πειράματα ελέγχου μπορούν να επηρεάσουν το σήμα της κλιματικής μεταβολής. Επομένως, ο εντοπισμός των αυθεντικών σημάτων κλιματικής αλλαγής μέσα στα πλασματικά σήματα από τα οποία προκύπτουν τα σφάλματα στα πειράματα ελέγχου είναι επιβεβλημένος. Για παράδειγμα στη δυτική Αφρική ο Jenkins (2003) διεξήγαγε μία τέτοια ανάλυση. Ακόμη, δεδομένου ότι κλιματικό σήμα μπορεί να διαφοροποιείται ανάμεσα στο GCM και το RCM είναι βασικό να εντοπιστούν τα αίτια αλλά και η σημασία αυτής της διαφοροποίησης και το πόσο αυτή οφείλεται σε φυσικές επιδράσεις. Δηλαδή ο διαχωρισμός του φυσικού σήματος από το πλασματικό είναι πολύ σημαντικός.

Ο κάθε μελετητής οφείλει να γνωρίζει πολλά και διαφορετικά χωρικά κλιματικά μοντέλα τα οποία μπορούν να εφαρμοστούν σε διάφορα σημεία ανά τον κόσμο (Noguer et al., 2003; Giorgi et al., 2003). Συγκριτικά πειράματα όπως το PIRCS (Project to Intercompare Regional Climate Simulations, Tackle et al., 1999) αποδεικνύουν ότι δεν γίνεται ένα μεμονωμένο RCM να λειτουργεί με καλύτερο τρόπο σε σχέση με τα άλλα συνέχεια και επιπρόσθετα η χρήση διαφορετικών μοντέλων ευνοεί την αποδοτικότερη περιγραφή όλων των πτυχών του χωρικού κλίματος. Αφού διαφορετικά μοντέλα προκύπτουν διαφορετικές συμπεριφορές στις ίδιες ικανότητες, τότε σε μια ιδιαίτερη κατάσταση πολλά και διαφορετικά RCMs θα παρέχουν μια πιο αξιόπιστη ανάλυση του κλιματικού σήματος. Βέβαια κάτι τέτοιο ενέχει πολλούς περιορισμούς όπως το αν το μοντέλο είναι διαθέσιμο ή ενεργό, αν είναι φιλικό προς τον χρήστη, αν υπάρχει δυνατότητα τεχνικής υποστήριξης και ποιο είναι το εύρος της υπολογιστικής του ικανότητας. Για παράδειγμα μερικά μοντέλα δεν συστήνονται για αναλύσεις μικρότερων των 10 km, οπότε είναι σαφές ότι κάθε μοντέλο λειτουργεί καλύτερα σε συγκεκριμένες κλιμακες.

Ορισμένες φορές υπάρχουν αποτελέσματα από μια πληθώρα παγκόσμιων κλιματικών μοντέλων για να ενσωματωθεί το χωρικό κλιματικό μοντέλο. Σε ιδιαίτερο περιβάλλον αυτό θα βελτιώνει την ανάλυση της συνολικής αβεβαιότητας που προέρχεται από τις διαφορετικές κλιματικές εκτιμήσεις των διαφορετικών μοντέλων. Αρα λοιπόν το GCM που θα χρησιμοποιηθεί είναι πολύ σημαντικό και η επιλογή του έγκειται σε διάφορες παραδοχές. Για παράδειγμα το κατά πόσο μπορεί να αναπαράγει τα χαρακτηριστικά των κυκλοφορικών δυνάμεων σε τρέχον κλίμα. Επίσης η χρήση του μοντέλου που ανταποκρίνεται καλύτερα στα σφάλματα που επιδρούν στις προσομοιώσεις με χωρικά κλιματικά μοντέλα. Η αντιμετώπιση των φυσικών
διεργασιών με τον ίδιο τρόπο μεταξύ RCM και GCM είναι ένα ακόμη σημαντικό στοιχείο.

Η εφαρμογή τεχνικών πολύ μεγάλης ανάλυσης σε τμήματα μιας μεγαλύτερης περιοχής μπορεί να πραγματοποιηθεί με διάφορα μέτρα. Υπάρχουν RCMs που τρέχουν διπλής κατεύθυνσης υπό – ομάδες μέσα στα όρια του πεδίου τους ή μπορεί να γίνει χρήση της διπλής (ή πολλαπλής) μονόδρομης προσομοίωσης. Δηλαδή χρησιμοποιούνται τα πεδία που προκύπτουν από το RCM για να καταλήξουν σε μια γενικότερη προσέγγιση μέσω των πλευρικών ορίων και πάνω από τη μελετώμενη περιοχή με τη χρήση του ιδίου ή διαφορετικού μοντέλου. Εναλλακτικά θα μπορούσε να χρησιμοποιηθεί και μια μεθοδολογία στατιστικού καταβιβασμού κλίμακας της εξώδου του RCM.

3.5.9.2 Σύγκριση της εξώδου του RCM με το ιστορικό αρχείο

Η ανάπτυξη κλιματικών σεναρίων προϋποθέτει το συνδυασμό των κλιματικών μεταβολών με το αρχείο δεδομένων διότι τα σφάλματα που υπεισέρχονται είναι πολύ σημαντικά για καταστεί ευκτί η άμεση χρήση του αποτελέσματος των πειραμάτων ελέγχου στο μοντέλα. Από την άλλη, όσο ανεξάρτητα η ανάλυση της προσομοίωσης τόσο πιο δυσχερής γίνεται η απόκτηση παρατηρημένων δεδομένων σε αυτή την κλίμακα. Προκύψεις λοιπόν η ανάγκη για άμεση εφαρμογή της εξώδου του RCM. Έχει υπάρξει περίπτωση όπου το η εξώδος του RCM εφαρμόστηκε σε ένα μοντέλο αγροτικής παραγωγής χωρίς ακριβή υπολογισμό των σφαλμάτων που προέρχονται από αυτή τη χρήση (Thomson et. al., 2002). Ακόμη σε άλλη περίπτωση χρησιμοποιήθηκε η εξώδος του χωρικού κλιματικού μοντέλου στο συνδυασμό με το παρατηρημένο αρχείο και διαπιστώθηκε ότι η απευθείας εφαρμογή των αποτελεσμάτων αποκάλυψε διαφορετικές επιπτώσεις σε επίδειξη με τα παρατηρημένα δεδομένα. Τελικά είναι βέβαιο ότι το ιστορικό αρχείο είναι επιβεβλημένο να χρησιμοποιείται. Σε περίπτωση που δεν είναι διαθέσιμο στο επίθυμο εύρος ανάλυσης τότε θα πρέπει να διερευνούνται τα σφάλματα που προκύπτουν από την απευθείας χρήση του RCM και να περιγράφονται στην εκάστοτε εργασία.

3.6 ΜΕΘΟΔΟΙ ΔΙΟΡΘΩΣΗΣ ΜΕΡΟΛΗΨΙΑΣ

Τόσο τα παγκόσμια (GCMs) όσο και τα χωρικά (RCMs) κλιματικά μοντέλα έχουν συστηματικά σφάλματα (μερολήψιες) αποτελέσματα τους. Για παράδειγμα, τα
κλιματικά μοντέλα έχουν συχνά πολλές βροχερές ημέρες και τείνουν να υποτιμήσουν τις ακραίες βροχοπτώσεις. Μπορεί να υπάρχουν λάθη στο χρονοδιάγραμμα των μουσώνων ή της ποσότητας των εποχιακών βροχοπτώσεων ή οι θερμοκρασίες μπορεί να είναι σταθερά πολύ υψηλές ή πολύ χαμηλές. Τα σφάλματα στα κλιματικά μοντέλα μπορεί να προκληθούν από μια σειρά παραγόντων. Λάθη ή μεροληπτικές οφείλονται στην περιορισμένη χωρική ανάλυση (μεγάλα μεγέθη δικτύου), απλοποιημένες θερμοδυναμικές διεργασίες και φυσική ή ελλιπή κατανόηση του παγκόσμιου κλιματικού συστήματος.

Για να ξεπεραστούν οι μεγάλες μεροληπτικές στα κλιματικά μοντέλα, έχει αναπτυχθεί μια σειρά μεθόδων διόρθωσης μεροληπτικής. Για όλες τις μεθόδους είναι σημαντικό να συνειδητοποιηθούν ότι η ποιότητα του του συνόλου των δεδομένων παρατήρησης καθορίζεται την ποιότητα της διόρθωσης. Για να κάνουμε μια καλή μεροληπτική διόρθωση, είναι σημαντικό να υπάρχει ένα καλό σύνολο παρατηρήσεων. Εάν διορθώνουμε ακραία βροχόπτωση, τότε χρειάζονται μακροπρόθεσμα σύνολα δεδομένων. Η απλούστερη προσέγγιση είναι η μέθοδος αλλαγής Δέλτα, η οποία χρησιμοποιείται συχνά στην κλιματική έρευνα επιπτώσεων. Αυτή η προσέγγιση χρησιμοποιεί την απόκριση GCM ή RCM στην κλιματική αλλαγή με τροποποίηση των παρατηρήσεων. Π.χ. αν το κλιματικό μοντέλο προβλέπει 2 °C υψηλότερες θερμοκρασίες, 2 °C προστίθενται σε όλες τις ιστορικές παρατηρήσεις για την κατασκευή μιας χρονοσειράς για το μελλοντικό κλίμα. Για τις βροχοπτώσεις συνήθως υπολογίζεται μια ποσοστιαία αλλαγή. Εάν το κλιματικό μοντέλο προβλέπει αύξηση 10% στις βροχοπτώσεις, μια νέα χρονοσειρά θα γίνει πολλαπλασιάζοντας την ιστορική βροχοπτώσεις κατά τ.1,1. Για διαφορετικούς μήνες ή εποχές μπορούν να οριστούν διαφορετικοί παράγοντες δέλτα. Ωστόσο αυτή η μέθοδος δεν λαμβάνει υπόψη τις μεταβολές του κλίματος όπως π.χ. αυξανόμενες ακραίες βροχοπτώσεις ή μεγαλύτερες περιόδους ξηρασίας.

Μια άλλη δημοφιλής μέθοδος είναι η πολλαπλή γραμμική παλινδρόμηση. Μια ανάλυση παλινδρόμησης πραγματοποιείται, χρησιμοποιώντας ιστορικές παρατηρήσεις και παραγωγή κλιματικού μοντέλου για την ιδιαί περιόδο. Χρησιμοποιούνται τις συνθετικές παραμέτρους παλινδρόμησης, οι μελλοντικές χρονικές σειρές προσαρμόζονται στη μεροληπτικότητα. Η παλινδρόμηση μπορεί να είναι απλή ή πολύπλοκη ανάλογα τα διαθέσιμα δεδομένα και τη σχέση μεταξύ παρατηρηθέντος κλίματος και αποτελέσματος κλιματικού μοντέλου. Τόσο η μέθοδος αλλαγής δέλτα όσο και η μέθοδος γραμμικής παλινδρόμησης είναι κατάλληλες για τη σχετική μεροληπτική υγρασία, ταχύτητα ανέμου και κατοικοδομία.

Επί του παρόντος, η προσέγγιση ποσοτικής χαρτογράφησης χρησιμοποιείται συχνά για τη διόρθωση κλιματικών δεδομένων που χρησιμοποιούνται ως είσοδος στα μοντέλα κλιματικών επιπτώσεων. Αυτή η μέθοδος χρησιμοποιείται επίσης (π.χ. για
υδρολογικά ή καλλιεργητικά μοντέλα) ή κάποια παραλλαγή του είναι ίσως η πιο ευρέως αποδεκτή. Όλες αυτές οι μέθοδοι μπορούν επίσης να εφαρμοστούν σε εποχιακές προβλέψεις.
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΣΕ ΑΓΡΟΤΙΚΕΣ ΛΕΚΑΝΕΣ ΑΠΟΡΡΟΗΣ

Ο γεωργικός τομέας εκμεταλλεύεται το μεγαλύτερο μέρος (70%) της συνολικής κατανάλωσης νερού παγκοσμίως και είναι ο μεγαλύτερος παράγοντας που συμβάλλει στη μη σημειακή ρύπανση των επιφανειακών και υπόγειων υδάτων. Η εντατικόποιηση της γεωργίας συνοδεύεται συχνά από αυξημένη διάβρωση του εδάφους, αλατισμός και φράματα. Η ρύπανση που προκαλείται από τη γεωργία μπορεί να μοιάζει το νερό, τα τρόφιμα, τις φύσικες ύδατικες πόρους, τις φάρμακα και τα λιπασμάτα χρησιμοποιούνται στη γεωργία μπορεί να μοιάζει το ανθρώπινο υγεία, το περιβάλλον και την ατμόσφαιρα. Τα φυτικά και καλλιέργειες προβλέπουν τη μη σημειακή ρύπανση των επιφανειακών και υπόγειων υδάτων, όπως και τα υπογεία ρεύματα, αντιβιοτικά, λύματα ενσίρωσης και απόβλητα επεξεργασίας από καλλιέργειες φυτείας. Η ρύπανση προκαλείται από μεγάλης κλίμακας βιομηχανική γεωργία (συμπεριλαμβανομένης της κτηνοτροφίας και της αλιείας) και κατηγορείται ως σημειακή ρύπανση από την πηγή και η ρύπανση που προκαλείται από μικρής κλίμακας κτηνοτροφίας και αλιείας κατηγορείται ως ρύπανση μη σημειακής πηγής.

4.1 ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΑΡΔΕΥΣΗΣ

Σε μια γεωργία σε συνεχή εξέλιξη, η άρδευση πρέπει να προσαρμοστεί σε νέες, πιο αυστηρές απαιτήσεις: η παραχή νερού σε μεγάλα αρδευτικά συστήματα πρέπει να είναι πολύ πιο αξιόπιστη και ευέλικτη από ό,τι στο παρελθόν. Τα τελευταία χρόνια σημειώθηκαν αξιόσημες εξελίξεις στην ευέλικτης υδατικός πόρους και στη γεωργία. Οι νέες πολιτικές και τεχνολογίες των αρδευτικών συστημάτων στην αγροτική παραγωγικότητα υιοθέτησαν ως επίσημο έμβλημα την αρδευόμενη γεωργία. Η παγκόσμια παραγωγή τροφίμων ξεπέρασε την αύξηση του πληθυσμού. Και η μεγαλύτερη χρήση του νερού για την αρδευόμενη γεωργία υφίσταται τους αγρότες και τους φτωχούς ανθρώπους – προσωπικάς τας οικονομίας, βελτιώνοντας τα μέσα διαβίωσης και καταπολεμώντας την πείνα.
4.2 ΔΙΑΧΕΙΡΙΣΗ ΑΓΡΟΤΙΚΟΥ ΝΕΡΟΥ

Μέχρι τα μέσα του 21ου αιώνα ο παγκόσμιος πληθυσμός προβλέπεται να ξεπεράσει τα 9,1 δισεκατομμύρια. Η γεωργία πρέπει να προσφέρει αυτήν την αύξηση έναντι της φθίνουσας διαθεσιμότητας και του ανταγωνισμού για γη και νερό από άλλες χρήσεις, είτε είναι μη διατροφικές καλλιέργειες, αστικοποίηση ή βιομηχανική ανάπτυξη. Στην πραγματικότητα, το μεγαλύτερο μέρος της καλλιεργούμενης γης τροφοδοτείται με βροχή και αυτό είναι το σημείο όπου παραμένει το μεγαλύτερο χάσμα απόδοσης στην παραγωγικότητα των καλλιεργειών μεταξύ των διαφόρων περιοχών του κόσμου.

Σύμφωνα με την ολοκληρωμένη προσέγγιση για τη διαχείριση των υδάτων στη γεωργία, η βελτίωση της βροχής θα μπορούσε να διπλασιάσει ή να τετραπλασιάσει την απόδοση. Ένας κύριος λόγος για τον οποίο υπάρχουν κενά στις αποδόσεις είναι ότι οι αγρότες δεν έχουν επαρκή οικονομικά κίνητρα για να υιοθετήσουν στόχους ενίσχυσης της απόδοσης ή τεχνικές καλλιέργειας. Αλλοι λόγοι περιλαμβάνουν την έλλειψη πρόσβασης σε πληροφορίες, υπηρεσίες επέκτασης και τεχνικές δεξιότητες. Η κακή υποδομή, τα αδύναμα θεσμικά όργανα και οι αποθαρσυτικές γεωργικές πολιτικές μπορούν επίσης να δημιουργήσουν τεράστια εμπόδια στην υιοθέτηση βελτιωμένων τεχνολογιών σε αγροτικό επίπεδο. Αλλοι παράγοντες μπορεί να είναι ότι οι διαδέσμες τεχνολογίες δεν έχουν προσαρμοστεί στις τοπικές συνθήκες.

Οι λύσεις βρίσκονται στις επενδύσεις του δημόσιου τομέα σε υποδομές και υδράματα και σε υγείες πολιτικές για την τόνωση της υιοθέτησης τεχνολογιών που μειώνουν το κόστος καθώς και βελτιώνουν την παραγωγικότητα, αυξάνοντας έτσι τα γεωργικά εισοδήματα. Οι αλλαγές στις τεχνικές διαχείρισης των καλλιεργειών μπορούν επίσης να συμβάλουν στο κλείσιμο των κενών απόδοσης. Η αναπαραγωγή φυτών διαδραματίζει σημαντικό ρόλο στο κλείσιμο των αποδόσεων προσαρμόζοντας τις ποικιλίες στις τοπικές συνθήκες και καθιστώντας τις πιο ανθεκτικές σε βιοτικές (π.χ. έντομα, ασθένειες, ιούς) και αφιστικές καταπονήσεις (π.χ. ξηρασίες, πλημμύρες). Το πρώτο βήμα είναι η στόχευση στο νερό καθώς χωρίς νερό οι άνθρωποι αντιμετωπίζουν αποτυχία καλλιέργειας και πείνα.

4.2.1 Περιγραφή των στόχων

Για να εκπληρωθούν οι απαιτήσεις αυτού του στόχου, θα πρέπει να αυξηθεί η παραγωγικότητα των αγρών που στηρίζονται αποκλειστικά στο βρόχινο νερό. Οι προσπάθειες στο πλαίσιο αυτού του στόχου θα επικεντρωθούν στις ευκαιρίες για τη βελτίωση του δυναμικού της γεωργίας με βροχή για την ενίσχυση των αποδόσεων και
του εισοδήματος, ειδικά σε περιοχές χαμηλής παραγωγικότητας. Τα μέτρα για τη βελτίωση της παραγωγικότητας της γης και του νερού μπορεί να περιλαμβάνουν:

- Διαθέσιμο περισσότερο βρόχινο νερό στις καλλιέργειες όταν χρειάζεται περισσότερο (συλλογή ομβρίων υδάτων, εξουκονόμηση εδάφους και νερού- και χρήση του -ελλειμματική άρδευση, συμπληρωματική άρδευση κ.λπ.).
- Διαχείριση του νερού στο αγρόκτημα για την ελαχιστοποίηση των απολεούλιων νερού από την εξάτμιση
- Χρήση βελτιωμένων συστημάτων καλλιέργειας και αγρονομικών προϊόντων, όπως η καλλιέργεια γκριβείας
- Ανάπτυξη χρηματοδοτικών πλαισίων για την παραγωγή κινήτρων για την υιοθέτηση βελτίωσης των προϊόντων και νέων τεχνολογιών
- Χρήση νερού χαμηλής παραγωγικότητας σε μη συμβατικές (όχι για άμεση ανθρώπινη κατανάλωση) εφαρμογές όπως η δασική χρήση
- Αξιολόγηση των τύπων βροχοπτώσεων για την προσδιορισμό της ικανότητας και της παραγωγικότητας της γης και του νερού

Το κύριο ενδιαφέρον για τη βελτίωση ξηρικών αγροτικών συστημάτων θα περιλαμβάνει αγρότες, ιδιοκτήτες γης, υπηρεσίες αγροτικής ανάπτυξης, τοπικούς φορείς, περιφερειακές και κεντρικές διοικήσεις. Το κόστος αναγκαστικά θα αυξηθεί για τους αγρότες, αλλά θα αντισταθμιστεί από αυξημένες αποδόσεις, και άρα μεγαλύτερα συνολικά έσοδα.

4.3 ΣΥΛΛΟΓΗ ΚΑΙ ΑΠΟΘΗΚΕΥΣΗ ΝΕΡΟΥ

Η συλλογή της απορρόφθεις βροχοπτώσεων για επακόλουθη οφέλιμη χρήση χρησιμοποιείται από αγρότες σε όλο τον κόσμο ειδίκευται προς τις γεωγραφικές συνθήκες, επιτρέπει στους αγρότες να αποθηκεύουν νερό όταν είναι άφθονο και να το κάνει διαθέσιμο όταν είναι σπάνιο. Διακρίνονται τρεις κατηγορίες αποθήκευσης μικρής κλίμακας: α) αποθήκευση υγρασίας εδάφους β) αποθήκευση υπόγειων υδάτων και γ) επιφανειακή αποθήκευση.
Οι τεχνικές που αποθηκεύουν το νερό ως υγρασία του εδάφους λειτουργούν αποτρέποντας (ή μειώνοντας σημαντικά) την απορροή νερού από μια περιοχή χρησιμοποιώντας δομές για να συγκρατούν το νερό και έτσι ενθαρρύνουν τη διείσδυση. Αυτό ανεξάρτητα την αναλογία της βροχόπτωσης που εισέρχεται στην αποθήκευση του εδάφους, όπου αργότερα μπορεί να χρησιμοποιηθεί απευθείας από τα φυτά. Το νερό που διεισδύει πέρα από τις πιέσεις ζώνες των καλλιεργειών μπορεί να διεισδυθεί σε υδροφόρους ορίζοντες και να αποθηκεύεται ως υπόγεια νερά. Ορισμένες τεχνικές συλλέγουν την απορροή για να ενθαρρύνουν τη διείσδυση για την αύξηση της αποθήκευσης των υπόγειων υδάτων και άλλες αποθηκεύουν νερό στην επιφάνεια σε φυσικές ή ανθρωποποιημένες λίμνες ή δέσμευσης. Το νερό αποσύρεται αργότερα για άρδευση ή άλλες παραγωγικές χρήσεις.

Πολλές από τις λεκάνες απορροής ποταμών είναι «κλειστού τύπου», με χρήση νερού ίσης ή μεγαλύτερης από τους διαθέσιμους ανανεώσιμους υδάτινους πόρους, και άλλες πλησιάζουν σε αυτήν την κατάσταση. Ορισμένες χώρες εξετάζουν το ενδεχόμενο μεταφοράς νερού σε μεγάλες αποστάσεις για να αντισταθμίσουν τις τοπικές ελλείψεις νερού για πολλαπλές ανάγκες, ενώ ταυτόχρονα στοχεύουν στην αύξηση της αποδοτικότητας χρήσης του νερού και στη μείωση της ζήτησης. Ωστόσο, ο ρυθμός δημιουργίας αποθεμάτων νερού σε πολλές περιοχές θεωρείται ανεπαρκής για την αντιμετώπιση μελλοντικών προκλήσεων που σχετίζονται με την κλιματική αλλαγή και την αυξανόμενη ζήτηση για νερό από άλλους τομείς. Η έλλειψη υποδομής αποθήκευσης νερού μπορεί να οδηγήσει σε μεγάλες οικονομικές απώλειες λόγω πλημμυρών και ξηρασίας και να επιβάλει υψηλό κόστος στην ανθρώπινη υγεία από το μολυσμένο νερό.

Η χρήση των υπόγειων υδάτων στη γεωργία έχει επιταχυνθεί με την εμφάνιση των μηχανοκίνητον αντλιών. Σήμερα, οι αρδεούμενες περιοχές που εξαρτώνται από το νερό που αποθηκεύεται ως υπόγεια ύδατα υπολογίζεται ότι καταλαμβάνουν σχεδόν το 40% της παγκόσμιας εκτάσεως που είναι εξοπλισμένη για άρδευση. Αυτή η ζήτηση για υπόγεια ύδατα βοηθάει στην εντατικοποίηση της γεωργικής παραγωγής, τόσο στις περιοχές επιφανειακής άρδευσης όσο και σε εδαφική που διαφορετικά δεν θα είχαν προσφερά νερού. Και στις δύο περιπτώσεις, η πίεση στους υδροφόρους ορίζοντες είναι τέτοια ώστε καλά σημαντικά συστήματα υπόγειων υδάτων έχουν πλέον υπερβολική αντίληψη και η σχετική απώλεια ποιότητας του νερού αυξάνεται. Επιπλέον, η άντληση υπόγειων υδάτων με μηχανοκίνητες αντλίες χρησιμοποιεί μεγάλες ποσότητες ενέργειας, η οποία είναι ακριβή για τους αγρότες και – εάν χρησιμοποιούνται ορυκτά καύσιμα – συμβάλλει στην κλιματική αλλαγή.

Δεδομένων των αναμενόμενων επιπτώσεων της κλιματικής αλλαγής στα μακροπρόθεσμα πρότυπα επανάφτισης, είναι επιτακτική ανάγκη για τη διαχείριση και διατήρηση των σημαντικών ζωνών υδροφορίας ακριβείας όσο και για τη διατήρηση στρατηγικών υδροφορέων ως ζωτικής σημασίας αποθέματα πόσιμου νερού. Σε πολλές περιπτώσεις, η υπερεκτάλλευση των υπόγειων
υδάτων μπορεί να σταματήσει με την ανάπτυξη πρόσθετης ικανότητας αποθήκευσης που μειώνει την επιβάρυνση των υδροφορέων και ενθαρρύνει τους αγρότες και άλλους χρήστες νερού να επιτύχουν βιώσιμα επίπεδα άντληση.

Τα φράγματα, μικρά και μεγάλα, και οι σχετικές δεξαμενές τους, μπορούν να αποθηκεύσουν νερό για μελλοντική χρήση, να παρέχουν υδροπληκτική ενέργεια και να προσφέρουν ένα ορισμένο επίπεδο προστασία από ακραία φαινόμενα βροχοπτώσεων. Τα καλά σχεδιασμένα φράγματα καθιστούν διαθέσιμο νερό σε περιόδους που, ελλείπει αυτόν, θα έλειπε. Από την άλλη πλευρά, τα φράγματα και οι δεξαμενές, ειδικά οι μεγάλες, μπορούν να έχουν αρνητικές επιπτώσεις στις ανθρώπινες κοινωνίες, για παράδειγμα απαιτώντας επανεγκατάσταση και προκαλώντας κοινωνική αναστάτωση. Οι αλλαγές στα δίκτυα των ποταμών και η ρύθμιση της ροής συγκαταλέγονται στις πιθανές αρνητικές οικολογικές συνέπειες των φραγμάτων και των ταμιευτήρων. Επιπλέον, το νερό που αποθηκεύεται σε δεξαμενές μπορεί να εξατομιστεί με μεγαλύτερο ρυθμό από το νερό ελεύθερης ροής. Τα χαρακτηριστικά σχεδιασμού των φραγμάτων και των ταμιευτήρων θα πρέπει να αξιολογούνται προσεκτικά για να ελαχιστοποιηθούν αυτές οι αρνητικές επιπτώσεις και να μεγιστοποιηθούν τα οφέλη.
5 ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΔΙΚΤΥΟΥ ΚΑΙ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ

5.1 ΣΥΣΤΗΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΔΙΚΤΥΟΥ

Το ΣΠΔ (Σύστημα Πληροφοριών Δικτύου) χρησιμοποιεί μοντέλα προσομοίωσης της λειτουργίας του δικτύου τα οποία εν συνεχεία συζευγνύονται με ένα διαχειριστικό μοντέλο. Βασικό εργαλείο του συστήματος αποτελεί το γεωγραφικό σύστημα πληροφοριών στο οποίο ενσωματώνεται η βάση δεδομένων τηλεπισκόπησης και καθίσταται δυνατή η εκτίμηση των γεωποικίας της λεκάνης απορροής με τη χρήση εξειδικευμένου μοντέλου.

Σχήμα 5.1 Γενική δομή του συστήματος προσομοίωσης δικτύου (Loukas et. al, 2015, Tzabiras et.al, 2017)
Χρησιμοποιείται ο αλγόριθμος ενεργειακού ισοζυγίου επιφάνειας για έδαφος SEBAL (Surface Energy Balance for Land) για να αντλήσουν τιμές πραγματικής εξατμισοδιαπνοής χρησιμοποιώντας υψηλής ανάλυσης εικόνες του LANDSAT TM για την καλλιεργητική περίοδο 2007. Οι μηνιαίες τιμές εξατμισοδιαπνοής χρησιμοποιούνται ως δεδομένα εισόδου στο μοντέλο Cropwat και τα αποτελέσματα του Cropwat ως δεδομένα εισόδου για το διαχειριστικό μοντέλο WEAP. Το σενάριο βάσης που αναπτύχθηκε βασίζεται στην πραγματική κατάσταση του δικτύου του Τ.Ο.Ε.Β Πηνείου για την καλλιεργητική περίοδο 2007. Το ΣΠΔ βαθμομοιότητα με τη χρήση παρατηρημένων τιμών του 2007 και η παραμετροποίηση του δικτύου έγινε με την πραγματική λειτουργία του δικτύου. Η λειτουργία του δικτύου του Τ.Ο.Ε.Β Πηνείου γίνεται με το μοντέλο Technologismiki ενώ η λειτουργία του δικτύου του Τ.Ο.Ε.Β Κάρλας με το μοντέλο WaterCad. Στα παρακάτω κεφάλαια παρουσιάζονται θεωρητικά οι συνιστώσες του συστήματος.

5.2 ΑΝΑΓΚΕΣ ΣΕ ΝΕΡΟ ΤΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ

Βασικός στόχος της άρδευσης είναι η παροχή στις καλλιέργειες με την απαιτούμενη ποσότητα νερού για να αναπτυχθούν κανονικά, να μεγιστωθεί η παραγωγή τους και να παρέχουν υψηλή ποιότητα προϊόντων. Τα διαλυμένα στο νερό θρεπτικά στοιχεία απορροφώνται από τις ρίζες του φυτού και διανύονται τους φυτικούς ιστούς φτάνει στα φύλλα. Η εξάτμιση πραγματοποιείται όταν το νερό από υγρό ή στερεό μετατρέπεται σε αέριο και από το έδαφος μετακινείται προς την ατμόσφαιρα. Ο ήλιος ως κύρια μορφή ενέργειας είναι απαραίτητος για την εξάτμιση του νερού που βρίσκεται είτε στο έδαφος είτε στις καλλιέργειες (στη φυλλώδη επιφάνεια ή μέσα). Η ακτινοβολία του ήλιου που προσπίπτει στο έδαφος είναι απαραίτητη διότι παρέχει την απαιτούμενη για εξάτμιση θερμότητα ενώ η σημασία του ανέμου έγκειται στη διατήρηση των υδρατμών (Παπαζαφειρίου, 1999). Η θερμότητα αυτή ονομάζεται λανθάνουσα θερμότητα εξάτμισης και είναι απαραίτητη για να δημιουργηθούν υδρατμοί, οι οποίοι πηγαίνουν στην ατμόσφαιρα. Ακόμη, η αποβολή νερού από τα φυτά ή το έδαφος, με εξάτμιση, επηρεάζει τόσο από φυτικούς όσο και εδαφικούς παράγοντες, αλλά και κλιματικούς. Ως φυτικοί παράγοντες λογίζονται το είδος του φυτού, το albedo της καλλιέργειας, η εδαφική κάλυψη (ποσοστιαία), το φυτικό ύψος και η φυλλική τραχύτητα, το βάθος και η ριζική πύκνωση, όπως και το καλλιεργητικό στάδιο. Οι κλιματικοί παράγοντες περιλαμβάνουν την καθαρή ακτινοβολία, τον άνεμο, την υγρασία και τη θερμοκρασία της ατμόσφαιρας, και επηρεάζουν τους μηχανισμούς που διέπουν την εξάτμιση.

Ο υπολογισμός και η εκτίμηση της εξατμισοδιαπνοής μπορεί να γίνει με ποικίλους τρόπους και μεθόδους. Είναι όμως σκόπιμο να διαχωριστεί η σημασία τους. Επομένως, παρακάτω αναφέρονται οι βασικότεροι ορισμοί (Doorenbos & Pruitt, 1977):
Εξάτμιση (Ε) είναι η διεργασία όπου ένα στερεό ή ένα υγρό σώμα μετατρέπεται σε αέριο (Παπαζαφειρίου, 1997). Όταν γίνεται λόγος για αρδευτικό νερό στη γεωργία ο όρος εξάτμιση αναφέρεται στη αεριοποίηση του νερού.

Δυναμική εξάτμιση (Ερ) είναι η αυτή που προκύπτει από μια έκταση όπου οι πλευρές της οποίας έχουν σε επαφή με την ατμόσφαιρα είναι υγρές, και δεν υπάρχει ανασταλτικός παράγοντας. Η τάξη της δυναμικής εξάτμισης εξαρτάται κυρίως από την ατμοσφαιρική κατάσταση που έχει διαμορφωθεί και την ανακλαστικότητα του εδάφους, αλλά διαφέρει σε σχέση με τα στοιχεία της γεωμετρίας της έκτασης (Παπαζαφειρίου, 1997). Διαπνοή είναι η αεριοποίηση του νερού που φτάνει και βασίζεται στην υδατική μετακίνηση προς τις εξατμιζόμενες πλευρές. Το νερό των φυτών απορροφάται από τη γη, στο ριζικό σύστημα και, μέσω των φυτείων, καταλήγει στα στόματα, όπου λαμβάνει χώρα το φαινόμενο της διαπνοής.

Εξάτμισοδιαπνοή (ΕΤ) είναι η σύνθετη διεργασία μέσω της οποίας πραγματοποιείται η μετάφραση του νερού στον ατμοσφαιρικό αέρα, μέσω της διαπνοής των φυτών και της εξάτμισης της εδαφικής επιφάνειας και από τα φύλλα, όταν αυτά έχουν υγρασία. Οι κανόνες φυσικής σχετικά με την αεριοποίηση του νερού παραμένουν ίδιοι για το νερό, το εδάφος και τα φυτά. Με αυτό τον τρόπο όταν λέμε «εξάτμισοδιαπνοή» περιγράφουμε τόσο την εξάτμιση, όσο και την διαπνοή (Παπαζαφειρίου, 1997).

Δυνητική εξατμισοδιαπνοή είναι η ένταση με την οποία το νερό, υπό συνθήκες πλήρους διαθεσιμότητας, απομακρύνεται από υγρό εδάφος ή υδάτινη ή φυτική επιφάνεια. Εκφράζεται είτε ως ροή λανθάνουσας θερμότητας ανά μονάδα επιφάνειας (λΕΤp) είτε ως ισοδύναμο πάχος εξατμιζόμενου νερού ανά μονάδα χρόνου (ΕΤp) (Παπαζαφειρίου, 1997).

Εξατμισοδιαπνοή καλλιέργειας αναφοράς (ΕΤγ) είναι η ένταση με την οποία νερό απομακρύνεται από τις επιφάνειες αναφοράς του εδάφους ή των φυτών, με την προϋπόθεση ότι η διαθεσιμότητα του είναι άμεση. Καλλιέργεια αναφοράς θεωρείται το χορτάρι ύψους 8-15 cm ή η καλλιέργεια μηδικής μέσου ύψους 50 cm. Οι φυλλικές της επιφάνειες δεν θεωρούνται ότι είναι σε υγρή κατάσταση. Η εξατμισοδιαπνοή καλλιέργειας αναφοράς ή, απλώς, εξατμισοδιαπνοή αναφοράς εκφράζεται είτε ως ροή λανθάνουσας θερμότητας ανά μονάδα επιφάνειας (λΕΤγ) είτε ως ισοδύναμο πάχος εξατμιζόμενου νερού ανά μονάδα χρόνου (ΕΤγ) (Παπαζαφειρίου, 1997).

Εξατμισοδιαπνοή καλλιέργειας (ΕΤκ) είναι η ένταση με την οποία νερό, εφόσον είναι άμεσα διαθέσιμο, απομακρύνεται από τις εδαφικές και φυτικές επιφάνειες μιας καλλιέργειας που αναπτύσσεται δυναμικά, δηλαδή είναι ελεύθερη από ασθένειες και οποιουσιαστικά μισμό. Η συνήθης έκφρασή της είναι σε ισοδύναμο πάχος εξατμιζόμενου νερού ανά μονάδα χρόνου (ΕΤκ) (Παπαζαφειρίου, 1997).
Πραγματική εξατμισοδιαπνοή καλλιέργειας (ET\(_a\)) είναι η ένταση με την οποία νερό απομακρύνεται από το έδαφος και τις φυτικές επιφάνειες, υπό συγκεκριμένες συνθήκες εδάφους, δηλαδή πλήρης ή μερική διαθεσιμότητα νερού και θρεπτικών στοιχείων, προσβολή ή μη από ασθένειες και άλλα συναφή, και εκφράζεται ως ισοδύναμο πάχος εξατμιζομένου νερού ανά μονάδα χρόνου. Είναι προφανές ότι ET\(_a\) ≤ ETc (Παπαζαφειρίου, 1997).

5.3 ΜΕΘΟΔΟΙ ΕΚΤΙΜΗΣΗΣ ΕΞΑΤΜΙΣΟΔΙΑΠΝΟΗΣ ΑΝΑΦΟΡΑΣ

Το μετεωρολογικό αρχείο, οι υπολογισμοί ηλιακής ακτινοβολίας και τα χαρακτηριστικά των καλλιεργειών χρησιμοποιούνται κατά την κύρωση και υπολογισμού της εξατμισοδιαπνοής καλλιέργειας. Οι πιο πρόσφατες μέθοδοι αποτελούνται από δύο κύριες συνιστώσες. Η πρώτη συνιστώσα περιλαμβάνει τον υπολογισμό της εξατμισοδιαπνοής καλλιέργειας (ET\(_r\)) για μια καλλιέργεια με ικανοποιητική άρδευση, με αμετάβλητη βλάστηση, που ονομάζεται «καλλιέργεια αναφοράς» και της οποίας ο ορισμός δόθηκε στην προηγούμενη παράγραφο. Το δεύτερο μέρος αποτελείται από την εκτίμηση της ETc της καλλιέργειας. Η ETc βασίζεται στο γίνομενο της ET\(_r\) και ενός «φυτικού συντελεστή», Kc, που περιγράφει την κάθε καλλιέργεια. Η μεταβολή του φυτικού συντελεστή κατά τη βλάστηση περιγράφεται από την καμπύλη καλλιέργειας που παρουσιάζεται στο Σχήμα 5.2.

Είναι δεδομένο κάθε καλλιέργεια έχει διαφορετικά στάδια ανάπτυξης και διαφορετικό εύρος. Ως εκ τούτου, προκύπτει η παρακάτω σχέση:

\[
ETc = Kc \cdot ETr. \tag{5.1}
\]

Έχουν αναπτυχθεί διάφοροι μέθοδοι υπολογισμού της ET\(_r\) (Jensen et al., 1990, Dalezios et al., 2002). Χωρίζονται σε θεωρητικές μεθόδους όπως η μέθοδος του ισοζυγίου ενέργειας και η αεροδυναμική μέθοδος και σε ημιεμπειρικές μεθόδους, με σημαντικότερες τη μέθοδο Doorenbos και Pruitt και τη μέθοδο Penman-Monteith. Τέλος, χρησιμοποιούνται και οι εμπειρικές μέθοδους, που ενσωματώνουν κλιματικές παραμέτρους, όπως η μέθοδος Blaney-Criddle, η μέθοδος Thornthwaite, η μέθοδος Turk, η μέθοδος Jensen-Haize και η μέθοδος Hargreaves. Στη συνέχεια, περιγράφεται αναλυτικά η μέθοδος Thornthwaite που χρησιμοποιήθηκε σε αυτή διατριβή:
Σχήμα 5.2. Τυπικά στάδια Κc κατά τη βλαστική περίοδο.

Μέθοδος Thornthwaite. Η μέθοδος (Thornthwaite, 1948) κάνει χρήση μόνο της μέσης θερμοκρασίας σε °C, για να ενσωματώσει την κλιματική επίδραση στην τιμή της εξατμισοδιαπνοής αναφοράς. Επομένως, λειτουργεί ικανοποιητικά όταν δεν εφαρμόζεται για τον υπολογισμό της εξατμισοδιαπνοής αναφοράς σε μικρές χρονικές περιόδους, διότι η μέση μηνιαία θερμοκρασία από μόνη της δεν είναι επαρκής για να εκφράσει την ενέργεια που διατίθεται για την εξατμισοδιαπνοή. Έτσι λοιπόν σύμφωνα με τον Thornthwaite, η εξατμισοδιαπνοή αναφοράς δίνεται από την εξίσωση:

\[
ET_0 = 0.533 \text{Ld} \left(10T_a/I\right) \text{[mm ημέρα}^{-1}] \quad (5.2)
\]

όπου \(T_a \) είναι η μέση μηνιαία θερμοκρασία σε °C, υπολογιζόμενη από τις μέσες ημερήσιες, και \(I \) ο δείκτης θερμότητας, που δίνεται από την εξίσωση:

\[
I = \sum_{n=1}^{12} \left(\frac{T_n}{5}\right)^{1.514} \quad (5.3)
\]

όπου \(a = 0.000000675 \) \(13 - 0.000077 \) \(12 + 0.49239 \), \(\text{Ld} \) είναι ένας διορθωτικός συντελεστής, συνάρτηση του μήνα και του γεωγραφικού πλάτους.

5.4 ΔΟΡΥΦΟΡΙΚΕΣ ΜΕΘΟΔΟΙ ΕΞΑΤΜΙΣΟΔΙΑΠΝΟΗΣ ΚΑΛΛΙΕΡΓΕΙΑΣ

Η δορυφορική τηλεπισκόπηση ασχολείται με την εκτίμηση μετεωρολογικών μεταβλητών, το ενεργειακό και υδατικό ισοζύγιο, την παρακολούθηση καλλιεργειών αλλά και φυσικών περιβαλλοντικών ακραίων γεγονότων, δηλαδή πλημμυρών,
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης
- Κεφάλαιο 5ο: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής -

ξηρασιών, χαλαζιών, παγετού, καυσών, δασικών πυρκαγιών, ερημοποίησης, ανεμοθύελλων. Τα μετεωρολογικά στοιχεία που χρησιμοποιεί ο τομέας της αγρομετεωρολογικής ανάλυσης είναι αυτά του ο υετού, της ηλιακής ακτινοβολίας, της θερμοκρασίας επιφάνειας, των δεικτών βλάστησης, της εξατμισοδιαπνήσης, της εδαφικής υγρασίας, αλλά και του υδατικού ελλείμματος (Dalezios, 2011). Επιπλέον πληροφορίες τηλεπισκόπησης μπορεί να συμβάλλουν μαζί με τις μετεωρολογικές μετρήσεις στη λεπτομερείστερη ανάλυση αγρομετεωρολογίας. Μέθοδοι τηλεπισκόπησης, που παρέχουν δεδομένα της χωρικής χαλαζίας και λεπτής χρονικής ανάλυσης είναι απαραίτητα για τέτοιου είδους διαδικασίες, αφού παρέχουν κάλυψη και συλλογή δεδομένων σε ημερήσια βάση.

Η εκτίμηση της χωρικής, ETc, είναι πολύ σημαντική, γιατί βοηθάει στην ικανοποίηση των υδατικών αναγκών και, φυσικά, στην ορθολογική διαχείριση του αρδευτικού νερού. Ακόμη, η γνώση πληροφοριών για την ETc σε ένα εδαφικό τμήμα επιβάλλεται για την εκτίμηση της αγροτικής παραγωγής. Εναν βασικό όρο των εξισώσεων του ενεργειακού και υδατικού ισοζυγίου αποτελεί η ETc. Οι προσεγγίσεις που εφαρμόζονται κατά τη διαδικασία εκτίμησης της ETc με τη χρήση συμβατικών μετεωρολογικών δεδομένων είναι εφικτές μόνο σε μικρή κλίμακα κλίμακα (10-100m²).

Η εκτίμηση της χωρικής, ETc, είναι πολύ σημαντική, γιατί βοηθάει στην ικανοποίηση των υδατικών αναγκών και, φυσικά, στην ορθολογική διαχείριση του αρδευτικού νερού. Ακόμη, η γνώση πληροφοριών για την ETc σε ένα εδαφικό τμήμα επιβάλλεται για την εκτίμηση της αγροτικής παραγωγής. Εναν βασικό όρο των εξισώσεων του ενεργειακού και υδατικού ισοζυγίου αποτελεί η ETc. Οι προσεγγίσεις που εφαρμόζονται κατά τη διαδικασία εκτίμησης της ETc με τη χρήση συμβατικών μετεωρολογικών δεδομένων είναι εφικτές μόνο σε μικρή κλίμακα κλίμακα (10-100m²).

Η χρήση μετεωρολογικών δορυφόρων μπορεί να συμβάλλει στην προσδιορισμό της χωρικής εξατμισοδιαπνήσης καλλιέργειας. Όπως στις συμβατικές μεθόδους εκτίμησης της ETc, έτσι και στις δορυφορικές μέθοδοι η διαδικασία αποτελείται από δύο μέρη. Πιο συγκεκριμένα, αρχικά γίνεται η υπολογισμός της καλλιέργειας, με την υπολογισμό της καλλιέργειας, και στη συνέχεια υπολογίζεται η φυτική συντελεστής, Κc. Η τηλεπισκόπηση δύναται να χρησιμοποιηθεί σε συνέχεια πολλές χρονικές περιόδους.

5.5 ΚΑΘΑΡΕΣ ΚΑΙ ΟΛΙΚΕΣ ΑΝΑΓΚΕΣ ΝΕΡΟ ΤΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ

Η ETc καθορίζει το νερό το οποίο χρειάζονται τα φυτά των καλλιεργειών ώστε να αναπτυχθούν κανονικά και να αποδώσουν επαρκώς. Η ποσότητα νερού αυτή είναι μικρή μέρος της βροχής με ικανοποιητικό ύψος και σημαντική ένταση ωστόσο, στην αντίθετη περίπτωση που η βροχή είναι σιγανή και πιο συχνή και η καλλιέργεια εκτείνεται σε όλο το χωράφι τότε σε μια ιδανική κατάσταση φτάνει το 100%. Οι χειμερινές βροχές, το ανοιξιάτικο χιόνι που λιώνει και το πλημμύρησμα των χωραφιών μέσω κατάκλυσης, ανεβάζουν την ποσότητα υγρασίας.
στο ριζόστρωμα μέχρι ή και πάνω από όριο της υδατικανότητας λίγο πριν ξεκινήσει η βλαστική περίοδος. Η ποσότητα υγρασίας αυτή δύναται να απορροφηθεί άμεσα από τα φυτά.

Το προερχόμενο από τον υπόγειο υδροφορέα νερό μπορεί συμπληρώσει τις υδατικές απαιτήσεις των φυτών. Η στάθμη του υπόγειου υδροφορέα αλλά και η ποιοτική σύσταση του εδάφους παίζουν σημαντικό ρόλο σε αυτό. Σε συνεκτικά-βαριά εδάφη το νερό μπορεί να ξεπεράσει την στάθμη του υπόγειου υδροφορέα με αργό όμως ρυθμό, ενώ στα ελαφρά εδάφη, το νερό δεν ανεβαίνει και ο ρυθμός είναι ταχύς. Είναι μια αρκετά δύσκολη διαδικασία να εκτιμηθεί το προερχόμενο από τον υπόγειο υδροφορέα για έκταση που θα να ποτίστει. Εάν η πραγματική εξατμισόδιαπνή δεν ικανοποιείται από τις φυσικές διεργασίες τότε χρειάζεται επιπλέον ποσότητα νερού για την ομαλή εξέλιξη της καλλιέργειας (Παπαζαφειρίου, 1997). Οπότε οι καθαρές απαιτήσεις αρδευτικού νερού (Iₙ) μπορούν ανα υπολογιστούν με τη σχέση:

\[
I_n = ET_c - (P_e + GW + SM)
\]

(5.4)

Οπου ETₖ είναι η εξατμισόδιαπνή καλλιέργειας, Pₑ είναι η ωφέλιμη βροχή, GW είναι η συμβολή του υπόγειου νερού και SM είναι το νερό που είναι αποθηκευμένο στο ριζόστρωμα στην αρχή της βλαστικής περιόδου. Ωστόσο κατά τη διαδικασία μεταφοράς και εφαρμογής του αρδευτικού νερού στα χωράφια υπάρχουν απώλειες με αποτέλεσμα να χρειάζεται πρόσθετο νερό για την ικανοποίηση των καθαρών αρδευτικών αναγκών. Έτσι είναι χρήσιμο κατά τον υπολογισμό των καθαρών σε νερό αναγκών λαμβάνεται υπόψη ένας αναλογικός συντελεστής που να αντιπροσωπεύει τις απώλειες. Ο συντελεστής αυτός ονομάζεται αρδευτική αποδοτικότητα. Επομένως σε ένα δίκτυο άρδευσης υπάρχουν οι παρακάτω αποτελεσματικότητες (αποδοτικότητες): (Ε₁) δικτύου μεταφοράς που είναι το κλάσμα του νερού που φτάνει στους αγωγούς εφαρμογής (Qₛ) και του νερού που δίνεται στην αρχή του δικτύου (Qᵢᵣ) (Παπαζαφειρίου, 1997). Αυτή μπορεί να εκφραστεί ως:

\[
E_f = \frac{M_s}{Q_f}
\]

(5.5)

Η αποδοτικότητα του δικτύου άρδευσης (μεμονωμένο αγροτικό δίκτυο) (Εₚ) είναι το κλάσμα του νερού που αποθηκεύεται στις ρίζες (Ms) και του νερού που προέρχεται από την πηγή τροφοδοσίας του δικτύου (Qᵢᵣ), είναι δηλαδή:

\[
E_p = E_1 \times E_2 \times E_f = \frac{M_s}{Q_{iᵣ}}
\]

(5.6)

Όταν αποδοτικότητες E₁ και E₂ μπορούν να συνδυαστούν και να αποτελέσουν την αποδοτικότητα διανομής εννοώντας το νερό έρχεται στο αγροτεμάχιο και το νερό που δίνει ο κόμβος τροφοδότησης, είναι δηλαδή:
\[E_d = E_1 \times E_2 = \frac{Q_r}{Q_{in}} \]

(5.7)

To μήκος του δίκτυου άρδευσης, ο αριθμός και το είδος των φυτών, το δίκτυο με τα τεχνικά έργα ρύθμισης της παροχής επηρεάζουν την αποδοτικότητα διανομής. Η αποδοτικότητα αυτή είναι ευαίσθητη στην αποτελεσματικότητα με την οποία είναι δογματική ένα δίκτυο (Παπαζαφειρίου, 1997).

Ο επηρεασμός της αποδοτικότητας εφαρμογής του νερού εξαρτάται από την αρδευτική μέθοδο και την αποτελεσματικότητα της. Οι απόλυτες του νερού κατά την εφαρμογή της άρδευσης ενδέχεται να είναι πολύ σημαντικές. Ενα δίκτυο έχει χαμηλή απόδοση όταν διορθωτικό ποσότητα νερού από αυτή τον μπορεί να διηθείται στο έδαφος όπου το επιπλέον νερό απορρέει. Ωστόσο, το εφαρμόσιμο αρδευτικό νερό ξεπερνά την κρίσιμη ύψη της υγρασίας, η επιπλέον ποσότητα διηθείται σε βάθος. Ακόμη, ένα πολύ σημαντικός παράγοντας στην επιφανειακή στιγμή είναι κατάσταση της επιφάνειας του χωραφιού. Ωστόσο, όταν η επιφανειακή αρδευτική μέθοδος έχει ανάμεικτο, αυτό σημαίνει ότι το νερό δε θα κατανέμηθε αρδευόμενος έως άριστη, επεξεργασμένος σε άλλα σημεία, να διηθείται και να απορρέει και σε άλλα να πληρωθεί υδατικα έλλειμμα νερού με συνέπεια την μη φυσιολογική ανάπτυξη των φυτών και την ανεπαρκή αποδοτή τους (Παπαζαφειρίου, 1997).

Πίνακας 5-1 Αποδοτικότητα κατά τη διανομή (Εd) και εφαρμογή (Εf) του νερού σε δίκτυα άρδευσης (Παπαζαφειρίου, 1997).

<table>
<thead>
<tr>
<th>Τύπος δικτύου</th>
<th>Συντήρηση και λειτουργία</th>
<th>Αποδοτικότητα συστήματος και μεταφοράς (Εd)</th>
<th>Αποδοτικότητα εφαρμογής (Εf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Επιφανειακό</td>
<td>Πολύ καλή έως άριστη</td>
<td>0,60-0,75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ικανοποιητική</td>
<td>0,50-0,60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ελλιπής</td>
<td>0,35-0,50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Κακή</td>
<td>0,20-0,35</td>
<td></td>
</tr>
<tr>
<td>Υπό πίεση</td>
<td>Ικανοποιητική έως άριστη</td>
<td>0,80-0,95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Μέθοδος άρδευσης</th>
<th>Αποδοτικότητα εφαρμογής (Εf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατάκλυση</td>
<td>0,60-0,80</td>
</tr>
<tr>
<td>Περιορισμένη διάχυση (λωρίδες)</td>
<td>0,60-0,75</td>
</tr>
<tr>
<td>Αυλάκια</td>
<td>0,50-0,75</td>
</tr>
<tr>
<td>Καταυστασμός - Κλασσικό σύστημα</td>
<td>0,60-0,80</td>
</tr>
<tr>
<td>Καταυστασμός - Αυτοκεντρικό σύστημα</td>
<td>0,55-0,75</td>
</tr>
<tr>
<td>Καταυστασμός - Περιστροφικό σύστημα (Pivot)</td>
<td>0,75-0,90</td>
</tr>
<tr>
<td>Στάγδην</td>
<td>0,80-0,95</td>
</tr>
</tbody>
</table>

Κατά το σχεδιασμό ενός δικτύου άρδευσης επιβάλλεται να γνωρίζει κάποιος τόσο την αποδοτικότητα διανομής όσο και την αποδοτικότητα εφαρμογής του νερού. Πρακτικά όμως αυτό είναι αδύνατο, οπότε γίνεται εμπειρικός προσδιορισμός των τιμών τους με συνέπεια την υπερεκτίμηση και στην περίοδο αιχμής ζήτησης την υποεκτίμηση και να μειώνεται η αρδευόμενη έκταση με επακόλουθη κατασπατάληση νερού. Χαρακτηριστικές τιμές των αποδοτικότητων διανομής (Εd) και (Εf) παρουσιάζονται στον Πίνακα 5.1.
5.6 ΜΕΘΟΔΟΙ ΑΡΔΕΥΣΗΣ-ΔΙΚΤΥΑ ΕΦΑΡΜΟΓΗΣ

Οι τρόποι παροχής του νερού άρδευσης στις αγροτικές εκτάσεις καλούνται αρδευτικές μέθοδοι. Αυτές προέκυψαν μέσα από την εμπειρική χρήση και εξαρτώνται από το έδαφος και την ομοιογένεια του όπως, το είδος των φυτών και τη τεχνογνωσία των αγροτών. Με την εξέλιξη της τεχνολογίας οι διάφορες μέθοδοι αναλύθηκαν, βελτιώθηκαν και τροποποιήθηκαν ανάλογα με τα εδαφικά δεδομένα, της κάθε καλλιέργειας και του ανθρώπινου παράγοντα.

Επίσης χρησιμοποιήθηκαν τα μαθηματικά για την έλεγχο της παροχής νερού και της ομαλής άρδευσης. Η ομαλή (ομοιόμορφη) παροχή νερού είναι το κυρίτερο συστατικό της γεωργίας με άρδευση ώστε να επιτευχθεί αποτελεσματικότητα. Η ελεγχόμενη παροχή για να επιτευχθεί ομοιόμορφη διανομή κατά μήκος της αρδευόμενης έκτασης αποτελεί ένα από τα σημαντικότερα ζητήματα του ορθού χειρισμού του νερού ακόμα και σήμερα. Ανάλογα με τον τρόπο εφαρμογής του νερού στο χωράφι, διακρίνονται τις παρακάτω κατηγορίες συστημάτων ή μεθόδων άρδευσης:

- Επιφανειακή
- Υπόγεια
- Κατασκευή
- Στάγδην άρδευση

Από τις κατηγορίες αυτές η επιφανειακή άρδευση μέσω κατάκλυσης, είναι η πιο παλιά χρονολογικά και ευρύτατα διαδεδομένη. Η υπόγεια έχει σχεδόν σταματήσει να χρησιμοποιείται, ενώ ο κατασκευής και η στάγδην άρδευση ευρείως. Οι επιφανειακές μέθοδοι άρδευσης απαιτούν ομοιόμορφου του εδάφους ώστε να διανεμηθεί το νερό επίσης ομοιόμορφα και καλύτερα. Οι αρδευτικές μέθοδοι, εκτός του έλεγχου ροής στον αγρό, επηρεάζουν και τη χωροθέτηση του διανεμητικού δικτύου. Ο σχεδιασμός του αρδευτικού δικτύου οφείλει να πραγματοποιείται από το χωράφι προς την υδροληψία, αφού η αντίθετη χάραξη ενδέχεται να καταλήξει σε σοβαρά λάθη, με επακόλουθη αδυναμία άρδευσης.

5.6.1 Επιφανειακή μέθοδος άρδευσης

Οι μέθοδοι επιφανειακής άρδευσης διακρίνονται σε δύο βασικές υπομόρφωσες:

α) Σε αυτές που βασίζονται στη διήθηση του νερού στη γη κατά τη διάρκεια που παραμένει στο έδαφος και καλούνται αρδευτικές μέθοδοι κατάκλυσης.

β) Σε εκείνες που στηρίζονται στη διήθηση του νερού μέσα στη γη κατά τη διάρκεια ροής του πάνω στο έδαφος και που καλούνται αρδευτικές μέθοδοι ροής.
Η μέθοδος της κατάκλυσης θεωρείται ο παλαιότερος τρόπος εφαρμογής του αρδευτικού νερού. Η εφαρμογή του νερού είναι έναξέλεγκτη και απλώνεται σε μεγάλα τμήματα. Αυτού του τύπου η διοχέτευση έχει ως αποτέλεσμα:

α) Μεγάλες ποσότητες νερού να χάνονται, λόγω βαθιάς διήθησης.
β) Το νερό κατανεμείται ανομοιόμορφα στο χωράφι.
γ) Το νερό παραμένει στα φυτά για μεγαλύτερο διάστημα από ότι θα έπρεπε.
δ) Η πλεονάζουσα υγρασία δημιουργεί συνθήκες για ανάπτυξη υδροχαρών ζιζανίων.

Στις μέρες μας οι μέθοδοι άρδευσης με κατάκλυση έχουν σχεδόν καταργηθεί. Στην κατάκλυση απαιτούνται τεράστιες υδατικές ποσότητες. Στην μέθοδο ρόης το νερό ρέει στην εδαφική επιφάνεια, από το ανάντι σημείο του χωραφιού ως το κατάντι. Η ρόη του νερού η υγρασία στο ρίζοστρωμα των φυτών να φτάσει σε ικανοποιητικό επίπεδο. Η μέθοδος είναι γνωστή και ως διάχυση, διότι το νερό από το σημείο που εφαρμόζεται διαχέεται στον αρδευόμενο αγρό. Παλιότερα εφαρμόζοταν ελεύθερη διάχυση όπου το νερό διοχετεύονταν επάνω σε ολόκληρη την επιφάνεια του χωραφιού. Σε υποβαθμισμένες περιοχές ο τρόπος αυτός εφαρμόζεται ακόμη, αλλά είναι σαφές ότι δεν είναι δυνατόν να εφαρμοστεί το νερό που απαιτείται για την άρδευση και δεν δύναται να προσεγγιστεί ομοιόμορφη της κατανομής.

Ο έλεγχος της ρόης του νερού επιτυγχάνεται μέσω της περιορισμένης διάχυσης και το νερό μεταφέρεται στους αγρούς σε παράλληλα χαντάκια (ανάμεσα σε αναχώματα), περιέ μέσα σε αυτά, καλύπτοντας την αρδευόμενη έκταση και παράλληλα υφίσταται διήθηση. Από την άλλη τα αρδευτικά αυλάκια, θεωρούνται η αναβάθμιση της προηγούμενης μεθόδου δεδομένου ότι η ρόη μέσα σε αυλάκια, ποτίζει εκτός του τμήματος στο οποίο πραγματοποιείται η ρόη, μέσω διήθησης και τα σημεία μεταξύ των αυλακιών (Ντελλής, 2009).

5.6.2 Υπόγεια μέθοδος άρδευσης

Στην υπόγεια αρδευτική μέθοδο ρυθμίζεται το ύψος του υπόγειου νερού (με προσθήκη νερού) με στόχο την βελτίωση της αναλογίας νερού και αέρα μέσα στο ριζόστρωμα. Αυτή η μέθοδος χρησιμοποιείται ευρέως σε περιοχές με μεγάλο μέσο ετήσιο ύψος βροχής αφού λειτουργεί συνεργατικά με το στραγγιστικό σύστημα της βροχής. Οπότε, σε συνθήκες ξηρασίας, όπου ο ρυθμός εξάτμισης είναι μεγαλύτερος από τη βροχόπτωση, παρεμποδίζεται η ρόη του νερού στα αποστραγγιστικά κανάλια και με τον τρόπο αυτό γίνεται ο καθορισμός του ύψους της υπόγειας στάθμης, ώστε να καλυφούν οι υδατικές αναγκές των καλλιεργειών. Η Ολλανδία είναι μια χώρα όπου το σύστημα αυτό χρησιμοποιείται ευρέως και λόγω του κλίματος, της τοπογραφίας και των εδαφών που αξιοποιούνται από τη θάλασσα (Polders) ήταν απαραίτητη η κατασκευή αποστραγγιστικών καναλιών. Τα Polders είναι υποθαλάσσια συνήθως 2 - 5 m κάτω από την θαλάσσια στάθμη. Η πιθανότητα αλάτωσης των εδαφών (κίνδυνος για...
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 5ο: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής-

τα Polders) σε συνθήκες υπάρδευσης, όπου το νερό κινείται προς τα πάνω, ισορροπεί με καθοδική ροή του νερού κατά την περίοδο των βροχών.

5.6.3 Μέθοδος άρδευσης καταιονισμού

Ο τρόπος άρδευσης όπου το νερό διατίθεται στον αγρό με μορφή τεχνητής βροχής καλείται καταιονισμός και αποτελεί τον φυσικότερο τρόπο άρδευσης. Με τρόπο που μιμείται τη φυσική βροχή και με τη χρήση μικροκτονευτήρων επιτυγχάνεται η ίδια άρδευση σε όλα τα σημεία του αγρού με διήθηση νερού. Ο καταιονισμός είναι μια ευπροσάρμοστη μέθοδος για κάθε είδος καλλιέργειας και για τους περισσότερους τύπους εδαφών. Με απότομες κλίσεις και υψηλή στάθμη υδροφόρου ορίζοντα, με απότομες κλίσεις και φυσιογραφικές ανωμαλίες. Ο καταιονισμός, ενώ πολλοί τον θεωρούν μια πρόσφατη μέθοδο στην ουσία έχει χρόνια που εφαρμόζεται. Πιο παλιά ο εξοπλισμός άρδευσης με καταιονισμό αποτελούνταν, κυρίως, από μόνιμες σιδερένιες σωλήνες και από βαριά υλικά, τα οποία δεν βοηθούσαν στην ευρεία χρήση για την άρδευση καλλιεργειών. Οι περιστροφικοί εκτοξευτήρες και οι πλαστικές σωλήνες που χρησιμοποιούνται σχετικά πρόσφατα, βοήθησαν σημαντικά στην εξάπλωση της μεθόδου. Είναι γνωστό ότι οι μικρές παροχές νερού δεν μπορούν να αξιοποιηθούν επειδή υφίστανται απώλειες μεταφόρας στα επιφανειακά δίκτυα. Στην περίπτωση του καταιονισμού λόγω χρήσης κλειστών αγωγών υπάρχει εκμηδενισμός των απωλειών.

5.6.4 Στάγδην άρδευση

Στην μέθοδο άρδευσης στάγδην, η διανομή του νερού στα υπό άρδευση φυτά με σταγόνες και κάθε φυτό τροφοδοτείται με την απαραίτητη υγρασία. Το νερό σε σταγόνες αποστέλλεται στις ρίζες των καλλιεργειών συνεχώς με σταλακτήρες, τοποθετημένους σε συγκεκριμένες σωλήνες πολυαιθυλενίου, στρωμένους στην επιφάνεια, παράλληλα με τις γραμμές φύτευσης. Με τη στάγδην άρδευση το νερό πηγαίνει σε ένα μικρό τμήμα του εδάφους γύρω από το φυτό ελαχιστοποιώντας οι απώλειες λόγω εξάτμισης. Η υγρασία αποστέλλεται στις ρίζες των φυτών άμεσα και δεν υπάρχει επιρροή του ανέμου που να συντελεί στην εξάτμιση προτού φτάσει στο χώμα όπως συμβαίνει με τον καταιονισμό. Ακόμη δεν υπάρχουν απώλειες από βαθιά διήθηση όπως στην επιφανειακή άρδευση, αφού οι ποσότητες νερού που παρέχονται είναι σχετικά μικρές. Γενικά η εξοικονόμηση νερού στη συγκρίση με τη μέθοδο άρδευσης του καταιονισμού υπολογίζεται είναι της τάξης του 25 τοις εκατό, ενώ στην περίπτωση της επιφανειακής άρδευσης είναι 50 τοις εκατό. Πέραν των προηγούμενων πλεονεκτημάτων η άρδευση περιορίζεται αποκλειστικά εντός του χωριοφοίκου και δεν διαβρέχεται εκτάσεις εκτός των ορίων όπως στην περίπτωση της τεχνητής βροχής. Ένα σημαντικό πλεονέκτημα της μεθόδου είναι ότι
Διδακτορική Διατριβή: Τζαμπύρας Ιωάννης

-Κεφάλαιο 5ο: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής-

με αυτή τη μέθοδο μπορεί να εξυπηρετηθεί μεγαλύτερη έκταση σε σχέση με τις άλλες μεθόδους αναφερόμενοι πάντοτε στην ίδια παροχή. Επιπλέον μπορεί να αξιοποιηθεί το νυκτερινό πότισμα ενώ στις άλλες περιπτώσεις ο συνολικός χρόνος άρδευσης ανά ημέρα περιορίζεται σε 16-18 ώρες.

5.7 ΑΝΟΙΚΤΟΙ ΑΓΩΓΟΙ (ΕΠΙΦΑΝΕΙΑΚΑ ΔΙΚΤΥΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΔΙΑΝΟΜΗΣ)

Η ροή στους ανοικτούς αγωγούς γίνεται με ελεύθερη επιφάνεια στην οποία κυριαρχεί η ατμοσφαιρική πίεση του αέρα. Τέτοιου τύπου αγωγοί είναι οι φυσικοί όπως οι ποταμοί και τα ρέματα, οι τάφροι και οι υπόνομοι. Στους ανοικτούς αγωγούς η ροή καλείται μόνιμη όταν το βάθος ροής δεν είναι χρονικά μεταβαλλόμενο σε κάθε διατομή του αγωγού, ενώ στην αντίθετη περίπτωση όταν το βάθος ροής μεταβάλλεται με το χρόνο η ροή καλείται μη μόνιμη. Από την άλλη ομοιόμορφη ροή είναι εκείνη στην οποία το βάθος ροής είναι το ίδιο κατά μήκος του αγωγού και ονομάζεται ομοιόμορφο βάθος. Από την άλλη όταν το βάθος ροής μεταβάλλεται, αυξάνεται ή μειώνεται κατά μήκος του αγωγού, η ροή ονομάζεται ανομοιόμορφη. Αν η μεταβολή του βάθους γίνεται βαθμιαία μικρές κατά μήκος μεταβολές, τότε καλείται βαθμιαία μεταβαλλόμενη, αλλιώς ταχέως μεταβαλλόμενη (Τσακίρης, 2010).

Οι πλέον γνωστές μορφές διατομών ανοικτών αγωγών για μεταφορά νερού είναι:

- Ορθογωνική
- Τραπεζοειδής
- Κυκλική
- Ελλειπτική
- Ωοειδής
- Ανεστραμμένη ουσιαστικά

Για τη μεταφορά του νερού άδρευσης στη παρούσα διατριβή χρησιμοποιούνται χωματινές τραπεζοειδείς τάφροι.

Σχήμα 5.3. Απεικόνιση μιας τυπικής τραπεζοειδούς διατομής (Τσακίρης, 2010)
5.7.1 Ομοιόμορφη ροή

Η σταθερή ομοιόμορφη ροή, αν και στις εφαρμογές δεν απαντάται συχνά, είναι ο απλούστερος τύπος ροής στους ανοικτούς αγωγούς. Ομοιόμορφες συνθήκες ροής εμφανίζονται σε τμήμα του ανοικτού αγωγού εάν: α) δεν υπάρχουν επιδράσεις στις οποίες θα είναι αδύνατο να αλλάξουν το βάθος της ροής, β) δεν υπάρχει μεταβολή της διατομής της υγρής επιφάνειας της ροής από θέση σε θέση, γ) δεν υπάρχει μεταβολή της τραχύτητας της επιφάνειας των στερεών ορίων. Όπως είναι φυσικό, αυτές οι συνθήκες σπάνιες εμφανίζονται στη πράξη. Όταν όμως εμφανισθούν ομοιόμορφες συνθήκες ροής, τότε η ελεύθερη επιφάνεια του υγρού του αγωγού είναι παράλληλη προς τον πυθμένα του αγωγού και το βάθος ροής, από την ελεύθερη επιφάνεια μέχρι τον πυθμένα, ονομάζεται "κανονικό" βάθος ροής. Στην σταθερά ομοιόμορφη αρόνικη ροή η ταχύτητα του υγρού είναι σταθερή από θέση σε θέση και η καθαρή επιδρούσα δύναμη επί του υγρού είναι μηδέν (Τσακίρης 2010).

Για τον υπολογισμό των αγωγών αυτών έχον προταθεί και χρησιμοποιούνται διάφορες εξισώσεις όπως οι εξισώσεις των: Chezy, Kutter, Bazin και του Manning. Η πλέον χρησιμοποιούμενη και αυτή που εφαρμόστηκε στη συγκεκριμένη διατριβή για την μελέτη της ροής εντός ανοικτών αγωγών είναι αυτή του Manning ο οποίος την δημόσιευσε περί τα 1890. Ο Manning βρήκε ότι από τον σύνολο των μετρήσεων του ο συντελεστής C μεταβάλλεται προσεγγιστικά μετά την τιμή R1/6 ενώ αυτός και μερικοί άλλοι, ότι ο C μεταβάλλεται αντιστροφώς ανάλογα προς τον συντελεστή n, όπου η είναι ο συντελεστής τραχύτητας του Manning. Έτσι λοιπόν αναπτύχθηκε η παρακάτω εξίσωση κατά Manning:

\[V = \frac{1}{n} R^{2/3} S^{1/2} \]
(5.8)

Όπου V η μέση ταχύτητα ροής (m/s), R η υδραυλική ακτίνα (m), S η κατά μήκος κλίση του αγωγού (m/m), Q η παροχή (m³/s)

Οπου n ο συντελεστής τραχύτητας γνωστός ως συντελεστής του Manning με διαστάσεις (s/m⁰.⁵) ο οποίος αποτελεί εκφράση της τραχύτητας του στερεού ορίου και συνδέεται με το συντελεστή f των Darcy-Weisbach με τη σχέση:

\[f = \frac{(8g n^2)}{R^{1/3}} \]
(5.9)

Οι τιμές του συντελεστή Manning λαμβάνονται από πίνακες που έχουν δημοσιευτεί σε πληθώρα βιβλίων. Ο πίνακας 4.2 παρουσιάζει τις τιμές του συντελεστή Manning για διάφορους τύπους τεχνητών ανοιχτών αγωγών.
Το γεγονός ότι η ροή πραγματοποιείται με ελεύθερη επιφάνεια έχει ως αποτέλεσμα η υγρή διατομή να εξαρτάται εκτός από τη γεωμετρία της διατομής και από τη θέση της ελεύθερης επιφάνειας. Ο υπολογισμός του ομοιόμορφου βάθους γίνεται με τη χρήση της εξίσωσης Manning και της εξίσωσης της συνέχειας άρα:

\[
Q = (1/n)AR^{2/3}S_0^{1/2}
\]

(5.10)

Αν είναι γνωστή η παροχή \(Q\) (m\(^3\)/s), η γεωμετρία του αγωγού, η συντελεστή Manning \(n\), και η κατά μήκος κλίση \(S_0\), τότε:

\[
AR^{2/3} = \left(\frac{nQ}{S_0^{1/2}}\right) = \text{γνωστό}
\]

(5.11)

Στην περίπτωση της τραπεζοειδούς διατομής (Σχήμα 4.2) η οποία συναντάται στο επιφανειακό δίκτυο του Τόπικου Οργανισμού Εγγείων Βελτιώσεων Πηνείου το ομοιόμορφο βάθος ροής προκύπτει για γνωστή παροχή και γεωμετρία αγωγού με δοκιμές από τις εξισώσεις:

\[
E = (b + mh)h
\]

(5.12)

\[
\Pi = b + 2h(1 + m^2)^{1/2}
\]

(5.13)

\[
R = \frac{E}{\Pi}
\]

(5.14)

Οπου \(E\) (m\(^2\)) το εμβαδόν υγρής διατομής, \(\Pi\) (m) η βρεγμένη περίμετρος και \(R\) (m) η υδραυλική ακτίνα.
Κεφάλαιο 5: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής

5.7.2 Ανοικτά αρδευτικά κανάλια

Παγκοσμίως ο 70% του γλυκού νερού χρησιμοποιείται στον αγροτικό τομέα για αρδευτικούς σκοπούς. Επικολλώθηκε η διανομή του γλυκού νερού πραγματοποιείται μέσω δικτύων από ταμιευτήρες και ανοικτούς τάφρους. Στα δίκτυα με μεγάλο μήκος καναλιών, το νερό μεταφέρεται δια βαρύτητας, και η ρύθμιση της ροής γίνεται μέσω θυρών όπως φαίνεται στο Σχήμα 5.5. Ο χώρος μεταξύ δύο θυρών ενέχει λειτουργία δεξαμενής. Είναι προφανές ότι οι ανοικτές αρδευτικές τάφροι, μπορούν να λογιστούν ως μια σειρά μικρών ταμιευτήρων που συνδέονται μέσω θυρών.

Σχήμα 5.4. Αγωγός τυπικής τραπεζοειδούς διατομής

Σχήμα 5.5. Σχηματική απεικόνιση καναλιού άρδευσης (Ντελλής, 2009)

Το νερό εφαρμόζεται στα χωράφια και τους δευτερεύοντες αγωγούς γίνεται κατά μήκος του αρδευτικού δικτύου. Τα σημεία αυτά συνήθως εντοπίζονται στην κάθοδο του δικτύου προς το τέλος. Η τροφοδότηση των σημείων αυτών με νερό πραγματοποιείται δια βαρύτητας και η απαιτούμενη ροή αποκτάται με την χρησιμοποίηση θυρών (με τη χρήση δυναμικής ενέργειας) και υπάρχει μεταβολή των απωλειών που προκύπτουν λόγω υπερβολικής παροχής. Γίνεται έτσι επιβεβλημένη η χρήση ελεγκτών με τη βοήθεια τους αποτελείται η θέση των θυρών και συμβάλλει στη μείωση των απωλειών.

Η χρήση των αρδευτικών τάφρων βοηθά στη μεταφορά νερού μεταξύ υδάτινου πόρου (στη προκειμένη περίπτωση από τον Πηνειό ποταμό) και χρηστών. Διάφορες δομές βοηθούν την επιλογή της κατάλληλης θέσης των ελεγκτών. Υπάρχει μια
πληθώρα κατανεμημένων τεχνικών ελέγχου που έχουν διερευνηθεί από την επιστημονική κοινότητα μέχρι σήμερα. Ο απομακρυσμένος ελέγχος στην κάθοδο είναι ο συνηθέστερος, ο οποίος θεωρείται απλός όσον αφορά τη διαχείριση των πηγών, αλλά δεν θεωρείται αρκετά αποδοτικός από τους χρήστες. Από την άλλη ο κλασσικός τρόπος ελέγχου ελέγχου του ψηλότερου σημείου κάθε φορά της τάφρου, ο οποίος αποδοτικότερος όσον αφορά τους χρήστες, άλλα απαιτεί μεγάλες ποσότητες νερού. Τα κατανεμημένα σχέδια ελεγκτών εμφανίζουν εύκολο συντονισμό και εφαρμογή. Η δομή τους καθιστά απλή τη διάγνωση και τον εντοπισμό των σφαλμάτων, παρέχοντας ευκολίες για τη συντήρηση των αρδευτικών δικτύων. Βέβαια κάθε περιορισμός, κάνει χρήση μίας μόνης μεταβλητής για ελέγχο κάθε δεξαμενής και τον έλεγχο της εξόδου. Σε πιο σύγχρονες μεθόδους, οι ελεγκτές σχεδιάζονται με μία συγκεκριμένη μορφή, όμως απαιτούν όγκο υπολογισμών και είναι δύσκολες στην εφαρμογή τους σε μεγάλα συστήματα όπου είναι τα δίκτυα με κανάλια άρδευσης.

Η μεγάλη δυσκολία κατά τον έλεγχο των αρδευτικών καναλιών έγκειται στο φαινόμενο της απομόνωσης. Οι απομακρυσμένοι ελεγκτές εμφανίζουν εύκολο συντονισμό και εφαρμογή. Η δομή τους καθιστά απλή τη διάγνωση και τον εντοπισμό των σφαλμάτων, παρέχοντας ευκολίες για την συντήρηση των αρδευτικών δικτύων. Βέβαια κάθε περιορισμός, κάνει χρήση μίας μόνης μεταβλητής για ελέγχο κάθε δεξαμενής και τον έλεγχο της εξόδου. Σε πιο σύγχρονες μεθόδους, οι ελεγκτές σχεδιάζονται με μία συγκεκριμένη μορφή, όμως απαιτούν όγκο υπολογισμών και είναι δύσκολες στην εφαρμογή τους σε μεγάλα συστήματα όπου είναι τα δίκτυα με κανάλια άρδευσης.

5.7.3 Μη μόνιμη ανομοιόμορφη βαθμιαία μεταβαλλόμενη ροή σε αρδευτικό κανάλι

Η δυναμική ροή αρδευτικού καναλιού περιγράφεται μέσω των δύο μερικών μη γραμμικών διαφορικών εξισώσεων συνέχειας και αρχής διατήρησης της ροής. Έτσι η εξίσωση της συνέχειας γράφεται ως:

\[\frac{ds}{dt} + \frac{dq}{dx} = q \] \hspace{1cm} (5.15)

και από την αρχή διατήρησης της ροής προκύπτει:

\[\frac{dq}{dt} + \frac{d\left(q^2/s\right)}{dx} + gs\left(\frac{ds}{dx} - I - J\right) = K_q q \frac{Q}{s} \] \hspace{1cm} (5.16)

Οπου, \(J = \frac{Q|I|^2}{Ds^2} = KS \left(\frac{s}{p}\right)^{2/3} \) \hspace{1cm} (5.17)
και όπου \(s \) υγρό τμήμα, \(Q \) μεταβολή της ροής του νερού, \(J \) τριβή, \(h \) σχετική στάθμη ύδατος, \(I \) κλίση του καναλιού, \(Q \) διήθη ση, \(K \) συντελεστής τριβής και \(k = 0 \) εάν \(q > 0 \) και \(k = 1 \) εάν \(q < 0 \).

Οι παραδοχές που γίνονται στην εφαρμογή των εξισώσεων αυτών είναι ότι: α) η ροή είναι μονοδιάστατη, β) επικρατούν συνθήκες υδροστατικής πίεσης και οι κάθετες επιταχύνσεις είναι αμελητέες γ) η κλίση του πυθμένα του καναλιού είναι μικρή δ) Οι εξισώσεις του Manning και του Chezy χρησιμοποιούνται για την περιγραφή της αντίστασης ε) το υγρό είναι ασυμπίεστο στ) τα όρια των αγωγών θεωρούνται καθορισμένα δεν είναι ευαίσθητα σε διάβρωση ή απόθεση. Έτσι από την αρχή διατήρησης της μάζας προκύπτει ότι σε ένα τυχαίο όγκο ελέγχου ενός υγρού η καθαρή μεταβολή της μάζας του όγκου από εισροή ή εκροή είναι ίση με το ρυθμό της καθαρής μεταβολής του όγκου στον όγκο ελέγχου. Υπάρχουν γενικά τρεις διαφορετικοί τύποι εφαρμογής της εξίσωσης 4.9:

α) Κινηματικό κύμα : όταν οι δυνάμεις της βαρύτητας και της τραχύτητας ισορροπούν (απότομα κανάλια χωρίς επιστροφή υδάτων)

β) Διαχυτικό κύμα: όταν οι δυνάμεις της πίεσης είναι σημαντικές και λειτουργούν συνδυαστικά με τις δυνάμεις βαρύτητας και τραχύτητας

γ) Δυναμικό κύμα : όταν η δυνάμεις αδράνειας και πίεσης είναι σημαντικές και οι επιστροφές ύδατος δεν είναι αμελητέες (κανάλια με ήπια κλίση)

Για την περίπτωση ενός τραπεζοειδούς καναλιού, προκύπτει:

\[
 s = Bh, \quad p = B + 2h \quad (5.18)
\]

Όπου \(p \) είναι το πλάτος της τάφρου.

Για κανάλια μικρής κλίσης (μικρότερης της κρίσιμης ροής), όπως αυτά που αναλύονται στην παρούσα διατριβή, γίνεται χρήση δύο οριακών συνθηκών (άνοδος και κάθοδος).

Υπάρχει η δυνατότητα τεσσάρων επιλογών, και λόγω της χρήσης των οριακών συνθηκών ως μεταβλητών ελέγχου, οριακές συνθήκες ορίζονται τα ποσοστά ροής στην άνοδο και την κάθοδο:

\[
 Q(x = 0, t) = Q_0(t) = u_1(t) \quad (5.19)
\]

\[
 Q(x = \lambda, t) = Q_n(t) = u_2(t) \quad (5.20)
\]

Στο τέλος η διαμόρφωση των αρχικών συνθηκών γίνεται ως:

\[
 h(x, 0) = h_1(x) \quad (5.21)
\]

\[
 Q(x, 0) = Q_1(x) \forall x \in [0, L] \quad (5.22)
\]
5.8 ΚΛΕΙΣΤΟΙ ΑΓΩΓΟΙ (ΥΠΟΓΕΙΑ ΔΙΚΤΥΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΔΙΑΝΟΜΗΣ)

Ροή υπό πίεση ορίζεται η ροή στην οποία το ρευστό γεμίζει ολόκληρη τη διατομή του αγωγού, ενώ η πίεση του διαφέρει από αυτή της ατμοσφαιρικής. Δεδομένου ότι ο αγωγός είναι πληρωμένος δεν νοείται ελεύθερη επιφάνεια. Με αγωγούς υπό πίεση μεταφέρεται αρδευτικό ή υδρευτικό νερό αλλά και νερό για την λειτουργία εξοπλισμών. Παρακάτω δίνονται μερικοί κρίσιμοι ορισμοί:

Ομοιόμορφος: ονομάζεται ο κλειστός (υπό πίεση) αγωγός με σταθερή διατομή και ενιαία κλίση.
Σωλήνας: ονομάζεται ο αγωγός με κυκλική διατομή. Στη πράξη: Συνήθως χρησιμοποιούμε κυκλικούς αγωγούς (σωλήνες) και αγωγούς ορθογώνικής ή τετραγώνικής διατομής.

Η πίεση: Κατανέμεται υδροστατικά, κάθετα στις γραμμές ροής (ή στην κύρια διεύθυνση του αγωγού). Συνήθως, όταν αναφέρουμε στην πίεση, εννοούμε αυτή στον άξονα του αγωγού. Ιδιαίτερα, υδροστατική κατανομή της πίεσης εμφανίζεται στην περιοχή μόνιμης και ομοιόμορφης ροής που είναι η περισσότερο συνηθισμένη περίπτωση ροής σε αγωγούς υπό πίεση.

5.8.1 Στρωτή ροή

Στη στρωτή ροή τα σωματίδια του ρευστού κινούνται κατά μήκος παραλλήλων τροχιών, σε στρώματα. Τα μέγεθη των ταχυτήτων γειτονικών στρωμάτων δεν είναι ίσα. Η στρωτή ροή περιγράφεται από τον νόμο που συνδέει τη διατιμητική τάση με την κλίση της ταχύτητας, που περιγράφηκε στο κεφάλαιο των ιδιοτήτων των ρευστών. Οι ιξώδεις, διατιμητικές δυνάμεις υπερισχύουν, καθώς δεν έχουν εμφανιστεί τυρβώδεις συνθήκες, λόγω του ότι οι δυνάμεις αδράνειας είναι αμελητέες. Στρωτή ονομάζεται η ροή σε ένα αγωγό όταν ο αριθμός Reynolds (Re) είναι μικρότερος από, κάποια ‘κρίσιμη’ τιμή (Re). Ο αριθμός Reynolds ορίζεται ως γνωστό σχέση Re = uD/ν, όπου u είναι κάποια χαρακτηριστική ταχύτητα (συνήθως η μέση ταχύτητα ροής στη
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 5ο: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής-

διατομή). Δ είναι κάποιο χαρακτηριστικό μήκος του πεδίου ροής (συνήθως είναι η διάμετρος προκειμένου περί κυκλικού αγωγού ή κάποια άλλη χαρακτηριστική εγκάρσια κλίμακα μήκους) και ν = μ/ρ είναι το κινηματικό ιξώδες του ρευστού.

О аριθμός Reynolds, είναι ένα αδιάστατο μέγεθος που δείχνει τον λόγο των δυνάμεων αδρανείας ως προς τις δυνάμεις της διάτμησης. Ο κρίσιμος αριθμός Reynolds εξαρτάται από τη γεωμετρία της διατομής του αγωγού. Είναι διαφορετικός σε έναν κυκλικό αγωγό απ’ ότι σ’ ένα τριγωνικό ή ορθογωνικό που έχουν το ίδιο εμβαδόν εγκάρσιας διατομής.

Σχήμα 5.7. Στρωτή, μεταβαλλόμενη και τυρβώδης ροή σε σχέση με τον αριθμό Reynolds (Σιέρρος και Ιεσούα, 2015)

Η τιμή του κρίσιμου αριθμού Reynolds σε σωλήνα (κλειστό αγωγό κυκλικής διατομής) είναι περίπου 2000-2300. Στην πράξη είναι δυνατόν να επιτύχουμε στρωτή ροή σε σωλήνα με αριθμό Reynolds έως και 10000. Η ροή όμως είναι ιδιαίτερα (υδροδυναμικά) ασταθής και η παραμικρή διαταραχή θα τη μετατρέψει αμέσως σε τυρβώδη.

5.8.2 Τυρβώδης ροή

Τυρβώδης ονομάζεται η ροή για την οποία ο Re υπερβαίνει κάποια κρίσιμη τιμή Re. Σε κυκλικούς αγωγούς (σωλήνες) υπό πίεση συνήθως θεωρούμε ότι Re = 2000-2300. Στην πράξη, τα προβλήματα που αντιμετωπίζονται σε αυτή τη διάτριβη σε σωλήνες, αφορούν τυρβώδη ροή. Οι αγωγοί μεταφοράς νερού από τον ταμιευτήρα στο χωράφι μεταφέρουν παροχή που είναι της τάξης μερικών L/s, η δε τιμή του αριθμού Reynolds μπορεί να κυμαίνεται από 100000 έως και μερικά εκατομμύρια.
Στο σχήμα 4.6 παρουσιάζονται οι γραμμές ροής για στρωτή, μεταβατική και τυρβώδη ροή. Είναι προφανές ότι μεταβατική ροή είναι η κατάσταση που μεσολαβεί μεταξύ στρωτής και τυρβώδους ροής.

Σχήμα 5.8. Γραμμές ροής (Σιέρρος και Ιεσούα, 2015)

5.8.3 Αρχή διατήρησης της ενέργειας

Η δεύτερη βασική αρχή στην οποία στηρίζεται η Υδροδυναμική, είναι η αρχή της διατήρησης της ενέργειας. Από αυτή προκύπτει η εξίσωση του Bernoulli, που εφαρμόζεται σε πολλά και σημαντικά πεδία. Η εξίσωση αυτή προκύπτει από την διατήρηση της ενέργειας ως εξής:

\[h_1 + \frac{p_1}{\gamma} + \frac{v_1^2}{2g} = h_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g} \] \hspace{1cm} (5.23)

Η εξίσωση αυτή αναφέρεται ανά μονάδα βάρους νερού όπου \(h_1, h_2 \) τα ύψη θέσης, \(p_1, p_2 \) τα ύψη πίεσης, \(\frac{v_1^2}{2g}, \frac{v_2^2}{2g} \) τα ύψη ταχύτητας σε δύο διατομές του αγωγού 1,2 (Σχήμα 4.7).

Σχήμα 5.9. Σχηματική παράσταση των υψών θέσης, πίεσης, ταχύτητας και απωλειών ενέργειας κατά τη ροή μέσω κλειστού αγωγού

Η αρχή της ενέργειας βρίσκει εφαρμογή σε θέματα ροής σε πολλούς τομείς της επιστήμης.
5.8.4 Γραμμικές και τοπικές απώλειες κλειστών αγωγών

Για τη μελέτη ενός δικτύου κλειστών αγωγών πρέπει να υπολογιστούν οι απώλειες ενέργειας λόγω των τριβών μεταξύ του νερού και των τοιχώματων του αγωγού όσο και μεταξύ των μορίων του νερού. Οι απώλειες αυτές διακρίνονται σε τοπικές και γραμμικές. Για τυρβώδη ροή (Re>2000) ο συντελεστής τριβών f είναι συνάρτηση του αριθμού Re και της σχετικής τραχύτητας του αγωγού k/D. Υπολογίζεται από την εξίσωση Colebrook και White:

\[
\frac{1}{\sqrt{f}} = -2 \log \left(\frac{k}{3.71D} + \frac{2.51}{R_e \sqrt{f}} \right)
\]

(5.24)

Οπου k η απόλυτη τραχύτητα (m) και όπου D η εσωτερική διάμετρος του αγωγού. Τιμές του k δίνονται στον Πίνακα 4.2. Η δυσκολία επίλυσης της παραπάνω εξίσωσης οδήγησε στη γραφική επίλυση της με τη βοήθεια του διαγράμματος Moody (Σχήμα 4.8).

Πίνακας 5-3 Τιμές του συντελεστή τραχύτητας k για συνήθεις αγωγούς

<table>
<thead>
<tr>
<th>Υδατομετόχιο</th>
<th>k (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αμανταιοτετράγωνο</td>
<td>0.02 - 0.03</td>
</tr>
<tr>
<td>Σφαιρικός</td>
<td>0.0015</td>
</tr>
<tr>
<td>Τουλάχιστον κανάλιος</td>
<td>0.25</td>
</tr>
<tr>
<td>Τουλάχιστον χιλιομέτριος</td>
<td>1.0 - 1.5</td>
</tr>
<tr>
<td>Τουλάχιστον δεκαετία</td>
<td>0.1</td>
</tr>
<tr>
<td>Κάθε κεντρ. κανάλιος</td>
<td>0.06</td>
</tr>
<tr>
<td>Κάθε εισόδημα, καναλιών</td>
<td>0.11 - 0.30</td>
</tr>
<tr>
<td>Κάθε εισόδημα, ανοσόκολο</td>
<td>0.015</td>
</tr>
<tr>
<td>Κάθε φερμολογικός, κανάλιος</td>
<td>0.5 - 1.0</td>
</tr>
<tr>
<td>Γενικά</td>
<td>0.0019</td>
</tr>
<tr>
<td>Κάθε κατάρρευση</td>
<td>0.0015</td>
</tr>
<tr>
<td>Πολυτελές, ΡΥΣ κανάλιος</td>
<td>0.89</td>
</tr>
<tr>
<td>Πολυτελές, ΡΥΣ μεταφορικός</td>
<td>0.03</td>
</tr>
<tr>
<td>Αίμανθος συνόδης</td>
<td>0.18 - 0.29</td>
</tr>
<tr>
<td>Συρόφαρα εσό</td>
<td>0.3 - 0.8</td>
</tr>
<tr>
<td>Συρόφαρα παγία</td>
<td>3.0</td>
</tr>
<tr>
<td>Γειαφυεμένης σύνθεσης</td>
<td>0.15</td>
</tr>
<tr>
<td>Γειαφυεμένης σύνθεσης 3 γωνιών</td>
<td>0.27</td>
</tr>
<tr>
<td>Υδρατηριών τρόπος</td>
<td>0.045</td>
</tr>
</tbody>
</table>
Σχήμα 5.10. Διάγραμμα Moody

Η εξίσωση Hazen-Williams εκφράζεται ως:

\[V = 0.354CD^{0.63}S^{0.54} \quad , \quad Q = 0.279CD^{2.63}S^{0.54} \quad (5.25) \]

Όπου \(V \) η ταχύτητα σε m/s, \(D \) η εσωτερική διάμετρος του αγωγού (m), \(Q \) η παροχή σε m\(^3\)/s, \(S \) η κλίση της πιεζομετρικής γραμμής \(S=h_f/L \), \(h_f \) οι απώλειες μεταξύ δύο θέσεων του αγωγού που απέχουν απόσταση \(L \) και \(C \) ο συντελεστής τραχύτητας που δίνεται από τον πίνακα 4.3.

Πίνακας 5-4 Τιμές του συντελεστή τραχύτητας \(C \) για διάφορα υλικά

<table>
<thead>
<tr>
<th>Υλικό Αφηρημένο</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αμμοθινέα</td>
<td>140</td>
</tr>
<tr>
<td>Χυλικά</td>
<td>130</td>
</tr>
<tr>
<td>Κανάβα</td>
<td>107 – 113</td>
</tr>
<tr>
<td>Καλαμάκι</td>
<td>89 – 100</td>
</tr>
<tr>
<td>Καλάμιο</td>
<td>75 – 90</td>
</tr>
<tr>
<td>Πετρόφυλλο</td>
<td>64 – 83</td>
</tr>
<tr>
<td>Πετρέλαιο</td>
<td>55 – 77</td>
</tr>
<tr>
<td>Σιδεροπρόπυλο</td>
<td>140</td>
</tr>
<tr>
<td>Σε σιδερόπλατο</td>
<td>120</td>
</tr>
<tr>
<td>Σε χάλυκα</td>
<td>135</td>
</tr>
<tr>
<td>Σε μεταλλικό καλύματος</td>
<td>120</td>
</tr>
<tr>
<td>Γαλάζιο</td>
<td>110</td>
</tr>
<tr>
<td>Γκρι</td>
<td>140 – 150</td>
</tr>
<tr>
<td>Γκρι-μπλε</td>
<td>140 – 150</td>
</tr>
<tr>
<td>Κρομμάτια</td>
<td>110</td>
</tr>
<tr>
<td>Μπλέ-μπλε</td>
<td>130 – 140</td>
</tr>
<tr>
<td>Καφέ</td>
<td>130 – 140</td>
</tr>
<tr>
<td>Καφέ-μπλε</td>
<td>130</td>
</tr>
<tr>
<td>Ζύμος συνθήκες</td>
<td>120</td>
</tr>
</tbody>
</table>
5.9 ΣΥΣΤΗΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ

Το ΣΠΑ (Σύστημα Προσομοίωσης Λεκάνης Απορροής) αξιολογεί την δυναμική των υδατικών πόρων καθώς και τη ζήτηση νερού σε διάφορες αρδευτικές ζώνες. Το σύστημα περιλαμβάνει διασυνδεδεμένα μοντέλα για την εκτίμηση των υδατικών πόρων (επιφανειακών και υπόγειων) της λεκάνης απορροής, τα υδροτεχνικά έργα, τις υδατικές χρήσεις και την διαχείριση νερού για διάφορες στρατηγικές διαχείρισης νερού σε συνήθεις και συνήθεις λειτουργίες του. Το ΣΠΑ (Σύστημα προσομοίωσης λεκάνης απορροής) περιλαμβάνει a) το μοντέλο υδατικού ισοζύγιου του Πανεπιστημίου Θεσσαλίας UTHBAL (University of Thessaly water BALance model) για την εκτίμηση των επιφανειακού υδρολογικού ισοζύγιου και την εκτίμηση της κατείσδυσης προς τον υδροφόρεα b) το μοντέλο ταμιευτήρα/λίμνης του Πανεπιστημίου Θεσσαλίας UTHRL (University of Thessaly Reservoir/Lake model) που προσομοιώνει το τρόπο λειτουργίας του ταμιευτήρα γ) το μοντέλο προσομοίωσης λιμνης/υπόγειου υδροφόρεα LAK3 (Lake/Aquifer simulation model) και δ) το μοντέλο υπόγειων υδατικών πόρων MODFLOW για την προσομοίωση του υπόγειου υδροφόρεα. Παρακάτω παρουσιάζεται το θεωρητικό υπόβαθρο των μοντέλων του συστήματος.

Σχήμα 5.11 Γενική δομή του συστήματος προσομοίωσης λεκάνης απορροής
5.9.1 Περιγραφή υδρολογικού μοντέλου UTHBAL

Το UTHBAL, χρησιμοποιεί για είσοδο τη μέση μηνιαία επιφανειακή βροχόπτωση, τη μέση μηνιαία επιφανειακή θερμοκρασία, και τη μηνιαία επιφανειακή δυνητική εξατμιστική. Το μοντέλο εφαρμόζει διαχωρισμό των κατακρημνισμάτων μεταξύ βροχόπτωσης και χιονόπτωσης. Τα συνολικά μηνιαία κατακρημνισμάτα που θεωρούνται χιονοπτώσεις εκτιμώνται με τη χρήση μιας σχέσης βασιζόμενης στην τιμή της μέσης μηνιαίας θερμοκρασίας του αέρα [14]:

\[
\%S = 0 \quad \text{για} \quad T \geq 12.22^\circ C
\]

\[
\%S = \frac{100}{1.35^7 \cdot 1.61 + 1} \quad \text{για} \quad -10^\circ C \leq T \leq 12.22^\circ C
\]

\[
\%S = 100 \quad \text{για} \quad T \leq -10^\circ C
\]

όπου \(T \) η τιμή της μέσης μηνιαίας θερμοκρασίας.

Η εκτίμηση της μηνιαίας χιονόπτωσης γίνεται με τη χρήση δεδομένων μέσης μηνιαίας θερμοκρασίας και υπολογίζεται με την αρχική μετεωρολογική σταθμών. Στη συνέχεια υπολογίζεται η τιμή της δυνητικής μηνιαίας τήξης χιονιού σε mm/μήνα. Το ποσοστό τήξης του πολυπλοκοπέστα, όπως οι αρχεία της θερμοκρασίας περιβάλλοντος, της ήλιας ακτινοβολίας, της ατμοσφαιρικής πίεσης, της ταχύτητας του ανέμου και της φυτοκάλυψης. Οι μέτρηση των παραπάνω με διόδο με δύσκολο τρόπο αφού υπάρχει έλλειψη ανάλυσης δεδομένων. Αν η τιμή της ημερήσιας θερμοκρασίας γίνεται γνωστή, τότε ο υπολογισμός της τήξης χιονιού είναι εφικτός (degree-day method):

\[
SM = C_m \cdot T \cdot N
\]

όπου \(C_m \) είναι παράμετρος με μονάδες mm/OC/ημέρα, \(T \) η τιμή της ημερήσιας θερμοκρασίας, \(N \) η μηνιαίας θερμοκρασίας. Στην παρούσα διατριβή όπου οι τιμές της θερμοκρασίας ήταν μηνιαίες, πραγματοποιείται η εξής μετατροπή:

\[
SM = C_m \cdot T_{μηνιαία} (J)
\]

όπου τώρα η παράμετρος \(C_m \) έχει μονάδες mm/OC/μήνα και αναλόγως παρέχεται η τιμή της δυνητικής μηνιαίας τήξης χιονιού. Η παράμετρος \(C_m \) διαφοροποιείται με βάση την υδρολογική λεκάνη που μελετάται αφού τα χαρακτηριστικά με τα οποία είναι εξαρτημένα είναι αυτά της φυτοκάλυψης, της μορφολογίας και κλιματολογίας της έκτασης (πεδινή, ορεινή).

Το ισοδύναμο ύψος χιονιού του συσσωρευμένου χιονιού, SWEsp, εκτιμάται από:
$SWE_{np}(J) = SWE_{np}(J - 1) + S(J) - SM(J)$ \hspace{1cm} (5.29)

όπου, $S(J)$ είναι το χιόνι που πέφτει το μήνα J και είναι ίσο με:

$S(J) = \%S \cdot P(J)$ \hspace{1cm} (5.30)

όπου, $P(J)$ είναι η συνολική υετόπτωση το μήνα J.

Το UTHBAL κάνει διαχωρισμό της συνολικής απορροής μεταξύ τριών συνιστώσων, αυτή της επιφανειακής απορροής, της ενδιάμεσης ή επιδερμικής απορροής, και της βασικής απορροής ή απορροής προερχόμενης διά της εκροής του υπόγειου υδροφορέα. Προταρχικά στα πλαίσια του υδατικού ισοζυγίου ικανοποιείται η πραγματική εξατμισοδιαπνοή και στη συνέχεια δημιουργείται η απορροή. Η τιμή της μηνιαίας πραγματικής εξατμισοδιαπνοής Ea για το μήνα J είναι εξαρτημένη από την τιμή της διαθέσιμης εδαφικής υγρασίας για το μήνα J, και από την τιμή της μέσης επιφανειακής δυνητικής εξατμισοδιαπνοής Ep για το μήνα J. Η τιμή της μηνιαίας πραγματικής εξατμισοδιαπνοής υπολογίζεται σύμφωνα με τους Vandewiele και Win [15]:

$$E_a(J) = \min\left\{E_p(J) \cdot (1 - \alpha^{S\text{moist}(J)\cdot E_p(J)\cdot S\text{moist}(J)})\right\}$$ \hspace{1cm} (5.31)

όπου $S\text{moist}(J)$ η υγρασία του εδάφους για το μήνα J που διατίθεται για να ικανοποιηθεί η πραγματική εξατμισοδιαπνοή, α τιμή συντελεστή για την πραγματική εξατμισοδιαπνοή ($0 \leq \alpha \leq 1$), και $Ep(J)$ την τιμή της δυνητικής εξατμισοδιαπνοής για το μήνα J.

Η επιφανειακή απορροή, SR, του μήνα J υπολογίζεται ως:

$$SR(J) = (1 - K)^{\left(AS_{\text{moist}}(J) - S_{\text{max}}\right)} \text{ εάν } AS_{\text{moist}}(J) > S_{\text{max}}$$ \hspace{1cm} (5.32)

ή

$$SR(J) = 0 \text{ εάν } AS_{\text{moist}}(J) \leq S_{\text{max}}$$ \hspace{1cm} (5.33)

όπου, $AS\text{moist}(J) = S\text{moist}(J) - Ea(J)$, η υγρασία του εδάφους που απομένει για το μήνα J αφού ικανοποιηθεί η πραγματική εξατμισοδιαπνοή,
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 5ο: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής-

\[S_{\text{max}} = \frac{25400}{\text{CN} - 254} \]

η μέγιστη υγρασία εδάφους, CN το Curve Number της Soil Conservation Method (SCS, 1972) (0 ≤ CN ≤ 100), και K ο συντελεστής κατείσδυσης (0 ≤ K ≤ 1).

Η τιμή της διήθησης στον υπόγειο υδροφορέα, D, για το μήνα J είναι:

\[D(J) = K \times (A_{\text{moist}}(J) - S_{\text{max}}) \] εάν \[A_{\text{moist}}(J) > S_{\text{max}} \] (5.34)

ή

\[D(J) = 0 \] εάν \[A_{\text{moist}}(J) \leq S_{\text{max}} \] (5.35)

Η υγρασία του εδάφους που διατίθεται για το μήνα J, \(N_{\text{moist}} \), είναι:

\[N_{\text{moist}}(J) = A_{\text{moist}}(J) - S_{\text{max}} - (J) \] (5.36)

Η τιμή της ενδιάμεσης απορροής από την υγρασία του εδάφους, \(MR \), για το μήνα J είναι:

\[MR(J) = \beta \times [N_{\text{moist}}(J - 1) + N_{\text{moist}}(J)] \] (5.37)

\(\beta \) ο συντελεστής ενδιάμεσης απορροής (0 ≤ \(\beta \) ≤ 1).

Η υγρασία που απομένει στο τέλος του μήνα J, \(N_{\text{moist}} \), είναι:

\[NS_{\text{moist}}(J) = N_{\text{moist}}(J) - MR(J) \] (5.38)

Η υγρασία εδάφους που διατίθεται για να ικανοποιηθεί η πραγματική εξατμισοδιαπνοή κατά τον επόμενο μήνα J+1 είναι:

\[S_{\text{moist}}(J+1) = P(J+1) + NS_{\text{moist}}(J) \] (5.39)

Η τιμή της βασικής απορροής ή απορροής λόγω εκροής του υπόγειου υδροφορέα, \(Q_g \), κατά το μήνα J εκτιμάται από τη διήθηση, D, κατά τον προηγούμενο μήνα μήνα J-1, από την εξίσωση:

\[Q_g(J) = \gamma \times D(J - 1) \] (5.40)

όπου, \(\gamma \) η τιμή του συντελεστή για την βασική απορροή ή συντελεστή για την εκροή του υπόγειου υδροφορέα (0 ≤ \(\gamma \) ≤ 1). Η τιμή της επαναφόρτισης του υπόγειου υδροφορέα, \(R_g \), είναι ίση με:
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 5ο: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής

$R_g = (1 - \gamma) \cdot D(J - 1)$ \hfill (5.41)

Τέλος, η τιμή της συνολικής απορροής, Q_c, εκτιμάται προσθέτοντας τις επιμέρους συνιστώσες της απορροής, δηλαδή την επιφανειακή απορροή, την ενδιάμεση απορροή και την βασική απορροή:

$Q_c(J) = SR(J) + MR(J) + Q_g(J)$ \hfill (5.42)

Το μοντέλο UTHBAL αποτελείται από έξι παραμέτρους. Δύο από αυτές, το CN και ο συντελεστής κατείσδυσης, K_e, εκτιμώνται απευθείας με τη χρήση εδαφολογικών και γεωλογικών αναλυτικών ή ψηφιακών χαρτών, χαρτών χρήσεων γης, και άλλες πηγές που χρειάζονται με τη χρήση των υψομετρικών ζώνων του πεδίου ενδιαφέροντος.

5.9.2 Περιγραφή μοντέλου λειτουργίας και διαχείρισης ταμιευτήρα UTHRL

Το μοντέλο για τη λειτουργία και διαχείριση του ταμιευτήρα (reservoir operation model) είναι το UTH-Reservoir Lake Model (UTHRL) αποτελεί εξέλιξη του μοντέλου λειτουργίας και διαχείρισης ταμιευτήρα που προτάθηκε από τους Loukas et al. (2007). Πρόκειται για απλό τύπο μηνιαίο εννοιολογικό/εμπειρικό μοντέλο που κάνει χρήση της παρακάτω εξίσωσης:

$V(j) = V(j - 1) + Q(j) - E(j) - A(j) - Y(j)$ \hfill (5.43)

$V(j)$ και $V(j-1)$ αποθηκευμένος όγκος νερού του ταμιευτήρα για τους μήνες j και $j-1$.

$Q(j)$ Εισροή νερού στον ταμιευτήρα (inflow) στο μήνα j.

$E(j)$ καθαρή απόλευση νερού από τον ταμιευτήρα για το μήνα j.

$A(j)$ πραγματική απόληψη του όγκου νερού για το μήνα j, και

$Y(j)$ πραγματική υπερχείλιση του ταμιευτήρα για το μήνα αυτό.
Το περισσότερο νερό που δύναται να χρησιμοποιηθεί από αυτό που είναι αποθηκευμένο S στον ταμιευτήρα υπάρχουν οι εξής πιθανότητες:

1. Αν \(V(j) > S \):
 \[
 V(j) = S \tag{5.44}
 \]
 \[
 A(j) = B(j)
 \]
 \[
 Y(j) = V(j-1) + Q(j) - E(j) - A(j) - S
 \]
 όπου \(B(j) \) είναι η επιθυμητή ποσότητα λήψης νερού από τον ταμιευτήρα για το μήνα \(j \).

2. Αν \(0 < V(j) < S \)
 \[
 V(j) = V(j-1) + Q(j) - E(j) - A(j) \tag{5.45}
 \]
 \[
 A(j) = B(j)
 \]
 \[
 Y(j) = 0
 \]

3. Αν \(V(j) = 0 \)
 \[
 A(j) = V(j-1) + Q(j) - E(j) \tag{5.46}
 \]
 \[
 Y(j) = 0
 \]

Η αποθήκευση και η λήψη νερού για τον ταμιευτήρα υπολογίζονται για κάθε μηνιαίο βήμα σύμφωνα με την Εξίσωση (3.1). Η μηνιαία απώλεια νερού του ταμιευτήρα υπολογίζεται από την εξίσωση:

\[
E(j) = E_o(j) - P_o(j) + L(j) + Q(j) \tag{5.47}
\]

\(E(j) \) αντιστοιχούν στις καθαρές απώλειες νερού του μήνα \(j \).
\(E_o(j) \) είναι η εξάτμιση του νερού από την επιφάνεια του ταμιευτήρα κατά το μήνα \(j \).
P(j)

είναι η απ’ ευθείας ποσότητα νερού λόγω βροχής στον ταμιευτήρα κατά το μήνα j.

L(j)

είναι οι απώλειες λόγω βαθιάς διήθησης στον υπόγειο υδροφορέα και

Q(j)

είναι η ποσότητα νερού που θα παραγόταν λόγω της φυσικής επιφανειακής απορροής στην έκταση που καταλαμβάνει ο ταμιευτήρας, με την παραδοχή φυσικά ότι ο ταμιευτήρας δεν υφίσταται.

Ο υπολογισμός των απώλειών που οφείλονται σε βαθιά διήθηση γίνεται με τη χρήση εδαφολογικών και γεωλογικών μελετών πριν να δημιουργηθεί ο ταμιευτήρας.

Όταν δεν υπάρχει αρχείο τέτοιων μετρήσεων οι απώλειες αυτές λαμβάνονται ως μηδενικές. Οι παραπάνω ποσότητες απώλειων περιγράφονται σε hm³. Ο υπολογισμός της υδατικής στάθμης και της επιφάνειας του ταμιευτήρα γίνεται με τη χρήση τη στάθμη του νερού που είναι αποθηκευμένο στον ταμιευτήρα και τη χρήση των καμπύλων στην εσωτερική επιφάνεια του ταμιευτήρα. Με τη χρήση αυτών των καμπύλων, προτάθηκε η σχέση που συνδέει την επιφάνεια του νερού του ταμιευτήρα F, με τον αποθηκευμένο όγκο νερού, V:

\[F = a + bV^c \] \hspace{1cm} (5.48)

όπου τα a, b, c είναι τιμές συντελεστών που βελτιστοποιούνται.

5.10 ΠΡΟΣΟΜΟΙΩΣΗ ΥΔΡΑΥΛΙΚΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΤΑΜΙΕΥΤΗΡΑ-ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ

Το μοντέλο που εφαρμόστηκε στη παρούσα διατριβή είναι η συνιστώσα LAK3 (Merritt and Konikow, 2000) που περιλαμβάνεται στο πρόγραμμα GMS. Για να περιγραφεί η υδραυλική σύνδεση ταμιευτήρα-υδροφορέα απαιτείται μια μεθόδος υπολογισμού της ποσότητας νερού που διαρέεται προς τον υπόγειο υδροφορέα μεταξύ των ιζημάτων του πυθμένα του ταμιευτήρα. Η βασική παραδοχή είναι ο νόμος Darcy. Η προσομοίωση σε καθεστώς μεταβαλλόμενων συνθηκών, κάνει υπολογισμό της στάθμης του ταμιευτήρα όταν τελειώνει κάθε χρονικό βίμμα και με βάση το υδατικό ισοζύγιο. Η εκτίμηση του υδατικού ισοζύγιου του ταμιευτήρα γίνεται με τις παραμέτρους της βροχόπτωσης, της εξατμισοδιαπνοής, της επιφανειακής απορροής και των απολήψεων των ανθρώπινων ραδιειότητων (ώδρευση, άρδευση, κ.λ.π). Σε καθεστώς συνθηκών δυναμικής ισορροπίας, ο υπολογισμός της στάθμης του ταμιευτήρα πραγματοποιείται με τη χρήση της μεθόδου του Neútona. Ο νόμος του Darcy σε καθεστώς μεταβαλλόμενων συνθηκών, εκφράζεται με τη σχέση:

\[q = K \frac{h_l - h_g}{\Delta l} \] \hspace{1cm} (5.49)
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 5ο: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής

- η ταχύτητα του Darcy που εκφράζει τη διαρρήκτη του ταμιευτήρα προς τον υπόγειο υδροφορέα [L/T]
- Κ η υδραυλική αγωγιμότητα των υλικών (ιζημάτων) του πυθμένα του ταμιευτήρα προς τον υπόγειο υδροφορέα [L/T]
- hi η στάθμη της επιφάνειας του ταμιευτήρα [L]
- ha το φορτίο του υπόγειου υδροφορέα [L]
- Δl η κάθετη απόσταση των σημείων όπου είναι γνωστές οι παράμετροι hi και ha [L]

Σε προσομοιώσεις μοντέλων, για πρακτικούς κυρίως λόγους, είναι προτιμότερο η ταχύτητα q να μετατρέπεται σε ογκομετρική ποσότητα ροής Q. Έστω Α η επιφάνεια του προς προσομοίωση ταμιευτήρα, τότε η ποσότητα Q θα είναι QxA. Αρα η εξίσωση 5.24 γίνεται:

\[Q = \frac{K \times A}{\Delta t} (h_1 - h_2) \] \hspace{1cm} (5.50)

όπου:
- \(K \times A / \Delta t = c \) η αγωγιμότητα [L²/T]
- \(K / \Delta l \) η διαρρήκτη πυθμένα [L⁻¹]

Ο ορισμός μιας ενιαίας υδραυλικής αγωγιμότητας που περιγράφει τα χαρακτηριστικά και του πυθμένα και του υδροφορέα θεωρείται σωστός κατά την προσομοίωση της ροής του νερού από τον πυθμένα της λίμνης στον υπόγειο υδροφορέα.

\[\frac{1}{c} = \frac{1}{c_b} = \frac{1}{c_a} \] \hspace{1cm} (5.51)

ή ισοδύναμα:
\[c = \frac{A}{K_b \Delta t / c_a} \] \hspace{1cm} (5.52)

όπου:
- \(c \) η αγωγιμότητα του συστήματος ταμιευτήρα- υδροφορέα [L²/T]
- \(c_b \) αγωγιμότητα του πυθμένα του ταμιευτήρα [L²/T] b c
- \(c_a \) η αγωγιμότητα του υδροφορέα [L²/T] a c
- \(K_b \) η υδραυλική αγωγιμότητα των υλικών (ιζημάτων) του πυθμένα του ταμιευτήρα προς τον υπόγειο υδροφορέα [L/T] b
• Κα η υδραυλική αγωγόμοτητα των υλικών του υδροφορέα [L/T]
• b το πάχος του πυθμένα του ταμιευτήρα [L]
• A το εμβαδόν της προς προσομοίωσης περιοχής [L²]

Σχήμα 5.12. Παρουσίαση των ανωτέρω παραμέτρων (Σιδηρόπουλος 2014)

Η σύνδεση ταμιευτήρα και υπόγειου υδροφορέα πραγματοποιείται με τον υπολογισμό στο τέλος κάθε χρονικού βήματος ενός υδατικού ισοζυγίου για τη λίμνη το οποίο είναι ανεξάρτητο από το υδατικό ισοζύγιο του υπόγειου υδροφορέα:

\[h_1^n = h_1^{n-1} + \Delta t \frac{p - e + rnf - w - sp}{AS} \] (5.53)

όπου:
• \(h_1^n \) στάθμη του ταμιευτήρα για το συγκεκριμένο χρονικό βήμα [L].
• \(H_1^{n-1} \) η στάθμη του ταμιευτήρα για το προηγούμενο χρονικό βήμα [L].
• Δ\(t \) η διάρκεια του χρονικού βήματος [T].
• p η βροχόπτωση κατά τη διάρκεια του χρονικού βήματος [L³/T].
• e η εξατμισθενή από την επιφάνεια του ταμιευτήρα κατά τη διάρκεια του χρονικού βήματος [L³/T].
• rnf η επιφανειακή απορροή κατά τη διάρκεια του χρονικού βήματος
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 5ο: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής-

• w οι απολήψεις από τον ταμιευτήρα κατά τη διάρκεια του χρονικού βήματος [L²/T].

• sp η διαρροή από τον ταμιευτήρα στον υπόγειο υδροφορέα κατά τη διάρκεια του χρονικού βήματος [L²/T]. Ο όρος sp είναι ισός με το άθροισμα όλων των ποσοτήτων διαρροών που αντιστοιχούν σε κάθε κελι του καννάβου και υπολογίζεται από την εξίσωση:

\[
sp = \sum_{m} c_{m}(h_1 - h_{am})
\]

όπου:

- \(h_{am} \) η στάθμη (φορτίο) του υδροφορέα στο κελι \(m \)
- \(c_{m} \) η κατακόρυφη υδραυλική αγωγιμότητα στο κελι \(m \), η οποία ισούται:

\[
c_{m} = \frac{K_b A_s}{b}
\]

όπου:

- \(A_s \) η έκταση της ελεύθερης επιφάνειας του ταμιευτήρα [L²]
- \(K_b \) η υδραυλική αγωγιμότητα των υλικών (ιζημάτων) του πυθμένα του ταμιευτήρα προς τον υπόγειο υδροφόρεα [L/T]
- \(b \) το πάχος του πυθμένα του ταμιευτήρα [L]

Η ποσότητα \(K_b/b \) είναι ο συντελεστής διαρροής [T⁻¹]. Λόγω της ενιαίας αντιμετώπισης των δύο κατακόρυφων υδραυλικών αγωγιμότητων, ο λόγος της ενιαίας \(K_z \) ως προς την απόσταση \(\Delta l \) είναι η παράμετρος για την οποία ρυθμίζεται το μοντέλο.

5.11 ΠΡΟΣΟΜΟΙΩΣΗ ΥΠΟΓΕΙΩΝ ΥΛΑΤΙΚΩΝ ΠΟΡΩΝ

Ο κόδικας Modflow (Modular three dimensional finite difference ground water flow model) της Αμερικανικής Υπηρεσίας Γεωλογικών Ερευνών (U.S.G.S.) χρησιμοποιείται για την προσομοίωση της κίνησης του υπόγειου νερού. Το πρόγραμμα βασίζεται σε μια κύρια διαφορική εξίσωση, προερχόμενη από την εξίσωση διατήρησης της μάζας και το νόμο του Darcy. Είναι ουσιαστικά ένα μοντέλο πεπερασμένον διαφορών με επίλυση των εξισώσεων στο κέντρο των φατνίων του καννάβου. Εφαρμόζεται τόσο σε συνθήκες μόνιμης, όσο και σε μη μόνιμης ροής υπολογίζοντας τις μεταβολές του υπόγειου σημειώνοντας όλη τη διάρκεια του χρόνου
τόσο για ομογενή – ετερογενή όσο και για ισότροπο ή ανισότροπο υδροφορέα. Επιπρόσθετα έχει την ικανότητα να προσομοιώνει ένα μεγάλο αριθμό πηγαδιών, την κατείδισθη, την επίδραση στραγγιστηριών και ποταμών και λιμνών. Στην παρούσα διατριβή, το μοντέλο βασίστηκε στο πρόγραμμα GMS (Groundwater Modeling System) (Σιδηρόπουλος, 2014).

5.11.1 Μαθηματικό υπόβαθρο του MODFLOW

Έστω ένας στοιχειώδης όγκος δV με περιεχόμενη μάζα δM. Η μεταβολή της μάζας αυτής ανά μονάδα όγκου και χρόνο είναι:

\[\frac{\partial (\delta M)}{\partial \tau} / \delta V \] (5.56)

Αν \(q \) θεωρηθεί η ταχύτητα Darcy και \(\rho \) η πυκνότητα του ρευστού, τότε η ροή της μάζας ανά μονάδα χρόνου θα είναι \(\rho \cdot q \). Όταν το ρευστό εισέρχεται ή εξέρχεται από το χώρο κατά W(x,y,z,t) ανά μονάδα χρόνου και όγκου, η προστιθέμενη μάζα ανά μονάδα χρόνου και όγκου είναι \(\rho \cdot W \). Επειδή η μάζα διατηρείται, θα ισχύει:

\[- \iint p \cdot \tilde{q} \cdot dS = \iint \rho \cdot W \cdot dV + \iiint \left(\frac{\partial (\delta M)}{\partial \tau} / \delta V \right) \cdot dV = 0 \] (5.57)

όπου o όρος \(q \) είναι το επιφανειακό ολοκλήρωμα, που λαμβάνεται σε όλη την κλειστή επιφάνεια του \(\delta V \) και οι άλλοι δύο όροι είναι ολοκληρώματα όγκου που εκτείνονται στον όγκο του στοιχείου. Σύμφωνα με το θεώρημα της απόκλισης, το επιφανειακό ολοκλήρωμα γράφεται ως ολοκλήρωμα όγκου:

\[- \iint \rho \cdot \tilde{q} \cdot dS = - \iiint \nabla (\rho \cdot \tilde{q}) \cdot dV \] (5.58)

Κατά τον Hantush (1964):

\[\frac{d(\delta M)}{\rho \cdot \delta V} = \frac{d(\delta V_w)}{\delta V} = S_s \cdot df \] (5.59)

όπου \(S_s \) είναι η ειδική αποθηκευτικότητα με διαστάσεις L^-1. Έτσι η εξίσωση 5.32 γράφεται:
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης
- Κεφάλαιο 5ο: Θεωρητική προσέγγιση συστημάτων προσομοίωσης δικτύου και λεκάνης απορροής

\[
- \iiint \left\{ \nabla (\rho \cdot \tilde{q}) - \rho \cdot W + \rho \cdot S_S \cdot \frac{\partial \phi}{\partial t} \right\} \cdot dV = 0 \tag{5.60}
\]

ή
\[
- \left[\frac{\partial (\rho \cdot q_x)}{\partial x} + \frac{\partial (\rho \cdot q_y)}{\partial y} + \frac{\partial (\rho \cdot q_z)}{\partial z} \right] + \rho \cdot W = \rho \cdot S_S \cdot \frac{\partial \phi}{\partial t} \tag{5.61}
\]

Σύμφωνα με τον Hantush (1964), η μεταβολή της πυκνότητας του νερού είναι πολύ μικρή και θεωρείται σταθερή στα περισσότερα προβλήματα υπόγειας υδραυλικής, και έτσι μπορεί να παραληφθεί από την εξίσωση 5.61. Οι συνιστώσες της ταχύτητας Darcy στις τρεις διαστάσεις, δίνονται από τη σχέση:

\[
\begin{align*}
q_x &= -K_{xx} \frac{\partial \phi}{\partial x} = -K_{xx} \frac{\partial h}{\partial x} \\
q_y &= -K_{yy} \frac{\partial \phi}{\partial y} = -K_{yy} \frac{\partial h}{\partial y} \\
q_z &= -K_{zz} \frac{\partial \phi}{\partial z} = -K_{zz} \frac{\partial h}{\partial z}
\end{align*}
\tag{5.62}
\]

Η εξίσωση 5.61 λόγω της 5.62 γίνεται

\[
\frac{\partial}{\partial x} (K_{xx} \frac{\partial h}{\partial x}) + \frac{\partial}{\partial y} (K_{yy} \frac{\partial h}{\partial y}) + \frac{\partial}{\partial z} (K_{zz} \frac{\partial h}{\partial z}) - W = S_v \frac{\partial h}{\partial i} \tag{5.63}
\]

όπου:

- Κxx, Κyy, Κzz, οι τιμές της υδραυλικής αγωγιμότητας κατά μήκος των x, y και z αξόνων συντεταγμένων, οι οποίες θεωρούνται να είναι παράλληλες προς τους κυρίους αξόνες της υδραυλικής αγωγιμότητας [L²T⁻¹]
- Η, το υδραυλικό φορτίο [L]
- W, η παροχή ανά μονάδα χρόνου που προέρχεται από εισρέξεις ή εκρέξεις του νερού [T⁻¹]
- S_v, η ειδική απόδοση του πορώδους μέσου [L⁻¹] και
- Τ, ο χρόνος [T]

Η εξίσωση 5.63 είναι η τρισδιάστατη διαφορική εξίσωση με μερικές παραγώγους, που περιγράφει την ροή του υπόγειου νερού σε κοκκώδεις σχηματισμούς και χρησιμοποιείται από μοντέλο MODFLOW. Η παραπάνω εξίσωση περιγράφει την κίνηση του υπόγειου νερού για μόνη μη μόνη ροή, σε ετερογενείς και ανισότροποι υδροφορέα, με τον περιορισμό ότι οι κύριοι αξόνες της υδραυλικής αγωγιμότητας είναι ίδιοι με τους αξόνες του καρτεσιανού συστήματος συντεταγμένων.
Τα S_s, K_{xx}, K_{yy}, K_{zz} στην εξίσωση 5.38 μπορούν να είναι συναρτήσεις του χώρου ($S_s = S_s(x,y,z)$, $K_{xx} = K_{xx}(x,y,z)$, $K_{yy} = K_{yy}(x,y,z)$, $K_{zz} = K_{zz}(x,y,z)$) και το W συναρτήση του χώρου όπως και του χρόνου ($W = W(x,y,z,t)$). Επομένως η εν λόγω εξίσωση αν συνδυάζεται με τις ισχύουσες συνθήκες στα ορία του υδροφόρου και με τον καθορισμό της αρχικής συνθήκης πιεζομετρίας, μπορεί να αποτελέσει ένα μαθηματικό μοντέλο υπόγειου υδροφόρου. Η αναλυτική λύση της εξίσωσης 5.38 είναι εφικτή σε περιπτώσεις πολύ απλών συστημάτων υδροφορέων, τις περισσότερες φορές όμως είναι σχεδόν αδύνατο να επιτευχθεί. Επομένως αναπτύχθηκαν μοντέλα που στηρίζονται σε αριθμητικές μέθοδους επιλύσεων των διαφορικών εξισώσεων και δίνουν προσεγγιστικές λύσεις (Ψιλοβίκος 1999, Psilovikos 2006, Ψιλοβίκος 2020). Οι πιο γνωστές μέθοδοι είναι οι πεπερασμένες διαφορές, οι πεπερασμένες στοιχεία, οι πολλαπλές κελιά, οι οριακές στοιχεία κ.α. Το MODFLOW το οποίο χρησιμοποιείται για την επίλυση της 5.63, βασίζεται στη μέθοδο των πεπερασμένων διαφορών σε τρεις διαστάσεις όπου το συνεχές σύστημα που αντικαθίσταται από έναν πεπερασμένο αριθμό διακριτών σημείων σε σχέση με τον χρόνο και τον χώρο. Οι μερικές παράγοντες αντικαθίστανται από όρους που λογίζονται ως διαφορές στην πιεζομετρία για τα συγκεκριμένα αυτά σημεία και η διαδικασία αυτή τελικά οδηγεί σε συστήματα γραμμικών αλγεβρικών εξισώσεων με πεπερασμένες διαφορές. Η αριθμητική λύση των συστημάτων αυτών δίνει τιμές για το φορτίο σε συγκεκριμένα σημεία και για συγκεκριμένα χρονικά βήματα. Οι τιμές αυτές αποτελούν μία προσέγγιση της αναλυτικής λύσης της εξίσωσης η οποία, σε αντίθεση με την αριθμητική λύση, δίνει συνεχείς τιμές της κατανομής φορτίου, για οποιοδήποτε σημείο και για οποιοδήποτε χρόνο (Σιδηρόπουλος, 2014).
6 ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ-ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ

Η υδρολογική λεκάνη της Κάρλας οριοθετείται στο νοτιοανατολικότερο τμήμα του υδατικού διαμερίσματος της Θεσσαλίας, στο ενδιάμεσο των πόλεων Βόλου και της Λάρισας (Σχήμα 5.1), αποτελεί ουσιαστικά τη νοτιοανατολική απόληξη της πεδιάδας της Λάρισας και είναι το βαθύτερο τμήμα. Είναι κλειστή λεκάνη διότι περικλείεται από βονά με το πιο χαμηλό ωφομετρικό σημείο (+44 m) να βρίσκεται ανάμεσα στο Στεφανοβίκειο και τα Κανάλια. Η συνολική έκταση φτάνει τα 1660 Km², η που εντοπίζεται σε γ.π από 39°20′56″ νότια μέχρι 39°45′15″ Β και 22°26′10″Α μέχρι 23°0′27″ Δ.

Σχήμα 6.1 Χάρτης της υδρολογικής λεκάνης απορροφής της λίμνης Κάρλας

Τα φυσικά ορια είναι αυτά του Πηνείου και της Όσσας στο βορρά, η μισή της πεδιάδα της Αγίας και το Μαυροβούνι από την ανατολή, το βόρειο Πήλιο και το Μεγαβόυνι από το νότο, το Χαλκοδόνιο από νοτιοδυτικά και οι οικισμοί Ν. Περιβολίου, Νέας Λεύκης στη Λάρισα και η υπόλοιπη πεδινή έκταση από τα ορια
της Νέα Λεύκης ως αυτά της Λάρισας στα ανατολικά. Πρόκειται για μια καθαρά αγροτική λεκάνη, δεδομένου ότι το μεγαλύτερο τμήμα (60%) καλλιεργείται και το αρδευτικό νέρο αποτελεί τη κύρια μορφή ζήτησης. Όπως αναφέρθηκε είναι μια κλειστού τύπου λεκάνη απορροής δεδομένου ότι δεν επικοινωνεί υδραυλικά με τη θάλασσα και περιστοιχίζεται από τα βουνά που περιγράφηκαν. Ο υπόγειος υδροφορέας είναι ο κύριος τροφοδότης υδατικών αναγκών, καταλαμβάνει περίπου 500 km² και εντοπίζεται στο πεδίνι τμήμα της λεκάνης ενώ οι υπόλοιπες υδατικές απαιτήσεις καλύπτονται από επιφανειακά αρδευτικά δίκτυα (Τ.Ο.Ε.Β Πηγείου, Κάρλας). Το 1960 ολοκληρώθηκε η σήραγγα της Κάρλας, το πρώτο έργο που θα οδηγούσε τελικά στην δημιουργία του ταμιευτήρα της Κάρλας. Η σήραγγα δίνει διέξοδο προς τη θάλασσα με την εκτόνωση της λεκάνης στον Παγασητικό κόλπο. Παράλληλα διανοούνται οι τάφροι 1T, 2T και ορισμένες μικρότερες που βοηθούν στην αποστράγγιση της πεδιάδας προς τη σήραγγα. Πριν από λίγα χρόνια κατασκευάστηκε ο Ταμιευτήρας της Κάρλας, με έκταση 38 km² και το δίκτυο άρδευσης του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Κάρλας που τροφοδοτείται από τη νέα λίμνη (ταμιευτήρας).

6.1 ΚΛΙΜΑΤΙΚΕΣ-ΥΔΡΟΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ

Η περιοχή χαρακτηρίζεται από μικροκλιμα μεσογειακού τύπου, ηπειρωτικού χαρακτήρα, όπου το καλοκαίρι είναι ξηροθερμικό ενώ η χειμερινή περίοδος ψυχρή και υγρή. Δεδομένα βροχομετρικών σταθμών περιγράφουν περισσότερες βροχοπτώσεις κατά την περίοδο υπαρξης της λίμνης Κάρλας. Η τιμή της μέσης ετήσιας βροχόπτωσης στη λεκάνη απορροής είναι στα 560 mm. Η μέση θερμοκρασία είναι θετική, αλλά η ελάχιστη παρατηρημένη θερμοκρασία κατά τη χειμερινή περίοδο είναι –21,6 °C ενώ η μέγιστη παρατηρημένη κατά την καλοκαιρινή περίοδο είναι 45,2 °C. Ακόμη πολύ συχνά είναι οι παγετοί ιδιαίτερα την περίοδο Δεκεμβρίου-Μάρτιου. Η μέση σχετική υγρασία στη λεκάνη απορροής της Κάρλας είναι 66%.

Κατά την καλοκαιρινή περίοδο εμφανίζονται γεγονότα ξηρασίας με πολύ υψηλές θερμοκρασίες, ενώ την περίοδο Οκτώβριος-Απρίλιος αυξάνεται η βροχόπτωση και η υγρασία. Όπως αναφέρθηκε η μέση ετήσια θερμοκρασία είναι θετική και κυμαίνεται μεταξύ 14 και 16 °C. Οι ψυχρότεροι μήνες είναι οι χειμερινοί (Ιανουάριος, Φεβρουάριος, Δεκέμβριος) και οι θερμότεροι οι καλοκαιρινοί (Ιούλιος και Αύγουστος). Αναφορικά με την βροχόπτωση η ανατολική ορεινή ζώνη παρουσιάζει σχετικά υψηλό μέσο ετήσιο ύψος βροχής (> 700 mm) σε αντίθεση με την πεδινή ζώνη (σχεδόν 400 mm). Από Οκτώβριο εώς τον Ιανουάριο εμφανίζονται οι περισσότερες βροχοπτώσεις, ενώ οι ξηρασίες είναι συχνότερες στο δεύτερο μισό της καλοκαιρινής περιόδου. Όσον αφορά τους ανέμους αυτοί προέρχονται από τα ανατολικά και βορειοανατολικά. Όπως αναφέρθηκε η υδρολογική λεκάνη της Κάρλας είναι μια αγροτική λεκάνη με εκτεταμένες καλλιέργειες και συνεπώς χλωρίδα γεγονός
που συντελεί στην αυξημένη εξάτμιση ιδιαίτερα την περίοδο Μάιος-Σεπτέμβριος. Συνεπώς η δυνητική εξατμισσιονική κυμαίνεται στα 770 mm. Είναι σκόπιμο να ειπωθεί ότι η λόγω μεγάλης έντασης στην ακτινολογία, έντονης χλωρίδας και γεωργίας υπάρχουν συνθήκες αυξημένης εξάτμισης, ειδικά την περίοδο Μάιος-Σεπτέμβριος. Η τιμή της μέσης δυνητικής εξατμισσιονικής μπορεί να φτάσει τα 770 mm.

6.2 ΓΕΩΛΟΓΙΑ-ΓΕΩΜΟΡΦΟΛΟΓΙΑ

Η Θεσσαλική πεδιάδα χωρίζεται σε δύο μεγάλες περιοχές, την ανατολική και τη δυτική και είναι μια τεκτονική βάση που έλαβε χώρα κατά τη διάρκεια του πλειστόκαινου και εντοπίζεται ανάμεσα στα δύο μεγάλα γεωτεκτονικά εμπόδια, την Πίνδο στη Δύση και το Νότο και τους όγκους του Ολύμπου, της Όσσας, του Μαυροβουνίου και του Πιλίου προς το Βορρά και την Ανατολή. Η λεκάνη απορροής Κάρλας γεωλογικά και παλαιογεωγραφικά αποτελεί ξεχωριστό τμήμα της πεδιάδας της Λάρισας δεδομένου ότι δημιουργήθηκε αργότερα κατά τις μετατεκτονικές βυθίσεις του πλειστόκαινου.

Η ευρύτερη περιοχή της Κάρλας ανήκει στην Πελαιγονική Γεωτεκτονική Ζώνη και αποτελείται από τα κρυσταλλικά πέτρωμα της Ζώνης αυτής:

α) Τεταρτογενείς αποθέσεις: Αποτελούνται από αποθέσεις ποταμοχειμαρρώδους ποτάμιας ή και λιμνικάς προέλευσης. Μέσα στη λίμνη απατώνται αποθέσεις υλοαμμόγενων αργίλων και μαργήνων ενώ πιο σπάνια εντοπίζονται αδρομερείς αποθέσεις ποταμοχειμαρρώδους προέλευσης. Έτσι στο ανατολικότερο τμήμα της λίμνης όπου εντοπίζονται τα κράσπεδα της λίμνης συναντώνται πλευρικά κορημάτα και κόνω κορημάτων και στις χαραδρώσεις υπάρχουν συνήθως χερσαίες αναβαθμίδες αδρομερών κυρίως στοιχείων.

β) Κρυσταλλικά πέτρωμα: Το υπόβαθρο της λεκάνης αποσκοπεί από κρυσταλλικά πέτρωμα τα οποία εμφανίζονται με τη μορφή λόφων στο εσωτερικό της παλιάς λίμνης.
Γεωμορφολογικά και υδρολογικά η λεκάνη απορροής της Κάρλας μπορεί να διαιρεθεί σε έξι υπολεκάνες, πεδινές και ημιορεινές-ορεινές:

α) Ημιορεινές – Ορεινές

- Υπολεκάνη της Νίκαιας με έκταση 501.2 Km².
- Υπολεκάνη Βελεστίνου με έκταση 200 Km².
- Υπολεκάνη Καναλίων με έκταση 153.3 Km².
- Υπολεκάνη Καλαμακίου με έκταση 380.1 Km² η οποία υποδιαιρείται σε μικρότερες υπολεκάνες:
 1. Υπολεκάνη Γυρτώνης με έκταση 50 Km².
 2. Υπολεκάνη Κοροχωρίου με έκταση 80 Km².
 3. Υπολεκάνη Νότιας Όσσας (βορείως του χωριού Άμυρα) 50 Km².
 4. Υπολεκάνη του Άμυρου ποταμού με έκταση 130 Km².
5. Υπολεκάνη Μαυροβουνίου με έκταση 70.1 Km².

β) Πεδινές
- Υπολεκάνη Πλατυκάμπου – Αρμενίου με έκταση 173.8 Km².
- Υπολεκάνη ρέματος Ασμακίου – τάφρου 1Τ με έκταση 253.1 Km²

6.3 ΥΔΡΟΓΕΩΛΟΓΙΑ

Στην λεκάνη απορροής της Κάρλας υπάρχουν τρεις βασικοί υδροφόροι σχηματισμοί: οι αργιλοαμμώδεις λιμναίες αποθέσεις, οι αδρομερείς προσχώσεις και κορήματα και τα μάρμαρα. Μέσα στους ανωτέρω υδροφόρους σχηματισμούς, διαμορφώνονται τρεις κύριοι υδροφόροι ορίζοντες που περιγραφούνται:

α) Ο πρώτος από αργιλοαμμώδεις λιμναίες αποθέσεις

β) Ο δεύτερος από αδρομερείς κροκαλολατυπογείς αποθέσεις και

γ) ο καρστικός από μάρμαρα.

Αυτοί οι υδροφόροι σχηματισμοί είναι επάλληλοι ορίζοντες (βρίσκονται ο ένας πάνω στον άλλον). Η διαστρωμάτωση αυτή δεν εντοπίζεται σε όλη τη λεκάνη απορροής αλλά μπορεί σε ορισμένα σημεία να απουσιάζει ένας από τους υδροφόρους ορίζοντες. Η έκταση τους, το πάχος και το βάθος των υδροφόρων στρωμάτων είναι ανοιχτά μικρά κατά μήκος της πεδινής ζώνης. Κατά συνέπεια επιβάλλεται ο διαχωρισμός της περιοχής σε ζώνες:

α) Οι Αργιλοαμμώδεις Λιμναίες Αποθέσεις που προήλθαν προστιθέμεναι σε θετικά χαρακτηριστικά. Είναι προσχώσεις με αργίλους και ενδιάμεσα στρώμα με άμμους και λεπτές κροκάλες. Καταλαμβάνουν ένα βάθος μεταξύ 80 και 100 μ και βρίσκονται στο πυθμένα. Το στρώμα αυτό δεν χαρακτηρίζεται από μεγάλη περατότητα γεγονός που αποδείχθηκε από διάφορες ερευνητικές γεωτρήσεις. Πρόκειται για ένα επιφανειακό υδροφόρο ορίζοντα ο οποίος τροφοδοτείται από τη βροχόπτωση και τη διήθηση που προέρχεται από τα αρδεύτικα κανάλια.

β) Οι Αδρομερείς προσχώσεις και τα κορήματα εντοπίζονται μετα τον προηγούμενο σχηματισμό και το μέγεθος τους μεταβλέπεται ανάλογα με το πόδο βαθύ είναι το παλαιοανάγλυφο της λεκάνης. Σχηματισθηκαν πιο παλιά στις πλαγιές και το χαμηλότερο επίπεδο που εντοπίζεται στις κολάδες. Είναι ουσιαστικά υλικά μεγάλων κροκάλων ή λατύπων, χαλικιών, άμμους και αργίλων, που προέκυπταν με διαβρώσεις, αποστρώσεις που υπέστην τις σχηματισθηκή των γειτονικών βουνών. Μέσω των χειμάρρων εγκειώνη μεταφορά και απόδειξη τους στο πυθμένα της λίμνης κατά την περίοδο καταβοτήσης της περιοχής. Το στρώμα αεπείδη περιέχει αδρομερή υλικά και λογο του γεγονότος ότι υπάρχει άργιλος χαρακτηρίζεται από υψηλή περατότητα.
6.4 ΥΦΙΣΤΑΜΕΝΑ ΕΡΓΑ ΑΞΙΟΠΟΙΗΣΗΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

Στην λεκάνη απορροφής Κάρλας υφίστανται τεχνικές δομές αποθήκευσης νερού και τα συνδετικά έργα αποθήκευσης των μικρών ταμιευτήρων και λιμνοδεξαμενών. Οι υπολειτουργοί δίκτυων των ταμιευτήρων αποθηκεύουν ταμιευτήρες. Η λιμνή Κάρλα υφίσταται μικρές τεχνικές δομές αποθήκευσης νερού και τα συνδετικά έργα αποθήκευσης των μικρών ταμιευτήρων και λιμνοδεξαμενών. Οι υπολειτουργοί δίκτυων των ταμιευτήρων αποθηκεύουν ταμιευτήρες. Η λιμνή Κάρλα, στο ανατολικό όριο της στο Μαυροβούνι υδροπερατό.

Για Τα Μάρμαρα τα οποία είναι υδροπερατά πετρώματα. Αποτελούνται από ασβεστόλιθους στο νερό, και ως εκ τούτου το νερό της βροχής που διαπερνά τα ρήγματα τα διευρύνει με αποτέλεσμα το πέτρομα να καθίσταται υδροπερατό. Η διεργασία αυτή καλείται καρστική διεργασία ή καρστ. Η λίμνη Κάρλα, στο ανατολικό όριο της στο Μαυροβούνι υδροπερατό.

6.4 ΥΦΙΣΤΑΜΕΝΑ ΕΡΓΑ ΑΞΙΟΠΟΙΗΣΗΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

Στην λεκάνη απορροφής Κάρλας υφίστανται τεχνικές δομές αποθήκευσης νερού και τα συνδετικά έργα αποθήκευσης των μικρών ταμιευτήρων και λιμνοδεξαμενών. Οι υπολειτουργοί δίκτυων των ταμιευτήρων αποθηκεύουν ταμιευτήρες. Η λιμνή Κάρλα, στο ανατολικό όριο της στο Μαυροβούνι υδροπερατό.

6.4 ΥΦΙΣΤΑΜΕΝΑ ΕΡΓΑ ΑΞΙΟΠΟΙΗΣΗΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

Στην λεκάνη απορροφής Κάρλας υφίστανται τεχνικές δομές αποθήκευσης νερού και τα συνδετικά έργα αποθήκευσης των μικρών ταμιευτήρων και λιμνοδεξαμενών. Οι υπολειτουργοί δίκτυων των ταμιευτήρων αποθηκεύουν ταμιευτήρες. Η λιμνή Κάρλα, στο ανατολικό όριο της στο Μαυροβούνι υδροπερατό.
Σχήμα 6.3: Τεχνικά έργα του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνειού (Υδρομέντωρ, 2015)

Ο Τοπικός Οργανισμός Εγγείων Βελτιώσεων Κάρλας εξυπηρετούσε αρχικά μικρότερη έκταση της τάξης των 10000 στρέμματων, η οποία εντοπίζεται ανάμεσα στους οικισμούς του Στεφανοβίκειου και του Ριζόμυλου και στις τάφρους 3Τ και 2Τ. Ο Τοπικός Οργανισμός Εγγείων Βελτιώσεων Κάρλας λειτουργεί διάφορες γεωτρήσεις οι οποίες τροφοδοτούν τις γύρω από αυτές περιοχές. Το πρόσφατα κατασκευασμένο υπό πίεση αρδευτικό δίκτυο έχει σχεδιαστεί να εξυπηρετεί 84.400 στρέμματα στην περιοχή του ταμιευτήρα αλλά παρόλο που βρίσκεται σε λειτουργία είναι άγνωστο κατά πόσο καλύπτεται εξ’ όλοκλήρου η έκταση η όχι.
Πίνακας 6-1: Χωρητικότητες των ταμιευτήρων του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνείου (Υδρομέντωρ, 2015)

<table>
<thead>
<tr>
<th>Ονομασία</th>
<th>Αντλιοστάσιο πλήρωσης</th>
<th>Χωρητικότητα (hm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΚΑΛΑΜΑΚΙ 1</td>
<td>Αντλιοστάσιο α</td>
<td>5,5</td>
</tr>
<tr>
<td>ΝΙΑΜΑΤΑ 1</td>
<td>Αντλιοστάσιο α</td>
<td>1,8</td>
</tr>
<tr>
<td>ΠΛΑΤΥΚΑΜΠΟΣ 1</td>
<td>Αντλιοστάσιο α</td>
<td>0,5</td>
</tr>
<tr>
<td>ΕΛΕΥΘΕΡΙΟ 1</td>
<td>Αντλιοστάσιο ε</td>
<td>0,9</td>
</tr>
<tr>
<td>ΔΗΜΗΤΡΑ</td>
<td>Αντλιοστάσιο ε</td>
<td>1</td>
</tr>
<tr>
<td>ΚΑΣΤΡΙ</td>
<td>Αντλιοστάσιο α + ε</td>
<td>1,1</td>
</tr>
<tr>
<td>ΓΛΑΥΚΗ</td>
<td>Αντλιοστάσιο α</td>
<td>2,1</td>
</tr>
<tr>
<td>ΚΑΛΑΜΑΚΙ 2</td>
<td>Αντλιοστάσιο α</td>
<td>2,5</td>
</tr>
<tr>
<td>ΝΙΑΜΑΤΑ 2</td>
<td>Αντλιοστάσιο α</td>
<td>1,1</td>
</tr>
<tr>
<td>ΠΛΑΤΥΚΑΜΠΟΣ 2</td>
<td>Αντλιοστάσιο α</td>
<td>1,45</td>
</tr>
<tr>
<td>ΕΛΕΥΘΕΡΙΟ 2</td>
<td>Αντλιοστάσιο ε</td>
<td>0,8</td>
</tr>
<tr>
<td>ΟΜΟΡΦΟΧΩΡΙ</td>
<td>Αντλιοστάσιο ε</td>
<td>1,25</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Η διαμόρφωση του ταμιευτήρα έγινε στο πιο χαμηλό μέρος της πρώην λίμνης και εκτείνεται σε 38.000 στρέμματα. Ο ταμιευτήρας και τα συνολικά έργα έχουν σχεδιαστεί και κατασκευαστεί για να:

- Καλυφτούν αρδευτικές ανάγκες της περιοχής, τόσο με τις πλημμυρικές παραχώνες της ξεκίνησης που απορροφούν όσο με τροφοδότηση από τον Πηνείο κατά τη χειμερινή περίοδο και να δοθεί ένα τέλος στην άναρχη κατάληψη από τον υπόγειο υδροφόρο και αφό η άρδευση θα γίνεται μέσω του ταμιευτήρα και του νέου δικτύου.

- Προστατεύει την περιοχή από πλημμύρες. Ο ταμιευτήρας θα συλλέγει τα νερά των υψηλότερων αλλά και των χαμηλότερων περιοχών με αποτέλεσμα να μειωθούν αισθητά οι κατακλύσεις των γύρω περιοχών.

- συμβάλλει στην οικολογική ισορροπία αφού αποκαταστάθηκε μέρος του υδατικού οικοσύστημα της παλιάς λίμνης.

Τα βασικά έργα του ταμιευτήρα της Κάρλας είναι τα εξής:

- Αναχώματα λίμνης
- Σύστημα εξωτερικών τάφρων στράγγισης
- Κόμβος Πέτρας
- Κόμβος Καναλίων
- Νησίδες

Ταμιευτήρας
Ο ταμιευτήρας θα παροχετεύται:
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 6ο: Περιοχή μελέτης - Βάση μετεωρολογικών δεδομένων

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

• Μέσω των ομβρίων υδάτων της υδρολογικής λεκάνης. Οι συλλεκτήρες Σ3, Σ4, Σ6 και Σ7 δέχονται με ροή δια βαρότητας τα νερά των ρεινών περιοχών ενώ τα ύδατα των πεδινών περιοχών αντλούνται με τα αντλιοστάσια DP1 και DP2 στους κόμβους Πέτρας και Καναλίων αντίστοιχα με τη συνολική ετήσια απορροή να κυμαίνεται μεταξύ 20 και 35 hm³.

• Υπό φυσιολογικές συνθήκες (συνθήκες βροχής με Τ < 30 ετών) όλα τα όμβρια της λεκάνης της Κάρλας θα διοχετεύονται στον ταμιευτήρα και η σήραγγα Κάρλας προς τη θάλασσα τη σήραγγα και η πλημμυροφανειακή ετήσια και δευτερεύουσα απορρρήτης μεταξύ 20 και 35 εκατ. m³.

• Τα νερά του Πηνείου κατά τη χειμερινή περίοδο με τη διώρυγα 2Δ, τις τάφρους 6Τ, 7Τ και το συλλεκτήρα που βλέπεται να φτάνουν 80-100 hm³.

Αντλιοστάσιο DP1
Το DP1 μέσω αντλιών στράγγισης, ανυψώνει στον ταμιευτήρα τα στραγγιστικά νερά των χαμηλών πεδινών καθώς και τμήμα της παρχής πλημμύρας της τάφρου 1Τ. Η δυναμικότητα του αντλιοστάσιού 24 m³/sec είναι σχεδιασμένη για περίοδο επαναφοράς Τ > 30 έτη.

Αντλιοστάσιο DP2
Το αντλιοστάσιο DP2 εξυψώνει στη λίμνη τα στραγγιστικά ύδατα της χαμηλής έκτασης μεταξύ Καναλίων - Κερασιάς. Η δυναμικότητα του αντλιοστάσιού 3,3 m³/sec είναι σχεδιασμένη για περίοδο επαναφοράς Τ > 30 έτη.

Από τον ταμιευτήρα της Κάρλας εκτιμάται ότι θα εξυπηρετούνται 92.500 στρ. με τα προσφάτως κατασκευασμένα έργα για τη μεταφορά και διάνομη νερού θα αρδευτούν 84.400στρ. και η ποσότητα νερού ενώ το νερό που θα διατίθεται για άρδευση είναι πάνω απο 46 εκ. m³.

Εργα δυτικά του ταμιευτήρα

Εργα Τροφοδοσίας και Ρύθμισης 1Τ
Αγωγός by-pass Φ1000/1400
Είναι βαρυτικός αγωγός που έχει σχεδιαστεί να λειτουργεί με ελάχιστη στάθμη νερού ύδατος καθώς και διάνομη νερού θα αρδευτούν 84.400στρ. και η ποσότητα νερού ενώ το νερό που θα διατίθεται για άρδευση είναι πάνω από 46 εκ. m³.

Αγωγός by-pass Φ700

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

124
Είναι αγωγός βαρύτητας σχεδιασμένος να λειτουργεί με ελάχιστη στάθμη νερού άρδευσης στη λίμνη Κάρλας +46,40, παροχετευτικότητας 240 l/sec (18ωρη παροχή αιχμής).

Τάφρος 1T

Η τάφρος 1T θα έχει πολλαπλή λειτουργία:

Τη χειμερινή περίοδο θα λειτουργεί ως αποχετευτικός αγωγός πλημμυρικών νερών της πεδιάδας Λάρισας ανατολικά του π. Πηνείου. Κατά τη θερινή, αρδευτική περίοδο, προβλέπεται η ημερήσια αποθήκευση νερού στην 1T.

Ρουφράκτης Θ1T

Ο ρουφράκτης 1T θα είναι ανοικτός για την αποχετευτική λειτουργία της τάφρου 1T και κλειστός για την αρδευτική λειτουργία.

Εργα Μεταφοράς Υδραυλικής Περιοχής

Αντλιόστασιο A0

Το αντλιόστασιο A0 υδροληπτεί απ’ ευθεία από τον ταμιευτήρα της Κάρλας.

Αντλιόστασιο AΔ1

Το αντλιόστασιο AΔ1 υδροληπτεί από την 2T.

Το αντλιόστασιό AΔ1 καταθλίβει σε πρώτο στάδιο στο θάλαμο αναρρόφησης του αντλιόστασιου AΔ6, που αποτελεί δεξαμενή Rύθμισης. Η δεξαμενή Δ02-Δ5-Δ6 αποτελεί δεξαμενή Ημερήσιας Εξίσωσης των Ζωνών των αρδευτικών ζωνών και συγχρόνως Δεξαμενή Ρύθμισης του Αντλιοστασίου AΔ1.

Τα αντλιόστασια μεταφοράς νερού από τον ταμιευτήρα, A0 και A1 θα λειτουργούν επί 24όρου βάσεως κατά την περίοδο αιχμής ζητήσεων (22όρες/24ωρο).

Τάφρος 2T

Κατά τη χειμερινή περίοδο θα λειτουργεί ως αποχετευτική τάφρος αλλά και ως διόρυγα τροφοδοσίας του ταμιευτήρα Κάρλας με νερά του Πηνείου και παροχετευτικότητα περίπου 14 ~ 15 m³/sec. Το καλοκαίρι θα λειτουργεί ως δεξαμενή Ρύθμισης της λειτουργίας του A0 και σαν δεξαμενή Ημερήσιας αποθήκευσης νερού.

Ρουφράκτης Θ2T

Ο ρουφράκτης 2T κατά τη χειμερινή περίοδο θα λειτουργεί ως αποχετευτική τάφρος αλλά και ως διόρυγα τροφοδοσίας του ταμιευτήρα Κάρλας με νερά του Πηνείου και παροχετευτικότητα περίπου 14 ~ 15 m³/sec. Το καλοκαίρι θα λειτουργεί ως δεξαμενή Ρύθμισης της λειτουργίας του A0 και σαν δεξαμενή Ημερήσιας αποθήκευσης νερού.

Εργα διανομής νερού Υδραυλικής Περιοχής

Συλήνονται δίκτυα άρδευσης
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 6ο: Περιοχή μελέτης - Βάση μετεωρολογικών δεδομένων

Τα δίκτυα έχουν σχεδιαστεί υπό την προϋπόθεση αναδεικνύει: Αγροτική μονάδα 160 στρ. με module 14l/sec ή αγροτική μονάδα 80στρ. με module 7l/sec, Πίεση κατάντη της υδροληψίας αρδεύσεως 5,0 ατμ. και ανάντη 7,0 ατμ.

Εργα ανατολικά του ταμιευτήρα

Εργα Μεταφοράς ανατολικής περιοχής
Αγοράς μελετημένης (by pass) DN900 αντλιστασίων A2
Είναι αγοράς βαρύτητας με ελάχιστη στάθμη ανάληψης και με βασικά στοιχεία: Αγροτική μονάδα 160 στρ. με module 14l/sec ή αγροτική μονάδα 80στρ. με module 7l/sec, Πίεση κατάντη της υδροληψίας αρδεύσεως 5,0 ατμ. και ανάντη 7,0 ατμ.

Εργα διανομής ανατολικής περιοχής
Σωληνωτό δίκτυο διανομής
Η συνολική μηνιαία ζήτηση του νερού στην υδρολογική λεκάνη της Κάρλας υπολογίσθηκε ως άθροισμα της ζήτησης νερού για τις επιμέρους χρήσεις κάθε υπολεκάνης/ζώνης αρδεύσεως/περιοχής. Θα πρέπει να τονισθεί ότι η ζήτηση για όλες τις χρήσεις νερού παραμένει σταθερή και αυτή που υπολογίσθηκε για το έτος της απογραφής που χρησιμοποιήθηκε στον Πίνακα 2-15, προκύπτει ότι η ζήτηση για όλες τις χρήσεις νερού παραμένει σταθερή και αυτή που υπολογίσθηκε για το έτος της απογραφής που χρησιμοποιήθηκε στον Πίνακα 2-15, προκύπτει ότι η ζήτηση για όλες τις χρήσεις νερού εκτός της γεωργικής (αστική, κτηνοτροφική, βιομηχανική) αποτελούν το 5,7% της συνολικής ζήτησης νερού (Σχήμα 2.15).
6.5 ΚΑΛΛΙΕΡΓΕΙΕΣ ΚΑΙ ΧΡΗΣΕΙΣ ΝΕΡΟΥ ΣΤΗ ΥΔΡΟΛΟΓΙΚΗ ΛΕΚΑΝΗ ΚΑΡΛΑΣ

Η λεκάνη στην πλευρά της είναι αγροτική και ασφαλώς με εντατικοποιημένη καλλιέργεια υδρόφιλων καλλιεργειών. Σύμφωνα με τον Ο.ΠΕ.ΚΕ.ΠΕ (Πίνακας 6.2) το βαμβάκι αποτελεί το 30% του συνόλου των καλλιεργειών ενώ το σκληρό σιτάρι βρίσκεται σε ποσοστό 32% και τα λιπά σιτάρια εκαλλιεργούνται σε ποσοστό 32%. Κατά τη διάρκεια της διδακτορικής διατριβής η ανάλυση αυτή μεταβλήθηκε ως προς την καλλιέργεια βαμβακιού η παράγωση ως προς την καλλιέργεια σκληρού σιταριού και δενδρών.

Πίνακας 6-2: Κατανομή καλλιεργειών στη λεκάνη της Κάρλας (Σιδηρόπολη, 2014)

<table>
<thead>
<tr>
<th>ΚΩΔ. ΚΑΛΛΙΕΡΓ. ΟΣΔΕ</th>
<th>ΚΑΛΛΙΕΡΓΕΙΑ</th>
<th>ΕΚΤΑΣΗ (ΣΤΡ.)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ΛΟΙΠΑ ΣΙΤΗΡΑ</td>
<td>32768.44</td>
<td>6.033%</td>
</tr>
<tr>
<td>4</td>
<td>ΕΛΑΙΟΥΧΟΙ ΣΠΟΡΟΙ</td>
<td>770.40</td>
<td>0.142%</td>
</tr>
<tr>
<td>5</td>
<td>ΠΡΟΤΕΙΝΟΥΧΟΙ ΣΠΟΡΟΙ</td>
<td>6.30</td>
<td>0.001%</td>
</tr>
<tr>
<td>6</td>
<td>ΕΚΤΑΣΕΙΣ ΔΙΚΑΙΟΜΑΤΩΝ ΑΓΡΑΝΑΠΑΥΣΗΣ</td>
<td>1252.63</td>
<td>0.231%</td>
</tr>
<tr>
<td>8</td>
<td>ΖΩΤΟΡΦΕΣ</td>
<td>19962.31</td>
<td>3.675%</td>
</tr>
<tr>
<td>10</td>
<td>ΖΑΧΑΡΟΤΕΥΓΑ</td>
<td>4364.53</td>
<td>0.804%</td>
</tr>
<tr>
<td>11</td>
<td>ΩΣΠΡΙΟΔΕΙΜΗ</td>
<td>528.96</td>
<td>0.097%</td>
</tr>
<tr>
<td>12</td>
<td>ΒΑΜΒΑΚΙ</td>
<td>162279.61</td>
<td>30.876%</td>
</tr>
<tr>
<td>15</td>
<td>ΕΛΑΙΟΣΝΕΣ ΠΙΣΤΟΠΟΙΗΜΕΝΕΣ ΕΛΑΙΟΚΑΛΛΙΕΡΓΕΙΑΣ</td>
<td>22518.26</td>
<td>4.146%</td>
</tr>
<tr>
<td>16</td>
<td>ΕΝΕΡΓΕΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ</td>
<td>874.81</td>
<td>0.161%</td>
</tr>
<tr>
<td>17</td>
<td>ΚΑΠΝΟΣ</td>
<td>64.00</td>
<td>0.012%</td>
</tr>
<tr>
<td>18</td>
<td>ΝΤΟΜΑΤΕΣ ΠΡΟΣ ΜΕΤΑΠΟΙΗΣΗ</td>
<td>9627.73</td>
<td>1.773%</td>
</tr>
<tr>
<td>20</td>
<td>ΡΟΔΑΚΙΝΑ ΚΑΙ ΑΧΛΑΔΙΑ ΠΡΟΣ ΜΕΤΑΠΟΙΗΣΗ</td>
<td>370.80</td>
<td>0.068%</td>
</tr>
<tr>
<td>21</td>
<td>ΚΑΡΠΟΙ ΜΕ ΚΕΛΥΦΟΣ</td>
<td>18946.91</td>
<td>3.488%</td>
</tr>
<tr>
<td>23</td>
<td>ΚΥΡΙΑ ΨΥΧΑΝΘΗ ΠΟΛΛΑΠΛΗΣ ΣΥΜΜΟΡΦΩΣΗΣ ΕΚΤΟΣ ΩΣΠΡΙΟΔΕΙΩΝ</td>
<td>206.90</td>
<td>0.038%</td>
</tr>
<tr>
<td>26</td>
<td>ΕΚΤΑΣΕΙΣ ΣΕ ΚΑΛΗ ΓΕΩΡΓΙΚΗ ΚΑΤΑΣΤΑΣΗ ΠΟΥ ΠΡΟΣΜΕΤΡΟΥΝΤΑΙ ΣΤΑ ΕΚΤΑΤΙΚΑ ΔΙΚΑΙΩΜΑΤΑ</td>
<td>20907.75</td>
<td>3.849%</td>
</tr>
<tr>
<td>31</td>
<td>ΠΙΑΤΑΤΑ ΣΤΑ ΜΙΚΡΑ ΝΗΣΙΑ ΤΟΥ ΑΙΓΑΙΟΥ</td>
<td>22.00</td>
<td>0.004%</td>
</tr>
<tr>
<td>32</td>
<td>ΑΜΠΕΛΩΝΕΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΟΙΝΟΥ ΠΟΙΟΤΗΤΑΣ (ΟΙΝΟΠΡΩ) ΣΤΑ ΜΙΚΡΑ ΝΗΣΙΑ ΤΟΥ ΑΙΓΑΙΟΥ ΠΕΛΑΓΟΥΣ</td>
<td>4.30</td>
<td>0.001%</td>
</tr>
<tr>
<td>35</td>
<td>ΜΕΛΙ-ΕΚΤΑΣΕΙΣ ΜΕ ΜΕΛΙΣΣΙΑ</td>
<td>23.72</td>
<td>0.004%</td>
</tr>
<tr>
<td>39</td>
<td>ΚΗΦΕΥΤΙΚΑ ΥΠΟ ΚΑΛΥΨΗ</td>
<td>54.40</td>
<td>0.100%</td>
</tr>
<tr>
<td>40</td>
<td>ΑΝΘΟΔΟΜΙΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ</td>
<td>32.35</td>
<td>0.006%</td>
</tr>
<tr>
<td>41</td>
<td>ΑΡΩΜΑΤΙΚΑ ΦΥΤΑ</td>
<td>137.30</td>
<td>0.025%</td>
</tr>
<tr>
<td>42</td>
<td>ΓΗ ΠΟΥ ΔΕΝ ΕΝΤΑΣΣΕΤΑΙ ΣΕ ΚΑΛΛΙΕΡΓΗΤΙΚΗ ΔΡΑΣΤΗΡΟΤΗΤΑ</td>
<td>800.60</td>
<td>0.147%</td>
</tr>
<tr>
<td>43</td>
<td>ΑΠΟΣΗΡΑΜΕΝΕΣ ΧΟΡΤΟΝΟΜΕΣ</td>
<td>4.00</td>
<td>0.001%</td>
</tr>
<tr>
<td>1.1</td>
<td>ΣΙΤΑΡΙ ΣΚΛΗΡΟ</td>
<td>17509.20</td>
<td>3.224%</td>
</tr>
<tr>
<td>1.2</td>
<td>ΣΙΤΑΡΙ ΣΚΛΗΡΟ ΠΟΙΟΤΙΚΟ</td>
<td>183162.68</td>
<td>33.721%</td>
</tr>
</tbody>
</table>
Η εντατικοποιημένη γεωργία έχει σαφή αντίκτυπο και στο ποσοστό νερού που οδηγείται για γεωργική χρήση. Όπως γίνεται αντιληπτό η αγροτική χρήση νερού είναι η κυρίαρχη υδατική χρήση στην υδρολογική λεκάνη της Κάρλας με ποσοστό που φτάνει το 94,3% ενώ ακολουθεί η βιομηχανική χρήση με 4,31% και η αστική χρήση με 0,98%.

Σχήμα 6.4 Υδατικές χρήσεις στην υδρολογική λεκάνη της Κάρλας (Σιδηρόπουλος, 2014)
6.6 ΒΑΣΗ ΜΕΤΕΩΡΟΛΟΓΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

Η βάση μετεωρολογικών δεδομένων αποτελείται από μηνιαία δεδομένα βροχόπτωσης από που προέκυπαν από βροχομετρικούς σταθμούς κατανεμημένους στην περιοχή μελέτης και καλύπτουν την περίοδο Οκτώβριος 1980 – Σεπτέμβριος 2000. Πιο αναλυτικά το αρχείο αποτελούνταν από 64 σταθμούς υετόπτωσης και 19 μετεωρολογικούς σταθμούς.

Σχήμα 6.5 Θέσεις βροχομετρικών σταθμών στην παρούσα μελέτη
Σχήμα 6.6 Θέσεις μετεωρολογικών σταθμών στην παρούσα μελέτη

Η μέθοδος που ακολουθήθηκε για την εκτίμηση επιφανειακών τιμών κλιματικών μεταβλητών στην λεκάνη απορρόφησης της λίμνης Κάρλας περιγράφεται σε αυτό το σημείο. Αρχικά παρουσιάζεται η μεθοδολογία εκτίμησης των επιφανειακών μετεωρολογικών μεταβλητών βροχόπτωσης και θερμοκρασίας. Χρησιμοποιήθηκε ένα γεωγραφικό σύστημα πληροφοριών (ΓΣΠ) και δύο μέθοδοι εκτίμησης επιφανειακών μετεωρολογικών παραμέτρων. Τα όρια της λεκάνης απορρόφησης Κάρλας και οι μετεωρολογικοί και βροχομετρικοί σταθμοί με τις συντεταγμένες και τα υψόμετρα τους εισήχθησαν στο ΓΣΠ.

6.6.1 Εκτίμηση μέσων επιφανειακών τιμών κλιματικών μεταβλητών
Η τιμή του μέσου υψομέτρου της υδρολογικής λεκάνης είναι απαραίτητη για την εκτίμηση των μέσων επιφανειακών τιμών κλιματικών μεταβλητών. Η εκτίμηση του βασίστηκε στη χρήση του ψηφιακού μοντέλου εδάφους (Digital Elevation Model, DEM) της λεκάνης απορροής Κάρλας (Σχήμα 6.5). Η διαδικασία προϋποθέτει τη δημιουργία του δικτύου ακανόνιστων τριγωνομετρικών σημείων (Triangular Irregular Network, TIN).

Σχήμα 6.7 α) Ψηφιακό μοντέλο εδάφους λεκάνης απορροής Κάρλας β) εφαρμογή μεθόδου Thiessen (Υδρομέντωρ, 2015)

Σε πρώτη φάση πραγματοποιήθηκαν οι διαδικασίες του ελέγχου, της ομογενοποίησης και της συμπλήρωσης των υδρομετεωρολογικών δεδομένων των σταθμών της υδρολογικής λεκάνης και στη συνέχεια υπολογίστηκαν οι μέση επιφανειακές μετεωρολογικές μεταβλητές με τη τροποποιημένη μέθοδο που βασίζεται στα πολύγωνα Thiessen (βροχόπτωση) και με τη θερμοβαθμίδα (θερμοκρασία) (Υδρομέντωρ, 2015).

Στη περίπτωση της βροχόπτωσης κατά την εφαρμογή αρχικά της απλής μεθόδου πολυγώνων Thiessen βασικό στοιχείο αποτελεί ο παράγοντας βαρύτητας που των εκτάσεων που επηρεάζει κάθε σταθμός και προέρχεται από την παρεμβολή της μεσοκαθέτου πάνω στην απόσταση δύο σταθμών. Η τιμή της μέσης βροχόπτωσης της λεκάνης Po υπολογίζεται από το σύνολο των επιμέρους μέσων βροχοπτώσεων Po των μεμονωμένων σταθμών πολλαπλασιασμένο με εκτάσεις που επηρεάζονται προς τη συνολική έκταση της υδρολογικής λεκάνης. Δηλαδή:

Institutional Repository - Library & Information Centre - University of Thessaly
01/11/2023 00:45:21 EET - 35.160.27.221
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 6ο: Περιοχή μελέτης - Βάση μετεωρολογικών δεδομένων

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

\[
P_0 = \sum \frac{(A_i \times P_i)}{A} = \sum \left(\frac{A_i \times P_i}{A} \right)
\]

(6.1)

Όπου \(P_0 \) η τιμή της μέσης μηνιαίας βροχόπτωσης της υδρολογικής λεκάνης.

Ωτόσο \(P_i \) η τιμή της μηνιαίας βροχόπτωσης σε κάθε σταθμό που επηρεάζει την μελετώμενη υδρολογική λεκάνη και όπου \(A_i \) η έκταση που επηρεάζει ο κάθε σταθμός.

Ωστόσο όπως αναφέρθηκε χρησιμοποιήθηκε η τροποποίηση της μεθόδου με την μέθοδο της βροχοβαθμίδας ώστε να πραγματοποιηθεί η διαδικασία αναγωγής στο μέσο υψόμετρο της υδρολογικής λεκάνης (Σχήμα 6.8). Σύμφωνα με τη μέθοδο της βροχοβαθμίδας η βροχόπτωση αυξάνεται με όσο αυξάνεται το υψόμετρο και κάνει χρήση της βροχοβαθμίδας με την οποία περιγράφεται πόσο αυξάνεται η βροχόπτωση για κάθε 100 m που ανεβαίνουμε ψηλότερα. Η μέθοδος συσχετίζει γραμμικά το υψόμετρο ενός σταθμού με τη μέση ετήσια βροχόπτωση και με τον περιορισμό ότι η τιμή του συντελεστή συσχέτισης \(r \) είναι μεγαλύτερη από 0,70 η σχέση μπορεί να εφαρμοστεί σε αποικιακές περιπτώσεις.

Στη συνέχεια πραγματοποιήθηκε υπολογισμός του μηνιαίου επιφανειακού ύψους βροχής με τη διαδικασία αναγωγής στην τιμή του μέσου υψομέτρου της υδρολογικής λεκάνης. Η μηνιαία βροχόπτωση του μέσου υψομέτρου της λεκάνης (σε κάθε υδρολογικό έτος) δίνεται από τη σχέση:

\[
P_t^k = \frac{P_k \times P_t^i(i)}{P_t^k(k)}
\]

(6.2)

\(P_t(k) \) ετήσια βροχόπτωση το έτος \(k \) σε mm που προκύπτει από τη μέθοδο των πολυγώνων thiessen,

\(P_k \) η ετήσια βροχόπτωση το έτος \(k \) σε mm,

\(P_t^i(i) \) η μηνιαία βροχόπτωση το μήνα \(i \) και το έτος \(k \) σε mm,

\(P_t^k(k) \) η μηνιαία βροχόπτωση το μήνα \(i \) και το έτος \(k \) από τα thiessen.

Ενώ το \(P_k \) υπολογίζεται ως:

\[
P_k = \frac{P_k \times P_t^k(i)}{P_t^k(k)}
\]

(6.3)
Σχήμα 6.8 Γράφημα της βροχοβαθμίδας για την υδρολογική λεκάνη Κάρλας (Υδρομέντωρ, 2015)

Στη συνέχεια γίνεται παρουσίαση των συγκριτικών αποτελεσμάτων της απλής Thiessen και της τριπλοποιημένης.

Σχήμα 6.9 Μέση μηνιαία βροχόπτωση μεθόδου Thiessen και τριπλοποιημένης μεθόδου για 1980-2001 στην υδρολογική λεκάνη Κάρλας (Υδρομέντωρ, 2015)

Όσον αφορά τον υπολογισμό μέσης επιφανειακής θερμοκρασίας χρησιμοποιήθηκε η θερμοβαθμίδα (Σχήμα 6.10) η οποία στηρίζεται στην θερμοκρασιακή μείωση όσο αυξάνεται το υψόμετρο και η τιμή της ετήσιας
θερμοβαθμίδας περιγράφει την ετήσια θερμοκρασιακή απομείωση για κάθε 100m που ανεξάρτητα το υψόμετρο. Για τον υπολογισμό μέσης επιφανειακής θερμοκρασίας ένας βασικός σταθμός (σταθμός βάσης). Η εκτίμηση της μέσης θερμοκρασίας που για το μέσο υψόμετρο της λεκάνης γίνεται ως:

\[T_k = T_{k(i)} - \frac{(Y_{μενέλαιος} - Y_{λεκάνης})b}{100} \] \hspace{1cm} (6.4)

και

\[T_i^k = \frac{T_i T_{(0)}^k}{T_{(0)}^k} \] \hspace{1cm} (6.5)

\(T_{(0)}^k\), η τιμή μέσης ετήσιας θερμοκρασίας του σταθμού βάσης κατά το έτος κ, σε \(C^\circ\)

\(T_k\), η τιμή μέσης ετήσιας θερμοκρασίας της εξεταζόμενης λεκάνης κατά το έτος κ, σε \(C^\circ\)

\(T_i^k\), η τιμή μέσης μηνιαίας θερμοκρασίας για το μήνα \(i\) και για το έτος \(k\), της μελετώμενης λεκάνης σε \(C^\circ\)

\(T_{(0)}^k\), η τιμή μέσης μηνιαίας θερμοκρασίας, για το μήνα \(i\) και για το έτος \(k\), του βασικού σταθμού, σε \(C^\circ\)

\(b\), η κλίση γραμμικής σχέσης υψομέτρου-θερμοκρασίας

![Σχήμα 6.10 Θερμοβαθμίδα για την λεκάνη απορροής Κάρλας (Υδρομέντωρ, 2015)](image)
Στο σχήμα 6.9 παρουσιάζεται μια σύγκριση για τη μέση επιφανειακή βροχόπτωση με τη θερμοβαθμίδα σε σχέση με την τιμή της μέσης μηνιαίας βροχόπτωσης του βασικού σταθμού. Είναι σαφές ότι η μέθοδος της θερμοβαθμίδας δίνει μικρότερες μηνιαίες τιμές θερμικρασίας από αυτές που προέρχονται από το σταθμό βάσης.

Σχήμα 6.11 Σύγκριση για μέση μηνιαία θερμοκρασία του βασικού σταθμού με αυτή που προέρχεται από την θερμοβαθμίδα για την υδρολογική λεκάνη Κάρλας (Υδρομέντωρ, 2015)
7 ΕΦΑΡΜΟΓΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΔΙΚΤΥΟΥ (ΣΠΔ)

Όπως αναφέρθηκε στο εισαγωγικό κεφάλαιο ένας από τους στόχους της διατριβής ήταν η ανάπτυξη ενός συστήματος προσομοίωσης δικτύων, εννοώντας ένας σύστημα πληροφόρησης σε επίπεδο δικτύου. Ουσιαστικά αυτό σήμανε την ψηφιοποίηση, προσομοίωση και αυτοματοποίηση των δικτύων που εντοπίζονται στην ευρύτερη περιοχή της λεκάνης απορροφής της Κάρλας. Για την επίτευξη αυτών των λειτουργιών προτεραιότητα θα έπρεπε να δημιουργηθεί ένα Γεωγραφικό Σύστημα Πληροφορίων που θα βασίζεται στη βάση δεδομένων που περιγράφηκε στο προηγούμενο κεφάλαιο. Η βάση δεδομένων τηλεπισκόπησης δρα συνεργατικά με το ΓΣΠ ώστε να παρέχει τις απαραίτητες πληροφορίες στα μοντέλα της υδραυλικής ενότητας που περιγράφουν τη λειτουργία των δικτύων και παρέχουν τις γεωμετρικές και υδραυλικές πληροφορίες για τα δίκτυα. Συγκεντρωτικά άλλη αυτή η πληροφορία εισέρχεται σε ένα διαχειριστικό μοντέλο που δύναται να παράγει σενάρια διαχείρισης και να δίνει σφαιρική αντίληψη για τη λήψη αποφάσεων. Τα βασικά στάδια της διαδικασίας αλλά και η γενική δομή του συστήματος (Σχήμα 7.1) παρουσιάζονται παρακάτω:

- Ανάπτυξη γεωγραφικού συστήματος πληροφοριών το οποίο περιλαμβάνει χάρτες της Γ.Υ.Σ (Γεωγραφική Υπηρεσία Στρατού), ορθοφωτογράφες του Υπουργείου Γεωργίας, δορυφορικές εικόνες του κτηματολογίου, χάρτη του Τ.Ο.Ε.Β Πηνείου, χάρτες της μελέτης επανασύστασης της Ιόνιας Κάρλας, το ψηφιακό μοντέλο εδάφους, και ψηφιοποιημένα αρδευτικά δίκτυα.
- Ανάπτυξη της βάσης δεδομένων τηλεπισκόπησης η οποία περιλαμβάνει δορυφορικές εικόνες υψηλής ευκρίνειας του LANDSAT TM
- Αντλήσεις πραγματικών τιμών εξατμισικής με τη χρήση του αλγόριθμου SEBAL (Surface Energy Balance Algorithm for Land)
- Εκτέλεση των υδατικών αναγκών και των απαιτήσεων άρδευσης σε ιστορικές συνθήκες με το μοντέλο CROPWAT
- Προσομοίωση της λειτουργίας του επιφανειακού δικτύου του Τοπικού Οργανισμού Εγείρειν Βελτιώσεων Πηνείου με το μοντέλο Technologismiki
- Προσομοίωση της λειτουργίας του δικτύου του Τοπικού Οργανισμού Εγείρειν Βελτιώσεων Κάρλας με το μοντέλο WaterCad.
- Σύζευξη των υδρολογικών μοντέλων με το διαχειριστικό μοντέλο WEAP
Σχήμα 7.1 Γενική δομή του συστήματος προσομοίωσης δικτύων (Loukas et al, 2015, Tzabiras et al, 2017)

7.1 ΓΕΩΓΡΑΦΙΚΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ

Κατά τη διαδικασία συλλογής χαρτογραφικών δεδομένων χρησιμοποιήθηκαν ποικίλες πηγές πληροφοριών. Οι πληροφορίες που συγκεντρώθηκαν παρουσιάζονται παρακάτω:

- Υπόβαθρα σε κλίμα 1:50.000 και 1:5.000 τα οποία προέρχονται από την Γεωγραφική Υπηρεσία Στρατού (ΓΥΣ). Τα υπόβαθρα αυτά παραδίδονται σε ηλεκτρονική μορφή εικόνας (ψηφιακή σάρωση) συνδεδεμένης με αρχείο *.DWG, στο οποίο έχει γίνει γεωαναφορά, ώστε κάθε σημείο να λαμβάνει συντεταγμένες των συστήματος αναφοράς ΕГΣА87.
• Ισοπυκνοίς των 100 μ βασισμένες σε κλίμακα 1:200.000, οι οποίες προέρχονται από χάρτες της ΓΥΣ.
• Ορια λεκάνων απορροής από τη μελέτη ΔΥΠ Κεντρικής Ελλάδας (για τις ευρύτερες υδρολογικές λεκάνες στη Θεσσαλία) και από τις μελέτες των έργων Κάρλας (για τις λεκάνες απορροής των λόφων των έργων).
• Υδατορρεύματα με κατάταξη κατά Strahler, από τη μελέτη ΔΥΠ Κεντρικής Ελλάδας, με βάση το ΨΜΕ 25X25m.
• Φύλλα γεωλογικών χαρτών του ΙΓΜΕ (Κλίμακα 1:50000)
• Χάρτης του επιφανειακού δικτύου άρδευσης του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνειού κλίμακας 1:100.000
• Χάρτης του νέου υπό πίεση δικτύου άρδευσης του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Κάρλας
• Τοπογραφικό σχέδιο του ταμιευτήρα της Κάρλας

7.1.1 Ψηφιοποίηση αρδευτικών δικτύων

Η ψηφιοποίηση του δικτύου άρδευσης του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνειού βασίστηκε σε ένα χάρτη του κλίμακας 1:100.000 (Σχήμα 7.2). Μετά τη γεωαναφορά του εν λόγω χάρτη και σε συνδυασμό με ορθογωνικοποιημένη κοπή, υπολογίστηκε η ηλεκτρονική τοπογραφία του δικτύου μέσω παρουσιάζεται στο σχήμα 7.3.

Σχήμα 7.2 Χάρτης του Τ.Ο.Ε.Β Πηνειού 1:100.000 (SIRRIMED 2014, Loukas et.al, 2015, Tzabiras et.al, 2017)
Σχήμα 7.3 Ψηφιοποιημένη οριζωνιογραφία του επιφανειακού δικτύου του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνείου (SIRRIMED, 2014)

Από την άλλη το νέο δίκτυο άρδευσης του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Κάρλας το οποίο τροφοδοτεί ο ταμιευτής της Κάρλας ψηφιοποιήθηκε με τη χρήση τοπογραφικών διαγραμμάτων τα οποία προέρχονται από τη Συνολική Μελέτη Περιβαλλοντικών Επιπτώσεων της εκτροπής Αχελώου της ΕΥΔΕ Αχελώου και ENVECO το 1995.

Σχήμα 7.4 Ψηφιοποιημένη οριζωνιογραφία του υπό πίεση αρδευτικού του Τ.Ο.Ε.Β Κάρλας (SIRRIMED, 2014)
7.1.2 Δημιουργία ψηφιακού μοντέλου εδάφους της περιοχής του δικτύου Τ.Ο.Ε.Β Πηνείου

Η δημιουργία του ψηφιακού μοντέλου εδάφους της περιοχής που καλύπτεται από το επιφανειακό αρδευτικό δίκτυο του Τ.Ο.Ε.Β Πηνείου πραγματοποιήθηκε αρχικά γεοαναφέροντας τα τοπογραφικά διαγραμμάτα κλίμακας 1:5.000 της Γ.Υ.Σ και την επακόλουθη ψηφιοποίηση των ψηφομετρικών σημείων τους (Σχήμα 7.4). Το DEM (ψηφιακό μοντέλο εδάφους) της περιοχής είναι απαραίτητο για την γνώση του απόλυτου υψομέτρου σε κάθε κόμβο του δικτύου.

Σχήμα 7.5 Ψηφιοποίηση ψηφομετρικών σημείων χαρτών Γ.Υ.Σ 1:5.000 (SIRRIMED, 2014)

Η τεχνική Simple Kriging ήταν η γεωστατική μέθοδος που χρησιμοποιήθηκε για το σχηματισμό του ψηφιακού μοντέλου εδάφους της περιοχής. Το Kriging είναι μια προηγμένη γεωστατιστική διαδικασία που δημιουργεί μια εκτιμώμενη επιφάνεια από ένα διάσπαρτο σύνολο σημείων με τιμές z. Σε αυτή την περίπτωση, το σύνολο σημείων ήταν τα ψηφιοποιημένα ψηφομετρικά σημεία. Το Kriging βασίζεται στην περιφερειακή θεωρία μεταβλητών υποθέτοντας ότι η χωρική διακύμανση στο φαινόμενο που αντιπροσωπεύεται από τις τιμές z είναι στατιστικά ομοιόμορφη σε όλη την επιφάνεια (για παράδειγμα, το ίδιο μοτίβο παραλλαγής παρατηρείται σε όλα τα σημεία της επιφάνειας).
Σχήμα 7.6 Ψηφιακό μοντέλο εδάφους περιοχής που εξυπηρετείται από το δίκτυο ανοιχτών καναλιών του Τοπικού Οργανισμού Εγχείτων Βελτιώσεων Πηνείων (SIRRIMED, 2014)

Αυτή η υπόθεση της χωρικής ομοιογένειας είναι θεμελιώδης για την περιφερειακή μεταβλητή θεωρία. Με αυτόν τον τρόπο, λήφθηκαν τιμές ύψους για κάθε κόμβο του δικτύου άρδευσης και ο υπολογισμός της κλίσης ήταν μια βολική διαδικασία επειδή είχε δημιουργηθεί ένα ψηφιακό μοντέλο ανύψωσης μεγέθους κυβερνίδας 5 x 5 m (Σχήμα 7.6). Μια άλλη βασική υπόθεση για τα δίκτυα άρδευσης είναι ότι κάθε κανάλι και αγωγός εξυπηρετεί μια συγκεκριμένη περιοχή πολυγώνου όπου στα ορία του βρίσκεται μια ποικιλία καλλιεργειών. Όπως φαίνεται στο σχήμα 7.7, αυτές οι περιοχές πολυγώνων αναγνωρίστηκαν, ψηφιοποιήθηκαν και ορίστηκαν ονόματα στο σύστημα γεωγραφικών πληροφοριών. Είναι προφανές ότι κάθε κανάλι εξυπηρετεί μια περιοχή γύρω από τη θέση του (Σχήμα 7.7).
Σχήμα 7.7 Εξυπηρετούμενες περιοχές επιφανειακού δικτύου του Τ.Ο.Ε.Β Πηνείου (SIRRIMED, 2014)

7.2 ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ

Η ανάπτυξη της βάσης δεδομένων τηλεπισκόπησης περιγράφεται αναλυτικά από τους M. Spiliotopoulos, A. Loukas and N. Mylopoulos, 2015 και στηρίζεται σε:

• Δορυφορικές εικόνες από το δορυφόρο Landsat (TM, ETM+, OLI και TIRS) καθώς και από τους AQUA και TERRA (MODIS)
• Φορητό Φασματοφωτόμετρο GER 1500 – Λογισμικά Spectra Vista Corporation (GER1500 και HR1024)
• Εξειδικευμένα λογισμικά ανάλυσης εικόνας (ENVI 5.0 και ERDAS IMAGINE 9.2)
• Λογισμικό ET-REF του University of Idaho

7.2.1 Ταξινόμηση χρήσεων γης

Η χαρτογράφηση των χρήσεων γης πραγματοποιήθηκε χρησιμοποιώντας μια εικόνα Landsat 5 TM της 7ης Ιουλίου 2007. Μια εποπτεύσιμη ταξινόμηση εφαρμοσμότηκε με δείγματα επαλήθευσης που δημιουργήθηκαν από επιτόπιες έρευνες GPS. Πραγματοποιήθηκε ταξινόμηση μεμονωμένων καλλιεργειών και
μεγάλων εκτάσεων. Οι χρήσεις έχουν προσδιοριστεί μέσω του αλγορίθμου μέγιστης πιθανότητας, που είναι η συνιστόμενη μέθοδος από πολλούς ερευνητές σε μελέτες χαρτογράφησης χρήσεων γης. Η ακρίβεια ταξινόμησης προσεγγίστηκε χρησιμοποιώντας τον πίνακα σύγχρονης ή μέθοδο επικύρωσης πίνακα εκτάσεων ανάγκης. Η εφαρμογή της μεθόδου επικύρωσης έδειξε ότι η συνολική βαθμολογία ταξινόμησης ήταν 88,4%, το οποίο δείχνει μια αποδεκτή ακρίβεια ταξινόμησης και διασφαλίζει ότι οι μεμονωμένες τάξεις παρουσιάζονται ικανοποιητικά. Το Σχήμα 7.5 δείχνει τα προκύπτοντα αποτελέσματα της μεθόδου ταξινόμησης και ο Πίνακας 7.1 παρουσιάζει το κύριο κατηγοριών χρήσης γης και καλλιεργειών. Επιπλέον, τα στοιχεία των αρδευόμενων και μη αρδευόμενων γεωργικών εκτάσεων ανά καλλιέργεια και δήμο για το έτος 2007, που παρέχεται από το ελληνικό Υπουργείο Γεωργίας, χρησιμοποιήθηκαν για την προσέγγιση της γεωργίας περιοχής για τη λεκάνη απορροής της λίμνης Κάρλα. Με βάση αυτά τα δεδομένα και τις γεωργικές εκτάσεις που προσδιορίζονται από τον Πίνακα 7.1, μια στενή αντιστοίχιση τηρήθηκε συμφωνια για τις μεγάλες γεωργικές καλλιέργειες όπως το βαμβάκι, ο αραβόσιτα, το χειμερινό σιτάρι και οπωρόνες.

Σχήμα 7.8 Ταξινόμηση χρήσεων γης για τη λεκάνη απορροής Κάρλας την 7η Ιουλίου 2007 (Spiliotopoulos et. al, 2015)
Πίνακας 7-1 Στατιστικά στοιχεία των κλάσεων χρήσης γης

<table>
<thead>
<tr>
<th>Κλάση</th>
<th>Συνολική έκταση (km²)</th>
<th>Ποσοστό (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γρασίδι-Τριφύλι</td>
<td>49.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Ζαχαρότευτλα</td>
<td>17.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Καλαμπόκι</td>
<td>78.8</td>
<td>6.5</td>
</tr>
<tr>
<td>Bare</td>
<td>51.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Υδάτινες επιφάνειες</td>
<td>5.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Βοσκότοποι</td>
<td>194.8</td>
<td>16.1</td>
</tr>
<tr>
<td>Περιαστικές</td>
<td>108.9</td>
<td>9.0</td>
</tr>
<tr>
<td>Βαμβάκι</td>
<td>175.7</td>
<td>14.6</td>
</tr>
<tr>
<td>Σιτάρι</td>
<td>49.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Δασώδη</td>
<td>477.2</td>
<td>39.4</td>
</tr>
<tr>
<td>Υδάτινες επιφάνειες</td>
<td>5.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Βοσκότοποι</td>
<td>194.8</td>
<td>16.1</td>
</tr>
<tr>
<td>Περιαστικές</td>
<td>108.9</td>
<td>9.0</td>
</tr>
<tr>
<td>Βαμβάκι</td>
<td>175.7</td>
<td>14.6</td>
</tr>
<tr>
<td>Σιτάρι</td>
<td>49.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Δασώδη</td>
<td>477.2</td>
<td>39.4</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>1208.8</td>
<td>100</td>
</tr>
</tbody>
</table>

7.2.2 Αντλήση πραγματικών τιμών εξατμιστικής

Η μεθοδολογία Surface Energy Balance Algorithm for Land (SEBAL) χρησιμοποιήθηκε από τους Spiliotopoulos et al. 2015, η οποία έχει εφαρμοστεί σε παγκοσμίως με υψηλή ακρίβεια (Bastiaanssen 1998a, 1998b, Li et al. 2009). Η βασική ιδέα του SEBAL είναι η εξίσωση του επιφανειακού ισοζυγίου ενέργειας:

\[\text{LE} = \lambda ET = R_n - h - G \] \hspace{1cm} (7.1)

όπου το LE είναι η λανθάνουσα ροή θερμότητας (W / m²), το Rn είναι καθαρή ακτινοβολία (W / m²), το G είναι ροή θερμότητας εδάφους (W / m²) και το h είναι λογική ροή θερμότητας (W / m²). Η W / m² λανθάνουσα ροή θερμότητας μπορεί εύκολα να μετατραπεί αργότερα σε mm. Το Rn μπορεί να υπολογιστεί από το ισοζύγιο ακτινοβολίας επιφάνειας εδάφους:

\[R_n = \sqrt{\frac{1-a}{\alpha}} R_{Si} + R_{Li} - R_{Lo} - (1-\varepsilon_0) R_{Li} \] \hspace{1cm} (7.2)

όπου a είναι το επιφανειακό albedo, το RSi (W / m²) είναι η εισερχόμενη ηλιακή ακτινοβολία, το RLi (W / m²) είναι η εισερχόμενη ακτινοβολία μεγάλων κυμάτων, το RL0 (W / m²) εξέρχεται ακτινοβολίας μεγάλων κυμάτων και το ε0 είναι η εκπομπή ευρείας ζώνης. Η ροή θέρμανσης του εδάφους G (W / m²) μπορεί να εκτιμηθεί εμπειρικά χρησιμοποιώντας μια συνάρτηση του Bastiaanssen (2000) που βασίζεται σε albedo, θερμοκρασία επιφάνειας και το δείκτη βλάστησης NDVI:

\[G = \left\{ \frac{T_s}{a(0.0038a+0.0074a^2)(1-0.98NDVI^{1/4})} \right\} R_n \] \hspace{1cm} (7.3)
όπου το T_s είναι η θερμοκρασία επιφάνειας σε K και το NDVI είναι ο κανονικοποιημένος δείκτης βλάστησης. Η τρίτη παράμετρος είναι η λογική ροή θερμότητας (W/m^2):

$$H = pC_p(a + bT_s)/r_{ah} \tag{7.4}$$

όπου το p είναι η πυκνότητα αέρα (kg/m^3) με την ατμοσφαιρική πίεση, το C_p είναι η χορητικότητα θερμότητας ειδικά για τον αέρα (1004 $Jkg^{-1}K^{-1}$), το T_s είναι θερμοκρασία επιφάνειας σε K και το r_{ah} είναι η αεροδυναμική αντίσταση στη μεταφορά θερμότητας (sm^{-1}). Ο όρισμός της συναρτήσεως dT προς T_s είναι ίσως η πιο σημαντική φιλοσοφία του SEBAL. dT είναι η διαφορά ανάμεσα στη θερμοκρασία του αέρα πολύ κοντά στην επιφάνεια (στα 0,1 m πάνω από το ύψος μετατόπισης του μηδενικού επιπέδου) και της θερμοκρασίας του αέρα στα 2m πάνω από το ύψος μετατόπισης του μηδενικού επιπέδου (Waters et al., 2002). Η μεθοδολογία SEBAL προτείνει γραμμική αλλαγή στο dT σε σχέση με το T_s (Waters et al., 2002). Η εξίσωση (7.4) έχει δύο άγνωστες παράμετρους (a και b). Εδώ χρησιμοποιούνται αρχικές τιμές από την επιλογή των "κρύων" και "καυτών" εικονοστοιχείων. Αυτά τα pixel χρησιμοποιούνται ως λύση για τον ορισμό του dT έναντι του T_s. Το "κρύο" εικονοστοιχείο μπορεί να οριστεί ως μία γενικά υγρή, καθαρά αρδευόμενη επιφάνεια καλλιέργειας με πλήρη κάλυψη εδάφους από βλάστηση. Υποτίθεται ότι δεν υπάρχει λύση για την ενέργεια για να εξατμίσει το νερό, επομένως δεν υπάρχει η παραμέτρος r_{ah} σε αυτό το pixel ($H=0$ και $ET=R_n-G$). Το ET στο "ψυχρό" pixel προβλέπεται στενά από τον ρυθμό ET από μια μεγάλη έκταση της βλάστησης της άλφα (Bastiaanssen et al., 1998a). Για την επιλογή του "κρύου" pixel πρέπει να βρεθεί ένα πολύ υγρό εδάφος και ένα pixel με υψηλό NDVI, χαμηλή θερμοκρασία και χαμηλό albedo. Από την άλλη πλευρά, το "καυτό" εικονοστοιχείο ορίζεται ως ένα εικονοστοιχείο που έχει χαμηλή τιμή NDVI, υψηλό Albedo και υψηλή θερμοκρασία. Το "καυτό" εικονοστοιχείο μπορεί να οριστεί ως ένα ξηρό, γυμνό γεωργικό πεδίο. Υποτίθεται ότι όλη η ενέργεια χρησιμοποιείται για τη θέρμανση της επιφάνειας με τέτοιο τρόπο ώστε να μην υπάρχει λανθάνουσα ροή θερμότητας εκεί ($ET=0$). Με άλλα λόγια, ένα πολύ ξηρό εδάφος επιλέγεται ως "καυτό" pixel. Φαίνεται ότι η επιλογή ενός "καυτού" εικονοστοιχείου είναι πιο δύσκολη από την επιλογή του "κρύου" εικονοστοιχείου, επειδή υπάρχει ένα ευρύτερο φάσμα θερμοκρασιών για τα υποψήφια "καυτά" εικονοστοιχεία. Μετά την επιλογή των "καυτών" και "ψυχρών" εικονοστοιχείων, οι οριακές συνθήκες είναι πλέον έτοιμες για την επίλυση του Η. Πρόκειται για την πρώτη εκτίμηση του H που υποθέτεται ουδέτερες ατμοσφαιρικές συνθήκες. Η SEBAL, λοιπόν, χρησιμοποιεί μια επαναληπτική διαδικασία για τη διόρθωση της ατμοσφαιρικής αστάθειας που προκαλείται από επιδράσεις πλευστότητας της θέρμανσης επιφάνειας, εφαρμόζοντας τη θεωρία Monin-Obukhov (Monin et al., 1954). Μετά τον αρχικό υπολογισμό του H, υπολογίζονται νέες τιμές dT για τα "κρύα" και "καυτά" pixel και παράγονται νέες τιμές
των α και β. Στη συνέχεια υπολογίζεται μια διορθωμένη τιμή για το Η και η διόρθωση σταθερότητας επαναλαμβάνεται έως ότου το Η σταθεροποιηθεί. Το τελευταίο βήμα είναι ο υπολογισμός του \(\Delta H \) από την εξίσωση (7.1). Το εξατμιστικό κλάσμα (ET,\(F \)) μπορεί να ορίσετε ως το κλάσμα της πραγματικής εξατμισοδιαπνοής \(ET_\alpha \) από τη δυνητική ΕΤ σε στιγμιαία βάση, υποθέτοντας ότι είναι σταθερό κατά τη διάρκεια της ημέρας.

\[
ET_{\alpha} = ET_{\alpha inst}/ET_{\alpha}
\]

(7.5)

Σχήμα 7.9 Διάγραμμα ροής της μεθόδου SEBAL (Spiliotopoulos et al., 2015)

7.2.3 Υπολογισμός υδατικών απαιτήσεων καλλιεργειών

Ο χάρτης χρήσεων γης του 2007 (Σχήμα 7.10) εισήχθη στο σύστημα γεωγραφικών πληροφοριών (Εικ. 6a) και με αυτόν τον τρόπο οι καλλιέργειες σε κάθε εξυπηρετούμενη περιοχή ενσωματώθηκαν στη βάση γεωγραφικών δεδομένων. Ο χάρτης χρήσης γης αποτελείται από εικονοστοιχεία που αντιπροσωπεύουν διαφορετικές καλλιέργειες και η ανάλυση έδειξε ότι το βαμβάκι και το χειμερινό σιτάρι κυριαρχούσε σε αυτές τις περιοχές χωρίς υποτίμηση των υπόλοιπων χρήσεων, ήδη περιλάμβαναν καλλιέργειες καλαμποκιού και δέντρων, βοσκότοπους και γρασίδι.

Ο χάρτης χρήσης γης, όπως αναφέρθηκε, αποτελείται από εικονοστοιχεία που αντιπροσωπεύουν ταξινομημένες καλλιέργειες, επομένως η περιοχή ενδιαφέροντος κόπηκε και τα εικονοστοιχεία εντός μιας περιοχής εξυπηρέτησης εισήχθησαν στη βάση γεωγραφικών δεδομένων (Σχήμα 7.10, 7.11).
Σχήμα 7.10 Χρήσεις γης εξυπηρετούμενων περιοχών του επιφανειακού δικτύου του Τ.Ο.Ε.Β Πηνείου (SIRRIMED, 2014)

Σχήμα 7.11 Χρήσεις γης εξυπηρετούμενων περιοχών του υπό πίεση δικτύου του Τ.Ο.Ε.Β Κάρλας (SIRRIMED, 2014)
Το μοντέλο CROPWAT που αναπτύχθηκε από το τμήμα ανάπτυξης γης και νερού του FAO είναι ένα σύστημα υποστήριξης αποφάσεων για τη διαχείριση και τον προγραμματισμό της άρδευσης. Το CROPWAT είναι ένα πολύ χρήσιμο εργαλείο για τυποποιημένους υπολογισμούς εξατμισοδιανομής αναφοράς, νερό άρδευσης και απαιτήσεις άρδευσης καλλιεργειών, καθώς και σχεδιασμό και διαχείριση σχεδίων άρδευσης. Επιτρέπει επίσης την ανάπτυξη συστάσεων για βελτιωμένες αρδευτικές πρακτικές, τον προγραμματισμό αρδευτικών προγραμμάτων υπό διαφορετικούς συνθήκες ύδρευσης και την αξιολόγηση της παραγωγής υπό συνθήκες βροχής ή άρδευσης. Οι νέες τιμές ET,F (Kc) που υπολογίστηκαν προηγουμένως από τη μεθόδο SEBAL αποτέλεσαν την είσοδο στο μοντέλο CROPWAT δίνοντας μια νέα εκτίμηση των αναγκών σε νερό άρδευσης. Βέβαια η διαδικασία εκτίμησης υδατικών αναγκών περιγράφεται σε ξεχωριστό κεφάλαιο διότι τα δίκτυα της λεκάνης απορροής Πελοπονήσιου αποτελούν δύο μόνο ζώνες σε σχέση με τον μεγαλύτερο αριθμό ζονών που χρησίμευσαν η λεκάνη απορροής. Στο σημείο αυτό αναφέρονται μόνο κάποια βασικά σημεία της μεθόδου.

7.3 ΥΔΡΑΥΛΙΚΑ ΜΟΝΤΕΛΑ

Η λειτουργία του δίκτυου ανοιχτών καναλιών του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πελοπονήσιου Πελοπονήσιου Πολιτικού Μηχανικούς το λογισμικό Technologismiki Works. Το μοντέλο βαθμονομήθηκε και μεριστές ροής (τετραγωνοκυκλοειδές κόμβοι) έχουν τοποθετηθεί σε συγκεκριμένους κόμβους δικτύου, όπου τα κύρια κανάλια χωρίζονται σε δευτερεύοντα κανάλια. Σε αυτούς τους κόμβους δικτύου (μεριστές), ο χρήστης καθορίζει τη ροή διακοπής (Εικ. 7α). Με αυτόν τον τρόπο, μπορεί να μεταβληθεί η απαιτούμενη ποσότητα νερού προς εκτροπή. Σε δευτερεύοντα κανάλια, έχουν τοποθετηθεί εκροές (τετραγωνοκυκλοειδείς κόμβοι), όπου το νερό άρδευσης αντλείται απευθείας από τους αγρότες και κάθε εκροή αντιστοιχεί στην εισροή νερού που είναι απαραίτητο ώστε να αρδευτούν οι καλλιέργειες της εξυπηρετούμενης έκτασης. Τέλος, το δίκτυο άρδευσης αποτελείται από 816 κανάλια και τα κύρια κανάλια έχουν έκταση 133,7 χλμ., ένα συνολικό μήκος. Το συνολικό μήκος των δευτερεύοντος καναλιών είναι 330 χλμ. Οι κύριοι τάφροι έχουν μήκος 102,8 χλμ. Επιπλέον, η περιοχή αποτελείται από 375 μεριστές, 375 εκρόες και 70 κόμβους.
Σχήμα 7.12 Απόσπασμα μοντέλου Technologismiki Works για το δίκτυο του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνείου

Το υδραυλικό μοντέλο που χρησιμοποιείται για το νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας είναι το WaterCAD, το οποίο είναι ένα προηγμένο εργαλείο κύριος για χρήση στην προσομοίωση και ανάλυση συστημάτων διανομής νερού. Προσομοιώνει την κατανομή των υδάτινων πόρων σε ένα σύστημα παροχής, αντιπροσωπεύοντας τα κύρια χαρακτηριστικά του συστήματος και των ποτάμιων καναλιών μέσω ενός δικτύου κόμβων και συνδέσεων και επιτρέπει τη μελέτη διαφορετικών συνθηκών λειτουργίας στο δίκτυο διανομής νερού μέσω των κύριων υδραυλικών παραμέτρων. Όλο το δίκτυο τροφοδοτείται απευθείας από τον ταμιευτήρα της Κάρλας από τρία αντλιοστάσια Α0, Α1 και Α2 (Σχήμα 7.13) και τα κύρια συστατικά είναι: (α) τρία αντλιοστάσια διανομής D3, D4 και D6 (β) δύο τοπικές δεξαμενές περιλαμβάνονται στο δίκτυο για τη ρύθμιση των αντλιοστασίων και (γ) δύο τύποι υδρολήψεων (7 l/s και 14 l/s) έχουν συνδυαστεί με τις ζώνες που εξυπηρετούνται. Το δίκτυο αποτελείται από 963 διασταυρώσεις, 1.145 σωλήνες, 64 βαλβίδες (διπλή ενεργοποίηση), 64 βαλβίδες αέρα και 15 βαλβίδες κύματος.
Σχήμα 7.13 Απόσπασμα μοντέλου WaterCad για το νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας

Η αποτελεσματικότητα του δικτύου άρδευσης (ή απώλειες νερού) εκτιμήθηκε χρησιμοποιώντας την αποδοτικότητα μεταφοράς και διανομής \(E_d \) και την αποδοτικότητα εφαρμογής, \(E_f \). Η αποδοτικότητα μεταφοράς διανομής, \(E_d \) είναι ο λόγος του νερού που φθάνει στο πεδίο προς τη ποσότητα νερού που μεταφέρεται από την πηγή (Πίνακας 7.2). Η αποδοτικότητα εφαρμογής, \(E_f \) είναι ο λόγος του νερού που είναι αποθηκευόμενο στο ριζόστρωμα και διατίθεται για χρήση από το φυτό προς το νερό που εφαρμόζεται στο χωράφι χρησιμοποιώντας μια μέθοδο άρδευσης. Η τιμή του \(E_d \) επηρεάζεται από το μέγεθος, τον τύπο, τη λειτουργία και την κατάσταση του δικτύου άρδευσης. Η τιμή του \(E_f \) επηρεάζεται από τη μέθοδο άρδευσης (Terzidis and Papazafeiriou, 1997. Όπως αναφέρθηκε και προηγουμένως η συνολική διαδικασία εκτίμησης των υδατικών απαιτήσεων της λεκάνης απορροής Κάρλας περιγράφεται σε επόμενο κεφάλαιο. Για το λόγο αυτό στο τρέχον σημείο αναφέρονται μόνο κάποιες κρισιμές πληροφορίες για την καλύτερη κατανόηση του συστήματος.
Πίνακας 7-2 Αποδοτικότητα για τη διανομή (Ed) και για την εφαρμογή (Ef) του νερού σε δίκτυα άρδευσης (Παπαζαφειρίου, 1997).

<table>
<thead>
<tr>
<th>Τύπος δικτύου</th>
<th>Συντήρηση και λειτουργία</th>
<th>Αποδοτικότητα διανομής και μεταφοράς (Ed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Επιφανειακό</td>
<td>Πολύ καλή έως άριστη</td>
<td>0,60-0,75</td>
</tr>
<tr>
<td></td>
<td>Ικανοποιητική</td>
<td>0,50-0,60</td>
</tr>
<tr>
<td></td>
<td>Ελληνική</td>
<td>0,35-0,50</td>
</tr>
<tr>
<td></td>
<td>Κακή</td>
<td>0,20-0,35</td>
</tr>
<tr>
<td>Υπό πίεση</td>
<td>Ικανοποιητική έως άριστη</td>
<td>0,80-0,95</td>
</tr>
</tbody>
</table>

Μέθοδος άρδευσης | Αποδοτικότητα εφαρμογής (Ef) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατάκλυση</td>
<td>0,60-0,80</td>
</tr>
<tr>
<td>Περιορισμένη διάχυση (λωρίδες)</td>
<td>0,60-0,75</td>
</tr>
<tr>
<td>Αυλάκια</td>
<td>0,50-0,75</td>
</tr>
<tr>
<td>Καταιονομός – Κλασσικό σύστημα</td>
<td>0,60-0,80</td>
</tr>
<tr>
<td>Καταιονομός – Αυτοκινούμενο εκτελεστήρας υψηλής πίεσης</td>
<td>0,55-0,75</td>
</tr>
<tr>
<td>Καταιονομός – Αυτοκινούμενη γραμμή άρδευσης</td>
<td>0,75-0,90</td>
</tr>
<tr>
<td>Καταιονομός – Περιστροφικό σύστημα (Pivot)</td>
<td>0,75-0,90</td>
</tr>
<tr>
<td>Στάγδην</td>
<td>0,80-0,95</td>
</tr>
</tbody>
</table>

Τα όρια της περιοχής της περιοχής εισήχθησαν από το σύστημα γεωγραφικών πληροφοριών και ρυθμίστηκε το μοντέλο WEAP. Οι κόμβοι ζήτησης νερού (εκροές στο μοντέλο Technologismiki) είναι πολυάριθμοι και δεν μπορούν να εισαχθούν στο μοντέλο WEAP. Δεδομένου ότι το μοντέλο WEAP χρησιμοποιείται μόνο για τη διαχείριση των υδάτινων πόρων, ένας σύνδεσμος μεταφοράς περιλαμβάνει έναν σχετικά μεγάλο τομέα της περιοχής (Σχήμα 7.14). Αυτό σημαίνει ότι ένας κόμβος ζήτησης στο μοντέλο WEAP περιλαμβάνει αρκετούς κόμβους ζήτησης του μοντέλου Technologismiki και η υπολογισμένη ζήτηση νερού τοποθετείται σωρευτικά σε κάθε τοποθεσία ζήτησης μοντέλου WEAP.

Σχήμα 7.14 Διαχειριστικό μοντέλο WEAP για τα δίκτυα των Τοπικών Οργανισμών Εγγείων Βελτιώσεων Πηνειού (Επιφανειακό) και Κάρλας (υπό πίεση)
7.4 ΑΠΟΤΕΛΕΣΜΑΤΑ

Συνολικά τέσσερα εναλλακτικά σενάρια, αναπτύχθηκαν για να μελετηθούν με το ΣΠΔ (Σύστημα Πληροφοριών δικτύων):
- Μείωση απωλειών των καναλιών (RL)
- Τροποποίηση των μεθόδων άρδευσης (IMA)
- Εισαγωγή καλλιέργειας ψαριάς (GCE)
- Εκκίνηση λειτουργίας του δικτύου που τροφοδοτείται από τον ταμιευτήρα της Κάρλας

Σχήμα 7.15 Φωτογραφίες χαρακτηριστικών καναλιών του δικτύου ανοιχτών αγωγών

Τα πρώτα τρία σενάρια εφαρμόστηκαν στο δίκτυο ανοιχτών καναλιών του Τοπικού Οργανισμού Εγγειών Βελτιώσεων Πηνείου και το τέταρτο στο νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας. Όσον αφορά το πρώτο σενάριο, οι απώλειες του καναλιού μπορούν να μειωθούν διατηρώντας σωστά τα κανάλια. Αυτό μπορεί να προσομοιωθεί ορίζοντας μικρότερες τιμές συντελεστών Manning στις επιλογές καναλιών. Η ικανοποιητική συντήρηση των καναλιών οδηγεί σε αύξηση της αποδοτικότητας μεταφοράς, Ed και μείωση των τελικών απαιτήσεων νερού. Το δεύτερο σενάριο της αλλαγής των μεθόδων άρδευσης βασίζεται στην αντικατάσταση της άρδευσης ψεκασμού με εκκίνηση λειτουργίας.
7.4.1 Χωρική και χρονική ανάλυση βασικού ιστορικού σεναρίου

Το δίκτυο ανοιχτών καναλιών του Τοπικού Οργανισμού Εγγειών Βελτιώσεων Πηγεού προσομοίωσης χρησιμοποιούντας πραγματικά δεδομένα του έτους 2007, για τις χρήσεις υγεία και κατά συνέπεια για την ταξινόμηση καλλιέργειών και την εκτίμηση της εξατμισοδιανονής ET που έγινε μέσω υπολογισμών τηλεπισκόπησης και CROPWAT. Το βασικό σενάριο αναφοράς αναφοράς δημιούργηθηκε στα μοντέλα Technologismiki και WEAP με βάση τα παραπάνω δεδομένα. Δύο μέθοδοι επίλυσης χρησιμοποιήθηκαν για την προσομοίωση του δικτύου άρδευσης ανοιχτής επιφάνειας. Η πρώτη αναφέρεται σε συνήθεις σταθερές ροπές, όπου ενεργοποιούνται οι μεριστές και η κατανομή του νερού ελέγχεται από τον χρήστη, ενώ το άλλο βασίζεται σε επίλυση δυναμικού κύματος, όπου οι διαχωριστές είναι απενεργοποιημένοι. Η επίλυση αυτή η οποία αποτροποποιεί τον απλούστερο δυνατό τρόπο υπολογίσεων ότι σε κάθε βήμα του υπολογιστικού χρόνου, η ροπή είναι ομοιόμορφη και σταθερή. Επίσης, μεταφράζει απλώς τις εισοδες στο ανάτητο άκρο του αγωγού στο κατάντη άκρο, χωρίς καθυστέρηση ή άλλα μορφωμάτων. Η κανονική εξίσωση ροπής χρησιμοποιείται για να συσχετίσει το ρυθμό ροπής με το βάθος ροπής. Αυτός ο τύπος επίλυσης δεν μπορεί να αντιπροσωπεύει αποθήκευση καναλιών, απόλυες εισόδου / εξόδου, αντιστροφή ροπής ή ροπή υπό πίεση. Μπορεί να χρησιμοποιηθεί μόνο με δίκτυα δενδριτικής μεταφοράς, όπου κάθε κόμβος έχει μόνο έναν σύνδεσμο εκροής (εκτός εάν ο κόμβος είναι διαχωριστικό, όπως απαιτούνται δύο σύνδεσμοι εκροής).

Από την άλλη επίλυση με δυναμικό κύμα επιλέγει τις ολοκληρωμένες μονοδιάστατες εξίσωσες ροπής Saint - Venant δίνει ακριβιστέρα αποτελέσματα. Οι σχέσεις αυτές περιλαμβάνουν εξίσωση συνέχειας και ορμής για αγωγό και εξίσωση συνέχειας όγκου σε κόμβο. Πλημμύρισμα συμβαίνει, όταν το βάθος νερού σε έναν κόμβο υπερβαίνει το μέγιστο βάθος, που ορίζεται από τη γεωμετρία του καναλιού, και η περίοδος ροπής ή εξαφανίζεται ως απόλεια ή δύνατα να συγκεντρωθεί στον κόμβο και να επανέλθει στο σύστημα. Μπορεί να εκτελεστεί σε οποιοδήποτε δίκτυο, ακόμη και σε κανάλι που περιέχει πληθώρα μεταγενέστερων εκτροπών και βρόχων, επειδή, αυτός ο τύπος προσομοίωσης περιλαμβάνει την επίλυση τόσο για τη στάθμη του νερού σε κόμβο αλλά και στη ροπή σε κανάλι. Είναι η μέθοδος επιλογής για συστήματα που υπόκεινται σε σημαντικά φαινόμενα λόγω περιορισμών ροπής κατάντη και με ρύθμιση ροπής μέσω υδραυλικών και άλλων.
Η ανάλυση των αποτελεσμάτων, σε αυτή την διατριβή, πραγματοποιείται για τρεις αγωγούς δικτύου, μια κύρια τάφρο (6T (A4)), ένα πρωτεύον κανάλι (9T16 (A9)) και ένα δευτερεύον (8T (D54)) (Σχήμα 7.16).

Πρέπει να αναφερθεί ότι τα αποτελέσματα έχουν υπολογιστεί για ολόκληρο το δίκτυο, αλλά λόγω περιορισμών χρόνου και χώρου ο τρόπος αυτός είναι πιο απλός και περιεκτικός. Όπως αναφέρθηκε παραπάνω, υπήρξαν δύο χρονικές διαρκείς του μοντέλου Technologismiki, μία για συνθήκες σταθερής ροής και μία για συνθήκες σταθερής ροής. Επιλέχθηκαν δύο μήνες ως αντιπροσωπευτικά παραδείγματα παρουσίασης των αποτελεσμάτων. Απρίλιος (στην αρχή της περιόδου άρδευσης στην Ελλάδα) και Αύγουστος (όπου η άρδευση φτάνει στο μέγιστο). Το λογισμικό Technologismiki παρέχει αποτελέσματα για το ρυθμό ροής (m³ / s), το βάθος ροής (m), την ταχύτητα του νερού (m / s), τον αριθμό Froude και την ικανότητα μεταφοράς του υπό μελέτη αγωγού. Στο Σχήμα 7.17 παρουσιάζεται η διακύμανση του βάθους ροής μεταξύ των δύο επιλεγμένων μηνών και είναι αρκετά αξιοσημείωτο ότι για την κύρια τάφρο 6T (A4) και το πρωτεύον κανάλι 9T16 (A9) το βάθος ροής μειώνεται (ο Αύγουστος είναι ο πιο εντατικός μήνας άρδευσης), ενώ για τον δευτερεύον αγωγό 8T (D54) αυξάνεται το βάθος ροής. Από την άλλη πλευρά, όταν εφαρμόζεται η επίλυση δυναμικού κύματος, το βάθος ροής των 6T (A4) και 8T (D54) μειώνεται.

Σχήμα 7.16 Θέσεις εξεταζόμενων αγωγών και εκροών στο δίκτυο του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνείου.
Σχήμα 7.17 Μεταβολές του βάθους ροής σε επιλεγμένους αγωγούς του δικτύου για α) σταθερή ροή β) επίλυση δυναμικού κύματος (SIRRIMED, 2014)

Το Σχήμα 7.18 απεικονίζει τη διακύμανση της ταχύτητας του νερού στα κανάλια. Για συνθήκες σταθερής ροής, η ταχύτητα του νερού στην τάφρο 6Τ (A4) μειώνεται από τον Απρίλιο έως τον Αύγουστο, ενώ για τα άλλα δύο κανάλια παραμένει σταθερή. Στην περίπτωση του δυναμικού κύματος, η ταχύτητα του νερού αυξάνεται στο κανάλι 9Τ16 (A9), πιθανώς επειδή αυτό το κανάλι βρίσκεται κοντά στο αντλιοστάσιο E. Στην κύρια τάφρο 6Τ (A4) η ταχύτητα μειώνεται, λόγω της μείωσης της εισροής νερού και της χαμηλής κλίση αγωγού. Τέλος στο δευτερεύον κανάλι 8Τ (D54) η ταχύτητα παραμένει σταθερή.
Σχήμα 7.18 Μεταβολές της ταχύτητας ροής σε επιλεγμένους αγωγούς του δικτύου για α) σταθερή ροή β) επίλυση δυναμικού κύματος (SIRRIMED, 2014)

Ένα άλλο βασικό στοιχείο του δικτύου είναι οι εκρές, όπου το νερό μεταφέρεται για εφαρμογή άρδευσης στα χοράφια. Η ανάλυση των εισροέων-εκρέων πραγματοποιείται για τυχαία επιλεγμένες εκρές, που βρίσκονται σε διάφορες τοποθεσίες στην περιοχή της μελέτης.

To σχήμα 7.19 δείχνει ότι όταν εφαρμόζεται το πραγματικό πρόγραμμα άντλησης του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πιθειών (το οποίο θα αναλυθεί αργότερα) χωρίς έλεγχο του δικτύου (επίλυση δυναμικού κύματος - χωρίς ενεργοποίηση των μεριστών) ο όγκος του νερού υπερβαίνει τις απαιτήσεις άρδευσης των εκρεών O25, O45 και O10, αλλά δεν είναι αρκετό για τις υπόλοιπες εκρές.

Το παραπάνω εύρημα είναι πολύ σημαντικό, επειδή οι τρεις εκρές (O10, O15, O25), για τις οποίες πληρούνται οι απαιτήσεις άρδευσης, βρίσκονται στην αρχή του δικτύου στο βορειοδυτικό τμήμα της περιοχής (Σχήμα 7.16), και τροφοδοτούνται επαρκώς. Από την άλλη, οι εκρές που βρίσκονται μακριά από τα αντλιοπάσα και στο κεντρικό ή ανατολικά τμήμα του δικτύου δεν τροφοδοτούνται αποτελεσματικά με νερό και οι απαιτήσεις σε νερό άρδευσης δεν ικανοποιούνται.
Σχήμα 7.19 Μεταβολή της εισροής σε επιλεγμένες εκροές του δικτύου για α) σταθερή ροή β) επίλυση δυναμικού κύματος

Από την άλλη πλευρά, όταν ενεργοποιούνται οι μεριστές του δικτύου, η κατανομή του νερού βελτιώνεται αλλά λαμβάνοντας υπόψη τις συνθήκες σταθερής ροής που δεν αντιπροσωπεύουν τις πραγματικές συνθήκες. Ωστόσο, οι εκροές εξαγόνονταν όλες τις εισροές, στο ζήτημα είναι ο τρόπος ελέγχου των εκροών, καθώς το Τ.Ο.Ε.Β Πηνεία δεν διανέμει την ακριβή προσόμοιωση.

Οι Πίνακες 7.3 και 7.4 παρουσιάζουν μια επισκόπηση τόσο για τις μεθόδους προσομοίωσης όσο και για τα επιλεγμένα κανάλια. Οι ποσοστιαίες αλλαγές υπολογίστηκαν μεταξύ των δύο μηνών Απριλίου και Αυγούστου. Για συνθήκες σταθερής ροής, η παροχή του αγωγού 6Τ (A4) μειώνεται κατά 33,57%, το βάθος ροής κατά 22,05%, η ταχύτητα ροής κατά 13,86%, ο αριθμός Froude κατά 3,39% και η χωρητικότητα κατά 13%. Το δεύτερο κανάλι 8Τ (D54) δείχνει αύξηση 100% στην ταχύτητα ροής, 24,64% στο βάθος ροής, 40,59% στην ταχύτητα και 24,47% στην χωρητικότητα. Τέλος, όλες οι υδραυλικές παράμετροι για το κανάλι 9Τ16 (A9) μειώνονται (εκτός από τον αριθμό Froude) για συνθήκες σταθερής ροής.

Όσον αφορά την επίλυση δυναμικού κύματος, στους αγωγούς 6Τ (A4) και 8Τ (D54) μειώνεται η παροχή, το βάθος ροής, η ταχύτητα και η χωρητικότητα από τον Απρίλιο έως τον Αύγουστο. Αντίθετα, για το κανάλι 9Τ16 (A9) αυξάνονται όλες οι παράμετροι ροής για την ίδια χρονική περίοδο. Το ιστορικό σενάριο έχει προσομοιωθεί χρηματοδοτώντας το μοντέλο WEAP για το έτος βάσης 2007. Χρειάστηκαν να προσδιοριστούν διάφορα χαρακτηριστικά του δικτύου προκειμένου να επιτευχθεί μια ακριβής προσομοίωση. Είναι σημαντικό να σημειωθεί ότι ο ταμιευτήρας της λίμνης Κάρλας δεν λειτουργεί για το σενάριο αναφοράς.
Πίνακας 7-3 Παράμετροι ροής για επιλεγμένους αγωγούς σε συνθήκες σταθερής ροής

<table>
<thead>
<tr>
<th>Αγωγός</th>
<th>Παροχή (m³/s)</th>
<th>Βάθος ροής (m)</th>
<th>Ταχύτητα (m/s)</th>
<th>Fr. number</th>
<th>Χωρητικότητα</th>
</tr>
</thead>
<tbody>
<tr>
<td>6TA4</td>
<td>4.57</td>
<td>0.39</td>
<td>1.14</td>
<td>0.59</td>
<td>0.07</td>
</tr>
<tr>
<td>8TD54</td>
<td>0.01</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>9T16(A9)</td>
<td>1.27</td>
<td>2.22</td>
<td>0.16</td>
<td>0.04</td>
<td>0.74</td>
</tr>
<tr>
<td>6TA4</td>
<td>3.04</td>
<td>0.30</td>
<td>0.98</td>
<td>0.57</td>
<td>0.06</td>
</tr>
<tr>
<td>8TD54</td>
<td>0.02</td>
<td>0.35</td>
<td>0.02</td>
<td>0.01</td>
<td>0.12</td>
</tr>
<tr>
<td>9T16(A9)</td>
<td>0.97</td>
<td>1.90</td>
<td>0.16</td>
<td>0.04</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Πίνακας 7-4 Παράμετροι ροής για επιλεγμένους αγωγούς σε συνθήκες επίλυσης δυναμικού κύματος

<table>
<thead>
<tr>
<th>Αγωγός</th>
<th>Παροχή (m³/s)</th>
<th>Βάθος ροής (m)</th>
<th>Ταχύτητα (m/s)</th>
<th>Fr. number</th>
<th>Χωρητικότητα</th>
</tr>
</thead>
<tbody>
<tr>
<td>6TA4</td>
<td>4.44</td>
<td>0.28</td>
<td>1.51</td>
<td>0.91</td>
<td>0.06</td>
</tr>
<tr>
<td>8TD54</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>9T16(A9)</td>
<td>0.09</td>
<td>0.42</td>
<td>0.08</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>6TA4</td>
<td>2.97</td>
<td>0.23</td>
<td>1.24</td>
<td>0.82</td>
<td>0.05</td>
</tr>
<tr>
<td>8TD54</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9T16(A9)</td>
<td>0.10</td>
<td>0.45</td>
<td>0.09</td>
<td>0.05</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Σχήμα 7.20 Μηνιαίες υδατικές απαιτήσεις των εξυπηρετούμενων περιπτώσεων σε καναλιών με παροχή υδάτων υπόγεια υπό δικτύων στην Ελλάδα για το έτος 2007

Οι γεωργικές περιπτώσεις, που προβλέπεται να αρδεύσουν από το νέο δίκτυο άρδευσης της λίμνης Κάρλας, αρδεύονται με ιδιωτική αντλήσεις υπόγειων υδάτων. Οι απαιτήσεις άρδευσης έχουν καθοριστεί σε μηνιαία βάση όπως ψηφίζεται στο Σχήμα 7.20.

Είναι σαφές ότι για όλες τις υποπεριπτώσεις οι απαιτήσεις άρδευσης ξεκινούν τον Απρίλιο και διαρκούν μέχρι τον Σεπτέμβριο, όπως σε ένα τυπικό έτος άρδευσης στην Ελλάδα. Από την άλλη πλευρά, σύμφωνα με τις πληροφορίες του Pinios LALR, οι
συνεταιριστικές τοπικές δεξαμενές γεμίζουν κυρίως κατά τους χειμερινούς μήνες από τον Δεκέμβριο έως τα μέσα Μαίου, όπως φαίνεται στο Σχήμα 4.9.14

Σχήμα 7.21 Μηνιαίες μεταβολές των εισροών των μικρών ταμιευτήρων του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνείων

Τα αποτελέσματα του μοντέλου WEAP έδειξαν ότι η ζήτηση νερού άρδευσης ξεκινά τον Απρίλιο και φτάνει στο μέγιστον Αύγουστο. Τα αποτελέσματα προσομοίωσης του μοντέλου Technologismiki έδειξαν ότι το νερό που αντλείται από τον Τ.Ο.Ε.Β. Πηνείων δεν επαρκεί για την κάλυψη των απαιτήσεων άρδευσης του δικτύου. Το μοντέλο WEAP αντίστοιχα προβάλλει το ίδιο αποτέλεσμα. Το Σχήμα 7.22 δείχνει τη μηνιαία διακύμανση της μη ικανοποιημένης ζήτησης νερού άρδευσης κατά το έτος αναφοράς (2007) και το έτος 2008.

Σχήμα 7.22 Μηνιαία διακύμανση της μη ικανοποιημένης ζήτησης νερού για τα έτη 2007 και 2008
Σχήμα 7.23 Χρονική και χωρική διακύμανση της μη ικανοποιημένης ζήτησης νερού για τα έτη 2007 και 2008

Η διακύμανση των μη ικανοποιημένων απατήσεων νερού άρδευσης ακολουθεί τη διακύμανση της ζήτησης νερού από τον Απρίλιο και λήγει συνήθως τον Σεπτέμβριο. Από την άλλη πλευρά, το σχήμα 7.23 παρουσιάζει τη χρονική και χωρική διακύμανση της μη ικανοποιημένης ζήτησης νερού άρδευσης.

7.4.2 Χωρική και χρονική ανάλυση εναλλακτικών διαχειριστικών σεναρίων

Όπως αναφέρθηκε, τέσσερα εναλλακτικά σενάρια αναπτύσσονται για μελέτη με το ΣΠΔ:

- Μείωση των απωλειών των καναλιών
- Τροποποίηση των μεθόδων άρδευσης
- Εισαγωγή καλλιέργειας θερμικής κατασκευής
- Λειτουργία του μελλοντικού δικτύου του ταμιευτήρα της Κάρλας

Τα πρώτα τρία σενάρια θα εφαρμοστούν στο δίκτυο άρδευσης του Τοπικού Οργανισμού Εγχειρίων Βελτίωσεων Πηνείας και το τέταρτο στο δίκτυο του Τοπικού Οργανισμού Εγχειρίων Βελτίωσεων Κάρλας. Σε αυτό το στάδιο, η σύγκριση μεταξύ των σεναρίων αναφοράς και των μελλοντικών σεναρίων διαχείρισης βασίζεται στα αποτελέσματα του μοντέλου Technologismiki και του μοντέλου WEAP. Το μοντέλο Technologismiki παρέχει πληροφορίες σχετικά με αλλαγές στις παραμέτρους ροής του δικτύου, ενώ το μοντέλο WEAP είναι απαραίτητο για τη διαχείριση των υδάτινων πόρων. Καθώς το σενάριο αναφοράς εξετάζεται χρησιμοποιώντας τρεις τυχαίες επιλεγμένους αγωγούς, τα μελλοντικά σενάρια θα αναλυθούν στην ίδια βάση. Και τα τρία σενάρια εφαρμόζονται στο μοντέλο Technologismiki χρησιμοποιώντας την δύο μεθόδους σταθερής ροής και δυναμικού κύματος.
Πίνακας 7-5 Βασικές παράμετροι ροής του σεναρίου εισαγωγής καλλιέργειας θερμοκηπίου σε σχέση με το ιστορικό σενάριο αναφοράς

<table>
<thead>
<tr>
<th>Αγωγός</th>
<th>Παροχή (m³/s)</th>
<th>Βάθος ροής (m)</th>
<th>Ταχύτητα (m/s)</th>
<th>Fr.number</th>
<th>Χωρητικότητα (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6TA4</td>
<td>-0.51</td>
<td>-0.26</td>
<td>0.54</td>
<td>0.00</td>
<td>11.14</td>
</tr>
<tr>
<td>8TD54</td>
<td>87.70</td>
<td>27.26</td>
<td>42.24</td>
<td>0.00</td>
<td>26.90</td>
</tr>
<tr>
<td>9Τ16(A9)</td>
<td>-46.33</td>
<td>-30.23</td>
<td>-10.55</td>
<td>0.00</td>
<td>-30.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Λευκακικό κέμα</td>
</tr>
<tr>
<td>6TA4</td>
<td>0.15</td>
<td>3.07</td>
<td>0.56</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8TD54</td>
<td>0.00</td>
<td>3.95</td>
<td>-0.21</td>
<td>0.00</td>
<td>-1.43</td>
</tr>
<tr>
<td>9Τ16(A9)</td>
<td>-18.21</td>
<td>27.80</td>
<td>-37.07</td>
<td>-50.00</td>
<td>27.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Σταθερή ροή</td>
</tr>
<tr>
<td>6TA4</td>
<td>0.13</td>
<td>0.33</td>
<td>0.14</td>
<td>0.00</td>
<td>-1.48</td>
</tr>
<tr>
<td>8TD54</td>
<td>-50.00</td>
<td>-15.61</td>
<td>-27.62</td>
<td>0.00</td>
<td>-15.88</td>
</tr>
<tr>
<td>9Τ16(A9)</td>
<td>22.74</td>
<td>13.06</td>
<td>5.60</td>
<td>0.00</td>
<td>12.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Λευκακικό κέμα</td>
</tr>
<tr>
<td>6TA4</td>
<td>0.21</td>
<td>2.74</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8TD54</td>
<td>0.00</td>
<td>1.25</td>
<td>20.05</td>
<td>0.00</td>
<td>-25.93</td>
</tr>
<tr>
<td>9Τ16(A9)</td>
<td>0.43</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Πίνακας 7-6 Βασικές παράμετροι ροής του σεναρίου μείωσης απωλειών των καναλιών σε σχέση με το ιστορικό σενάριο αναφοράς

<table>
<thead>
<tr>
<th>Αγωγός</th>
<th>Παροχή (m³/s)</th>
<th>Βάθος ροής (m)</th>
<th>Ταχύτητα (m/s)</th>
<th>Fr.number</th>
<th>Χωρητικότητα (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6TA4</td>
<td>0.15</td>
<td>0.15</td>
<td>0.80</td>
<td>0.00</td>
<td>11.60</td>
</tr>
<tr>
<td>8TD54</td>
<td>-23.80</td>
<td>-92.86</td>
<td>264.71</td>
<td>500.00</td>
<td>-92.84</td>
</tr>
<tr>
<td>9Τ16(A9)</td>
<td>15.27</td>
<td>-89.55</td>
<td>454.44</td>
<td>1375.00</td>
<td>-89.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Λευκακικό κέμα</td>
</tr>
<tr>
<td>6TA4</td>
<td>-84.18</td>
<td>-57.06</td>
<td>-61.56</td>
<td>-53.85</td>
<td>-57.81</td>
</tr>
<tr>
<td>8TD54</td>
<td>-100.00</td>
<td>-99.85</td>
<td>-100.00</td>
<td>0.00</td>
<td>-99.86</td>
</tr>
<tr>
<td>9Τ16(A9)</td>
<td>76.34</td>
<td>-85.52</td>
<td>337.68</td>
<td>725.00</td>
<td>-85.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Σταθερή ροή</td>
</tr>
<tr>
<td>6TA4</td>
<td>0.59</td>
<td>0.49</td>
<td>0.20</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>8TD54</td>
<td>-58.70</td>
<td>-93.94</td>
<td>171.74</td>
<td>500.00</td>
<td>-93.99</td>
</tr>
<tr>
<td>9Τ16(A9)</td>
<td>34.64</td>
<td>-79.24</td>
<td>108.97</td>
<td>325.00</td>
<td>-87.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Λευκακικό κέμα</td>
</tr>
<tr>
<td>6TA4</td>
<td>-84.04</td>
<td>-58.70</td>
<td>-60.45</td>
<td>-57.32</td>
<td>-59.57</td>
</tr>
<tr>
<td>8TD54</td>
<td>0.00</td>
<td>-99.62</td>
<td>20.00</td>
<td>0.00</td>
<td>-99.63</td>
</tr>
<tr>
<td>9Τ16(A9)</td>
<td>64.76</td>
<td>-85.55</td>
<td>307.83</td>
<td>600.00</td>
<td>-85.48</td>
</tr>
</tbody>
</table>
Πίνακας 7-7 Βασικές παράμετροι ροής του σεναρίου αλλαγής μεθόδων άρδευσης σε σχέση με το ιστορικό σενάριο αναφοράς

<table>
<thead>
<tr>
<th>Αγωγός</th>
<th>Παροχή (m³/s)</th>
<th>Βάθος ροής (m)</th>
<th>Ταχύτητα (m/s)</th>
<th>Fr. number</th>
<th>Χωρητικότητα</th>
</tr>
</thead>
<tbody>
<tr>
<td>6TA4</td>
<td>0.08</td>
<td>0.00</td>
<td>0.88</td>
<td>0.00</td>
<td>11.43</td>
</tr>
<tr>
<td>8TD54</td>
<td>40.00</td>
<td>9.06</td>
<td>30.59</td>
<td>0.00</td>
<td>8.75</td>
</tr>
<tr>
<td>9T16(A9)</td>
<td>0.79</td>
<td>1.03</td>
<td>4.88</td>
<td>0.00</td>
<td>Λειτουργικό κέμα</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6TA4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8TD54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9T16(A9)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6TA4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8TD54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9T16(A9)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Το Σχήμα 7.24 δείχνει τη διακύμανση του βάθους ροής για τον μήνα Απρίλιο σε τρία επιλεγμένα κανάλια, σύμφωνα με τα σενάρια εναλλακτικής διαχείρισης. Είναι σαφές ότι για όλες τις περιπτώσεις, το σενάριο μείωσης των απωλειών των καναλιών, δημιουργεί τις προϋποθέσεις για μείωση του βάθους ροής, καθώς τα κανάλια υποθέτεται ότι πρέπει να συντηρούνται σωστά (ο συντελεστής Manning μειώνεται). Επιπλέον, η εισαγωγή καλλιέργειας θερμοκηπίου σε ορισμένες περιπτώσεις, όπως για το κανάλι 8T (D54), προκαλεί αύξηση του βάθους ροής. Αυτό μπορεί να εξηγηθεί από τις αυξημένες ανάγκες άρδευσης της τομάτας θερμοκηπίου σχετικά με το βαμβάκι για τον Απρίλιο. Επιπλέον, το σενάριο αλλαγής των μεθόδων άρδευσης επηρεάζει ελαφρώς τις παραμέτρους ροής, καθώς η μεταβολή στην απόδοση μεταφοράς E_d είναι αρκετά χαμηλή (5%) και η παροχή και κατά συνέπεια το βάθος ροής φαίνεται να μην επηρεάζεται ιδιαίτερα.
Σχήμα 7.24 Μεταβολές του βάθους ροής σε επιλεγμένους αγωγούς του δικτύου για α) σταθερή ροή β) επίλυση δυναμικού κύματος (Απρίλιος) (SIRRIMED, 2014)

Από την άλλη πλευρά, η διακύμανση του βάθους ροής για τον μήνα Αύγουστο απεικονίζεται στο Σχήμα 7.25. Για το σενάριο μείωσης των απωλειών των καναλιών, όπως τον Απρίλιο, τα βάθη ροής των καναλιών 9T6 (A9) και 8T (D54) μειώνονται σε σύγκριση με το σενάριο αναφοράς. Για προσομοίωση δυναμικού κύματος, το βάθος ροής τον Αύγουστο μειώνεται και για τα τρία επιλεγμένα κανάλια.
Σχήμα 7.25 Μεταβολές του βάθους ροής σε επιλεγμένους αγωγούς του δικτύου για α) σταθερή ροή β) επίλυση δυναμικού κύματος (Αύγουστος) (SIRIMED, 2014)

Σε αντίθεση με τον Απρίλιο, το σενάριο εισαγωγής της καλλιέργειας θερμοκηπίου δείχνει υψηλότερο βάθος ροής, λόγω των χαμηλότερων απαιτήσεων νερού από το βαμβάκι. Έτσι, το σενάριο αναφοράς και το σενάριο αλλαγής των μεθόδων άρδευσης αναμένεται να έχουν χαμηλότερα βάθη ροής.

Οι πίνακες 7.5, 7.6, 7.7 παρουσιάζουν τις αλλαγές των παραμέτρων ροής των σεναρίων σε σύγκριση με το σενάριο αναφοράς. Οι πιο σημαντικές αλλαγές βρίσκονται στο σενάριο μειωμένων απωλειών, ενώ το σενάριο αλλαγής των μεθόδων άρδευσης δείχνει αμελητέες αλλαγές.
Σχήμα 7.26 Μεταβολές της ταχύτητας ροής σε επιλεγμένους αγωγούς του δικτύου για α) σταθερή ροή β) επίλυση δυναμικού κόμματος (Απρίλιος) (SIRIMED, 2014)

Οι μεταβολές ταχύτητας στους αγωγούς για τα τρία σενάρια φαίνονται στα Σχήματα 7.26 και 7.27. Η ταχύτητα ροής του νερού περιγράφει αποτελεσματικά την κίνηση του νερού. Πολλές φυσικές ιδιότητες ενός ρευστού μπορούν να εκφραστούν μαθηματικά ως προς την ταχύτητα ροής. Για το σενάριο των μειωμένων απωλειών, η ταχύτητα στα πρωτεύουσα και δευτερεύουσα κανάλια αυξάνεται σημαντικά, στις συνθήκες σταθερής ροής. Αυτό εξηγείται από τη μείωση της τριβής ροής που υποδεικνύεται από τον μειωμένο συντελεστή Manning.
Σχήμα 7.27 Μεταβολές της ταχύτητας ροής σε επιλεγμένους αγωγούς του δικτύου για a) σταθερή ροή β) επίλυση δυναμικού κύματος (Αύγουστος) (SIRRIMED, 2014)

Για προσομοίωση δυναμικού κύματος, η ταχύτητα μειώνεται σημαντικά στην κύρια τάφρο 6T (A4), πιθανώς λόγω αλληλεπιδράσεων από τα συντηρημένα πρωτούντα και δευτερεύοντα κανάλια, καθώς ο συντελεστής Manning των κύριων τάφρων δεν είναι σχετικά υψηλός (0,01) (η τριβή είναι χαμηλή).

Από την άλλη πλευρά, η ταχύτητα για τον Αύγουστο φαίνεται στο Σχήμα 7.27. Για συνθήκες σταθερής ροής, η ταχύτητα στην κύρια τάφρο 6T (A4) παραμένει σταθερή, ενώ στα κανάλια 9T16 (A9) και 8T (D54), υπάρχει μια αξιόπιστη αύξηση για το σενάριο ημιμονένων απωλειών, ελαφρά αύξηση για το σενάριο εισαγωγής καλλιέργειας θερμοκηπίου και σταθερή κατάσταση για το σενάριο αλλαγής των μεθόδων άρδευσης.
Για προσομοίωση, η ταχύτητα μειώνεται σε σημαντικό επίπεδο για την κύρια τάφρο 6Τ (A4) και αυξάνεται για το πρωτότυπο κανάλι 9Τ16 (A9).

Όπως και στο σενάριο αναφοράς, ένα πολύ σημαντικό ζήτημα είναι οι εκροές, όπου το νερό μεταφέρεται για άρδευση γεωργικών χωραφιών. Η ανάλυση των εισοδών εκροέων πραγματοποιείται για τυχαία επιλεγμένες εκροές, που βρίσκονται σε διάφορες τοποθεσίες σε όλη την περιοχή της μελέτης. Αυτή η ανάλυση βασίζεται στη σύγκριση του σεναρίου αναφοράς με τα τρία σενάρια υπό μελέτη.

Το Σχήμα 7.28 υποδεικνύει ότι όταν εφαρμόζεται το πραγματικό πρόγραμμα άντλησης του Τοπικού Οργανισμού Εγγείω Βελτιώσεων Πηγαίο, χωρίς έλεγχο του δικτύου (δηλαδή για προσομοίωση συνεχισμένου κύματος), χωρίς ενεργοποίηση των μεριστών, ο όγκος νερού υπερβαίνει τις απαιτήσεις άρδευσης των ο25, ο45 και o10, αλλά δεν αρκεί για τις εξόδους που βρίσκονται στο μεσαίο τμήμα και τις πιο απομακρυσμένες περιοχές του δικτύου άρδευσης. Αυτό ισχύει για τα τρία μελλοντικά σενάρια διαχείρισης και για τους δύο μήνες υπό μελέτη (δηλαδή τον Απρίλιο και τον Αύγουστο). Το σενάριο των μειωμένων απωλειών των καναλιών βελτιώνει τη λειτουργία του δικτύου σε κάποιο βαθμό, δεδομένου ότι το νερό σε αυτό το σενάριο φτάνει στην εκρό Ο105, ωστόσο δεν μπορεί να καλύψει την απαιτούμενη αρδευτική ζήτηση. Επομένως, η σωστή λειτουργία του δικτύου είναι ζωτικής σημασίας για την αειφόρη κατανόμηση των τοπικών υδάτινων πόρων. Άλλο σημαντικό συμπέρασμα είναι ότι η παράχη νερό δεν είναι αρκετή. Ακόμα και όταν οι απώλειες ελαχιστοποιούνται, η παράχη νερού δεν πληροί τις απαιτήσεις άρδευσης νερού στις πιο απομακρυσμένες εκροές.

Αναφέρθηκε προηγουμένως ότι έχει δημιουργηθεί ένα σενάριο αναφοράς και ότι τα τέσσερα μελλοντικά σενάρια εκτελέστηκαν για ένα έτος. Τα αποτελέσματα της προσομοίωσης μοντέλου WEAP έδειξαν ότι η ζήτηση νερού άρδευσης ποικίλλει ανάλογα με το σενάριο αναφοράς (Σχήμα 7.29). Το σενάριο μειωμένων απωλειών όπως αναμενόταν δείχνει μικρότερες ποσότητες νερού. Επίσης, το σενάριο αλλαγής των μεθόδων άρδευσης έχει μειώσει τον απαιτούμενο όγκο νερού.
Σχήμα 7.28 Νερό που μεταφέρεται σε επιλεγμένες εκροές του δικτύου σύμφωνα με τα σενάρια εναλλακτικής διαχείρισης για a) Απρίλιο b) Αύγουστο (προσομοίωση δυναμικού κύματος) (SIRRIMED, 2014)

Από την άλλη πλευρά, το σενάριο της εισαγωγής καλλιέργειας θερμοκηπίου δείχνει ότι η ζήτηση νερού θα αυξηθεί ειδικά κατά τους χειμερινούς μήνες. Αυτό το εύρημα είναι λογικό επειδή η καλλιέργεια θερμοκηπίου απαιτεί νερό κατά τους χειμερινούς μήνες και συνεχίζει να απαιτεί νερό κατά τους ανοιξιατικούς μήνες και τους καλοκαιρινούς αιξάνοντας τον απαιτούμενο όγκο νερού. Οι υπόλοιπες καλλιέργειες χρειάζονται
άρδευση μόνο κατά τους ανοιξιάτικους μήνες και τους καλοκαιρινούς. Ως αποτέλεσμα, η συνολική ετήσια ζήτηση νερού αυξάνεται σημαντικά για το σενάριο εισαγωγής θερμοκηπίου. Τέλος, για το σενάριο του νέου δικτύου του Τ.Ο.Ε.Β Κάρλας, η ζήτηση νερού παραμένει σταθερή καθώς οι περιοχές ζήτησης δεν αλλάζουν. Το αποτέλεσμα αυτού του τελευταίου σεναρίου θα είναι προφανές και θα προσομοιωθεί στην εφαρμογή του συστήματος πληροφοριών της λεκάνης απορροής λίμνης Κάρλας.

8 ΕΦΑΡΜΟΓΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ

Όπως αναφέρθηκε το ΣΠΑ (Σύστημα Πληροφοριών Λεκάνης απορροής) περιλαμβάνει α) το μοντέλο ιδιαίτερου ισοζυγίου του Πανεπιστημίου Θεσσαλίας UTTHBAL (University of Thessaly water BALance model) για τον υπολογισμό του ιδιαίτερου ισοζυγίου και της (κατεύθυνσης) φόρτισης του υπόγειου υδροφορέα β) το μοντέλο ταμειωτήρα/λίμνης του Πανεπιστημίου Θεσσαλίας UTHRL (University of Thessaly Reservoir/Lake model) για την μοντελοποίηση του ταμειωτήρα γ) το ομοίωμα προσομοίωσης λίμνης/υπόγειου υδροφορέα LAK3 (Lake/Aquifer simulation model) και δ) το μοντέλο υπόγειων υδατικών πόρων MODFLOW για την προσομοίωση του υπόγειου υδροφορέα.

8.1 ΥΔΡΟΛΟΓΙΚΟ ΜΟΝΤΕΛΟ UTTHBAL ΣΤΗ ΛΕΚΑΝΗ ΑΠΟΡΡΟΗΣ ΤΗΣ ΛΙΜΝΗΣ ΚΑΡΑΛΑΣ

Το UTTHBAL χρησιμοποιήθηκε για να εκτιμηθεί το επιφανειακό υδατικό δυναμικό στην υδρολογική λεκάνη της Κάραλας, η οποία κατάκαμβανε εμβαδό 1220 km². Η λεκάνη απορροής με βάση το ψηφιακό μοντέλο εδάφους χωρίστηκε σε δύο υψομετρικές ζώνες. Οι υπολογισμοί του μοντέλου έγιναν με μηνιαία βήμα και έδωσαν αποτελέσματα τόσο για το υδρολογικό ισοζύγιο όσο και για την κατεύθυνση στον υπόγειο υδροφορέα.

Στο σημείο αυτό το σκοπός της διατριβής είναι η εκτίμηση της μηνιαίας απορροής με τη χρήση υδρομετεωρολογικών και γεωμορφολογικών δεδομένων όπως επίσης ο καταμετρισμός της απορροής στις δύο ζώνες υψομέτρου. Για το σκοπό αυτό το υδρολογικό μοντέλο ημί-κατανεμήθηκε, προσομοιώνοντας τις διεργασίες του υδρολογικού κύκλου που μεταβάλλονται περιοχικά και χρησιμοποιεί σχετικά λίγες παραμέτρους.

Τα δεδομένα εισόδου και οι υπολογισμένες υδρολογικές παράμετροι (όπως η απορροή, η πραγματική εξατμισική, η φόρτιση του υδροφορέα) ή έξοδοι του μοντέλου χρησιμοποιούνται αδρομερώς για κάθε ζώνη. Το μηνιαίο υδρολογικό ισοζύγιο υπολογίζεται αυτοτελώς για κάθε ζώνη ενώ η απορροή της συνολικής λεκάνης προκύπτει από τα άθροισμα των υπολογισμένων απορροφής των δύο ζώνων. Δεδομένου ότι η έκταση της λεκάνης είναι σχετικά μικρή, όπως προαναφέρθηκε είναι 1220 km², δεν επιβάλλεται διόδειση της απορροφής μέσα στο στοιχείο τμήμα της λεκάνης. Αντίθετα σε πολύ μεγάλες λεκάνες απορροής, όπου η χρονική υστέρηση της απορροφής

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

170
ελήφθησαν για την ανάπτυξη και την επαλήθευση χάρτη της λεκάνης υδρομετεωρολογικής πληροφορίας. Τα στοιχεία γεωγραφικού χαρακτήρα ήταν το DEM (Digital Elevation Model, DEM), που όπως αναφέρθηκε βασίστηκε στις ισοθερμικές καμπύλες των τοπογραφικών κλιμάκων 1:50.000, στον ψηφιακό γεωλογικό χάρτη που προέκυψε από επεξεργασία γεωλογικών χαρτών κλιμάκας 1:50000, στα ισοθερμικά που απεικονίζονται στους τοπογραφικούς χάρτες, στις χρήσεις για τους προκύπτοντας από το CORINE LANDCOVER, και τις ακριβείς τοποθεσίες των βροχομετρικών και μετεωρολογικών σταθμών. Μηνιαία κατέστησε από 12 σταθμών για τη περίοδο Οκτώβριος 1960-Σεπτέμβριος 2002 και μέση μηνιαία θερμοκρασία 26 μετεωρολογικών σταθμών αποτέλεσαν τη βάση υδρομετεωρολογικής πληροφορίας. Ακόμη μηνιαία παροχή από τον σταθμό υδρομετρήσεως του Ταμιευτήρα της Κάρλας ελήφθησαν για την ανάπτυξη και την επαλήθευση του UTHBAL.

Όσον αφορά τη λεκάνη απορροής της λιμνής Κάρλας η μέση κλίση της είναι 11%, το έδαφος είναι σχετικά ομαλό στη πεδινή περιοχή με τις κλίσεις να μη εξερχονται το 5%, ενώ στην ορεινή ζώνη οι κλίσεις μπορούν να φτάσουν το 150%. Το υψόμετρο της λεκάνης εκτείνεται μεταξύ 40-1970 m με τιμή μέσου υψομέτρου τα 230 μ. Κατά τη διαδικασία χωρισμού της λεκάνης σε υψομετρικές ζώνες, έγινε αξιολόγηση των κλίσεων χρησιμοποιώντας το Ψηφιακό Μοντέλο Εδάφους. Δεδομένου ότι το κυρίως τμήμα της περιοχής είναι πεδιάδα, ορίστηκαν δύο κλάσεις υψομέτρου με κριτήριο τα 200 m. Στο Σχήμα 1.2 παρουσιάζονται οι δύο ζώνες Κάρλας (υψηλή ≥ 200 m και πεδινή < 200 m) ενώ παρουσιάζεται και η υπόγεια υδροφορέας της περιοχής μελέτης που εντοπίζεται χαμηλή υψομετρική πεδινή ζώνη.

Τα δεδομένα εισαγωγής στις δύο υψομετρικές ζώνες δημιούργηθηκαν με την εφαρμογή τυπικών μεθοδολογιών που μετατρέπουν τη σημειακή πληροφορία σε εκτακτή. Η μέση επιφανειακή θερμοκρασία δημιούργηθηκε με ανάγωντας τη θερμοκρασία ενός σταθμού στο μέσο όρο υψομέτρου του δυο, χρησιμοποιώντας τη τι μεθοδολογία. Από την άλλη, οι τιμές της μέσης επιφανειακής μηνιαίας βροχόπτωσης από τους βροχομετρικούς σταθμούς της περιοχής δημιουργήθηκαν με Thiessen και ανάγωντας τις τιμές στον μέσο όρο των υψομέτρων του δυο ζώνων.

Η δυνατή εξατμισιοδιανομή υπολογίστηκε με μέθοδο Thornthwaite ενσωματώντας τις επιφανειακές τιμές θερμοκρασίας τον δυο με τη βροχοβαθμίδα.
Σχήμα 8.1 Υψομετρικές ζώνες λεκάνης απορρόής Κάρλας (Υδρομέντωρ, 2015)

8.1.1 Εφαρμογή του υδρολογικού μοντέλου στις δύο ζώνες

Οι 12 παράμετροι του μοντέλου βαθμονομήθηκαν (έξι για κάθε ζώνη) σε σχέση με τις παρατηρημένες τιμές απορρόής στο σημείο εξόδου της τέως λίμνης Κάρλας προς τη θάλασσα. Για τη βελτιστοποίηση των παραμέτρων και την διερεύνηση της απόδοσης των μοντέλων χρησιμοποιήθηκε η μέθοδος χωριστού δείγματος. Οι παράμετροι βελτιστοποιήθηκαν με τη χρήση του αλγόριθμου γενικευμένης ανημένης κλίσης με πολλαπλές εκκίνησεις που ελαχιστοποίησε τις αποκλίσεις ανάμεσα στη παρατηρημένη και προσομοιωμένη απορροή. Η αποδοτικότητα μοντέλου (Eff) χρησιμοποιήθηκε και δίνεται από τον τύπο:

\[
\text{Eff} = \frac{\text{Αποδοτικότητα}}{\text{Αποδοτικότητα μέση}}
\]
Πίνακας 8-1: Γεωμορφολογικά χαρακτηριστικά επιμέρους ζώνων και υδρολογικό ισοζύγιο στην υδρολογική λεκάνη Κάρλας για την περίοδο Οκτ. 1960 - Σεπ. 2009 (Υδρομέντωρ, 2015)
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 8ο: -Εφαρμογή Συστήματος Προσομοίωσης Λεκάνης απορροής-

<table>
<thead>
<tr>
<th>Υδρολογικό Ισοζύγιο</th>
<th>Χαμηλή Ζώνη</th>
<th>Υψηλή Ζώνη</th>
</tr>
</thead>
<tbody>
<tr>
<td>Έκταση (km²)</td>
<td>411.68</td>
<td>808.2</td>
</tr>
<tr>
<td>Μέσο Υψόμετρο (m)</td>
<td>81.5</td>
<td>521.0</td>
</tr>
<tr>
<td>Μέση Ετήσια Θερμοκρασία (°C)</td>
<td>15</td>
<td>12.9</td>
</tr>
<tr>
<td>Μέση Ετήσια Υετόπτωση (mm)</td>
<td>483.3</td>
<td>741.5</td>
</tr>
<tr>
<td>Μέση Ετήσια Δυνητική Εξατμισδιαπνοή (mm)</td>
<td>832.3</td>
<td>735.8</td>
</tr>
<tr>
<td>Μέση Ετήσια Πραγματική Εξατμισδιαπνοή (mm)</td>
<td>413.4</td>
<td>423.0</td>
</tr>
<tr>
<td>Μέση Ετήσια Κατείσδυση (mm)</td>
<td>8.7</td>
<td>239.1</td>
</tr>
<tr>
<td>Μέση Ετήσια Απορροή (mm)</td>
<td>59.6</td>
<td>75.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Υδρολογικά Ετη</th>
<th>Μηνιαία Απορροή (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Παρατηρούμενη Απορροή</td>
<td>Υπολογισμένη Απορροή</td>
</tr>
</tbody>
</table>

Σχήμα 8.2: Υδρογραφήματα προσομοιωμένων και παρατηρούμενων απορροών (Υδρομέντωρ, 2015)
Σχήμα 8.3: Διάγραμμα διασποράς προσομοιωμένων και παρατηρούμενων απορροφών (Υδρομέντωρ, 2015)

Η φυσικοποιημένη απορροή είναι η απορροή που μπαίνει στον ταμιευτήρα της λίμνης Κάρλας και έχει προέλευση μόνο την υδρολογική λεκάνη της Κάρλας. Ωστόσο σύμφωνα με την τεχνική μελέτη, οι πλημμυρικές απολήξεις του Πηνείου ποταμού κατά τη χειμερινή περίοδο (Νοέμβριος-Μάρτιος) θα διοχετεύονται επίσης στον ταμιευτήρα. Οι αντλήσεις θα είναι ίσες με 100 hm³ ισομερώς διαμοιρασμένες στους 5 μήνες (δηλ. 20 hm³ ανά μήνα).

8.2 ΕΚΤΙΜΗΣΗ ΑΠΟΛΗΞΕΩΝ ΤΟΥ Τ.Ο.Ε.Β ΠΗΝΕΙΟΥ ΠΡΟΣ ΤΟΝ ΤΑΜΙΕΥΤΗΡΑ ΤΗΣ ΚΑΡΛΑΣ

Όπως περιγράφηκε το δίκτυο του Τ.Ο.Ε.Β Πηνείου παροχετεύται μέσω τριών αντλιοστάσιων Α’, Ε’ και Β’ που εντοπίζονται δίπλα στον Πηνείο ποταμό. Υφίσταται ακόμα ένα αντλιοστάσιο (Δ’) στη περιοχή της Γυρτόνης με συντεταγμένες X=365928 και Y=4400000 αλλά παραμένει σε αχρηστία. Το σημείο υδροληψίας (B’) βρίσκεται μετά από τη Λάρισα όπως ρέει ο Πηνείος και πριν από το φράγμα της Γυρτόνης. Το A’ δεκατρείς (13) αντλίες παροχής σχεδιασμού 1500 m³/h έκαστο ενώ το E’ οκτώ (8) ιδια
αντλητικά συγκροτήματα. Τα βορειότερο τμήμα της περιοχής αρμοδιότητας του ΤΟΕΒ Πηνείου (Πελιάδα Κάρλας-Λάρης) αρδεύεται με νερά από τον Πηνείο που ταινιώνται σε υδατοδεξαμενές είτε στις αποχετευτικές τάφρους ή τους χειμερινούς μηνες.

Για την πλήρωση των αναγκών του Οργανισμού όπως αναφέρθηκε σε προηγούμενο κεφάλαιο συμβάλλουν 12 αρδευτικοί ταμειεύρες. Αυτοί παροχετεύονται από αντλητικούς σταθμούς Α' και Ε' από μέσα Δεκεμβρίου ως μέσα Μαΐου και θεωρούν τα συνδυασμοί με τις τάφρους το καλοκαίρι για την πλήρωση των αναγκών. Η αποθηκευτικότητα όλων των υδατοδραμαμένων φθάνει τα 20 hm3 ενώ οι χωρητικότητες τους και τα αντλιοστάσια που τους τροφοδοτούν παρουσιάζονται στον Πίνακα 8-2.

Πίνακας 8-2: Τοπικές υδατοδεξαμενές του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνείου (Υδρομέντωρ, 2015)

<table>
<thead>
<tr>
<th>Ονομασία</th>
<th>Αντλιοστάσιο πλήρωσης</th>
<th>Χωρητικότητα (hm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΚΑΛΑΜΑΚΙ 1</td>
<td>Αντλιοστάσιο α</td>
<td>5,5</td>
</tr>
<tr>
<td>ΝΙΑΜΑΤΑ 1</td>
<td>Αντλιοστάσιο α</td>
<td>1,8</td>
</tr>
<tr>
<td>ΠΛΑΤΥΚΑΜΠΟΣ 1</td>
<td>Αντλιοστάσιο α</td>
<td>0,5</td>
</tr>
<tr>
<td>ΕΛΕΥΘΕΡΙΟ 1</td>
<td>Αντλιοστάσιο ε</td>
<td>0,9</td>
</tr>
<tr>
<td>ΔΗΜΗΤΡΑ</td>
<td>Αντλιοστάσιο ε</td>
<td>1</td>
</tr>
<tr>
<td>ΚΑΣΤΡΙ</td>
<td>Αντλιοστάσιο α + ε</td>
<td>1,1</td>
</tr>
<tr>
<td>ΓΛΑΥΚΗ</td>
<td>Αντλιοστάσιο α</td>
<td>2,1</td>
</tr>
<tr>
<td>ΚΑΛΑΜΑΚΙ 2</td>
<td>Αντλιοστάσιο α</td>
<td>2,5</td>
</tr>
<tr>
<td>ΝΙΑΜΑΤΑ 2</td>
<td>Αντλιοστάσιο α</td>
<td>1,1</td>
</tr>
<tr>
<td>ΠΛΑΤΥΚΑΜΠΟΣ 2</td>
<td>Αντλιοστάσιο α</td>
<td>1,45</td>
</tr>
<tr>
<td>ΕΛΕΥΘΕΡΙΟ 2</td>
<td>Αντλιοστάσιο ε</td>
<td>0,8</td>
</tr>
<tr>
<td>ΟΜΟΡΦΟΧΩΡΙ</td>
<td>Αντλιοστάσιο ε</td>
<td>1,25</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Το αντλητικό συγκρότημα της Κάρλας προς το παρόν τροφοδοτεί τη λίμνη κατά την περίοδο από μέσα Δεκεμβρίου ως μέσα Απριλίου με 2.500 m³/h για 15 ώρες/ημέρα. Η κατασκευή του κανονιστήριου αντλιοστασίου θα παροχετεύει τη λίμνη με παροχή ισχυ με 14 m³/sec. Με αυτή την παροχή θα τροφοδοτείται ο ταμειεύρας κατά το χειμώνα και την άνοιξη μέσω αγωγού που αποτελείται κατα σειρά από την Κύρια Διώρυγα 2Δ, τις υφιστάμενες αποχετευτικές τάφρους 6Τ, 7Τ, και 2Τ και τμήμα του Συλλεκτήρα Σ4. Η τροφοδότηση του Ταμειεύρα Κάρλας από τον π. Πηνείο υπολογίζεται σε 80 εκατ. m³ έως 100 εκατ. m³. Στους παρακάτω πίνακες παρουσιάζονται τόσο το πρόγραμμα άντλησης του Τ.Ο.Ε.Β Πηνείου και του αντλιοστασίου της Κάρλας αλλά και οι μέγιστες δυναμικότητες του συστήματος. Τα αντλητικά συγκροτήματα επιχειρούν 18 ωρές/ημέρα για την αρδευτική περίοδο από μέσα Απριλίου ως 15 Σεπτεμβρίου με μέση παροχή αντλίας στα 1.250 m³/h. Ομοίως στη διάρκεια των χειμερινών μηνών την περίοδο από μέσα Δεκεμβρίου ως μέσα Μαΐου δουλεύουν για να παροχετεύουν τις 12 τοπικές.

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

176

Institutional Repository - Library & Information Centre - University of Thessaly
01/11/2023 00:45:21 EET - 35.160.27.221
Διδακτορική Διατριβή: Τζαμπύρας Ιωάννης

Κεφάλαιο 8ο: Εφαρμογή Συστήματος Προσομοίωσης Λεκάνης απορρόής

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

υδατοδεξαμενές 15 ώρες/ημέρα. Το αντλητικό συγκρότημα της Κάρλας παραχωρεί τον ταμιευτήρα της Κάρλας για 15/ημέρα με παροχή 2,500 m³/hr.

Οι μέγιστες δυνατότητες του συστήματος έχουν σχεδιαστεί με παροχή στα 1.500 m³/hr/αντλία. Επίσης όπως αναφέρθηκε η παροχέτευση των ταμιευτήρων γίνεται με 20 hm³.

Ανάλογη είναι και η λειτουργία του αντλητικού συγκρότημα της Κάρλας το οποίο θα παρέχει στον ταμιευτήρα 100 hm³ από μέσα Δεκεμβρίου μέχρι μέσα Απριλίου. Εν συνέπεια, οι απαιτήσεις είναι 111,09 hm³ σε πραγματικές συνθήκες λειτουργίας, ενώ οι σχεδιαστικές δυνατότητες είναι 211,2 hm³ (παροχές σχεδιασμού) για πλήρωση των ανγκών και το γέμισμα της λίμνης της Κάρλας. Ο Πίνακας 2-2 παραθέτει το πραγματικό πρόγραμμα λειτουργίας του Τ.Ο.Ε.Β. Πηνείου ενώ ο Πίνακας 2-3 τις απολύσεις του Τ.Ο.Ε.Β. Πηνείου για την κάλυψη της ζήτησης και την πλήρωση του ταμιευτήρα της Κάρλας σε συνθήκες παροχής σχεδιασμού. Έτσι οι συνολικές απαιτήσεις από τον Πηνείο παραμένει 211,2 hm³ εκ των οποίων τα 100 hm³ είναι απαραίτητα για να λειτουργήσει ο ταμιευτήρας της Κάρλας.

Πίνακας 8-3: Αντλητικό πρόγραμμα του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνείου

<table>
<thead>
<tr>
<th>Αντλιοστάσιο</th>
<th>Α</th>
<th>Β</th>
<th>Ε</th>
<th>ΚΑΡΛΑΣ</th>
<th>Α ταμιευτήρες</th>
<th>Ε ταμιευτήρες</th>
<th>Σύνολο</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ισχύς m³/h</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>3750</td>
<td>6250</td>
</tr>
<tr>
<td>Παροχή m³/h</td>
<td>16250</td>
<td>3750</td>
<td>10000</td>
<td>2500</td>
<td>12500</td>
<td>3750</td>
<td>30750</td>
</tr>
<tr>
<td>Παροχή m³/s</td>
<td>4,51</td>
<td>1,04</td>
<td>2,78</td>
<td>0,69</td>
<td>3,47</td>
<td>1,04</td>
<td>10,04</td>
</tr>
<tr>
<td>Άπρ (hm³)</td>
<td>4,39</td>
<td>1,01</td>
<td>2,70</td>
<td>0,56</td>
<td>0,00</td>
<td>0,00</td>
<td>8,66</td>
</tr>
<tr>
<td>Μάιος (hm³)</td>
<td>8,78</td>
<td>2,03</td>
<td>5,40</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>16,20</td>
</tr>
<tr>
<td>Ιούνιος (hm³)</td>
<td>8,78</td>
<td>2,03</td>
<td>5,40</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>16,20</td>
</tr>
<tr>
<td>Ιούλιος (hm³)</td>
<td>8,78</td>
<td>2,03</td>
<td>5,40</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>16,20</td>
</tr>
<tr>
<td>Αύγ (hm³)</td>
<td>8,78</td>
<td>2,03</td>
<td>5,40</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>16,20</td>
</tr>
<tr>
<td>Σεπ (hm³)</td>
<td>4,39</td>
<td>1,01</td>
<td>2,70</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>8,10</td>
</tr>
<tr>
<td>Οκτ (hm³)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ (hm³)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Δεκ (hm³)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,56</td>
<td>2,81</td>
<td>0,84</td>
<td>4,22</td>
</tr>
<tr>
<td>Ιάν (hm³)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,13</td>
<td>5,63</td>
<td>1,69</td>
<td>8,44</td>
</tr>
<tr>
<td>Φεβ (hm³)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,13</td>
<td>5,63</td>
<td>1,69</td>
<td>8,44</td>
</tr>
<tr>
<td>Ετος</td>
<td>43,88</td>
<td>9,11</td>
<td>27,00</td>
<td>4,50</td>
<td>19,69</td>
<td>5,91</td>
<td>111,09</td>
</tr>
</tbody>
</table>
Πίνακας 8-4: Μέγιστες δυνατότητες του αρδευτικού συστήματος του Τοπικού Οργανισμού Εγγείων Βελτώσεων Πηνείων

<table>
<thead>
<tr>
<th>Αντλιοστάσιο</th>
<th>Α</th>
<th>Β</th>
<th>Ε</th>
<th>ΚΑΡΛΑΣ</th>
<th>Σύνολο</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αντλίες</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ισχύς m³/h</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Παροχή m³/h</td>
<td>19500</td>
<td>4500</td>
<td>12000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Παροχή m³/s</td>
<td>5,42</td>
<td>1,25</td>
<td>3,33</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Απροχή (hm³)</td>
<td>5,265</td>
<td>1,22</td>
<td>3,24</td>
<td>0,00</td>
<td>9,72</td>
</tr>
<tr>
<td>Μάιος (hm³)</td>
<td>10,53</td>
<td>2,43</td>
<td>6,48</td>
<td>0,00</td>
<td>19,44</td>
</tr>
<tr>
<td>Ιούνιος (hm³)</td>
<td>10,53</td>
<td>2,43</td>
<td>6,48</td>
<td>0,00</td>
<td>19,44</td>
</tr>
<tr>
<td>Ιούλιος (hm³)</td>
<td>10,53</td>
<td>2,43</td>
<td>6,48</td>
<td>0,00</td>
<td>19,44</td>
</tr>
<tr>
<td>Αύγ (hm³)</td>
<td>10,53</td>
<td>2,43</td>
<td>6,48</td>
<td>0,00</td>
<td>19,44</td>
</tr>
<tr>
<td>Σεπτ (hm³)</td>
<td>5,265</td>
<td>1,22</td>
<td>3,24</td>
<td>0,00</td>
<td>9,72</td>
</tr>
<tr>
<td>Οκτ (hm³)</td>
<td>0</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ (hm³)</td>
<td>0</td>
<td>0,00</td>
<td>0,00</td>
<td>20,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Δεκ (hm³)</td>
<td>1,55</td>
<td>0,00</td>
<td>0,45</td>
<td>20,00</td>
<td>22,00</td>
</tr>
<tr>
<td>Ιάν (hm³)</td>
<td>3,1</td>
<td>0,00</td>
<td>0,90</td>
<td>20,00</td>
<td>24,00</td>
</tr>
<tr>
<td>Φεβ (hm³)</td>
<td>3,1</td>
<td>0,00</td>
<td>0,90</td>
<td>20,00</td>
<td>24,00</td>
</tr>
<tr>
<td>Μάρ (hm³)</td>
<td>3,1</td>
<td>0,00</td>
<td>0,90</td>
<td>20,00</td>
<td>24,00</td>
</tr>
<tr>
<td>Έτος</td>
<td>63,5</td>
<td>12,15</td>
<td>35,55</td>
<td>100,00</td>
<td>211,20</td>
</tr>
</tbody>
</table>

8.3 ΜΟΝΤΕΛΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΑΜΙΕΥΤΗΡΑ (UTHRL)

Δεδομένον ότι το μαθηματικό υπόβαθρο του μοντέλου έχει περιγραφεί στην παράγραφο 5.1.2 στο σημείο αυτό γίνεται περιγραφή της λειτουργίας και διαχείρισης του ταμιευτήρα που παρουσιάζεται από το επιφανειακό υδατικό δυναμικό της υδρολογικής λεκάνης Κάρλας και μέσω των απολήξεων του Τοπικού Οργανισμού Εγγείων Βελτώσεων Πηνείων. Οι ποσότητες αυτές όπως υπολογίστηκαν στα προηγούμενα στάδια χρησιμοποιούνται ως δεδομένα εισόδου στο μοντέλο λειτουργίας και διαχείρισης του ταμιευτήρα. Το μοντέλο ταμιευτήρα (reservoir operation model) είναι το UTH-Reservoir Lake Model (UTHRL) που είναι έξελιξη του μοντέλου ταμιευτήρα που έχει προταθεί από τους Loukas et al. (2007).

Για τον ταμιευτήρα της Κάρλας οι υπόγειες διαφυγές υπολογίστηκαν με βάση τη μέλετη κατασκευής του ταμιευτήρα και στη συνέχεια διορθώθηκαν αφότου προσομοιώθηκε η υδραυλική συστήματος ταμιευτήρα-υπόγειου υδροφορέα. Ετσι, οι μέσες ετήσιες διαφυγές του ταμιευτήρα ανέρχονται στα 18 hm³. Τα δεδομένα εισόδου του μοντέλου είναι οι μηνιαίες εκροές και απώλειες ενώ η έξοδος είναι οι εκροές από τον ταμιευτήρα. Η επιφανειακή απορροή προέρχεται από το UTHBAL, η εισβολή από τον ταμιευτήρα από τη μελέτη απαιτούμενων έργων για την τροφοδότηση της λίμνης Κάρλας από τον ποταμό Πηνείο και οι απολήξεις για άρδευση από τη μελέτη έργων μεταφοράς και διανομής νερού λίμνης Κάρλας.
Το υδατικό ισοζύγιο του ταμειωτήρα της λίμνης Κάρλας εκτιμήθηκε με μηνιαίο βήμα για την περίοδο από Οκτώβριο 1960 μέχρι Σεπτέμβριο 2009 και τα αποτελέσματα παρουσιάζονται στη συνέχεια.

Οι περιβαλλοντικοί όροι του έργου ορίζουν ότι την ανώτατη στάθμη λειτουργίας στο +48,80 m, που μεταφράζεται σε 141.14 hm³. Από την άλλη η πιο χαμηλή στάθμη λειτουργίας ορίζεται στο +46,40 m, που μεταφράζεται σε 57.01 hm³. Εφόσον ικανοποιούνται οι δύο αυτές συνθήκες καθίσταται δυνατή απόληψη ποσότητας νερού 46 hm³ ετησίως. Η λίμνη παροχετεύεται:

- Μέσω των ομβρίων υδάτων της ύδρολογικής λεκάνης. Τα νερά της ορεινής ζώνης λεκάνης θα συλλέγονται από τους συλλέκτηρες Σ3, Σ4, Σ6 και Σ7 και τα νερά της πεδινής ζώνης θα στελνούνται στον ταμειωτήρα με τα αντλιοστάσια DP1 και DP2. Συνολική ετήσια απορροφή: 20-35 hm³
- Μέσω απ' ευθείας βροχόπτωσης στη λίμνη. Ετήσια απορροφή: 15-19 hm³
- Μέσω των χειμερινών υδάτων του Πηνειού, προερχόμενα από το ποτάμι και μεταφερόμενα διά φυσικής ροής στον ταμειωτήρα, από τη διώρυγα 2Α, τις τάφρους 6Τ και 2Τ και του συλλέκτηρα Σ4. Η απόληψη υδάτων/έτος από τον Πηνειό προβλέπεται να φτάσει μέχρι 80 hm³.

Το σύνολο των απολείψεων - απολήψεων νερού πρόκειται να είναι:

- Υδατικές ποσότητες υπόγειων διαφυγών 18 hm³
- Υδατικές ποσότητες που εξατμίζονται 38 hm³
- Υδατικές ποσότητες αρδεύσεων 925000 στρ.

8.3.1 Προσομοίωση λειτουργίας ταμειωτήρα

Δεδομένου ότι ο ταμειωτήρας αρχίζει να λειτουργεί το 2012, το UTHRL προσομοιώνει τον ταμειωτήρα από το 2012 μέχρι το 2044 με χρήση των ιστορικών δεδομένων της περιόδου Οκτ. 1960 – Σεπ. 2009. Η απορροφή της λίμνης από τις λεκάνες που αρδεύονται από τον Τοπικό Οργανισμό Εγγειον Βελτιώσεων Πηνειού, προέρχεται από το μοντέλο UTHBAL, η άμεση βροχόπτωση προκύπτει αφού αναχθεί η βροχόπτωση της χαμηλής ζώνης στο υψόμετρο της λίμνης και οι εισροές από τον Πηνειό ελαχιστοποιήθηκαν. Οι δύο βασικοί περιορισμοί είναι:

- Ο όγκος να είναι πάνω από 57.01 hm³ τιμή η οποία μεταφράζεται στο οικολογικό όριο της στάθμης +46.4 m, όπως προκύπτει από τους περιβαλλοντικούς όρους.
- Οι αντλήσεις από τον Πηνειό να ελαχιστοποιηθούν. Η αντλούμενη από τον Πηνειό ποσότητα να είναι η λιγότερη δυνατή και το ίδιο να ισχύει για την υπερχύλιση.

Το σύνολο των εισροών συνίσταται στις ποσότητες της εξάτμισης για την υδάτινη επιφάνεια του ταμειωτήρα έκτασης 32000 στρ., των αρδευτικών απολήψεων σισόν με 46 hm³ τον χρόνο, και των διαφυγών, που ενώ αρχικά θεωρήθηκαν 20 hm³ τον χρόνο.
στη συνέχεια προσαρμόστηκαν σε αυτές που προκύπτουν από το ΛΑΚ3, που είναι 18 hm3 τον χρόνο, όπως παρουσιάζεται μετέπειτα.

Στο Σχήμα 8.4 απεικονίζονται οι μηνιαίοι όγκοι της λίμνης για τη διαχειριστική περίοδο, όπως προκύπτει από το ΥΔΡΜΕΝΤΩΡ και οι μηνιαίες τιμές ύψους βροχόπτωσης για τη λεκάνη απορροής Κάρλας. Εύκολα μπορεί κανείς να διαπιστώσει τη σχέση εξάρτησης ανάμεσα στις δύο αυτές παραμέτρους. Από την άποψη του μελετητή ο ταμιευτήρας κατασκευάστηκε πέραν των άλλων λόγω όπως προκύπτει από την ΥΔΡΜΕΝΤΩΡ και για το λόγο αυτό κατασκευάστηκαν οι συλλεκτήρες και οι τάφροι που κατευθύνουν την απορροή όλης της λεκάνης απορροής εντός αυτού. Στο Σχήμα 8.5 παρατίθενται οι ετήσιες εισροές και εκροές του ταμιευτήρα.

Σχήμα 8.4: Γράφημα υδατού όγκου - βροχόπτωσης κατά τη διάρκεια της περιόδου 2012-2044 (Υδρομέντωρ, 2015)

Σχήμα 8.5: Γράφημα εισροών - εκροών κατά τη διάρκεια της περιόδου 2012-2044 (Υδρομέντωρ, 2015)
8.4 ΠΡΟΣΟΜΟΙΩΣΗ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ

Ο μαθηματικός κώδικας MODFLOW του εμπορικού προγράμματος GMS χρησιμοποιήθηκε για να προσομοιωθεί ο υπόγειος υδροφόρεας της υδρολογικής λεκάνης της Κάρλας (Σχήμα 8.6). Για να επιτευχθεί η προσομοίωση χρειάστηκε να καθοριστούν:

η γεωμετρία του υπόγειου υδροφόρεα
οι οριακές συνθήκες
οι εισροές και εκροές
οι υδρογεωλογικοί παράμετροι
οι αρχικές συνθήκες

Σχήμα 8.6: Υδρολογική λεκάνη Κάρλας (Υδρομέντωρ, 2015)

8.4.1 Γεωμετρία του υπόγειου υδροφόρεα και κατάρτιση του καννάβου
Στην υδρολογική λεκάνη της Κάριλας υπάρχουν τρεις σχηματισμοί υδροφορίας: αυτοί των αργυροαμμώδεων λιμανιών αποθέσεων, των αδρομερών προσχώσεων και κορημάτων και των μαρμάρων. Μέσα στους ανωτέρω υδροφόρους σχηματισμούς, διαμορφώνονται οι τρεις κύριοι υδροφόροι ορίζοντες που περιγράφονται:

α) Ο πρώτος από αργυροαμμώδεις λιμανιές αποθέσεις
β) Ο δεύτερος από αδρομερείς κροκαλολατυπογείς αποθέσεις και
γ) ο καρστικός από μάρμαρα.

Η υδραυλική επικοινωνία μεταξύ των δύο πρώτων είναι ικανοποιητική και αντίστοιχα η υδραυλική επικοινωνία του δευτέρου με τον τρίτο πολύ μικρή, γεγονός που επέτρεψε υπολογιστικά οι δύο πρώτοι να θεωρηθούν ένα υδροφόρο στρώμα και να προσομοιωθούν με αυτό τον τρόπο χωρίς να ληφθεί υπόψη ο τρίτος. Ο τρόπος αυτός της προσομοίωσης υποστηρίζεται και από το γεγονός ότι οι χαιδευμένες αρδευτικές γεωτρίες δεν φτάνουν μέχρι το βάθος των μαρμάρων, οπότε το τελικό αποτέλεσμα της προσομοίωσης δεν επιπρέπει. Το ανάγλυφο της περιοχής προέκυψε από το ΨΜΕ της περιοχής που δημιουργήθηκε και υπήρχε στη γεωγραφική βάση δεδομένων του συστήματος. Ο επιτυχής καθορισμός του πλέγματος προϋπόθετε τη βέλτιστη αντιστοίχιση με το υδρολογικό μοντέλο UTHBAL και τον ελέγχο της πυκνότητας των πηγαδιών.

Σε ορισμένες περιοχές νότια και νοτιοδυτικά η πυκνότητα των πηγαδιών ήταν αρκετά μεγάλη (αποστάσεις μεταξύ των πηγαδιών μικρότερες των 100 m) με αποτέλεσμα την αύξηση της πύκνωσης του καννάβου (κελι διάστασης 100x100 m). Σε αντίθεση με αυτό, το υδρολογικό μοντέλο στην κατανεμημένη της μορφή έχει κελι διαστάσεων 1 km x 1 km, γεγονός που επιτρέπει την αραιώση του καννάβου. Ωστόσο διερευνήθηκαν τρεις περιπτώσεις: i) 100 m X 100 m, ii) 200 m X 200 m και iii) 400 m X 400 m. Η ρύθμιση θεωρήθηκε και για τις τρεις επιλογές ικανοποιητική, ωστόσο λόγω υπολογιστικού χρόνου η πρώτη επιλογή (100 m X 100 m), η τρίτη επιλογή (400 m X 400) θεωρήθηκε αρκετά αραιή όπου επιλέχθηκε η δεύτερη επιλογή (200 m X 200 m). Προέκυψε λοιπόν κάνναβος 12500 κελιών με διάσταση 200 m X 200 m.

8.4.2 Οριακές συνθήκες

Στο ανατολικό όριο ΑΒ ενώ εντοπίζονται καρστικοί σχηματισμοί υπήρξαν διαφορές στις παρατηρήσεις στάθμης όπως αυτό υποδηλώνει την ανωπάρξη υδραυλικής επικοινωνίας μεταξύ του κοκκώδη υδροφόρεα και των καρστικών σχηματισμών. Η οριακή συνθήκη τύπου Newman στην ανατολική και νοτιοανατολική οριογραμμή του υπόγειου υδροφόρεα θεωρείται η πιο σωστή επιλογή.

8.4.3 Ανάλυση εισροέων και εκροέων υπογείων υδροφορεών

Το μεγαλύτερο μέρος των εισροέων προέρχεται από την κατείσδυση, την βροχόπτωση. Η οποία έχει εκτιμηθεί απο το υδρολογικό μοντέλο UTHBAL, το οποίο δείχνει την πλήρη κατείσδυση. Προέρχονται από το LAK3 το οποίο παρουσιάζεται από την άρδευση συνυπολογίστηκε στο συνολικό ύψος κατείσδυσης (10 % της άρδευσης). Η άντληση αποτελεί τη σημαντικότερη εκροή του υπόγειου υδροφορέα. Είναι πλέον αποδεκτό ότι η υπερβολική αντλία του υπόγειου υδροφορεών της Κάρλας για την πλήρωση των νεφρικών εναγωγών προκάλεσε την σημαντική υποβάθμιση αυτού του υδατικού πόρου. Οι υδατικές ανάγκες της λεκάνης απορροής και το τρόπο υπολογισμού τους περιγράφονται σε μεταγενέστερο κεφάλαιο. Δεδομένου ότι υπόγειος υδροφόρας, ένα μελέτη της παρουσιάζεται αρκετές ιδιαιτερότητες στο σχήμα 8.7.
Σχήμα 8.7: Υπόγειος υδροφορέας Κάρλας

8.4.4 Υδρογεωλογικές παράμετροι

Η γεωστατιστική μέθοδος Simple Kriging χρησιμοποιήθηκε για την προσομοίωση της υδραυλικής αγωγιμότητας, με την προϋπόθεση ότι το πεδίο τιμών της είχε μετατραπεί σε λογαριθμικό ώστε να υπάρχει συμφωνία με την αρχή της στασιμότητας του πεδίου.
Η μέθοδος βασίστηκε σε 15 πηγάδια παρατήρησης τα οποία παρουσιάζονται στο σχήμα 8.7 ενώ στον πίνακα 8.5.

Πίνακας 8-5: Δειγματοληπτικές μετρήσεις υδραυλικής αγωγιμότητας (Υδρομέντωρ, 2015)

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Γεώτρηση</th>
<th>Χ</th>
<th>Υ</th>
<th>Θέση</th>
<th>Κ(m/sec)</th>
<th>Κ(m/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PZ7</td>
<td>642281.7</td>
<td>4391852.7</td>
<td>Νεοχώρι</td>
<td>1.53163E-06</td>
<td>0.1323</td>
</tr>
<tr>
<td>2</td>
<td>AD11</td>
<td>636705.3</td>
<td>4382398.7</td>
<td>Μόδεστος</td>
<td>2.14928E-06</td>
<td>0.1857</td>
</tr>
<tr>
<td>3</td>
<td>AD15</td>
<td>653522.2</td>
<td>4370389.9</td>
<td>Κάρλα</td>
<td>5.18989E-06</td>
<td>0.4483</td>
</tr>
<tr>
<td>4</td>
<td>AG12</td>
<td>636100</td>
<td>4389500</td>
<td>Πλατύκαμπος</td>
<td>2.59884E-07</td>
<td>0.0225</td>
</tr>
<tr>
<td>5</td>
<td>SR66</td>
<td>646465.4</td>
<td>4378039.3</td>
<td>Νίκη</td>
<td>2.00803E-07</td>
<td>0.0173</td>
</tr>
<tr>
<td>6</td>
<td>SR43</td>
<td>643202</td>
<td>4370724</td>
<td>Κοκκίνας</td>
<td>4.04676E-07</td>
<td>0.0350</td>
</tr>
<tr>
<td>7</td>
<td>SR32</td>
<td>637576.8</td>
<td>4375595.9</td>
<td>Κυψέλη</td>
<td>7.07214E-06</td>
<td>0.6110</td>
</tr>
<tr>
<td>8</td>
<td>SR31</td>
<td>640758</td>
<td>4376506</td>
<td>Νίκη</td>
<td>8.64242E-07</td>
<td>0.0747</td>
</tr>
<tr>
<td>9</td>
<td>SR30</td>
<td>632522.3</td>
<td>4380364</td>
<td>Χάλκη</td>
<td>3.95257E-06</td>
<td>0.3415</td>
</tr>
<tr>
<td>10</td>
<td>AG14</td>
<td>644246</td>
<td>4376506</td>
<td>Καλαμάκι</td>
<td>8.64242E-07</td>
<td>0.0747</td>
</tr>
<tr>
<td>11</td>
<td>SR65</td>
<td>652000</td>
<td>4379250</td>
<td>Κοκκίνας</td>
<td>1.10375E-05</td>
<td>0.9536</td>
</tr>
<tr>
<td>12</td>
<td>SR78</td>
<td>646900</td>
<td>4372300</td>
<td>Αρμένι</td>
<td>8.52152E-06</td>
<td>0.7363</td>
</tr>
<tr>
<td>13</td>
<td>SR79</td>
<td>656400</td>
<td>4370100</td>
<td>Γωνία Ταμιευτ.</td>
<td>8.93495E-06</td>
<td>0.7720</td>
</tr>
<tr>
<td>14</td>
<td>SR61</td>
<td>662200</td>
<td>4372300</td>
<td>Κανάλια</td>
<td>8.37851E-06</td>
<td>0.7239</td>
</tr>
<tr>
<td>15</td>
<td>SR63b</td>
<td>652600</td>
<td>4364806</td>
<td>Ριζόμυλος</td>
<td>3.55872E-06</td>
<td>0.3075</td>
</tr>
</tbody>
</table>

Η εύρεση του βέλτιστου ημιβαριογράμματος προήλθε από τη ρύθμιση του μοντέλου υπόγειας ροής. Μέσω των 15 δειγματοληπτικών μετρήσεων της υδραυλικής αγωγιμότητας ρυθμίστηκε το μοντέλο υπόγειας ροής με γεωστατιστική παρεμβολή των τιμών αυτών στα κελιά του καννάβου και με την προϋπόθεση να υπάρχει η βέλτιστη σύγκλιση μεταξύ προσομοιωμένης και παρατηρημένων τιμών. Η μέθοδος γεωστατιστικής προσέγγισης στηρίζεται στο βέλτιστο ημιβαριογράμμα. Οπότε η ανάπτυξη του ημιβαριογράμματος αλλά και τη ρύθμιση του μοντέλου αντιμετώπισαν ως εννιαίο σύστημα. Ο κάνναβος που χρησιμοποιήθηκε σε αυτή τη διαδικασία είναι αντίστοιχος με αυτόν του μοντέλου υπόγειας ροής (12500 κελιά διάστασης 200 m Χ 200 m).
8.4.5 Αρχικές συνθήκες

Ο καθορισμός των αρχικών συνθηκών χρησιμοποιήθηκαν 24 πηγάδια παρατήρησης (τιμές για την αρχή του 1987) τα οποία παρουσιάζονται στον πίνακα 8.6. Το έτος 1987 αποτελεί σημείο καμπύλης όσον αφορά τη στάθμη του υπόγειου υδροφόρεα αφού από εκείνο το έτος και μετά αρχίζει να διαφαίνεται μια πτωτική τάση στη στάθμη. Επιπλέον είναι ένα από τα λίγα έτη για τα οποία υπάρχει συστηματικό αρχείο παρακολούθησης της στάθμης. Ωστόσο και στην περίπτωση της υδραυλικής αγωγιμότητας έγινε χωρική παρεμβολή (Simple Kriging) τα αποτελέσματα της οποίας παρουσιάζονται στο σχήμα 8.9.
Πίνακας 8-6: Θέσεις και στάθμες των πηγαδιών παρατήρησης

<table>
<thead>
<tr>
<th>Πηγάδι</th>
<th>X</th>
<th>Y</th>
<th>Αρχικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6L</td>
<td>637874</td>
<td>4394211</td>
<td>52.82</td>
</tr>
<tr>
<td>LB10</td>
<td>649089</td>
<td>4371386</td>
<td>48.93</td>
</tr>
<tr>
<td>AD14</td>
<td>653522.3</td>
<td>4370390</td>
<td>40.8</td>
</tr>
<tr>
<td>SR63a</td>
<td>652594.2</td>
<td>4364801</td>
<td>34.68</td>
</tr>
<tr>
<td>AG17a</td>
<td>649002</td>
<td>4366046</td>
<td>59.82</td>
</tr>
<tr>
<td>PZ15</td>
<td>650170.5</td>
<td>4372364</td>
<td>40.62</td>
</tr>
<tr>
<td>AG14</td>
<td>644246</td>
<td>4376506</td>
<td>51.66</td>
</tr>
<tr>
<td>SR43</td>
<td>643202</td>
<td>4370724</td>
<td>64.4</td>
</tr>
<tr>
<td>SR32</td>
<td>637576.8</td>
<td>4375596</td>
<td>68.35</td>
</tr>
<tr>
<td>SR31</td>
<td>640758.1</td>
<td>4378887</td>
<td>58.33</td>
</tr>
<tr>
<td>PZ67</td>
<td>641486</td>
<td>4380913</td>
<td>54.2</td>
</tr>
<tr>
<td>402</td>
<td>650046.8</td>
<td>4381276</td>
<td>43.69</td>
</tr>
<tr>
<td>SR66</td>
<td>646465.5</td>
<td>4378039</td>
<td>39.8</td>
</tr>
<tr>
<td>PZ50</td>
<td>638888</td>
<td>4387371</td>
<td>53.12</td>
</tr>
<tr>
<td>P17L</td>
<td>631492</td>
<td>4383752</td>
<td>67.52</td>
</tr>
<tr>
<td>PZ7</td>
<td>642281.8</td>
<td>4391853</td>
<td>56.5</td>
</tr>
<tr>
<td>SR30</td>
<td>632522.3</td>
<td>4380364</td>
<td>72.95</td>
</tr>
<tr>
<td>AD11</td>
<td>636705.3</td>
<td>4382399</td>
<td>59.9</td>
</tr>
<tr>
<td>PZ68</td>
<td>645376.4</td>
<td>4367725</td>
<td>71.77</td>
</tr>
<tr>
<td>E3</td>
<td>654937</td>
<td>4361328</td>
<td>47.98</td>
</tr>
<tr>
<td>LB202</td>
<td>653280</td>
<td>4378456</td>
<td>34.25</td>
</tr>
<tr>
<td>PZ65</td>
<td>660104.5</td>
<td>4373872</td>
<td>27.78</td>
</tr>
<tr>
<td>PZ45</td>
<td>644182</td>
<td>4382225</td>
<td>41.08</td>
</tr>
<tr>
<td>PZ64</td>
<td>657371.6</td>
<td>4375602</td>
<td>32.45</td>
</tr>
</tbody>
</table>

Σχήμα 8.9: Αρχικά υδραυλικά ύψη για το μοντέλο υπόγειας ροής (Υδρομέντωρ, 2015)
8.4.6 Ρύθμιση μοντέλου MODFLOW

Το μοντέλο MODFLOW ρυθμίστηκε για μια περίοδο 10 χρόνων (1987-1997) με βάση την υδραυλική αγωγιμότητα. Επίσης χρησιμοποιήθηκαν παρατηρημένα υδραυλικά ύψη από τα 24 πηγάδια παρατήρησης του πίνακα 8.6. Η αντικειμενική συνάρτηση της υπορουτίνας PEST (Doherty, 2010) του GMS χρησιμοποιήθηκε με ακρίβεια την μικρότερη δυνατή απόκλιση παρατηρημένης και προσωμοιωμένης τιμής υδραυλικού ύψους. Έγινε ανάλυση ευαισθησίας η οποία στηρίχτηκε στο αρχικό θεωρητικό υδραυλικό γράμμα, στη συνέχεια παρεμβάλεται χωρικά η υδραυλική αγωγιμότητα και εισάγεται στο MODFLOW με εκτέλεση της υπορουτίνας PEST. Η διαδικασία εισήγαγε νέες τιμές του παραμέτρου (στις 15 θέσεις δειγματοληψίας) ως συνθήκη ικανοποίησης της αντικειμενικής συνάρτησης. Στο σχήμα 8.9 παρουσιάζεται το διάγραμμα διασποράς.

Σχήμα 8.10: Διάγραμμα διασποράς προσωμοιωμένου και παρατηρημένου υδραυλικού ύψους (Υδρομέντερ, 2015)
8.4.7 Προσομοίωση υδραυλικής επικοινωνίας υπόγειου υδροφορέα-ταμιευτήρα

Η υδραυλική επικοινωνία του ταμιευτήρα-υπόγειου υδροφορέα προσομοίωθηκε σε μηνιαίο βήμα με το LAK3. Αρχικά η μέση ετήσια εκτίμηση του κατασκευαστή του ταμιευτήρα (20 hm³) σχετικά με τις διαφορές χρησιμοποιήθηκε για να τρέξει το μοντέλο υπόγειας ροής δεδομένου ότι LAK3 είναι υπορούντα του MODFLOW. Στη συνέχεια έγινε διόρθωση με τα αποτελέσματα των μηνιαίων διαφυγών που προκύπτουν από το LAK3.

Οι μηνιαίες εισρέες και εκρέες αποτελούν τα δεδομένα εισόδου ενώ οι μηνιαίες υπόγειες διαφυγές είναι το αποτέλεσμα. Το μοντέλο έχει είσοδο τις μηνιαίες εισρέες και εκρέες του ταμιευτήρα και εκτίμηση τις μηνιαίες υπόγειες διαφυγές. Η απορροή και η βροχόπτωση προέρχονται από το υδρολογικό μοντέλο UTHBAL και οι εισρέες από τον ταμιευτήρα από τις αναφορές της μελέτης απαιτούμενων έργων για την τροφοδότηση της λίμνης Κάρλας από τον ποταμό Πηνειό. Το μοντέλο UTHRL παρέχει εκτιμήσεις της εξάτμισης ενώ η «μελέτη έργων μεταφοράς και διανόμης νερού λίμνης Κάρλας» τις απολήγεις για άρδευση. Η ρύθμιση του μοντέλου έγινε με βάση το λόγο της κατακόρυφης υδραυλικής αγωγιμότητας του πυθμένα της λίμνης προς το βάθος, καθορίζοντας τις μηνιαίες διαφυγές. Η πιστιποιήση του μοντέλου έγινε για 10 χρόνια (1987-1997) αντίστοιχα με το MODFLOW στηριζόμενη στις μηνιαίες τιμές στάθμης του ταμιευτήρα. Πραγματοποιήθηκε για τη «μη πραγματική» δεκαετία 1987-1997 με βάση της μηνιαίας στάθμης του ταμιευτήρα. Στο σχήμα 4.1 παρουσιάζεται διάγραμμα της διαφοράς των προσομοιωμένων και παρατηρούμενων τιμών. Ο συντελεστής προσδιορισμού είναι ίσος με 0.7805 και ενώ αρχικά παρατηρείται απόκλιση των τιμών της στάθμης, στο τελευταίο διάστημα της προσομοίωσης παρατηρείται σύγκλιση των τιμών. Το γεγονός αυτό είναι φυσιολογικό δεδομένου ότι υπάρχει μια περίοδος προσαρμογής εισόδου επιτευχθεί η ρύθμιση του μοντέλου. Η παράμετρος υπολογίστηκε ισχύ με $Kz/\Delta l = 2.79*10^{-6}$ 1/d.
8.5 ΔΙΑΧΕΙΡΙΣΤΙΚΟ ΜΟΝΤΕΛΟ WEAP

Οι εφαρμογές WEAP περιλαμβάνουν γενικά πολλά βήματα. Ο ορισμός της μελέτης καθορίζει το χρονικό πλαίσιο, το χωρικό όριο, τα στοιχεία του συστήματος και τη διαμόρφωση του προβλήματος. Τα διάφορα τρεξίματα παρέχουν ένα σενάριο των πραγματικών αναγκών νερού, φορτίων ρύπανσης, πόρων και προμηθειών για το σύστημα. Εναλλακτικά σύνολα μελλοντικών υποθέσεων βασίζονται σε πολιτικές, κόστος, τεχνολογική ανάπτυξη και άλλως παράγοντες που επηρεάζουν διάφορους τομείς όπως τη ζήτηση, της ρύπανσης, της προσφοράς και της υδρολογίας. Τα σενάρια κατασκευάζονται αποτελούμενα από εναλλακτικά σύνολα υποθέσεων ή πολιτικών. Τέλος, τα σενάρια αξιολογούνται σε σχέση με την διαθεσιμότητα νερού, το κόστος και τα κέρδη, τη συμβατότητα με περιβαλλοντικούς στόχους και την ευαισθησία στην αβεβαιότητα σε βασικές μεταβλητές.

Τα γεωγραφικά όρια της υδρολογικής λεκάνης εισάγονται από το σύστημα γεωγραφικών πληροφοριών και τη συμπεριφερόμενη τη μεταφορά στο μοντέλο WEAP (Σχήμα 8.12). Οι κόμβοι ζήτησης νερού (εκροές στο μοντέλο Technologismiki) είναι πολυάρθιμοι και δεν μπορούν να εισαχθούν στο μοντέλο WEAP. Δεδομένου ότι το μοντέλο WEAP χρησιμοποιείται μόνο για τη διαχείριση των υδάτινων πόρων, ένας σύνδεσμος μεταφοράς περιλαμβάνει έναν σχετικά μεγάλο τομέα της περιοχής. Αυτό σημαίνει ότι ένας κόμβος ζήτησης στο μοντέλο WEAP ισούται με ένα αντιλοπτάσιμο στο μοντέλο

Σχήμα 8.11: Σύγκλιση προσομοιωμένης και παρατηρημένης στάθμης ταμιευτήρα

Institutional Repository - Library & Information Centre - University of Thessaly
01/11/2023 00:45:21 EET - 35.160.27.221
Τεχνολογισμική και η υπολογισμένη ζήτηση νερού τοποθετείται αθροιστικά σε κάθε κόμβο ζήτησης του μοντέλου WEAP. Δύο βασικά στοιχεία τροφοδοσίας στο μοντέλο WEAP είναι ο ποταμός Πηνειός που τροφοδοτεί τις περιοχές 1, 2, 3 και τις ιπτάμενες περιοχές του επιφανειακού δικτύου και ο υπόγειος υδροφορέας της Κάρλας που τροφοδοτεί τις ζώνες άρδευσης ένα έως εξά. Αναφέρθηκε προηγουμένως ότι τα τρία αντλία αδειοποιούνται ως θέσεις ζήτησης στο μοντέλο WEAP. Ο ταμιευτήρας δεν είναι ενεργός για το σενάριο αναφοράς στο μοντέλο WEAP και τις αντίστοιχες ζώνες άρδευσης στα νοτιοδυτικά του υπόγειου υδροφορέα. Ενεργοποιούνται μόνο σε ένα από τα τέσσερα διαχειριστικά σενάρια επιπτώσεων (τα σενάρια αναλύονται σε επόμενο κεφάλαιο).

Σε κάθε περιοχή ζήτησης, προσδιορίζονται διάφορα χαρακτηριστικά της χρήσης νερού, όπως το ετήσιο επίπεδο δραστηριότητας της περιοχής (το οποίο στην περίπτωση μας ήταν τα γεωργικά σε εκτάρια), το ετήσιο ποσοστό χρήσης νερού ανά μονάδα δραστηριότητας και τη μηνιαία διακύμανση της ετήσιας ζήτησης νερού.

![Diagram](image_url)

Σχήμα 8.12: Διαχειριστικό μοντέλο WEAP για τη λεκάνη απορροής Κάρλας

Όσον αφορά τους συνδέσμους μεταφοράς, ορίστηκαν διάφοροι κανόνες σύνδεσης, όπως ο μέγιστος όγκος ροής λόγω φυσικής χωρητικότητας, συμβατικών ή άλλων περιορισμών και το ποσοστό αυτού συγκριτικά με το σύνολο της ζήτησης. Από την άλλη πλευρά, οι ταμιευτήρες απαιτούν πιο λεπτομερή δεδομένα εισόδου, όπως η χωρητικότητα αποθήκευσης, η αρχική αποθήκευση που είναι η αποθήκευση στην αρχή της προσομοίωσης, η καμπύλη ανύψωσης όγκου που είναι η σχέση μεταξύ όγκου και
ανύψωσης, η μέγιστη υδραυλική εκροή λόγω υδραυλικών περιορισμούς και φυσικά η προτεραιότητα της ζήτησης. Όλα αυτά τα δεδομένα εισήχθησαν στο μοντέλο WEAP και αναπτύχθηκε το βασικό έτος των προσομοίωσεων. Ωστόσο, κατά τη διάρκεια του σταδίου ανάλυσης σεναρίων όλα τα δεδομένα εισόδου θα υπολογίζονται εκ νέου σε μηνιαία και ετήσια βάση για τη συγκεκριμένη σεζόν ανάλογα με το σενάριο.

Σχήμα 8.13: Αποτελέσματα του μοντέλου WEAP για τη λεκάνη απορροής Κάρλας
Σχήμα 8.14: Μηνιαία διακύμανση της χρήσης νερού

Είναι σαφές ότι για όλες τις περιοχές ζήτησης οι απαιτήσεις άρδευσης ξεκινούν τον Απρίλιο και διαρκούν μέχρι τον Σεπτέμβριο, όπως σε ένα τυπικό έτος άρδευσης στην Ελλάδα. Ετσι, η ζήτηση νερού του συστήματος ακολουθεί την ίδια διακύμανση των συστατικών του όπως φαίνεται στο σχήμα 8.14. Είναι προφανές ότι η περίοδος από τον Μάιο έως του Αύγουστο είναι πολύ κρίσιμη. Το μοντέλο WEAP περιγράφει την πραγματική κατάσταση όπου το μεγαλύτερο μέρος της ζήτησης νερού καλύπτεται από τον υπόγειο υδροφορέα.
9 ΕΚΤΙΜΗΣΗ ΤΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ ΙΣΤΟΡΙΚΗΣ ΠΕΡΙΟΔΟΥ

Στο σημείο αυτό πραγματοποείται ο υπολογισμός των υδατικών απαιτήσεων για την περίοδο βάσης 1980-2000. Επειδή πρόκειται για μια σύνθετη διαδικασία η οποία εμπλέκει τόσο το γεωγραφικό σύστημα πληροφοριών όσο και τη βάση τηλεπικοινωνίας, χρήζει ιδιαίτερης σημασίας να υπενθυμιστεί ότι τα γεωγραφικά όρια των εξυπηρετούμενων περιοχών και οι αντίστοιχοι χάρτες χρήσης της τον διαφορετικών στοιχείων τόσο του ΣΠΔ (δίκτυα) όσο και του ΣΠΛ (επιφανειακού και υπόγειου υδατικού πόρου, τεχνικά έργα) έχουν περιγραφεί σε προηγούμενα στάδια. Στο σημείο αυτό περιγράφεται η μέθοδος που χρησιμοποιήθηκε.

9.1 ΔΙΑΧΕΙΡΙΣΤΙΚΑ ΣΕΝΑΡΙΑ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ ΚΑΡΛΑΣ

Δύο βασικές στρατηγικές διαχείρισης νερού και τρία διαχειριστικά σενάρια (συνολικά οκτώ) αναλύονται στην λεκάνη απορροής της Κάρλας:

i) Βασική στρατηγική διαχείρισης δίχως επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου (πραγματική κατάσταση)
1. Μείωση των απωλειών των καναλιών
2. Αλλαγή των μεθόδων άρδευσης
3. Αντικατάσταση καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια ντομάτας

ii) Βασική στρατηγική διαχείρισης με επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου (μελλοντική κατάσταση)
1. Μείωση των απωλειών των καναλιών
2. Αλλαγή των μεθόδων άρδευσης
3. Αντικατάσταση καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια ντομάτας

9.1.1 Ανάπτυξη της βασικής στρατηγικής διαχείρισης δίχως επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου

Η βασική στρατηγική διαχείρισης νερού έχει να κάνει με την πραγματική κατάσταση διαχείρισης υδάτων της λεκάνης απορροής της Κάρλας και βασίζεται στην ταξινόμηση χρήσεων για το έτος 2007. Με βάση τις χρήσεις της ταξινομήθηκαν τα εμβαδά των καλλιεργειών. Γενικά η πλήρωση των αναγκών της λεκάνης απορροής...
γίνεται από το επιφανειακό δίκτυο του Τοπικού Οργανισμού Εγγείων Βελτίωσεων Πηνειού και μέσω αντλήσεως του υπόγειου υδροφορέα. Ωστόσο, εντοπίζονται περιοχές στη λεκάνη απορροής της Κάρλας κάτω από τις οποίες δεν ανευρίσκεται ο υπόγειος υδροφορέας της Κάρλας αλλά δεδομένων των απαιτήσεων της διατριβής έγινε η παραδοχή ότι καλύπτονται από τον υπόγειο υδροφορέα της Κάρλας. Ακόμη στην περιοχή γύρω από τον ταμιευτήρα κατασκευάστηκε το νέο δίκτυο του Τοπικού Οργανισμού Εγγείων Βελτίωσεων Κάρλας για την εξυπηρέτηση των εκτάσεων γειτονικά του ταμιευτήρα, οπότε οι εκτάσεις αυτές συντελούν μια διαφορετική ζώνη. Για τους λόγους αυτούς αλλά και για λόγους υπολογιστικής ακρίβειας η λεκάνη απορροής της Κάρλας μοράστηκε σε μικρότερες ζώνες (σχήμα 9.1) στις οποίες έγινε εκτίμηση διαφορετικών μηνιαίων υδατικών απαιτήσεων (σε χιλιοστά).

Οπως έχει αναφερθεί εντός της ευρύτερης περιοχής υπάρχει το δίκτυο του Τοπικού Οργανισμού Εγγείων Βελτίωσεων Πηνειού από το οποίο εξυπηρετούνται οι εκτάσεις πέριξ των αγωγών του δικτύου. Το γεωγραφικό σύστημα πληροφοριών χρησιμοποιήθηκε για τον προσδιορισμό των μηνιαίων αναγκών των καλλιεργειών σε χιλιοστά στην ζώνη αυτή της λεκάνης απορροής και παρουσιάζονται στο σχήμα 9.2.
Σχήμα 9.2: Υδατικές απαιτήσεις καλλιεργειών στη ζώνη των εξυπηρετούμενων περιοχών από το δίκτυο ανοικτών αγωγών.

Οι εναπομένουσες ζώνες της λεκάνης απορροής Κάρλας αρδεύονται από τον υπόγειο υδροφορέα της Κάρλας. Όπως αναφέρθηκε κατά τη ρύθμιση του μοντέλου υπόγειας ροής έχουν οριστεί έξι ζώνες αρδεύσης του υπόγειου υδροφορέα και απεικονίζονται στο σχήμα 2.4. Θα πρέπει να τονιστεί ότι επειδή η ζώνη 6 του υπόγειου υδροφορέα συμπίπτει με εκτάσεις που αρδεύονται από το δίκτυο ανοικτών αγωγών, οι επικαλύψεις αφαιρέθηκαν και ο υπολογισμός των μινιάτικων υδατικών απαιτήσεων των καλλιεργειών σε χιλιοστά (σχήμα 9.3) έγινε στις περιοχές εξυπηρετούνται από τον υδροφορέα.

Σχήμα 9.3: Υδατικές απαιτήσεις καλλιεργειών περιοχών που αρδεύονται από τον υπόγειο υδροφορέα
Σχήμα 9.4: Αρδεύομενες εκτάσεις από τον υπόγειο υδροφόρο Κάρλας

Σχήμα 9.5: Αρδευτικές ζώνες στην λεκάνη απορροής για τη βασική στρατηγική διαχείρισης χωρίς λειτουργία ταμιευτήρα και δικτύου του Τ.Ο.Ε.Β Κάρλας
Σχήμα 9.6: Υδατικές απαιτήσεις καλλιεργειών στη βόρεια ζώνη της λεκάνης απορροής Κάρλας

Όπως περιγράφθηκε η λεκάνη απορροής χωρίστηκε σε (6) έξι αρδευτικές ζώνες και έγινε υπολογισμός των μηνιαίων υδατικών απαιτήσεων των καλλιεργειών στη βορειοδυτική περιοχή. Σε θεωρητικό επίπεδο, από τις δύο παραπάνω ζώνες υπάρχουν μερικές περιοχές που θεωρήθηκε ότι αρδέυονται από τον υπόγειο υδροφόρο της Κάρλας κάτι που δεν ισχύει στην πραγματικότητα. Πρόκειται για τη βόρεια ζώνη, τη νότια και την νοτιοανατολική. Αναφορικά με την ζώνη που εξυπηρετείται αυτό το δίκτυο, το σχολιασμός της γίνεται κατά την ανάπτυξή της δεύτερης στρατηγικής διαχείρισης νερού.

Σχήμα 9.7: Υδατικές απαιτήσεις καλλιεργειών στην νότια ζώνη της λεκάνης απορροής Κάρλας
Σχήμα 9.8: Υδατικές απαιτήσεις καλλιεργειών στην ορεινή ζώνη της λεκάνης από την κτήνη Κάρλας

Ο μηνιαίος όγκος νερού που χρειάζεται η καλλιέργεια υπολογίζεται ως το γινόμενο της αρδευόμενης έκτασης της εκάστοτε καλλιέργειας με τη μηνιαία ανάγκη της καλλιέργειας σε νερό. Ο όγκος νερού που εκτιμάται με τον τρόπο αυτό είναι η απαιτούμενη υδατική ποσότητα για αρδευτικούς σκοπούς αλλά δεν προσδιορίζεται τον όγκο του νερού που πρέπει να μεταφερθεί και να εφαρμοσθεί με μια μέθοδο άρδευσης στο χωράφι.

Όπως αναφέρθηκε, το επιφυτευτικό δίκτυο χαρακτηρίζεται από ανοιχτά χωμάτινα κανάλια, τραπεζικές διατάξεις και έχει τη δυνατότητα παρατηρήσεως σημαντικών υδατικών ποσοτήτων. Ωστόσο, οι τάφροι απαιτούν συνεχή συντήρηση, επειδή στο εσωτερικό τους αναπτύσσεται απολιθώματα, απώλειες λόγω διήθησης και εξαιτίας εξόδους. Η τριτοβάθμια καλλιέργεια περιλαμβάνεται για εφαρμογή της τριτοβάθμιας καλλιέργειας, στην καταπολέμηση της έκτασης της καλλιέργειας με τη μηνιαία ανάγκη της εκάστοτε καλλιέργειας σε νερό. Ο όγκος νερού που εκτιμάται με τον τρόπο αυτό είναι η απαιτούμενη υδατική ποσότητα για αρδευτικούς σκοπούς αλλά δεν προσδιορίζεται τον όγκο του νερού που πρέπει να μεταφερθεί και να εφαρμοσθεί με μια μέθοδο άρδευσης στο χωράφι.

Η στάγδην άρδευση προϋποθέτει την εφαρμογή του νερού στην αγροτική με τη μορφή μικρών ποσοτήτων σταγόνας με στόχο την προφυλακτική, στην καταπολέμηση της καλλιέργειας με τη μηνιαία ανάγκη της εκάστοτε καλλιέργειας σε νερό. Οι συντελεστές της αποδοτικότητας για εφαρμογή της άρδευσης (μέθοδος άρδευσης) φαίνονται στον παρακάτω Πίνακα 2.1 (Παπαζαφειρίου, 1999). Το γινόμενο των δύο αυτών συντελεστών αποτελεί την συνολική αποδοτικότητα της μεταφοράς και εφαρμογής του νερού άρδευσης.

Από την άλλη στην κατανομή η εφαρμογή του νερού γίνεται σαν τεχνητή βροχή και ακολουθεί η διάλυση αυτού στο έδαφος κατακόρυφα. Ετσι οι απομειώσεις και οι αντιλιμνώσεις στην επιφάνεια και το νερό κατανέμεται στο έδαφος με πλήρη μεμονωμένα.
Θα πρέπει να τονιστεί ότι δεν εντοπίστηκαν αρχεία σχετικά με τις μεθόδους άρδευσης στην περιοχή μελέτης από χρησιμοποιηθήκαν δεδομένα του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνειού από το 2003. Σύμφωνα λοιπόν με τα στοιχεία αυτά το 43,1% των αρδευόμενων αγρών καλύπτεται με καταιονισμό το οποίο έχει μια μέση απόδοση 0,80, και στο υπόλοιπο 56,9% των αρδευόμενων εκτάσεων εφαρμόζεται η στάγδην άρδευση με μια μέση απόδοση 0,90. Ετοις η μέση αποδοτικότητα της εφαρμογής της άρδευσης εκτιμήθηκε ως ο σταθμισμένος μέσος όρος των αποδόσεων των δύο μεθόδων για όλα τα αγροτεμάχια ίση με 0,86.

Πίνακας 9-1: Ενδεικτικές τιμές αποδοτικότητας διανομής και εφαρμογής άρδευσης (Παπαζάφεφιριου, 1999)

<table>
<thead>
<tr>
<th>Τύπος δικτύου</th>
<th>Συντήρηση και λειτουργία</th>
<th>Αποδοτικότητα διανομής και μεταφοράς (Ea)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Επιφανειακό</td>
<td>Πολύ καλή έως άριστη</td>
<td>0,60-0,75</td>
</tr>
<tr>
<td></td>
<td>Ικανοποιητική</td>
<td>0,50-0,60</td>
</tr>
<tr>
<td></td>
<td>Ελλιπής</td>
<td>0,35-0,50</td>
</tr>
<tr>
<td></td>
<td>Κακή</td>
<td>0,20-0,35</td>
</tr>
<tr>
<td>Υπό πίεση</td>
<td>Ικανοποιητική έως άριστη</td>
<td>0,80-0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Μέθοδος άρδευσης</th>
<th>Αποδοτικότητα εφαρμογής (Ea)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατάκλυση</td>
<td>0,60-0,80</td>
</tr>
<tr>
<td>Περιορισμένη διάρκεια (λωρίδες)</td>
<td>0,60-0,75</td>
</tr>
<tr>
<td>Αυλάκια</td>
<td>0,50-0,75</td>
</tr>
<tr>
<td>Καταιονισμός – Κλασσικό σύστημα</td>
<td>0,60-0,80</td>
</tr>
<tr>
<td>Καταιονισμός – Αυτοκινούμενος εκτοξευτήρας υψηλής πίεσης (καρούλι)</td>
<td>0,55-0,75</td>
</tr>
<tr>
<td>Καταιονισμός - Αυτοκινούμενη γραμμή άρδευσης</td>
<td>0,75-0,90</td>
</tr>
<tr>
<td>Καταιονισμός – Περιστροφικό σύστημα (Pivot)</td>
<td>0,75-0,90</td>
</tr>
<tr>
<td>Στάγδην</td>
<td>0,80-0,95</td>
</tr>
</tbody>
</table>

Επίσης η άλλη θεώρηση περιελάμβανε την παραδοχή ότι αρδευόμενα αγροτεμάχια με επιφανειακά νερά θροφοδοτούνται με νερό από επιφανειακά δίκτυα. Η αποδοτικότητα διανομής του επιφανειακού δικτύου του Τ.Ο.Ε.Β Πηνειού θεωρήθηκε ίση με 0,40 ενώ η συνολική λοιπόν αποδοτικότητας της άρδευσης για τη λεκάνη απορροής της λίμνης Κάρλας προέκυψε από το γινόμενο της μέσης αποδοτικότητας της εφαρμογής και της αποδοτικότητας του δικτύου μεταφοράς και διανομής του νερού. Με τον τρόπο αυτό η συνολική αποδοτικότητα της άρδευσης υπολογίστηκε σε 0,86.
Ο Πίνακας 9.5 παρατίθεται τη ταξινόμηση των συνολικών χρήσεων για κάθε αρδευτική ζώνη, όπως και για την υδρολογική λεκάνη και τον υπόγειο υδροφορέα που προέλθηκαν από τη βάση τηλεπισκόπησης του συστήματος. Χρησίζει αναφοράς η κατηγορία των δέντρων περιλαμβάνει και τη δασική βλάστηση, και για το λόγο αυτό αποτελεί τη δεσπόζουσα κατηγορία χρήσεων για τη λεκάνη απορροής. Ακόμη οι σημαντικότερες καλλιέργειες είναι αυτές του βαμβακιού και της μηδικής που εκτείνονται σε 152,32 km² και 133,78 km² αντίστοιχα. Στη συνέχεια ο σκληρός σίτος με 79,88 km² και το καλαμπόκι με 38,24 km².

Πίνακας 9.2: Ταξινόμηση χρήσεων για τη βασική στρατηγική διαχείρισης χωρίς λειτουργία του ταμείου

<table>
<thead>
<tr>
<th>Άρθρο</th>
<th>Σύνολο (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>5.77</td>
<td>7.41</td>
<td>0.21</td>
<td>0.56</td>
<td>0.56</td>
<td>0.21</td>
<td>0.56</td>
<td>0.56</td>
<td>0.21</td>
<td>0.56</td>
<td>0.56</td>
<td>0.21</td>
</tr>
<tr>
<td>Βοσκότοποι</td>
<td>6.73</td>
<td>7.57</td>
<td>0.30</td>
<td>0.56</td>
<td>0.56</td>
<td>0.30</td>
<td>0.56</td>
<td>0.56</td>
<td>0.30</td>
<td>0.56</td>
<td>0.56</td>
<td>0.30</td>
</tr>
<tr>
<td>Αστικές χρήσεις</td>
<td>1.63</td>
<td>2.02</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
</tr>
<tr>
<td>Μηδική χρήση</td>
<td>1.76</td>
<td>2.76</td>
<td>1.34</td>
<td>2.58</td>
<td>2.58</td>
<td>1.34</td>
<td>2.58</td>
<td>2.58</td>
<td>1.34</td>
<td>2.58</td>
<td>2.58</td>
<td>1.34</td>
</tr>
<tr>
<td>Εγκαταλελειμμένα</td>
<td>1.86</td>
<td>2.76</td>
<td>1.34</td>
<td>2.58</td>
<td>2.58</td>
<td>1.34</td>
<td>2.58</td>
<td>2.58</td>
<td>1.34</td>
<td>2.58</td>
<td>2.58</td>
<td>1.34</td>
</tr>
<tr>
<td>Αναπληρωτέοι</td>
<td>1.96</td>
<td>2.76</td>
<td>1.34</td>
<td>2.58</td>
<td>2.58</td>
<td>1.34</td>
<td>2.58</td>
<td>2.58</td>
<td>1.34</td>
<td>2.58</td>
<td>2.58</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Εισώθηκε προηγουμένως ότι ο μηνιαίος υδατικός όγκος νερού για μια καλλιέργεια αποτελείται από το γνώμονο της αρδευτικής έκτασης επί τη μηνιαία υδατική απαίτηση καλλιέργειας (σε ανάλογα με την αρδευτική ζώνη που αντιστοιχεί). Με βάση αυτό και συνυπολογίζοντας τους συντελεστές αποδοτικότητας μεταφοράς και διανομής εκτιμήθηκε η μηνιαία και ετήσια υδατική ανάγκη της αρδευτικής ζώνης αλλά και συνολικά για την υδρολογική λεκάνη (πίνακας 9.3)

Πίνακας 9.3: Μηνιαίες υδατικές απαιτήσεις ανά αρδευτική ζώνη για τη βασική στρατηγική διαχείρισης

<table>
<thead>
<tr>
<th>Ζώνη Σύνολο (m³)</th>
<th>Σύνολο (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>0.16</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>9.4</td>
<td>0.16</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>9.5</td>
<td>0.16</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>9.6</td>
<td>0.16</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>9.7</td>
<td>0.16</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>9.8</td>
<td>0.16</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>9.9</td>
<td>0.16</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>10</td>
<td>0.16</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Εύκολα παρατηρεί κανείς ότι οι μηνιαίοι όγκοι υδατικής απαιτήσεως μπορούν να εξηγηθούν και λογικά σε σχέση με το μέγεθος της αρδευτικής έκτασης στην οποία αντιστοιχούν, όπως οι ζώνες 5 και 6 του υπόγειου υδροφορέα εμφανίζουν τη σημαντικότερη ζήτηση αφού είναι και οι μεγαλύτερες εκτακτικά. Ακόμη η βόρεια ζώνη,
η νότια και η ορεινή είναι επίσης μεγάλες σε έκταση ζώνες αλλά το ποσοστό της καλλιεργούμενης έκτασης τους είναι χαμηλότερο, οπότε μια μικρότερη σε όγκο υδατική απαίτηση είναι αναμενόμενη.

Σχήμα 9.9: Γράφημα μηνιαίων και ετήσιων υδατικών απαιτήσεων της υδρολογικής λεκάνης Κάρλας για τη βασική στρατηγική διαχείρισης

Για τη βασική στρατηγική διαχείρισης το ποσοστό συνεισφοράς από το επιφανειακό δίκτυο άρδευσης (Δηλαδή οι υδατικές ανάγκες των αγροτεμαχίων που καλύπτονται από το δίκτυο) του T.O.E.B Πηνείου είναι αρκετά μικρό 34% με 109,31 hm³ ενώ το αντίστοιχο ποσοστό συνεισφοράς του υπόγειου υδροφορέα υπολογίζεται σε 66% με 214,61 hm³. Τελικά το σύνολο των υδατικών αναγκών της υδρολογικής λεκάνης εκτιμήθηκε σε περίπου 323,93 hm³.

9.1.2 Σενάριο μείωσης απωλειών των καναλιών

Το σενάριο μείωσης των απωλειών ουσιαστικά περιγράφει τη σωστή καθαρότητα και συντήρηση των καναλιών και τάφρων του επιφανειακού δίκτυου αλλά και των ιδιωτικών γεωτρήσεων. Η δημιουργία αυτού του σεναρίου βασίστηκε στη χρησιμοποίηση υψηλότερου συντελεστή αποδοτικότητας μεταφοράς και διανομής για τα αρδευτικά δίκτυα (0,75 αντί για 0,4 για δίκτυο ανοιχτών αγωγών και 0,9 αντί για 0,8 για το υπό πίεση δίκτυο). Έτσι, οι υδατικές απαιτήσεις συνολικά για τη λεκάνη απορροής αλλά και ειδικά για κάθε αρδευτική ζώνη μειώνονται αισθητά.

Πίνακας 9-4: Μηνιαίες υδατικές απαιτήσεις ανά αρδευτική ζώνη για το σενάριο μείωσης των απωλειών
Η μείωση των υδατικών απαιτήσεων στην ζώνη άρδευσης του Τ.Ο.Ε.Β Πηνείου είναι αρκετά σημαντική διότι οι υδατικές απώλειες σε αυτή τη ζώνη είναι πολύ μεγάλες (πυκνή βλάστηση καλύπτει τα χωμάτινα κανάλια) και κατά συνέπεια η μεγαλύτερη μεταβολή της αποδοτικότητας διανύσματος και μεταφοράς εφαρμόστηκε σε αυτή την αρδευτική ζώνη. Η μεταβολή ήταν σαφώς πιθανή (από 0,4 σε 0,75) ενώ στις ζώνες υπόγειου υδροφόρου (Ζ1 εως Ζ6) η μεταβολή ήταν σαφώς πιθανή (από 0,8 σε 0,9).

Σχήμα 9.10: Γράφημα μηνιαίων και ετήσιων υδατικών αναγκών της υδρολογικής λεκάνης Κάρλας για το σενάριο μείωσης των απωλειών

Συμπεραίνει κανείς λοιπόν, ότι για το σενάριο μείωσης των απωλειών των καναλιών οι υδατικές απαιτήσεις για όλη τη λεκάνη απορροφής φτάνουν τα 245,42 hm³ όπου το 78% που μεταφράζεται σε 190,77 hm³ καλύπτεται από τον υπόγειο υδροφορέα ενώ το 22% που μεταφράζεται σε 54,66 hm³ καλύπτεται διαμέσου του επιφανειακού δικτύου από τον Πηνείο ποταμό.

9.1.3 Σενάριο αλλαγής μεθόδων άρδευσης

Σε προηγούμενο στάδιο επιτύχθηκε ότι τα αρχεία του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνείου του 2003 αναφέρουν ότι στο 57% των αγροτεμαχίων...
χρησιμοποιείται στάγδην άρδευση και στο 43% κατανόησης. Ο συντελεστής αποδοτικότητας εφαρμογής για τη στάγδην άρδευση καθορίστηκε σε αυτήν τη διατριβή ίσος με 0,9 ενώ στη περίπτωση του κατανοησιμού ίσος με 0,8. Η ανάπτυξη του τρόχων του κατανοησιμού επιτεύχθηκε με τη υποβολή ότι στο σύνολο των αρδευόμενων αγροτεμαχίων χρησιμοποιείται στάγδην άρδευση. Επομένως είναι απολύτως λογικό να υπάρξει και σε αυτό το σενάριο αυστηρή μείωση των υδατικών απαιτήσεων σε σχέση με τη βασική στρατηγική διαχείρισης.

Πίνακας 9-5: Μηνιαίες υδατικές απαιτήσεις ανά αρδευτική ζώνη για το σενάριο αλλαγής μεθόδων άρδευσης

Σχήμα 9.11: Γράφημα μηνιαίων και ετήσιων υδατικών απαιτήσεων της υδρολογικής λεκάνης Κάρλας για το σενάριο αλλαγής μεθόδων άρδευσης

Συνολικά για την λεκάνη απορροής της Κάρλας οι υδατικές ανάγκες είναι μικρότερες, περίπου 308,41 hm3 και ποσοστό 66% που μεταφράζεται σε 204,34 hm3 καλύπτεται από τον υπόγειο υδροφορέα της Κάρλας ενώ το 34% μεταφρασμένο σε 104,08 hm3 διαμέσου του δικτύου του Τ.Ο.Ε.Β Πηνειού από τον Πηνειό ποταμό.
9.1.4 Σενάριο αντικατάστασης καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια τομάτας

Η ανάπτυξη του σεναρίου αυτού στηρίζεται στην αντικατάσταση των υδατικών αναγκών των αγροτικών περιοδών με διαφορετικές καλλιέργειες. Οι διαφορές των υδατικών απαιτήσεων μεταξύ δύο καλλιεργειών για κάθε μήνα του έτους απεικονίζονται στον πίνακα.

Πίνακας 9-6: Υδατικές απαιτήσεις καλλιέργειας βαμβακιού και τομάτας θερμοκηπίου

<table>
<thead>
<tr>
<th>Χρόνιο</th>
<th>Πίνακας 9-6: Υδατικές απαιτήσεις καλλιέργειας βαμβακιού και τομάτας θερμοκηπίου</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ (mm)</td>
<td>Νοέ (mm)</td>
</tr>
<tr>
<td>Βαμβάκι</td>
<td>0</td>
</tr>
<tr>
<td>Θερμοκηπία</td>
<td>0,68</td>
</tr>
</tbody>
</table>

Ενώ στα προηγούμενα δύο σενάρια υπήρξε μείωση στις υδατικές απαιτήσεις της λεκάνης απορρητών, στο τρέχον σενάριο διακρίνεται σημαντική αύξηση.

Πίνακας 9-7: Διαφορές των υδατικών απαιτήσεων του σεναρίου αντικατάστασης καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια τομάτας

Προσανατολισμός του σεναρίου αντικατάστασης καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια τομάτας

| Ζώνη | Ζώνη Ζ1 | Ζώνη Ζ2 | Ζώνη Ζ3 | Ζώνη Ζ4 | Ζώνη Ζ5 | Ζώνη Ζ6 | Βόρεια Ζώνη | Νότια Ζώνη | Ορεινή Ζώνη | Ζώνη Τ.Ο.Ε.Β | Πηνειού |
|-------|---------|---------|---------|---------|---------|---------|-------------|------------|-------------|-------------|-----------|---------|
| Οκτ (hm3) | 0,68 | 1,22 | 0,25 | 0,82 | 6,38 | 3,42 | 2,53 | 1,27 | 1,32 | 11,38 |
| Νοέ (hm3) | 0,60 | 1,10 | 0,32 | 0,71 | 5,69 | 3,03 | 2,86 | 1,32 | 1,06 | 9,54 |
| Δεκ (hm3) | 0,57 | 0,85 | 0,29 | 0,59 | 4,81 | 2,71 | 2,32 | 1,32 | 1,04 | 8,30 |
| Ιάν (hm3) | 0,47 | 0,66 | 0,21 | 0,34 | 2,94 | 1,34 | 1,33 | 1,20 | 0,91 | 5,37 |
| Φεβ (hm3) | 0,90 | 1,35 | 0,42 | 0,80 | 6,65 | 3,99 | 2,11 | 2,17 | 1,68 | 11,56 |
| Μάρ (hm3) | 1,24 | 1,03 | 0,62 | 1,11 | 9,36 | 5,80 | 3,19 | 3,19 | 2,54 | 16,44 |
| Απρ (hm3) | 1,91 | 2,69 | 0,67 | 1,60 | 13,14 | 8,39 | 4,12 | 4,81 | 4,15 | 24,64 |
| Μάιος (hm3) | 2,88 | 3,48 | 1,12 | 2,17 | 17,59 | 10,65 | 5,82 | 6,85 | 4,67 | 31,21 |
| Ιούνιος (hm3) | 2,48 | 3,82 | 1,22 | 2,55 | 20,06 | 11,66 | 6,36 | 6,65 | 5,32 | 30,61 |
| Ιούλιος (hm3) | 2,57 | 3,64 | 1,24 | 2,42 | 19,14 | 11,65 | 6,42 | 7,12 | 5,77 | 34,66 |
| Αύγ (hm3) | 2,13 | 2,27 | 0,98 | 1,52 | 10,04 | 9,44 | 5,33 | 5,69 | 4,38 | 27,90 |
| Σεπ (hm3) | 1,23 | 1,41 | 0,60 | 1,22 | 9,47 | 5,83 | 3,30 | 3,35 | 2,72 | 20,05 |
| Έτος | 17,41 | 25,34 | 8,22 | 16,23 | 108,27 | 70,60 | 42,47 | 44,87 | 30,82 | 333,58 |

Προσανατολισμός του σεναρίου αντικατάστασης καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια τομάτας είναι σημαντική αύξηση των υδατικών απαιτήσεων σε κάθε αρδευτική ζώνη με το ποσοστό αύξησης να εξερχεται το 100%.
Χειμώνας Ιωάννης

Κεφάλαιο 9ο: Εκτίμηση των υδατικών απαιτήσεων ιστορικής περιόδου

Σχήμα 9.12: Γράφημα μηνιαίων και ετήσιων υδατικών απαιτήσεων της υδρολογικής λεκάνης Κάρλας για το σενάριο αντικατάστασης καλλιέργειας βαμβακιού με καλλιέργεια τουμάτων θερμοκηπίου.

Οι υδατικές απαιτήσεις για την λεκάνη απορροφής Κάρλας αυξάνονται και φτάνουν τα 633,86 hm³ με ποσοστό 63% τους μεταφράζεται σε 400,18 hm³ να καλύπτεται από τον υπόγειο υδροφορέα ενώ ποσοστό 37% μεταφρασμένο σε 233,68 hm³ καλύπτεται διαμέσου του δικτύου του Τ.Ο.Ε.Β Πηνειού από τον Πηνειούς ποταμό. Αρα λοιπόν το σενάριο αντικατάστασης της καλλιέργειας βαμβακιού με αυτήν την θερμοκηπιακή τομάτας εμφανίζει την πιο εντατικοποιημένη άρδευση (λόγω των υψηλότερων υδατικών απαιτήσεων). Αυτό συμβαίνει διότι οι απαιτήσεις άρδευσης της τομάτας θερμοκηπίου περιλαμβάνουν όλους τους μήνες του έτους.

9.1.5 Ανάπτυξη της βασικής στρατηγικής διαχείρισης με επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου

Είναι σκόπιμο να αναφερθεί ότι το έτος 2007 στο οποίο βασίστηκε η ταξινόμηση χρήσεων γης, ο ταμιευτήρας της Κάρλας δεν είχε πληρωθεί με νερό έπειτα η έκταση του υπόγειου υδροφορέας ως γεωργικός χαρτογραφήθηκε στην πρώτη στρατηγική διαχείρισης. Στη δεύτερη στρατηγική διαχείρισης τοποθετείται εκτός της διαδικασίας της ταξινόμησης χρήσεων γης και γίνεται η παραδοχή ότι λειτουργεί για την άρδευση των γεωτεχνικών αγροτεμαχίων. Αναμενόμενα, παρουσιάζεται διαφοροποίηση στο σύνολο των υδατικών απαιτήσεων για τη λεκάνη απορροφής.

Η εφαρμογή της δεύτερης στρατηγικής διαχείρισης βασίζεται στην αντικατάσταση του υπόγειου υδροφορέα ως τροφοδότης στην πρώτη στρατηγική διαχείρισης με τον νέο ταμιευτήρα για τις περιοχές που εξυπηρετούνται από το νέο αρδευτικό δίκτυο του.
τμηματία. Για την άρδευση των υπολοίπων ζωνών τηρείται η ίδια πολιτική που αναλύθηκε στην βασική στρατηγική διαχείρισης.

Σχήμα 9.13: Αρδευτικές ζώνες του υπόγειου υδροφορέα και του νέου δικτύου του Τ.Ο.Ε.Β Κάρλας για τη δεύτερη βασική στρατηγική διαχείρισης που εμπλέκει τη λειτουργία του ταμιευτήρα.

Σχήμα 9.14: Σύγκριση αρδευτικών ζωνών για τις δύο στρατηγικές διαχείρισης
Πίνακας 9-8: Ταξινόμηση χρήσεων για τη δεύτερη βασική στρατηγική διαχείρισης με λειτουργία του ταμειατήρα και σύγκριση με τη πρώτη στρατηγική διαχείρισης

<table>
<thead>
<tr>
<th>Χρήση</th>
<th>Ζώνη(κμ²)</th>
<th>Ζώνη(κμ²)</th>
<th>Ζώνη(κμ²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Βάσεις ταμειατήρα</td>
<td>1,09</td>
<td>0,99</td>
<td>0,98</td>
</tr>
<tr>
<td>Βάσεις διαχείρισης</td>
<td>0,99</td>
<td>0,98</td>
<td>0,97</td>
</tr>
<tr>
<td>Βάσεις απαγόρευσης</td>
<td>0,98</td>
<td>0,97</td>
<td>0,96</td>
</tr>
<tr>
<td>Κάρλας</td>
<td>0,97</td>
<td>0,95</td>
<td>0,94</td>
</tr>
<tr>
<td>Βόρεια</td>
<td>0,96</td>
<td>0,94</td>
<td>0,92</td>
</tr>
<tr>
<td>Τ.Ο.Ε.Β Πηνειού</td>
<td>0,95</td>
<td>0,93</td>
<td>0,91</td>
</tr>
<tr>
<td>Τμήμα Πολιτικών Μηχανικών</td>
<td>0,94</td>
<td>0,92</td>
<td>0,90</td>
</tr>
</tbody>
</table>

Ειπώθηκε σε προηγούμενο στάδιο ότι σύμφωνα με αυτή τη στρατηγική διαχείρισης περιοχές για τις οποίες υπάρχει πρόβλεψη να εξυπηρετηθούν από τον ταμειατήρα της Κάρλας στην αρχική στρατηγική διαχείρισης καλύπτονταν από τον υπόγειο υδροφορέα. Ο πίνακας 9.8 παραθέτει τη διαφορά στην ταξινόμηση χρήσεων για κάθε ζώνη στη σχέση με τη πρώτη στρατηγική διαχείρισης. Διακρίνεται εμφανώς μείωση των εξυπηρετούμενων εκτάσεων από τον υπόγειο υδροφορέα στη μελέτημένη στρατηγική διαχείρισης νερού.

Ο μηνιαίος όγκος νερού που απαιτεί μια καλλιέργεια υπολογίζεται από το γινόμενο της έκτασης που αρδεύεται επί τη μηνιαία υδατική απαίτηση της καλλιέργειας (σύμφωνα με την αρδευτική ζώνη στην οποία ανήκει). Με αυτή τη διαδικασία και με την επιρροή της αποδοτικότητας μεταφοράς και διανυσματικής εκτίμηση του μηνιαίου και ετήσιου όγκος νερού για κάθε αρδευτική ζώνη και συγκεντρωτικά για την λεκάνη απορροής.

Στον πίνακα 9.9 παρουσιάζεται ότι οι μηνιαίοι όγκοι υδατικής απαίτησης μπορούν να εξηγηθούν και λογικά σε σχέση με το μέγεθος της αρδευτικής έκτασης στην οποία αντιστοιχούν. Οπότε οι ζώνες 5 και 6 του υπόγειου υδροφορέα εμφανίζοντας τη σημαντικότερη ζήτηση αφού είναι οι μεγαλύτερες εκτάσεις. Ακόμη η βόρεια ζώνη, η νότια και η ορεινή είναι επίσης μεγάλες σε έκταση ζώνες αλλά το ποσοστό της
καλλιεργούμενης έκτασης τους είναι χαμηλότερο, οπότε μια μικρότερη σε όγκο υδατική απαίτηση είναι αναμενόμενη.

Πίνακας 9.9: Μηνιαίες υδατικές απαιτήσεις ανά αρδευτική ζώνη για τη βασική στρατηγική διαχείρισης με λειτουργία του ταμιευτήρα

<table>
<thead>
<tr>
<th>Ζώνη Ζ1</th>
<th>Ζώνη Ζ2</th>
<th>Ζώνη Ζ3</th>
<th>Ζώνη Ζ4</th>
<th>Ζώνη Ζ5</th>
<th>Ζώνη Ζ6</th>
<th>Βόρεια Ζώνη</th>
<th>Νότια Ζώνη</th>
<th>Ορεινή Ζώνη</th>
<th>Ζώνη Τ.Ο.Ε.Β. Πενείων</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct (hm³)</td>
<td>0,00</td>
<td>0,02</td>
<td>0,01</td>
<td>0,02</td>
<td>0,26</td>
<td>0,33</td>
<td>0,15</td>
<td>0,19</td>
<td>0,36</td>
</tr>
<tr>
<td>Nov (hm³)</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,01</td>
<td>0,26</td>
<td>0,31</td>
<td>0,26</td>
<td>0,30</td>
<td>0,22</td>
</tr>
<tr>
<td>Δεκ (hm³)</td>
<td>0,01</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>0,44</td>
<td>0,51</td>
<td>0,44</td>
<td>0,50</td>
<td>0,36</td>
</tr>
<tr>
<td>Ιαν (hm³)</td>
<td>0,02</td>
<td>0,05</td>
<td>0,04</td>
<td>0,03</td>
<td>0,70</td>
<td>0,81</td>
<td>0,69</td>
<td>0,80</td>
<td>0,57</td>
</tr>
<tr>
<td>Ιανουάριος (hm³)</td>
<td>0,03</td>
<td>0,06</td>
<td>0,06</td>
<td>0,04</td>
<td>0,99</td>
<td>1,14</td>
<td>0,98</td>
<td>1,12</td>
<td>0,81</td>
</tr>
<tr>
<td>Μάρτιος (hm³)</td>
<td>0,05</td>
<td>0,11</td>
<td>0,09</td>
<td>0,07</td>
<td>1,67</td>
<td>1,93</td>
<td>1,65</td>
<td>1,90</td>
<td>1,36</td>
</tr>
<tr>
<td>Απρίλιος (hm³)</td>
<td>0,09</td>
<td>0,25</td>
<td>0,16</td>
<td>0,17</td>
<td>5,07</td>
<td>4,51</td>
<td>2,52</td>
<td>3,40</td>
<td>2,89</td>
</tr>
<tr>
<td>Μάιος (hm³)</td>
<td>0,09</td>
<td>0,29</td>
<td>0,19</td>
<td>0,21</td>
<td>6,26</td>
<td>5,17</td>
<td>3,67</td>
<td>4,87</td>
<td>3,26</td>
</tr>
<tr>
<td>Ιούνιος (hm³)</td>
<td>0,08</td>
<td>0,34</td>
<td>0,19</td>
<td>0,26</td>
<td>8,12</td>
<td>6,00</td>
<td>4,08</td>
<td>4,38</td>
<td>3,67</td>
</tr>
<tr>
<td>Ιούλιος (hm³)</td>
<td>0,12</td>
<td>0,48</td>
<td>0,27</td>
<td>0,35</td>
<td>11,52</td>
<td>8,34</td>
<td>6,50</td>
<td>5,58</td>
<td>4,88</td>
</tr>
<tr>
<td>Αύγουστος (hm³)</td>
<td>0,09</td>
<td>0,39</td>
<td>0,21</td>
<td>0,29</td>
<td>8,98</td>
<td>6,76</td>
<td>6,12</td>
<td>4,40</td>
<td>4,25</td>
</tr>
<tr>
<td>Σεπτέμβριος (hm³)</td>
<td>0,04</td>
<td>0,19</td>
<td>0,10</td>
<td>0,15</td>
<td>3,87</td>
<td>3,20</td>
<td>3,47</td>
<td>2,10</td>
<td>2,33</td>
</tr>
</tbody>
</table>

Σχήμα 9.15: Γράφημα μηνιαίων και ετησίων υδατικών αναγκών της υδρολογικής λεκάνης Κάρλας για τη βασική στρατηγική διαχείρισης με λειτουργία του ταμιευτήρα.

Για τη δεύτερη στρατηγική διαχείρισης το ποσοστό συνεισφοράς από το επιφανειακό δίκτυο άρδευσης (Δηλαδή οι υδατικές ανάγκες των αγροτεμαχίων που καλύπτονται

- Πανεπιστήμιο Θεσσαλίας
- Τμήμα Πολιτικών Μηχανικών

209
από το δίκτυο) είναι αρκετά μικρό 34% με 109,31 hm³, το αντίστοιχο ποσοστό συνεισφόρος του υπόγειου ύδροφορέα υπολογίζεται σε 55% με 178 hm³, ενώ το 11% που μεταφέρεται σε 35,18 hm³ καλύπτεται από τον ταμιευτήρα. Τελικά οι συνολικές υδατικές ανάγκες για όλη την υδρολογική λεκάνη Κάρλας εκτιμήθηκαν σε περίπου 322,50 hm³.

9.1.6 Σενάριο μείωσης των απωλειών με τη λειτουργία του ταμιευτήρα της Κάρλας και του μελλοντικού δικτύου άρδευσης

Το σενάριο μείωσης των απωλειών όπως αναφέρθηκε και στη περίπτωση της πρώτης στρατηγικής διαχείρισης υπολογιστικά περιγράφει τη σωστή καθαρότητα και συντήρηση των καναλιών και τάφρων του επιφανειακού δικτύου αλλά και των υδατικών γεωτρήσεων. Η δημιουργία αυτού του σεναρίου βασίστηκε στη χρησιμοποίηση υψηλότερου συντελεστή αποδοτικότητας μεταφοράς και διανομής για τα αρδευτικά δίκτυα (0,75 αντί για 0,4 για το δίκτυο ανοιχτών αγωγών και 0,9 αντί για 0,8 για το υπό πίεση δίκτυο). Με αυτό τον τρόπο οι υδατικές απαιτήσεις συνολικά για τη λεκάνη απορροής αλλά και ειδικά για κάθε αρδευτική ζώνη μειώνονται αισθητά.

Σχήμα 9.16: Εγκεφάλος μηνιαίων και ετήσιων υδατικών απαιτήσεων της ζώνης άρδευσης της Κάρλας για το σενάριο μείωσης των απωλειών με λειτουργία του ταμιευτήρα.

Η μείωση των υδατικών απαιτήσεων στην ζώνη άρδευσης του επιφανειακού δικτύου είναι αρκετά σημαντική διότι οι υδατικές απώλειες σε αυτή τη ζώνη είναι πολύ μεγάλες (πυκνή βλάστηση καλύπτει τα χωμάτινα κανάλια) και κατά συνέπεια η μεγαλύτερη μεταβολή της αποδοτικότητας διανομής και μεταφοράς εφαρμόστηκε σε αυτή την άρδευτική ζώνη (από 0,4 σε 0,75) ενώ στις ζώνες του υπόγειου υδροφορέα (Ζ1 εως Ζ6) η μεταβολή ήταν σαφώς πιο ήπια (από 0,8 σε 0,9).
Πίνακας 9-10: Μηνιαίες ιδανικές απαιτήσεις ανά αρδευτική ζώνη για το σενάριο μείωσης των απωλειών με λειτουργία του ταμιευτήρα

| Ζώνη Ζ1 | Ζώνη Ζ2 | Ζώνη Ζ3 | Ζώνη Ζ4 | Ζώνη Ζ5 | Ζώνη Ζ6 | Βάρηση | Ζώνη | Νότηση | Ωριμή | Ζώνη Τ.Ο.Ε.Β
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct (hm³)</td>
<td>0,00</td>
<td>0,01</td>
<td>0,02</td>
<td>0,05</td>
<td>0,08</td>
<td>0,12</td>
<td>0,15</td>
<td>0,20</td>
<td>0,23</td>
<td>0,27</td>
</tr>
<tr>
<td>Nov (hm³)</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,05</td>
<td>0,08</td>
<td>0,12</td>
<td>0,15</td>
<td>0,20</td>
<td>0,23</td>
<td>0,27</td>
</tr>
<tr>
<td>Dec (hm³)</td>
<td>0,01</td>
<td>0,02</td>
<td>0,05</td>
<td>0,08</td>
<td>0,12</td>
<td>0,15</td>
<td>0,20</td>
<td>0,23</td>
<td>0,27</td>
<td>0,30</td>
</tr>
<tr>
<td>Jan (hm³)</td>
<td>0,02</td>
<td>0,04</td>
<td>0,06</td>
<td>0,09</td>
<td>0,12</td>
<td>0,15</td>
<td>0,20</td>
<td>0,23</td>
<td>0,27</td>
<td>0,30</td>
</tr>
<tr>
<td>Feb (hm³)</td>
<td>0,02</td>
<td>0,06</td>
<td>0,09</td>
<td>0,12</td>
<td>0,15</td>
<td>0,20</td>
<td>0,23</td>
<td>0,27</td>
<td>0,30</td>
<td>0,33</td>
</tr>
<tr>
<td>Mar (hm³)</td>
<td>0,04</td>
<td>0,10</td>
<td>0,16</td>
<td>0,22</td>
<td>0,28</td>
<td>0,34</td>
<td>0,40</td>
<td>0,46</td>
<td>0,52</td>
<td>0,58</td>
</tr>
<tr>
<td>Apr (hm³)</td>
<td>0,08</td>
<td>0,22</td>
<td>0,36</td>
<td>0,50</td>
<td>0,64</td>
<td>0,78</td>
<td>0,92</td>
<td>1,06</td>
<td>1,21</td>
<td>1,35</td>
</tr>
<tr>
<td>May (hm³)</td>
<td>0,08</td>
<td>0,26</td>
<td>0,42</td>
<td>0,58</td>
<td>0,74</td>
<td>0,90</td>
<td>1,06</td>
<td>1,22</td>
<td>1,38</td>
<td>1,54</td>
</tr>
<tr>
<td>Jun (hm³)</td>
<td>0,07</td>
<td>0,31</td>
<td>0,55</td>
<td>0,79</td>
<td>1,03</td>
<td>1,27</td>
<td>1,52</td>
<td>1,76</td>
<td>2,00</td>
<td>2,24</td>
</tr>
<tr>
<td>Jul (hm³)</td>
<td>0,06</td>
<td>0,21</td>
<td>0,47</td>
<td>0,72</td>
<td>0,97</td>
<td>1,23</td>
<td>1,49</td>
<td>1,74</td>
<td>1,99</td>
<td>2,24</td>
</tr>
<tr>
<td>Aug (hm³)</td>
<td>0,01</td>
<td>0,06</td>
<td>0,12</td>
<td>0,18</td>
<td>0,24</td>
<td>0,30</td>
<td>0,36</td>
<td>0,42</td>
<td>0,48</td>
<td>0,54</td>
</tr>
</tbody>
</table>

Είναι προφανές, ότι για το σενάριο μείωσης των απωλειών των καναλιών οι ιδανικές απαιτήσεις για όλη τη λεκάνη απορροής φτάνουν τα 244,16 hm³ όπου το 65% που μεταφέρεται σε 150,23 hm³ καλύπτεται από τον υπόγειο υδροφόρο. Ενώ το 22% που μεταφέρεται σε 54,66 hm³ καλύπτεται διαμέσου του επιφανειακού δικτύου από τον Πηνειο ποταμό και το 13% δηλαδή 31,27 hm³ καλύπτεται από τον ταμιευτήρα.

9.1.7 Σενάριο αλλαγής μεθόδων άρδευσης με επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου

Όπως και στη περίπτωση της πρώτης στρατηγικής διαχείρισης το σημαντικότερο αρχείο του Τοπικού Οργανισμού Εγγείων Βελτίωσης Πηνειού του 2003 αναφέρουν ότι στο 57% των αγροτεμαχίων χρησιμοποιείται στάγδη άρδευση και στο 43% καταδιόνιος. Ο συντελεστής αποδοτικότητας εφαρμογής για τη στάγδη άρδευση καθορίστηκε σε αυτή τη διατριβή ίσος με 0,9 ενώ στη σενάριο του καταδιόνιος ίσος με 0,8. Η ανάπτυξη του τρέχοντος σεναρίου επιτεύχθηκε με τη θέωρηση ότι στο σύνολο των αρδευτικών αγροτεμαχίων χρησιμοποιείται στάγδη άρδευση. Επομένως είναι
παράγεται λογικά να υπάρχει και σε αυτό το σενάριο αισθητή μείωση των υδατικών απαιτήσεων σε σχέση με τη δεύτερη βασική στρατηγική διαχείρισης.

Πίνακας 9-11: Μηνιαίες υδατικές απαιτήσεις ανά αρδευτική ζώνη για το σενάριο αλλαγής μεθόδων άρδευσης με λειτουργία του ταμιευτήρα

<table>
<thead>
<tr>
<th>Ετος</th>
<th>Ζώνη Ζ1</th>
<th>Ζώνη Ζ2</th>
<th>Ζώνη Ζ3</th>
<th>Ζώνη Ζ4</th>
<th>Ζώνη Ζ5</th>
<th>Ζώνη Ζ6</th>
<th>Βόρεια</th>
<th>Νότια</th>
<th>Ορεινή</th>
<th>Ζώνη Τ.Ο.Ε.Β</th>
<th>Περαιτέρω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ (hm³)</td>
<td>0,00</td>
<td>0,02</td>
<td>0,01</td>
<td>0,02</td>
<td>0,25</td>
<td>0,32</td>
<td>0,14</td>
<td>0,18</td>
<td>0,34</td>
<td>1,25</td>
<td></td>
</tr>
<tr>
<td>Νοέ (hm³)</td>
<td>0,01</td>
<td>0,02</td>
<td>0,01</td>
<td>0,01</td>
<td>0,25</td>
<td>0,29</td>
<td>0,25</td>
<td>0,29</td>
<td>0,21</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td>Δεκ (hm³)</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,42</td>
<td>0,49</td>
<td>0,42</td>
<td>0,42</td>
<td>0,34</td>
<td>1,03</td>
<td></td>
</tr>
<tr>
<td>Ιαν (hm³)</td>
<td>0,02</td>
<td>0,04</td>
<td>0,04</td>
<td>0,03</td>
<td>0,67</td>
<td>0,77</td>
<td>0,66</td>
<td>0,76</td>
<td>0,55</td>
<td>1,63</td>
<td></td>
</tr>
<tr>
<td>Φεβ (hm³)</td>
<td>0,03</td>
<td>0,06</td>
<td>0,05</td>
<td>0,04</td>
<td>0,94</td>
<td>1,08</td>
<td>0,93</td>
<td>1,07</td>
<td>0,77</td>
<td>2,30</td>
<td></td>
</tr>
<tr>
<td>Μαρ (hm³)</td>
<td>0,04</td>
<td>0,10</td>
<td>0,09</td>
<td>0,07</td>
<td>1,59</td>
<td>1,83</td>
<td>1,57</td>
<td>1,81</td>
<td>1,30</td>
<td>3,89</td>
<td></td>
</tr>
<tr>
<td>Οκτ (hm³)</td>
<td>0,08</td>
<td>0,13</td>
<td>0,15</td>
<td>0,16</td>
<td>4,83</td>
<td>4,29</td>
<td>4,10</td>
<td>4,64</td>
<td>3,10</td>
<td>10,60</td>
<td></td>
</tr>
<tr>
<td>Νοέ (hm³)</td>
<td>0,09</td>
<td>0,18</td>
<td>0,18</td>
<td>0,20</td>
<td>5,96</td>
<td>4,93</td>
<td>3,49</td>
<td>4,64</td>
<td>3,10</td>
<td>12,89</td>
<td></td>
</tr>
<tr>
<td>Δεκ (hm³)</td>
<td>0,08</td>
<td>0,33</td>
<td>0,24</td>
<td>0,24</td>
<td>7,73</td>
<td>5,72</td>
<td>3,88</td>
<td>4,17</td>
<td>3,49</td>
<td>17,01</td>
<td></td>
</tr>
<tr>
<td>Ιαν (hm³)</td>
<td>0,11</td>
<td>0,45</td>
<td>0,33</td>
<td>0,33</td>
<td>10,97</td>
<td>7,94</td>
<td>6,19</td>
<td>5,31</td>
<td>4,65</td>
<td>24,24</td>
<td></td>
</tr>
<tr>
<td>Φεβ (hm³)</td>
<td>0,09</td>
<td>0,37</td>
<td>0,28</td>
<td>0,28</td>
<td>8,55</td>
<td>6,43</td>
<td>5,83</td>
<td>4,19</td>
<td>4,05</td>
<td>19,56</td>
<td></td>
</tr>
<tr>
<td>Μαρ (hm³)</td>
<td>0,04</td>
<td>0,18</td>
<td>0,10</td>
<td>0,15</td>
<td>3,68</td>
<td>3,05</td>
<td>3,00</td>
<td>2,00</td>
<td>2,22</td>
<td>9,05</td>
<td></td>
</tr>
<tr>
<td>Οκτ (hm³)</td>
<td>0,00</td>
<td>0,03</td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td>0,01</td>
<td>0,05</td>
<td>0,01</td>
<td>0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Νοέ (hm³)</td>
<td>0,00</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td>0,02</td>
<td>0,05</td>
<td>0,01</td>
<td>0,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δεκ (hm³)</td>
<td>0,00</td>
<td>0,02</td>
<td>0,01</td>
<td>0,01</td>
<td>0,05</td>
<td>0,03</td>
<td>0,08</td>
<td>0,02</td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ιαν (hm³)</td>
<td>0,00</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
<td>0,08</td>
<td>0,05</td>
<td>0,13</td>
<td>0,04</td>
<td>0,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φεβ (hm³)</td>
<td>0,00</td>
<td>0,04</td>
<td>0,03</td>
<td>0,03</td>
<td>0,12</td>
<td>0,07</td>
<td>0,18</td>
<td>0,05</td>
<td>0,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Μαρ (hm³)</td>
<td>0,00</td>
<td>0,06</td>
<td>0,05</td>
<td>0,05</td>
<td>0,20</td>
<td>0,12</td>
<td>0,30</td>
<td>0,09</td>
<td>0,26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Οκτ (hm³)</td>
<td>0,03</td>
<td>0,21</td>
<td>0,32</td>
<td>0,36</td>
<td>0,55</td>
<td>0,53</td>
<td>0,72</td>
<td>0,14</td>
<td>0,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Νοέ (hm³)</td>
<td>0,05</td>
<td>0,29</td>
<td>0,45</td>
<td>0,51</td>
<td>0,68</td>
<td>0,73</td>
<td>0,90</td>
<td>0,16</td>
<td>0,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δεκ (hm³)</td>
<td>0,08</td>
<td>0,38</td>
<td>0,61</td>
<td>0,70</td>
<td>0,79</td>
<td>0,94</td>
<td>1,03</td>
<td>0,14</td>
<td>0,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ιαν (hm³)</td>
<td>0,11</td>
<td>0,51</td>
<td>0,84</td>
<td>0,97</td>
<td>1,08</td>
<td>1,30</td>
<td>1,42</td>
<td>0,19</td>
<td>0,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φεβ (hm³)</td>
<td>0,08</td>
<td>0,42</td>
<td>0,64</td>
<td>0,72</td>
<td>0,84</td>
<td>0,97</td>
<td>1,11</td>
<td>0,17</td>
<td>0,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Μαρ (hm³)</td>
<td>0,03</td>
<td>0,21</td>
<td>0,23</td>
<td>0,25</td>
<td>0,33</td>
<td>0,34</td>
<td>0,48</td>
<td>0,10</td>
<td>0,24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Μια μείωση των υδατικών αναγκών θα παρατηρείται στο σύνολο των αρδευτικών ζώνων και συνεπώς συγκεντρωτικά στη λεκάνη απορροής. Είναι χαρακτηριστικό ότι η μείωση αυτή στη σερίες αυτού του σεναρίου είναι μετρησιμή σε σχέση με τη βασική στρατηγική διαχείρισης.
Σχήμα 9.17: Γράφημα μηνιαίων και ετήσιων υδατικών αναγκών για την υδρολογική λεκάνη Κάρλας για το σενάριο αλλαγής μεθόδων άρδευσης με λειτουργία του ταμιευτήρα

Συνολικά για την λεκάνη απορροφής της Κάρλας οι υδατικές ανάγκες είναι μικρότερες, περίπου 308,41 hm³ και ποσοστό 56% που μεταφράζεται σε 169,48 hm³ καλύπτεται από τον υπόγειο υδροφόρεα της Κάρλας ενώ το 34% μεταφρασμένο σε 104,08 hm³ διαμέσου του δικτύου του Τ.Ο.Ε.Β Πηνειού από τον Πηνειό ποταμό και το 10% δηλαδή 29,78 hm³ καλύπτεται από τον ταμιευτήρα.

9.1.8 Σενάριο αντικατάστασης καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια τομάτας με επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου

Η ανάπτυξη του σεναρίου αυτού στηρίζεται στην αντικατάσταση των υδατικών αναγκών των αγροτεμάχιων με βαμβάκι με τις υδατικές απαιτήσεις της εναλλακτικής καλλιέργειας τομάτας θερμοκηπίου. Οι διαφορές των υδατικών απαιτήσεων μεταξύ δύο καλλιέργειων για κάθε μήνα του έτους απεικονίζονται στον πίνακα 2.8.

Οι υδατικές απαιτήσεις για την λεκάνη απορροφής Κάρλας αυξάνονται και φτάνουν τα 632,18 hm³ με ποσοστό 50% που μεταφράζεται σε 317,91 hm³ να καλύπτεται από τον υπόγειο υδροφόρεα ενώ ποσοστό 37% μεταφρασμένο σε 233,68 hm³ καλύπτεται διαμέσου του δικτύου του Τ.Ο.Ε.Β Πηνειού από τον Πηνειό ποταμό και 13% που αντιστοιχεί σε 80,59 hm³ καλύπτεται από τον ταμιευτήρα. Οπότε και για τη δεύτερη στρατηγική διαχείριση το σενάριο αντικατάστασης της καλλιέργειας βαμβακιού με αυτήν της θερμοκηπιακής τομάτας εμφανίζει την πιο εντατικοποιημένη άρδευση (λόγω των υψηλότερων υδατικών απαιτήσεων). Αυτό συμβαίνει διότι οι απαιτήσεις άρδευσης της τομάτας θερμοκηπίου περιλαμβάνουν όλους τους μήνες του έτους.
Πίνακας 9.12: Μηνιαίες υδατικές απαιτήσεις ανά αρδευτική ζώνη για το σενάριο αντικατάστασης καλλιέργειας βαμβακιού με θερμοκηπική καλλιέργεια τομάτας με λειτουργία του ταμιευτήρα

<table>
<thead>
<tr>
<th>Σεζόν</th>
<th>Ζώνη Ζ1</th>
<th>Ζώνη Ζ2</th>
<th>Ζώνη Ζ3</th>
<th>Ζώνη Ζ4</th>
<th>Ζώνη Ζ5</th>
<th>Ζώνη Ζ6</th>
<th>Ζώνη Ζ8.1</th>
<th>Ζώνη Ζ8.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ (hm³)</td>
<td>0,04</td>
<td>0,16</td>
<td>0,11</td>
<td>0,35</td>
<td>0,39</td>
<td>0,43</td>
<td>0,32</td>
<td>0,10</td>
</tr>
<tr>
<td>Νοέ (hm³)</td>
<td>0,14</td>
<td>0,07</td>
<td>0,09</td>
<td>0,25</td>
<td>0,35</td>
<td>0,54</td>
<td>0,56</td>
<td>0,31</td>
</tr>
<tr>
<td>Δεκ (hm³)</td>
<td>0,04</td>
<td>0,07</td>
<td>0,08</td>
<td>0,37</td>
<td>0,52</td>
<td>0,62</td>
<td>0,69</td>
<td>0,39</td>
</tr>
<tr>
<td>Ιαν (hm³)</td>
<td>0,09</td>
<td>0,19</td>
<td>0,12</td>
<td>0,52</td>
<td>0,79</td>
<td>0,90</td>
<td>0,89</td>
<td>0,41</td>
</tr>
<tr>
<td>Φεβ (hm³)</td>
<td>0,13</td>
<td>0,23</td>
<td>0,18</td>
<td>0,79</td>
<td>1,05</td>
<td>1,23</td>
<td>1,21</td>
<td>0,60</td>
</tr>
<tr>
<td>Μάρ (hm³)</td>
<td>0,15</td>
<td>0,53</td>
<td>0,38</td>
<td>1,48</td>
<td>1,09</td>
<td>0,87</td>
<td>0,80</td>
<td>0,35</td>
</tr>
<tr>
<td>Ιούλιος (hm³)</td>
<td>0,15</td>
<td>0,59</td>
<td>0,40</td>
<td>16,74</td>
<td>11,16</td>
<td>12,62</td>
<td>12,64</td>
<td>11,15</td>
</tr>
<tr>
<td>Ιούνιος (hm³)</td>
<td>0,15</td>
<td>0,61</td>
<td>0,43</td>
<td>11,03</td>
<td>6,60</td>
<td>7,75</td>
<td>7,75</td>
<td>5,97</td>
</tr>
<tr>
<td>Αύγ (hm³)</td>
<td>0,12</td>
<td>0,49</td>
<td>0,36</td>
<td>12,69</td>
<td>8,93</td>
<td>6,71</td>
<td>6,71</td>
<td>4,96</td>
</tr>
<tr>
<td>Σεπ (hm³)</td>
<td>0,08</td>
<td>0,31</td>
<td>0,15</td>
<td>7,97</td>
<td>5,61</td>
<td>4,52</td>
<td>4,52</td>
<td>3,12</td>
</tr>
</tbody>
</table>

Σχήμα 9.18: Γράφημα μηνιαίων και ετήσιων υδατικών αναγκών της υδρολογικής λεκάνης Κάρλας για το σενάριο αντικατάστασης καλλιέργειας βαμβακιού με θερμοκηπική καλλιέργεια τομάτας.
Προκύπτουν μεγαλύτερες υδατικές απαιτήσεις για την λεικάνη απορροής της τάξης των 632,18 hm³ εκ των οποίων το 50% που αντιστοιχεί σε 317,91 hm³ προέρχεται από τον υπόγειο υδροφορέα, το 37% που αντιστοιχεί σε 233,68 hm³ προέρχεται από τον Πηνειό ποταμό μέσω του επιφανειακού δικτύου και το 13% που αντιστοιχεί σε 80,59 hm³ προέρχεται από τον ταμειατήρα. Είναι σαφές ότι το σενάριο αυτό είναι το χειρότερο από τα τέσσερα συμπεριλαμβανομένου του βασικού.

Το σενάριο αντικατάστασης καλλιέργειας βαμβακιού με αυτή της τομάτας θερμοκηπίου παρουσιάζει σχεδόν διπλάσιες υδατικές απαιτήσεις συγκριτικά με τις βασικές στρατηγικές διαχείρισης αλλά και με τα υπόλοιπα σενάρια. Είναι γνωστό ότι οι καλλιέργειες θερμοκηπίου, θεωρούνται η πιο εντατική μορφή της αγροτικής παραγωγής και δεν απαιτούν λιγότερο ποσοστό νερό για άρδευση αναφορικά με τις καλλιέργειες του ανοιχτού αγρού αλλά ο δείκτης αποτελεσματικότητας νερού (water use efficiency) είναι αρκετά μεγαλύτερος.

Οι εαρινές καλλιέργειες στον ανοιχτό αγρό αναπτύσσονται τους μήνες από Μάιο έως Οκτώβριο και το μεγαλύτερο ποσοστό άρδευσης εφαρμόζεται κατά τους μήνες Ιούνιος εώς Αύγουστος. Για τους υπόλοιπους μήνες οι υδατικές ανάγκες είναι περιορισμένες και καλύπτονται από τη βροχόπτωση. Οι υδατικές ανάγκες μιας τυπικής καλλιέργειας βαμβακιού στην ευρύτερη περιοχή της Θεσσαλίας εκτιμώνται 600-800 mm σε ετήσια βάση. Ένα το σενάριο των απαιτήσεων αυτών καλύπτονται από τη βροχόπτωση (100-200 mm) ενώ το υπόλοιπο ποσοστό υποχρεωτικά με τη διαδικασία της άρδευσης. Ανάλογες περίπτωση είναι και οι υδατικές απαιτήσεις μιας συμβατικής καλλιέργειας τομάτας η οποία αναπτύσσεται τους ίδιους μήνες του έτους.

Στην περίπτωση τομάτας θερμοκηπίου, η καλλιέργεια όταν το θερμοκήπιο είναι πλήρως εξοπλισμένο αναφορικά με τα συστήματα ρύθμισης του κλίματος, είναι δυνατό να αναπτύσσεται για όλο το έτος (δηλαδή για 12 μήνες και όχι μόνο για 6-7 μήνες). Επιπρόσθετα, στην περίπτωση αυτή το βρόγχιο νερό δεν συμβάλλει στην ικανοποίηση των αρδευτικών αναγκών δεδομένου ότι το θερμοκήπιο είναι κλειστό. Ωστόσο, έχει εκτιμηθεί ότι οι υδατικές ανάγκες μιας υδροπονικής καλλιέργειας τομάτας στο ανοιχτό υδροπονικό σύστημα είναι περίπου 1600 mm ανά έτος, για 12 μήνες καλλιέργειας. Στην περίπτωση που η καλλιέργεια αναπτύσσεται σε κλειστό υδροπονικό σύστημα τότε οι υδατικές ανάγκες είναι περίπου 1100 mm. Συμπερασματικά, εξαίρετα της μικρότερης χρονικά καλλιεργητικής περιόδου στο θερμοκήπιο και λόγω του ιδιαίτερου μικροκλίματος που επικρατεί σε αυτό, είναι φυσιολογικό οι υδατικές ανάγκες να είναι περισσότερες σε ετήσια βάση συγκριτικά με αυτές του ανοιχτού αγρού.
10 ΕΦΑΡΜΟΓΗ ΣΤΑΤΙΣΤΙΚΟΥ ΚΑΤΑΒΙΒΑΣΜΟΥ ΚΛΙΜΑΚΑΣ ΥΔΡΟΜΕΤΩΡΟΛΟΓΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ

Είναι ευρέως αποδεκτό ότι η ανεξανόμενη συγκέντρωση αερίων θερμοκηπίου στην ατμόσφαιρα πιθανότατα θα οδηγήσει στην αλλαγή του κλίματος. Ο μέσος όρος της παγκόσμιας μέσης εξάτμισης των αερίων θερμοκηπίου, της θερμοκρασίας και της έντασης της βροχόπτωσης πιθανότατα θα ανεξαρτήτως από αυξήσεις συγκέντρωσης αερίων του θερμοκηπίου. Αυτή η στροφή προς την υψηλότερη παγκόσμια θερμοκρασία και τις πιο υψηλές βροχοπτώσεις προκαλεί μεγάλη ανησυχία για την αξιολόγηση των συνεπειών του μεταβαλλόμενου κλίματος στους ιδιαίτερα πόρους λόγω πιθανών επιπτώσεων σε ακραία γεγονότα όπως πλημμύρες και ξηρασίες. Ο κίνδυνος αύξησης της συγχότητας των άκρων είναι σαφής, αλλά οι πιθανές συνέπειες σε συγκεκριμένες περιοχές πρέπει να αξιολογηθούν. Αυτό απαιτείται επειδή αυτές οι πληροφορίες μπορεί να οδηγήσουν σε πρακτικές είναι απαραίτητες για να προστατευτούν οι τοπικές κοινωνίες από πιθανές καταστροφικές περιβαλλοντικές αλλαγές.

Τα μοντέλα γενικής κυκλοφορίας (GCMs) είναι τα κύρια εργαλεία σήμερα για την προσομοίωση των τρεχουσών και μελλοντικών κλιματικών συνθηκών. Αυτά τα μοντέλα έχουν δείξει την αποτελεσματικότητά τους να προσομοιώνουν τις μεταβλητές μεγάλης κλίμακας του ιστορικού κλίματος και γι’αυτό χρησιμοποιούνται ευρέως για τη μελέτη των επιπτώσεων των αυξανόμενων συγκέντρωσεων των αερίων του θερμοκηπίου στο παγκόσμιο κλίμα. Τα CGM περιλαμβάνουν αναπαραστάσεις επιφανειακής υδρολογίας, θαλάσσιου πάγου, θολότητας, μεταφοράς, ατμοσφαιρικής ακτινοβολίας και άλλων διεργασιών. Αν και ενδέχεται να υπάρχουν διαφορές μεταξύ σχηματισμών μοντέλου, τα περισσότερα μοντέλα προβάλλουν σχετικά αποτελέσματα σε παγκόσμιο επίπεδο. Επίσης, τα αρχεία παρατήρησης και οι κλιματικές προβλέψεις παρέχουν αρκετές ενδείξεις ότι οι μετεωρολογικές μεταβλητές όπως η βροχόπτωση και η θερμοκρασία έχουν τη δυνατότητα να επηρεαστούν από μεταβαλλόμενο κλίμα. Οι εκτιμήσεις της μεταβολής του κλίματος προβλέπουν αύξηση της βροχόπτωσης σε περιοχές μεγάλων γεωγραφικών πλατών και μειώσεις σε εκείνες μεσαίων γεωγραφικών πλάτων όπως η λεκάνη της Μεσογείου. Από την άλλη πλευρά, όταν η χωρική κλίμακα μειώνεται (δηλαδή από παγκόσμια σε τοπική κλίμακα), οι προβλέψεις του κλιματικού μοντέλου αρχίζουν διαφέρουν σε μέγεθος και σε σήμα και οδηγούν σε σημαντική αβεβαιότητα. Θεωρώντας ότι, παρόλο που η βροχόπτωση είναι μια σημαντική παράμετρος για μελέτες επιπτώσεων στην κλιματική αλλαγή, τα αποτελέσματα των παγκόσμιων κλιματικών μοντέλων (GCMs) δεν είναι κατάλληλα για άμεση εφαρμογή. Επειδή δεν περιλαμβάνουν στοιχεία τοπικής τοπογραφίας και φυσικών διεργασιών. Ωστόσο, οι τοπικές μεταβλητές επιφανείας είναι ζωτικής σημασίας για τον προσδιορισμό των συνεπειών του μεταβαλλόμενου κλίματος. Αντίθετα, οι
Προσομοιώσεις GCM μεγάλου δυνατοτήτων ανώτερου αέρα είναι πιο ρεαλιστικές. Ως εκ τούτου, οι μεθοδολογίες για τη γεωργία του χάσματος μεταξύ αυτών που καταγράφονται επιτυχώς από τα GCM και των απαιτήσεων για αξιολογήσεις τοπικής κλιμακάς καλούνται γενικά καταβιβασμός κλιμακάς και τα βασικά στάδια των μεθοδολογιών αυτών περιγράφηκαν στο 3ο κεφάλαιο.

Ο στατιστικός καταβιβασμός κλιμακάς βασίζεται σε εμπειρικές σχέσεις μεταξύ των τοπικής κλιμακάς μεταβλητών και επιλεγμένων μεταβλητών πρόβλεψης μεγάλης κλιμακάς. Διάφορες στατιστικές μέθοδοι έχουν εφαρμοστεί για το σκοπό αυτό. Χρησιμοποιούνται γενικά πολλαπλή γραμμική παλινδρόμηση (MLR), δημιουργοί καιρού και ανάλυση κανονικής συσχέτισης (CCA). Επιπλέον, έχουν εφαρμοστεί και μη γραμμικές μέθοδοι, όπως ειδικά πολλώνυμα και τα νευρικά δίκτυα. Όλες αυτές οι μέθοδοι μπορεί να παρέχουν ικανοποιητική αναπρόβλεψη μελλοντικών μετεωρολογικών πλαισίων, αλλά είναι ευρέως αποδεκτό ότι οι μέθοδοι καταβιβασμού κλιμακάς θα πρέπει να περιλαμβάνουν τεχνικές διόρθωσης τάσης για πιο αντιπροσωπευτικά αποτελέσματα.

Το κύριο πλεονέκτημα της εφαρμογής των τεχνικών διόρθωσης τάσης στις μετεωρολογικές εξόδους χαμηλής κλιμακάς είναι ότι, αυτή η διαδικασία είναι υπολογιστικά πολύ φθηνότερη από το να διορθώνεται η τάση σε κάθε έξοδο GCM ξεχωριστά, πριν από τον καταβιβασμό κλιμακάς. Το πλεονέκτημα της εφαρμογής μιας διόρθωσης τάσης σε κάθε έξοδο GCM ξεχωριστά (πριν από την εισαγωγή στο μουντέλο καταβιβασμού) είναι ότι η τάση σε κάθε μεταβλητή διορθώνεται ξεχωριστά. Σε αυτήν την εργασία, μια μέθοδος στατιστικού καταβιβασμού διορθωμένης στοχαστικά τάσης εφαρμόζεται στο μουντέλο CGCM3 του Καναδικού κέντρου παρακολούθησης και ανάλυσης κλιμακός, για προσομοίωση τρεχουσών και μελλοντικών χρονοσειρών μηνιαίας βροχόπτωσης και θερμοκρασίας στην λεκάνη απορροής της λίμνης Κάρλας. Η μεθοδολογία βασίζεται σε πολλαπλή γραμμική παλινδρόμηση των μεταβλητών πρόβλεψης GCM με παρατηρημένη μηνιαία βροχόπτωση και θερμοκρασία και ενσχέται με ένα στοχαστικό μοντέλο για την προσομοίωση υπολοίπων της παλινδρόμησης (λευκός θόρυβος). Η μεθοδολογία αναπτύχθηκε για την περίοδο Οκτ. 1980-Σεπ. 2000 και χρησιμοποιήθηκε για την εκτίμηση μηνιαίας βροχόπτωσης και θερμοκρασίας για δύο μελλοντικές περιόδους Οκτ.2030-Σεπ.2050 και Οκτ.2080-Σεπ.2100 και τρία σενάρια IPCC SRES, δηλαδή A2, B1 και A1B. Όσον αφορά την κλιματική αλλαγή, το σενάριο SRES A2 είναι το πιο έντονο αφού βασίζεται στο παραδοσιακό μοντέλο οικονομικής και τεχνολογικής ανάπτυξης και συνεχούς αύξησης του πληθυσμού, το SRES A1B είναι το μέτριο δεδομένου ότι υπάρχει ισορροπία σε όλες τις πηγές και το B1 είναι το πιο ήπιο αφού εισάγεται ένα στοιχείο περιβαλλοντικής βιοσυμόστιτας και η αύξηση του πληθυσμού παραμένει σε υψηλό επίπεδο.

10.1 ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΟΥ ΚΑΤΑΒΙΒΑΣΜΟΥ ΚΛΙΜΑΚΑΣ
Στην υδρολογική λεκάνη Κάρλας έλαβαν χώρα χώρα σοβαρά, ακραία και επίμονα φαινόμενα ξηρασίας από το 1975 ως τα τέλη της δεκαετίας του 1980 και την αρχή της δεκαετίας του 1990. Η μεγάλης διάρκειας μείωση της μηνιαίας και ετήσιας βροχόπτωσης υποβάθμισε τα χαρακτηριστικά της φυσικής βλάστησης, της γεωργίας και των διαδέσμων υδάτινων πόρων (Tzabiras et al., 2016).

Η μηνιαία βροχόπτωση 12 βροχομετρικών σταθμών και τα δεδομένα θερμοκρασίας 26 μетеορολογικών σταθμών ομοιόμορφα κατανεμημένων κατά μήκος της λεκάνης απορροής ήταν διαθέσιμα για 20 υδρολογικά έτη από τον Οκτώβριο 1980 έως τον Σεπτέμβριο 2000. Η μηνιαία βροχόπτωση και θερμοκρασία της λεκάνης υπολογίστηκαν με την τριπλή μέθοδο Thiessen που περιγράφηκε στο 6ο κεφάλαιο.

10.1.1 Μοντέλα πολλαπλής γραμμικής παλινδρόμησης

Τα μοντέλα παγκόσμιας κυκλοφορίας (GCMs) περιγράφουν το σύνολο των φυσικών διεργασιών της ατμόσφαιρας, των οκεανών, της κρυόσφαιρας και της γηινής επιφάνειας, ως απόκριση στην αύξηση των συγκεντρώσεων των αερίων του άνθρακα. Σε αυτή τη διατριβή, το τρίτης γενιάς GCM (CGCM3.1) του κέντρου παρακολούθησης και ανάλυσης κλίματος του Καναδά χρησιμοποιήθηκε για στατιστικό καταβιβασμό κλίμακας επιλεγμένων μεταβλητών, ένα φασματικό μοντέλο με ανάλυση 3,75θ πλάτος και 3,75θ μήκος (Flato και Boer, 2001). Αυτή η έκδοση του μοντέλου χρησιμοποιεί το ιδίο συστατικό του οκεανού με αυτό που χρησιμοποιήθηκε στο προηγούμενο Παγκόσμιο Κλιματικό Μοντέλο Δευτέρης Γενιάς (CGCM2), αλλά ενσωματώνει το αναβαθμισμένο ατμοσφαιρικό στοιχείο του Μοντέλου Γενικής Κυκλοφορίας Ατμόσφαιρας Τρίτης Γενιάς.
Πίνακας 10-1: Δυνητικοί προγνωστικοί παράγοντες (predictors) για τον στατιστικό καταβιβασμό κλίμακας της εξόδου του μοντέλου CGCM3.1 (Tzabiras et al., 2015)

<table>
<thead>
<tr>
<th>International name</th>
<th>Symbol</th>
<th>Measurement unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pressure at sea level</td>
<td>Psl</td>
<td>Pa</td>
</tr>
<tr>
<td>Precipitation flux</td>
<td>Pr</td>
<td>kg/m²s</td>
</tr>
<tr>
<td>Near-surface daily-mean air temperature</td>
<td>Tas</td>
<td>K</td>
</tr>
<tr>
<td>Moisture content of soil layer</td>
<td>Mrso</td>
<td>kg/m²s</td>
</tr>
<tr>
<td>Soil moisture content</td>
<td>Mrso</td>
<td>kg/m²s</td>
</tr>
<tr>
<td>Surface downward eastward stress</td>
<td>TAUu</td>
<td>Pa</td>
</tr>
<tr>
<td>Surface downward northward stress</td>
<td>TAUv</td>
<td>Pa</td>
</tr>
<tr>
<td>Surface snow thickness</td>
<td>Sn</td>
<td>m</td>
</tr>
<tr>
<td>Surface upward latent heat flux</td>
<td>Hfls</td>
<td>w/m²</td>
</tr>
<tr>
<td>Surface upward sensible heat flux</td>
<td>Hfss</td>
<td>w/m²</td>
</tr>
<tr>
<td>Surface downwelling longwave flux in air</td>
<td>Rlds</td>
<td>w/m²</td>
</tr>
<tr>
<td>Surface upwelling longwave flux in air</td>
<td>Rlus</td>
<td>w/m²</td>
</tr>
<tr>
<td>Surface downwelling shortwave flux in air</td>
<td>Rsds</td>
<td>w/m²</td>
</tr>
<tr>
<td>Surface upwelling shortwave flux in air</td>
<td>Rsus</td>
<td>w/m²</td>
</tr>
<tr>
<td>Surface temperature</td>
<td>Ts</td>
<td>K</td>
</tr>
<tr>
<td>Surface air pressure</td>
<td>Ps</td>
<td>Pa</td>
</tr>
<tr>
<td>Snowfall flux</td>
<td>Prsn</td>
<td>kg/m²s</td>
</tr>
<tr>
<td>Convective precipitation flux</td>
<td>Prc</td>
<td>kg/m²s</td>
</tr>
<tr>
<td>Atmosphere water vapor content</td>
<td>Prw</td>
<td>kg/m²</td>
</tr>
<tr>
<td>Soil frozen water content</td>
<td>Mrfso</td>
<td>kg/m²</td>
</tr>
<tr>
<td>Surface runoff flux</td>
<td>Mrros</td>
<td>kg/m²s</td>
</tr>
<tr>
<td>Runoff flux</td>
<td>Mrro</td>
<td>kg/m²s</td>
</tr>
<tr>
<td>Surface snow amount where land</td>
<td>Snw</td>
<td>kg/m²s</td>
</tr>
<tr>
<td>Surface air fraction where land</td>
<td>Snc</td>
<td>(%)</td>
</tr>
<tr>
<td>Surface snow melt flux where land</td>
<td>Sm</td>
<td>kg/m²s</td>
</tr>
<tr>
<td>Near-surface eastward wind</td>
<td>Uas</td>
<td>m/s</td>
</tr>
<tr>
<td>Near-surface northward wind</td>
<td>Vas</td>
<td>m/s</td>
</tr>
<tr>
<td>TOA incoming shortwave flux</td>
<td>Rsdt</td>
<td>w/m²</td>
</tr>
<tr>
<td>TOA outgoing shortwave flux</td>
<td>Rsut</td>
<td>w/m²</td>
</tr>
<tr>
<td>TOA outgoing longwave flux</td>
<td>Rlut</td>
<td>w/m²</td>
</tr>
<tr>
<td>Net downward radiative flux at top of atmosphere</td>
<td>Rmt</td>
<td>w/m²</td>
</tr>
<tr>
<td>Surface downwelling shortwave flux in assuming clear sky</td>
<td>RsdsCs</td>
<td>w/m²</td>
</tr>
<tr>
<td>Surface upwelling shortwave flux in assuming clear sky</td>
<td>RsusCs</td>
<td>w/m²</td>
</tr>
<tr>
<td>Surface downwelling longwave flux in assuming clear sky</td>
<td>RldsCs</td>
<td>w/m²</td>
</tr>
<tr>
<td>TOA outgoing longwave flux assuming clear sky</td>
<td>RlutsCs</td>
<td>w/m²</td>
</tr>
<tr>
<td>TOA outgoing shortwave flux assuming clear sky</td>
<td>RsutsCs</td>
<td>w/m²</td>
</tr>
<tr>
<td>Atmosphere cloud condensed water content</td>
<td>Clwvi</td>
<td>kg/m²</td>
</tr>
<tr>
<td>Atmosphere cloud ice content</td>
<td>Clivi</td>
<td>kg/m²</td>
</tr>
<tr>
<td>Sea ice thickness</td>
<td>Sit</td>
<td>m</td>
</tr>
<tr>
<td>Sea ice eastward velocity</td>
<td>Usi</td>
<td>m/s</td>
</tr>
<tr>
<td>Sea ice northward velocity</td>
<td>Vsi</td>
<td>m/s</td>
</tr>
<tr>
<td>Air temperature</td>
<td>Ta</td>
<td>K</td>
</tr>
<tr>
<td>Eastward wind</td>
<td>Ua</td>
<td>m/s</td>
</tr>
<tr>
<td>Northward wind</td>
<td>Va</td>
<td>m/s</td>
</tr>
<tr>
<td>Lagrangian tendency of air pressure</td>
<td>Wap</td>
<td>Pa/s</td>
</tr>
<tr>
<td>Geopotential height (50hPa)</td>
<td>Zg. 50</td>
<td>m</td>
</tr>
</tbody>
</table>
Η συνιστώσα του οκεανού βασίζεται στο μοντέλο Geophysical Fluid Dynamics Laboratory MOM1.1 και έχει ανάλυση περίπου 1,8° γεωγραφικού πλάτους κατά 1,8° γεωγραφικού μήκους και 29 κατακόρυφων επιπέδων.

Το θαλάσσιο συστατικό είναι ένα μοντέλο δύο κατηγοριών (μέσο πάχος και συγκέντρωση) με δυναμική σπαλαίνωση υγρού (Flato και Hibler, 1992) και θερμοδυναμική όπως στα CGCM1 και CGCM2, εκτός από το ότι περιλαμβάνεται μια προγνωστική εξίσωση για τη συγκέντρωση πάγου σύμφωνα με τον Hibler (Hibler, 1979).

Έχει γίνει πολλή δουλειά στον τομέα του καταβασμού των μετεωρολογικών μεταβλητών στην περιοχή της Θεσσαλίας και ιδιαίτερα στην λεκάνη απορροής της λίμνης Κάρλα. Ο Λουκάς και οι συνεργάτες του (Loukas et al., 2007b), χρησιμοποιώντας τη μέθοδο δέσμευσης δέλτα του Παγκόσμιου Μοντέλου Κυκλοφορίας CGCM2 (μέθοδος περικομμένων μέσων) στην κατακρήμνιση είχαν αξιολογήσει τις τις συνέπειες του μεταβαλλόμενου κλίματος στα γεγονότα ξηρασίας στην Θεσσαλία. Επιπλέον, ο Βασιλειάδης και οι συνεργάτες τους (Vasiliades et al., 2009) εφάρμοσαν μια παρόμοια τεχνική στατιστικής προκαταρκτικής διόρθωσης με βάση την πολλαπλασιασμός πολυνομικής της εξόδου CGCM2 και τη στοχαστική επεξεργασία των υπολειμάτων (χρησιμοποίησαν ένα μοντέλο MPAR (4)) για να προσδιορίσουν την επίδραση του σήματος της κλιματικής μεταβολής στον μείωση ξηρασίας στην κατακρήμνιση (Τυποποιημένος δείκτης βροχόπτωσης) στην περιοχή της Θεσσαλίας. Σε μια μεταγενέστερη μελέτη, ο Βασιλειάδης και οι συνεργάτες τους (Vasiliades et al., 2013), βελτίωσαν την προσέγγιση στατιστικού καταβασμού κλίμακας χρησιμοποιώντας την έξοδο CGCM3.1 και ενσωματώνοντας ένα μοντέλο διαχείρισμου για τη στοχαστική αντιμετώπιση των υπολειμάτων. Σε μεταγενέστερη εργασία ο Τζαμπύρας και οι συνεργάτες τους (Tzabiras et al. 2015) εφάρμοσαν το μοντέλο διαχείρισμα για τη στοχαστική αναπαραγωγή υπολοίπων βροχόπτωσης και θερμοκρασίας που προκύπτουν από την πολλαπλασιασμός πολυνομικής της εξόδου CGCM3.1 για τη λεκάνη απορροής της λίμνης Κάρλας. Αυτή ήταν η επιστημονική βάση για την τρέχουσα μελέτη, η οποία χρησιμοποιεί επίσης το CGCM3.1 για την επιλογή των μεταβλητών πρόβλεψης στη διαδικασία μείωσης της κλίμακας.

Προκειμένου να προβλεφθούν μελλοντικά μετεωρολογικά πλάσμα, απαιτούνται έξοδοι GCM των προγνωστικών παράγοντων (predictors) που αντιστοιχούν στο μελλοντικό κλίμα. Οι προγνωστικοί παράγοντες που χρησιμοποιούνται σε τέτοιες αναλύσεις θα πρέπει να έχουν ισχυρή συσχέτιση με τις μεταβλητές προβλέψεων (predictands) και θα πρέπει να εξηγούν τη μεταβλητότητα και τις τάσεις χαμηλής συχνότητας. Επιπλέον, πρέπει να είναι σε κατάλληλη χωρική κλίμακα και θα πρέπει να αναπαραγίσουν από το GCM. Σύμφωνα με αυτούς τους περιορισμούς, η εφαρμογή της πολλαπλής γραμμικής παλινδρόμησης εμπρόσθιας επιλογής έδειξε ότι από συνολικά 46 προγνωστικών παράγοντες (Πίνακας 10.1) που διατίθενται από το GCM, οι πιο σημαντικοί για λογαριθμική μετασχηματισμένα δεδομένα βροχόπτωσης είναι η εξέρχομενη ροή Τοα μακρινού κύματος (Rlut in w) / m² και η επιφανειακή αναλογική
πίεση προς τα κάτω (Ταυ ω ρεθο) ενώ για τη θερμοκρασία είναι η επιφανειακή ροή πύκνωσης μικρού μήκους κύματος στον αέρα (Rsdς ω ρεθο / m²) και το γεωδυναμικό ύψος στα 50hPa (Zg_50 ω ρεθο).

Οι ψευδ-μεταβλητές (ένα σύνολο κατηγορηματικών μεταβλητών που αντιστοιχούν στους 12 μήνες του έτους) χρησιμοποιούνται για να εξηγήσουν την επίδραση του «μήνα» στις τιμές βροχόπτωσης και θερμοκρασίας. Τα καλύτερα μοντέλα καταβιβασμού-παλινδρόμησης που περιέχουν μηνιαίες εικονικές μεταβλητές εκφράζονται ως:

\[
P_{\text{MLR}} = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3 + \ldots + a_{12} \cdot b_{12} + a_{13} \cdot \text{Rlut} + a_{14} \cdot \text{Tauw} + c_1 \quad (10.1)
\]

\[
T_{\text{MLR}} = d_1 \cdot b_1 + d_2 \cdot b_2 + d_3 \cdot b_3 + \ldots + d_{12} \cdot b_{12} + d_{13} \cdot \text{Rsdς} + d_{14} \cdot \text{Zg} + c_2 \quad (10.2)
\]

Όπου το \(P_{\text{MLR}}\) είναι η λογαριθμική μετασχηματισμένη μηνιαία βροχόπτωση, το \(T_{\text{MLR}}\) είναι η μηνιαία θερμοκρασία, \(b_1, b_2, b_3, \ldots, b_{12}\) είναι οι μηνιαίες μεταβλητές στάθμισης για τη βροχόπτωση και για τη θερμοκρασία. Οι συντελεστές παλινδρόμησης για το μοντέλο είναι \(a_1, a_2, a_3, \ldots, a_{12}\) και \(c_1\) είναι η σταθερά παλινδρόμησης ενώ για το μοντέλο θερμοκρασίας είναι \(d_1, d_2, d_3, \ldots, d_{12}\) και \(c_2\). Οι εικονικές μεταβλητές, \(b_1-b_{12}\) έχουν διαδικτικές τιμές, \(0 \text{ ή } 1\), ανάλογα με τον μήνα στον οποίο αναφέρονται η βροχόπτωση και η θερμοκρασία. Για παράδειγμα, εάν ο μήνας είναι Οκτώβριος, τότε, το \(b_1\) παίρνει την τιμή 1 και όλες οι άλλες εικονικές μεταβλητές, το \(b_2-b_{12}\) παίρνει την τιμή 0. Ομοίως, εάν ο μήνας είναι Νοέμβριος, τότε, το \(b_1\) παίρνει την τιμή 0, το \(b_2\) παίρνει την τιμή 1 και όλες οι άλλες εικονικές μεταβλητές, το \(b_3-b_{12}\) λαμβάνει την τιμή 0 και ούτω καθεξής.

Σχήμα 10.1: Σύγκριση παρατηρημένης και προσωπομοιομένης μηνιαίας βροχόπτωσης για τη λεκάνη Απορροής Κάρλας (Tzabiras et al., 2015)
Σχήμα 10.2: Σύγκριση παρατηρημένης και προσομοιωμένης μηνιαίας θερμοκρασίας για τη λεκάνη απορροής Κάρλας (Tzabiras et al., 2015)

Τα υπολείμματα μεταξύ των αποτελεσμάτων του μοντέλου MLR και των ιστορικών τιμών ορίζονται ως:

\[P_{\text{res}} = P - P_{\text{MLR}}, \quad T_{\text{res}} = T - T_{\text{MLR}} \] \hspace{1cm} (10.3)

Μια εναλλακτική λύση σε αυτό είναι να αντιπροσωπεύσει κάποιος τις διεργασίες που δεν έχουν επλυθεί από την πρόβλεψη μεγάλης κλίμακας προσθέτοντας θόρυβο στη καταβιβασμένη χρονοσειρά (von Storch 1999). Στη συνέχεια, οι παρατηρημένες σειρές μπορούν να θεωρηθούν ως άθροισμα των σειρών και του θόρυβος. Επειδή ο λευκός θόρυβος είναι εξ ορισμού μη συσχετισμένος με τις καταβιβασμένες χρονοσειρές, η διακύμανση του μπορεί να οριστεί ως η διαφορά των διακυμάνσεων καταβιβασμένης και παρατηρημένης. Η ίδια προσέγγιση υιοθετήθηκε από τον Wilby (Wilby et al., 1999) και Zorita και von Storch (1999). Σε αυτή τη μελέτη, για τη διατήρηση του παρατηρημένου μοτίβου χρονοσειρών, η εκτιμώμενη βροχόπτωση συνδυάστηκε με τα υπόλοιπα της παλινδρόμησης. Σε πολλές εκτιμήσεις των κλιματικών επιπτώσεων, η διακύμανση των καταβιβασμένων χρονοσειρών οφείλεται να ταυτίζεται με τη διακύμανση των παρατηρημένων τιμών, απότε σε πολλές περιπτώσεις έχει υιοθετηθεί η υπόθεση ότι οι υπολείμματα παραμένουν αμετάβλητα για μελλοντικές κλιματικές περιόδους (Vasiliades et al., 2009, Tzabiras et al., 2016). Ωστόσο, για να εκτιμηθεί η αβεβαιότητα της μεθόδου καταβιβασμού κλίμακας, εφαρμόστηκε στοχαστική προσομοίωση χρονοσειρών για την αναπαραγωγή των υπολοίπων.
10.1.2 Στοχαστική προσομοίωση των υπολειμματικών τιμών

Η στοχαστική αναπαραγωγή μετεωρολογικών δεδομένων όπως η βροχόπτωση και η θερμοκρασία βασίζεται συνήθως σε μαθηματικά μοντέλα. Τα στοχαστικά μοντέλα προσομοιώνουν τις χαμηλές και χρονικές αλληλεπιδράσεις μεταξύ μετεωρολογικών μεταβλητών. Αυτά τα μοντέλα αντιπροσωπεύονται από ένα σύνολο παραμέτρων που εκτιμώνται σε σχέση με τα στατιστικά χαρακτηριστικά των ιστορικών δεδομένων. Το κύριο πλεονέκτημα τους είναι η δημιουργία συνθετικών χρονοσειρών μεγάλου μήκους διατρόφυντας τις στατιστικές δομές και τα χαρακτηριστικά των αρχηγικών δεδομένων (Salas, 1993). Κατ’ αυτόν τον τρόπο, η αβεβαιότητα της φυσικής διαδικασίας που μελετάται ποσοτικοποιείται και παρέχεται η εξάγονται ασφαλή και χρήσιμα συμπερασμάτα σχετικά με την αποτελεσματικότητα και την ακρίβεια του συστήματος. Οι στοχαστικές κλιματολογικές προσομοιώσεις στην πραγματικότητα είναι τοιχοι αρθικοι προσαρμοσμένοι ώστε να έχουν παρόμοια χαρακτηριστικά (π.χ. μέση τιμή, παραλλαγή, τυπική απόκλιση, ασυμμετρία, κύρωση κ.λπ.) με τα ιστορικά δεδομένα στα οποία βασίζονται. Κάθε στοχαστικό αντίγραφο είναι διαφορετικό και τα στατιστικά χαρακτηριστικά του ενδέχεται να διαφέρουν σημαντικά σε σχέση με αυτά των ιστορικών δεδομένων, αλλά η μέση τιμή όλων των δημιουργούμενων αντιγράφων (επανάληψες) είναι η ίδια με τα αρχικά δεδομένα. Επιπλέον, τα στοχαστικά μοντέλα επιβάλλονται να έχουν τις ίδιες στατιστικές παραμέτρους σε παλαιότερες κλίμακες χρόνου. Κατά συνέπεια, ένα αποτελεσματικό μοντέλο για την προσομοίωση των ετήσιων δεδομένων βροχόπτωσης επιτρέπει την κατανοήση της ετήσιας τιμής των υδρομετεωρολογικών παραμέτρων σε μικροτέρες χρονικές κλίμακες (π.χ. μηνιαία χρονική κλίμακα).

10.1.2.1 Αναπαραγωγή ετήσιων μετεωρολογικών δεδομένων

Σε αυτήν τη διατριβή, τα ετήσια υπολειμματικά δεδομένα για το κλίμα (δηλ. για βροχόπτωση και θερμοκρασία) δημιουργήθηκαν από ένα πολυμεταβλητό μοντέλο αυτοσυσχέτισης πρώτης τάξης [AR (1)] χωρίς εκτίμηση της αβεβαιότητας της παραμέτρου. Η εφαρμογή του μοντέλου σε προγενέστερο στάδιο σε συγκεκριμένους σταθμούς σε όλη την περιοχή της Θεσσαλίας δείχνει αναπαράγει με ακρίβεια τα μετεωρολογικά δεδομένα των μεσογειακών και ηπειρωτικών τύπων κλίματος. Το AR (1) είναι ένα μοντέλο αυτοσυσχέτισης πρώτης τάξης που εφαρμόζεται για την ανάπτυξη ετήσιων σειρών βροχόπτωσης και θερμοκρασίας. Αυτό το μοντέλο προσομοιώνει τις ετήσιες υπολειμματικές τιμές βροχόπτωσης και θερμοκρασίας, οι οποίες εξαρτώνται μόνο από το προγενέστερο στάδιο και προστίθεται ένα συστατικό Gauss. Τα ετήσια υπολείμματα βροχόπτωσης και θερμοκρασίας έχουν μικρή διακύμανση, που σημαίνει ότι οι μεταβλητές προσεγγίζουν συνήθεις κανονικής κατανομής. Η σχέση με το χρόνο του μοντέλου AR (1) εκφράζεται ως εξής:
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 10ο: -Εφαρμογή στατιστικού καταβιβασμού κλίμακας υδρομετεωρολογικών μεταβλητών-

\[P_{\text{res},t} = r_{t}(P_{\text{res},t-1}) + \left(1 - r^2\right) - \eta_{1,t}, \quad T_{\text{res},t} = r_{t}(T_{\text{res},t-1}) + \left(1 - r^2\right) - \eta_{2,t} \] \hspace{1cm} (10.4)

Οπου, \(P_{\text{res},t}, T_{\text{res},t} \) είναι τα μετασχηματισμένα κανονικής κατανομής υπολειμματα βροχόπτωσης και θερμοκρασίας στο χρονικό βήμα \(t \) αντίστοιχα, \(r \) είναι ο συντελεστής αυτοσυσχέτισης πρώτης τάξης και \(\eta \) είναι μια τυχαία κανονική (Gaussian) μεταβλητή. Τα ετήσια υπολείμματα υπολογίζονται σύμφωνα με την εξίσωση (3):

\[P_{\text{res},t} = \overline{P}_{\text{res}} + s_{P} P_{\text{res},t-1}, \quad T_{\text{res},t} = \overline{T}_{\text{res}} + s_{T} T_{\text{res},t-1} \] \hspace{1cm} (10.5)

όπου, \(P_{\text{res},t}, T_{\text{res},t} \) είναι τα υπολείμματα βροχόπτωσης και θερμοκρασίας στο ύγιο \(t \) αντίστοιχα, είναι τα μέσα ετήσια υπολείμματα υετού και θερμοκρασίας, είναι η τυπική απόκλιση των υπολειμμάτων ετήσιας βροχόπτωσης και θερμοκρασίας. Ωστόσο, ο μετασχηματισμός Wilson-Hilferty (Wilson and Hilferty, 1931) χρησιμοποιείται για τη διατήρηση της υπόθεσης της κανονικότητας εάν τα ετήσια υπολειμματικά δεδομένα (ειδικά η κατακρήμνιση) είναι ασύμμετρα:

\[e_{t} = \frac{2}{g_{r}} \left[\left(1 + g_{r} \eta_{r} \right) - \frac{g_{r}^{2}}{36} \right]^{-1} \] \hspace{1cm} (10.6)

Οπου, \(g_{r} \) είναι η ασυμμετρία της \(E_{t} \), η οποία συσχετίζεται με την ασυμμετρία των ετήσιων υπολοίπων βροχόπτωσης ή θερμοκρασίας μέσω της ακόλουθης σχέσης:

\[g_{r} = \frac{\left(1 - r^{-2}\right)}{\left(1 - r\right)^{2}} g \] \hspace{1cm} (10.7)

Οι συντελεστές διακύμανσης (Cv), ασυμμετρίας (Cs) και ο συντελεστής συσχέτισης πρώτης τάξης (r) των ετήσιων δεδομένων (ετήσια υπολειμματα βροχόπτωσης και θερμοκρασίας) είναι αρκετά χαμηλά (Cv <0.5, Cs <1 και r <0.5). Ως εκ τουτού, ένα μοντέλο αυτοσυσχέτισης πρώτης τάξης αποτελεί την κατάλληλη επιλογή για την προσομοίωση και τη δημιουργία μετεωρολογικών δεδομένων. Αυτό το μοντέλο που περιλαμβάνει πολλές μεταβλητές περιγράφεται από τις ακόλουθες εξίσωσεις:

\[P_{\text{res},t} = A_{P} P_{\text{res},t-1} + B_{P} e_{t}, \quad T_{\text{res},t} = A_{T} T_{\text{res},t-1} + B_{T} e_{t} \] \hspace{1cm} (10.8)
10.1.2.2 Αναπαραγωγή μηνιαίων μετεορολογικών δεδομένων

Εφαρμόστηκε ένα στοχαστικό μηνιαίο μοντέλο χρονικού διαχωρισμού για τα υπολειμματικά βροχόπτωσης και θερμοκρασίας. Σε αυτή τη μελέτη, η τροποποιημένη μέθοδος συνθετικών τμημάτων επιμερισμού που προτάθηκε από τους Maheepala και Perera (Maheepala and Perera, 1996) εφαρμόστηκε για τη δημιουργία συνθετικών μηνιαίων δεδομένων για το κλίμα και για τη διατήρηση της διασταυρόμενης συσχέτισης μεταξύ των δύο μεταβλητών (καταβιβασμένα υπολειμματικά βροχόπτωση και θερμοκρασία). Τα παρατηρούμενα δεδομένα μηνιαίου βήματος τροποποιούνται για κάθε έτος έτσι ώστε το σύνολο των μηνιαίων κλιματικών δεδομένων κάθε έτους να ισούται με την ενότητα. Αυτό πραγματοποιείται διαιρώντας τα μηνιαία κλιματικά δεδομένα σε ένα έτος με τα αυτά του αντίστοιχου έτους. Αναφορικά με τη θερμοκρασία, η μέση ετήσια τιμή πολλαπλασιάστηκε για πρώτη φορά με 12. Έτσι, από ένα αρχείο τετραόντων κάποιος θα έχει ένα σύνολο τμημάτων δεδομένων μηνιαίου βήματος. Τα συνθετικά δεδομένα ετήσιου βήματος διαχωριστούν επιλέγοντας ένα μήμα του οποίου οι τοποθέτηση κλιματικά δεδομένα είναι πιο κοντά στα παραγόμενα ετήσια δεδομένα σύμφωνα με τους Maheepala και Perera, (1996):

\[
\alpha_i = \sum_{j=1}^{3} \left(\frac{x_{k} - x_{i}}{s_{x}^{j}} \right)^{2}, \quad \beta_j = \sum_{j=1}^{3} \left(\frac{y_{k+1} - y_{i}}{s_{y}^{j}} \right)^{2}
\] \hspace{1cm} (10.9)
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 10ο:
Εφαρμογή στατιστικού καταβιβασμού κλίμακας υδρομετεωρολογικών μεταβλητών

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

10.1.2.3 Στατιστικά κριτήρια των συνθετικών δεδομένων

Σε αυτή την παράγραφο, περιγράφονται διάφορα στατιστικά κριτήρια στα οποία βασίστηκε η αξιολόγηση των στοχαστικών δημιουργημένων χρονοσειρών σε σύγκριση με τα ιστορικά δεδομένα. Αυτά τα κριτήρια εκτιμούν τις διαφορές που έχουν τα στατιστικά χαρακτηριστικά από αυτά των αρχικών δεδομένων, με βάση την τιμή «ανοχής». Υποθέτοντας ότι, οι αποκλίσεις βρίσκονται εντός των ορίων αυτής της κρίσιμης τιμής όπως αναφέρεται στον Πίνακα 3.2, θεωρείται ότι το στοχαστικό μοντέλο προσομοιώνει με ικανοποιητικό τρόπο το στατιστικό χαρακτηριστικό που υπάρχει.
Πίνακας 10-2: Στατιστικά κριτήρια και παράμετροι για στοχαστικά μοντέλα (Tzabiras et al., 2015)

<table>
<thead>
<tr>
<th>Στατιστικό κριτήριο</th>
<th>Μέγιστο όριο ανοχής</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέσος (%)</td>
<td>Ετήσια δεδομένα</td>
</tr>
<tr>
<td>Τυπική απόκλιση (%)</td>
<td>5</td>
</tr>
<tr>
<td>Συντελεστής ασυμμετρίας</td>
<td>0.5</td>
</tr>
<tr>
<td>Συντελεστής αυτοσυσχέτισης 1% τάξης 0.15</td>
<td>-</td>
</tr>
<tr>
<td>Μέγιστο (%)</td>
<td>10</td>
</tr>
<tr>
<td>Ελάχιστο (%)</td>
<td>10</td>
</tr>
<tr>
<td>Συντελεστής επιτροποσχέτισης 0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Συντελεστής μηνιαίας επιτροποσχέτισης</td>
<td>-</td>
</tr>
</tbody>
</table>

Η στοχαστική παραγωγή συνθετικών δεδομένων βασίζεται σε τρεις βασικούς κανόνες: α) το μήκος των συνθετικών χρονοσειρών επιβάλλεται να προσομοιάζει το ιστορικό β) πρέπει να υπάρχει επαρκής αριθμός συνθετικών χρονοσειρών (τουλάχιστον 100) και γ) τα δεδομένα της ιστορικής περιόδου πρέπει να είναι αρκετά μεγάλα (τουλάχιστον 20 χρόνια). Στατιστικά κριτήρια είναι πάρα πολλά, αυτά τα στατιστικά στοιχεία έχουν να ομαδοποιηθούν. Με αυτόν τον τρόπο, μια ποιοτική εκτίμηση και ανάλυση των αποτελεσμάτων έγινε μια εφικτή διαδικασία.

10.1.3 Ανάπτυξη μελλοντικών μετεωρολογικών πλαισίων

Η εφαρμογή της τροποποιημένης μεθόδου των τμημάτων επιμερισμού δημιούργησε 100 συνθετικές χρονοσειρές υπολοιπών μήκους ίσου με το μήκος των ιστορικών δεδομένων (20 χρόνια). Οι παραγόμενες συνθετικές χρονοσειρές κλιματικών δεδομένων προστέθηκαν στα στατιστικά καταβασμένα κλιματικά αποτελέσματα για την αναπαραγωγή του παρατηρούμενου ετήσιου και μηνιαίου κλίματος που χρησιμοποιήθηκαν στη συνέχεια στην εφαρμογή του μοντέλου που αναφέρθηκε προηγούμενος. Τέλος, οι ανεπτυγμένες εξισώσεις MLR για τη θερμοκρασία και τη βροχόπτωση εφαρμόστηκαν για την εκτίμηση των μελλοντικών χρονοσειρών κλιματικών παραγώγων που προέκυψαν από το GCM για τις μελλοντικές περιόδους 2030-2050 και 2080-2100, και στη συνέχεια οι 100 συνθετικές χρονοσειρές του παρόντος κλίματος προστέθηκαν σε μελλοντικές χρονοσειρές που προέκυψαν από το GCM υποθέτοντας ότι οι υπολοίπες κλιματικές χρονοσειρές στο μέλλον έχουν τα ίδια στατιστικά χαρακτηριστικά της ιστορικής περιόδου. Αυτή η διαδικασία καθορίζεται από τις εξισώσεις:

\[P^* = P_{\text{MLR}} + P_{\text{res}}, \quad T^* = T_{\text{MLR}} + T_{\text{res}} \]

(10.10)
ΑΠΟΤΕΛΕΣΜΑΤΑ

10.2.1 Ανάλυση ετήσιων αποτελεσμάτων

Σύμφωνα με τους πίνακες 10.2 και 10.3 κατά την ιστορική περίοδο, η τιμή της μέσης ετήσιας βροχής (μέση χρονοσειρά) της υδρολογικής λεκάνης της λίμνης Κάρλας ήταν 556,73 mm, κυμαινόμενη από 328,7 mm έως 799,44 mm, ενώ η μέση ετήσια θερμοκρασία ήταν 15,2 °C κυμαινόμενη από 14,3 °C έως 16,38 °C.
Πίνακας 10-3: Στατιστικά χαρακτηριστικά για μέση ετήσια βροχόπτωση στην υδρολογική λεκάνη (Tzabiras et al., 2015)

<table>
<thead>
<tr>
<th>Πανεπιστήμιο Θεσσαλίας</th>
<th>Τμήμα Πολιτικών Μηχανικών</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διδακτορική Διατριβή: Τζαμύρας Ιωάννης</td>
<td>-Κεφάλαιο 10η- Εφαρμογή στατιστικού καταβιβασμού κλίμακας υδρομετεωρολογικών μεταβλητών-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέση ετήσια βροχόπτωση (mm)</td>
<td>556.73</td>
<td>559.54</td>
<td>547.34</td>
</tr>
<tr>
<td>SRES B1</td>
<td></td>
<td>0.50</td>
<td>-1.69</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>545.99</td>
<td>-1.93</td>
<td>-5.79</td>
</tr>
<tr>
<td>SRES A2</td>
<td>537.63</td>
<td>-3.43</td>
<td>517.22</td>
</tr>
<tr>
<td>Γυμνή απόκλιση (mm)</td>
<td>126.89</td>
<td>125.46</td>
<td>126.00</td>
</tr>
<tr>
<td>SRES B1</td>
<td></td>
<td>-1.13</td>
<td>-0.70</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>125.68</td>
<td>-0.95</td>
<td>-5.29</td>
</tr>
<tr>
<td>SRES A2</td>
<td>124.31</td>
<td>-2.03</td>
<td>-7.00</td>
</tr>
<tr>
<td>Αστισμομετρία</td>
<td>0.08</td>
<td>0.06</td>
<td>-21.97</td>
</tr>
<tr>
<td>SRES B1</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>0.10</td>
<td></td>
<td>1.38</td>
</tr>
<tr>
<td>SRES A2</td>
<td>0.06</td>
<td></td>
<td>-18.42</td>
</tr>
<tr>
<td>Ελάχιστο (mm)</td>
<td>328.70</td>
<td>335.01</td>
<td>326.54</td>
</tr>
<tr>
<td>SRES B1</td>
<td></td>
<td>1.92</td>
<td>-0.66</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>322.14</td>
<td>-2.00</td>
<td>-10.06</td>
</tr>
<tr>
<td>SRES A2</td>
<td>312.46</td>
<td>-4.94</td>
<td>-9.63</td>
</tr>
<tr>
<td>Μέγιστο (mm)</td>
<td>799.44</td>
<td>795.62</td>
<td>795.62</td>
</tr>
<tr>
<td>SRES B1</td>
<td></td>
<td>-0.48</td>
<td>-0.48</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>784.75</td>
<td>-1.84</td>
<td>-4.07</td>
</tr>
<tr>
<td>SRES A2</td>
<td>771.92</td>
<td>-3.44</td>
<td>-5.29</td>
</tr>
<tr>
<td>Συντελεστής αυτοσυσχέτισης 1ης τάξης</td>
<td>0.08</td>
<td>0.07</td>
<td>-3.69</td>
</tr>
<tr>
<td>SRES B1</td>
<td></td>
<td></td>
<td>-2.22</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>0.07</td>
<td>-4.62</td>
<td>0.09</td>
</tr>
<tr>
<td>SRES A2</td>
<td>0.09</td>
<td>23.53</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Από την άλλη πλευρά, τα σενάρια κλιματικής αλλαγής για τη βραχυπρόθεσμη μελλοντική περίοδο 2030-2050 ήπειρες αλλαγές βροχόπτωσης και θερμοκρασίας. Ειδικά, για το σενάριο SRES B1 μια μικρή αύξηση της ετήσιας βροχόπτωσης κατά 0,5% υποδηλώνει ότι φτάνει τα 559,54 mm και μια αντίστοιχη αύξηση για την ετήσια θερμοκρασία κατά 1% φτάνει το 15,35 oC. Το σενάριο SRES A1B, το οποίο είναι το μέτριο σενάριο όσον αφορά την κλιματική αλλαγή, προβάλλει μικρή μείωση 1,93% για τη μέση ετήσια βροχόπτωση στα 545,99 mm ενώ για τη θερμοκρασία αύξηση 1,47% στο 15,42 oC.
Πίνακας 10-4: Στατιστικά χαρακτηριστικά για μέση ετήσια θερμοκρασία στην υδρολογική λεκάνη Κάρλας (Tzibiras et al., 2015)

<table>
<thead>
<tr>
<th></th>
<th>Ιστορική περίοδος 1980-2000</th>
<th>Μελλοντική περίοδος 2030-2050</th>
<th>Μελλοντική περίοδος 2080-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέση ετήσια θερμοκρασία (°C)</td>
<td>14.28</td>
<td>14.40</td>
<td>14.51</td>
</tr>
<tr>
<td>SRES B1</td>
<td>14.40</td>
<td>0.87</td>
<td>14.51</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>14.46</td>
<td>1.27</td>
<td>14.65</td>
</tr>
<tr>
<td>SRES A2</td>
<td>14.45</td>
<td>1.19</td>
<td>14.78</td>
</tr>
<tr>
<td>Τυπική απόκλιση (°C)</td>
<td>0.50</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>SRES B1</td>
<td>0.51</td>
<td>0.36</td>
<td>0.51</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>0.50</td>
<td>0.08</td>
<td>0.50</td>
</tr>
<tr>
<td>SRES A2</td>
<td>0.50</td>
<td>0.11</td>
<td>0.50</td>
</tr>
<tr>
<td>Ασυμμετρία</td>
<td>0.24</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>SRES B1</td>
<td>0.26</td>
<td>6.95</td>
<td>0.24</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>0.25</td>
<td>2.61</td>
<td>0.23</td>
</tr>
<tr>
<td>SRES A2</td>
<td>0.24</td>
<td>-1.55</td>
<td>0.25</td>
</tr>
<tr>
<td>Ελάχιστο (°C)</td>
<td>13.40</td>
<td>13.53</td>
<td>13.64</td>
</tr>
<tr>
<td>SRES B1</td>
<td>13.35</td>
<td>0.98</td>
<td>13.76</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>13.59</td>
<td>1.41</td>
<td>13.77</td>
</tr>
<tr>
<td>SRES A2</td>
<td>13.58</td>
<td>1.30</td>
<td>13.91</td>
</tr>
<tr>
<td>Μέγιστο (°C)</td>
<td>15.30</td>
<td>15.43</td>
<td>15.43</td>
</tr>
<tr>
<td>SRES B1</td>
<td>15.43</td>
<td>0.85</td>
<td>15.43</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>15.48</td>
<td>1.17</td>
<td>15.67</td>
</tr>
<tr>
<td>SRES A2</td>
<td>15.47</td>
<td>1.10</td>
<td>15.81</td>
</tr>
<tr>
<td>Συντελεστής αυτοσυσχέτισης 1ης τάξης</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>SRES B1</td>
<td>0.13</td>
<td>-4.49</td>
<td>0.14</td>
</tr>
<tr>
<td>SRES A1B</td>
<td>0.13</td>
<td>-0.98</td>
<td>0.14</td>
</tr>
<tr>
<td>SRES A2</td>
<td>0.13</td>
<td>-1.17</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Το πιο έντονο σενάριο (όσον αφορά την κλιματική αλλαγή), το SRES A2 προβάλλει τη μεγαλύτερη μείωση στη μέση ετήσια βροχόπτωση 3,43% στα 537,63 mm και αύξηση θερμοκρασίας 1,37% στους 15,4 °C. Όσον αφορά την τυπική απόκλιση, τα σενάρια κλιματικής αλλαγής δείχνουν σαφή μείωση της μέσης ετήσιας βροχόπτωσης σε σχέση με την ιστορική περίοδο όπου η απόκλιση ήταν 126,89 mm. Το σενάριο SRES A2 προβάλλει μείωση κατά 2,03%, το σενάριο SRES A1B κατά 0,95% και το σενάριο SRES B1 κατά 1,13%. Αντίθετα, η τυπική απόκλιση για τη θερμοκρασία δεν διαφέρει με σημαντικό τρόπο σε σχέση περίοδο βάσης (0,55 °C).

Αναφορικά με τη μελλοντική περίοδο 2080-2100, η επίδραση της κλιματικής αλλαγής στη μέση ετήσια βροχόπτωση προορίζεται σαφείρητα, ενώ για τη μέση ετήσια θερμοκρασία οι αλλαγές είναι πιο ήπιες. Πράγματι, για το σενάριο SRES B1 η μέση ετήσια μείωση βροχόπτωσης είναι 1,69% φθάνοντας στα 547,34 mm και η αντίστοιχη αύξηση της μέσης ετήσιας θερμοκρασίας είναι 1,93% στους 15,49 °C. Το σενάριο SRES A1B δείχνει μία βαθύτερη μείωση της μέσης ετήσιας βροχόπτωσης 5,79% στα 524,48 mm και αυξημένη μέση ετήσια θερμοκρασία κατά 3% στους 15,65 °C. Τέλος, το πιο έντονο σενάριο SRES A2 προβάλλει τη μεγαλύτερη μείωση της βροχόπτωσης κατά 7,1% στα 517,22 mm ακολουθούμενη από αύξηση της θερμοκρασίας κατά 4,11% στους 15,82 °C. Οι αλλαγές τυπικής απόκλισης είναι αρκετά μικρές και κυμαίνονται μεταξύ -2,17% και 0,29% για τη βροχόπτωση ενώ για τη θερμοκρασία κυμαίνονται μεταξύ 0,28% και 0,63%.
10.2.2 Ανάλυση μηνιαίων αποτελεσμάτων

Τα στατιστικά χαρακτηριστικά της μέσης μηνιαίας βροχόπτωσης και της θερμοκρασίας υπολογίστηκαν όπως στην περίπτωση των ετήσιων αποτελεσμάτων για τις δύο μελλοντικές περιόδους (2030-2050 και 2080-2100) και τρία σενάρια κλιματικής αλλαγής (SRES B1, SRES A1B και SRES A2). Ο Πίνακας 10.5α παρουσιάζει τις προβλέψεις των σεναρίων εκπομπών για τη μέση μηνιαία βροχόπτωση. Οι αντίστοιχες ποσοστιαίες μεταβολές σε σύγκριση με την ιστορική περίοδο έχουν υπολογιστεί και για την περίοδο 2030-2050 κυμαίνονται μεταξύ -7,9% και 9,86% ενώ για την περίοδο 2080-2100 αυτό είναι κυμαίνεται μεταξύ -13,44% και 5,25%. Ο Πίνακας 10.5β δείχνει την τυπική απόκλιση για τη μέση μηνιαία βροχόπτωση για την περίοδο βάσης και τις δύο επιλεγμένες μελλοντικές περιόδους σύμφωνα με το σενάριο SRES που χρησιμοποιείται κάθε φορά. Οι αντίστοιχες ποσοστιαίες μεταβολές υπολογίστηκαν για τη βραχυπρόθεσμη περίοδο μεταξύ -2,45% και 2,14% ενώ για τη μακροπρόθεσμη περίοδο ήταν μεγαλύτερες (-3,53% και -3,34%). Επιπλέον, ο Πίνακας 10.5γ παρουσιάζει τα αποτελέσματα για τον συντελεστή ασυμμετρίας (για μέση μηνιαία βροχόπτωση). Οι ποσοστιαίες μεταβολές κυμαίνονται από -19,57% έως 20,68% για την περίοδο 2030-2050 και από -11,37% έως 37,45% για την περίοδο 2080-2100. Οι αλλαγές μέγιστης και ελάχιστης τιμής είναι αρκετά αξιοσημείωτες (πίνακες 4.3ε, 4.3στ). Η αλλαγή της ελάχιστης τιμής κυμαίνεται μεταξύ -76,7% και 62,3% και η αλλαγή της μέγιστης τιμής κυμαίνεται από -5,49% έως 3,67% για τη βραχυπρόθεσμη περιόδο. Από την άλλη πλευρά, για τη μακροπρόθεσμη περίοδο, η αλλαγή της ελάχιστης τιμής κυμαίνεται από -68,9% έως 11,81% και η αντίστοιχη μεταβολή για τη μέγιστη τιμή υπολογίστηκε από -5,64% σε 2,58%. Ο μηνιαίος συντελεστής ετεροσυσχέτισης απεικονίζεται στον πίνακα 4.3δ και οι αλλαγές σε σύγκριση με την ιστορική περίοδο κυμαίνονται από -45,9% έως 71,58% για την περίοδο 2030-2050 και από -145,9% έως 47,42% για την περίοδο 2080-2100. Αυτές οι αλλαγές του συντελεστή διασταυρούμενης συσχέτισης υποδηλώνουν μια υποκείμενη τάση μιας χρονικής μετατόπισης της βροχόπτωσης.
Πίνακας 10-5: Στατιστικά χαρακτηριστικά μέσης μηνιαίας βροχόπτωσης για τη λεκάνη απορροής Κάρλας (Tzabiras et al., 2015)

<table>
<thead>
<tr>
<th>Ιστορική περίοδος 1980-2000</th>
<th>Μελλοντική περίοδος 2030-2050</th>
<th>Μελλοντική περίοδος 2080-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRES B1</td>
<td>SRES A1B</td>
<td>SRES A2</td>
</tr>
<tr>
<td>SRES B1</td>
<td>SRES A1B</td>
<td>SRES A2</td>
</tr>
<tr>
<td>a) Μέση μηνιαία βροχότοση (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>45.76</td>
<td>45.42</td>
</tr>
<tr>
<td>Nov</td>
<td>44.38</td>
<td>45.33</td>
</tr>
<tr>
<td>Dec</td>
<td>42.10</td>
<td>41.86</td>
</tr>
<tr>
<td>Jan</td>
<td>35.47</td>
<td>35.28</td>
</tr>
<tr>
<td>Feb</td>
<td>39.87</td>
<td>39.31</td>
</tr>
<tr>
<td>Mar</td>
<td>38.36</td>
<td>38.11</td>
</tr>
<tr>
<td>Apr</td>
<td>37.83</td>
<td>37.53</td>
</tr>
<tr>
<td>May</td>
<td>37.83</td>
<td>38.11</td>
</tr>
<tr>
<td>Jun</td>
<td>4.34</td>
<td>4.63</td>
</tr>
<tr>
<td>Jul</td>
<td>7.19</td>
<td>6.05</td>
</tr>
<tr>
<td>Aug</td>
<td>2.98</td>
<td>2.59</td>
</tr>
</tbody>
</table>
Διδακτoρική Διατριβή: Τζαμπύρας Ιωάννης
-Κεφάλαιo 10o: -Εφαρμoγή στατιστικoύ καταβιβασμoύ κλίμακας υδρoμετεωρoλoγικών μεταβλητών-

Πίνακας 10-6: Στατιστικά χαρακτηριστικά μέσης μηνιαίας θερμoκρασίας για τη λεκάνη
απoρρoής Κάρλας (Tzabiras et al., 2015)
Ιστoρική περίoδoς
1980-2000

Μελλoντική περίoδoς
2030-2050
SRES B1
SRES A1B
SRES A2
16.05
10.00
6.33
5.44
6.36
8.94
13.92
19.36
24.95
26.66
25.46
21.58

α) Μέση μηνιαία θερμoκρασία (oC)
Oct
15.98
15.94
Nov
9.87
9.98
Dec
6.04
6.22
Jan
4.96
5.40
Feb
6.13
6.29
Mar
8.90
8.93
Apr
13.66
13.84
May
19.04
19.26
Jun
24.67
24.83
Jul
26.38
26.59
Aug
25.26
25.39
Sep
21.35
21.51
β) Τυπική απόκλιση μέσης μηνιαίας θερμoκρασίας (oC)
Oct
1.61
1.70
Nov
1.48
1.44
Dec
1.80
1.70
Jan
1.52
1.32
Feb
1.46
1.48
Mar
1.64
1.65
Apr
1.70
1.67
May
1.50
1.31
Jun
1.01
1.04
Jul
1.25
1.04
Aug
1.12
1.07
Sep
1.01
1.12
γ) Συντελεστής ασυμμετρίας μέσης μηνιαίας θερμoκρασίας
Oct
0.21
0.51
Nov
-0.72
-0.37
Dec
-0.51
-0.22
Jan
-0.44
-0.27
Feb
-0.24
-0.27
Mar
-0.96
-0.58
Apr
-0.47
-0.59
May
-0.33
-0.27
Jun
-1.14
-1.01
Jul
0.68
0.55
Aug
-0.13
-0.11
Sep
1.12
0.97
δ) Μηνιαία ετερoσυσχέτιση
Oct-Nov
0.04
-0.02
Nov-Dec
0.07
0.09
Dec-Jan
0.29
0.42
Jan-Feb
0.17
0.17
Feb-Mar
-0.04
0.00
Mar-Apr
0.38
0.46
Apr-May
0.27
0.22
May-Jun
0.20
0.19
Jun-Jul
0.49
0.51
Jul-Aug
0.38
0.27
Aug-Sep
0.26
0.31
Sep-Oct
0.19
0.04
o
ε) Ελάχιστo (C)
Oct
13.94
13.82
Nov
6.47
7.06
Dec
2.41
3.14
Jan
2.03
3.06
Feb
3.48
3.79
Mar
4.44
5.28
Apr
10.25
10.52
May
16.13
16.65
Jun
22.12
22.30
Jul
24.43
24.99
Aug
23.17
23.56
Sep
19.72
19.88
o
στ) Μέγιστo (C)
Oct
18.52
19.06
Nov
11.88
12.26
Dec
9.08
9.01
Jan
7.37
7.56
Feb
8.90
8.87
Mar
11.32
11.58
Apr
15.79
16.08
May
21.29
21.44
Jun
25.84
26.35
Jul
29.33
28.92
Aug
27.01
27.10
Sep
24.24
24.30

SRES B1

Μελλoντική περίoδoς
2080-2100
SRES A1B

SRES A2

16.04
9.98
6.31
5.41
6.40
8.92
13.87
19.40
24.87
26.63
25.42
21.60

16.14
10.01
6.40
5.51
6.39
9.02
13.94
19.51
25.03
26.73
25.53
21.68

16.29
10.17
6.49
5.58
6.63
9.19
14.16
19.72
25.19
26.90
25.70
21.82

16.53
10.38
6.63
5.71
6.64
9.34
14.24
19.88
25.42
27.12
25.91
22.06

1.70
1.43
1.70
1.32
1.49
1.66
1.66
1.31
1.04
1.04
1.07
1.11

1.69
1.43
1.70
1.32
1.48
1.66
1.67
1.31
1.05
1.04
1.07
1.11

1.70
1.42
1.70
1.33
1.49
1.66
1.67
1.31
1.04
1.03
1.08
1.11

1.70
1.43
1.70
1.32
1.48
1.65
1.67
1.31
1.04
1.04
1.07
1.11

1.69
1.42
1.70
1.32
1.49
1.65
1.67
1.32
1.04
1.04
1.07
1.11

0.53
-0.38
-0.22
-0.27
-0.26
-0.60
-0.57
-0.30
-1.00
0.54
-0.11
0.94

0.52
-0.39
-0.23
-0.28
-0.28
-0.57
-0.57
-0.31
-1.01
0.55
-0.10
0.97

0.53
-0.39
-0.22
-0.28
-0.24
-0.58
-0.56
-0.30
-1.02
0.57
-0.11
0.97

0.52
-0.40
-0.22
-0.28
-0.29
-0.57
-0.58
-0.29
-1.02
0.55
-0.11
0.98

0.53
-0.39
-0.23
-0.28
-0.27
-0.58
-0.56
-0.30
-1.01
0.56
-0.10
0.98

-0.03
0.09
0.41
0.17
0.01
0.47
0.22
0.19
0.49
0.26
0.30
0.05

-0.02
0.09
0.41
0.17
0.00
0.46
0.22
0.18
0.50
0.27
0.30
0.05

-0.03
0.10
0.42
0.17
0.02
0.47
0.22
0.20
0.50
0.26
0.30
0.05

-0.04
0.09
0.42
0.17
0.01
0.46
0.21
0.19
0.51
0.26
0.31
0.05

-0.02
0.09
0.41
0.17
0.01
0.47
0.22
0.18
0.50
0.26
0.31
0.05

13.97
7.08
3.24
3.09
3.86
5.23
10.64
16.74
22.43
25.02
23.64
19.94

13.96
7.06
3.21
3.07
3.90
5.25
10.55
16.78
22.29
24.99
23.59
19.97

14.03
7.11
3.33
3.13
3.88
5.31
10.63
16.89
22.48
25.12
23.68
20.07

14.16
7.22
3.43
3.23
4.10
5.52
10.80
17.11
22.66
25.28
23.85
20.20

14.48
7.48
3.56
3.36
4.13
5.68
10.96
17.22
22.89
25.50
24.09
20.44

19.18
12.27
9.14
7.61
8.94
11.58
16.15
21.52
26.49
28.99
27.16
24.32

19.16
12.23
9.09
7.58
8.91
11.59
16.12
21.55
26.41
28.98
27.15
24.35

19.25
12.24
9.19
7.70
9.00
11.68
16.25
21.68
26.58
29.07
27.26
24.42

19.43
12.43
9.29
7.75
9.16
11.87
16.42
21.90
26.69
29.24
27.41
24.59

19.64
12.61
9.41
7.87
9.22
12.00
16.52
22.05
26.95
29.45
27.63
24.82

Πανεπιστήμιo Θεσσαλίας
Τμήμα Πoλιτικών Μηχανικών

Institutional Repository - Library & Information Centre - University of Thessaly
01/11/2023 00:45:21 EET - 35.160.27.221

233


Όσον αφορά τη θερμοκρασία, τα στατιστικά χαρακτηριστικά όπως αναφέρθηκαν προηγούμενως υπολογίστηκαν για τις δύο επιλεγμένες μελλοντικές περιόδους (2030-2050 και 2080-2100) και τρία σενάρια κλιματικής αλλαγής (SRES B1, SRES A1B και SRES A2). Ο Πίνακας 10.6α παρουσιάζει τις προβλέψεις σεναρίων κλιματικής αλλαγής για τη μέση μηνιαία θερμοκρασία. Οι αντίστοιχες ποσοστιαίες μεταβολές σε σύγκριση με την ιστορική περίοδο έχουν υπολογιστεί και για την περίοδο 2030-2050 κυμαίνονται μεταξύ -13% και 36% ενώ για την περίοδο 2080-2100 αυτό το εύρος κυμαίνεται μεταξύ -0,15% και 1,4%. Το σενάριο SRES A2 για τη μακροπρόθεσμη περίοδο (2080-2100) προβλέπει την υψηλότερη αύξηση της θερμοκρασίας κατά τους περισσότερους μήνες του έτους. Ο Πίνακας 10.6β δείχνει την τυπική απόκλιση για τη μέση μηνιαία θερμοκρασία για την ιστορική περίοδο και τις δύο επιλεγμένες μελλοντικές περιόδους σύμφωνα με το σενάριο SRES. Οι αντίστοιχες ποσοστιαίες μεταβολές υπολογίστηκαν για τη βραχυπρόθεσμη περίοδο μεταξύ -1% και 0,5% ενώ για τη μακροπρόθεσμη μελλοντική περίοδο είναι περίπου οι ίδιες (-1% -0,5%).

Επιπλέον, ο πίνακας 10.6γ παρουσιάζει τα αποτελέσματα για τον συντελεστή ασυμμετρίας (για μέση μηνιαία θερμοκρασία). Οι ποσοστιαίες μεταβολές είναι αρκετά χαμηλές κυμαίνονται από -8% έως 4,2% για την περίοδο 2030-2050 και από -15% έως 12,1% για την περίοδο 2080-2100. Οι αλλαγές μέγιστης και ελάχιστης τιμής είναι υψηλότερες (πίνακες 10.6e, 10.6st). Η αλλαγή της ελάχιστης τιμής κυμαίνεται μεταξύ -17% και 61% και η αλλαγή της μέγιστης τιμής κυμαίνεται από -12% έως 25,4% για τη βραχυπρόθεσμη περίοδο. Από την άλλη πλευρά, για τη μακροπρόθεσμη περίοδο, η αλλαγή της ελάχιστης τιμής κυμαίνεται από -0,4% έως 2% και η αντίστοιχη μεταβολή της μέγιστης τιμής υπολογίστηκε από -15% έως 12,1%. Ο μηνιαίος συντελεστής συσχέτισης απεικονίζεται στον πίνακα 10.6δ και οι αλλαγές συγκρίνονται με την ιστορική περίοδο με εύρος από -11% έως 7,4% για την περίοδο 2030-2050 και από -10,3% έως 4,3% για την περίοδο 2080-2100. Η προηγούμενη αναφερόμενη χρονική μετατόπιση (για τη βροχόπτωση) αναγνωρίζεται επίσης στην περίπτωση της θερμοκρασίας.

10.2.3 Γενικά σχόλια

Σχήμα 10.3: Σύγκριση παρατηρημένης και προσομοιωμένης ετήσιας βροχόπτωσης για τη λεκάνη απορροής Κάρλας για α) βραχυπρόθεσμη περίοδο 2030-2050 β) μακροπρόθεσμη περίοδο 2080-2100 (Tzabiras et al., 2015)

Τα στοχαστικά παραγόμενα αποτελέσματα της βροχόπτωσης και της θερμοκρασίας, έδειξαν ότι τα σενάρια κλιματικής αλλαγής προβάλλουν ήπιες αλλαγές για τη βραχυπρόθεσμη περίοδο και μέτριες για τη μακροπρόθεσμη περίοδο (Σχήμα 10.3). Η ετήσια θερμοκρασία αυξάνεται ελαφρά για όλα τα σενάρια και για τις δύο μελλοντικές περιόδους και η ετήσια βροχόπτωση μειώνεται μόνο για τα σενάρια A1B και A2. Παρόμοια αποτελέσματα παρουσιάζονται για μηνιαίες χρονοσειρές όπου η θερμοκρασία σχεδόν σε όλους τους μήνες προβλέπονταν να αυξηθεί και η βροχόπτωση μειώθηκε, εκτός από το σενάριο B1 όπου η βροχόπτωση αυξήθηκε σχεδόν σε όλους
τους μήνες. Μεγαλύτερες διαφορές παρατηρούνται όπως αναφέρεται για τη μακροπρόθεσμη μελλοντική περίοδο (2080-2100). Τα αποτελέσματα της παρούσας μελέτης δείχνουν την ακρίβεια, την αξιοπιστία και την αβεβαιότητα της μεθόδου στατιστικού καταβιβασμού κλίμακας για τις τρέχουσες και τις μελλοντικές κλιματικές συνθήκες. Η μελλοντική εργασία μπορεί να επικεντρωθεί στη χρήση αυτής της διαδικασίας σε εκτιμήσεις επιπτώσεων στην κλιματική αλλαγή με την απασχόληση μεγαλύτερου αριθμού GCM.

Σχήμα 10.4: Σύγκριση παρατηρημένης και προσομοιωμένης ετήσιας θερμοκρασίας για τη λεκάνη απορροής Κάρλας για α) βραχυπρόθεσμη περίοδο 2030-2050 β) μακροπρόθεσμη περίοδο 2080-2100 (Tzabiras et al., 2015)
11 ΕΚΤΙΜΗΣΗ ΕΠΙΠΤΩΣΕΩΝ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΙΣ ΥΔΑΤΙΚΕΣ ΑΠΑΙΤΗΣΕΙΣ

Στο κεφάλαιο αυτό της διατριβής περιγράφονται οι μελλοντικές υδατικές απαιτήσεις στην υδρολογική λεκάνη της Κάρλας. Είναι σαφές από το κεφάλαιο 9 ότι η λεκάνη απορροής Κάρλας χορήγηκε σε επιμέρους αρδευτικές ζώνες (οι οποίες παρουσιαστήκαν) στις οποίες υπολογίστηκαν ξεχωριστές μηνιαίες υδατικές απαιτήσεις, καθώς και συνολικές ετήσιες. Οι μελλοντικές υδατικές απαιτήσεις εκτιμήθηκαν για καθεμία υδρολογική λεκάνη/ζώνη άρδευσης/περιοχή μεμονωμένα. Στη συνέχεια παρατίθενται τα αποτελέσματα της εκτίμησης μελλοντικών υδατικών απαιτήσεων για κάθε αρδευτική ζώνη.

11.1 ΕΚΤΙΜΗΣΗ ΜΕΛΛΟΝΤΙΚΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ

Η εκτίμηση των γεωργικών απαιτήσεων έγινε με τη μεθοδολογία που περιγράφεται στο 9ο κεφάλαιο «Εκτίμηση υδατικών απαιτήσεων» και στηρίχτηκε στην πραγματική κατάσταση της λαμβάνει χώρα στην λεκάνη απορρόής της Κάρλας (βασική στρατηγική διαχείριση) [3]. Ωστόσο, η εκτίμηση των μελλοντικών αναγκών έγινε για τρία κλιματικά σενάρια SRES B1, SRES A1B και SRES A2 για δύο επιλεγμένες μελλοντικές περιόδους 2030-2050 και 2080-2100. Όπως αναφέρθηκε η ανάλυση στηρίζεται στις χρήσεις γης που πράγματι πραγματοποιήθηκαν για το έτος 2007. Με τη βοήθεια του χάρτη χρήσεων γης πραγματοποιήθηκαν διαφορετικές μηνιαίες υδατικές απαιτήσεις σε χιλιάδες. Στη σχήμα 11.1 παρουσιάζονται τα αποτελέσματα για την αρδευτική ζώνη της λεκάνης απορρόής της Κάρλας χορήγηκε σε επιμέρους ζώνες στις οποίες υπολογίστηκαν διαφορετικές μηνιαίες υδατικές απαιτήσεις σε χιλιοστά. Στο σχήμα 11.1 παρουσιάζονται αποτελέσματα για την αρδευτική ζώνη της λεκάνης. Οι μελλοντικές απαιτήσεις σε αρδευτική καλλιέργεια και υπόγειο υδρόφορο καλύπτονται από το επιφανειακό δίκτυο και μέσω αντλήσεων του υπόγειου υδρόφορου της υδρολογικής λεκάνης. Οπως περιγράφηκε στο κεφάλαιο 9, για διακριτοποιημένα αρδευτικά καλλιεργεία, μελλοντικές απαιτήσεις σε αρδευτικές ζώνες (Βόρεια, Νότια και Ορεινή) εκθέτονται με τις δύο περιόδους αρδευτικών υδατικών απαιτήσεων για κάθε αρδευτική ζώνη.
Σχήμα 11.1: Μηνιαίες υδατικές απαιτήσεις καλλιεργειών στην αρδευτική ζώνη του δικτύου του Τ.Ο.Ε.Β Πηνείου για α) Ιστορική περίοδο β) SRES A2 2030-2050 γ) SRES A1B 2030-2050 δ) SRES A1B 2030-2050

Σχήμα 11.2: Μηνιαίες υδατικές απαιτήσεις καλλιεργειών στην αρδευτική ζώνη του δικτύου του Τ.Ο.Ε.Β Πηνείου για α) Ιστορική περίοδο β) SRES A2 2080-2100 γ) SRES A1B 2080-2100 δ) SRES B1 2080-2100
Με τη βοήθεια του ΠΣΠ έγινε εκτίμηση των μηνιαίων απαιτήσεων των καλλιεργειών σε χιλιόστα στο τμήμα αυτό της λεκάνης απορροφής για τα τρία κλιματικά σενάρια και τις δύο μελλοντικές περιόδους. Προκύπτει ότι οι υδατικές απαιτήσεις των καλλιεργειών στην αρδευτική ζώνη του δικτύου του Τ.Ο.Ε.Β Πηνείου ακολουθούν την ίδια μεταβλητότητα με τα κλιματικά σενάρια μετεωρολογικών παραμέτρων. Δηλαδή εντοπίζεται μια ήπια αύξηση των υδατικών αναγκών σε όλους τους μήνες για την περίοδο 2030-2050 και για τα τρία κλιματικά σενάρια με εντονότερο το SRES A2. Η αύξηση αυτή είναι μεγαλύτερη κατά την περίοδο 2080-2100.

Το υπόλοιπο τμήμα της λεκάνης απορροφής Κάρλας αρδεύεται από τον υπόγειο υδροφόρο από την Κάρλας ο οποίος έχει χωριστεί σε έξι αρδευτικές ζώνες όπως περιγραφήκαν στο κεφάλαιο 9. Τα αποτελέσματα παρουσιάζουν την ίδια λογική με αυτά της αρδευτικής ζώνης του Τ.Ο.Ε.Β Πηνείου.

Σχήμα 11.3: Μηνιαίες υδατικές απαιτήσεις καλλιεργειών στην αρδευτική ζώνη του υπόγειου υδροφόρου Κάρλας για a) Ιστορική περίοδο b) SRES A2 2030-2050 c) SRES A1B 2030-2050 d) SRES B1 2030-2050
Σχήμα 11.4: Μηνιαίες υδατικές απαιτήσεις καλλιεργειών στην αρδευτική ζώνη της Κάρλας για α) Ιστορική περίοδο β) SRES A2 2080-2100 γ) SRES A1B 2080-2100 δ) SRES B1 2080-2100

11.2 ΜΕΛΛΟΝΤΙΚΕΣ ΥΔΑΤΙΚΕΣ ΑΠΑΙΤΗΣΕΙΣ ΔΙΑΧΕΙΡΙΣΤΙΚΩΝ ΣΕΝΑΡΙΩΝ

Ο εμφανός μεγαλύτερος χρήστης νερού στη Κάρλα, και άρα επιδραστικότερος της λόγου υδατικής κρίσης στη λεκάνη απορροφής, είναι όπως έδειξαν και τα υδατικά ισοζύγια, η άρδευση. Στο πεδίο αυτό η διαχείριση της ζήτησης μπορεί να παρέχει πολύτιμη βοήθεια και να προτείνει περιβαλλοντικές, οικονομικές και εφαρμόσιμες λύσεις. Στο κεφάλαιο 9 αναφέρθηκε ότι, τρία σενάρια συνδυάζουν κάθε μία στρατηγική διαχείρισης με νέα τρόπους απωλειών στα αρδευτικά δίκτυα.

Συμπερασματικά, τα σενάρια που αναλύονται στη συνέχεια είναι δύο βασικά επιχειρησιακά σενάρια (Στρατηγικές διαχείρισης) και τρία υποθετικά διαχειριστικά σενάρια. Συνολικά αναλύονται είκοσι τέσσερα (24) σενάρια για δύο μελλοντικές περιόδους συνδυάζοντας κάθε μία στρατηγική διαχείρισης με ένα από τα τρία διαχειριστικά ως ακολούθως:
1) Βασική στρατηγική διαχείρισης δίχως επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού (υφιστάμενη κατάσταση – Σενάριο 1)
 a) Μείωση των απωλειών των καναλιών (Σενάριο 1α)
 β) Αλλαγή των μεθόδων άρδευσης (Σενάριο 1β)
 γ) Αντικατάσταση καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια τομάτας (Σενάριο 1γ)

2) Βασικό στρατηγική διαχείρισης με επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού δικτύου (μελλοντική κατάσταση – Σενάριο 2)
 a) Μείωση των απωλειών των καναλιών (Σενάριο 2α)
 β) Αλλαγή των μεθόδων άρδευσης (Σενάριο 2β)
 γ) Αντικατάσταση καλλιέργειας βαμβακιού με θερμοκηπιακή καλλιέργεια τομάτας (Σενάριο 2γ)

Είναι αξιοσημείωτο ότι τα αποτελέσματα έχουν υπολογιστεί και για τις δύο μελλοντικές περιόδους, ωστόσο επειδή καταλαμβάνει μόνο για τη μακροπρόθεσμη περίοδο όπου σύμφωνα με παγκόσμιο κλιματικό μοντέλο το σήμα της κλιματικής αλλαγής είναι εντονότερο.

11.2.1 Βασική στρατηγική διαχείρισης 1 (Σενάριο 1) : Υφιστάμενη κατάσταση

Για τη βασική στρατηγική διαχείρισης 1 η συμμετοχή του επιφανειακού δικτύου άρδευσης (δηλαδή οι ετήσιες υδατικές απαιτήσεις των καλλιεργειών που εξυπηρετούνται από το δίκτυο) του Τ.Ο.Ε.Β Πηνείου είναι 34% με 109,31 hm³ ενώ εκείνη του υπόγειου υδροφόρου φτάνει το 66% με 214,61 hm³. Συγκεκριμένα οι ετήσιες υδατικές ανάγκες των καλλιεργειών στην λεκάνη απορροής της Κάρλας υπολογίζονται σε 323,93 hm³ (Σχήμα 11.5α).

Οι εκτιμήσεις των υδατικών αναγκών των καλλιεργειών για την μακροπρόθεσμη περίοδο 2080-2100 παρουσιάζουν μεγαλύτερες μεταβολές σε σχέση με την βραχυπρόθεσμη περίοδο 2030-2050. Συγκεκριμένα για το σενάριο SRES B1 (Σχήμα 11.5β) οι συνολικές απαιτήσεις της λεκάνης απορροής της λίμνης Κάρλας φτάνουν τα 330,28 hm³.
Σχήμα 11.5: Μηνιαίες και ετήσιες υδατικές απαιτήσεις (βασική στρατηγική διαχείρισης 1) για
a) Ιστορική περίοδο 1980-2000
b) SRES B1 2080-2100
c) SRES A1B 2080-2100 και δ) SRES A2 2080-2100

Η συμμετοχή του επιφανειακού δικτύου άρδευσης του Τ.Ο.Ε.Β Πηνείου παραμένει 34% που μεταφράζεται όμως σε 111,46 hm³ ενώ και οι υδατικές απαιτήσεις που εξυπηρετούνται από τον υπόγειο υδροφόρο παραμένουν στο 66% αλλά με 218,82 hm³. Όσον αφορά το σενάριο SRES A1B (Σχήμα 11.5γ) οι συνολικές απαιτήσεις της λεκάνης απορροής φτάνουν τα 333,81 hm³. Η συμμετοχή του επιφανειακού δικτύου άρδευσης του Τ.Ο.Ε.Β Πηνείου είναι 34% αλλά με 112,65 hm³ ενώ οι αντίστοιχες που καλύπτονται από τον υπόγειο υδροφόρο παραμένουν στο 66% αλλά μεταφράζονται σε 221,16 hm³. Το πιο έντονο σενάριο SRES A2 προκρίνει για τη λεκάνη απορροής της λίμνης Κάρλας συνολική υδατική απαίτηση 337,48 hm³ (Σχήμα 11.5δ) εκ των
οποίων τα 113,89 hm³ να απαιτούνται για τη λειτουργία του επιφανειακού δικτύου του Τ.Ο.Ε.Β Πηνειού και τα υπόλοιπα 223,59 hm³ να αφορούν ανάγκες του υπόγειου υδροφόρεα της Κάρλας.

11.2.2 Σενάριο 1α: Υφιστάμενη κατάσταση και μείωση απωλειών αρδευτικών καναλιών

Για το Σενάριο 1α οι συνολικές υδατικές απαιτήσεις είναι για την ιστορική περίοδο αναφοράς (1980-2000) είναι 245,42 hm³ εκ των οποίων το 78% που μεταφράζεται σε 190,77 hm³ τροφοδοτείται από τον υπόγειο υδροφόρεα και το 22% που μεταφράζεται σε 54,66 hm³ τροφοδοτείται από το δικτύ του Τ.Ο.Ε.Β Πηνειού.

Οι εκτιμήσεις των υδατικών αναγκών των καλλιεργειών για την μακροπρόθεσμη περίοδο 2080-2100 παρουσιάζουν μεγαλύτερες μεταβολές σε σχέση με την βραχυπρόθεσμη περίοδο 2030-2050. Συγκεκριμένα για το σενάριο SRES B1 (Σχήμα 11.6β) οι συνολικές απαιτήσεις της λεκάνης απορροής της λίμνης Κάρλας φτάνουν τα 250,24 hm³. Η συμμετοχή του επιφανειακού δικτύου αρδευσης του Τ.Ο.Ε.Β Πηνειού παραμένει 22% που μεταφράζεται όμως σε 55,73 hm³ ενώ οι υδατικές απαιτήσεις που εξυπηρετούνται από τον υπόγειο υδροφόρεα παραμένουν στο 78% αλλά με 194,51 hm³. Όσον αφορά το σενάριο SRES A1B (Σχήμα 11.6γ) οι συνολικές απαιτήσεις της λεκάνης απορροής φτάνουν τα 252,91 hm³. Η συμμετοχή του επιφανειακού δικτύου αρδευσης του Τ.Ο.Ε.Β Πηνειού είναι 22% αλλά με 56,32 hm³ ενώ οι αντίστοιχες που καλύπτονται από τον υπόγειο υδροφόρεα παραμένουν στο 78% αλλά μεταφράζονται σε 196,59 hm³. Το πιο έντονο σενάριο SRES A2 προκύπτει για τη λεκάνη απορροής της λίμνης Κάρλας συνολική υδατική απαίτηση 255,69 hm³ (Σχήμα 11.6δ) εκ των οποίων τα 56,94 hm³ να απαιτούνται για τη λειτουργία του επιφανειακού δικτύου του Τ.Ο.Ε.Β Πηνειού και τα υπόλοιπα 198,75 hm³ να αφορούν ανάγκες του υπόγειου υδροφόρεα της Κάρλας.
Σημείωση: Μηνιαίες και ετήσιες υδατικές απαιτήσεις (σενάριο 1β) για α) Ιστορική περίοδο 1980-2000 β) SRES B1 2080-2100 γ) SRES A1B 2080-2100 και δ) SRES A2 2080-2100

11.2.3 Σενάριο 1β: Υφιστάμενη κατάσταση και αλλαγή μεθόδων άρδευσης

Για το Σενάριο 1β οι συνολικές υδατικές απαιτήσεις είναι για την ιστορική περίοδο αναφοράς (1980-2000) είναι 308,41 hm³ εκ των οποίων το 66% που μεταφράζεται σε 204,34 hm³ τροφοδοτείται από τον υπόγειο υδροφορέα και το 34% που μεταφράζεται σε 104,08 hm³ τροφοδοτείται από το δικτύο του Τ.Ο.Ε.Β Πηνείου.

Οι εκτιμήσεις των υδατικών αναγκών των καλλιεργειών για την μακροπρόθεσμη περίοδο 2080-2100 παρουσιάζουν μεγαλύτερες μεταβολές σε σχέση με την βραχυπρόθεσμη περίοδο 2030-2050. Συγκεκριμένα για το σενάριο SRES B1

![Diagram](image-url)
(Σχήμα 11.7β) Οι συνολικές απαιτήσεις της λεκάνης απορροής της λίμνης Κάρλας φτάνουν τα 314,46 hm³. Η συμμετοχή του επιφανειακού δικτύου άρδευσης του Τ.Ο.Ε.Β Πηνείου παραμένει 34% που μεταφράζεται όμως σε 106,17 hm³ ενώ και οι υδατικές απαιτήσεις που εξυπηρετούνται από τον υπόγειο ύδροφορέα παραμένουν στο 66% αλλά με 208,34 hm³. Όσοι αφορά το σενάριο SRES A1B (Σχήμα 11.7γ) οι συνολικές απαιτήσεις της λεκάνης απορροής φτάνουν στα 317,82 hm³. Η συμμετοχή του επιφανειακού δικτύου άρδευσης του Τ.Ο.Ε.Β Πηνείου είναι 34% αλλά με 107,25 hm³ ενώ οι αντίστοιχες που καλύπτονται από τον υπόγειο ύδροφορέα παραμένουν στο 66% αλλά μεταφράζονται σε 210,57 hm³. Το πιο έντονο σενάριο SRES A2 προκύπτει για τη λεκάνη απορροής της λίμνης Κάρλας συνολική υδατική απαίτηση 321,32 hm³ (Σχήμα 11.7δ) εκ των οποίων τα 108,43 hm³ να απαιτούνται για τη λειτουργία του επιφανειακού δικτύου του Τ.Ο.Ε.Β Πηνείου και τα υπόλοιπα 212,89 hm³ να αφορούν ανάγκες του υπόγειου ύδροφορέα της Κάρλας.

![Diagram](image_url)
Σχήμα 11.7: Μηνιαίες και ετήσιες υδατικές απαιτήσεις (σενάριο 1β) για α) Ιστορική περίοδο 1980-2000 β) SRES B1 2080-2100 γ) SRES A1B 2080-2100 και δ) SRES A2 2080-2100

11.2.4 Σενάριο 1γ: Υφιστάμενη κατάσταση και αναδιάρθρωση καλλιεργειών

Για το Σενάριο 1γ οι συνολικές υδατικές απαιτήσεις είναι για την ιστορική περίοδο αναφοράς (1980-2000) είναι 633,86 hm³ εκ των οποίων το 63% που μεταφράζεται σε 400,18 hm³ τροφοδοτείται από τον υπόγειο υδροφορέα και το 37% που μεταφράζεται σε 233,68 hm³ τροφοδοτείται από το δικτύο του Τ.Ο.Ε.Β Πηνείου.

Οι εκτιμήσεις των υδατικών αναγκών των καλλιεργειών για την μακροπρόθεσμη περίοδο 2080-2100 παρουσιάζουν μεγαλύτερες μεταβολές σε σχέση με την βραχυπρόθεσμη περίοδο 2030-2050. Συγκεκριμένα για το σενάριο SRES B1 (Σχήμα 11.8β) οι συνολικές απαιτήσεις της λεκάνης απορροφής της λίμνης Κάρλας φτάνουν τα 637,53 hm³. Η συμμετοχή του επιφανειακού δικτύου άρδευσης του Τ.Ο.Ε.Β Πηνείου παραμένει 37% αλλά μεταφράζεται όμως σε 234,79 hm³ ενώ οι υδατικές απαιτήσεις που εξυπηρετούνται από τον υπόγειο υδροφορέα παραμένουν στο 63% αλλά με 402,74 hm³. Όσον αφορά το σενάριο SRES A1B (Σχήμα 11.8γ) οι συνολικές απαιτήσεις της λεκάνης απορροφής φτάνουν τα 639,57 hm³. Η συμμετοχή του επιφανειακού δικτύου άρδευσης του Τ.Ο.Ε.Β Πηνείου είναι 37% αλλά με 235,41 hm³ ενώ οι αντίστοιχες που καλύπτονται από τον υπόγειο υδροφορέα παραμένουν στο 63% αλλά μεταφράζονται σε 404,16 hm³.

![Diagram](image-url)
Σχήμα 11.8: Μηνιαίες και ετήσιες υδατικές απαιτήσεις (σενάριο 1') για α) Ιστορική περίοδο 1980-2000 β) SRES B1 2080-2100 γ) SRES A1B 2080-2100 και δ) SRES A2 2080-2100

11.2.5 Βασική στρατηγική διαχείρισης 2 (Σενάριο 2) : Μελλοντική κατάσταση

Η βασική στρατηγική διαχείρισης 2 (μελλοντική κατάσταση) εμπεριέχει τη λειτουργία του ταμιευτήρα της Κάρλας και τη ταυτόχρονη λειτουργία του μελλοντικού δικτύου άρδευσης του Τ.Ο.Ε.Β. Κάρλας. Όπως αναφέρθηκε και στο 9ο κεφάλαιο στην ταξινόμηση χρήσεων γης με βάση την δορυφορική εικόνα του 2007, ο ταμιευτήρας της Κάρλας δεν είχε δεχτεί ακόμα νερό όποτε η έκταση του λογίζεται ως γεωργική στη στρατηγική διαχείρισης 1 της υφιστάμενης κατάστασης. Στη στρατηγική διαχείρισης 2
όμως η έκταση του ταμιευτήρα βγαίνει εκτός της ταξινόμησης αφού θεωρείται ότι λειτουργεί για την άρδευση των αγροτεμαχίων της γύρω περιοχής. Αυτό έχει ως αποτέλεσμα να δημιουργείται μια μικρή διαφορά στις συνολικές υδατικές ανάγκες της λεκάνης απορροής.

Η βασική διαφορά της αυτής της στρατηγικής με τη πρώτη βασική στρατηγική της υφιστάμενης κατάστασης είναι ότι οι περιοχές που εξυπηρετούνται από τον ταμιευτήρα της Κάρλας, στο αρχικό σενάριο τροφοδοτούνταν από τον υπόγειο υδροφορέα της Κάρλας. Οι λουτές αρδευτικές ζώνες είναι ίδιες ακριβώς όπως περιγράφηκαν στη Στρατηγική διαχείρισης 1 της υφιστάμενης κατάστασης.

Για τη βασική Στρατηγική Διαχείρισης 2 η συμμετοχή του επιφανειακού δικτύου άρδευσης (δηλαδή οι ετήσιες υδατικές απαιτήσεις των καλλιεργειών που εξυπηρετούνται από το δίκτυο) είναι 34% με 109,31 hm₃ ενώ εκείνες του υπόγειου υδροφορέα φτάνουν το 55% με 178,00 hm₃. Επιπλέον για την άρδευση των περιοχών που θα καλυφθούν από το νέο δίκτυο του Τ.Ο.Β Κάρλας απαιτείται το 11% με 35,18 hm₃. Συνολικά οι ετήσιες υδατικές απαιτήσεις των καλλιεργειών στην λεκάνη απορροής της Κάρλας υπολογίζονται σε 322,50 hm₃.

Οι εκτιμήσεις των υδατικών αναγκών των καλλιεργειών για την μακροπρόθεσμη περίοδο 2080-2100 παρουσιάζουν μεγαλύτερες μεταβολές σε σχέση με την βραχυπρόθεσμη περίοδο 2030-2050. Συγκεκριμένα για το σενάριο SRES B1 (Σχήμα 11.9Β) οι συνολικές απαιτήσεις της λεκάνης απορροής της λίμνης Κάρλας φτάνουν τα 327,98 hm₃. Οι υδατικές ανάγκες για το επιφανειακό δίκτυο άρδευσης του Τ.Ο.Β Πηνείου παραμένουν στο 34% μεταφραζόμενες σε 111,46 hm³, εκείνες του νέου δικτύου του Τ.Ο.Β Κάρλας αποτελούν 11% των συνολικών με 35,87 hm³, ενώ οι υδατικές απαιτήσεις που εξυπηρετούνται από τον υπόγειο υδροφορέα είναι στο 55% το οποίο όμως μεταφράζεται σε 180,65 hm³. Όσον αφορά το σενάριο SRES A1B (Σχήμα 11.9γ) οι συνολικές απαιτήσεις της λεκάνης απορροής υπολογίζονται σε 331,48 hm³. Οι απαιτήσεις του επιφανειακού δικτύου άρδευσης του Τ.Ο.Β Πηνείου είναι 34% με 112,65 hm³, για το νέο δίκτυο του Τ.Ο.Β Κάρλας απαιτείται το 11% με 36,26 hm³ και οι υδατικές ανάγκες που καλύπτονται από τον υπόγειο υδροφορέα είναι πάλι 55% με μικρότερο όγκο που υπολογίστηκε σε 182,58 hm³.
Σχήμα 11.9: Μηνιαίες και ετήσιες υδατικές απαιτήσεις (Επιχειρησιακό σενάριο 2) για α) Ιστορικό περίοδο 1980-2000 β) SRES B1 2080-2100 γ) SRES A1B 2080-2100 και δ) SRES A2 2080-2100

Το σενάριο SRES A2 υποθέτει συνολική υδατική απαιτηση για τη λεκάνη της Κάρλας της τάξεως των 335,13 hm3 (Σχήμα 11.98) εκ των οποίων τα 113,89 hm3 να διατίθενται στο επιφανειακό δίκτυο του Τ.Ο.Ε.Β Πηνείου, τα 36,65 hm3 να πηγάζουν στο νέο επιφανειακό δίκτυο του Τ.Ο.Ε.Β Κάρλας και τα υπόλοιπα 184,58 hm3 να αποτελούν τις υδατικές απαιτήσεις του υπόγειου υδροφορέα της Κάρλας.

11.2.6 Σενάριο 2α : Μελλοντική κατάσταση και μείωση απωλειών αρδευτικών καναλιών
Για το σενάριο 2α η συμμετοχή του επιφανειακού δικτύου άρδευσης (δηλαδή οι ετήσιες υδατικές απατησίες των καλλιεργειών που εξυπηρετούνται από το δίκτυο) είναι 22% με 54,66 hm³ ενώ εκείνες του υπόγειου υδροφορέα φτάνουν το 65% με 158,23 hm³. Επιπλέον για την άρδευση των περιοχών που θα καλυφθούν από το νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας απαιτείται το 13% με 31,27 hm³. Συνολικά οι ετήσιες υδατικές απατησίες των καλλιεργειών στην λεκάνη απορροής της Κάρλας υπολογίζονται σε 244,16 hm³.

Οι εκτιμήσεις των υδατικών αναγκών των καλλιεργειών για την μακροπρόθεσμη περίοδο 2080-2100 παρουσιάζουν μεγαλύτερες μεταβλητές σε σχέση με την βραχυπρόθεσμη περίοδο 2030-2050. Συγκεκριμένα για το σενάριο SRES B1 (Σχήμα 11.10β) οι συνολικές απατησίες της λεκάνης απορροής της λίμνης Κάρλας φτάνουν τα 248,19 hm³. Οι υδατικές ανάγκες για το επιφανειακό δίκτυο άρδευσης του Τ.Ο.Ε.Β Πηγείου είναι στο 22% μεταφράζοντας σε 55,73 hm³, εκείνες του νέου δικτύου του Τ.Ο.Ε.Β Κάρλας αποτελούν το 13% των συνολικών με 31,27 hm³, ενώ οι υδατικές απατησίες που εξυπηρετούνται από τον υπόγειο υδροφορέα είναι στο 65% το οποίο όμως μεταφράζεται σε 158,23 hm³. Όσον αφορά το σενάριο SRES A1B (Σχήμα 11.10γ) οι συνολικές απατησίες της λεκάνης απορροής υπολογίζονται σε 250,84 hm³. Οι απατησίες του επιφανειακού δικτύου άρδευσης του Τ.Ο.Ε.Β Πηγείου είναι 22% με 56,32 hm³, για το νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας απαιτείται το 13% με 32,23 hm³ και οι υδατικές ανάγκες που καλύπτονται από τον υπόγειο υδροφορέα είναι πάλι 65% με μικρότερο όγκο που υπολογίστηκε σε 162,29 hm³.

Το σενάριο SRES A2 υποθέτει συνολική υδατική απατησία για τη λεκάνη απορροής της λίμνης Κάρλας της τάξεως των 253,60 hm³ (Σχήμα 11.10δ) εκ των οποίων τα 56,94 hm³ να διατίθενται στο επιφανειακό δίκτυο του Τ.Ο.Ε.Β Πηγείου, τα 32,58 hm³ να πηγαίνουν στο νέο επιφανειακό δίκτυο του Τ.Ο.Ε.Β Κάρλας και τα υπόλοιπα 164,08 hm³ να αποτελούν τις υδατικές απατησίες του υπόγειου υδροφορέα της Κάρλας.

![Diagram](diagram.png)

11.2.7 Σενάριο 2β: Μελλοντική κατάσταση και αλλαγή μεθόδων άρδευσης

Για το σενάριο 2β η συμμετοχή του επιφανειακού δικτύου άρδευσης (δηλαδή οι ετήσιες υδατικές απαιτήσεις των καλλιεργειών που εξυπηρετούνται από το δίκτυο) είναι 34% με 104,08 hm³ ενώ εκείνες του υπόγειου ύδροφορέα φτάνουν το 56% με 169,48 hm³. Επιπλέον για την άρδευση των περιοχών που θα καλυφθούν από το νέο δίκτυο του T.O.E.B Κάρλας απαιτείται το 10% με 29,78 hm³. Συνολικά οι ετήσιες υδατικές απαιτήσεις των καλλιεργειών στην λεκάνη ισχύουν σε 303,33 hm³.
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 11ο: -Εκτίμηση επιπτώσεων κλιματικής αλλαγής στις υδατικές απαιτήσεις-

Οι εκτιμήσεις των υδατικών αναγκών των καλλιεργειών για την μακροπρόθεσμη περίοδο 2080-2100 παρουσιάζουν μεγαλύτερες μεταβολές σε σχέση με την βραχυπρόθεσμη περίοδο 2030-2050. Συγκεκριμένα για το σενάριο SRES B1 (Σχήμα 11.1β) οι συνολικές απαιτήσεις της λεκάνης απορροής της λίμνης Κάρλας φτάνουν τα 308,48 hm³. Οι υδατικές ανάγκες για το επιφανειακό δίκτυο άρδευσης του Τ.Ο.Ε.Β Πηνείου είναι στο 34% μεταφραζόμενες σε 106,12 hm³, εκείνες του νέου δικτύου του Τ.Ο.Ε.Β Κάρλας αποτελούν το 10% των συνολικών με 30,36 hm³, ενώ οι υδατικές απαιτήσεις που εξυπηρετούνται από τον υπόγειο υδροφορέα είναι στο 56% το οποίο όμως μεταφράζεται σε 172,00 hm³. Όσον αφορά το σενάριο SRES A1B (Σχήμα 11.1γ) οι συνολικές απαιτήσεις της λεκάνης απορροής υπολογίστηκαν σε 311,77 hm³. Οι απαιτήσεις του επιφανειακού δικτύου άρδευσης του Τ.Ο.Ε.Β Πηνείου είναι 34% με 107,25 hm³, για το νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας απαιτείται το 10% με 30,68 hm³ και οι υδατικές ανάγκες που καλύπτονται από τον υπόγειο υδροφορέα είναι πάλι 56% με μικρότερο όγκο που υπολογίστηκε σε 173,83 hm³.

Το σενάριο SRES A2 υποθέτει συνολική υδατική απαιτήση για τη λεκάνη απορροής της λίμνης Κάρλας της τάξεως των 315,20 hm³ (Σχήμα 11.1δ) και τον υπολογισμό τον ισχύον σε επιφανειακό δίκτυο του Τ.Ο.Ε.Β Πηνείου, τον 31,02 hm³ να πηγαίνουν στο νέο επιφανειακό δίκτυο του Τ.Ο.Ε.Β Κάρλας και τα υπόλοιπα 164,08 hm³ να αποτελούν τις υδατικές απαιτήσεις του υπόγειου υδροφορέα της Κάρλας.

![Diagram](image1.png)

![Diagram](image2.png)

Institutional Repository - Library & Information Centre - University of Thessaly

01/11/2023 00:45:21 EET - 35.160.27.221
Σχήμα 11.11: Μηνιαίες και ετήσιες υδατικές απαιτήσεις (σενάριο 2β) για α) Ιστορικό περίοδο 1980-2000 β) SRES B1 2080-2100 γ) SRES A1B 2080-2100 και δ) SRES A2 2080-2100

11.2.8 Σενάριο 2γ: Μελλοντική κατάσταση και αναδιάρθρωση καλλιεργειών

Για το σενάριο 2γ η συμμετοχή του επιφανειακού δίκτυου άρδευσης (δηλαδή οι ετήσιες υδατικές απαιτήσεις των καλλιεργειών που εξυπηρετούνται από το δίκτυο) είναι 37% με 233,68 hm³ ενώ εκείνες του υπόγειου υδροφόρου φτάνουν το 50% με 317,91 hm³. Επιπλέον για την άρδευση των περιοχών που θα καλυφθούν από το νέο δίκτυο του T.O.E.B Κάρλας απαιτείται το 13% με 80,59 hm³. Συνολικά οι ετήσιες υδατικές απαιτήσεις των καλλιεργειών στην λεκάνη απορροής της Κάρλας υπολογίζονται σε 632,18 hm³.

Οι εκτιμήσεις των υδατικών αναγκών των καλλιεργειών για την μακροπρόθεσμη περίοδο 2080-2100 παρουσιάζουν μεγαλύτερες μεταβολές σε σχέση με την βραχυπρόθεσμη περίοδο 2030-2050. Συγκεκριμένα για το σενάριο SRES B1 (Σχήμα 11.12β) οι συνολικές απαιτήσεις της λεκάνης απορροής της λίμνης Κάρλας φτάνουν τα 634,97 hm³. Οι υδατικές αναγκές για το επιφανειακό δίκτυο άρδευσης του T.O.E.B Πηνείου είναι στο 37% μεταφραζόμενες σε 234,77 hm³, εκείνες του νέου δίκτυου του T.O.E.B Κάρλας αποτελούν το 13% των συνολικών με 80,87 hm³, ενώ οι υδατικές απαιτήσεις που εξυπηρετούνται από τον υπόγειο υδροφόρο είναι στο 50% το οποίο όμως μεταφράζεται σε 319,31 hm³. Όσον αφορά το σενάριο SRES A1B (Σχήμα 11.12γ) οι συνολικές απαιτήσεις της λεκάνης απορροής υπολογίστηκαν σε
636,98 hm³. Οι απαιτήσεις του επιφανειακού δίκτυου άρδευσης του Τ.Ο.Ε.Β Πινελίου είναι 37% με 235,41 hm³, για το νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας απαιτείται το 13% με 81,03 hm³ και οι ιδανικές ανάγκες που καλύπτονται από τον υπόγειο υδροφόρο είναι πάλι 50% με μικρότερο όγκο που υπολογίστηκε σε 320,54 hm³.

Το σενάριο SRES A2 υποθέτει συνολική ιδανική απαιτηση για τη λεκάνη απορροής της λίμνης Κάρλας της τάξεως των 639,07 hm³ (Σχήμα 11.12δ) εκ των οποίων τα 336,05 hm³ να διαιτητούν στο επιφανειακό δίκτυο του Τ.Ο.Ε.Β Πινελίου , τα 81,19 hm³ να πηγάνουν στο νέο επιφανειακό δίκτυο του Τ.Ο.Ε.Β Κάρλας και τα υπόλοιπα 321,83 hm³ να αποτελούν τις ιδανικές απαιτήσεις του υπόγειου υδροφόρα της Κάρλας.

![Graph (a)](image1)

![Graph (b)](image2)

![Graph (c)](image3)

11.3 ΣΧΟΛΙΑΣΜΟΣ

Η ανάλυση των δύο Στρατηγικών Διαχείρισης (Σενάριο 1 και Σενάριο 2) και των διαχειριστικών σεναρίων (μείωση απολείων αρδευτικών καναλιών (α), αλλαγή μεθόδων άρδευσης (β) και αναδιάρθρωσης καλλιεργειών (γ), δείχνει ότι στο σενάριο επέκτασης των θερμοκηπιακών καλλιεργειών σχεδόν διπλασιάζονται οι ανάγκες σε νερό σε σχέση με τις Στρατηγικές Διαχείρισης της υφιστάμενης και της μελλοντικής κατάστασης. Ο λόγος είναι ότι οι καλλιέργειες θερμοκηπίου κλειστού τύπου, οι οποίες αποτελούν και την πιο εντατική μορφή της πρωτογενούς παραγωγής, έχουν αρδευτική απαίτηση όλη τη διάρκεια του χρόνου ακόμα και κατά τη διάρκεια των χειμερινών μηνών με αποτέλεσμα την σημαντική αύξηση των ετήσιων υδατικών απαιτήσεων σε επίπεδο λεκάνης απορροής.

Επίσης, διαπιστώθηκε η μεταβολή των συνολικών υδατικών απαιτήσεων της λεκάνης απορροής της Κάρλας ανάλογα με το επιμέρους διαχειριστικό σενάριο. Τα ευμενέστερα σενάρια από διαχειριστική άποψη (μεγαλύτερη μείωση των υδατικών απαιτήσεων της λεκάνης απορροής) είναι σενάρια 1α και 2α όπου μειώνεται η συνολική απάλεια των καναλιών του επιφανειακού δικτύου και με αυτό τον τρόπο σημειώνεται μείωση των υδατικών αναγκών (24,24% μείωση για το σενάριο 1α και 2α, 24,27% για το σενάριο 2α). Επιπρόσθετα η διερεύνηση των σεναρίων 1β και 2β δείχνει μείωση των υδατικών απαιτήσεων κατά 4,78% και 5,95% αντίστοιχα. Τέλος για τα σενάρια 1γ και 2γ σημειώνεται σημαντική αύξηση της τάξης που δεν έχει η αντίστοιχη εποπτεύση της κατάστασης.
Πίνακας 11-1: Ποσοστιαίες μεταβολές μελλοντικών υδατικών απαιτήσεων σε σχέση με την ιστορική περίοδο

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-2000</td>
<td>323.9</td>
<td>1.0</td>
<td>1.5</td>
<td>1.4</td>
<td>2.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Σενάριο 1: Υφιστάμενη κατάσταση</td>
<td>323.9</td>
<td>1.0</td>
<td>1.5</td>
<td>1.4</td>
<td>2.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Σενάριο 1a: Υφιστάμενη κατάσταση & μείωση απωλειών αρδευτικών δικτύων</td>
<td>308.4</td>
<td>1.0</td>
<td>1.5</td>
<td>1.4</td>
<td>2.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Σενάριο 1b: Υφιστάμενη κατάσταση & αλλαγή μεθόδων άρδευσης</td>
<td>633.9</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Σενάριο 1γ: Υφιστάμενη κατάσταση & αναδιάρθρωση καλλιεργειών</td>
<td>633.9</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Σενάριο 2: Μελλοντική κατάσταση</td>
<td>322.5</td>
<td>0.8</td>
<td>1.2</td>
<td>1.1</td>
<td>1.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Σενάριο 2a: Μελλοντική κατάσταση & μείωση απωλειών αρδευτικών δικτύων</td>
<td>303.3</td>
<td>0.8</td>
<td>1.2</td>
<td>1.1</td>
<td>1.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Σενάριο 2β: Μελλοντική κατάσταση & αλλαγή μεθόδων άρδευσης</td>
<td>632.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Σενάριο 2γ: Μελλοντική κατάσταση & αναδιάρθρωση καλλιεργειών</td>
<td>632.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Η διερεύνηση των τα σεναρίων κλιματικής αλλαγής υποδηλώνει ότι η μεταβολή των υδατικών απαιτήσεων είναι σαφώς μικρότερη σε σχέση με τα διαχειριστικά σενάρια. Ειδικότερα η ανάλυση των σεναρίων 1, 1a, 1b δείχνει ότι η μεταβολή των απαιτήσεων είναι της τάξης από 1% ως 4,2% (ανάλογα με το κλιματικό σενάριο και την μελλοντική περίοδο) ενώ η διερεύνηση του σενάριου 1b δείχνει ότι το εύρος μεταβολής είναι από 0,3% ως 1,2%. Ακόμη ο έλεγχος των σεναρίων 2, 2a, 2b φανερώνει ότι η μεταβολή των υδατικών απαιτήσεων κυμαίνεται από 0,7% ως 3,9% ενώ στο σενάριο 2γ από 0,2% ως 1,1%.
12 ΜΕΛΛΟΝΤΙΚΟ ΙΣΟΖΥΓΙΟ ΥΔΡΟΛΟΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

Για την προσομοίωση του μηνιαίου υδρολογικού ισοζύγιου και την εκτίμηση της κατείσδυσης στον υπόγειο υδροφορέα εφαρμόστηκε το μηνιαίο υδρολογικό μοντέλο UTHBAL στην ημικατανεμημένη της μορφή. Όπως περιγράφηκε (κεφάλαιο 8) το μοντέλο κάνει χρήση των χωρικά κατανεμημένων υδρομετεωρολογικών δεδομένων εισόδου σε 2 υψομετρικές ζώνες σε περιβάλλον ενός Γεωγραφικού Συστήματος Πληροφοριών. Τα αποτελέσματα του μοντέλου παρέχουν χωρικά ημικατανεμημένα δεδομένα για τις διάφορες συνιστάσεις των υδρολογικών διεργασιών (υδρολογικά κύκλος). Τα δεδομένα εισόδου του μοντέλου για το υδρολογικό μοντέλο UTHBAL ήταν οι στατιστικά καταβιβασμένες μελλοντικές μετεωρολογικές μεταβλητές (βροχόπτωση, θερμοκρασία και εξατμισοδιαπνοή) και με τον τρόπο αυτό δημιουργήθηκαν μελλοντικά σημάδια επιφανειακής απορροής.

12.1 ΙΣΤΟΡΙΚΗ ΠΕΡΙΟΔΟΣ ΑΝΑΦΩΡΑΣ 1980-2000

Η ρύθμιση του μοντέλου επιφανειακής υδρολογίας πραγματοποιήθηκε για την περίοδο 1960-2002, δεδομένου ότι η μεθοδολογία στατιστικού καταβιβασμού κλίμακας έλαβε χώρα για την περίοδο 1980-2000 το μηνιαίο επιφανειακής υδρολογίας εφαρμόστηκε αυτή την περίοδο αναφοράς. Στον Πίνακα 12.1 παρουσιάζονται τα μέσα μηνιαία αποτελέσματα του μοντέλου UTHBAL. Για την ιστορική περίοδο τη μέση της μέσης ετήσιας εξατμισοδιαπνοής ήταν 407,42 mm ενώ αυτή της μέσης ετήσιας επιφανειακής απορροής είναι 59,78 mm και η μέση ετήσια κατείσδυση 81,35 mm. Κατά τη διάρκεια των μηνών Δεκεμβρίου, Ιανουαρίου, Φεβρουαρίου, Μαρτίου και Απριλίου σημειώθηκαν οι μεγαλύτερες τιμές επιφανειακής απορροής με 6,91 mm, 7,38 mm, 8,75 mm, 11,03 mm και 9,22 mm αντίστοιχα. Για τους μήνες αυτούς παρατηρείται επίσης το ιδίο αναφορικά με την κατείσδυση προς τον υπόγειο υδροφορέα (υψηλότερες τιμές) με 7,71 mm, 17,98 mm, 13,79 mm, 13,92 mm και 15,43mm αντίστοιχα. Από την άλλη η πραγματική εξατμισοδιαπνοή εμφανίζει τις υψηλότερες τιμές κατά τη διάρκεια των μηνών Απριλίου, Μαίου, Ιουνίου, Ιουλίου και Αυγούστου (43,46 mm, 58,24 mm, 59,35 mm, 52,66 mm και 43,69 mm αντίστοιχα).

Πίνακας 12-1: Μέσο μηνιαίο υδρολογικό ισοζύγιο για την ιστορική περίοδο 1980-2000
12.2 Συνθετική περίοδος κλιματικής αλλαγής 2030-2050

Τα αποτελέσματα του μοντέλου UTHBAL προκρίνουν σχετικά ήπια μεταβολή στις υδρολογικές παραμέτρους για τη βραχυπρόθεσμη μελλοντική περίοδο 2030-2050. Ο Πίνακας 11.2 απεικονίζει το μέσο μηνιαίο υδρολογικό ισοζύγιο για το σενάριο SRES B1.

Πίνακας 12-2: Μέσο μηνιαίο υδρολογικό ισοζύγιο για το σενάριο SRES B1 2030-2050

<table>
<thead>
<tr>
<th>Τemp (°C)</th>
<th>P (mm)</th>
<th>PET (mm)</th>
<th>AET (mm)</th>
<th>Απορροή (mm)</th>
<th>Κατεύθυνση (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>15.46</td>
<td>71.41</td>
<td>58.77</td>
<td>34.86</td>
<td>1.27</td>
</tr>
<tr>
<td>Νοέ.</td>
<td>9.72</td>
<td>77.20</td>
<td>25.42</td>
<td>23.01</td>
<td>3.38</td>
</tr>
<tr>
<td>Διε.</td>
<td>5.78</td>
<td>76.69</td>
<td>11.69</td>
<td>11.59</td>
<td>6.91</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>4.55</td>
<td>51.71</td>
<td>8.47</td>
<td>8.46</td>
<td>7.38</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>5.68</td>
<td>50.20</td>
<td>11.74</td>
<td>11.66</td>
<td>8.75</td>
</tr>
<tr>
<td>Μαρ.</td>
<td>8.74</td>
<td>58.75</td>
<td>26.66</td>
<td>25.55</td>
<td>11.03</td>
</tr>
<tr>
<td>Απρ.</td>
<td>13.15</td>
<td>40.11</td>
<td>52.78</td>
<td>43.46</td>
<td>9.22</td>
</tr>
<tr>
<td>Μάιος</td>
<td>17.53</td>
<td>45.48</td>
<td>94.54</td>
<td>58.24</td>
<td>5.47</td>
</tr>
<tr>
<td>Ιούνιος</td>
<td>22.50</td>
<td>21.09</td>
<td>135.06</td>
<td>59.35</td>
<td>2.89</td>
</tr>
<tr>
<td>Ιούλιος</td>
<td>23.95</td>
<td>23.06</td>
<td>150.95</td>
<td>52.66</td>
<td>1.54</td>
</tr>
<tr>
<td>Αύγ.</td>
<td>23.71</td>
<td>18.91</td>
<td>138.86</td>
<td>43.69</td>
<td>1.11</td>
</tr>
<tr>
<td>Σεπ.</td>
<td>20.12</td>
<td>18.17</td>
<td>94.45</td>
<td>34.89</td>
<td>0.84</td>
</tr>
<tr>
<td>Έτος</td>
<td>14.24</td>
<td>552.77</td>
<td>806.41</td>
<td>407.42</td>
<td>59.78</td>
</tr>
</tbody>
</table>

12.2.6 Μεσό μηνιαίο υδρολογικό ισοζάντιο (mm)

<table>
<thead>
<tr>
<th>Τemp (°C)</th>
<th>P (mm)</th>
<th>PET (mm)</th>
<th>AET (mm)</th>
<th>Απορροή (mm)</th>
<th>Κατεύθυνση (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>15.59</td>
<td>74.35</td>
<td>57.25</td>
<td>34.89</td>
<td>1.27</td>
</tr>
<tr>
<td>Νοέ.</td>
<td>9.90</td>
<td>77.14</td>
<td>25.21</td>
<td>22.90</td>
<td>3.56</td>
</tr>
<tr>
<td>Διε.</td>
<td>5.84</td>
<td>75.76</td>
<td>11.41</td>
<td>11.33</td>
<td>7.04</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>4.72</td>
<td>50.84</td>
<td>8.56</td>
<td>8.55</td>
<td>7.82</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>5.77</td>
<td>50.80</td>
<td>11.52</td>
<td>11.46</td>
<td>9.62</td>
</tr>
<tr>
<td>Μαρ.</td>
<td>8.85</td>
<td>57.29</td>
<td>26.02</td>
<td>25.03</td>
<td>11.90</td>
</tr>
<tr>
<td>Απρ.</td>
<td>13.28</td>
<td>39.74</td>
<td>51.50</td>
<td>42.66</td>
<td>9.55</td>
</tr>
<tr>
<td>Μάιος</td>
<td>17.59</td>
<td>49.10</td>
<td>91.51</td>
<td>58.43</td>
<td>5.12</td>
</tr>
<tr>
<td>Ιούνιος</td>
<td>22.77</td>
<td>21.20</td>
<td>132.75</td>
<td>59.53</td>
<td>2.85</td>
</tr>
<tr>
<td>Ιούλιος</td>
<td>24.18</td>
<td>23.07</td>
<td>147.70</td>
<td>52.87</td>
<td>1.59</td>
</tr>
<tr>
<td>Αύγ.</td>
<td>23.91</td>
<td>18.99</td>
<td>135.50</td>
<td>43.84</td>
<td>1.14</td>
</tr>
<tr>
<td>Σεπ.</td>
<td>20.31</td>
<td>17.85</td>
<td>92.36</td>
<td>34.84</td>
<td>0.85</td>
</tr>
<tr>
<td>Έτος</td>
<td>14.39</td>
<td>556.13</td>
<td>791.29</td>
<td>406.31</td>
<td>62.31</td>
</tr>
</tbody>
</table>
Για το σενάριο SRES B1 η τιμή της μέσης ετήσιας εξατμισοδιαπνοής φτάνει τα 406,31 mm (μειώνεται κατά 0,27% σε σχέση με την ιστορική περίοδο), από την άλλη η μέση ετήσια επιφανειακή απορροή ανεβαίνει στα 62,31 mm (αυξάνεται κατά 4,23% σε σχέση με την ιστορική περίοδο) και η μέση ετήσια κατείσδυση αυξάνεται κατά 2,52% στα 83,41 mm. Κατά τη διάρκεια των μηνών Δεκεμβρίου, Ιανουαρίου, Φεβρουαρίου, Μαρτίου και Απριλίου σημειώθηκαν οι μεγαλύτερες τιμές επιφανειακής απορροής με 7,04 mm, 7,82 mm, 9,62 mm, 11,90 mm και 9,55 mm αντίστοιχα. Για τους μήνες αυτούς παρατηρείται επίσης το ίδιο αναφορικά με την κατείσδυση προς τον υπόγειο υδροφορέα (υψηλότερες τιμές) με 8,30 mm, 18,00 mm, 14,17 mm, 14,46 mm και 15,63 mm αντίστοιχα. Από την άλλη η πραγματική εξατμισοδιαπνοή εμφανίζει τις υψηλότερες τιμές κατά τη διάρκεια των μηνών Απριλίου, Μαίου, Ιουνίου, Ιουλίου και Αυγούστου (42,66 mm, 58,43 mm, 59,53 mm, 52,87 mm και 43,84 mm αντίστοιχα).

Πίνακας 12-3: Ποσοστιαίες μεταβολές του μέσου μηνιαίου υδρολογικού ισοζύγιου για το σενάριο SRES B1 2030-2050 σε σχέση με την ιστορική περίοδα 1980-2000

<table>
<thead>
<tr>
<th>Μήνας</th>
<th>Τ (%)</th>
<th>P (%)</th>
<th>PET (%)</th>
<th>AET (%)</th>
<th>Απορροή (%)</th>
<th>Κατείσδυση (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>0,87</td>
<td>4,12</td>
<td>-2,59</td>
<td>0,09</td>
<td>0,15</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ.</td>
<td>1,88</td>
<td>-0,08</td>
<td>-0,84</td>
<td>-0,49</td>
<td>5,45</td>
<td>-6,37</td>
</tr>
<tr>
<td>Δεκ.</td>
<td>1,14</td>
<td>-1,21</td>
<td>-2,41</td>
<td>-2,22</td>
<td>1,86</td>
<td>7,74</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>3,70</td>
<td>-1,69</td>
<td>1,00</td>
<td>1,01</td>
<td>5,86</td>
<td>0,13</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>1,60</td>
<td>1,20</td>
<td>-1,85</td>
<td>-1,78</td>
<td>9,95</td>
<td>2,75</td>
</tr>
<tr>
<td>Μαρ.</td>
<td>1,18</td>
<td>-2,48</td>
<td>-2,41</td>
<td>-2,06</td>
<td>7,93</td>
<td>3,91</td>
</tr>
<tr>
<td>Απρ.</td>
<td>1,02</td>
<td>-0,91</td>
<td>-2,44</td>
<td>-1,83</td>
<td>3,53</td>
<td>1,27</td>
</tr>
<tr>
<td>Μάιος</td>
<td>0,32</td>
<td>7,94</td>
<td>-0,03</td>
<td>0,32</td>
<td>-6,37</td>
<td>-3,59</td>
</tr>
<tr>
<td>Ιούνι.</td>
<td>1,20</td>
<td>0,54</td>
<td>-1,71</td>
<td>0,31</td>
<td>-1,23</td>
<td>9,51</td>
</tr>
<tr>
<td>Ιούλι.</td>
<td>0,95</td>
<td>0,05</td>
<td>-2,15</td>
<td>0,39</td>
<td>3,26</td>
<td>110,51</td>
</tr>
<tr>
<td>Αύγ.</td>
<td>0,82</td>
<td>0,43</td>
<td>-2,42</td>
<td>0,34</td>
<td>2,59</td>
<td>14,49</td>
</tr>
<tr>
<td>Σεπ.</td>
<td>0,94</td>
<td>-1,78</td>
<td>-2,21</td>
<td>-0,15</td>
<td>1,71</td>
<td>0,00</td>
</tr>
<tr>
<td>Έτος</td>
<td>1,06</td>
<td>0,61</td>
<td>-1,87</td>
<td>-0,27</td>
<td>4,23</td>
<td>2,52</td>
</tr>
</tbody>
</table>

Το μέσο μηνιαίο υδρολογικό ισοζύγιο για το κλιματικό σενάριο SRES A1B και την περίοδο 2030-2050 παρατίθεται στον Πίνακα 12.4 ενώ στον Πίνακα 12.5 δίνονται οι ποσοστιαίες μεταβολές του συγκριτικά με την ιστορική περίοδο. Η τιμή της μέσης ετήσιας εξατμισοδιαπνοής φτάνει τα 403,76 mm (μειώνεται κατά 0,90% συγκριτικά με την ιστορική περίοδο), από την άλλη η μέση ετήσια επιφανειακή απορροή μειώνεται στα 58,98 mm (μείωση κατά 1,35% σε σχέση με την ιστορική περίοδο) και η μέση ετήσια κατείσδυση μειώνεται κατά 0,47% στα 80,97 mm. Κατά τη διάρκεια των μηνών Δεκεμβρίου, Ιανουαρίου, Φεβρουαρίου, Μαρτίου και Απριλίου σημειώθηκαν οι μεγαλύτερες τιμές επιφανειακής απορροής με 6,73 mm, 7,46 mm, 8,79 mm, 11,01 mm και 8,68 mm αντίστοιχα. Για τους μήνες αυτούς παρατηρείται επίσης το ίδιο αναφορικά.
με την κατεύθυνση προς τον υπόγειο υδροφορέα (υψηλότερες τιμές) με 7,89 mm, 16,99 mm, 14,05 mm, 13,91 mm και 14,99 mm αντίστοιχα. Από την άλλη η πραγματική εξατμισοδιαπνοή εμφανίζεται τις υψηλότερες τιμές κατά τη διάρκεια των μηνών Απριλίου, Μαίου, Ιουνίου, Ιουλίου και Αυγούστου (42,98 mm, 58,24 mm, 59,08 mm, 52,29 mm και 43,26 mm αντίστοιχα).

Πίνακας 12-4: Μέσο μηνιαίο υδρολογικό ισοζύγιο για το σενάριο SRES A1B 2030-2050

<table>
<thead>
<tr>
<th></th>
<th>T°C</th>
<th>P (mm)</th>
<th>PET (mm)</th>
<th>AET (mm)</th>
<th>Απορροή (mm)</th>
<th>Κατεύθυνση (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>15,69</td>
<td>72,98</td>
<td>57,55</td>
<td>34,43</td>
<td>1,33</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ.</td>
<td>9,92</td>
<td>75,30</td>
<td>25,07</td>
<td>22,70</td>
<td>3,45</td>
<td>1,69</td>
</tr>
<tr>
<td>Δεκ.</td>
<td>5,95</td>
<td>74,76</td>
<td>11,57</td>
<td>11,49</td>
<td>6,73</td>
<td>7,89</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>4,76</td>
<td>53,11</td>
<td>8,56</td>
<td>8,55</td>
<td>7,46</td>
<td>16,99</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>5,84</td>
<td>48,99</td>
<td>11,63</td>
<td>11,55</td>
<td>8,79</td>
<td>14,05</td>
</tr>
<tr>
<td>Απρ.</td>
<td>8,86</td>
<td>56,82</td>
<td>25,91</td>
<td>24,90</td>
<td>11,01</td>
<td>13,91</td>
</tr>
<tr>
<td>Μάιος</td>
<td>13,37</td>
<td>40,60</td>
<td>51,71</td>
<td>42,98</td>
<td>8,68</td>
<td>14,99</td>
</tr>
<tr>
<td>Ιούν.</td>
<td>17,70</td>
<td>45,49</td>
<td>91,87</td>
<td>58,24</td>
<td>5,15</td>
<td>6,28</td>
</tr>
<tr>
<td>Ιούλ.</td>
<td>22,89</td>
<td>20,28</td>
<td>133,67</td>
<td>59,08</td>
<td>2,86</td>
<td>4,51</td>
</tr>
<tr>
<td>Αύγ.</td>
<td>24,25</td>
<td>23,04</td>
<td>148,25</td>
<td>52,29</td>
<td>1,56</td>
<td>0,17</td>
</tr>
<tr>
<td>Σεπ.</td>
<td>23,98</td>
<td>18,63</td>
<td>136,01</td>
<td>43,26</td>
<td>1,12</td>
<td>0,46</td>
</tr>
<tr>
<td>Έτος</td>
<td>20,37</td>
<td>17,40</td>
<td>92,61</td>
<td>34,29</td>
<td>0,83</td>
<td>0,03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T (%)</th>
<th>P (%)</th>
<th>PET (%)</th>
<th>AET (%)</th>
<th>Απορροή (%)</th>
<th>Κατεύθυνση (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>1,53</td>
<td>2,19</td>
<td>-2,07</td>
<td>-1,22</td>
<td>4,78</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ.</td>
<td>2,06</td>
<td>-2,46</td>
<td>-1,37</td>
<td>-1,35</td>
<td>2,04</td>
<td>14,98</td>
</tr>
<tr>
<td>Δεκ.</td>
<td>3,01</td>
<td>-2,52</td>
<td>-1,01</td>
<td>-0,89</td>
<td>-2,61</td>
<td>2,42</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>4,73</td>
<td>2,70</td>
<td>1,06</td>
<td>1,05</td>
<td>1,06</td>
<td>-5,51</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>2,87</td>
<td>-2,41</td>
<td>-0,98</td>
<td>-0,98</td>
<td>0,41</td>
<td>1,87</td>
</tr>
<tr>
<td>Απρ.</td>
<td>1,33</td>
<td>-3,28</td>
<td>-2,83</td>
<td>-2,58</td>
<td>-0,16</td>
<td>-0,09</td>
</tr>
<tr>
<td>Μάιος</td>
<td>1,65</td>
<td>1,24</td>
<td>-2,03</td>
<td>-1,10</td>
<td>-5,86</td>
<td>-2,87</td>
</tr>
<tr>
<td>Ιούν.</td>
<td>0,92</td>
<td>0,01</td>
<td>0,36</td>
<td>0,01</td>
<td>-5,82</td>
<td>-2,19</td>
</tr>
<tr>
<td>Ιούλ.</td>
<td>1,73</td>
<td>-3,86</td>
<td>-1,03</td>
<td>-0,45</td>
<td>-0,79</td>
<td>10,03</td>
</tr>
<tr>
<td>Αύγ.</td>
<td>1,23</td>
<td>-0,08</td>
<td>-1,79</td>
<td>-0,69</td>
<td>1,28</td>
<td>13,04</td>
</tr>
<tr>
<td>Σεπ.</td>
<td>1,12</td>
<td>-1,47</td>
<td>-2,05</td>
<td>-0,99</td>
<td>1,09</td>
<td>19,44</td>
</tr>
<tr>
<td>Έτος</td>
<td>1,57</td>
<td>-0,97</td>
<td>-1,49</td>
<td>-0,90</td>
<td>-1,35</td>
<td>-0,47</td>
</tr>
</tbody>
</table>

Αναφορικά με το σενάριο SRES A2 (Πίνακας 12.6) Η τιμή της μέσης ετήσιας εξατμισοδιαπνοής φτάνει τα 403,00 mm (μειώνεται κατά 1,08% συγκριτικά με την
ιστορική περίοδο), από την άλλη η μέση ετήσια επιφανειακή απορροή μειώνεται στα 55,94 mm (μείωση κατά 6,42% σε σχέση με την ιστορική περίοδο) και η μέση ετήσια κατείσδυση μειώνεται κατά 3,77% στα 78,29 mm.

Πίνακας 12-6: Μέσο μηνιαίο υδρολογικό ισοζύγιο για το σενάριο SRES A2 2030-2050

<table>
<thead>
<tr>
<th></th>
<th>T°C</th>
<th>P (mm)</th>
<th>PET (mm)</th>
<th>AET (mm)</th>
<th>Απορροή (mm)</th>
<th>Κατείσδυση (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>15,69</td>
<td>72,77</td>
<td>57,61</td>
<td>34,53</td>
<td>1,25</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ.</td>
<td>9,91</td>
<td>72,84</td>
<td>25,06</td>
<td>22,59</td>
<td>3,33</td>
<td>1,40</td>
</tr>
<tr>
<td>Δεκ.</td>
<td>5,93</td>
<td>72,52</td>
<td>11,50</td>
<td>11,42</td>
<td>6,53</td>
<td>7,58</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>4,73</td>
<td>51,29</td>
<td>8,55</td>
<td>8,54</td>
<td>6,88</td>
<td>16,73</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>5,88</td>
<td>48,13</td>
<td>11,77</td>
<td>11,69</td>
<td>7,79</td>
<td>13,23</td>
</tr>
<tr>
<td>Μαρ.</td>
<td>8,84</td>
<td>56,43</td>
<td>25,85</td>
<td>24,83</td>
<td>10,19</td>
<td>13,21</td>
</tr>
<tr>
<td>Απρ.</td>
<td>13,32</td>
<td>39,28</td>
<td>51,49</td>
<td>42,58</td>
<td>8,61</td>
<td>15,02</td>
</tr>
<tr>
<td>Μάιος</td>
<td>17,73</td>
<td>47,38</td>
<td>92,14</td>
<td>58,24</td>
<td>4,97</td>
<td>5,90</td>
</tr>
<tr>
<td>Ιούν.</td>
<td>22,81</td>
<td>20,55</td>
<td>132,94</td>
<td>58,83</td>
<td>2,87</td>
<td>4,28</td>
</tr>
<tr>
<td>Ιούλ.</td>
<td>24,22</td>
<td>23,04</td>
<td>148,04</td>
<td>52,15</td>
<td>1,57</td>
<td>0,46</td>
</tr>
<tr>
<td>Αογ.</td>
<td>23,94</td>
<td>19,09</td>
<td>135,69</td>
<td>43,20</td>
<td>1,12</td>
<td>0,45</td>
</tr>
<tr>
<td>Σεπ.</td>
<td>20,39</td>
<td>17,78</td>
<td>92,79</td>
<td>34,39</td>
<td>0,83</td>
<td>0,03</td>
</tr>
<tr>
<td>Έτος</td>
<td>14,45</td>
<td>541,10</td>
<td>793,43</td>
<td>403,00</td>
<td>55,94</td>
<td>78,29</td>
</tr>
</tbody>
</table>

Πίνακας 12-7: Ποσοστιαίες μεταβολές του μέσου μηνιαίου υδρολογικού ισοζύγιου για το σενάριο SRES A2 2030-2050 σε σχέση με την ιστορική περίοδο 1980-2000

<table>
<thead>
<tr>
<th></th>
<th>T(%)</th>
<th>P (%)</th>
<th>PET (%)</th>
<th>AET (%)</th>
<th>Απορροή (%)</th>
<th>Κατείσδυση (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>1,51</td>
<td>-1,97</td>
<td>-0,94</td>
<td>-1,07</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>Νοέ.</td>
<td>1,92</td>
<td>-5,65</td>
<td>-1,42</td>
<td>-1,87</td>
<td>-1,39</td>
<td>-4,72</td>
</tr>
<tr>
<td>Δεκ.</td>
<td>2,65</td>
<td>-5,43</td>
<td>-1,64</td>
<td>-1,44</td>
<td>-5,46</td>
<td>-1,59</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>4,09</td>
<td>-0,81</td>
<td>-9,92</td>
<td>-6,78</td>
<td>-6,96</td>
<td></td>
</tr>
<tr>
<td>Φεβ.</td>
<td>3,51</td>
<td>-4,11</td>
<td>0,27</td>
<td>-10,99</td>
<td>-4,06</td>
<td></td>
</tr>
<tr>
<td>Μαρ.</td>
<td>1,11</td>
<td>-3,94</td>
<td>-3,04</td>
<td>-2,84</td>
<td>-7,59</td>
<td>-5,09</td>
</tr>
<tr>
<td>Απρ.</td>
<td>1,30</td>
<td>-2,06</td>
<td>-2,46</td>
<td>-2,02</td>
<td>-6,62</td>
<td>-2,68</td>
</tr>
<tr>
<td>Μάιος</td>
<td>1,11</td>
<td>4,16</td>
<td>0,66</td>
<td>0,00</td>
<td>-9,20</td>
<td>-8,10</td>
</tr>
<tr>
<td>Ιούν.</td>
<td>1,36</td>
<td>-2,58</td>
<td>-1,57</td>
<td>-0,86</td>
<td>-0,64</td>
<td>4,46</td>
</tr>
<tr>
<td>Ιούλ.</td>
<td>1,13</td>
<td>-0,07</td>
<td>-1,93</td>
<td>-0,96</td>
<td>1,78</td>
<td>202,55</td>
</tr>
<tr>
<td>Αογ.</td>
<td>0,95</td>
<td>-0,93</td>
<td>-2,28</td>
<td>-1,11</td>
<td>0,52</td>
<td>16,30</td>
</tr>
<tr>
<td>Σεπ.</td>
<td>1,34</td>
<td>-2,14</td>
<td>-1,76</td>
<td>-1,43</td>
<td>-0,43</td>
<td>0,00</td>
</tr>
<tr>
<td>Έτος</td>
<td>1,46</td>
<td>-2,11</td>
<td>-1,61</td>
<td>-1,08</td>
<td>-6,42</td>
<td>-3,77</td>
</tr>
</tbody>
</table>

Κατά τη διάρκεια των μηνών Δεκεμβρίου, Ιανουαρίου, Φεβρουαρίου, Μαρτίου και Απριλίου σημειώθηκαν οι μεγαλύτερες τιμές επιφανειακής απορροής με 6,53 mm, 6,88 mm, 7,79 mm, 10,19 mm και 8,61 mm αντίστοιχα. Για τους μήνες αυτούς παρατηρείται επίσης το ιδίο αναφορικά με την κατείσδυση προς τον υπόγειο
υδροφορέα (υψηλότερες τιμές) με 7,58 mm, 16,73 mm, 13,23 mm, 13,21 mm και 15,02 mm αντίστοιχα. Από την άλλη η πραγματική εξατμισοδιανοποίηση εμφανίζει τις υψηλότερες τιμές κατά τη διάρκεια των μηνών Απριλίου, Μαίου, Ιουνίου, Ιουλίου και Αυγούστου (42,58 mm, 58,24 mm, 58,83 mm 52,15 mm και 43,20 mm αντίστοιχα).

12.3 Συνθετική περίοδος κλιματικής αλλαγής 2080-2100

Για το σενάριο κλιματικής αλλαγής SRESB1 (Πίνακες 12.8, 12.9) η τιμή της μέσης ετήσιας εξατμισοδιανοποίησης φτάνει τα 404,04 mm (μειώνεται κατά 0,83% σε σχέση με την ιστορική περίοδο), από την άλλη η μέση ετήσια επιφανειακή απορροή ανεβαίνει στα 58,46 mm (μειώνεται κατά 2,21% σε σχέση με την ιστορική περίοδο) και η μέση ετήσια κατεύθυνση αυξάνεται κατά 0,99% στα η 80,55 mm. Κατά τη διάρκεια των μηνών Δεκεμβρίου, Ιανουαρίου, Φεβρουαρίου, Μαρτίου και Απριλίου σημειώθηκαν οι μεγαλύτερες τιμές επιφανειακής απορροής με 6,77 mm, 7,56 mm, 8,48 mm, 10,36 mm και 9,37 mm αντίστοιχα. Για τους μήνες αυτούς παρατηρείται επίσης το ιδίο αναφορικά με την κατεύθυνση προς τον υπόγειο υδροφορέα (υψηλότερες τιμές) με 7,85 mm, 17,39 mm, 14,07 mm, 13,32 mm και 15,83 mm αντίστοιχα. Από την άλλη η πραγματική εξατμισοδιανοποίηση εμφανίζει τις υψηλότερες τιμές κατά τη διάρκεια των μηνών Απριλίου, Μαίου, Ιουνίου, Ιουλίου και Αυγούστου (42,92 mm, 58,53 mm, 58,99 mm, 52,08 mm και 42,94 mm αντίστοιχα).

Πίνακας 12-8: Μέσο μηνιαίο υδρολογικό ισοζύγιο για το σενάριο SRES B1 2080-2100

<table>
<thead>
<tr>
<th>Μήνας</th>
<th>T°C (°C)</th>
<th>P (mm)</th>
<th>PET (mm)</th>
<th>AET (mm)</th>
<th>Απορροή (mm)</th>
<th>Κατεύθυνση (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>15,79</td>
<td>74,33</td>
<td>57,81</td>
<td>34,97</td>
<td>1,21</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ.</td>
<td>9,93</td>
<td>75,57</td>
<td>24,94</td>
<td>22,79</td>
<td>3,40</td>
<td>1,24</td>
</tr>
<tr>
<td>Δεκ.</td>
<td>6,02</td>
<td>76,53</td>
<td>11,63</td>
<td>11,53</td>
<td>6,77</td>
<td>7,85</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>4,83</td>
<td>50,16</td>
<td>8,61</td>
<td>8,60</td>
<td>7,56</td>
<td>17,39</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>5,88</td>
<td>49,36</td>
<td>11,59</td>
<td>11,52</td>
<td>8,48</td>
<td>14,07</td>
</tr>
<tr>
<td>Μαρ.</td>
<td>8,94</td>
<td>58,43</td>
<td>26,06</td>
<td>25,07</td>
<td>10,36</td>
<td>13,32</td>
</tr>
<tr>
<td>Απρ.</td>
<td>13,38</td>
<td>39,41</td>
<td>51,51</td>
<td>42,92</td>
<td>9,37</td>
<td>15,83</td>
</tr>
<tr>
<td>Μάιος</td>
<td>17,85</td>
<td>44,66</td>
<td>92,88</td>
<td>58,53</td>
<td>5,00</td>
<td>6,05</td>
</tr>
<tr>
<td>Ιούν.</td>
<td>22,97</td>
<td>19,66</td>
<td>134,20</td>
<td>58,99</td>
<td>2,84</td>
<td>4,15</td>
</tr>
<tr>
<td>Ιούλ.</td>
<td>24,31</td>
<td>22,55</td>
<td>148,77</td>
<td>52,08</td>
<td>1,54</td>
<td>0,22</td>
</tr>
<tr>
<td>Αύγ.</td>
<td>24,04</td>
<td>18,46</td>
<td>136,49</td>
<td>42,94</td>
<td>1,10</td>
<td>0,43</td>
</tr>
<tr>
<td>Σεπτ.</td>
<td>20,47</td>
<td>17,66</td>
<td>93,14</td>
<td>34,13</td>
<td>0,82</td>
<td>0,00</td>
</tr>
<tr>
<td>Οκτ.</td>
<td>14,53</td>
<td>546,79</td>
<td>797,64</td>
<td>404,04</td>
<td>58,46</td>
<td>80,55</td>
</tr>
</tbody>
</table>

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών
Το μέσο μηνιαίο υδρολογικό ισοζύγιο για το κλιματικό σενάριο SRES A1B και την περίοδο 2030-2050 παρατίθεται στον Πίνακα 12.10 ενώ στον Πίνακα 12.11 δίνονται οι ποσοστιαίες μεταβολές του συγκριτικά με την ιστορική περίοδο. Η τιμή της μέσης ετήσιας εξατμιστικής διαδικασίας φτάνει τα 397,62 mm (μειώνεται κατά 2,41% συγκριτικά με την ιστορική περίοδο), από την άλλη η μέση ετήσια επιφανειακή απορροή μειώνεται στα 53,79 mm (μείωση κατά 2,41% σε σχέση με την ιστορική περίοδο) και η μέση ετήσια κατεύθυνση μειώνεται κατά 6,81% στα 75,81 mm.

Πίνακας 12-10: Μέσο μηνιαίο υδρολογικό ισοζύγιο για το σενάριο SRES A1B 2080-2100

<table>
<thead>
<tr>
<th>Μήνας</th>
<th>T(%)</th>
<th>P (%)</th>
<th>PET (%)</th>
<th>AET (%)</th>
<th>Απορροή (%)</th>
<th>Κατεύθυνση (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>2,12</td>
<td>4,09</td>
<td>-1,63</td>
<td>0,31</td>
<td>-4,50</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέμ</td>
<td>2,19</td>
<td>-2,10</td>
<td>-1,89</td>
<td>-0,99</td>
<td>0,83</td>
<td>-15,79</td>
</tr>
<tr>
<td>Δεκ.</td>
<td>4,24</td>
<td>-0,21</td>
<td>-0,50</td>
<td>-0,54</td>
<td>-1,97</td>
<td>1,83</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>6,14</td>
<td>-3,01</td>
<td>1,67</td>
<td>1,68</td>
<td>2,42</td>
<td>-3,25</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>3,42</td>
<td>-1,66</td>
<td>-1,26</td>
<td>-1,22</td>
<td>-3,15</td>
<td>2,02</td>
</tr>
<tr>
<td>Μαρ.</td>
<td>2,24</td>
<td>-0,54</td>
<td>-2,27</td>
<td>-1,90</td>
<td>-6,07</td>
<td>-4,30</td>
</tr>
<tr>
<td>Απρ.</td>
<td>1,77</td>
<td>-1,73</td>
<td>-2,41</td>
<td>-1,24</td>
<td>1,65</td>
<td>2,57</td>
</tr>
<tr>
<td>Μάιος</td>
<td>1,77</td>
<td>-1,81</td>
<td>1,46</td>
<td>0,50</td>
<td>-8,65</td>
<td>-5,77</td>
</tr>
<tr>
<td>Ιούν.</td>
<td>2,08</td>
<td>-6,78</td>
<td>-0,64</td>
<td>-0,61</td>
<td>-1,51</td>
<td>1,19</td>
</tr>
<tr>
<td>Ιούλ.</td>
<td>1,51</td>
<td>-2,19</td>
<td>-1,44</td>
<td>-1,11</td>
<td>0,13</td>
<td>45,26</td>
</tr>
<tr>
<td>Αύγ.</td>
<td>1,40</td>
<td>-2,37</td>
<td>-1,70</td>
<td>-1,11</td>
<td>11,44</td>
<td></td>
</tr>
<tr>
<td>Συν.</td>
<td>1,75</td>
<td>-2,79</td>
<td>-1,39</td>
<td>-2,19</td>
<td>0,21</td>
<td>0,00</td>
</tr>
</tbody>
</table>

| Έτος | 2,06 | -1,08 | -1,09 | -0,83 | -2,21 | -0,99 |

Κατά τη διάρκεια των μηνών Δεκεμβρίου, Ιανουαρίου, Φεβρουαρίου, Μαρτίου και Απριλίου σημειώθηκαν οι μεγαλύτερες τιμές επιφανειακής απορροφής με 6,47 mm, 6,76 mm, 7,65 mm, 9,59 mm και 8,13 mm αντίστοιχα. Για τους μήνες αυτούς...
παρατηρείται επίσης το ιδίο αναφορικά με την κατεύθυνση προς τον υπόγειο υδροφορέα (υψηλότερες τιμές) με 6,75 mm, 16,91 mm, 12,84 mm, 13,17 mm και 14,49 mm αντίστοιχα. Από την άλλη η πραγματική εξατμισοδιαπνοή έμφανιζε τις υψηλότερες τιμές κατά τη διάρκεια των μηνών Απριλίου, Μαΐου, Ιουνίου, Ιουλίου και Αυγούστου (42,84 mm, 57,55 mm, 57,50 mm, 50,69 mm και 41,86 mm αντίστοιχα).

<table>
<thead>
<tr>
<th>Μήνας</th>
<th>Τ(%)</th>
<th>P (%)</th>
<th>PET (%)</th>
<th>AET (%)</th>
<th>Απορροή (%)</th>
<th>Κατεύθυνση (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>3,12</td>
<td>2,99</td>
<td>-0,93</td>
<td>-1,59</td>
<td>-11,64</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ.</td>
<td>3,89</td>
<td>-8,89</td>
<td>-0,88</td>
<td>-2,17</td>
<td>-9,74</td>
<td>-30,07</td>
</tr>
<tr>
<td>Δεκ.</td>
<td>5,80</td>
<td>-2,46</td>
<td>-0,60</td>
<td>-0,66</td>
<td>-6,30</td>
<td>-12,43</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>7,71</td>
<td>-5,29</td>
<td>1,58</td>
<td>1,52</td>
<td>-8,49</td>
<td>-5,92</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>7,55</td>
<td>-4,75</td>
<td>1,97</td>
<td>1,89</td>
<td>-12,62</td>
<td>-6,92</td>
</tr>
<tr>
<td>Μαρ.</td>
<td>4,14</td>
<td>-5,14</td>
<td>-1,24</td>
<td>-1,45</td>
<td>-13,09</td>
<td>-5,39</td>
</tr>
<tr>
<td>Απρ.</td>
<td>3,49</td>
<td>-5,10</td>
<td>-0,97</td>
<td>-1,42</td>
<td>-11,81</td>
<td>-6,11</td>
</tr>
<tr>
<td>Μάιος</td>
<td>2,97</td>
<td>-3,82</td>
<td>2,62</td>
<td>-1,18</td>
<td>-7,63</td>
<td>-2,61</td>
</tr>
<tr>
<td>Ιούν.</td>
<td>2,79</td>
<td>-6,72</td>
<td>0,23</td>
<td>-3,11</td>
<td>-7,35</td>
<td>-7,49</td>
</tr>
<tr>
<td>Ιούλ.</td>
<td>2,23</td>
<td>-1,29</td>
<td>-0,48</td>
<td>-3,75</td>
<td>-5,06</td>
<td>-17,43</td>
</tr>
<tr>
<td>Αύγ.</td>
<td>2,09</td>
<td>-2,00</td>
<td>-0,80</td>
<td>-4,18</td>
<td>-5,24</td>
<td>12,05</td>
</tr>
<tr>
<td>Σεπ.</td>
<td>2,44</td>
<td>-6,56</td>
<td>-0,79</td>
<td>-4,86</td>
<td>-6,67</td>
<td>0,00</td>
</tr>
<tr>
<td>Έτος</td>
<td>3,20</td>
<td>-3,95</td>
<td>-0,15</td>
<td>-2,41</td>
<td>-10,93</td>
<td>-6,81</td>
</tr>
</tbody>
</table>

Αναφορικά με το σενάριο SRES A2 (Πίνακας 12.12, 12.13) Η τιμή της μέσης ετήσιας εξατμισοδιαπνοής φτάνει τα 395,74 mm (μειώνεται κατά 2,87% συγκριτικά με την ιστορική περίοδο), από την άλλη η μέση ετήσια επιφανειακή απορροή μειώνεται στα 52,70 mm (μείωση κατά 11,84% σε σχέση με την ιστορική περίοδο) και η μέση ετήσια κατεύθυνση μειώνεται κατά 8,13% στα 74,74 mm. Κατά τη διάρκεια των μηνών Δεκεμβρίου, Ιανουαρίου, Φεβρουαρίου, Μαρτίου και Απριλίου σημειώθηκαν οι μεγαλύτερες τιμές επιφανειακής απορροφής με 6,30 mm, 7,02 mm, 8,09 mm, 9,22 mm και 7,57 mm αντίστοιχα. Για τους μήνες αυτούς παρατηρείται επίσης το ίδιο αναφορικά με την κατεύθυνση προς τον υπόγειο υδροφορέα (υψηλότερες τιμές) με 6,12 mm, 16,49 mm, 13,46 mm, 13,46 mm και 13,66 mm αντίστοιχα. Από την άλλη η πραγματική εξατμισοδιαπνοή έμφανιζε τις υψηλότερες τιμές κατά τη διάρκεια των μηνών Απριλίου, Μαΐου, Ιουνίου, Ιουλίου και Αυγούστου (42,66 mm, 57,52 mm, 57,15 mm 50,23 mm και 41,39 mm αντίστοιχα).

Πίνακας 12-12: Μέσο μηνιαίο υδρολογικό ισοζύγιο για το σενάριο SRES A2 2080-2100

<table>
<thead>
<tr>
<th>Μήνας</th>
<th>T (%)</th>
<th>P (mm)</th>
<th>PET (mm)</th>
<th>AET (mm)</th>
<th>Απορροή (mm)</th>
<th>Κατεύθυνση (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>16,18</td>
<td>71,74</td>
<td>59,02</td>
<td>33,99</td>
<td>1,09</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ.</td>
<td>10,31</td>
<td>70,36</td>
<td>25,54</td>
<td>22,78</td>
<td>2,86</td>
<td>1,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T (%)</th>
<th>P (%)</th>
<th>PET (%)</th>
<th>ΑΕΤ (%)</th>
<th>Απορρ. (%)</th>
<th>Κατεύθυνση (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ.</td>
<td>4,65</td>
<td>-0,46</td>
<td>0,42</td>
<td>-2,48</td>
<td>-14,05</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέμ</td>
<td>6,03</td>
<td>-8,85</td>
<td>0,46</td>
<td>-1,02</td>
<td>-13,54</td>
<td>-31,85</td>
</tr>
<tr>
<td>Δεκ.</td>
<td>8,30</td>
<td>-2,08</td>
<td>0,31</td>
<td>0,11</td>
<td>-8,81</td>
<td>-20,51</td>
</tr>
<tr>
<td>Ιαν.</td>
<td>10,67</td>
<td>-3,94</td>
<td>2,61</td>
<td>2,55</td>
<td>-4,91</td>
<td>-8,28</td>
</tr>
<tr>
<td>Φεβ.</td>
<td>7,87</td>
<td>-2,76</td>
<td>-0,21</td>
<td>-0,22</td>
<td>-7,59</td>
<td>-2,43</td>
</tr>
<tr>
<td>Μαρ.</td>
<td>5,89</td>
<td>-10,21</td>
<td>-0,78</td>
<td>-1,13</td>
<td>-16,44</td>
<td>-3,27</td>
</tr>
<tr>
<td>Απρ.</td>
<td>4,09</td>
<td>-2,48</td>
<td>-1,22</td>
<td>-1,83</td>
<td>-17,96</td>
<td>-11,47</td>
</tr>
<tr>
<td>Μάιος</td>
<td>3,85</td>
<td>-6,30</td>
<td>3,46</td>
<td>-1,24</td>
<td>-11,14</td>
<td>-5,06</td>
</tr>
<tr>
<td>Ιούν.</td>
<td>3,81</td>
<td>-10,10</td>
<td>1,57</td>
<td>-3,70</td>
<td>-13,84</td>
<td>-3,51</td>
</tr>
<tr>
<td>Ιούλ.</td>
<td>3,13</td>
<td>-2,76</td>
<td>0,76</td>
<td>-4,62</td>
<td>-6,99</td>
<td>-5,55</td>
</tr>
<tr>
<td>Αύγ.</td>
<td>3,01</td>
<td>-3,09</td>
<td>0,44</td>
<td>-5,27</td>
<td>-7,79</td>
<td>7,96</td>
</tr>
<tr>
<td>Σεπ.</td>
<td>3,64</td>
<td>-7,48</td>
<td>0,58</td>
<td>-5,87</td>
<td>-9,10</td>
<td>0,00</td>
</tr>
<tr>
<td>Έτος</td>
<td>4,39</td>
<td>-4,72</td>
<td>0,91</td>
<td>-2,87</td>
<td>-11,84</td>
<td>-8,13</td>
</tr>
</tbody>
</table>

12.4 ΓΕΝΙΚΑ ΣΧΟΛΙΑ

Το υδρολογικό μοντέλο UTHBAL εφαρμόστηκε (με δεδομένα εισόδου τις στατιστικά καταβάσμενες μελλοντικές μετεωρολογικές μεταβλητές) και δημιουργήθηκαν συνθετικά μελλοντικά σκενάρια επαφανειακής απορροής. Στον Πίνακα 4-14 απεικονίζονται τα αποτελέσματα εξόδου μοντέλου UTHBAL τοσο κατά την ιστορική περίοδο αναφοράς 1980-2000 όσο και για τις συνθετικές περιόδους κλιματικής αλλαγής (βραχυπρόθεσμη 2030-2050 & μακροπρόθεσμη 2080-2100) για τα τρία σκενάρια SRES B1, SRES A1B and SRES A2. Είναι σαφές υπάρχει λόγο της φύσεως των δεδομένων εισόδου (μετεωρολογικές μεταβλητές που προέκυψαν από
στατιστικό καταβιβασμό κλίμακας) τα αποτελέσματα του υδρολογικού μοντέλου εμφανίζουν ανάλογες τάσεις με τις στατιστικά καταβιβασμένες παραμέτρους.

Πίνακας 12-14: Αποτελέσματα υδρολογικού μοντέλου UTHBAL

<table>
<thead>
<tr>
<th>UTHBAL (Αποτελέσματα)</th>
<th>T (°C)</th>
<th>P (mm)</th>
<th>PET (mm)</th>
<th>AET (mm)</th>
<th>Απορροή (mm)</th>
<th>Κατείσδυση (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ιστορική Περίοδος 1960-2009</td>
<td>14.3</td>
<td>570.5</td>
<td>799.8</td>
<td>416.7</td>
<td>64.8</td>
<td>86.5</td>
</tr>
<tr>
<td>Ιστορική Περίοδος 1980-2000</td>
<td>14.2</td>
<td>552.8</td>
<td>806.4</td>
<td>407.4</td>
<td>59.8</td>
<td>81.4</td>
</tr>
<tr>
<td>SRES B1 2030-2050</td>
<td>14.4</td>
<td>556.1</td>
<td>791.3</td>
<td>406.3</td>
<td>62.3</td>
<td>83.4</td>
</tr>
<tr>
<td>SRES A1B 2030-2050</td>
<td>14.5</td>
<td>547.4</td>
<td>794.4</td>
<td>403.8</td>
<td>59.0</td>
<td>81.0</td>
</tr>
<tr>
<td>SRES A2 2030-2050</td>
<td>14.4</td>
<td>541.1</td>
<td>793.4</td>
<td>403.0</td>
<td>55.9</td>
<td>78.3</td>
</tr>
<tr>
<td>SRES B1 2080-2100</td>
<td>14.5</td>
<td>546.8</td>
<td>797.6</td>
<td>404.0</td>
<td>58.5</td>
<td>80.5</td>
</tr>
<tr>
<td>SRES A1B 2080-2100</td>
<td>14.7</td>
<td>531.0</td>
<td>805.2</td>
<td>397.6</td>
<td>53.8</td>
<td>75.8</td>
</tr>
<tr>
<td>SRES A2 2080-2100 % μέγιστη αύξηση ή μείωση σε σχέση με περίοδο 1980-2000</td>
<td>4.4</td>
<td>-4.7</td>
<td>-1.9</td>
<td>-2.9</td>
<td>-11.8</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Στην βραχυπρόθεσμη περίοδο 2030-2050 παρατηρείται αύξηση της κατείσδυσης κατά 2,5% για το σενάριο SRES B1 ενώ για τα σενάρια SRES A1B και SRES A2 σημειώνεται μείωση 0,5% και 3,8% αντίστοιχα. Τα αποτελέσματα της μακροπρόθεσμης περιόδου 2080-2100 δείχνουν ότι η κατείσδυση προς τον υπόγειο
υδροφορέα μειώνεται κατά 1%, 6,8% και 8,1% (SRES B1, SRES A1B, και SRES A2 αντίστοιχα) και για τρία σενάρια εκπομπών.

Για την ιστορική περίοδο αναφοράς η τιμή της μέσης ημερήσιας επιφανειακής απορροής ήταν 59,8 mm. Παρατηρήθηκε αύξηση κατά 4,2% για το σενάριο SRES B1, μείωση 1,4% και 6,4% για τα σενάρια SRES A1B και SRES A2 της βραχυπρόθεσμης περιόδου 2030-2050 (Σχήμα 4.1). Από την άλλη, και τα τρία σενάρια SRES B1, A1B και A2 της μακροπρόθεσμης περιόδου υποθέτουν μείωση κατά 2,2%, 10% και 11,8% αντίστοιχα.

13 ΜΕΛΛΟΝΤΙΚΟ ΥΔΑΤΙΚΟ ΙΣΟΖΥΓΙΟ ΤΑΜΙΕΥΤΗΡΑ ΚΑΡΛΑΣ

13.1 ΙΣΤΟΡΙΚΗ ΠΕΡΙΟΔΟΣ ΑΝΑΦΟΡΑΣ 1980-2000

Τα αποτελέσματα του μηνιαίου υδατικού ισοζυγίου του ταμιευτήρα για την ιστορική περίοδο αναφοράς παρουσιάζονται στο Σχήμα 13.1 για τη Στρατηγική Διαχείρισης 2 (επιχειρησιακό σενάριο 2) και τα τρία σενάρια διαχείρισης (2α, 2β, και 2γ). Από την ανάλυση προκύπτει ότι υπάρχει πλέονσαμα κατά τη χειμερινή περίοδο Νοεμβρίου-Μαρτίου ενώ η ύπαρξη ελείμματος ταυτίζεται με την έναρξη της αρδευτικής περιόδου και διαρκεί ως τη λήξη της (Απρίλιος-Οκτώβριος). Παρατηρείται επίσης ότι η ύπαρξη υψηλού αποθηκευμένου ύγρου εντός ενός προϊόντος διαχειριστικών σεναρίων (2, 2α, 2β) ενώ υπάρχει μείωση των αποτελέσματα του σεναρίου 2γ. Έχει αναφερθεί ότι κατά τη διάρκεια της περιόδου Νοεμβρίου-Μαρτίου ο ταμιευτήρας σχεδιάζεται να τροφοδοτηθεί με 100 hm^3 από τον Πηνείο ποταμό. Επιπλέον κατά τη διάρκεια της ίδιας περιόδου η εισροή απορροής με διαφορά υψηλότερες τιμές (όπως προκύπτει από το κεφάλαιο 12) υπάρχει λογική στο γεγονός ότι μέσω μηνιαία εισροή να εμφανίζει αυξημένες τιμές σε αυτή την περίοδο. Οι υψηλές εκροές για την περίοδο Ιανουαρίου-Σεπτεμβρίου δικαιολογούνται από την υπερχείλιση που λαμβάνει χώρα λόγω ύπαρξης σημαντικών εισροών από τον Πηνείο, υψηλής επιφανειακής απορροής και το γεγονός ότι για αυτή την περίοδο η καλλιέργειας δεν χρειάζονται πρόσθετο νέρο πέραν της απευθείας βροχόπτωσης (απουσία αρδεύσεων).
gια α) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) β) σενάριο 2α γ) σενάριο 2β και δ) σενάριο 2δ

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών
Πίνακας 13-1: Μεταβολές μέσης μηνιαίας υπερχείλισης του ταμιευτήρα

<table>
<thead>
<tr>
<th>Σεν. 2</th>
<th>Σεν. 2θ</th>
<th>(%) μεταβολή</th>
<th>Σεν. 2θ</th>
<th>(%) μεταβολή</th>
<th>Σεν. 2θ</th>
<th>(%) μεταβολή</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(hm³)</td>
<td>(hm³)</td>
<td></td>
<td>(hm³)</td>
<td></td>
<td>(hm³)</td>
</tr>
<tr>
<td>Οκτ</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Νοέ</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Δεκ</td>
<td>2,75</td>
<td>4,02</td>
<td>46,29</td>
<td>4,63</td>
<td>68,55</td>
<td>0,03</td>
</tr>
<tr>
<td>Ιαν</td>
<td>16,94</td>
<td>18,97</td>
<td>11,96</td>
<td>19,61</td>
<td>15,75</td>
<td>1,16</td>
</tr>
<tr>
<td>Φεβ</td>
<td>22,92</td>
<td>23,01</td>
<td>0,38</td>
<td>23,04</td>
<td>0,53</td>
<td>6,06</td>
</tr>
<tr>
<td>Μαρ</td>
<td>24,80</td>
<td>24,95</td>
<td>0,60</td>
<td>25,01</td>
<td>0,83</td>
<td>17,45</td>
</tr>
<tr>
<td>Απρ</td>
<td>4,49</td>
<td>4,72</td>
<td>5,00</td>
<td>4,81</td>
<td>7,13</td>
<td>3,01</td>
</tr>
<tr>
<td>Μάιος</td>
<td>1,72</td>
<td>1,84</td>
<td>6,70</td>
<td>1,88</td>
<td>9,27</td>
<td>0,85</td>
</tr>
<tr>
<td>Ιούν</td>
<td>0,37</td>
<td>0,40</td>
<td>9,38</td>
<td>0,41</td>
<td>12,98</td>
<td>0,03</td>
</tr>
<tr>
<td>Ιούλ</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Αύγ</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Σεπ</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Έτος</td>
<td>74,00</td>
<td>77,90</td>
<td>6,69</td>
<td>79,40</td>
<td>9,59</td>
<td>28,59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(%) μεταβολή</th>
</tr>
</thead>
<tbody>
<tr>
<td>-39,15</td>
</tr>
</tbody>
</table>

Ο Πίνακας 13.1 παρουσιάζει τα αποτελέσματα του μοντέλου για τη μηνιαία υπερχείλιση από τον ταμιευτήρα. Παρατηρείται ότι η ποσότητα νερού που υπερχείλει από τον ταμιευτήρα για τη Στρατηγική Διαχείρισης 2 είναι 74,00 hm³ / έτος, στο σενάριο 2α 77,9 hm³ / έτος με μια μέση αύξηση της τάξης 6,7% / μήνα. Αντίστοιχα στο σενάριο 2θ η ποσότητα αυτή 79,4 hm³ / έτος με μέση αύξηση 9,6% / μήνα. Οι αυξήσεις αυτές δικαιολογούνται από το γεγονός ότι τα σενάρια 2α και 2θ είναι δύο διαχειριστικά σενάρια τα οποία χαρακτηρίζονται από πρακτικές έξοδονόμησης ύδατος (μείωση απολείψεων των καναλιών και αλλαγή μεθόδους άρδευσης αντίστοιχα). Πρακτικά αυτό δείχνει ότι μικρότερη ποσότητα νερού εκρέει από τον ταμιευτήρα σύμφωνα με αυξάνεται ο αποθηκευμένος ύδωρ. Αυτή η διαδικασία καθίσταται εμφανέστερη για το σενάριο 2θ. Σε αυτό το σενάριο η μέση μηνιαία υπερχείλιση του ταμιευτήρα κατά τη διάρκεια του έτους μειώνεται για όλους τους μήνες μεμονωμένα (Πίνακας 13.2). Είναι ένα κάποιο να κατανοήσει το γεγονός ότι η καλλιέργεια της τομάτας θερμοκηπιού κλειστού τύπου έχει αυξημένες υδατικές απαιτήσεις και λογικά προκαλεί επιπρόσθετες εκροές που υπόλοιπα σενάρια(2, 2θ) που συνεισφέρουν στη μείωση του αποθηκευμένου ύδατος στον ταμιευτήρα με αποτέλεσμα να περιορίζεται η πιθανότητα υπερχείλισης.
Πίνακας 13-2: Μέσος μηνιαίος αποθηκευμένος και μέσος μηνιαίος ανανεώσιμος όγκος νερού του ταμιευτήρα

<table>
<thead>
<tr>
<th>Σεν. 2</th>
<th>Σεν. 2m</th>
<th>Σεν. 2δ</th>
<th>Σεν. 2τ</th>
<th>Σεν. 2</th>
<th>Σεν. 2m</th>
<th>Σεν. 2δ</th>
<th>Σεν. 2τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ</td>
<td>95,03</td>
<td>98,05</td>
<td>99,19</td>
<td>68,84</td>
<td>38,02</td>
<td>41,04</td>
<td>42,18</td>
</tr>
<tr>
<td>Νοέ</td>
<td>114,05</td>
<td>117,09</td>
<td>118,25</td>
<td>84,54</td>
<td>57,04</td>
<td>60,08</td>
<td>61,24</td>
</tr>
<tr>
<td>Δεκ</td>
<td>134,15</td>
<td>136,02</td>
<td>136,61</td>
<td>104,55</td>
<td>77,14</td>
<td>79,01</td>
<td>79,60</td>
</tr>
<tr>
<td>Ιαν</td>
<td>140,35</td>
<td>140,36</td>
<td>140,36</td>
<td>124,42</td>
<td>83,34</td>
<td>83,35</td>
<td>83,35</td>
</tr>
<tr>
<td>Φεβ</td>
<td>141,14</td>
<td>141,14</td>
<td>141,14</td>
<td>138,54</td>
<td>84,13</td>
<td>84,13</td>
<td>84,13</td>
</tr>
<tr>
<td>Μαρ</td>
<td>141,14</td>
<td>141,14</td>
<td>141,14</td>
<td>141,14</td>
<td>84,13</td>
<td>84,13</td>
<td>84,13</td>
</tr>
<tr>
<td>Απρ</td>
<td>139,91</td>
<td>140,13</td>
<td>140,21</td>
<td>136,86</td>
<td>82,90</td>
<td>83,12</td>
<td>83,20</td>
</tr>
<tr>
<td>Μάιος</td>
<td>135,44</td>
<td>136,10</td>
<td>136,34</td>
<td>127,22</td>
<td>78,43</td>
<td>79,09</td>
<td>79,33</td>
</tr>
<tr>
<td>Ιούν</td>
<td>126,51</td>
<td>127,79</td>
<td>128,27</td>
<td>112,28</td>
<td>69,50</td>
<td>70,78</td>
<td>71,26</td>
</tr>
<tr>
<td>Ιούλ</td>
<td>113,95</td>
<td>116,12</td>
<td>116,95</td>
<td>96,24</td>
<td>56,94</td>
<td>59,11</td>
<td>59,94</td>
</tr>
<tr>
<td>Αύγ</td>
<td>103,00</td>
<td>105,88</td>
<td>106,97</td>
<td>82,48</td>
<td>45,99</td>
<td>48,87</td>
<td>49,96</td>
</tr>
<tr>
<td>Σεπ</td>
<td>97,01</td>
<td>100,18</td>
<td>101,38</td>
<td>73,26</td>
<td>40,00</td>
<td>43,17</td>
<td>44,37</td>
</tr>
</tbody>
</table>

| Μέσος | 123,48 | 125,00 | 125,57 | 107,53 | 66,47 | 67,99 | 68,56 | 50,52 |
| Έτος | 1481,70 | 1499,99 | 1506,80 | 1290,38 | 797,58 | 815,87 | 822,68 | 606,26 |

Ο Πίνακας 13.2 απεικονίζει τον μέσο μηνιαίο αποθηκευμένο και ανανεώσιμο όγκο νερού του ταμιευτήρα. Αναφορικά με τη Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) προκύπτει ότι η ποσότητα του μέσου αποθηκευμένου όγκου νερού είναι 1481,7 hm³ ενώ αυτή του ανανεώσιμου φτάνει τα 797,58 hm³. Από την άλλη το σενάριο 2° παρουσιάζει ποσότητα αποθηκευμένου όγκου ίση με 1499,99 hm³ ενώ ανανεώσιμο ίση με 815,87 hm³. Το ποσοστό αύξησης είναι της τάξης του 1,23% και 2,29% αντίστοιχα. Στη περίπτωση του σεναρίου 2δ ο αποθηκευμένος όγκος φτάνει τα 1506,80 hm³ ενώ ο ανανεώσιμος είναι ίσος με 822,68 hm³ με αύξηση 1,69% και 3,14%, μεγαλύτερη δηλαδή και αυτό οφείλεται στο ότι η μείωση των απωλειών στο νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας δεν πραγματοποιείται αφού είναι ένα θεωρητικό δίκτυο κλειστών αγωγών. Οπότε στο στάδιο υπολογισμού των υδατικών απαιτήσεων του σεναρίου αυτού ο συντελεστής αποδοτικότητας εφαρμογής για πολύ καλή συντήρηση δικτύου αφού ένα υποθετικό δίκτυο διανομής και όχι επι τελευταία όπως εκείνο του Τ.Ο.Ε.Β Πνευμονού. Το σενάριο 2δ (αλλαγή μεθόδου άρδευσης) όμως είναι πιο πρακτικό αναφορικά με τη στρατηγική διαχείρισης 2 αφού τα αρδευτικά συγκροτήματα των αγωγών είναι υφιστάμενα και συνήθως πεπαλαιωμένα. Αναφορικά με το σενάριο 2τ ο αποθηκευμένος και ανανεώσιμος όγκος νερού του ταμιευτήρα μειώνεται στα 1290,38 hm³ και 606,26 hm³, αντίστοιχα.
13.2 ΣΥΝΘΕΤΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2030-2050

Η βραχυπρόθεσμη μελλοντική περίοδος 2030-2050 παρουσιάζει ήπια μεταβλητότητα του υδατικού ισοζυγίου του ταμιευτήρα συγκριτικά με την ιστορική περίοδο αναφοράς. Η ανάλυση πραγματοποιήθηκε για τα τρία σενάρια εκπομπών SRES B1, SRES A1B και SRES A2. Στη συνέχεια αναλύεται το υδατικό ισοζύγιο του ταμιευτήρα τόσο για τα διαχειριστικά όσο και για τα κλιματικά σενάρια κατά τη διάρκεια της εν λόγω περιόδου.

13.2.1 Σενάριο κλιματικής αλλαγής SRES B1

Η μεταβλητότητα του υδατικού ισοζυγίου στην περίπτωση του σεναρίου SRES B1 για την μελλοντική περίοδο 2030-2050 είναι ανάλογη της θερμοκρασιακής και βροχομετρικής μεταβλητότητας. Η αυξητική τάση της βροχόπτωσης σε σχέση με την ιστορική περίοδο αναφοράς προσδιορίστηκε σε προηγούμενο στάδιο (10ο κεφάλαιο). Το Σχήμα 13.2 απεικονίζει τις μεταβολές του υδατικού ισοζυγίου του ταμιευτήρα (σύγκριση των τεσσάρων διαχειριστικών σεναρίων). Η ανάλυση δείχνει ότι ο ταμιευτήρας παρουσιάζει πλεόνασμα για τη χειμερινή περίοδο Νοεμβρίου-Μαρτίου ενώ η έναρξη της αρδευτικής περιόδου σημαδοδεί και την έναρξη ελλειμμάτων που παραμένει εως το τέλος Οκτωβρίου. Ο πίνακας 13.3 παρουσιάζει τις ποσοστιαίες μεταβολές του υδατικού ισοζυγίου για το σενάριο SRES B1 συγκριτικά με την ιστορική περίοδο. Οι εισροές στον ταμιευτήρα εμφανίζουν μια μέση αυξητική τάση της τάξης του 1,10% ενώ για το σενάριο 2 οι εκροές από τον ταμιευτήρα εμφανίζουν μια αύξηση της τάξης του 0,33%. Ο αποθηκευμένος όγκος νερού του ταμιευτήρα αυξάνεται στη διάρκεια του έτους κατά 0,22% ενώ εμφανίζεται πλεόνασμα της τάξης του 0,83%. Για το σενάριο 2α οι εκροές παρουσιάζουν αύξηση 0,39% ενώ ο αποθηκευμένος όγκος νερού του ταμιευτήρα αυξάνεται κατά 0,22% (μέση ετήσια αύξηση) ενώ το υδατικό ισοζύγιο καθίσταται πλεονασματικό κατά 0,08%. Αναφορικά με το σενάριο 2β προκύπτει αύξηση των εκροών κατά 0,47%, του αποθηκευμένου όγκου κατά 0,22% ενώ το υδατικό ισοζύγιο παραμένει αμετάβλητο. Στην περίπτωση του σεναρίου 2τ το υδατικό ισοζύγιο εμφανίζει μείωση κατά 0,55%.
Σχήμα 13.2: Μέσο μηνιαίο υδατικό ισόζυγο ταμιευτήρα του κλιματικού σκηνήρου SRES B1 2030-2050 για α) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σκηνήριο 2) β) σκηνήριο 2a γ) σκηνήριο 2b και δ) σκηνήριο 2c.

<table>
<thead>
<tr>
<th>Σεν. 2</th>
<th>Σεν. 2a</th>
<th>Σεν. 2b</th>
<th>Σεν. 2c</th>
<th>Σεν. 2d</th>
<th>Σεν. 2e</th>
<th>Σεν. 2f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέση μηνιαία εισροή (%)</td>
<td>Μέση μηνιαία εκροή (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,22</td>
<td>3,22</td>
<td>3,22</td>
<td>3,22</td>
<td>-1,29</td>
<td>-1,30</td>
<td>-1,31</td>
</tr>
<tr>
<td>0,85</td>
<td>0,85</td>
<td>0,85</td>
<td>0,85</td>
<td>-0,27</td>
<td>-0,28</td>
<td>-0,29</td>
</tr>
<tr>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
<td>0,42</td>
<td>2,92</td>
<td>4,98</td>
</tr>
<tr>
<td>1,19</td>
<td>1,19</td>
<td>1,19</td>
<td>1,19</td>
<td>4,84</td>
<td>3,83</td>
<td>3,06</td>
</tr>
<tr>
<td>2,24</td>
<td>2,24</td>
<td>2,24</td>
<td>2,24</td>
<td>2,19</td>
<td>2,19</td>
<td>2,19</td>
</tr>
<tr>
<td>1,77</td>
<td>1,77</td>
<td>1,77</td>
<td>1,77</td>
<td>1,73</td>
<td>1,73</td>
<td>1,73</td>
</tr>
<tr>
<td>1,40</td>
<td>1,40</td>
<td>1,40</td>
<td>1,40</td>
<td>3,48</td>
<td>3,39</td>
<td>3,33</td>
</tr>
<tr>
<td>-3,17</td>
<td>-3,17</td>
<td>-3,17</td>
<td>-3,17</td>
<td>-4,67</td>
<td>-5,05</td>
<td>-5,15</td>
</tr>
<tr>
<td>-0,37</td>
<td>-0,37</td>
<td>-0,37</td>
<td>-0,37</td>
<td>-1,39</td>
<td>-1,51</td>
<td>-1,57</td>
</tr>
<tr>
<td>2,95</td>
<td>2,95</td>
<td>2,95</td>
<td>2,95</td>
<td>-0,15</td>
<td>-0,22</td>
<td>-0,25</td>
</tr>
<tr>
<td>2,40</td>
<td>2,40</td>
<td>2,40</td>
<td>2,40</td>
<td>-0,36</td>
<td>-0,44</td>
<td>-0,48</td>
</tr>
<tr>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
<td>-0,54</td>
<td>-0,60</td>
<td>-0,63</td>
</tr>
<tr>
<td>0,34</td>
<td>0,34</td>
<td>0,34</td>
<td>0,34</td>
<td>0,33</td>
<td>0,39</td>
<td>0,47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποθετηρικών όγκος (%)</th>
<th>Υδατικό έλλειμμα-πλεόνασμα (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,42</td>
<td>0,45</td>
</tr>
<tr>
<td>0,51</td>
<td>0,53</td>
</tr>
<tr>
<td>0,49</td>
<td>0,54</td>
</tr>
<tr>
<td>0,12</td>
<td>0,12</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>-0,07</td>
<td>-0,08</td>
</tr>
<tr>
<td>0,05</td>
<td>0,06</td>
</tr>
<tr>
<td>0,15</td>
<td>0,17</td>
</tr>
<tr>
<td>0,23</td>
<td>0,25</td>
</tr>
<tr>
<td>0,33</td>
<td>0,36</td>
</tr>
<tr>
<td>0,39</td>
<td>0,42</td>
</tr>
<tr>
<td>0,22</td>
<td>0,22</td>
</tr>
</tbody>
</table>

13.2.2 Σενάριο κλιματικής αλλαγής SRES A1B

Η ανάλυση του σεναρίου SRES A1B για την συνθετική περίοδο 2030-2050 δείχνει ήπια μεταβλητότητα του υδατικού ισοζύγιου του ταμιευτήρα σε σχέση με το σενάριο SRES A1. Το Σχήμα 13.3 απεικονίζει συγκριτικά το υδατικό ισοζύγιο του ταμιευτήρα αναλόγως με τα σενάρια διαχείρισης.
Σχήμα 13.3: Μέσο μηνιαίο υδατικό ισοζύγιο ταμιευτήρα του κλιματικού σενάριου SRES A1B 2030-2050 για α) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) β) σενάριο 2γ δ) σενάριο 2β γ) σενάριο 2δ και δ) σενάριο 2θ"
Παρατηρείται ότι υπάρχει πλεόνασμα κατά τη χειμερινή περίοδο Νοεμβρίου-Μαρτίου ενώ έλλειμα εμφανίζεται με την έναρξη της άρδευσης και συνεχίζεται μέχρι την παύση της. Η σύγκριση με την ιστορική περίοδο αναφοράς δείχνει μια μέση επίδραση μείωση των εισροών κατά 0,61% (Πίνακας 13-4).

Πίνακας 13-4: Ποσοστιαίες μεταβολές υδατικού ισοζύγιου ταμιευτήρα για το σενάριο SRES A1B 2030-2050 σε σχέση με την ιστορική περίοδο 1980-2000

<table>
<thead>
<tr>
<th>Σεν. 2</th>
<th>Σεν. 2α</th>
<th>Σεν. 2β</th>
<th>Σεν. 2γ</th>
<th>Σεν. 2</th>
<th>Σεν. 2α</th>
<th>Σεν. 2β</th>
<th>Σεν. 2γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέση μηνιαία εισροή (%)</td>
<td>Μέση μηνιαία εκροή (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,59</td>
<td>3,59</td>
<td>3,59</td>
<td>-0,98</td>
<td>-1,00</td>
<td>-1,01</td>
<td>-0,49</td>
<td></td>
</tr>
<tr>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
<td>-0,37</td>
<td>-0,39</td>
<td>-0,40</td>
<td>-0,16</td>
<td></td>
</tr>
<tr>
<td>-1,10</td>
<td>-1,10</td>
<td>-1,10</td>
<td>0,69</td>
<td>2,96</td>
<td>3,77</td>
<td>-0,70</td>
<td></td>
</tr>
<tr>
<td>0,77</td>
<td>0,77</td>
<td>0,77</td>
<td>-0,47</td>
<td>-0,81</td>
<td>-0,99</td>
<td>8,10</td>
<td></td>
</tr>
<tr>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
<td>0,28</td>
<td>0,28</td>
<td>0,28</td>
<td>3,65</td>
<td></td>
</tr>
<tr>
<td>-0,44</td>
<td>-0,44</td>
<td>-0,44</td>
<td>-0,44</td>
<td>-0,44</td>
<td>-0,44</td>
<td>-2,24</td>
<td></td>
</tr>
<tr>
<td>-5,70</td>
<td>-5,70</td>
<td>-5,70</td>
<td>-4,19</td>
<td>-4,26</td>
<td>-4,38</td>
<td>-5,52</td>
<td></td>
</tr>
<tr>
<td>-4,39</td>
<td>-4,39</td>
<td>-4,39</td>
<td>-3,50</td>
<td>-3,92</td>
<td>-4,01</td>
<td>-1,37</td>
<td></td>
</tr>
<tr>
<td>-1,05</td>
<td>-1,05</td>
<td>-1,05</td>
<td>-0,30</td>
<td>-0,39</td>
<td>-0,43</td>
<td>-0,24</td>
<td></td>
</tr>
<tr>
<td>1,38</td>
<td>1,38</td>
<td>1,38</td>
<td>0,27</td>
<td>0,19</td>
<td>0,15</td>
<td>-0,27</td>
<td></td>
</tr>
<tr>
<td>0,80</td>
<td>0,80</td>
<td>0,80</td>
<td>0,04</td>
<td>-0,05</td>
<td>-0,08</td>
<td>-0,39</td>
<td></td>
</tr>
<tr>
<td>-1,62</td>
<td>-1,62</td>
<td>-1,62</td>
<td>-0,31</td>
<td>-0,38</td>
<td>-0,41</td>
<td>-0,41</td>
<td></td>
</tr>
<tr>
<td>-0,61</td>
<td>-0,61</td>
<td>-0,61</td>
<td>-0,61</td>
<td>-0,77</td>
<td>-0,68</td>
<td>-0,66</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποθηκευμένος όγκος (%)</th>
<th>Υδατικό έλλειμμα-πλεόνασμα (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>29,11</td>
</tr>
<tr>
<td>0,01</td>
<td>0,23</td>
</tr>
<tr>
<td>-0,20</td>
<td>-2,40</td>
</tr>
<tr>
<td>-0,04</td>
<td>5,56</td>
</tr>
<tr>
<td>0,00</td>
<td>0,23</td>
</tr>
<tr>
<td>0,00</td>
<td>0,23</td>
</tr>
<tr>
<td>-0,04</td>
<td>-0,48</td>
</tr>
<tr>
<td>-0,07</td>
<td>2,01</td>
</tr>
<tr>
<td>-0,09</td>
<td>0,11</td>
</tr>
<tr>
<td>-0,12</td>
<td>0,05</td>
</tr>
<tr>
<td>-0,13</td>
<td>0,08</td>
</tr>
<tr>
<td>-0,15</td>
<td>0,08</td>
</tr>
<tr>
<td>-0,07</td>
<td>1,73</td>
</tr>
</tbody>
</table>

Επίσης προκύπτει παράλληλη μείωση των εκροών κατά 0,77%. Ο αποθηκευμένος όγκος νερού του ταμιευτήρα μειώνεται 0,07% / έτος (μέση επίδραση μείωση) ενώ το υδατικό ισοζύγιο παρουσιάζει πλεόνασμα κατά 1,73%. Η ανάλυση του σεναρίου 2α δείχνει μείωση των εκροών της τάξης του 0,68%, ο αποθηκευμένος όγκος μειώνεται κατά 0,04% / έτος (μέση επίδραση μείωση) ενώ το πλεόνασμα του υδατικού ισοζύγιου
παρουσιάζει αύξηση 2,02%. Αναφορικά με το σενάριο 2b οι εκροές εμφανίζουν μείωση της τάξης του 0,66%, ο αποθηκευμένος όγκος επίσης μείωση κατά 0,04% ενώ το ιδανικό ισοζύγιο παρουσιάζει πλεόνασμα κατά 2,42%. Για το σενάριο 2c οι εκροές είναι αμετάβλητες, ο αποθηκευμένος όγκος μειώνεται κατά 0,06% οπότε το πλεόνασμα αυξάνεται κατά 1,57%.

13.2.3 Σενάριο κλιματικής αλλαγής SRES A2

Το Σχήμα 13.4 απεικονίζει συγκριτικά το ιδανικό ισοζύγιο του ταμιευτήρα αναλόγως με τα σενάρια διαχείρισης. Παρατηρείται ότι υπάρχει πλεόνασμα κατά τη χειμερινή περίοδο Νοεμβρίου-Μαρτίου ενώ έλλειμα εμφανίζεται με την έναρξη της άρδευσης και συνεχίζεται μέχρι την παύση της.

<table>
<thead>
<tr>
<th>Σεν. 2</th>
<th>Σεν. 2a</th>
<th>Σεν. 2b</th>
<th>Σεν. 2c</th>
<th>Μέση μηνιαία εισροή (%)</th>
<th>Μέση μηνιαία εκροή (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,21</td>
<td>1,21</td>
<td>1,21</td>
<td>-0,87</td>
<td>-0,89</td>
<td>-0,90</td>
</tr>
<tr>
<td>-0,81</td>
<td>-0,81</td>
<td>-0,81</td>
<td>-0,28</td>
<td>-0,30</td>
<td>-0,30</td>
</tr>
<tr>
<td>-2,17</td>
<td>-2,17</td>
<td>-2,17</td>
<td>-1,82</td>
<td>-1,24</td>
<td>-0,68</td>
</tr>
<tr>
<td>-1,73</td>
<td>-1,73</td>
<td>-1,73</td>
<td>-5,18</td>
<td>-4,53</td>
<td>-4,41</td>
</tr>
<tr>
<td>-4,11</td>
<td>-4,11</td>
<td>-4,11</td>
<td>-4,03</td>
<td>-4,03</td>
<td>-4,03</td>
</tr>
<tr>
<td>-4,41</td>
<td>-4,41</td>
<td>-4,41</td>
<td>-4,33</td>
<td>-3,33</td>
<td>-3,33</td>
</tr>
<tr>
<td>-8,08</td>
<td>-8,08</td>
<td>-8,08</td>
<td>-6,75</td>
<td>-6,90</td>
<td>-6,99</td>
</tr>
<tr>
<td>-6,32</td>
<td>-6,32</td>
<td>-6,32</td>
<td>-4,39</td>
<td>-4,89</td>
<td>-5,09</td>
</tr>
<tr>
<td>-0,68</td>
<td>-0,68</td>
<td>-0,68</td>
<td>-0,77</td>
<td>-0,89</td>
<td>-0,94</td>
</tr>
<tr>
<td>1,80</td>
<td>1,80</td>
<td>1,80</td>
<td>0,15</td>
<td>0,08</td>
<td>0,04</td>
</tr>
<tr>
<td>1,08</td>
<td>1,08</td>
<td>1,08</td>
<td>-0,11</td>
<td>-0,20</td>
<td>-0,23</td>
</tr>
<tr>
<td>-0,87</td>
<td>-0,87</td>
<td>-0,87</td>
<td>-0,20</td>
<td>-0,26</td>
<td>-0,29</td>
</tr>
<tr>
<td>-2,09</td>
<td>-2,09</td>
<td>-2,09</td>
<td>-2,38</td>
<td>-2,36</td>
<td>-2,35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποθηκευμένος όγκος (%)</th>
<th>Υδατικό έλλειμα-πλεόνασμα (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,02</td>
<td>13,72</td>
</tr>
<tr>
<td>-0,14</td>
<td>14,63</td>
</tr>
<tr>
<td>-0,44</td>
<td>-15,01</td>
</tr>
<tr>
<td>-0,10</td>
<td>1,67</td>
</tr>
<tr>
<td>0,00</td>
<td>-0,05</td>
</tr>
<tr>
<td>0,00</td>
<td>-2,52</td>
</tr>
<tr>
<td>0,00</td>
<td>-2,47</td>
</tr>
<tr>
<td>0,00</td>
<td>-2,71</td>
</tr>
<tr>
<td>0,00</td>
<td>-2,50</td>
</tr>
<tr>
<td>0,06</td>
<td>-3,85</td>
</tr>
<tr>
<td>0,01</td>
<td>-10,42</td>
</tr>
<tr>
<td>0,06</td>
<td>-10,42</td>
</tr>
<tr>
<td>0,01</td>
<td>-10,42</td>
</tr>
<tr>
<td>-0,02</td>
<td>-13,54</td>
</tr>
<tr>
<td>0,07</td>
<td>-14,34</td>
</tr>
<tr>
<td>0,07</td>
<td>-2,83</td>
</tr>
<tr>
<td>0,07</td>
<td>0,31</td>
</tr>
<tr>
<td>0,10</td>
<td>0,63</td>
</tr>
<tr>
<td>0,11</td>
<td>0,24</td>
</tr>
<tr>
<td>-0,02</td>
<td>2,59</td>
</tr>
</tbody>
</table>
Σχήμα 13.4: Μέσο μηνιαίο υδατικό ισοζύγιο ταμιευτήρα του κλιματικού σενάριου SRES A2 2030-2050 για α) Επιχειρησιακό σενάριο 2 β) σενάριο 2γ) σενάριο 2β και δ) σενάριο 2γ
Η σύγκριση με την ιστορική περίοδο αναφοράς δείχνει μια μέση ετήσια μείωση των εισροέντων κατά 2,09% (Πίνακας 13-5).

Επίσης προκύπτει παράλληλη μείωση των εκροέντων κατά 2,38%. Ο αποθηκευμένος όγκος νερού του ταμιευτήρα μειώνεται 0,02% / έτος (μέση ετήσια μείωση) ενώ το υδατικό ισοζύγιο παρουσιάζει έλλειμα κατά 1,73%. Η ανάλυση του σενάριού 2\(a\) δείχνει μείωση των εκροέντων της τάξης του 2,36%, ο αποθηκευμένος όγκος δε μεταβαλλόταν ενώ το έλλειμα αυξάνεται κατά 2,02%. Αναφορικά με το σενάριο \(2^b\) οι εκροές εμφανίζουν μείωση της τάξης του 2,35%, ο αποθηκευμένος όγκος παρουσιάζει αύξηση κατά 0,04% ενώ το υδατικό ισοζύγιο παρουσιάζει αύξηση πλεονάσματος κατά 2,42%. Για το σενάριο \(2^b\) οι εκροές παρουσιάζουν μείωση της τάξης του 2,65% και το πλεόνασμα του υδατικού ισοζύγιου αυξάνεται κατά 1,57%.

13.3 ΣΥΝΘΕΤΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2080-2100

Η μακροπρόθεσμη μελλοντική περίοδος 2030-2050 παρουσιάζει έντονη μεταβλητότητα του υδατικού ισοζύγιου του ταμιευτήρα συγκριτικά με την ιστορική περίοδο αναφοράς. Η ανάλυση πραγματοποιήθηκε για τα τρία σενάρια εκπομπών SRES B1, SRES A1B και SRES A2. Στη συνέχεια αναλύεται το υδατικό ισοζύγιο του ταμιευτήρα τόσο για τα διαχειριστικά όσο και για τα κλιματικά σενάρια κατά τη διάρκεια της εν λόγω περιόδου.

13.3.1 Σενάριο κλιματικής αλλαγής SRES B1

Η μεταβλητότητα του υδατικού ισοζύγιου στην περίπτωση του σεναρίου SRES B1 για την μελλοντική περίοδο 2080-2100 είναι εντονότερη σε σχέση με την βραχυπρόθεσμη περίοδο (2030-2100). Το Σχήμα 13.2 απεικονίζει τις μεταβολές του υδατικού ισοζύγιου του ταμιευτήρα (σύγκριση των τεσσάρων διαχειριστικών σεναρίων). Η ανάλυση δείχνει ότι ο ταμιευτήρας παρουσιάζει πλεόνασμα για τη χειμερινή περίοδο Νοεμβρίου-Νοέμβριου ενώ η έναρξη της αρδευτικής περιόδου σημαντοδετή και την έναρξη ελλείμματος που παραμένει εως το τέλος Οκτωβρίου. Ο πίνακας 13.6 παρουσιάζει τις ποσοστιαίες μεταβολές του υδατικού ισοζύγιου για το σενάριο SRES B1 συγκριτικά με την ιστορική περίοδο. Οι εισροές στον ταμιευτήρα εμφανίζουν μια μέση αυξητική τάξη της τάξης του 1,81% ενώ για το σενάριο 2 οι εκροές από τον ταμιευτήρα εμφανίζουν μια μείωση της τάξης του 2,36%. Ο αποθηκευμένος όγκος νερού του ταμιευτήρα μειώνεται στη διάρκεια του έτους κατά 0,03% ενώ εμφανίζεται πλεόνασμα της τάξης του 0,83%. Για το σενάριο \(2^b\) οι εισροές παρουσιάζουν μείωση 2,11% ενώ ο αποθηκευμένος όγκος νερού του ταμιευτήρα αυξάνεται κατά 0,03% (μέση ετήσια αύξηση) ενώ το υδατικό ισοζύγιο καθίσταται
πλεονεκτικό κατά 0,14%. Αναφορικά με το σενάριο 2\(^b\) προκύπτει μείωση των εκροών κατά 1,99%, του αποθηκευμένου όγκου κατά 0,02% ενώ το υδατικό ισοζύγιο αυξάνεται κατά 0,38. Στην περίπτωση του σεναρίου 2\(^b\) το υδατικό ισοζύγιο εμφανίζει αύξηση κατά 0,55%.

<table>
<thead>
<tr>
<th>Σενάριο</th>
<th>Μέση μηνιαία εισροή (%)</th>
<th>Μέση μηνιαία εκροή (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σεν. 2</td>
<td>1,14</td>
<td>1,14</td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>1,14</td>
<td>1,14</td>
</tr>
<tr>
<td>Σεν. 2(^a)</td>
<td>-0,77</td>
<td>-0,79</td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>-0,80</td>
<td>-0,80</td>
</tr>
<tr>
<td>Σεν. 2(^c)</td>
<td>-0,38</td>
<td>-0,38</td>
</tr>
<tr>
<td>Αποθηκευμένος όγκος (%)</td>
<td>-0,34</td>
<td></td>
</tr>
<tr>
<td>Υδατικό έλλειμμα-πλεόνασμα (%)</td>
<td>1,52</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2</td>
<td>-0,30</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>-0,27</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^a)</td>
<td>-0,08</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>-0,34</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^c)</td>
<td>-0,34</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^a)</td>
<td>-0,42</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>-0,33</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^c)</td>
<td>-0,34</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^a)</td>
<td>-0,21</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>-0,16</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^c)</td>
<td>-0,19</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^a)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^c)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^a)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^c)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^a)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^c)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^a)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^b)</td>
<td>-0,72</td>
<td></td>
</tr>
<tr>
<td>Σεν. 2(^c)</td>
<td>-0,72</td>
<td></td>
</tr>
</tbody>
</table>

Διδακτορική Διατριβή: Τζαμπύρας Ιωάννης

Σεν. 2

Πανεπιστήμιο Θεσσαλίας

Τμήμα Πολιτικών Μηχανικών

280
Σχήμα 13.5: Μέσο μηνιαίο υδατικό ισοζύγιο ταμιευτήρα του κλιματικού σεναρίου SRES B1 2080-2100 για α) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) β) σενάριο 2α γ) σενάριο 2β και δ) σενάριο 2γ'
13.3.2 Σενάριο κλιματικής αλλαγής SRES A1B

Η ανάλυση του σεναρίου SRES A1B για την συνθετική περίοδο 2080-2100 δείχνει ήπια μεταβλητότητα του υδατικού ισοζύγιου του ταμιευτήρα σε σχέση με το σενάριο SRES B1. Το Σχήμα 13.6 απεικονίζει συγκριτικά το υδατικό ισοζύγιο του ταμιευτήρα ανάλογα με τα σενάρια διαχείρισης. Παρατηρείται ότι υπάρχει πλεόνασμα κατά τη χειμερινή περίοδο Νοεμβρίου-Μαρτίου ενώ έλλειμμα εμφανίζεται με την έναρξη της άρδευσης και συνεχίζεται μέχρι την παύση της. Η σύγκριση με την ιστορική περίοδα αναφοράς δείχνει μια μέση ετήσια μείωση των εισροών κατά 5,03% (Πίνακας 13-7).

<table>
<thead>
<tr>
<th>Σεν. 2</th>
<th>Σεν. 2°</th>
<th>Σεν. 2θ</th>
<th>Σεν. 2β</th>
<th>Σεν. 2</th>
<th>Σεν. 2°</th>
<th>Σεν. 2θ</th>
<th>Σεν. 2β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέση μηνιαία εισορο (%)</td>
<td>Μέση μηνιαία εκρο (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2,40</td>
<td>-2,40</td>
<td>-2,40</td>
<td>-2,40</td>
<td>-0,14</td>
<td>-0,16</td>
<td>-0,17</td>
<td>-0,07</td>
</tr>
<tr>
<td>-2,52</td>
<td>-2,52</td>
<td>-2,52</td>
<td>-2,52</td>
<td>-0,09</td>
<td>-0,12</td>
<td>-0,13</td>
<td>-0,04</td>
</tr>
<tr>
<td>-2,18</td>
<td>-2,18</td>
<td>-2,18</td>
<td>-2,18</td>
<td>-24,24</td>
<td>-23,07</td>
<td>-21,42</td>
<td>-0,56</td>
</tr>
<tr>
<td>-3,07</td>
<td>-3,07</td>
<td>-3,07</td>
<td>-3,07</td>
<td>-14,09</td>
<td>-11,72</td>
<td>-11,00</td>
<td>-6,30</td>
</tr>
<tr>
<td>-5,12</td>
<td>-5,12</td>
<td>-5,12</td>
<td>-5,12</td>
<td>-5,64</td>
<td>-5,02</td>
<td>-5,02</td>
<td>-25,73</td>
</tr>
<tr>
<td>-6,06</td>
<td>-6,06</td>
<td>-6,06</td>
<td>-6,06</td>
<td>-5,95</td>
<td>-5,95</td>
<td>-5,95</td>
<td>-12,00</td>
</tr>
<tr>
<td>-11,22</td>
<td>-11,22</td>
<td>-11,22</td>
<td>-11,22</td>
<td>-5,40</td>
<td>-5,80</td>
<td>-5,96</td>
<td>-5,09</td>
</tr>
<tr>
<td>-6,65</td>
<td>-6,65</td>
<td>-6,65</td>
<td>-6,65</td>
<td>-0,81</td>
<td>-1,24</td>
<td>-1,41</td>
<td>-0,43</td>
</tr>
<tr>
<td>-7,02</td>
<td>-7,02</td>
<td>-7,02</td>
<td>-7,02</td>
<td>0,84</td>
<td>0,72</td>
<td>0,68</td>
<td>0,22</td>
</tr>
<tr>
<td>-3,43</td>
<td>-3,43</td>
<td>-3,43</td>
<td>-3,43</td>
<td>1,62</td>
<td>1,53</td>
<td>1,49</td>
<td>0,33</td>
</tr>
<tr>
<td>-3,98</td>
<td>-3,98</td>
<td>-3,98</td>
<td>-3,98</td>
<td>1,35</td>
<td>1,25</td>
<td>1,21</td>
<td>0,24</td>
</tr>
<tr>
<td>-6,70</td>
<td>-6,70</td>
<td>-6,70</td>
<td>-6,70</td>
<td>0,84</td>
<td>0,75</td>
<td>0,71</td>
<td>0,18</td>
</tr>
<tr>
<td>-5,03</td>
<td>-5,03</td>
<td>-5,03</td>
<td>-5,03</td>
<td>-4,31</td>
<td>-4,07</td>
<td>-3,92</td>
<td>-4,10</td>
</tr>
<tr>
<td>Αποθηκευμένος όγκος (%)</td>
<td>Υδατικό έλλειμμα-πλεόνασμα (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2,28</td>
<td>-2,06</td>
<td>-1,98</td>
<td>-3,04</td>
<td>-13,79</td>
<td>-14,44</td>
<td>-14,71</td>
<td>-1,68</td>
</tr>
<tr>
<td>-2,38</td>
<td>-2,19</td>
<td>-2,12</td>
<td>-3,12</td>
<td>-2,83</td>
<td>-2,83</td>
<td>-2,82</td>
<td>-3,42</td>
</tr>
<tr>
<td>-1,54</td>
<td>-1,25</td>
<td>-1,19</td>
<td>-2,97</td>
<td>3,18</td>
<td>4,55</td>
<td>4,83</td>
<td>2,57</td>
</tr>
<tr>
<td>-0,14</td>
<td>-0,03</td>
<td>-0,03</td>
<td>-2,83</td>
<td>39,50</td>
<td>57,73</td>
<td>69,03</td>
<td>-2,27</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>-1,25</td>
<td>42,94</td>
<td>-14,46</td>
<td>-14,46</td>
<td>13,12</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>-0,29</td>
<td>-14,58</td>
<td>-14,58</td>
<td>-14,58</td>
<td>43,22</td>
</tr>
<tr>
<td>-0,39</td>
<td>-0,37</td>
<td>-0,36</td>
<td>-0,62</td>
<td>-70,27</td>
<td>-88,15</td>
<td>-96,69</td>
<td>-12,30</td>
</tr>
<tr>
<td>-0,77</td>
<td>-0,71</td>
<td>-0,69</td>
<td>-1,07</td>
<td>-8,97</td>
<td>-8,87</td>
<td>-8,82</td>
<td>-4,28</td>
</tr>
<tr>
<td>-1,12</td>
<td>-1,03</td>
<td>-1,00</td>
<td>-1,48</td>
<td>-4,03</td>
<td>-4,11</td>
<td>-4,14</td>
<td>-1,98</td>
</tr>
<tr>
<td>-1,52</td>
<td>-1,39</td>
<td>-1,34</td>
<td>-1,87</td>
<td>-2,54</td>
<td>-2,50</td>
<td>-2,48</td>
<td>-0,86</td>
</tr>
<tr>
<td>-1,92</td>
<td>-1,73</td>
<td>-1,66</td>
<td>-2,31</td>
<td>-2,16</td>
<td>-2,10</td>
<td>-2,07</td>
<td>-0,75</td>
</tr>
<tr>
<td>-2,20</td>
<td>-1,98</td>
<td>-1,89</td>
<td>-2,76</td>
<td>-2,59</td>
<td>-2,57</td>
<td>-2,56</td>
<td>-1,22</td>
</tr>
<tr>
<td>-1,19</td>
<td>-1,06</td>
<td>-1,02</td>
<td>-1,97</td>
<td>-3,01</td>
<td>-7,69</td>
<td>-7,46</td>
<td>2,08</td>
</tr>
</tbody>
</table>
Σχήμα 13.6: Μέσο μηνιαίο υδατικό ισόζυγο ταμιευτήρα του κλιματικού σεναρίου SRES A1B 2080-2100 για a) Επιχειρησιακό σενάριο 2 β) σενάριο 2α γ) σενάριο 2β και δ) σενάριο 2γ.
Επίσης προκύπτει παράλληλη μείωση των εκροών κατά 4,31%. Ο αποθηκευμένος όγκος νερού του ταμιευτήρα μειώνεται 1,19% / έτος (μέση ετήσια μείωση) ενώ το υδατικό ισοζύγιο παρουσιάζει έλλειμμα κατά 3,01%. Η ανάλυση του σεναρίου 2α δείχνει μείωση των εκροών της τάξης του 4,07%, ο αποθηκευμένος όγκος μειώνεται κατά 1,06% / έτος (μέση ετήσια μείωση) ενώ το υδατικό ισοζύγιο εμφανίζει έλλειμμα 2,02%. Αναφορικά με το σενάριο 2β οι εκροές εμφανίζουν μείωση της τάξης του 3,92%, ο αποθηκευμένος όγκος μειώνεται κατά 1,02% / έτος (μέση ετήσια μείωση) ενώ το υδατικό ισοζύγιο εμφανίζει πλεόνασμα κατά 21,62%. Για το σενάριο 2γ οι εκροές εμφανίζουν μείωση της τάξης 5,05% και το πλεόνασμα αυξάνεται κατά 9,93%.

13.3.3 Σενάριο κλιματικής αλλαγής SRES A2

Η ανάλυση του σεναρίου SRES A1B για την συνθετική περίοδο 2080-2100 δείχνει έντονη μεταβλητότητα του υδατικού ισοζύγιου του ταμιευτήρα σε σχέση με το σενάριο SRES B1. Το Σχήμα 13.6 απεικονίζει συγκριτικά το υδατικό ισοζύγιο του ταμιευτήρα αναλόγως με τα σενάρια διαχείρισης. Παρατηρείται ότι υπάρχει πλεόνασμα κατά τη χειμερινή περίοδο Νοεμβρίου-Μαρτίου ενώ έλλειμμα εμφανίζεται με την έναρξη της άρδευσης και συνεχίζεται μέχρι την παύση της. Η σύγκριση με την ιστορική περίοδα αναφοράς δείχνει μια μέση ετήσια μείωση των εισροών κατά 7,27% (Πίνακας 13-4). Επίσης προκύπτει παράλληλη μείωση των εκροών κατά 5,33%. Ο αποθηκευμένος όγκος νερού του ταμιευτήρα μειώνεται 1,55% / έτος (μέση ετήσια μείωση) ενώ το υδατικό ισοζύγιο παρουσιάζει πλεόνασμα κατά 21,36%. Η ανάλυση του σεναρίου 2α δείχνει μείωση των εκροών της τάξης του 5,12%, ο αποθηκευμένος όγκος μειώνεται κατά 1,37% / έτος (μέση ετήσια μείωση) ενώ το υδατικό ισοζύγιο εμφανίζει πλεόνασμα 19,37%. Αναφορικά με το σενάριο 2β οι εκροές εμφανίζουν μείωση της τάξης του 5,05%, ο αποθηκευμένος όγκος επίσης μείωση κατά 1,31% ενώ το υδατικό ισοζύγιο εμφανίζει πλεόνασμα κατά 21,62%. Για το σενάριο 2γ οι εκροές εμφανίζουν μείωση της τάξης 5,05% και το πλεόνασμα αυξάνεται κατά 9,93%.

| Σεν. 2 | Σεν. 2α | Σεν. 2β | Σεν. 2γ | Μέση μηνιαία εισροή (%) | Μέση μηνιαία εκφο (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-5,48</td>
<td>-5,48</td>
<td>-5,48</td>
<td>-5,48</td>
<td>0,59</td>
<td>0,56</td>
</tr>
<tr>
<td>-3,53</td>
<td>-3,53</td>
<td>-3,53</td>
<td>-3,53</td>
<td>0,45</td>
<td>0,42</td>
</tr>
<tr>
<td>-3,00</td>
<td>-3,00</td>
<td>-3,00</td>
<td>-3,00</td>
<td>-28,40</td>
<td>-28,08</td>
</tr>
<tr>
<td>-2,75</td>
<td>-2,75</td>
<td>-2,75</td>
<td>-2,75</td>
<td>-18,66</td>
<td>-15,28</td>
</tr>
<tr>
<td>-4,54</td>
<td>-4,54</td>
<td>-4,54</td>
<td>-4,54</td>
<td>-5,21</td>
<td>-4,45</td>
</tr>
<tr>
<td>-7,97</td>
<td>-7,97</td>
<td>-7,97</td>
<td>-7,97</td>
<td>-7,84</td>
<td>-7,84</td>
</tr>
<tr>
<td>-16,39</td>
<td>-16,39</td>
<td>-16,39</td>
<td>-16,39</td>
<td>-8,40</td>
<td>-9,10</td>
</tr>
<tr>
<td>-10,21</td>
<td>-10,21</td>
<td>-10,21</td>
<td>-10,21</td>
<td>-3,72</td>
<td>-4,31</td>
</tr>
<tr>
<td>-13,34</td>
<td>-13,34</td>
<td>-13,34</td>
<td>-13,34</td>
<td>0,19</td>
<td>-0,02</td>
</tr>
<tr>
<td>-5,24</td>
<td>-5,24</td>
<td>-5,24</td>
<td>-5,24</td>
<td>2,71</td>
<td>2,61</td>
</tr>
<tr>
<td>-6,15</td>
<td>-6,15</td>
<td>-6,15</td>
<td>-6,15</td>
<td>2,43</td>
<td>2,32</td>
</tr>
<tr>
<td>-8,56</td>
<td>-8,56</td>
<td>-8,56</td>
<td>-8,56</td>
<td>1,87</td>
<td>1,78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποθηκευμένος όγκος (%)</th>
<th>Υδατικό έλλειμμα-πλεόνασμα (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3,06</td>
<td>-2,75</td>
</tr>
<tr>
<td>-2,21</td>
<td>-1,80</td>
</tr>
<tr>
<td>0,02</td>
<td>0,15</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>-0,53</td>
<td>-0,49</td>
</tr>
<tr>
<td>-0,86</td>
<td>-0,78</td>
</tr>
<tr>
<td>-1,32</td>
<td>-1,20</td>
</tr>
<tr>
<td>-1,93</td>
<td>-1,74</td>
</tr>
<tr>
<td>-2,53</td>
<td>-2,27</td>
</tr>
<tr>
<td>-2,95</td>
<td>-2,64</td>
</tr>
<tr>
<td>-1,55</td>
<td>-1,37</td>
</tr>
</tbody>
</table>

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών
Σχήμα 13.7: Μέσο μηνιαίο υδατικό ισοζύγιο ταμιευτήρα του κλιματικού σεναρίου SRES A2 2080-2100 για α) Επιχειρησιακό σενάριο 2 β) σενάριο 2 γ) σενάριο 2β και δ) σενάριο 2δ
13.4 ΓΕΝΙΚΑ ΣΧΟΛΙΑ

Το ετήσιο υδατικό ισοζύγιο παρουσιάζει με πιο εμφανή τρόπο τις μεταβολές μεταξύ των σεναρίων κλιματικής αλλαγής. Ο πίνακας 5-4 απεικονίζει το υδατικό ισοζύγιο του ταμιευτήρα το οποίο ήταν θετικό κατά 1,61 hm³ για την ιστορική περίοδο αναφοράς και τη βασική στρατηγική διαχείρισης 2 ενώ τα αποτελέσματα της βραχυπρόθεσμης περιόδου εκτιμήθηκε σε 1,71 hm³ στην περίπτωση του σεναρίου SRESB1, 1,63 hm³ για το SRESA1B και 1,52 hm³ στην περίπτωση του σεναρίου SRESA2. Η μεταβλητότητα του ετήσιου υδατικού ισοζύγιου είναι εντονότερη κατά τη διάρκεια της μακροπρόθεσμης μελλοντικής περιόδου. Σε όλα τα σενάρια κλιματικής αλλαγής (SRESB1, SRESA1B και SRESA2) το υδατικό ισοζύγιο παρουσιάσε πλέονσα της τάξης του 1,73 hm³, 1,54 hm³ and 1,41 hm³. Η ίδια μεταβλητότητα εμφανίζεται και στην ανάλυση των λοιπών διαχειριστικών σεναρίων. (Σχήμα 13.8, Πίνακας 13.9). Από τον Πηνειό ποταμό θεωρητικά εισρέθηκαν 80 hm³ σύμφωνα με τις μελέτες που έχουν διεξαχθεί. Η καταβιβασμένη μέση επιφανειακή βροχόπτωση της χαμηλής υψηλόμετρης ζώνης αποτελεί την απευθείας βροχόπτωση του ταμιευτήρα και ακολουθεί τη λογική της μεταβλητότητας των σεναρίων κλιματικής αλλαγής. Η υπερχείλιση του ταμιευτήρα (μέση ετήσια) παρατηρείται διαδοχική μείωση από το SRESB1 προς το SRESA2 ενώ εμφανίζεται αύξηση των αρδευτικών απαιτήσεων σύμφωνα και με την ανάλυση που έγινε στο 11ο Κεφάλαιο. Το υδρολογικό μοντέλο UTHBAL παρέχει τις εκτιμήσεις επιφανειακής απορροής της μεταβολής της οποίας περιγράφηκε αναλυτικά στο 13ο κεφάλαιο. Οι εκρές του σεναρίου 2B (αλλαγή μεθόδων αρδευσης) είναι σαφώς μικρότερες συγκριτικά με το 2A (μείωση απολείψεων των καναλιών) διότι κατά τη διάδοση εκτίμησης των υδατικών αναγκών για το νέο σενάριο ο συντελεστής αποδοτικότητας διανομής καθορίστηκε για να αντιπροσωπεύει δίκτυο σε πολύ καλή συντήρηση αφού υποθετικά θα εγκατασταθεί η καλλιέργεια τομάτας θερμοκηπίου κλειστού τύπου.
Πίνακας 13-9: Σύγκριση ετήσιου υδατικού ισοζύγιου του ταμιευτήρα της Κάρλας για τα 4 διαχειριστικά σενάρια και τα τρία σενάρια κλιματικής αλλαγής

<table>
<thead>
<tr>
<th>Ετήσιες αντλήσεις για άρδευση</th>
<th>Μέσες ετήσιες εκρήξεις του ταμιευτήρα</th>
<th>Μέση ετήσια υπερχείλιση ταμιευτήρα</th>
<th>Υπόγειες διαφυγές του ταμιευτήρα</th>
<th>Μέση ετήσια εισροή από Πηνειό</th>
<th>Μέση ετήσια εκρήξεις του ταμιευτήρα</th>
<th>Μέση ετήσια εξάτμιση από τον ταμιευτήρα</th>
<th>Μέση ετήσια υπερχείλιση ταμιευτήρα</th>
</tr>
</thead>
<tbody>
<tr>
<td>(hm³)</td>
<td>(hm³)</td>
<td>(hm³)</td>
<td>(hm³)</td>
<td>(hm³)</td>
<td>(hm³)</td>
<td>(hm³)</td>
<td>(hm³)</td>
</tr>
<tr>
<td>Ιστορική</td>
<td>2030-2050</td>
<td>2030-2050</td>
<td>2030-2050</td>
<td>2030-2050</td>
<td>2080-2100</td>
<td>2080-2100</td>
<td>2080-2100</td>
</tr>
<tr>
<td>UTHRL (Αποτελέσματα)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66,79</td>
<td>67,80</td>
<td>64,86</td>
<td>61,22</td>
<td>62,01</td>
<td>57,64</td>
<td>54,99</td>
</tr>
<tr>
<td></td>
<td>35,18</td>
<td>35,54</td>
<td>35,71</td>
<td>35,67</td>
<td>35,87</td>
<td>36,26</td>
<td>36,65</td>
</tr>
<tr>
<td></td>
<td>154,60</td>
<td>156,28</td>
<td>153,65</td>
<td>149,96</td>
<td>151,11</td>
<td>147,50</td>
<td>145,64</td>
</tr>
<tr>
<td></td>
<td>70,70</td>
<td>71,72</td>
<td>68,82</td>
<td>65,16</td>
<td>66,02</td>
<td>61,67</td>
<td>59,06</td>
</tr>
<tr>
<td></td>
<td>31,27</td>
<td>31,59</td>
<td>31,74</td>
<td>31,71</td>
<td>31,89</td>
<td>32,33</td>
<td>32,58</td>
</tr>
<tr>
<td></td>
<td>154,60</td>
<td>156,26</td>
<td>153,65</td>
<td>149,94</td>
<td>151,13</td>
<td>147,50</td>
<td>145,64</td>
</tr>
<tr>
<td></td>
<td>72,20</td>
<td>73,23</td>
<td>70,34</td>
<td>66,67</td>
<td>67,56</td>
<td>63,21</td>
<td>60,62</td>
</tr>
<tr>
<td></td>
<td>29,78</td>
<td>30,08</td>
<td>30,22</td>
<td>30,19</td>
<td>30,36</td>
<td>30,68</td>
<td>31,02</td>
</tr>
<tr>
<td></td>
<td>154,60</td>
<td>156,25</td>
<td>153,65</td>
<td>149,93</td>
<td>151,14</td>
<td>147,50</td>
<td>145,64</td>
</tr>
<tr>
<td></td>
<td>21,39</td>
<td>22,61</td>
<td>19,76</td>
<td>8,47</td>
<td>16,78</td>
<td>12,87</td>
<td>10,51</td>
</tr>
<tr>
<td></td>
<td>78,42</td>
<td>78,32</td>
<td>77,97</td>
<td>70,79</td>
<td>79,08</td>
<td>75,69</td>
<td>75,63</td>
</tr>
<tr>
<td></td>
<td>152,43</td>
<td>156,02</td>
<td>153,59</td>
<td>149,90</td>
<td>150,86</td>
<td>147,22</td>
<td>145,36</td>
</tr>
</tbody>
</table>
Σχήμα 13.8: Σύγκριση ετήσιου υδατικού ισοζύγίου ταμιευτήρα της ιστορικής περιόδου και των τριών σεναρίων κλιματικής αλλαγής για α) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) β) σενάριο 2γ για σενάριο 2δ}
13.5 ΥΔΡΑΥΛΙΚΗ ΕΠΙΚΟΙΝΩΝΙΑ ΤΑΜΙΕΥΤΗΡΑ-ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ

Τα δεδομένα εισόδου του μοντέλου LAK3 είναι οι μηνιαίες εισροές και εκροές του ταμιευτήρα ενώ η έξοδος του μοντέλου είναι οι υπόγειες διαφυγές. Το μοντέλο επιφανειακής υδρολογίας (UTHBAL) παρέχει τα δεδομένα εισόδου επιφανειακής απορροής και βροχόπτωσης ενώ το εργαλείο εκτίμησης των υδατικών απαιτήσεων παρέχει τις απολήψεις για άρδευση. Ο εμπλουτισμός του υπόγειου υδροφορέα εκτιμήθηκε για τα τρία σκηνάρια κλιματικής αλλαγής SRESB1, SRESA1B και SRESA2 και για τις δύο συνδετικές περιόδους 2030-2050 και 2080-2100. Στο Σχήμα 13.9 απεικονίζονται τα αποτελέσματα του μοντέλου.

Σχήμα 13.9: Αποτελέσματα μοντέλου LAK3 για α) 2030-2050 β) 2080-2100
14 ΜΕΛΛΟΝΤΙΚΟ ΥΔΑΤΙΚΟ ΙΣΟΖΥΓΙΟ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ ΚΑΡΛΑΣ

Ο υπόγειος υδροφορέας της Κάρλας (εκτάσεως 500 km²) προσομοιώθηκε για τα τρία σενάρια κλιματικής αλλαγής SRES B1, SRES A1B και SRES A2 και τις δύο συνθετικές περιόδους 2030-2050 και 2080-2100 με τη χρήση του μοντέλου MODFLOW. Η διαδικασία με την οποία αναπτύχτηκε το μοντέλο κατά την ιστορική περίοδο αναφοράς περιγράφεται στο κεφάλαιο 8 (ΣΠΛ). Αναφορικά με την ανάλυση των μελλοντικών περιόδων η κύρια διαφορά είναι η μεταβολή των εγκρατών λόγω άρδευσης. Επιπλέον, υπάρχει μεταβολή και της κατείσδυσης (προερχόμενη από το υδρολογικό μοντέλο UTHBAL). Είναι γνωστή η επεκτατική εκτίμηση του υπόγειου υδροφορείου προκύπτων από το διαπερατό δυτικό όριο αποτελούν το σύνολο των εισροέων που δέχεται ο υπόγειος υδροφορέας της Κάρλας.

14.1 ΕΙΣΡΟΕΣ ΣΤΟΝ ΥΠΟΓΕΙΟ ΥΔΡΟΦΟΡΕΑ

Η κατείσδυση που προέρχεται από το υδρολογικό μοντέλο UTHBAL, οι εισροές από την άρδευση και οι πλευρικές εισροές από το διαπερατό δυτικό όριο αποτελούν το σύνολο των εισροέων που δέχεται ο υπόγειος υδροφορέας της Κάρλας.

14.1.1 Κατείσδυση

Όπως αναφέρθηκε η κατείσδυση στον υπόγειο υδροφορέα προκύπτει από την ημικατανεμημένη εφαρμογή του UTHBAL στη χαμηλή υψηλότητα της λεκάνης Κάρλας. Δεδομένου ότι η εφαρμογή του μοντέλου UTHBAL εφαρμόζεται για τρία κλιματικά σενάρια (SRES B1, SRES A1B και SRES A2) αναπαράγονταν τρεις χρονοσειρές εξίσου για τις δύο συνθετικές περιόδους κλιματικής αλλαγής 2030-2050 και 2080-2100. Η διαδικασία εκτίμησης της κατείσδυσης αναλύθηκε και παρουσιάστηκε στο κεφάλαιο 12 (Μελλοντικό υδρολογικό ισοζύγιο).

14.1.2 Επιστροφή από την άρδευση

Οι εισροές από την άρδευση θεωρήθηκαν ως το 10% του συνολικού υδατικού όγκου που εφαρμόζεται για την κάλυψη των γεωργικών αναγκών σύμφωνα με προηγούμενες
εργασίες. Είναι κατανοητό ότι διαφορετικές υδατικές ανάγκες ανά σενάριο διαχείρισης οδηγούν σε διαφορετικό όγκο επιστροφής. Στο Σχήμα 14.1 απεικονίζεται ο ετήσιος όγκος επιστροφής σε εκ. κυβ. μ. (hm³) για κάθε σενάριο διαχείρισης και κάθε κλιματικό σενάριο ωστόσο οι κύριες διαφορές εντοπίζονται μεταξύ των διαχειριστικών σεναρίων και όχι των κλιματικών.

Σχήμα 14.1: Σύγκριση μέσου ετήσιου όγκου επιστροφής από άρδευση (Στρατηγική Διαχείρισης 1 ή Επιχειρησιακό σενάριο 1) μεταξύ ιστορικής περιόδου και α) μελλοντικής περιόδου 2030-2050 και β) μελλοντικής περιόδου 2080-1000

Ο μέσος ετήσιος επιστρεφόμενος από την άρδευση όγκος για τη Στρατηγική Διαχείρισης 1 κατά την διάρκεια της ιστορικής περιόδου 1980-2000 υπολογίστηκε σε 17,88 hm³ ενώ αυξάνεται σταδιακά (από το ηπίοτερο στο εντονότερο σενάριο κλιματικής αλλαγής) κατά τη διάρκεια της περιόδου 2030-2050 σε όλα τα κλιματικά σενάρια. Η αύξηση αυτή είναι ακόμη μεγαλύτερη κατά την περίοδο 2080-2100. Η διαπίστωση αυτή είναι αναλόγη της έντασης των σεναρίων κλιματικής αλλαγής (SRES B1 το πιο ήπιο και SRES A2 το πιο έντονο).
Σχήμα 14.2: Σύγκριση μέσου ετήσιου όγκου επιστροφής από άρδευση (Στρατηγική Διαχείρισης 2, Επιχειρησιακό σενάριο 2) μεταξύ ιστορικής περιόδου και α) μελλοντικής περιόδου 2030-2050 και β) μελλοντικής περιόδου 2080-1000

Κατά τη διάρκεια της ιστορικής περιόδου αναφοράς (1980-2000) ο μέσος ετήσιος όγκος επιστροφής από άρδευση υπολογίστηκε σε 14,83 hm³. Κατά την ανάλυση όμως της περιόδου 2030-2050 παρατηρείται σταδιακή αύξηση από 14,91 hm³ για το SRES B1, σε 14,99 hm³ για το SRES A1B και σε 14,97 hm³ για το εντονότερο (από κλιματική άποψη) SRES A2. Από την άλλη, η ανάλυση της περιόδου 2080-2100 φανερώνει εντόνες μεταβολές του επιστρέφομενου από άρδευση όγκου.

14.1.3 Πλευρικές εισροές

Έχει ειπωθεί σε προηγούμενο στάδιο ότι οι πλευρικές εισροές στον υπόγειο υδροφορέα προέρχονται από διαπερατό δυτικό όριο. Η προσομοιωσή τους που πραγματοποιήθηκε με τη χρήση του μοντέλου υπόγειας ροής MODFLOW έδειξε ότι οι επιστρεφόμενοι όγκοι διαφέρουν από σενάριο σε σενάριο (κλιματικό και διαχειριστικό). Το Σχήμα 14.3 απεικονίζει τον μέσο ετήσιο όγκο σε ek. κυβ. μ. (hm³) των πλευρικών εισροών για τις δύο συνθετικές περιόδους κλιματικής αλλαγής 2030-2050, 2080-2100 αναφορικά με τη Στρατηγική Διαχείρισης 2.
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 14: Μελλοντικό υδατικό ισόζυγο υπόγευου υδροφορέα Κάρλας

Σχήμα 14.3: Σύγκριση μέσων ετήσιου πλευρικού εισροές (Στρατηγική Διαχείρισης 2-Επιχειρησιακό σενάριο 2) μεταξύ ιστορικής περιόδου και α) μελλοντικής περιόδου 2030-2050 και β) μελλοντικής περιόδου 2080-1000

Η βασική Στρατηγική Διαχείρισης 1 παρουσιάζει τον περισσότερο όγκο νερού και η διαπίστωση αυτή υποστηρίζεται από ταυτόχρονη πτώση του υπόγειου υδροφορέα – περιγράφεται με επακόλουθο την άντληση περισσότερο υπόγειου νερού από το δυτικό το όριο.

14.1.4 Εισροές από τον ταμιευτήρα

Οι εισροές που προέρχονται από τον ταμιευτήρα της Κάρλας προμοιώθηκαν με την υποπυτίνα του μοντέλου υπόγειας ροής MODFLOW, LAK3. Τα δεδομένα εισόδου προέρχονται από το μοντέλο UTHRL (προσομόιωση λειτουργίας ταμιευτήρα) και το μοντέλο εφαρμόστηκε εννιά φορές σε μικρού βήμα. Για την περίοδο κλιματικής αλλαγής (2080-2100) ο μέσος ετήσιος όγκος κατείσδυσης είναι 18 hm3 (ίσος με αυτό της ιστορικής περιόδου). Αυτό δικαιολογείται πολύ απλά από τις κατασκευαστικές προδιαγραφές του ταμιευτήρα οι οποίες ισχύουν και στη μελλοντική περίοδο.

14.2 ΕΚΡΟΕΣ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ

Οι πολλές αρδευτικές γεωτρήσεις κατά μήκος της πεδινής ζώνης της λεκάνης απορροής Κάρλας και οι αντλήσεις από αυτές αποτελούν το σύνολο των εκροέων από τον υπόγειο υδροφορέα. Παρακάτω περιγράφονται τα αποτελέσματα της συγκριτικής ανάλυσης των

-Πανεπιστήμιο Θεσσαλίας
-Τμήμα Πολιτικών Μηχανικών

Institutional Repository - Library & Information Centre - University of Thessaly

01/11/2023 00:45:21 EET - 35.160.27.221
σεναρίων τόσο από διαχειριστική όσο και από κλιματική άποψη. Είναι δεδομένο ότι η μεταβολή των μετεωρολογικών παραμέτρων (βροχόπτωση, θερμοκρασία και εξατμισοδιαπνοή) καταλήγει σε αντίστοιχη μεταβολή των υδατικών απαιτήσεων των καλλιεργειών. Το Σχήμα 12.4 εμφανίζει μια σύγκριση μεταξύ των ετήσιων όγκων αντλήσεως από τον υπόγειο υδροφόρο της Κάρλας σε εκατομμύρια κυβικά μέτρα (hm³) για τη Στρατηγική Διαχείρισης 1 (επιχειρησιακό σενάριο 1) και τα λοιπά σενάρια που εμπεριέχει (1α, 1β, 1γ).

Σχήμα 14.4: Σύγκριση ετήσιων όγκων αντλήσεων (Στρατηγική Διαχείρισης 1, Επιχειρησιακό σενάριο 1) μεταξύ ιστορικής περιόδου και α) μελλοντικής περιόδου 2030-2050 και β) μελλοντικής περιόδου 2080-1000

Όπως έχει αναφερθεί το μεγαλύτερο μέρος των γεωργικών υδατικών απαιτήσεων στη λεκάνη απορροής της Κάρλας καλύπτεται από ιδιωτικές γεωτρήσεις και κατά συνέπεια από τον υπόγειο υδροφόρο. Οι απαιτήσεις αυτές περιγράφονται με αναλυτικό τρόπο στο 9ο Κεφάλαιο για την ιστορική περίοδο και στο 11ο κεφάλαιο για τις μελλοντικές περιόδους. Σε αυτό το σημείο περιγράφονται επιδερμικά για την ολοκληρωμένη αντίληψη του αναγνώστη σχετικά με τα αποτελέσματα του μοντέλου υπόγειας ροής (MODFLOW). Στο Σχήμα 12.5 παρουσιάζονται οι ετήσιοι όγκοι αντλήσεων για τη Στρατηγική Διαχείρισης 2 και σενάρια που εμπεριέχει (2, 2α, 2β).
Σχήμα 14.5: Σύγκριση ετήσιου όγκου αντλήσεων (Στρατηγική Διαχείρισης 2-Επιχειρησιακό σενάριο 2) μεταξύ ιστορικής περιόδου και α) μελλοντικής περιόδου 2030-2050 και β) μελλοντικής περιόδου 2080-1000

14.3 ΥΔΑΤΙΚΟ ΙΣΟΣΥΖΥΓΙΟ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ ΓΙΑ ΤΑ ΣΕΝΑΡΙΑ 1, 1α, 1β, 1γ

Μετά την υπολογισμό των εισροών και των εκροών στον υπόγειο υδροφόρο ο υπολογισμός του υδατικού του ισοζύγιο ήταν μια σχετικά εύκολη διαδικασία. Το Σχήμα 12.6 παρουσιάζει συγκριτικά αποτελέσματα για τα υδατικά ισοζύγια του υπόγειου υδροφόρεα της Κάρλας αναφορικά με τη πρώτη Στρατηγική Διαχείρισης (υφιστάμενη κατάσταση) και τα διαχειριστικά σενάρια που περιλαμβάνει: το υδατικό ισοζύγιο διατηρείται σε αρνητικές τιμές για όλα τα διαχειριστικά σενάρια.

Για την ιστορική περίοδο (1980-2000) το υδατικό ισοζύγιο ήταν αρνητικό κατά 189,95 hm³ αναφορικά με τη Στρατηγική Διαχείρισης 1. Κατά τη διάρκεια της συνθετικής περιόδου κλιματικής αλλαγής 2030-2050 το υδατικό έλλειμμα αυξάνεται κατά 0,96% (Πίνακας 12-1) στα 191,77 hm³ όσον αφορά το σενάριο SRES B1, 1,57% στα 192,93 hm³ για το SRES A1B, και 1,57% για το SRES A2 στα 192,94 hm³. Για την περίοδο κλιματικής αλλαγής 2080-2100 το υδατικό έλλειμμα γίνεται εντονότερο και για το σενάριο SRES B1 αυξάνεται κατά 4,62% στα 193,88 hm³, για το σενάριο SRES A1B 2,07% στα 196,41 hm³ και για το σενάριο SRES A2 3,40% στα 198,73 hm³. Από την ανάλυση του σεναρίου 1a προκύπτει η ύπαρξη υδατικού έλλειμματος του υπόγειου υδροφόρεα κατά 168,09 hm³ (μείωση 1,51% συγκριτικά με τη Στρατηγική Διαχείρισης 1)
Σχήμα 14.6: Σύγκριση ετήσιων υδατικών ισοζυγίων (Στρατηγική Διαχείρισης 1 ή Επιχειρησιακό σενάριο 1) μεταξύ ιστορικής περιόδου 2030-2050 και β) μελλοντικής περιόδου 2080-1000.
Πίνακας 14-1: Ποσοστιαίες μεταβολές υδατικού υπογείου υδροφορέα για τα διαχειριστικά σενάρια 1, 1a, 1b, 1γ

<table>
<thead>
<tr>
<th>Μελλοντική περίοδος</th>
<th>Μελλοντική περίοδος</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2030-2050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SRES B1</th>
<th>SRES A1B</th>
<th>SRES A2</th>
<th>SRES B1</th>
<th>SRES A1B</th>
<th>SRES A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατείσδυση</td>
<td>2,52</td>
<td>-0,47</td>
<td>-3,77</td>
<td>-0,99</td>
<td>-6,81</td>
<td>-8,13</td>
</tr>
<tr>
<td>Επιπλ. από Αρένυς</td>
<td>1,01</td>
<td>1,50</td>
<td>1,39</td>
<td>1,96</td>
<td>3,05</td>
<td>4,18</td>
</tr>
<tr>
<td>Σίνολο</td>
<td>1,43</td>
<td>0,96</td>
<td>-0,03</td>
<td>1,15</td>
<td>0,34</td>
<td>0,80</td>
</tr>
<tr>
<td>Ανέλγηση</td>
<td>1,01</td>
<td>1,50</td>
<td>1,39</td>
<td>1,96</td>
<td>3,05</td>
<td>4,18</td>
</tr>
<tr>
<td>Ηνοίξιο</td>
<td>-0,96</td>
<td>-1,57</td>
<td>-1,57</td>
<td>-4,62</td>
<td>-2,07</td>
<td>-3,40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SRES B1</th>
<th>SRES A1B</th>
<th>SRES A2</th>
<th>SRES B1</th>
<th>SRES A1B</th>
<th>SRES A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατείσδυση</td>
<td>2,52</td>
<td>-0,47</td>
<td>-3,77</td>
<td>-0,99</td>
<td>-6,81</td>
<td>-8,13</td>
</tr>
<tr>
<td>Επιπλ. από Αρένυς</td>
<td>1,01</td>
<td>1,50</td>
<td>1,39</td>
<td>1,96</td>
<td>3,05</td>
<td>4,18</td>
</tr>
<tr>
<td>Σίνολο</td>
<td>1,46</td>
<td>0,91</td>
<td>-0,15</td>
<td>1,08</td>
<td>0,10</td>
<td>0,50</td>
</tr>
<tr>
<td>Ανέλγηση</td>
<td>1,01</td>
<td>1,50</td>
<td>1,39</td>
<td>1,96</td>
<td>3,05</td>
<td>4,18</td>
</tr>
<tr>
<td>Ηνοίξιο</td>
<td>-0,95</td>
<td>-1,58</td>
<td>-1,60</td>
<td>-4,68</td>
<td>-2,08</td>
<td>-3,45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SRES B1</th>
<th>SRES A1B</th>
<th>SRES A2</th>
<th>SRES B1</th>
<th>SRES A1B</th>
<th>SRES A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατείσδυση</td>
<td>2,52</td>
<td>-0,47</td>
<td>-3,77</td>
<td>-0,99</td>
<td>-6,81</td>
<td>-8,13</td>
</tr>
<tr>
<td>Επιπλ. από Αρένυς</td>
<td>1,01</td>
<td>1,50</td>
<td>1,39</td>
<td>1,96</td>
<td>3,05</td>
<td>4,18</td>
</tr>
<tr>
<td>Σίνολο</td>
<td>1,44</td>
<td>0,94</td>
<td>-0,08</td>
<td>1,12</td>
<td>0,24</td>
<td>0,68</td>
</tr>
<tr>
<td>Ανέλγηση</td>
<td>1,01</td>
<td>1,50</td>
<td>1,39</td>
<td>1,96</td>
<td>3,05</td>
<td>4,18</td>
</tr>
<tr>
<td>Ηνοίξιο</td>
<td>-0,96</td>
<td>-1,57</td>
<td>-1,58</td>
<td>-4,65</td>
<td>-2,07</td>
<td>-3,42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SRES B1</th>
<th>SRES A1B</th>
<th>SRES A2</th>
<th>SRES B1</th>
<th>SRES A1B</th>
<th>SRES A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατείσδυση</td>
<td>2,52</td>
<td>-0,47</td>
<td>-3,77</td>
<td>-0,99</td>
<td>-6,81</td>
<td>-8,13</td>
</tr>
<tr>
<td>Επιπλ. από Αρένυς</td>
<td>0,33</td>
<td>0,49</td>
<td>0,45</td>
<td>0,64</td>
<td>1,00</td>
<td>1,37</td>
</tr>
<tr>
<td>Σίνολο</td>
<td>0,70</td>
<td>0,33</td>
<td>-0,26</td>
<td>0,36</td>
<td>-0,32</td>
<td>-0,24</td>
</tr>
<tr>
<td>Ανέλγηση</td>
<td>0,33</td>
<td>0,49</td>
<td>0,45</td>
<td>0,64</td>
<td>1,00</td>
<td>1,37</td>
</tr>
<tr>
<td>Ηνοίξιο</td>
<td>-0,29</td>
<td>-0,51</td>
<td>-0,53</td>
<td>-1,55</td>
<td>-0,67</td>
<td>-1,14</td>
</tr>
</tbody>
</table>

Κατά τη διάρκεια της συνθετικής περιόδου κλιματικής αλλαγής 2030-2050 το υδατικό έλλειμμα αυξάνεται κατά 0,95% στα 169,69 hm³ για το σενάριο SRES B1, 1,58% στα 170,74 hm³ για το SRES A1B, και 1,60% για το SRES A2 στα 170,78 hm³. Από την άλλη η ανάλυση της περιόδου 2080-2100 δείχνει αύξηση του υδατικού έλλειμματος για τον υπόγειο υδροφορέα της Κάρλας. Πιο συγκεκριμένα, παρουσιάζεται αύξηση του υδατικού έλλειμματος στο σενάριο SRES B1 της τάξης του 4,68% στα 171,59 hm³, στο σενάριο SRES A1B είναι 2,08% στα 173,89 hm³ και για το σενάριο SRES A2 3,45% στα 175,96 hm³.

Η ανάλυση του σεναρίου 1h, δείχνει έλλειμμα 180,53 hm³ στον υπόγειο υδροφορέα της τάξης του 4,96% συγκριτικά με τη Στρατηγική Διαχείρισης 1. Κατά τη διάρκεια της μελλοντικής περιόδου 2030-2050 το υδατικό έλλειμμα αυξάνεται 0,96% στα 182,26 hm³ για το σενάριο SRES B1, 1,57% στα 183,36 hm³ για το SRES A1B, και 1,58% για το SRES A2.
ανάλυση της περίοδου 2080-2100 το υδατικό έλλειμμα του υπόγειου υδροφορέα αυξάνεται και αντίστοιχες ποσοστιαίες αυξήσεις είναι πιο έντονες. Πιο συγκεκριμένα εμφανίζεται αύξηση του υδατικού έλλειμματος στο σενάριο SRES B1 της τάξης 4,65% στα 184,27 hm³, στο σενάριο SRES A1B 2,07% στα 186,70 hm³ και στο σενάριο SRES A2 3,42% στα 188,92 hm³.

Στην περίπτωση του σεναρίου 1°, το υδατικό έλλειμμα του υπόγειου υδροφορέα είναι 360,05 hm³ και αυξάνεται 89,55% συγκριτικά με τη Στρατηγική Διαχείρισης 1. Η ανάλυση της μελλοντικής περιόδου 2030-2050 δείχνει ότι το υδατικό έλλειμμα αυξάνεται 0,29% στα 361,09 hm³ για το σενάριο SRES B1, 0,51% στα 361,87 hm³ για το SRES A1B, και 0,53% για το SRES A2 στα 361,97 hm³. Από την άλλη στην περίπτωση της περιόδου 2080-2100 το υδατικό έλλειμμα αυξάνεται στο σενάριο SRES B1 1,55% στα 362,47 hm³, στο σενάριο SRES A1B 0,67% στα 364,17 hm³ και στο σενάριο SRES A2 1,14% στα 365,61 hm³.

14.4 ΥΔΑΤΙΚΟ ΙΣΟΖΥΓΙΟ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ ΓΙΑ ΤΑ ΣΕΝΑΡΙΑ 2, 2α, 2β, 2γ

Αναφορικά με τη Στρατηγική Διαχείρισης 2 και τα τρία διαχειριστικά 2α, 2β, 2γ που περιλαμβάνει έχει ειπωθεί ότι ο ταμειακός της Κάρλας συμμετέχει ενεργά στη διαδικασία της άρδευσης. Είναι ευνόητο ότι η αποσυμφόρηση του υπόγειου υδροφορέα συνεπάγεται σημαντικές διαφοροποιήσεις στο ισοζύγιο του (Σχήμα 12.7). Η ανάλυση της ιστορικής περιόδου 1980-2000 έδειξε ότι το υδατικό έλλειμμα του υπόγειου υδροφορέα 148,93 hm³ για τη Στρατηγική Διαχείρισης 2 (μείωση 27,5% σε σχέση με τη Στρατηγική Διαχείρισης 1). Κατά τη διάρκεια της περιόδου 2030-2050 το υδατικό έλλειμμα αυξάνεται 0,45% (Πίνακας 12.2) στα 149,6 hm³ για το σενάριο SRES B1, 0,99% στα 150,41 hm³ για το SRES A1B, και 1,13% για το SRES A2 στα 150,61 hm³. Η ανάλυση της περιόδου 2080-2100 το υδατικό έλλειμμα του υπόγειου υδροφορέα αυξάνεται και αντίστοιχες ποσοστιαίες αυξήσεις είναι πιο έντονες. Πιο συγκεκριμένα εμφανίζεται αύξηση του υδατικού έλλειμματος στο σενάριο SRES B1 της τάξης 3,86% στα 150,94 hm³, στο σενάριο SRES A1B 1,35% στα 150,94 hm³ και στο σενάριο SRES A2 269,42% στα 154,67 hm³.

Από την ανάλυση του σεναρίου 2α προκύπτει η ύφαρξη υδατικού έλλειμματος του υπόγειου υδροφορέα 132,14 hm³ (μείωση 11,27% συγκριτικά με τη Στρατηγική Διαχείρισης 1). Κατά τη διάρκεια της συνθετικής περιόδου κλιματικής αλλαγής 2030-2050 το υδατικό έλλειμμα αυξάνεται κατά 0,42% στα 132,69 hm³ για το σενάριο SRES B1, 1,04% στα 133,52 hm³ για το SRES A1B, και 1,12% για το SRES A2 στα 170,78 hm³. Από την άλλη η ανάλυση της περιόδου 2080-2100 δείχνει αύξηση του υδατικού έλλειμματος για το υπόγειο υδροφορέα της Κάρλας. Πιο συγκεκριμένα, παρουσιάζεται αύξηση του υδατικού έλλειμματος στο σενάριο SRES B1 της τάξης του 3,93% στα 134,17 hm³, στο σενάριο SRES A1B είναι 1,53% στα 135,70 hm³ και για το σενάριο SRES A2 2,69% στα 137,33 hm³.
Σχήμα 14.7: Σύγκριση ετήσιων υδατικών ισοζυγίων (Στρατηγική Διαχείρισης 2 ή Επιχειρησιακό σενάριο 2) μεταξύ ιστορικής περιόδου 2030-2050 και β) μελλοντικής περιόδου 2080-100
Πίνακας 14-2: Ποσοστιαίες μεταβολές υδατικού ισοζυγίου υπόγειου υδροφόρεα για τα διαχειριστικά σενάρια 2, 2α, 2β, 2γ

| Μελλοντική περίοδος | 2050 | 2030-2100 | 2080-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SRES B1</td>
<td>SRES A1B</td>
<td>SRES A2</td>
<td>SRES B1</td>
</tr>
<tr>
<td>Σενάριο 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατεύθυνση</td>
<td>2,52</td>
<td>-0,47</td>
<td>-3,77</td>
</tr>
<tr>
<td>Επιστ. από Άρδευση</td>
<td>0,54</td>
<td>1,02</td>
<td>0,92</td>
</tr>
<tr>
<td>Πλευρικές Εισροές</td>
<td>0,56</td>
<td>2,98</td>
<td>0,94</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>1,01</td>
<td>1,18</td>
<td>-0,17</td>
</tr>
<tr>
<td>Αντίθεση</td>
<td>0,54</td>
<td>1,02</td>
<td>0,92</td>
</tr>
<tr>
<td>Ισοζυγίο</td>
<td>-0,45</td>
<td>-0,99</td>
<td>-1,13</td>
</tr>
<tr>
<td>Σενάριο 2α</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατεύθυνση</td>
<td>2,52</td>
<td>-0,47</td>
<td>-3,77</td>
</tr>
<tr>
<td>Επιστ. από Άρδευση</td>
<td>0,54</td>
<td>1,02</td>
<td>0,92</td>
</tr>
<tr>
<td>Πλευρικές Εισροές</td>
<td>1,08</td>
<td>2,31</td>
<td>1,62</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>1,18</td>
<td>0,94</td>
<td>-0,14</td>
</tr>
<tr>
<td>Αντίθεση</td>
<td>0,54</td>
<td>1,02</td>
<td>0,92</td>
</tr>
<tr>
<td>Ισοζυγίο</td>
<td>-0,42</td>
<td>-1,04</td>
<td>-1,12</td>
</tr>
<tr>
<td>Σενάριο 2β</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατεύθυνση</td>
<td>2,52</td>
<td>-0,47</td>
<td>-3,77</td>
</tr>
<tr>
<td>Επιστ. από Άρδευση</td>
<td>0,54</td>
<td>1,02</td>
<td>0,92</td>
</tr>
<tr>
<td>Πλευρικές Εισροές</td>
<td>1,18</td>
<td>2,05</td>
<td>1,63</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>1,18</td>
<td>0,91</td>
<td>-0,05</td>
</tr>
<tr>
<td>Αντίθεση</td>
<td>0,54</td>
<td>1,02</td>
<td>0,92</td>
</tr>
<tr>
<td>Ισοζυγίο</td>
<td>-0,42</td>
<td>-1,04</td>
<td>-1,11</td>
</tr>
<tr>
<td>Σενάριο 2γ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατεύθυνση</td>
<td>2,52</td>
<td>-0,47</td>
<td>-3,77</td>
</tr>
<tr>
<td>Επιστ. από Άρδευση</td>
<td>0,10</td>
<td>0,27</td>
<td>0,23</td>
</tr>
<tr>
<td>Πλευρικές Εισροές</td>
<td>0,56</td>
<td>2,98</td>
<td>0,94</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>0,58</td>
<td>0,94</td>
<td>-0,15</td>
</tr>
<tr>
<td>Αντίθεση</td>
<td>0,10</td>
<td>0,27</td>
<td>0,23</td>
</tr>
<tr>
<td>Ισοζυγίο</td>
<td>-0,02</td>
<td>-0,16</td>
<td>-0,30</td>
</tr>
</tbody>
</table>

14.5 ΥΔΡΑΥΛΙΚΟ ΥΨΟΣ ΥΠΟΓΕΙΟΥ ΥΔΡΟΦΟΡΕΑ

Η ανάλυση του υδατικού ισοζυγίου κατέδειξε ότι σε όλα τα σενάρια (διαχειριστικά και κλιματικά) ο υπόγειος υδροφόρεας παρουσιάζει υδατικό έλλειμμα το οποίο όπως είναι αναμενόμενο προκαλεί σημαντικό ταπείνωση της στάθμης του. Βέβαια στα διαχειριστικά σενάρια που εφαρμόζονται πρακτικές εξοικονόμησης ύδατος και οι αντλήσεις είναι μειωμένες η ταπείνωση της στάθμης είναι σαφώς μικρότερη. Στην συνέχεια διερευνώνταν οι επιπτώσεις
Στο υδροπληκτικό ύψος του υπόγειου υδροφορέα μεσω της ανάλυσης δύο αντιπροσωπευτικών του τομών (Α-Α’ και Β-Β’) οι θέσεις των οποίων παρουσιάζονται στο σχήμα 14.8 και για τις οποίες παρουσιάζεται το υδροπληκτικό ύψος του υπόγειου υδροφορέα στο τελευταίο έτος για την κάθε συνθετική περίοδο κλιματικής αλλαγής (2050 για την βραχυπρόθεσμη και 2100 για τη μακροπρόθεσμη).

Σχήμα 14.8: Τομές ΑΑ’ και ΒΒ’ της περιοχής μελέτης του υπόγειου υδροφορέα

Τα υδροπληκτικά ύψη για την μελλοντική περίοδο 2030-2050 αντιστοιχούν στην 1η Νοεμβρίου 2050. Θα πρέπει να σημειωθεί ότι για συγκριτικούς λόγους το υδροληκτικό ύψος του Ιανουαρίου του 1987 (αρχικά ύψη) και του Ιανουαρίου του 2012 (πριν τη λειτουργία του ταμιευτήρα). Τα υδροπληκτικά ύψη της συνθετικής περιόδου κλιματικής αλλαγής 2080-2100 αντιστοιχούν στην 1η Νοεμβρίου 2100.

14.5.1 Υδροπληκτικό ύψος υπόγειου υδροφορέα για τα σενάρια 1,2

Όπως προκύπτει από την τις χαρακτηριστικές τομές (ΑΑ’ και ΒΒ’) τα αποτελέσματα δείχνουν ευρήματα ανάλογα τόσο με το στατιστικό καταβιβασμό κλιμακάκας μετεωρολογικών μεταβλητών αλλά και με υδατικά ισοζύγια που αναλύθηκαν (υδρολογικό, ταμιευτήρα, υπόγειου υδροφορέα). Στα Σχήματα 14.9, 14.10 απεικονίζονται οι χαρακτηριστικές τομές του υπόγειου υδροφορέα για τις δύο βασικές Στρατηγικές Διαχείρισης 1 και 2 (με λειτουργία του
ταμιευτήρα και χωρίς) και τα τρία σενάρια κλιματικής αλλαγής (SRES B1, SRES A1B και SRES A2). Από την ανάλυση ευλογία μπορεί κάποιος να διακρίνει σαφέστατες διαφοροποιήσεις των υδραυλικών υψών και στα τρία κλιματικά σενάρια. Επίσης τα αποτελέσματα για τη Στρατηγική Διαχείρισης 2 δείχνουν η εναρξη λειτουργίας του ταμιευτήρα βοηθά στην ανύψωση της στάθμης. Προφανώς βελτιώνεται το υδραυλικό ύψος και για τις δύο τομές στο έτος 2100 κάτι που διακανολογείται απόλυτα από τη γεωγραφική θέση των τομών που εντοπίζονται σε περιοχές όπου οι αρδευτικές γεωτρήσεις αντικαταστάθηκαν από το νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας. Η ανάλυση των τομών έδειξε ότι στα τρία κλιματικά σενάρια (SRES B1, SRES A1B και SRES A2) στην περίπτωση της συνθετικής περιόδου 2030-2050 η μεταβολή των υδραυλικών υψών ελαχιστοποιείται.

Σχήμα 14.9: Σύγκριση τομής ΑΑ´ υπόγειου υδροφορεία Κάρλας για τις Στρατηγικές Διαχείρισης 1 και 2 και για τα έτη: α) 2050 β) 2100
Χαρακτηριστική η αύξηση της στάθμης της μέσης της τομής ΑΑ' για το έτος 2100 από 2 km σε 19 km με την εναρξία λειτουργίας του ταμιευτήρα (Στρατηγική Διαχείρισης 2). Επιπλέον για τη Στρατηγική Διαχείρισης 1 η ταπείνωση της στάθμης του υδροφορέα στη τομή ΑΑ' για το 2050 φτάνει μέχρι και τα -40 m. Η πτώση στάθμης του υπόγειου υδροφορέα είναι ακόμη εντονότερη κατά το έτος 2100 δεδομένου ότι προσεγγίζει τα -60 m. Η τομή ΒΒ' εμφανίζει ανάλογες μεταβολές με την ΑΑ' αλλά οι διαφοροποιήσεις μεταξύ των σενάριων κλιματικής αλλαγής είναι πιο διακριτές.

Σχήμα 14.10: Σύγκριση τομής ΒΒ' υπόγειου υδροφορέα Κάρλας για τις Στρατηγικές Διαχείρισης 1 και 2 και τα έτη: α) 2050 β) 2100

Τα Σχήματα 14.11 και 14.12 δείχνουν πως κατανέμεται χωρικά το υδραυλικό ύψος (χάρτες υδραυλικών υψών) σύμφωνα με σενάρια και τις συνθετικές περιόδους κλιματικής αλλαγής για τις δύο Στρατηγικές Διαχείρισης 1 και 2.
Η Στρατηγική Διαχείρισης 1 όπως αναφέρθηκε διερευνά τη λειτουργία του υπόγειου υδροφορέα χωρίς να περιλαμβάνει την ενεργοποίηση του ταμιευτήρα. Η υπεράντληση του υπόγειου υδροφορέα και κατά συνέπεια ταπείνωση της στάθμης του επιδεινώνεται υπό συνθήκες κλιματικής αλλαγής. Τα υδραυλικά ύψη νερού κατά συνέπεια της διάρκεια της περιόδου 2030-2050 έχουν ένα εύρος από -100 ως 60 m στην περίπτωση της περιόδου 2080-2100 εμφανίζεται μεγάλη μείωση που σε ορισμένες περιπτώσεις προσεγγίζει και τα -160 m. Η Στρατηγική Διαχείρισης 2 (λειτουργία ταμιευτήρα) φανερώνει ουσιαστική βελτίωση του υδραυλικού ύψους ιδιαίτερα στη νοτιοανατολική περιοχή όπου βρίσκεται ο ταμιευτήρας της Κάρλας. Το

μεγαλύτερο πρόβλημα εμφανίζεται στη κεντρική περιοχή του υπόγειου υδροφόρεα όπου ανεφαρίσκονται και οι περισσότερες αρδευτικές γεωτρήσεις τόσο για την περίοδο 2030-2050 όσο και για την περίοδο 2080-2100 (μεγαλύτερη πτώση του υδραυλικού ύψους). Στη διάρκεια της περιόδου 2030-2050 το υδραυλικό ύψος έχει ευρούς από -80 ως 60 m ενώ στην περίπτωση της περιόδου 2080-2100 αισθητή μείωση που σε ορισμένες περιπτώσεις φτάνει τα -140 m. Η διαφοροποίηση μεταξύ των κλιματικών σεναρίων είναι ανάλογη της έντασης του κάθε εξεταζόμενου σεναρίου. Το υδραυλικό ύψος βελτιώνεται και στις τέσσερις περιπτώσεις των σεναρίων 2, 2α, 2β και 2γ συγκριτικά με τα 1, 1α, 1β και 1γ. Επομένως η ανάλυση των υδραυλικών υψών συνοπτικά για τα τρία διαχειριστικά σενάρια και τις δύο Στρατηγικές Διαχείρισης είναι σκόπιμη.
14.5.2 Υδραυλικό ύψος υπόγειου υδροφορέα για τα σενάρια 1α,2α

Η ανάλυση έδειξε ότι τα αποτελέσματα για τα σενάρια κλιματικής αλλαγής σχετικά με το υδραυλικό ύψος, κατανέμονται χωρικά με τον ίδιο τρόπο για όλα τα σενάρια διαχείρισης. Ποσοτικά όμως διαφέρουν, οπότε κρίνεται εύλογο το γεγονός ότι τα σενάρια 1α και 2α υποθέτουν πιο μικρή πτώση στάθμης του υπόγειου υδροφορέα συγκριτικά με τις βασικές Στρατηγικές Διαχείρισης 1 και 2.

Σχήμα 14.13: Σύγκριση τομής ΑΑ΄ υπόγειου υδροφορέα Κάρλας για τα σενάρια 1α και 2α και για τα έτη: α) 2050 β) 2100
Σχήμα 14.14: Σύγκριση τομής ΒΒ’ υπόγειου υδροφορέα Κάρλας για τα σενάρια 1\(^{1}\) και 2\(^{\text{a}}\) και για τα έτη: α) 2050 β) 2100

Παρόμοια κατανέμεται χωρικά το υδραυλικό ύψος και στην περίπτωση των σεναρίων 1\(^{1}\) και 2\(^{\text{a}}\) (Σχήματα 14.13, 14.14).
14.5.3 Υδραυλικό ύψος υπόγειου υδροφορέα για τα σενάρια 1\(^{β}\), 2\(^{β}\)

Η ανάλυση των σεναρίων 1\(^{β}\) και 2\(^{β}\) δείχνει ότι υπάρχει μικρότερη πτώση στάθμης του υπόγειου υδροφορέα συγκριτικά με τις Στρατηγικές Διαχείρισης 1 και 2.

Σχήμα 14.17: Σύγκριση τομής ΑΑ΄ υπόγειου υδροφορέα Κάρλας για τα σενάρια 1\(^{β}\) και 2\(^{β}\) και για τα έτη: α) 2050 β) 2100

Είναι φανερό ότι και σε αυτό το ζεύγος σεναρίων η έναρξη λειτουργίας του ταμιευτήρα ανυψώνει τη στάθμη του υπόγειου υδροφορέα.
Σχήμα 14.18: Σύγκριση τομής BB’ υπόγειου υδροφόρεα Κάρλας για τα σενάρια 1β και 2β και για τα έτη: α) 2050 β) 2100

Το υδραυλικό ύψος κατανέμεται χωρικά με παρόμοιο τρόπο και για την ομάδα των σεναρίων 1β και 2β (Σχήματα 14.19, 14.20).

14.5.4 Υδραυλικό ύψος υπόγειου υδροφορέα για τα σενάρια 1ο, 2ο

Η ανάλυση των σεναρίων 1ο και 2ο δείχνει την εντονότερη πτώση στάθμης στον υπόγειο υδροφορέα συγκριτικά με τις στρατηγικές διαχείρισης 1 και 2.
Σχήμα 14.21: Σύγκριση τομής ΑΑ’ υπόγειου υδροφορέα Κάρλας για τα σενάρια 1γ και 2γ και για τα έτη: α) 2050 β) 2100

Η τεράστια πτώση της στάθμης ακόμα και -160 m φείλεται στην μεγάλη αύξηση του όγκου των αντλήσεων σε αυτά τα σενάρια διαχείρισης (αλλαγή βαμβακοκαλλιέργειας με θερμοκηπιακή ντομάτα).
Σχήμα 14.22: Σύγκριση τομής ΒΒ´ υπόγειου υδροφορέα Κάρλας για τα σενάρια 1γ και 2γ και για τα έτη: α) 2050 β) 2100

Η χωρική κατανομή του υδραυλικού ύψους παραπέμπει σε παρόμοια συμπεράσματα σχετικά με τις αντλήσεις όπου επίσης διακρίνεται και χωρικά η μεγάλη πτώση του υδραυλικού ύψους για τα σενάρια 1γ και 2γ (Σχήματα 14.23, 14.24).
15 ΥΔΑΤΙКО ΙΣΟΖΥΓΙΟ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ

Στο σημείο αυτό της εν λόγω διατριβής γίνεται εκτίμηση του μέσου μηνιαίου υδατικού ισοζύγιου για την ιστορική περίοδο αναφοράς 1980-2000 που στηρίζεται στην ποσοτική διαφορά που προκύπτει από τους διαθέσιμους υδατικούς πόρους και τη συνολική ζήτηση νερού στη λεκάνη απορροής της λίμνης Κάρλας. Ο υπολογισμός της ζήτησης έγινε για το έτος 2007. Η εκτίμηση του υδατικού ισοζύγιου στην παρούσα διατριβή βασίστηκε στις δύο Στρατηγικές Διαχείρισης και τα τρία διαχειριστικά σενάρια που εμπεριέχει η καθεμία περιγράφηκαν στο 9o και 11ο Κεφάλαιο. Παρακάτω γίνεται περιγραφή του υδατικού ισοζύγιο των δύο Στρατηγικές Διαχείρισης νερού και τα τρία υποθετικά διαχειριστικά σενάρια. Εν τέλει αναλύονται είκοσι τέσσερα (24) υδατικά ισοζύγια της λεκάνης απορροής της λίμνης Κάρλας για συνθήκες κλιματικής αλλαγής (SRES B1, SRES A1B, SRES A2) με συνδυασμό κάθε Στρατηγικής Διαχείρισης με κάθε διαχειριστικό σενάριο ως εξής:

1) Βασική στρατηγική διαχείρισης δίχως επιχειρησιακή εφαρμογή του ταμειατήρα και του νέου αρδευτικού (υφιστάμενη κατάσταση – Σενάριο 1)
 a) Μείωση των απωλειών των καναλιών (Σενάριο 1α)
 β) Αλλαγή των μεθόδων άρδευσης (Σενάριο 1β)
 γ) Αντικατάσταση καλλιέργειας βαμβακιού με θερμοκηπική καλλιέργεια τομάτας (Σενάριο 1γ αναδιάρθρωσης καλλιεργειών)

2) Βασική στρατηγική διαχείρισης με επιχειρησιακή εφαρμογή του ταμειατήρα και του νέου αρδευτικού (μελλοντική κατάσταση – Σενάριο 2)
 a) Μείωση των απωλειών των καναλιών (Σενάριο 2α)
 β) Αλλαγή των μεθόδων άρδευσης (Σενάριο 2β)
 γ) Αντικατάσταση καλλιέργειας βαμβακιού με θερμοκηπική καλλιέργεια τομάτας (Σενάριο 2γ αναδιάρθρωσης καλλιεργειών)

Για τη πρώτη Στρατηγική Διαχείρισης νερού (υφιστάμενη κατάσταση) ο υπολογισμός του υδατικού ισοζύγιου βασίστηκε στις μέγιστες δυνατές απολήγεις του συστήματος του Τ.Ο.Ε.Β. Πηγειού για την ικανοποίηση της ζήτησης (παροχή σχεδιασμού του συστήματος) και την τροφοδότηση του ταμειατήρα. Είναι σκοπό μας να αναφέρουμε ότι το συνολικό διαθέσιμο ανανέωσιμο και εκμεταλλευόμενο επιφανειακό υδατικό δυναμικό της λεκάνης απορροής της λίμνης Κάρλας υπολογίστηκε στα 211,2 hm³ εκ των οποίων τα 100 hm³ χρησιμοποιούνται για την πλήρωση ταμειατήρα της Κάρλας. Δεδομένου ότι στη πρώτη Στρατηγική Διαχείρισης (υφιστάμενη κατάσταση) ο ταμειατήρας της Κάρλας δεν είναι σε λειτουργία το επιφανειακό υδατικό δυναμικό είναι 111,2 hm³ αφού τα 100 hm³ με τα οποία προβλέπεται να τροφοδοτεί ο ταμειατήρας δεν περιλαμβάνονται στην εκτίμηση του υδατικού ισοζύγιου (Πίνακας 9.1). Θα πρέπει να σημειωθεί ότι καθόριστη περιοριστικός παράγοντας (επιφανειακό+υπόγειο υδατικό δυναμικό – ολικές υδατικές απατήσεις) το μέγιστο όριο ασφαλούς απόληψης (100%)
του διαθέσιμου αναπλέσματος και εκμεταλλεύσιμου υδατικού δυναμικού. Στη συνέχεια
περιγράφονται τα αποτελέσματα του υδατικού ισοζυγίου για το στατιστικά μέσο υδρολογικό

15.1 ΙΣΤΟΡΙΚΗ ΠΕΡΙΟΔΟΣ ΑΝΑΦΟΡΑΣ 1980-2000

Το υδατικό ισοζύγιο των Σεναρίων 1, 1α, 1β, 1γ (υφιστάμενη κατάσταση) απεικονίζεται
στο Σχήμα 15.1 για το στατιστικό μέσο υδρολογικό έτος της ιστορικής περιόδου αναφοράς
1980-2000. Για το σενάριο 1 εμφανίζεται έλλειμμα του υδατικού ισοζυγίου με μέση ετήσια
tιμή τα 133,06 hm³. Κατά τη διάρκεια της χειμερινής περιόδου Δεκεμβρίου-Μαρτίου
εμφανίζεται πλεόν ασμα του υδατικού ισοζυγίου το οποίο όμως κατά την διάρκεια της
αρδευτικής περιόδου αρχίζει να εμφανίζει έλλειμμα το οποίο μηνιαίως είναι της τάξης των 20
hm³. Ο Πίνακας 15.1 παραθέτει τα ποσοστά μεταβολής του υδατικού έλλειμματος
συσχετίζοντας τα διαχειριστικά σενάρια (1α, 1β, 1γ, 2α, 2β, 2γ) με τις Στρατηγικές Διαχείρισης
(1,2). Προκύπτει λοιπόν ένα μέσο ετήσιο έλλειμμα της τάξης των 54,55 hm³ για το σενάριο 1.
Στη σεζόν του σενάριο 1α το αντίστοιχο μέσο ετήσιο έλλειμμα είναι 54,55 hm³, 59%
χαμηλότερο σε σχέση με το σενάριο 1 (Σχήμα 15.2) ενώ στη σεζόν του σενάριο 1β το
μέσο ετήσιο υδατικό έλλειμμα είναι 117,54 hm³, χαμηλότερο κατά 11,66% σε σχέση με τη
βασική Στρατηγική Διαχείρισης 1. Από την άλλη, το σενάριο 1γ παρουσιάζει τη μεγαλύτερη
tιμή υδατικού έλλειμματος (442,98 hm³) 232,93% παραπάνω από το αντίστοιχο του σενάριο
1. Αναφορικά με τη δεύτερη Στρατηγική Διαχείρισης (μελλοντική κατάσταση) και λειτουργία
tου ταμιευτήρα η τιμή του μέσου ετήσιου υδατικού έλλειμματος είναι 78,45 hm³ και η μείωση
αυτή υπογραμμίζει το γεγονός ότι η λειτουργία του ταμιευτήρα είναι εξαιρετικά χρήσιμη για
ην ορθολογική διαχείριση της λεκάνης απορροής της Κάρλας. Κατάχω σημαντικότερα είναι τα
αποτελέσματα στη σεζόν του σενάριο 2α όπου η τιμή του έλλειμματος είναι 4,01 hm³
(μείωση 94,89%) και προφανώς αυτός ο συνδυασμός Στρατηγικής Διαχείρισης 2-Σεναρίου 2α
(λειτουργία ταμιευτήρα με ταυτόχρονη μείωση των απολεονίων των καναλιών είναι η
στρατηγική διαχείρισης νερού που υπό συνθήκες μπορεί να δημιουργήσει υδατικό πλεόνασμα.
Σχήμα 15.1: Μηνιαίο υδατικό ισοζύγιο μέσω υδρολογικού έτους της ιστορικής περιόδου 1980-2000 για α) Στρατηγική Διαχείρισης 1 (Επιχειρησιακό σενάριο 1) β) Σενάριο 1ο γ) Σενάριο 1β και δ) Σενάριο 1γ

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών
Για το σενάριο $2^\text{υ}$ το υδατικό ισοζύγιο είναι ελλειμματικό κατά 64,69 hm^3, μειώνεται κατά 10,34% σε σχέση με τη Στρατηγική Διαχείρισης 2. Όπως διαπιστώθηκε και στην διερεύνηση των διαχειριστικών σεναρίων της πρώτης Στρατηγικής Διαχείρισης το σενάριο $2^\text{γ}$ και για αυτή την ομάδα σεναρίων είναι το δυσμενέστερο στην μελλοντική κατάσταση με το ετήσιο υδατικό έλλειμμα να φτάνει μέχρι και 336,89 hm^3.

Σχήμα 15.2: Μέσο ετήσιο υδατικό έλλειμμα για a) υφιστάμενη κατάσταση b) μελλοντική κατάσταση

Πίνακας 15-1: Ποσοστιαίες μεταβολές υδατικού ελλείμματος

<table>
<thead>
<tr>
<th>Σενάριο 1a</th>
<th>Σενάριο 2b</th>
<th>Σενάριο 1a</th>
<th>Σενάριο 2b</th>
<th>Σενάριο 1a</th>
<th>Σενάριο 2b</th>
<th>Σενάριο 1a</th>
<th>Σενάριο 2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ</td>
<td>18,33</td>
<td>3,10</td>
<td>-554,34</td>
<td>29,04</td>
<td>4,58</td>
<td>-780,49</td>
<td></td>
</tr>
<tr>
<td>Νοε</td>
<td>25,06</td>
<td>5,43</td>
<td>-1110,70</td>
<td>172,48</td>
<td>35,29</td>
<td>-6882,94</td>
<td></td>
</tr>
<tr>
<td>Δεκ</td>
<td>14,03</td>
<td>3,04</td>
<td>-297,10</td>
<td>10,09</td>
<td>2,07</td>
<td>-192,49</td>
<td></td>
</tr>
<tr>
<td>Ιαν</td>
<td>7,31</td>
<td>1,58</td>
<td>-48,95</td>
<td>6,20</td>
<td>1,27</td>
<td>-37,35</td>
<td></td>
</tr>
<tr>
<td>Φεβ</td>
<td>17,52</td>
<td>3,80</td>
<td>-214,38</td>
<td>13,36</td>
<td>2,77</td>
<td>-149,35</td>
<td></td>
</tr>
<tr>
<td>Μαρ</td>
<td>64,06</td>
<td>13,88</td>
<td>-625,31</td>
<td>37,71</td>
<td>7,71</td>
<td>-331,36</td>
<td></td>
</tr>
<tr>
<td>Απρ</td>
<td>99,95</td>
<td>20,43</td>
<td>-374,53</td>
<td>437,97</td>
<td>82,39</td>
<td>-1506,58</td>
<td></td>
</tr>
<tr>
<td>Μάιος</td>
<td>57,76</td>
<td>11,84</td>
<td>-248,85</td>
<td>90,24</td>
<td>17,19</td>
<td>-353,12</td>
<td></td>
</tr>
<tr>
<td>Ιουν</td>
<td>43,74</td>
<td>8,53</td>
<td>-150,93</td>
<td>57,45</td>
<td>10,36</td>
<td>-179,45</td>
<td></td>
</tr>
<tr>
<td>Ιουλ</td>
<td>33,24</td>
<td>6,38</td>
<td>-43,00</td>
<td>38,40</td>
<td>6,89</td>
<td>-44,46</td>
<td></td>
</tr>
<tr>
<td>Αυγ</td>
<td>36,39</td>
<td>6,98</td>
<td>-46,94</td>
<td>42,48</td>
<td>7,69</td>
<td>-48,68</td>
<td></td>
</tr>
<tr>
<td>Σεπ</td>
<td>35,70</td>
<td>6,85</td>
<td>-114,06</td>
<td>41,92</td>
<td>7,74</td>
<td>-117,92</td>
<td></td>
</tr>
<tr>
<td>Ετος</td>
<td>59,00</td>
<td>11,66</td>
<td>-232,93</td>
<td>94,89</td>
<td>10,34</td>
<td>-336,89</td>
<td></td>
</tr>
</tbody>
</table>
Σχήμα 15.3: Μητρικό υδατικό ισοζύγιο μέσω υδρολογικού έτους της ιστορικής περιόδου 1980-2000 για α) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) β) Σενάριο 2γ και δ) Σενάριο 2η
Το Σχήμα 15.3 απεικονίζει τα μηνιαία υδρολογικά ισοζύγια για το μέσο υδρολογικό έτος σε σχέση με τα σενάρια της Στρατηγικής Διαχείρισης 2 (2, 2a, 2b, 2γ). Παρατηρείται πλεόνασμα του υδατικού ισοζύγιου κατά τη διάρκεια του έτους όπου δεν υφίσταται άρδευση και έλλειμμα κατά την αρδευτική περίοδο όπως ακριβώς και στη πρώτη Στρατηγική Διαχείρισης νερού.

15.2 ΣΥΝΘΕΤΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2030-2050

Στα προηγούμενα κεφάλαια αναπτύχθηκαν τα μοντέλα προσομοίωσης του ΣΠΛ και παρουσιάστηκαν μεμονωμένα τα αποτελέσματα τους. Σε υδρολογική μελέτη είναι εύλογο ότι οι εισροές και οι εκροές στη λεκάνη απορροής της Κάρλας τόσο από επιφανειακούς όσο και από υπόγειους υδατικούς πόρους αποτελούν το υδατικό ισοζύγιο το οποίο εκτιμήθηκε για τα τρία σενάρια κλιματικής αλλαγής (SRES B1, SRES A1B και SRES A2) που αναφέρονται στη συνθετική κλιματική περίοδο 2030-2050.

15.2.1 Σενάριο κλιματικής αλλαγής SRES B1

Το Σχήμα 15.4 δείχνει τη σύγκριση του υδατικού ισοζύγιου για το μέσο υδρολογικό έτος αναφορικά με το σενάριο SRES B1 για τα τέσσερα διαχειριστικά σενάρια της πρώτης Στρατηγικής Διαχείρισης (1, 1α, 1β, 1γ) ενώ στο Σχήμα 15.5 φαίνεται το αντίστοιχο υδατικό ισοζύγιο για τα διαχειριστικά σενάρια της δεύτερης Στρατηγικής Διαχείρισης (2, 2α, 2β, 2γ). Ωστόσο αφορά τη Στρατηγική Διαχείρισης 1 η τιμή του μέσου ετήσιου υδατικού ελλειμματος είναι 133,84 hm3 (αύξηση 0,59% σε σχέση με την ιστορική περίοδο 1980-2000). Στη περίπτωση του σεναρίου 1α το υδατικό ελλειμμα μειώνεται κατά 0,03%, ενώ η ανάλυση του σεναρίου 1β δείχνει ότι το υδατικό ελλειμμα αυξάνεται 0,53% συγκριτικά με την ιστορική περίοδο στα 118,17 hm3. Τελικά για σενάριο 1γ εμφανίζεται αύξηση 0,47% στα 442,38 hm3.
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 15: Μελλοντικό υδατικό ισοζύγιο λεκάνης απορροής Κάρλας

Σχήμα 15.4: Μηνιαίο υδατικό ισοζύγιο μέσου υδρολογικού έτους του σεναρίου SRES B1 2030-2050 για α) Στρατηγική Διαχείρισης 1 (Επιχειρησιακό σενάριο 1) β) Σενάριο 1α γ) Σενάριο 1β και δ) Σενάριο 1γ
Η ανάλυση των διαχειριστικών σεναρίων (2, 2α, 2β, 2γ) της Στρατηγικής Διαχείρισης 2 δείχνει αύξηση του μέσο ετήσιου υδατικού ελλείμματος 0,55% στα 78,02 hm³ συγκριτικά με την περίοδο 1980-2000. Στη περίπτωση του σενάριου 2α το υδατικό έλλειμμα αυξάνεται 27,22%, στο σενάριο 2β 0,82% (συγκριτικά με την περίοδο 1980-2000) στα 64,16 hm³. Η αύξηση του υδατικού ελλείμματος για το σενάριο 2γ είναι 0,47% και το υδατικό έλλειμμα 341,11 hm³.

Πίνακας 15-2: Ποσοστιαίες μεταβολές υδατικού ελλείμματος σε σχέση με την istorική περίοδο

<table>
<thead>
<tr>
<th>Σεν. 1</th>
<th>Σεν. 1α</th>
<th>Σεν. 1β</th>
<th>Σεν. 1γ</th>
<th>Σεν. 2</th>
<th>Σεν. 2α</th>
<th>Σεν. 2β</th>
<th>Σεν. 2γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Οκτ</td>
<td>-0,66</td>
<td>-0,58</td>
<td>-0,64</td>
<td>-0,10</td>
<td>-3,64</td>
<td>-4,30</td>
<td>-3,64</td>
</tr>
<tr>
<td>Νοε</td>
<td>-6,79</td>
<td>-8,73</td>
<td>-7,13</td>
<td>-0,36</td>
<td>-48,51</td>
<td>-64,51</td>
<td>-74,41</td>
</tr>
<tr>
<td>Δεκ</td>
<td>11,40</td>
<td>10,12</td>
<td>11,09</td>
<td>5,78</td>
<td>8,72</td>
<td>8,01</td>
<td>8,56</td>
</tr>
<tr>
<td>Ιαν</td>
<td>-0,18</td>
<td>-0,10</td>
<td>-0,16</td>
<td>-0,36</td>
<td>-0,13</td>
<td>-0,07</td>
<td>-0,12</td>
</tr>
<tr>
<td>Φεβ</td>
<td>3,49</td>
<td>3,12</td>
<td>3,40</td>
<td>3,05</td>
<td>2,92</td>
<td>2,69</td>
<td>2,87</td>
</tr>
<tr>
<td>Μαρ</td>
<td>10,38</td>
<td>6,73</td>
<td>9,24</td>
<td>1,98</td>
<td>6,65</td>
<td>5,11</td>
<td>6,25</td>
</tr>
<tr>
<td>Απρ</td>
<td>-1,43</td>
<td>0,00</td>
<td>-1,53</td>
<td>0,01</td>
<td>-47,17</td>
<td>-11,22</td>
<td>-251,31</td>
</tr>
<tr>
<td>Μάι</td>
<td>-4,13</td>
<td>-8,38</td>
<td>-4,54</td>
<td>-0,90</td>
<td>-10,98</td>
<td>-97,80</td>
<td>-12,78</td>
</tr>
<tr>
<td>Ιου</td>
<td>-0,17</td>
<td>0,49</td>
<td>-0,09</td>
<td>0,32</td>
<td>-3,05</td>
<td>-4,99</td>
<td>-3,12</td>
</tr>
<tr>
<td>Ιουλ</td>
<td>-0,97</td>
<td>-0,95</td>
<td>-0,97</td>
<td>-0,14</td>
<td>0,14</td>
<td>0,65</td>
<td>0,16</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-1,31</td>
<td>-1,47</td>
<td>-1,33</td>
<td>-0,37</td>
<td>1,94</td>
<td>3,47</td>
<td>2,01</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-1,29</td>
<td>-1,45</td>
<td>-1,31</td>
<td>-0,35</td>
<td>6,50</td>
<td>10,41</td>
<td>6,72</td>
</tr>
<tr>
<td>Έτος</td>
<td>-0,59</td>
<td>0,03</td>
<td>-0,53</td>
<td>0,47</td>
<td>0,55</td>
<td>27,22</td>
<td>0,82</td>
</tr>
</tbody>
</table>
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης
-Κεφάλαιο 15ο: -Μελλοντικό υδατικό ισοζύγιο λεκάνης απορροής Κάρλας-

Σχήμα 15.5: Μηνιαίο υδατικό ισοζύγιο μέσου υδρολογικού έτους του σενάριου SRES B1 2030-2050 για α) Επιχειρησιακό σενάριο 2 β) Σενάριο 2α γ) Σενάριο 2β και δ) Σενάριο 2γ
15.2.2 Σενάριο κλιματικής αλλαγής SRES A1B

Το Σχήμα 15.7 δείχνει τη σύγκριση του υδατικού ισοζύγιου για το μέσο υδρολογικό έτος αναφορικά με το σενάριο SRES A1B για τα τέσσερα διαχειριστικά σενάρια της πρώτης Στρατηγικής Διαχείρισης (1, 1α, 1β, 1γ) ενώ στο Σχήμα 15.8 φαίνεται το αντίστοιχο υδατικό ισοζύγιο για τα διαχειριστικά σενάρια της δεύτερης Στρατηγικής Διαχείρισης (2, 2α, 2β, 2γ). Όσον αφορά τη Στρατηγική Διαχείρισης 1 η τιμή του μέσου ετήσιου υδατικού έλλειμματος είναι 138,37 hm³ (μείωση 3,99% σε σχέση με την ιστορική περίοδο 1980-2000). Στη περίπτωση του σεναρίου 1α το υδατικό έλλειμμα μειώνεται κατά 7,59%, ενώ η ανάλυση του σεναρίου 1β δείχνει ότι το υδατικό έλλειμμα μειώνεται 4,32% συγκριτικά με την ιστορική περίοδο στα 122,62 hm³. Τελικά για το σενάριο 1γ εμφανίζεται αύξηση 0,64% στα 446,25 hm³.
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 15ο: Μελλοντικό υδατικό ισοζύγιο λεκάνης απορροής Κάρλας-

Σχήμα 15.7: Μηνιαίο υδατικό ισοζύγιο μέσου υδρολογικού έτους του σεναρίου SRES A1B 2030-2050 για a) Στρατηγική Διαχείρισης 1 (Επιχειρησιακό σενάριο 1) β) Σενάριο 1° γ) Σενάριο 1° και δ) Σενάριο 1°
Η ανάλυση των διαχειριστικών σεναρίων (2, 2α, 2β, 2γ) της Στρατηγικής Διαχείρισης 2 δείχνει μείωση του μέσου ετήσιου υδατικού ελλείμματος 5,00% στα 82,37 hm³ συγκριτικά με την περίοδο 1980-2000. Στη περίπτωση του σενάριου 2α το υδατικό έλλειμμα μειώνεται 72,33%, στο σενάριο 2β 5,81% (συγκριτικά με την περίοδο 1980-2000) στα 68,44 hm³. Η μείωση του υδατικού ελλείμματος για το σενάριο 2γ είναι 0,64% και το υδατικό έλλειμμα 344,90 hm³.

Πίνακας 15-3: Ποσοστιαίες μεταβολές υδατικού ελλείμματος σε σχέση με την ιστορική περίοδο

<table>
<thead>
<tr>
<th>Σεν. 1</th>
<th>Σεν. 1α</th>
<th>Σεν. 1β</th>
<th>Σεν. 1γ</th>
<th>Σεν. 2</th>
<th>Σεν. 2α</th>
<th>Σεν. 2β</th>
<th>Σεν. 2γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Οκτ</td>
<td>-0,97</td>
<td>-0,85</td>
<td>-0,95</td>
<td>-0,15</td>
<td>-4,12</td>
<td>-4,77</td>
<td>-4,11</td>
</tr>
<tr>
<td>Νοέμ</td>
<td>11,57</td>
<td>15,94</td>
<td>12,32</td>
<td>0,96</td>
<td>85,43</td>
<td>121,43</td>
<td>132,84</td>
</tr>
<tr>
<td>Δεκ</td>
<td>2,82</td>
<td>2,66</td>
<td>2,78</td>
<td>1,43</td>
<td>2,22</td>
<td>2,15</td>
<td>2,20</td>
</tr>
<tr>
<td>Ιαν</td>
<td>-7,08</td>
<td>-6,30</td>
<td>-6,95</td>
<td>-13,87</td>
<td>-6,29</td>
<td>-5,84</td>
<td>-6,20</td>
</tr>
<tr>
<td>Φεβ</td>
<td>1,74</td>
<td>1,70</td>
<td>1,73</td>
<td>1,52</td>
<td>1,53</td>
<td>1,52</td>
<td>1,52</td>
</tr>
<tr>
<td>Μαρ</td>
<td>-4,63</td>
<td>-2,24</td>
<td>-3,89</td>
<td>-0,88</td>
<td>-2,60</td>
<td>-1,48</td>
<td>-2,30</td>
</tr>
<tr>
<td>Απρ</td>
<td>-12,93</td>
<td>0,00</td>
<td>-15,87</td>
<td>-2,27</td>
<td>-100,06</td>
<td>-26,23</td>
<td>-549,31</td>
</tr>
<tr>
<td>Μάιος</td>
<td>-4,69</td>
<td>-9,05</td>
<td>-5,12</td>
<td>-0,93</td>
<td>-11,68</td>
<td>-100,55</td>
<td>-13,53</td>
</tr>
<tr>
<td>Ιουν</td>
<td>-0,94</td>
<td>-0,51</td>
<td>-0,89</td>
<td>0,20</td>
<td>-3,99</td>
<td>-6,52</td>
<td>-4,11</td>
</tr>
<tr>
<td>Ιούλ</td>
<td>-1,95</td>
<td>-2,17</td>
<td>-1,98</td>
<td>-0,58</td>
<td>-0,96</td>
<td>-0,83</td>
<td>-0,98</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-1,95</td>
<td>-2,21</td>
<td>-1,99</td>
<td>-0,56</td>
<td>1,25</td>
<td>2,63</td>
<td>1,31</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-1,92</td>
<td>-2,16</td>
<td>-1,95</td>
<td>-0,53</td>
<td>5,83</td>
<td>9,59</td>
<td>6,03</td>
</tr>
<tr>
<td>Οκτ</td>
<td>-3,99</td>
<td>-7,59</td>
<td>-4,32</td>
<td>-0,64</td>
<td>-5,00</td>
<td>-72,33</td>
<td>-5,81</td>
</tr>
</tbody>
</table>
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 15ο: Μελλοντικό υδατικό ισοζύγιο λεκάνης απορρόής Κάρλας

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

Σχήμα 15.8: Μηνιαίο υδατικό ισοζύγιο μέσου υδρολογικού έτους του σεναρίου SRES A1B 2030-2050 για α) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) β) Σενάριο 2α γ) Σενάριο 2β και δ) Σενάριο 2γ

Institutional Repository - Library & Information Centre - University of Thessaly
01/11/2023 00:45:21 EET - 35.160.27.221
Σχήμα 15.9: Μέσο ετήσιο υδατικό έλλειμμα για α) υφιστάμενη κατάσταση β) μελλοντική κατάσταση

15.2.3 Σενάριο κλιματικής αλλαγής SRES A2

Το Σχήμα 15.10 δείχνει τη σύγκριση του υδατικού ισοζύγιου για το μέσο υδρολογικό έτος αναφορικά με το σενάριο SRES A1B για τα τέσσερα διαχειριστικά σενάρια της πρώτης Στρατηγικής Διαχείρισης (1, 1α, 1β, 1γ) ενώ στο Σχήμα 15.10 φαίνεται το αντίστοιχο υδατικό ισοζύγιο για τα διαχειριστικά σενάρια της δεύτερης Στρατηγικής Διαχείρισης (2, 2α, 2β, 2γ). Όσον αφορά τη Στρατηγική Διαχείρισης 1 η τιμή του μέσου ετήσιου υδατικού έλλειμματος είναι 141,30 hm³ (μείωση 6,20% σε σχέση με την ιστορική περίοδο 1980-2000). Στη περίπτωση του σεναρίου 1α το υδατικό έλλειμμα μειώνεται κατά 13,11%, ενώ η ανάλυση του σεναρίου 1β δείχνει ότι το υδατικό έλλειμμα μειώνεται 6,83% συγκριτικά με την ιστορική περίοδο στα 125,57 hm³. Τελικά για το σενάριο 1γ εμφανίζεται αύξηση 1,54% στα 449,33 hm³.
Σχήμα 15.10: Μηχανικό υδατικό ισοζύγιο μέσω υδρολογικού έτους του σενάριου SRES A2 2030-2050 για α) Επιχειρησιακό σενάριο 1 β) Σενάριο 1\(^{α}\) γ) Σενάριο 1\(^{β}\) και δ) Σενάριο 1\(^{γ}\)
Η ανάλυση των διαχειριστικών σεναρίων (2, 2α, 2β, 2γ) της Στρατηγικής Διαχείρισης 2 δείχνει μείωση του μέσου ετήσιου υδατικού ελλείμματος 8,79% στα 85,34 hm³ συγκριτικά με την περίοδο 1980-2000. Στη περίπτωση του σεναρίου 2α το υδατικό έλλειμμα μειώνεται 148,39%, στο σενάριο 2β 10,42% (συγκριτικά με την περίοδο 1980-2000) στα 71,43 hm³. Η μείωση του υδατικού ελλείμματος για το σενάριο 2γ είναι 1,54% και το υδατικό έλλειμμα 347,99 hm³.

Πίνακας 15-4: Ποσοστιαίες μεταβολές υδατικού ελλείμματος σε σχέση με την ιστορική περίοδο

<table>
<thead>
<tr>
<th>Σεν. 1</th>
<th>Σεν. 1α</th>
<th>Σεν. 1β</th>
<th>Σεν. 1γ</th>
<th>Σεν. 2</th>
<th>Σεν. 2α</th>
<th>Σεν. 2β</th>
<th>Σεν. 2γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Οκτ</td>
<td>-9,90</td>
<td>-0,79</td>
<td>-0,88</td>
<td>-0,14</td>
<td>-4,01</td>
<td>-4,67</td>
<td>-4,01</td>
</tr>
<tr>
<td>Νοε</td>
<td>-5,76</td>
<td>-7,22</td>
<td>-6,01</td>
<td>-0,48</td>
<td>-40,68</td>
<td>-52,81</td>
<td>-62,10</td>
</tr>
<tr>
<td>Δεκ</td>
<td>-3,35</td>
<td>-2,77</td>
<td>-3,21</td>
<td>-1,70</td>
<td>-2,47</td>
<td>-2,12</td>
<td>-2,40</td>
</tr>
<tr>
<td>Ιαν</td>
<td>-8,79</td>
<td>-8,09</td>
<td>-8,63</td>
<td>-17,21</td>
<td>-7,82</td>
<td>-7,28</td>
<td>-7,71</td>
</tr>
<tr>
<td>Φεβ</td>
<td>-7,45</td>
<td>-6,13</td>
<td>-7,12</td>
<td>-6,51</td>
<td>-5,99</td>
<td>-5,11</td>
<td>-5,79</td>
</tr>
<tr>
<td>Μαρ</td>
<td>-21,37</td>
<td>-12,48</td>
<td>-18,59</td>
<td>-4,07</td>
<td>-13,02</td>
<td>-9,07</td>
<td>-11,99</td>
</tr>
<tr>
<td>Απρ</td>
<td>-12,06</td>
<td>0,00</td>
<td>-14,80</td>
<td>-2,12</td>
<td>-96,20</td>
<td>-25,23</td>
<td>-527,92</td>
</tr>
<tr>
<td>Μάιος</td>
<td>-7,09</td>
<td>-14,88</td>
<td>-7,85</td>
<td>-1,65</td>
<td>-15,73</td>
<td>-142,94</td>
<td>-18,43</td>
</tr>
<tr>
<td>Ιοου</td>
<td>-1,71</td>
<td>-1,96</td>
<td>-1,74</td>
<td>-0,15</td>
<td>-5,09</td>
<td>-9,27</td>
<td>-5,35</td>
</tr>
<tr>
<td>Ιουλ</td>
<td>-1,15</td>
<td>-1,03</td>
<td>-1,14</td>
<td>-0,07</td>
<td>-0,01</td>
<td>0,64</td>
<td>0,03</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-1,83</td>
<td>-2,09</td>
<td>-1,87</td>
<td>-0,53</td>
<td>1,37</td>
<td>2,76</td>
<td>1,43</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-1,82</td>
<td>-2,06</td>
<td>-1,85</td>
<td>-0,51</td>
<td>5,93</td>
<td>9,69</td>
<td>6,13</td>
</tr>
<tr>
<td>Οκτ</td>
<td>-6,20</td>
<td>-13,11</td>
<td>-6,83</td>
<td>-1,54</td>
<td>-8,79</td>
<td>-148,39</td>
<td>-10,42</td>
</tr>
<tr>
<td>Ιούν</td>
<td>-1,71</td>
<td>-1,96</td>
<td>-1,74</td>
<td>-0,15</td>
<td>-5,09</td>
<td>-9,27</td>
<td>-5,35</td>
</tr>
<tr>
<td>Ιούλ</td>
<td>-1,15</td>
<td>-1,03</td>
<td>-1,14</td>
<td>-0,07</td>
<td>-0,01</td>
<td>0,64</td>
<td>0,03</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-1,83</td>
<td>-2,09</td>
<td>-1,87</td>
<td>-0,53</td>
<td>1,37</td>
<td>2,76</td>
<td>1,43</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-1,82</td>
<td>-2,06</td>
<td>-1,85</td>
<td>-0,51</td>
<td>5,93</td>
<td>9,69</td>
<td>6,13</td>
</tr>
<tr>
<td>Οκτ</td>
<td>-6,20</td>
<td>-13,11</td>
<td>-6,83</td>
<td>-1,54</td>
<td>-8,79</td>
<td>-148,39</td>
<td>-10,42</td>
</tr>
<tr>
<td>Ιούν</td>
<td>-1,71</td>
<td>-1,96</td>
<td>-1,74</td>
<td>-0,15</td>
<td>-5,09</td>
<td>-9,27</td>
<td>-5,35</td>
</tr>
<tr>
<td>Ιούλ</td>
<td>-1,15</td>
<td>-1,03</td>
<td>-1,14</td>
<td>-0,07</td>
<td>-0,01</td>
<td>0,64</td>
<td>0,03</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-1,83</td>
<td>-2,09</td>
<td>-1,87</td>
<td>-0,53</td>
<td>1,37</td>
<td>2,76</td>
<td>1,43</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-1,82</td>
<td>-2,06</td>
<td>-1,85</td>
<td>-0,51</td>
<td>5,93</td>
<td>9,69</td>
<td>6,13</td>
</tr>
<tr>
<td>Οκτ</td>
<td>-6,20</td>
<td>-13,11</td>
<td>-6,83</td>
<td>-1,54</td>
<td>-8,79</td>
<td>-148,39</td>
<td>-10,42</td>
</tr>
<tr>
<td>Ιούν</td>
<td>-1,71</td>
<td>-1,96</td>
<td>-1,74</td>
<td>-0,15</td>
<td>-5,09</td>
<td>-9,27</td>
<td>-5,35</td>
</tr>
<tr>
<td>Ιούλ</td>
<td>-1,15</td>
<td>-1,03</td>
<td>-1,14</td>
<td>-0,07</td>
<td>-0,01</td>
<td>0,64</td>
<td>0,03</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-1,83</td>
<td>-2,09</td>
<td>-1,87</td>
<td>-0,53</td>
<td>1,37</td>
<td>2,76</td>
<td>1,43</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-1,82</td>
<td>-2,06</td>
<td>-1,85</td>
<td>-0,51</td>
<td>5,93</td>
<td>9,69</td>
<td>6,13</td>
</tr>
<tr>
<td>Οκτ</td>
<td>-6,20</td>
<td>-13,11</td>
<td>-6,83</td>
<td>-1,54</td>
<td>-8,79</td>
<td>-148,39</td>
<td>-10,42</td>
</tr>
<tr>
<td>Ιούν</td>
<td>-1,71</td>
<td>-1,96</td>
<td>-1,74</td>
<td>-0,15</td>
<td>-5,09</td>
<td>-9,27</td>
<td>-5,35</td>
</tr>
<tr>
<td>Ιούλ</td>
<td>-1,15</td>
<td>-1,03</td>
<td>-1,14</td>
<td>-0,07</td>
<td>-0,01</td>
<td>0,64</td>
<td>0,03</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-1,83</td>
<td>-2,09</td>
<td>-1,87</td>
<td>-0,53</td>
<td>1,37</td>
<td>2,76</td>
<td>1,43</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-1,82</td>
<td>-2,06</td>
<td>-1,85</td>
<td>-0,51</td>
<td>5,93</td>
<td>9,69</td>
<td>6,13</td>
</tr>
</tbody>
</table>
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 15ο: Μελλοντικό υδατικό ισοζύγιο λεκάνης απορρόής Κάρλας

Σχήμα 15.11: Μηνιαίο υδατικό ισοζύγιο μέσω υδρολογικού έτους του σεναρίου SRES A2 2030-2050 για α) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) β) Σενάριο 2" γ) Σενάριο 2β και δ) Σενάριο 2γ
Σχήμα 15.12: Μέσο ετήσιο υδατικό έλλειμμα για a) υφιστάμενη κατάσταση β) μελλοντική κατάσταση

15.3 ΣΥΝΘΕΤΙΚΗ ΠΕΡΙΟΔΟΣ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ 2080-2100

Όπως αναφέρθηκε και σε προηγούμενο στάδιο σε μια υδρολογική μελέτη είναι εύλογο ότι οι εισροές και οι εκροές στη λεκάνη απορροής της Κάρλας τόσο από επιφανειακούς όσο και από υπόγειους υδατικούς πόρους αποτελούν το υδατικό ισοζύγιο το οποίο εκτιμήθηκε για τα τρία σενάρια κλιματικής αλλαγής (SRES B1, SRES A1B και SRES A2) που αναφέρονται στη συνθετική κλιματική περίοδο 2080-2100 και παρουσιάζεται παρακάτω.

15.3.1 Σενάριο κλιματικής αλλαγής SRES B1

Το Σχήμα 15.13 δείχνει τη σύγκριση του υδατικού ισοζύγιου για το μέσο υδρολογικό étos anafóρικα με το σενάριο SRES A1B για τα τέσσερα διαχειριστικά σενάρια της πρώτης Στρατηγικής Διαχείρισης (1, 1α, 1β, 1γ) ενώ στο Σχήμα 15.15 φαίνεται το αντίστοιχο υδατικό ισοζύγιο για τα διαχειριστικά σενάρια της δεύτερης Στρατηγικής Διαχείρισης (2, 2α, 2β, 2γ). Όσον αφορά τη Στρατηγική Διαχείρισης 1 η τιμή του μέσου ετήσιου υδατικού έλλειμματος είναι 133,84 hm³ (μείωση 5,52% σε σχέση με την ιστορική περίοδο 1980-2000). Στη περίπτωση του σεναρίου 1α το υδατικό έλλειμμα αυξάνεται κατά 10,63%, ενώ η ανάλυση του σεναρίου 1β δείχνει ότι το υδατικό έλλειμμα αυξάνεται 5,59% συγκριτικά με την ιστορική περίοδο στα 124,58 hm³. Τελικά για το σενάριο 1γ εμφανίζεται αύξηση 1,02% στα 447,65 hm³.
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 15ο: Μελλοντικό υδατικό ισοζύγιο λεκάνης απορροής Κάρλας

Σχήμα 15.13: Μηνιαίο υδατικό ισοζύγιο μέσω υδρολογικού έτους του σενάριου SRES B1 2030-2050 για a) Στρατηγική Διαχείρισης Ι(Επιχειρησιακό σενάριο 1) β) Σενάριο 1α γ) Σενάριο 1β και δ) Σενάριο 1γ

Institutional Repository - Library & Information Centre - University of Thessaly
01/11/2023 00:45:21 EET - 35.160.27.221
Η ανάλυση των διαχειριστικών σεναρίων (2, 2α, 2β, 2γ) της Στρατηγικής Διαχείρισης 2 δείχνει αύξηση του μέσου ετήσιου υδατικού έλλειμματος 7,36% στα 140,40 hm³ συγκριτικά με την περίοδο 1980-2000. Στη περίπτωση του σενάριου 2α το υδατικό έλλειμμα αύξηση 109,91%, στο σενάριο 2β 8,57% (συγκριτικά με την περίοδο 1980-2000) στα 70,23 hm³. Η μείωση του υδατικού έλλειμματος για το σενάριο 2γ είναι 1,02% και το υδατικό έλλειμμα 346,21 hm³.

Πίνακας 15-5: Ποσοστιαίες μεταβολές υδατικού έλλειμματος σε σχέση με την ιστορική περίοδο

<table>
<thead>
<tr>
<th>Σεν. 1</th>
<th>Σεν. 1α</th>
<th>Σεν. 1β</th>
<th>Σεν. 1γ</th>
<th>Σεν. 2</th>
<th>Σεν. 2α</th>
<th>Σεν. 2β</th>
<th>Σεν. 2γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Οκτ</td>
<td>-1,27</td>
<td>-1,11</td>
<td>-1,25</td>
<td>-0,19</td>
<td>-4,58</td>
<td>-5,22</td>
<td>-4,57</td>
</tr>
<tr>
<td>Νοε</td>
<td>-16,21</td>
<td>-20,98</td>
<td>-17,03</td>
<td>-1,34</td>
<td>-116,19</td>
<td>-155,63</td>
<td>-178,48</td>
</tr>
<tr>
<td>Δεκ</td>
<td>1,59</td>
<td>1,64</td>
<td>1,60</td>
<td>0,81</td>
<td>1,31</td>
<td>1,37</td>
<td>1,33</td>
</tr>
<tr>
<td>Ιαν</td>
<td>-4,53</td>
<td>-4,09</td>
<td>-4,43</td>
<td>-8,88</td>
<td>-4,00</td>
<td>-3,65</td>
<td>-3,92</td>
</tr>
<tr>
<td>Φεβ</td>
<td>1,60</td>
<td>1,65</td>
<td>1,61</td>
<td>1,40</td>
<td>1,44</td>
<td>1,50</td>
<td>1,46</td>
</tr>
<tr>
<td>Μαρ</td>
<td>-20,35</td>
<td>-11,64</td>
<td>-17,63</td>
<td>-3,87</td>
<td>-12,28</td>
<td>-8,38</td>
<td>-11,26</td>
</tr>
<tr>
<td>Απρ</td>
<td>-2,51</td>
<td>0,00</td>
<td>-2,65</td>
<td>0,07</td>
<td>-49,96</td>
<td>-10,80</td>
<td>-262,58</td>
</tr>
<tr>
<td>Μάι</td>
<td>-7,45</td>
<td>-14,95</td>
<td>-8,19</td>
<td>-1,59</td>
<td>-16,05</td>
<td>-141,00</td>
<td>-18,71</td>
</tr>
<tr>
<td>Ιουν</td>
<td>-3,29</td>
<td>-4,32</td>
<td>-3,41</td>
<td>-0,56</td>
<td>-7,13</td>
<td>-13,29</td>
<td>-7,56</td>
</tr>
<tr>
<td>Ιούλ</td>
<td>-2,46</td>
<td>-2,70</td>
<td>-2,49</td>
<td>-0,69</td>
<td>-1,49</td>
<td>-1,40</td>
<td>-1,51</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-2,72</td>
<td>-3,16</td>
<td>-2,78</td>
<td>-0,85</td>
<td>0,41</td>
<td>1,50</td>
<td>0,43</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-2,81</td>
<td>-3,27</td>
<td>-2,87</td>
<td>-0,83</td>
<td>4,85</td>
<td>8,24</td>
<td>5,01</td>
</tr>
<tr>
<td>Έτος</td>
<td>-5,52</td>
<td>-10,63</td>
<td>-5,99</td>
<td>-1,02</td>
<td>-7,36</td>
<td>-109,91</td>
<td>-8,57</td>
</tr>
</tbody>
</table>

Σχήμα 15.14: Μέσο ετήσιο υδατικό έλλειμμα για a) υφιστάμενη κατάσταση β) μελλοντική κατάσταση
Σχήμα 15.15: Μηνιαίο υδατικό ισοζύγιο μέσω υδρολογικού έτους του σενάριου SRES B1 2030-2050 για a) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) β) Σενάριο 2α γ) Σενάριο 2β και δ) Σενάριο 2γ.
15.3.2 Σενάριο κλιματικής αλλαγής SRES A1B

Το Σχήμα 15.16 δείχνει τη σύγκριση του υδατικού ισοζυγίου για το μέσο υδρολογικό έτος αναφορικά με το σενάριο SRES A1B για τα τέσσερα διαχειριστικά σενάρια της πρώτης Στρατηγικής Διαχείρισης (1, 1α, 1β, 1γ) ενώ στο Σχήμα 15.17 φαίνεται το αντίστοιχο υδατικό ισοζύγιο για τα διαχειριστικά σενάρια της δεύτερης Στρατηγικής Διαχείρισης (2, 2α, 2β, 2γ). Όσον αφορά τη Στρατηγική Διαχείρισης 1 η τιμή του μέσου ετήσιου υδατικού ελλείμματος είναι 149,70 hm³ (αύξηση 12,51% σε σχέση με την ιστορική περίοδο 1980-2000). Στη περίπτωση του σεναρίου 1α το υδατικό έλλειμμα αυξάνεται κατά 26,11%, ενώ η ανάλυση του σεναρίου 1β δείχνει ότι το υδατικό έλλειμμα αυξάνεται 13,76% συγκριτικά με την ιστορική περίοδο στα 124,58 hm³. Τελικά για το σενάριο 1γ εμφανίζεται αύξηση 3,24% στα 455,46 hm³.

Η ανάλυση των διαχειριστικών σεναρίων (2, 2α, 2β, 2γ) της Στρατηγικής Διαχείρισης 2 δείχνει αύξηση του μέσου ετήσιου υδατικού ελλείμματος 18,70% στα 93,11 hm³ συγκριτικά με την περίοδο 1980-2000. Στη περίπτωση του σεναρίου 2α το υδατικό έλλειμμα αύξηση 311,45%, στο σενάριο 2β 22,09% (συγκριτικά με την περίοδο 1980-2000) στα 78,97 hm³. Η αύξηση του υδατικού ελλείμματος για το σενάριο 2γ είναι 3,24% και το υδατικό έλλειμμα είναι 353,84 hm³.
Σχήμα 15.16: Μηνιαίο υδατικό ισοζύγιο μέσω υδρολογικού έτους του σενάριον SRES A1B 2030-2050 για α) Στρατηγική Διαχείρισης 1 (Επιχειρησιακό σενάριο 1) β) Σενάριο 1α γ) Σενάριο 1β και δ) Σενάριο 1γ
Πίνακας 15-6: Ποσοστιαίες μεταβολές υδατικού ελλείμματος σε σχέση με την ιστορική περίοδο

<table>
<thead>
<tr>
<th>Μήνας</th>
<th>Σεν. 1</th>
<th>Σεν. 1a</th>
<th>Σεν. 1b</th>
<th>Σεν. 2</th>
<th>Σεν. 2a</th>
<th>Σεν. 2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ</td>
<td>-1,97</td>
<td>-1,73</td>
<td>-1,94</td>
<td>-0,30</td>
<td>-5,65</td>
<td>-6,28</td>
</tr>
<tr>
<td>Νοε</td>
<td>-30,10</td>
<td>-39,14</td>
<td>-31,65</td>
<td>-2,49</td>
<td>-216,18</td>
<td>-290,99</td>
</tr>
<tr>
<td>Δεκ</td>
<td>-21,27</td>
<td>-18,28</td>
<td>-20,56</td>
<td>-10,79</td>
<td>-16,02</td>
<td>-14,27</td>
</tr>
<tr>
<td>Ιαν</td>
<td>-8,09</td>
<td>-7,33</td>
<td>-7,91</td>
<td>-15,84</td>
<td>-7,15</td>
<td>-6,55</td>
</tr>
<tr>
<td>Φεβ</td>
<td>-13,23</td>
<td>-10,80</td>
<td>-12,63</td>
<td>-11,57</td>
<td>-10,60</td>
<td>-8,97</td>
</tr>
<tr>
<td>Μαρ</td>
<td>-27,19</td>
<td>-15,38</td>
<td>-23,50</td>
<td>-5,18</td>
<td>-16,32</td>
<td>-11,02</td>
</tr>
<tr>
<td>Απρ</td>
<td>-26,97</td>
<td>0,00</td>
<td>-33,11</td>
<td>-4,76</td>
<td>-162,25</td>
<td>-42,60</td>
</tr>
<tr>
<td>Μάιος</td>
<td>-8,72</td>
<td>-16,47</td>
<td>-9,48</td>
<td>-1,66</td>
<td>-17,65</td>
<td>-147,25</td>
</tr>
<tr>
<td>Ιουν</td>
<td>-6,73</td>
<td>-9,59</td>
<td>-7,07</td>
<td>-1,52</td>
<td>-11,61</td>
<td>-22,33</td>
</tr>
<tr>
<td>Ιούλ</td>
<td>-4,12</td>
<td>-4,66</td>
<td>-4,20</td>
<td>-1,28</td>
<td>-3,31</td>
<td>-3,68</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-4,31</td>
<td>-5,02</td>
<td>-4,40</td>
<td>-1,36</td>
<td>-1,30</td>
<td>-0,66</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-4,20</td>
<td>-4,83</td>
<td>-4,28</td>
<td>-1,21</td>
<td>3,38</td>
<td>6,47</td>
</tr>
<tr>
<td>Έτος</td>
<td>-12,51</td>
<td>-26,11</td>
<td>-13,76</td>
<td>-3,24</td>
<td>-18,70</td>
<td>-311,45</td>
</tr>
</tbody>
</table>

Σχήμα 15.17: Μέσο ετήσιο υδατικό έλλειμμα για α) υφιστάμενη κατάσταση β) μελλοντική κατάσταση
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 15ο: Μελλοντικό υδατικό ισοζύγιο λεκάνης απορροής Κάρλας

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

Σχήμα 15.18: Μηνιαίο υδατικό ισοζύγιο μέσου υδρολογικού έτους του σενάριου SRES A1B 2030-2050 για α) Στρατηγική Διαχείρισης 2 (Επιχειρησιακό σενάριο 2) β) Σενάριο 2α γ) Σενάριο 2β και δ) Σενάριο 2δ

Institutional Repository - Library & Information Centre - University of Thessaly
01/11/2023 00:45:21 EET - 35.160.27.221
15.3.3 Σενάριο κλιματικής αλλαγής SRES A2

Το Σχήμα 15.19 δείχνει τη σύγκριση του υδατικού ισοζύγιου για το μέσο υδρολογικό έτος αναφορικά με το σενάριο SRES A1B για τα τέσσερα διαχειριστικά σενάρια της πρώτης Στρατηγικής Διαχείρισης (1, 1α, 1β, 1γ) ενώ στο Σχήμα 15.21 φαίνεται το αντίστοιχο υδατικό ισοζύγιο για τα διαχειριστικά σενάρια της δεύτερης Στρατηγικής Διαχείρισης (2, 2α, 2β, 2γ). Όσον αφορά τη Στρατηγική Διαχείρισης 1 η τιμή του μέσου ετήσιου υδατικού ελλείμματος είναι 154,68 hm³ (αύξηση 16,26% σε σχέση με την ιστορική περίοδο 1980-2000). Στη περίπτωση του σεναρίου 1α το υδατικό έλλειμμα αυξάνεται κατά 33,63%, ενώ η ανάλυση του σεναρίου 1β δείχνει ότι το υδατικό έλλειμμα αυξάνεται 17,85% συγκριτικά με την ιστορική περίοδο στα 138,52 hm³. Τελικά για το σενάριο 1γ εμφανίζεται αύξηση 4,19% στα 458,90 hm³.

Η ανάλυση των διαχειριστικών σεναρίων (2, 2α, 2β, 2γ) της Στρατηγικής Διαχείρισης 2 δείχνει αύξηση του μέσου ετήσιου υδατικού ελλείμματος 24,51% στα 97,68 hm³ συγκριτικά με την περίοδο 1980-2000. Στη περίπτωση του σεναρίου 2α το υδατικό έλλειμμα αύξηση 404,22%, στο σενάριο 2β 28,90% (συγκριτικά με την περίοδο 1980-2000) στα 83,38 hm³. Η αύξηση του υδατικού ελλείμματος για το σενάριο 2γ είναι 4,19% και το υδατικό έλλειμμα 357,08 hm³.
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

Κεφάλαιο 15ο:
Μελλοντικό υδατικό ισοζύγιο λεκάνης απορρόής Κάρλας

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

346

Σχήμα 15.19: Μηνιαίο υδατικό ισοζύγιο μέσω υδρολογικού έτους του σεναρίου SRES A2 2030-2050 για α) Στρατηγική Διαχείρισης 1 (Επιχειρησιακό σενάριο) 1 β) Σενάριο 1α γ) Σενάριο 1β και δ) Σενάριο 1γ
Πίνακας 15-7: Ποσοστιαίες μεταβολές υδατικού ελλείμματος σε σχέση με την ιστορική περίοδο

<table>
<thead>
<tr>
<th>Σεν. 1</th>
<th>Σεν. 1α</th>
<th>Σεν. 1β</th>
<th>Σεν. 2</th>
<th>Σεν. 2α</th>
<th>Σεν. 2β</th>
<th>Σεν. 2γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οκτ</td>
<td>-2,70</td>
<td>-2,37</td>
<td>-2,66</td>
<td>-0,41</td>
<td>-6,76</td>
<td>-7,38</td>
</tr>
<tr>
<td>Δεκ</td>
<td>-34,56</td>
<td>-29,79</td>
<td>-33,41</td>
<td>-17,53</td>
<td>-26,06</td>
<td>-23,28</td>
</tr>
<tr>
<td>Ιαν</td>
<td>-11,28</td>
<td>-10,23</td>
<td>-11,04</td>
<td>-22,10</td>
<td>-9,97</td>
<td>-9,14</td>
</tr>
<tr>
<td>Φεβ</td>
<td>-7,11</td>
<td>-5,42</td>
<td>-6,69</td>
<td>-6,21</td>
<td>-5,52</td>
<td>-4,36</td>
</tr>
<tr>
<td>Μαρ</td>
<td>-23,26</td>
<td>-12,55</td>
<td>-19,92</td>
<td>-4,43</td>
<td>-13,66</td>
<td>-8,78</td>
</tr>
<tr>
<td>Απρ</td>
<td>-44,05</td>
<td>0,00</td>
<td>54,29</td>
<td>-8,02</td>
<td>-239,78</td>
<td>-64,05</td>
</tr>
<tr>
<td>Μάι</td>
<td>-12,63</td>
<td>-24,16</td>
<td>-13,76</td>
<td>-2,46</td>
<td>-23,61</td>
<td>-197,71</td>
</tr>
<tr>
<td>Ιου</td>
<td>-8,06</td>
<td>-11,08</td>
<td>-8,42</td>
<td>-1,62</td>
<td>-13,14</td>
<td>-24,38</td>
</tr>
<tr>
<td>Ιουλ</td>
<td>-5,77</td>
<td>-6,55</td>
<td>-5,87</td>
<td>-1,83</td>
<td>-5,09</td>
<td>-5,86</td>
</tr>
<tr>
<td>Αυγ</td>
<td>-6,01</td>
<td>-7,05</td>
<td>-6,14</td>
<td>-1,94</td>
<td>-3,14</td>
<td>-3,03</td>
</tr>
<tr>
<td>Σεπ</td>
<td>-5,98</td>
<td>-6,98</td>
<td>-6,12</td>
<td>-1,76</td>
<td>1,43</td>
<td>3,92</td>
</tr>
<tr>
<td>Έτος</td>
<td>-16,26</td>
<td>-33,63</td>
<td>-17,85</td>
<td>-4,19</td>
<td>-24,51</td>
<td>-404,22</td>
</tr>
</tbody>
</table>

Σχήμα 15.20: Μέσο ετήσιο υδατικό έλλειμμα για α) υφιστάμενη κατάσταση β) μελλοντική κατάσταση
Διδακτορική Διατριβή: Τζαμύρας Ιωάννης

-Κεφάλαιο 15ο: -Μελλοντικό υδατικό ισοζύγιο λεκάνης απορρόής Κάρλας

Σχήμα 15.21: Μηνιαίο υδατικό ισοζύγιο μέσου υδρολογικού έτους του σεναρίου SRES A2 2030-2050 για α) Επιχειρησιακό σενάριο 2β) Σενάριο 2γ) Σενάριο 2β και δ) Σενάριο 2γ

Πανεπιστήμιο Θεσσαλίας
Τμήμα Πολιτικών Μηχανικών

Institutional Repository - Library & Information Centre - University of Thessaly
01/11/2023 00:45:21 EET - 35.160.27.221
15.4 ΓΕΝΙΚΑ ΣΧΟΛΙΑ

Η εκτίμηση του υδατικού ισοζύγιου σε μηνιαίο και ετήσιο βήμα για τα τρία σενάρια (SRESB1, SRESA1B και SRESA2) και τις δύο συνθετικές περιόδους κλιματικής αλλαγής (2030-2050 και 2080-2100). Το Σχήμα 15.22 απεικονίζει τα μηνιαία υδατικά ισοζύγια των δύο τον δύο Στρατηγικών Διαχείρισης υπό το πρίσμα του σεναρίου SRESA2 κατά τη διάρκεια της περιόδου 2080-2100. Το σήμα κλιματικής μεταβολής είναι μικρό και στις τρεις περιπτώσεις των σεναρίων. Από την άλλη, η προβλεπόμενη έναρξη λειτουργίας του ταμιευτήρα για τη δεύτερη Στρατηγική Διαχείρισης - μελλοντική κατάσταση (2, 2a, 2b, 2c) προβάλλει σημαντική βελτίωση του υδατικού ισοζύγιου της λεκάνης απορροής κατά τη διάρκεια όλου του έτους.

Οι αναφορές κατά το σενάριο SRESA2 (το εντονότερο από τα τρία σενάρια κλιματικής αλλαγής) στην ανάλυση του διαχειριστικού σενάριο 2a παρατηρήθηκε σημαντική βελτίωση του υδατικού ισοζύγιου. Ο Πίνακας 15.8 δείχνει το τελικό υπολογισμένο υδατικό δυναμικό ανάλογα με τις δύο Στρατηγικές Διαχείρισης τα τρία σενάρια (SRES B1, SRES A1B, SRESA2) και τις δύο συνθετικές περιόδους κλιματικής αλλαγής.

Πίνακας 15-8: Σύγκριση αποτελεσμάτων υδατικού δυναμικού

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Α) Υφιστάμενα κατάσταση - Σενάριο 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Επιφανειακό Υδατικό Δυναμικό</td>
<td>111,2</td>
<td>111,2</td>
<td>111,2</td>
<td>111,2</td>
<td>111,2</td>
<td>111,2</td>
</tr>
<tr>
<td>Υπάρχοντα υδατικό δυναμικό</td>
<td>103,1</td>
<td>101,8</td>
<td>98,8</td>
<td>95,5</td>
<td>98,3</td>
<td>92,5</td>
</tr>
<tr>
<td>Συνολικό ισοζύγιο δυναμικό</td>
<td>214,3</td>
<td>213,0</td>
<td>210,0</td>
<td>206,7</td>
<td>209,5</td>
<td>203,7</td>
</tr>
<tr>
<td>Β) Μελλοντική κατάσταση - Σενάριο 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Εκμεταλλεύσιμος όγκος ημερησίως</td>
<td>79,2</td>
<td>79,2</td>
<td>79,2</td>
<td>79,2</td>
<td>79,2</td>
<td>79,2</td>
</tr>
<tr>
<td>Επιφανειακό Υδατικό Δυναμικό</td>
<td>111,2</td>
<td>111,2</td>
<td>111,2</td>
<td>111,2</td>
<td>111,2</td>
<td>111,2</td>
</tr>
<tr>
<td>Υπάρχοντα υδατικό δυναμικό</td>
<td>103,1</td>
<td>101,8</td>
<td>98,8</td>
<td>95,5</td>
<td>98,3</td>
<td>92,5</td>
</tr>
<tr>
<td>Υπάρχοντα υδατικό δυναμικό από ταμιευτήρα</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
</tr>
<tr>
<td>Συνολικό επιφανειακό υδατικό δυναμικό</td>
<td>190,4</td>
<td>190,4</td>
<td>190,4</td>
<td>190,4</td>
<td>190,4</td>
<td>190,4</td>
</tr>
<tr>
<td>Συνολικό υπάρχοντα υδατικό δυναμικό</td>
<td>121,1</td>
<td>119,8</td>
<td>116,8</td>
<td>113,5</td>
<td>116,3</td>
<td>110,5</td>
</tr>
<tr>
<td>Συνολικό ισοζύγιο δυναμικό</td>
<td>311,5</td>
<td>310,2</td>
<td>307,2</td>
<td>303,9</td>
<td>306,7</td>
<td>300,9</td>
</tr>
</tbody>
</table>

Θα πρέπει να επιμεθύει ότι το υδατικό υπολογίστηκε και για τα οκτώ (8) διαχειριστικά σενάρια αλλά για οικονομικά χρόνο γίνεται περιγραφή των αποτελεσμάτων μόνο για τις δύο βασικές Στρατηγικές Διαχείρισης. Μπορεί κάποιος να παρατηρήσει ότι η ανάλυση της ιστορικής περίοδου αναφοράς (1980-2000) δείχνει στην περίπτωση του σεναρίου 1 ότι το συνολικό υδατικό δυναμικό της λεκάνης απορροής της Κάρλας είναι 214,3 hm3 ενώ στην
περίπτωση του σεναρίου 2 το υδατικό δυναμικό ανέρχεται στα 311,5 hm³. Η διακόμανση του υδατικού δυναμικού είναι περίπου ίδια με τη διακόμανση των σεναρίων κλιματικής αλλαγής (αναφορικά με την ένταση τους, B1 το ηπίοτερο, A2 το εντονότερο) και για τις δύο συνθετικές περιόδους. Ο Πίνακας 15.9 απεικονίζει τη συγκεντρωτική κατάταξη των αποτελεσμάτων του μέσου ετήσιου υδατικού ισοζυγίου της λεκάνης απορροής της Κάρλας για την ιστορική περίοδο αναφοράς και τις δύο συνθετικές περιόδους κλιματικής αλλαγής. Κατά τη διάρκεια της ιστορικής περιόδου 1980-2000 η λεκάνη απορροής παρουσίασε υδατικό έλλειμμα για το διαχειριστικό σενάριο 1 (-133,06 hm³) και για το διαχειριστικό σενάριο 2 (-78,45 hm³).

Πίνακας 15-9: Σύγκριση αποτελεσμάτων μελλοντικού υδατικού ισοζυγίου

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Σενάριο 1</td>
<td>-133,06</td>
<td>-133,8</td>
<td>-138,4</td>
<td>-141,3</td>
<td>-140,4</td>
<td>-149,7</td>
</tr>
<tr>
<td>Σενάριο 1st</td>
<td>-54,55</td>
<td>-54,5</td>
<td>-58,7</td>
<td>-61,7</td>
<td>-60,4</td>
<td>-68,8</td>
</tr>
<tr>
<td>Σενάριο 1st+</td>
<td>-117,54</td>
<td>-118,2</td>
<td>-122,6</td>
<td>-125,6</td>
<td>-124,6</td>
<td>-133,7</td>
</tr>
<tr>
<td>Σενάριο 1st−</td>
<td>-442,98</td>
<td>-442,4</td>
<td>-446,3</td>
<td>-449,3</td>
<td>-447,6</td>
<td>-455,5</td>
</tr>
<tr>
<td>Σενάριο 2</td>
<td>-78,45</td>
<td>-78,0</td>
<td>-82,4</td>
<td>-85,3</td>
<td>-84,2</td>
<td>-93,1</td>
</tr>
<tr>
<td>Σενάριο 2st</td>
<td>-4,01</td>
<td>-2,9</td>
<td>-6,9</td>
<td>-10,0</td>
<td>-8,4</td>
<td>-16,5</td>
</tr>
<tr>
<td>Σενάριο 2st+</td>
<td>-64,69</td>
<td>-64,2</td>
<td>-68,4</td>
<td>-71,4</td>
<td>-70,2</td>
<td>-79,0</td>
</tr>
<tr>
<td>Σενάριο 2st−</td>
<td>-342,72</td>
<td>-341,1</td>
<td>-344,9</td>
<td>-348,0</td>
<td>-346,2</td>
<td>-353,8</td>
</tr>
</tbody>
</table>

Ακόμη, από την ανάλυση των αποτελεσμάτων προέκυψε ότι η επίδραση του σηματος της κλιματικής αλλαγής είναι ήπια και αντίστοιχα είναι ήπια η επίδραση της στους υδάτινους πόρους (επιφανειακούς & υπόγειους) της λεκάνης απορροής της Κάρλας. Βασική παρατήρηση αποτελεί το γεγονός ότι, τα διαχειριστικά σενάρια έχουν μεγαλύτερη επίδραση στους υδατικούς πόρους και στο ισοζυγίο συγκριτικά με τα κλιματικά. Είναι προφανές ότι η ομάδα σεναρίων 2 (σενάριο 2 - σενάριο 2st) είναι σε θέση να αναπτύξει τις προϋποθέσεις υδατικού πλεονάσματος τόσο σε συνθήκες παρόντος αλλά και μελλοντικού κλίματος.
16 ΑΝΑΛΥΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΤΩΝ ΚΛΙΜΑΤΙΚΩΝ ΜΟΝΤΕΛΩΝ

Η ανάλυση αβεβαιότητας διερεύνα την αβεβαιότητα των μεταβλητών που χρησιμοποιούνται σε προβλήματα λήψης αποφάσεων στα οποία οι παρατηρήσεις και τα μοντέλα αντιπροσωπεύουν τη βάση των γνώσεων. Με άλλα λόγια, η ανάλυση αβεβαιότητας στοχεύει να συμβάλει τεχνικά στη λήψη αποφάσεων μέσω του ποσοτικού προσδιορισμού των αβεβαιοτήτων στις σχετικές μεταβλητές. Στα φυσικά πειράματα η ανάλυση αβεβαιότητας ή η πειραματική αξιολόγηση αβεβαιότητας, ασχολείται με την αξιολόγηση της αβεβαιότητας σε μια μέτρηση. Ένα πείραμα που έχει σχεδιαστεί για τον προσδιορισμό ενός αποτελέσματος, την επίδειξη ενός νόμου ή την εκτίμηση της αριθμητικής τιμής μιας φυσικής μεταβλητής θα επηρεαστεί από σφάλματα λόγω οργάνων, μεθοδολογίας, παρουσίας συγχύσεων και ούτω καθεξής. Απαιτούνται πειραματικές εκτιμήσεις αβεβαιότητας για την αξιολόγηση της εμπιστοσύνης στα αποτελέσματα.

Όμως σε αριθμητικά πειράματα η ανάλυση αβεβαιότητας μοντελοποίησης βασίζεται σε μια σειρά τεχνικών για τον προσδιορισμό της αξιοπιστίας των προβλέψεων του μοντέλου, λαμβάνοντας υπόψη διάφορες πηγές αβεβαιότητας στην εισαγωγή και το σχεδιασμό του μοντέλου. Ένα σχετικό πεδίο είναι η ανάλυση ευαισθησίας. Μία βαθμονομημένη παράμετρος δεν αντιπροσωπεύει απαραίτητα την πραγματικότητα, καθώς η πραγματικότητα είναι πολύ πιο περιπλοκή. Κάθε προβλέψη έχει τις δικές της πολυπλοκότητες της πραγματικότητας που δεν μπορούν να αναπαρασταθούν με μοναδικό τρόπο στο βαθμονομημένο μοντέλο. Επομένως, υπάρχει πιθανό σφάλμα. Ένα τέτοιο σφάλμα πρέπει να λαμβάνεται υπόψη κατά τη λήψη αποφάσεων διαχείρισης βάσει των αποτελεσμάτων του μοντέλου.

Στη προκειμένη περίπτωση του συστήματος προσομοίωσης η αβεβαιότητα εντοπίζεται κυρίως σε δύο πεδία. Το πρώτο έχει να κάνει με την προτεινόμενη μεθοδολογία στατιστικού καταβιβασμού κλίμακας και τη διερεύνηση των αποτελεσμάτων του συστήματος με βάση την έξοδη διαφορετικής μεθόδου καταβιβασμού κλίμακας. Από την άλλη το δεύτερο πεδίο αβεβαιότητας του συστήματος υπεισέρχεται από την αβεβαιότητα του παγκόσμιου κλιματικού μοντέλου (GCM) και είναι εμφανής η απαίτηση για τη διερεύνηση των αποτελεσμάτων με τη χρήση εξόδων διαφορετικών παγκόσμιων κλιματικών μοντέλων. Σε αυτή τη διατριβή η ανάλυση αβεβαιότητας του συστήματος στηρίζεται σε μια διαφορετική μεθοδολογία καταβιβασμού κλίμακας και σε αποτελέσματα πέντε διαφορετικών παγκόσμιων κλιματικών μοντέλων.
16.1 ΠΕΔΙΟ ΑΒΕΒΑΙΟΤΗΤΑΣ ΠΑΓΚΟΣΜΙΟΥ ΚΛΙΜΑΤΙΚΟΥ ΜΟΝΤΕΛΟΥ

Όπως αναφέρθηκε, στο παρόν κεφάλαιο χρησιμοποιήθηκαν πέντε διαφορετικά παγκόσμια μοντέλα κυκλοφορίας για τη διερεύνηση της αβεβαιότητας. Η χρήση πληθώρας προσομοιώσεων είναι σαφώς πιο αναλυτική μέθοδος δεδομένου ότι η μεμονωμένη προσομοίωση συνήθως παρουσιάζει πολλά και διαφορετικά πεδία αβεβαιότητας ιδιαίτερα σε χωρικό επίπεδο (Παυλίδης, 2015). Οι πολλές προσομοιώσεις, αναλύοντας τις διαφοροποιήσεις παραγόντων που ενδέχεται να εμφανίζουν αβεβαιότητα, και με αυτό τον τρόπο αποτυπώνονται τα όρια εμπιστοσύνης στο στοιχείο αβεβαιότητας μελλοντικών συνθηκών (Kerr, 2013). Χαρακτηριστικά προγράμματα που περιέχουν σύνολα προσομοιώσεων από διαφορετικά μοντέλα είναι το ENSEMBLE και το διάδρομο πρόγραμμα CORDEX από το Παγκόσμιο πρόγραμμα του Παγκόσμιου Προγράμματος για το κλίμα (WRCP), το Διεθνές Συμβούλιο επιστήμης (ICSU), τον Παγκόσμιο Μετεωρολογικό Οργανισμό (WMO), και τη Διακυβερνητική Ωκεανογραφική Επιτροπή (IOC of UNESCO). Ειδικότερα το CORDEX (Coordinated Regional climate Downscaling Experiment) έχει αντικειμενικό σκοπό την εξέλιξη, την συντονισμό και τη συστηματοποίηση της έρευνας και τη διαχείριση κλιματικής περιodyκής προσομοίωσης (Παυλίδης, 2015; Hourdin et al., 2016). Στα πλαίσια της εν λόγω διατριβής έγινε χρήση των παρακάτω παγκόσμιων κλιματικών μοντέλων:

- CNRM-CM5.1
- EC-EARTH.2
- IPSL-CM5
- HadGEM2-ES
- MPI-ESM

16.2 ΔΙΟΡΘΩΣΗ ΜΕΡΟΛΗΨΙΑΣ ΤΩΝ GCMs

Η έξοδος των πέντε παγκόσμιων κλιματικών μοντέλων από 10 προσομοιώσεις με RCMs, (δυναμικός καταβιβασμός κλίμακας) στα σημαίνονται η ιστορική περίοδος αναφοράς ήταν την 30-ετία 1960-1990 ενώ τα μοντέλα εφαρμόστηκαν για την περίοδο 2006-2100. Τα δεδομένα έξοδος θερμοκρασίας και βροχόπτωσης που χρησιμοποιήθηκαν στην παρούσα διατριβή προέρχονται από το πρόγραμμα Data Extraction Application for Regional Climate που αναπτύχθηκε στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (DearClima, 2018) με βάση τα Σενάρια Εκπομπών Representative Concentration Pathways (RCPs) (Moss et al., 2010), για το δυναμικό καταβιβασμό κλίμακας με χωρικά κλιματικά μοντέλα (RCMs) και τη
διόρθωση μεροληψίας των μοντέλων παγκόσμιας κυκλοφορίας (GCMs). Ο πίνακας 16.1 ταξινομεί τις προσομοιώσεις με RCMs που αντιστοιχούν σε κάθε GCM.

Πίνακας 16-1: Αντιστοίχηση των Χωρικών Κλιματικών Μοντέλων (RCMs) ανάλογα με το Παγκόσμιο Κλιματικό Μοντέλο (GCM) για το οποίο χρησιμοποιήθηκαν

<table>
<thead>
<tr>
<th>GCMs</th>
<th>RCMs</th>
<th>Φορέας</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNRM-CM5.1</td>
<td>CLMcom-CLM4-B-17</td>
<td>CLM Community (CLMCOM)</td>
</tr>
<tr>
<td></td>
<td>CNRM-ALADINS5</td>
<td>Centre National de Recherches Météorologiques (CNRM)</td>
</tr>
<tr>
<td></td>
<td>SMHI-RCA4</td>
<td>Swedish Meteorological and Hydrological Institute (SMHI)</td>
</tr>
<tr>
<td>EC-EARTH.2</td>
<td>KNMI-RACMO22E</td>
<td>Royal Netherlands Meteorological Institute (KNMI)</td>
</tr>
<tr>
<td></td>
<td>IPSL-INERIS-WRF331F</td>
<td>Institut Pierre Simon Laplace/Institut National de l’Environnement Industriel et des Risques (IPSL-INERIS)</td>
</tr>
<tr>
<td>IPSL-CM5</td>
<td>SMHI-RCA4</td>
<td>Swedish Meteorological and Hydrological Institute (SMHI)</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>CLMcom-CLM4-B-17</td>
<td>CLM Community (CLMCOM)</td>
</tr>
<tr>
<td></td>
<td>SMHI-RCA4</td>
<td>Swedish Meteorological and Hydrological Institute (SMHI)</td>
</tr>
<tr>
<td></td>
<td>CLMcom-CLM4-B-17</td>
<td>CLM Community (CLMCOM)</td>
</tr>
<tr>
<td>MPI-ESM</td>
<td>MPI-CS-CREM0209</td>
<td>Helmholt-Zentrum Geesthacht, Climate Service Center, Max Planck Institute for Meteorology</td>
</tr>
</tbody>
</table>

Τα δεδομένα εξόδου βροχόπτωσης και θερμοκρασίας των παραπάνω προσομοιώσεων μέσω του προγράμματος DearClima αναφέρονται στα αποτελέσματα των σεναρίων RCP2.6, RCP4.5 και RCP8.5. Το ΣΠΙ εφαρμόστηκε για σενάρια κλιματικής αλλαγής προηγούμενης γενιάς (SRES emission scenarios), δεδομένου όμως ότι αναπτύχθηκαν τα RCPs κρίθηκε σκόπιμο το πεδίο αβεβαιότητας να διερευνηθεί σύμφωνα με τις προβολές των σεναρίων αυτών. Επιπλέον, κατά την εφαρμογή του συστήματος για τα σενάρια εκπομπών SRES η ανάλυση έγινε για τρία σενάρια SRES B1, A1B και A2 (δύο ακραία και ένα μέτριο) από άπους σήματος κλιματικής αλλαγής. Από την άλλη η διαθέσιμη δεδομένα από το πρόγραμμα DearClima υπήρχαν για τα σενάρια RCP2.6, RCP4.5 και RCP8.5. Επιλέχθηκε λοιπόν, το ήπιο σενάριο και στις δύο ομάδες σεναρίων, οπότε η σύγκριση των παγκόσμιων κλιματικών μοντέλων πραγματοποιείται για το SRES B1 και το RCP4.5. Στο Σχήμα 16.1 φαίνεται η διακύμανση των εκπομπών διοξειδίου του άνθρακα τόσο για τα προηγούμενης γενιάς σενάρια SRES όσο και για τα πιο πρόσφατα RCPs.
Σχήμα 16.1: Ιστορική εξέλιξη και προβολή στο μέλλον εκπομπών διοξειδίου του άνθρακα για α) σενάρια SRES και β) σενάρια RCPs

Ακόμη δεδομένου ότι η βραχυπρόθεσμη περίοδος (2030-2050) κλιματικής αλλαγής για την οποία εφαρμόστηκε το ΣΠΔ (Σύστημα Προσομοίωσης Λεκάνης Απορροής) είναι μια περίοδος στην οποία το σήμα της κλιματικής αλλαγής είναι μέτριο επιλέχθηκε η μακροπρόθεσμη κλιματική περίοδος (2080-2100) για να εφαρμοστούν τα αποτελέσματα των πέντε Παγκόσμιων Κλιματικών Μοντέλων (GCMs).

16.3 ΜΕΤΑ-ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΞΟΔΟΥ RCM

Ο αντίκτυπος της κλιματικής αλλαγής στους υδάτινους πόρους εκτιμάται συνήθως σε τοπική κλίμακα. Ωστόσο, τα χωρικά κλιματικά μοντέλα (RCMs) είναι γνωστά ότι παρουσιάζουν συστηματικές προκαταλήψεις. Ως εκ τούτου, οι προσομοιώσεις με RCM πρέπει να υποβληθούν σε επεξεργασία μετά την παραγωγή αξιοπιστών εκτιμήσεων σχετικά με το κλίμα χωρικής-περιοχικής κλίμακας. Οι δημοφιλείς προσεγγίσεις μετά την επεξεργασία βασίζονται σε στατιστικούς μετασχηματισμούς, οι οποίοι προσπαθούν να προσαρμόσουν την κατανομή των δεδομένων των μοντέλων μέσα ώστε να μοιάζει πολύ με την παρατηρούμενη κλιματολογία. Ωστόσο, η ποικιλία των προτεινόμενων μεθόδων καθιστά δύσκολη την επιλογή των βέλτιστων τεχνικών και ως εκ τούτου υπάρχει ανάγκη για αποσφιγήση. Σε αυτό το σημείο, οι στατιστικοί μετασχηματισμοί για την έξοδο RCM μετά την επεξεργασία εξετάζονται και ταξινομούνται σε (1) μετασχηματισμούς που προέρχονται από από την κατανομή, (2) παραμετρικούς μετασχηματισμούς και (3) μη παραμετρικούς μετασχηματισμούς, οι καθένας διαφέρει σε σχέση με τις υποκειμενες παραδογχός του.
16.3.1 Στατιστικοί μετασχηματισμοί

Οι στατιστικοί μετασχηματισμοί προσπαθούν να βρουν μια συνάρτηση \(h \) που χαρτογραφεί μια προσομοιωμένη μεταβλητή \(P_m \) έτσι ώστε η νέα κατανομή της να ισούται με την κατανομή της παρατηρούμενης μεταβλητής \(P_0 \). Στο πλαίσιο αυτής της εργασίας, οι \(P_0 \) και \(P_m \) υποδηλώνουν την παρατηρημένη και προσομοιωμένη βροχόπτωση, αντίστοιχα. Ακολουθώντας τους Piani et al. (2010β), αυτός ο μετασχηματισμός μπορεί γενικά να διατυπωθεί ως:

\[
P_0 = h(P_m) \tag{16.1}
\]

Αντίστοιχα για τη θερμοκρασία εκφράζεται ως εξής:

\[
T_0 = h(T_m) \tag{16.2}
\]

Οι στατιστικοί μετασχηματισμοί είναι μια εφαρμογή του ολοκληρωμένου μετασχηματισμού πιθανότητας (Angus, 1994) και εάν η κατανομή της μεταβλητής ενδιαφέροντος είναι γνωστή, ο μετασχηματισμός ορίζεται ως:

\[
P_0 = F_0^{-1}(F_m(P_m)) \tag{16.3}
\]

Όπου \(F_m \) είναι η αθροιστική συνάρτηση κατανομής και όπου \(F_0^{-1} \) η αντίστροφη αθροιστική συνάρτηση κατανομής που αντιστοιχεί στη παρατηρημένη βροχόπτωση \(P_0 \). Ομοίως για τη θερμοκρασία έχουμε:

\[
T_0 = F_0^{-1}(F_m(T_m)) \tag{16.4}
\]

16.3.2 Μετασχηματισμοί που προέρχονται από την κατανομή (Distribution Derived Transformations, DIST)

Οι στατιστικοί μετασχηματισμοί μπορούν να επιτευχθούν χρησιμοποιώντας θεωρητικές κατανομές για την επίλυση της εξίσωσης 16.4. Αυτή η προσέγγιση έχει βρει ευρέολο εφαρμογή για την προσαρμογή προσομοιωμένης βροχόπτωσης (Ines και Hansen, 2006; Li et al., 2010; Piani et al., 2010a; Teutschbein και Seibert, 2012). Οι περισσότερες από αυτές τις μελέτες υποθέτουν ότι το \(F \) είναι ένα μείγμα της κατανομής Bernoulli και Gamma, όπου η ιανομή Bernoulli χρησιμοποιείται για τη μοντελοποίηση του πιθανότητας εμφάνισης αντικειμένων και η κατανομή γάμμα που χρησιμοποιείται για την προσομοίωση των εντάσεων υετού (Thom, 1968; Mooley, 1973; Cannon, 2008). Σε αυτή τη μελέτη, περαιτέρω
μίγματα, π.χ. κατανομή Bernoulli-Weibull, Bernoulli-Lognormal και Bernoulli-Exponential (Cannon, 2012), αξιολογούνται επίσης. Οι παράμετροι των κατανομών υπολογίζονται με μεθόδους μέγιστης πιθανότητας και για \(P_0 \) και \(P_m \) ανεξάρτητα.

16.3.3 Μη Παραμετρικοί μετασχηματισμοί

i) **Εμπειρικά εκατοστημόρια**

ii) **Εξομαλυντικά Πολυώνυμα (smoothing splines)**

Ο μετασχηματισμός (Εξ. 16.1) μπορεί επίσης να προσομοιωθεί χρησιμοποιώντας μη παραμετρική παλινδρόμηση. Προτείνεται η χρήση εξομαλυντικών πολυώνυμων (Hastie et al., 2001), αν και άλλες μη παραμετρικές μέθοδοι μπορεί να είναι εξίσου αποτελεσματικές. Όπως για τους παραμετρικούς μετασχηματισμούς πολυώνυμο εξομάλυνσης προσαρμόζεται μόνο στο κλάσμα του αντίστοιχου CDF στις παρατηρούμενες υγρές ημέρες και οι τιμές μοντέλου κάτω από αυτό ορίζονται στο μηδέν. Η εξομαλυντική παράμετρος του πολυώνυμου αναγνωρίζεται μέσω γενικευμένης διασταυρούμενης επαλήθευσης (cross-validation).

16.3.4 Παραμετρικοί μετασχηματισμοί

Η ποσοτική σχέση μπορεί να μοντελοποιηθεί απευθείας χρησιμοποιώντας παραμετρικούς μετασχηματισμούς. Στη παρούσα διατριβή διερευνήθηκε η καταλληλότητα των ακόλουθων παραμετρικών μετασχηματισμών:
\[
\begin{align*}
\bar{P}_0 &= bP_m \\
\bar{P}_0 &= a + bP_m \\
\bar{P}_0 &= bP_m^c \\
\bar{P}_0 &= b(P_m - x)^c \\
\bar{P}_0 &= (a + bP_m)(1 - e^{-(P_m-x)/\tau})
\end{align*}
\] (16.5) (16.6) (16.7) (16.8) (16.9)

Η απλή κλιμάκωση (Εξ. 16.5) χρησιμοποιείται τακτικά για να ρυθμίσει τη βροχόπτωση από τα RCM (Maraun et al., 2010) και συνδέεται στενά με την τοπική κλιμάκωση έντασης (Schmidli et al., 2006; Widmann et al., 2003). Οι υπόλοιποι μετασχηματισμοί (Εξ. 16.6 έως 16.9) χρησιμοποιήθηκαν όλοι από τους Piani et al. (2010β) και έχουν διερευνηθεί περαιτέρω από τους Dosio και Paruolo (2011). Ακολουθώντας τους Piani et al. (2010β), όλοι οι παραμετρικοί μετασχηματισμοί προσαρμόστηκαν στο κλάσμα της αθροιστικής συνάρτησης κατανομής (CDF) που αντιστοιχεί στις παρατηρούμενες υγρές ημέρες (Po> 0) ελαχιστοποίοντας το υπόλοιπο άθροισμα τετραγώνων. Οι προσομοιώμενες τιμές που αντιστοιχούν στο έξηρό μέρος της παρατηρούμενης αθροιστικής συνάρτησης κατανομής ρυθμίστηκαν στο μηδέν.

Στην παρούσα διατριβή ο μετασχηματισμός της εξίσωσης 16.7 χρησιμοποιήθηκε για την πασοκοτή χαρτογράφηση της βροχόπτωσης και θερμοκρασίας που προερχόταν από τα GCMs. Η βαθμονόμηση της μεθόδου στηρίζεται στα αποτελέσματα των παγκόσμιων κλιματικών μοντέλων για την περίοδο Οκτ.1980-Σεπ.2000. Στο σχήμα 16.2 παρουσιάζονται τα αποτελέσματα της διαδικασίας για τη βροχόπτωση στις δύο υψομετρικές ζώνες της λεκάνης της Κάρλας και εύκολα κάποιος συμπεραίνει ότι η μέθοδος λειτουργεί επαρκώς δεδομένου ότι όλα τα μοντέλα προσομοιώνουν με ικανοποιητικό τρόπο την παρατηρημένη βροχόπτωση. Ωστόσο, μια πιο προσεκτική ματά φανερώνει ότι η μέθοδος αποδίδει καλύτερα στην υψηλή υψομετρική ζώνη σε σχέση με την χαμηλή υψομετρική ζώνη καθώς σε αυτή τη ζώνη από το τρίτο τεταρτημόριο (75%) και μετά του διαγράμματος Box-Whisker τα παγκόσμια κλιματικά μοντέλα υποκειμονιά τη βροχόπτωση με μοναδική εξαίρεση ισος το μοντέλο IPSL.

Από την άλλη η εφαρμογή της μεθόδου για την μακροπρόθεσμη περίοδο 2080-2100 δείχνει αρκετά χρήσιμα συμπεράσματα. Το σχήμα 16.3 παρουσιάζει τα πολλαπλά διαγράμματα Box-Whisker για τη βροχόπτωση των δύο υψομετρικών ζώνων της λεκάνης απορροφητικής κατά την περίοδο 2080-2100. Είναι σαφές ότι τα μοντέλα ICHEC, HADLEY MPI προβάλλουν μικρή αύξηση της βροχόπτωσης ενώ τα μοντέλα CNRM και IPSL μείωσι για την μακροπρόθεσμη μελλοντική περίοδο και το κλιματικό σενάριο RCP4.5 κάτι που μπορεί κανείς να διακρίνει από το πρώτο (25%) και τρίτο (75%) τεταρτημόριο όπου φαίνεται ότι το εύρος μεταξύ των δύο έχει αυξηθεί στην περίπτωση των μοντέλων ICHEC, HADLEY MPI ενώ έχει μειωθεί για τα μοντέλα CNRM και IPSL.
Σχήμα 16.2: Πολλαπλά διαγράμματα Box-Whisker βροχόπτωσης για α) υψηλή υψομετρική ζώνη β) χαμηλή υψομετρική ζώνη για την περίοδο 1980-2000

Το μοντέλο IPSL προβάλλει τη μεγαλύτερη μείωση της βροχόπτωσης κάτι που φαίνεται από την ελάχιστη και μέγιστη τιμή, τον διάμεσο που είναι μικρότερος αλλά και στο ενδότεταρτημοριακό εύρος (interquantile range) που μειώνεται (εύρος 1α και 3α τεταρτημόριου).
Σχήμα 16.3: Πολλαπλά διαγράμματα Box-Whisker για a) Υψηλή υψομετρική ζώνη β) χαμηλή υψομετρική ζώνη για την βροχόπτωση της περιόδου 2080-2100

Όσον αφορά τη θερμοκρασία τα αποτελέσματα κατά τη βαθμονόμηση της μεθόδου παρουσιάζονται στο σχήμα 16.4. Είναι προφανές ότι τα μοντέλα CNRM, HADLEY και MPI υπερεκτιμούν τη παρατηρημένη θερμοκρασία της περιόδου 1980-2000. Από την άλλη τα μοντέλα ICHEC και IPSL φαίνεται ότι προσομοιώνουν την παρατηρημένη θερμοκρασία με αρκετά ικανοποιητικό τρόπο.
Σχήμα 16.4: Πολλαπλά διαγράμματα Box-Whisker θερμοκρασίας για α) υψηλή υψομετρική ζώνη β) χαμηλή υψομετρική ζώνη για την περίοδο 1980-2000

Η εφαρμογή της μεθόδου έγινε για την μακροπρόθεσμη περίοδο κλιματικής αλλαγής 2080-2100 και τα αποτελέσματα για τις δύο υψομετρικές ζώνες της περιοχής μελέτης παρουσιάζονται στο σχήμα 16.5. Είναι σαφές ότι και τα πέντε παγκόσμια κλιματικά μοντέλα προβάλλουν σημαντική αύξηση της θερμοκρασίας με μεγαλύτερη να είναι αυτή του μοντέλου HADLEY και μικρότερη του ICHEC και για τις δύο υψομετρικές ζώνες.
Σχήμα 16.5: Πολλαπλά διαγράμματα Box-Whisker θερμοκρασίας για α) υψηλή υψομετρική ζώνη β) χαμηλή υψομετρική ζώνη για την περίοδο 2080-2100

16.4 ΕΚΤΙΜΗΣΗ ΜΕΛΛΟΝΤΙΚΩΝ ΥΔΑΤΙΚΩΝ ΑΠΑΙΤΗΣΕΩΝ

Η διαδικασία που ακολουθήθηκε για την εκτίμηση των υδατικών απαιτήσεων με βάση τις προβολές των πέντε παγκόσμιων κλιματικών μοντέλων είναι η ίδια με αυτή της βασικής μεθόδου για αυτή διατριβή και έχει περιγραφεί εκτενώς σε προηγούμενο κεφάλαιο (11ο κεφάλαιο). Παρακάτω στα σχήματα 16.6-16.10 παρουσιάζονται οι υδατικές απαιτήσεις για τη λεκάνη απορροής Κάρλας για τα πέντε παγκόσμια κλιματικά μοντέλα με
βάση το κλιματικό σενάριο RCP4.5, τη Στρατηγική Διαχείρισης 2 (λειτουργία του ταμιευτήρα της Κάρλας) και το σενάριο 2a (μείωση των απολειών των καναλιών).

Σχήμα 16.6: Μηνιαίες και ετήσιες υδατικές απαιτήσεις με βάση το Παγκόσμιο Κλιματικό Μοντέλο CNRM (RCP4.5, 2080-2100) για α) Βασική Στρατηγική Διαχείρισης 2 (λειτουργία ταμιευτήρα Κάρλας) και β) Σενάριο 2a (Μείωση των απολειών των καναλιών)

Η ανάλυση των αποτελεσμάτων για το παγκόσμιο κλιματικό μοντέλο CNRM έδειξε ότι ορθώς το διαχειριστικό σενάριο 2a χρησιμοποιήθηκε για την ανάλυση αβεβαιότητάς του συστήματος αφού και στην περίπτωση του μοντέλου CNRM μειώνονται σημαντικά οι υδατικές απαιτήσεις από 360,84 hm³ του ήταν για τη βασική στρατηγική διαχείρισης μειώνονται σημαντικά σε 272,07 hm³. Από την άλλη αντίστοιχα είναι και τα αποτελέσματα για το μοντέλο ICHEC (Σχήμα 16.7) αφού για τη βασική στρατηγική Διαχείρισης 2 οι υδατικές απαιτήσεις της λεκάνης απορροφής είναι 340,88 hm³ ενώ για το σενάριο 2a είναι 253,34 hm³.
Παρόμοια είναι τα αποτελέσματα που προβάλλει το παγκόσμιο κλιματικό μοντέλο IPSL τα οποία παρουσιάζονται στο σχήμα 16.8. Οι υδατικές απαιτήσεις της λεκάνης Κάρλας για τη βασική στρατηγική διαχείρισης 2 είναι 378,22 hm³ ενώ για το σενάριο 2α είναι 284,92 hm³. Οι βελτιώσεις στις υδατικές απαιτήσεις είναι εξίσου σημαντικές ενώ η μεγαλύτερη βελτίωση παρουσιάζεται στη ζώνη του επιφανειακού αρδευτικού δικτύου του Τ.Ο.Ε.Β Πηνείου.
Σχήμα 16.8: Μηνιαίες και ετήσιες υδατικές απαιτήσεις με βάση το Παγκόσμιο Κλιματικό Μοντέλο IPSL (RCP4.5, 2080-2100) για a) Βασική Στρατηγική Διαχείρισης 2 (λειτουργία ταμειευτήρα Κάρλας) και β) Σενάριο 2α (Μείωση των απωλειών των καναλιών)

Από την άλλη τα αποτελέσματα για το παγκόσμιο κλιματικό μοντέλο MPI παρουσιάζονται στο σχήμα 16.9 όπου έκβαση μπορεί κανείς να συμπεράνει τη μείωση στις υδατικές απαιτήσεις που επιφέρει η εφαρμογή του σεναρίου 2α (284,92 hm³ ενώ για τη βασική στρατηγική διαχείρισης 2 είναι 381,93 hm³). Τέλος τα αποτελέσματα της ποσοτικής χαρτογράφησης για το μοντέλο HADLEY παρουσιάζονται στο σχήμα 16.10. Οι υδατικές απαιτήσεις για τη βασική στρατηγική διαχείρισης 2 είναι 381,93 hm³ ενώ για το σενάριο...
Σχήμα 16.9: Μηνιαίες και ετήσιες υδατικές απαιτήσεις με βάση το Παγκόσμιο Κλιματικό Μοντέλο MPI (RCP4.5, 2080-2100) για α) Βασική Στρατηγική Διαχείρισης 2 (λειτουργία ταμιευτήρα Κάρλας) και β) Σενάριο 2α (Μείωση των απωλειών των καναλιών).

Στον πίνακα 16.2 παρουσιάζονται τα συγκριτικά αποτελέσματα ανάμεσα στη μέθοδο ποσοτικής χαρτογράφησης για τα πέντε παγκόσμια κλιματικά μοντέλα και την βασική μεθοδολογία στατιστικού καταβιβασμού κλίμακας που εφαρμόστηκε σε αυτή τη διατριβή. Οι υδατικές απαιτήσεις για την ιστορική περίοδο 1980-2000 και τη βασική στρατηγική διαχείρισης 2 ήταν 322,5 hm³ ενώ για το σενάριο 2a ήταν 244,2 hm³. Αναφορικά με τη προβολή του μοντέλου CGCM2 και το κλιματικό σενάριο SRES A1B οι υδατικές απαιτήσεις για την περίοδο 2080-2100 είναι 335,1 hm³ και 253,6 hm³ αντίστοιχα. Κατά την ανάλυση αβεβαιότητας του συστήματος το παγκόσμιο κλιματικό μοντέλο που προβάλλει τις χαμηλότερες υδατικές απαιτήσεις είναι το ICHEC με 340,88 hm³ και 253,34 hm³ αντίστοιχα ενώ εκείνο με τις υψηλότερες υδατικές απαιτήσεις είναι το HADLEY με 440,97 hm³ και 330,28 hm³ αντίστοιχα.
Σχήμα 16.10: Μηνιαίες και ετήσιες υδατικές απαιτήσεις με βάση το Παγκόσμιο Κλιματικό Μοντέλο HADLEY (RCP4.5, 2080-2100) για α) Βασική Στρατηγική Διαχείρισης 2 (λειτουργία ταμιευτήρα Κάρλας) και β) Σενάριο 2β (Μείωση των απωλειών των καναλιών).

Πίνακας 16-2: Συγκριτικά αποτελέσματα της μεθόδου υδρογράφησης για τα πέντε παγκόσμια κλιματικά μοντέλα και το κλιματικό μοντέλο αναφοράς του ΣΠΛ (CGCM3).

<table>
<thead>
<tr>
<th>Κλιματικό Μοντέλο και Περίοδος Αναφοράς</th>
<th>Σενάριο 2: Μελλοντική κατάσταση (Λειτουργία ταμειυτήρα)</th>
<th>Σενάριο 2: Μελλοντική κατάσταση (Λειτουργία ταμειυτήρα και μείωση απωλειών)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Περίοδος 1980-2000 CGCM2 B1 2080-2100</td>
<td>322,5</td>
<td>244,2</td>
</tr>
<tr>
<td>CNRM-CM5.1 RCP 4.5 2080-2100</td>
<td>360,84</td>
<td>272,07</td>
</tr>
<tr>
<td>EC-EARTH.2 RCP 4.5 2080-2100</td>
<td>340,88</td>
<td>253,34</td>
</tr>
<tr>
<td>IPSL-CMS RCP 4.5 2080-2100</td>
<td>378,88</td>
<td>284,92</td>
</tr>
<tr>
<td>HadGEM2-ES RCP 4.5 2080-2100</td>
<td>440,97</td>
<td>330,28</td>
</tr>
<tr>
<td>MPI-ESM RCP 4.5 2080-2100</td>
<td>381,93</td>
<td>287,64</td>
</tr>
</tbody>
</table>
16.5 ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΔΡΑΥΛΙΚΗΣ ΕΝΟΤΗΤΑΣ

Μετά τον υπολογισμό των υδατικών απαιτήσεων για τα πέντε παγκόσμια κλιματικά μοντέλα έγινε εφαρμογή των μοντέλων της υδραυλικής ενότητας του ΣΠΑ για τη βασική στρατηγική διαχείρισης 2 (λειτουργία του ταμειατήρα της Κάρλας), το σενάριο 2(μείωση των απολεοντών καναλιών) αναφορικά με την μακροπρόθεσμη περίοδο και το κλιματικό σενάριο RCP4.5. Παρακάτω παρουσιάζονται συνοπτικά τα αποτελέσματα των επιμέρους μοντέλων του ΣΠΑ και τα επιμέρους υδατικά ισοζύγια.

16.5.1 Υδρολογικό ισοζύγιο

Οι υδατικές απαιτήσεις χρησιμοποιήθηκαν για τον υπολογισμό του υδρολογικού ισοζύγιου της λεκάνης απορροής της λίμνης Κάρλας. Στον Πίνακα 16.3 παρουσιάζεται το ετήσιο υδρολογικό ισοζύγιο για τα πέντε παγκόσμια κλιματικά μοντέλα (περίοδος 2080-2100 και κλιματικό σενάριο RCP4.5) και γίνεται σύγκριση με την ιστορική περίοδο 1980-2000 και το παγκόσμιο κλιματικό μοντέλο CGCM3 (SRES B1 2080-2100). Η μέση ετήσια θερμοκρασία της λεκάνης απορροής της λίμνης Κάρλας κατά την ιστορική περίοδο 1980-2000 ήταν 14,24 °C ενώ το μοντέλο CGCM3 προβάλλει αύξηση στους 14,70 °C. Αντίστοιχα η μεγαλύτερη αύξηση προβάλλεται από το μοντέλο HADLEY στους 17,94 °C ενώ το μοντέλο ICHEC (EC- EaRTH) δίνει τη μικρότερη αύξηση στους 14,95 °C. Αναφορικά με τη βροχόπτωση κατά την ιστορική περίοδο 1980-2000 παρατηρήθηκε στα 552,77 mm, το μοντέλο CGCM3 για την περίοδο 2080-2100 προβάλλει 530,95 mm τη μεγαλύτερη μείωση δίνει το μοντέλο HADLEY στα 403,48 mm και τη μικρότερη το IPSL στα 521.95 mm.

Πίνακας 16-3: Συγκριτικά αποτελέσματα του υδρολογικού μοντέλου UTHBAL για τα πέντε παγκόσμια κλιματικά μοντέλα και για το κλιματικό μοντέλο αναφοράς του ΣΠΑ (CGCM3).

<table>
<thead>
<tr>
<th>Πίνακας Results</th>
<th>Τ(°C)</th>
<th>P(mm)</th>
<th>PET(mm)</th>
<th>AET(mm)</th>
<th>Απορροή (mm)</th>
<th>Κατεύθυνση (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ιστορική περίοδος 1960-2009</td>
<td>14,17</td>
<td>573,58</td>
<td>786,67</td>
<td>418,56</td>
<td>64,64</td>
<td>84,48</td>
</tr>
<tr>
<td>Ιστορική περίοδος 1980-2000</td>
<td>14,24</td>
<td>552,77</td>
<td>806,41</td>
<td>407,42</td>
<td>59,78</td>
<td>81,35</td>
</tr>
<tr>
<td>CGCM3 SRES B1 2080-2100</td>
<td>14,5</td>
<td>546,08</td>
<td>797,06</td>
<td>404</td>
<td>58,5</td>
<td>80,5</td>
</tr>
<tr>
<td>CNRM-CMS-1.R CPER 4.5 2080-2100</td>
<td>15,83</td>
<td>493,08</td>
<td>867,06</td>
<td>369,25</td>
<td>49,95</td>
<td>70,41</td>
</tr>
<tr>
<td>EC-EARTH.2 RCP 4.5 2080-2100</td>
<td>16,59</td>
<td>470,42</td>
<td>908,82</td>
<td>352,29</td>
<td>47,65</td>
<td>67,17</td>
</tr>
<tr>
<td>IPSL-CM5 RCP 4.5 2080-2100</td>
<td>14,95</td>
<td>521,95</td>
<td>819,1</td>
<td>390,87</td>
<td>52,87</td>
<td>74,53</td>
</tr>
<tr>
<td>HadGEM2-ES RCP 4.5 2080-2100</td>
<td>17,94</td>
<td>403,48</td>
<td>1059,6</td>
<td>302,16</td>
<td>40,87</td>
<td>57,61</td>
</tr>
<tr>
<td>MPI-ESM RCP 4.5 2080-2100</td>
<td>16,75</td>
<td>465,85</td>
<td>917,73</td>
<td>348,86</td>
<td>47,19</td>
<td>66,52</td>
</tr>
</tbody>
</table>

Αναφορικά με την απορροή στην ιστορική περίοδο υπολογίστηκε στα 64,78 mm, το CGCM3 προβάλλει μείωση στα 53,79 mm όπως και τα πέντε παγκόσμια κλιματικά μοντέλα.
με το HADLEY να δίνει τη μεγαλύτερη μείωση στα 40,87 mm και το ICHEC τη μικρότερη στα 52,87 mm.

16.5.2 Υδατικό ισοζύγιο ταμιευτήρα

Ο υπολογισμός του υδατικού ισοζύγιου του ταμιευτήρα βασίστηκε στο μοντέλο ταμιευτήρα UTHRL και τα αποτελέσματα παρουσιάζονται στον Πίνακα 16.4. Όπως έχει ήδη αναφερθεί ο ταμιευτήρας προβλέπεται να τροφοδοτείται με 80 hm³ από τον Πηγαίο ποταμό. Η ανάλυση του παρακάτω πίνακα δείχνει ότι κατά τη διάρκεια της ιστορικής περιόδου 1980-2000 εισροές στον ταμιευτήρα ήταν 156,21 hm³ ενώ το μοντέλο CGCM3 προβάλλει για τη μακροπρόθεσμη περίοδο 2080-2100 και το κλιματικό σενάριο SRES A1B μείωση στα 149,04 hm³. Αναφορικά με τα υπόλοιπα πέντε παγκόσμια κλιματικά μοντέλα οι εισροές στον ταμιευτήρα προβάλλονται στα 144,12 hm³ για το CNRM, στα 147,87 hm³ για το ICHEC, στα 141,17 hm³ για το IPSL, στα 132,47 hm³ για το HADLEY και στα 140,58 hm³ για το MPI.

Πίνακας 16-4: Συγκριτικά αποτελέσματα του υδρολογικού μοντέλου UTHRL για τα πέντε παγκόσμια κλιματικά μοντέλα και για το κλιματικό μοντέλο αναφοράς του ΣΠΛ (CGCM3).

<table>
<thead>
<tr>
<th>Ιστορική περίοδος 1980-2000</th>
<th>Μελλοντική περίοδος 2080-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGCM3</td>
<td>SRES B1</td>
</tr>
<tr>
<td>RCP 4.5</td>
<td>RCP 4.5</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>MPI-ESM</td>
</tr>
<tr>
<td>Μέση επίδραση επίφανες απορροής</td>
<td>61,13</td>
</tr>
<tr>
<td>Επίθεση εγκατάσταση από ηλεκτρικό ποταμό</td>
<td>80,00</td>
</tr>
<tr>
<td>Μέση επίδραση βροχοπτώσης στον ταμιευτήρα</td>
<td>15,09</td>
</tr>
<tr>
<td>Μέσες επίθεσεις επιρροής στον ταμιευτήρα</td>
<td>156,21</td>
</tr>
<tr>
<td>Μέση επίδραση εξάπλωσης από τον ταμιευτήρα</td>
<td>34,62</td>
</tr>
<tr>
<td>Υπόγειες διαφυγές του ταμιευτήρα</td>
<td>18,00</td>
</tr>
<tr>
<td>Μέση επίδραση υποχρέωσης του ταμιευτήρα</td>
<td>70,70</td>
</tr>
<tr>
<td>Επίθεσης αντλήσεις για άρωμα</td>
<td>31,27</td>
</tr>
<tr>
<td>Μέσες επίθεσεις εκροής στον ταμιευτήρα</td>
<td>154,60</td>
</tr>
</tbody>
</table>

Από την άλλη, οι εκροές από τον ταμιευτήρα για την ιστορική περίοδο υπολογίστηκαν σε 154,60 hm³ ενώ το μοντέλο CGCM3 προβάλλει για τη μακροπρόθεσμη περίοδο 2080-2100 και το κλιματικό σενάριο SRES A1B μείωση στα 147,44 hm³. Οι μέσες επίθεσεις εκροές από τον ταμιευτήρα για το σενάριο RCP4.5 προβάλλονται να μειώνονται στα 142,98 hm³ για το μοντέλο CNRM, στα 146,34 hm³ για το ICHEC, στα 140,50 hm³ για το IPSL, στα 134,28 hm³ για το HADLEY και στα 140,02 hm³ για το MPI.

16.5.3 Μοντέλο υπόγειας υδρολογίας

Το μοντέλο υπόγειας υδρολογίας εφαρμόστηκε για τα πέντε παγκόσμια κλιματικά μοντέλα κατά τη μακροπρόθεσμη περίοδο 2080-2100 και το κλιματικό σενάριο RCP4.5. Ο πίνακας
16.5 παρουσιάζεται τα αποτελέσματα της μεθόδου ποσοτικής χαρτογράφησης για τα πέντε παγκόσμια κλιματικά μοντέλα. Είναι φανερό ότι για την περίπτωση της Στρατηγικής Διαχείρισης νερού 2 το πιο έντονο αποτέλεσμα προβάλλει το μοντέλο HADLEY με έλλειμμα -258,86 hm³ και ακολουθεί το MPI με 222,73 hm³, στη συνέχεια το IPSL με -220,45 hm³, ακολουθούμενο από το CNRM το οποίο προβάλλει έλλειμμα -209,76 hm³ και τελευταίο το ICHEC με -197,45 hm³. Από την άλλη, παρόμοια είναι τα αποτελέσματα και για το σενάριο 2α (μείωση των απωλειών των καναλιών σε συνδυασμό με λειτουργία του ταμειατήρα). Σε αυτό το σενάριο πάλι το μοντέλο HADLEY είναι το πιο έντονο με έλλειμμα -229,53 hm³, στη συνέχεια το MPI με -197,33 hm³, ακολουθούμενο από το IPSL με -195,30 hm³ και πιο ήπια αποτελέσματα εμφανίζουν το CNRM με -185,76 hm³ και το ICHEC με -174,78 hm³.

Πίνακας 16-5: Συγκριτικά αποτελέσματα του μοντέλου MODFLOW για τα πέντε παγκόσμια κλιματικά μοντέλα και το κλιματικό μοντέλο αναφοράς του ΣΠΛ (CGCM3).

<table>
<thead>
<tr>
<th>Μελλοντική περίοδος 2080-2100</th>
<th>CGCM3 SRES B1</th>
<th>CNRM-CM5.1 RCP 4.5</th>
<th>EC-EARTH.2 RCP 4.5</th>
<th>IPSL-CM5 RCP 4.5</th>
<th>HadGEM2-ES RCP 4.5</th>
<th>MPI-ESM RCP 4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατείσδυση</td>
<td>6,71</td>
<td>6,23</td>
<td>6,60</td>
<td>5,95</td>
<td>5,10</td>
<td>5,89</td>
</tr>
<tr>
<td>Επιστροφή από άρδευση</td>
<td>18,24</td>
<td>19,64</td>
<td>18,55</td>
<td>20,58</td>
<td>24,00</td>
<td>20,78</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>24,95</td>
<td>25,87</td>
<td>25,15</td>
<td>26,53</td>
<td>29,10</td>
<td>26,67</td>
</tr>
<tr>
<td>Αντλήση</td>
<td>218,82</td>
<td>235,63</td>
<td>222,60</td>
<td>246,98</td>
<td>287,96</td>
<td>249,40</td>
</tr>
<tr>
<td>Ισοζύγιο</td>
<td>-193,88</td>
<td>-209,76</td>
<td>-197,45</td>
<td>-220,45</td>
<td>-258,86</td>
<td>-222,73</td>
</tr>
<tr>
<td>Σενάριο 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατείσδυση</td>
<td>6,71</td>
<td>6,23</td>
<td>6,60</td>
<td>5,95</td>
<td>5,10</td>
<td>5,89</td>
</tr>
<tr>
<td>Επιστροφή από άρδευση</td>
<td>16,21</td>
<td>17,45</td>
<td>16,49</td>
<td>18,29</td>
<td>21,33</td>
<td>18,47</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>22,92</td>
<td>23,69</td>
<td>23,09</td>
<td>24,24</td>
<td>26,43</td>
<td>24,36</td>
</tr>
<tr>
<td>Αντλήση</td>
<td>194,51</td>
<td>209,45</td>
<td>197,86</td>
<td>219,54</td>
<td>255,96</td>
<td>221,69</td>
</tr>
<tr>
<td>Ισοζύγιο</td>
<td>-171,59</td>
<td>-185,76</td>
<td>-174,78</td>
<td>-195,30</td>
<td>-229,53</td>
<td>-197,33</td>
</tr>
</tbody>
</table>

Στο σχήμα 16.11 παρουσιάζεται γραφικά η σύγκριση για μια τυχαία τομή BB’ του υπόγειου υδροφορέα της λίμνης Κάρλας. Τα αποτελέσματα ακολουθούν την ένταση των πέντε παγκόσμιων κλιματικών μοντέλων με το μοντέλο HADLEY να προβάλλει τη μικρότερη ανύψωση της στάθμης του υπόγειου υδροφορέα και το ICHEC τη μεγαλύτερη.
Σχήμα 16.11: Σύγκριση υδραυλικού ύψους τομής BB’ υπόγειου υδροφορέα για τις προβολές των πέντε παγκόσμιων μοντέλων κυκλοφορίας για τη Στρατηγική Διαχείρισης 2.

Σχήμα 16.12: Χάρτες υδραυλικών υψών Στρατηγικής Διαχείρισης 2 για α) SRES B1 β) EC-EARTHL2 γ) CNRM-CM5.1 δ) IPSL-CM5 ε) MPI-ESM στ) Had.GEM2-ES

Ανάλογα είναι τα αποτελέσματα και στην χωρική κατανομή των υδραυλικών υψών του υπόγειου υδροφορέα που παρουσιάζεται στο σχήμα 16.12. Από την άλλη στον πίνακα 16.5
παρουσιάζονται τα αποτελέσματα του υδατικού ισοζύγιου για όλη τη λεκάνη απορροής της λίμνης Κάρλας τόσο για τη Στρατηγική Διαχείρισης 2 όσο και για το σενάριο 2α. Στην πρώτη περίπτωση το υδατικό ισοζύγιο της λεκάνης απορροής είναι ελλειμματικό κατά την ιστορική περίοδο κατά 74,60 hm³ ενώ το μοντέλο CGCM3 προβάλλει το μικρότερο έλλειμμα κατά 84,2 hm³ και το μοντέλο HADLEY το μεγαλύτερο κατά 122,51 hm³. Από την άλλη, η εφαρμογή του διαχειριστικού σεναρίου 2α βελτιώνει σημαντικά την κατάσταση αφού για την ιστορική περίοδο 1980-2000 το υδατικό έλλειμμα της λεκάνης απορροής ελαχιστοποιείται (-0,2 hm³) και τα παγκόσμια κλιματικά μοντέλα προβάλλουν εμφανώς μειωμένες τιμές έλλειμματος από -16,5 hm³ το CGCM3 ως -21,71 hm³ το HADLEY.

Πίνακας 16-6: Συγκριτικά αποτελέσματα του υδατικού ισοζύγιου (στατιστικά μέσο υδρολογικό έτος) της λεκάνης απορροής της λίμνης Κάρλας για τα πέντε παγκόσμια κλιματικά μοντέλα και το κλιματικό μοντέλο αναφοράς του ΣΠΛ (CGCM3).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Σενάριο 2α: Μελλοντική κατάσταση και μείωση των απωλειών των αρδευτικών καναλιών (Λειτουργία ταμιευτήρα)</td>
<td>-0,2</td>
<td>-8,4</td>
<td>-17,77</td>
<td>-16,78</td>
<td>18,62</td>
<td>-21,71</td>
</tr>
</tbody>
</table>

16.5.4 Σχεδιασμός αβεβαιότητας κλιματικών μοντέλων

Στο κεφάλαιο αυτό έγινε ανάλυση της αβεβαιότητας των κλιματικών μοντέλων χρησιμοποιώντας πέντε (5) διαφορετικά κλιματικά μοντέλα (GCMs+RCMs) και συγκρίνοντας τα αποτελέσματα με την αρχική προσομοίωση με το κλιματικό μοντέλο CGCM3. Τα αποτελέσματα έδειξαν ότι οι μελλοντικές εκτιμήσεις των υδρο-μετεωρολογικών μεταβλητών (βροχόπτωση και θερμοκρασία) επηρεάζουν σημαντικά και εισάγονται αβεβαιότητες στις επιφανειακές υδρολογικές διεργασίες, τη ζήτηση νερού για άρδευση και το συνολικό υδατικό ισοζύγιο της λεκάνης απορροής. Ωστόσο, η επίδραση των εκτιμήσεων και της αβεβαιότητας των κλιματικών μοντέλων μειώνεται στην προσομοίωση του υπόγειου υδροφορέα (Σχ. 16.11). Τα αποτελέσματα δείχνουν ότι για τον υποβαθμισμένο υδροφορέα της λεκάνης 1980-2000 η προσομοίωση με το μοντέλο CGCM3 κατά 74,60 hm³ ενώ οι προσομοιώσεις με το μοντέλο CGCM3 προβάλλουν αυξημένο μελλοντικό υδατικό έλλειμμα, το οποίο είναι το μικρότερο κατά 84,2 hm³ και το μικρότερο κατά 122,51 hm³. Από την άλλη, η εφαρμογή του διαχειριστικού σεναρίου 2α βελτιώνει σημαντικά την κατάσταση αφού για την ιστορική
περίοδο 1980-2000 το υδατικό έλλειμμα της λεκάνης απορροής ελαχιστοποιείται (-0,2 hm³) και οι προσομοιώσεις με τα παγκόσμια κλιματικά μοντέλα προβάλλουν εμφάνως μειωμένες μελλοντικές τιμές υδατικού ελλείμματος από -16,5 hm³ για το CGCM3 ως -21,71 hm³ για το HADLEY. Είναι σαφές ότι κατά τη διάρκεια των προσομοιώσεων η εφαρμογή των διαχειριστικών σεναρίων είναι αυτή που βελτιώνει σημαντικά το υδατικό ισοζύγιο της λεκάνης απορροής της λίμνης Κάρλας. Έτσι με την εφαρμογή του βέλτιστου συνδυασμού στρατηγικών διαχείρισης νερού (σενάριο 2α, λειτουργία του ταμιευτήρα & μείωση των απωλειών των καναλιών) η οποία κατά την ιστορική περίοδο έδωσε συνήθεις ελαχιστοποιήσεις του υδατικού ελλείμματος της λεκάνης απορροής, επιτυγχάνεται εξίσου αξιοσημείωτη βελτίωση στο υδατικό ισοζύγιο σε όλα τα χρησιμοποιούμενα κλιματικά μοντέλα. Το γεγονός αυτό επιβεβαιώνεται και από την ισιοφωτισμό των υδατικών απαιτήσεων της λεκάνης απορροής (Πίνακας 16-2) σε κάθε εφαρμοζόμενο κλιματικό μοντέλο αλλά και από τα αποτελέσματα του υπόγειου υδροφόρου όπου η χαρακτηριστική τομή του (Σχήμα 16.11) δείχνει ότι τα υδραυλικά ύψη βελτιώνονται με την εφαρμογή των ορθολογικών διαχειριστικών πρακτικών ενώ η επίδραση της αβεβαιότητας των κλιματικών μοντέλων είναι αισθητά μικρότερης επιδράσης.
17 ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΑΙ ΠΡΟΤΑΣΕΙΣ

Στο κεφάλαιο αυτό παρουσιάζονται συνοπτικά τα βασικά συμπεράσματα της παρούσας διατριβής και προτείνονται νέα ερευνητικά πεδία. Γίνεται μια επισκόπηση των βασικότερων σημείων της διατριβής μέσω της ανάλυσης των κυριότερων αποτελεσμάτων του κάθε κεφαλαίου. Επίσης, εξετάζονται σημαντικά τα οποία θα μπορούσαν να έχουν αναλυτικώς εκτενέστερα και παραθέτονται οι λόγοι για τους οποίους δεν πραγματοποιήθηκε λεπτομερέστερη ανάλυση. Τέλος, παρουσιάζονται οι προτάσεις για μελλοντική έρευνα, οι οποίες θα μπορούσαν να διευρύνουν το πεδίο της ανάλυσης και να προωθήσουν περαιτέρω το επιστημονικό πεδίο της διαχείρισης υδατικών πόρων.

17.1 ΓΕΝΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΔΙΑΤΡΙΒΗΣ

Στη παρούσα διατριβή αναλύεται και εφαρμόζεται μια ολοκληρωμένη μεθοδολογία διαχείρισης υδάτινων πόρων (επιφανειακών και υπόγειων) μιας αγροτικής υδρολογικής λεκάνης υπό συνήθεις κλιματικές και μεταβλητότητες. Το όλο εγχείρημα πραγματοποιήθηκε βασιζόμενο στην επιχειρησιακή εφαρμογή, η οποία απαιτεί σημαντικό υπολογιστικό όγκο και πλήθος χρονικών και χωρικών προσομοιώσεων. Υπό το πρόσωπο αυτό αναπτύχθηκε ένα ολοκληρωμένο σύστημα διαχείρισης υδατικών πόρων το οποίο εφαρμόστηκε στην περιοχή λήκης Κάρλας. Τόσο η συνεισφορά της κλιματικής και αυτή της διαχείρισης υδατικών πόρων προσεγγίστηκαν με την ανάπτυξη και επιστημονική επαλήθευση των συστημάτων που υπήρχαν στην περιοχή. Μετέπειτα, διαπιστώθηκε η απαραίτητη ανάγκη της κατασκευής των νέων συστημάτων διαχείρισης υδατικών πόρων και επαλήθευσης της κλιματικής αλλαγής και μεταβλητότητας.

Η βαθμονόμηση και επαλήθευση του συστήματος πραγματοποιήθηκε στην επιφανειακή λεκάνη της λήκης Κάρλας και μπορεί να γίνει εφαρμογή σε οποιεσδήποτε λεκάνες αγωγοποίησης με ανάλογες υδατικές συνθήκες. Τα συστήματα προσομοίωσης των ερευνών στο επίπεδο αρδευτικού δικτύου (με ανοιχτούς αγωγούς ή λόγω πίεσης) και στη συνέχεια ολοκληρώνεται σε επίπεδο λεκάνης απορροής. Επί της ουσίας αποτελείται από το σύστημα προσομοίωσης δικτύου (ΣΔΔ) και το σύστημα προσομοίωσης λεκάνης απορροής (ΣΠΑ). Χρησίμευσε αναφοράς η λειτουργία δύο αρδευτικών δικτύων στην περιοχή, για το επιφανειακό δίκτυο του Τ.Ο.Ε.Β Πηνειού και δεύτερο στο κανονικό δίκτυο Κάρλας, το οποίο κατασκευάστηκε στα πλαίσια του έργου αναστάασης του ταμειατήρα της Κάρλας. Η ενδιάμεση εγκατάσταση της διαχείρισης υδατικών πόρων αποτελεί ένα βασικό στοιχείο καινοτομίας.

Το ΣΠΑ (Σύστημα Πληροφοριών Δικτύου) χρησιμοποιεί μοντέλα προσομοίωσης της λειτουργίας των δύο δικτύων τα οποία εν συνεχεία συζητούνται με ένα
διαχειριστικό μοντέλο. Βασικό εργαλείο του συστήματος αποτελεί το γεωγραφικό σύστημα πληροφορίας του οποίου ενσωματώνεται η βάση δεδομένων τηλεπικοινωνίας και καθίσταται δυνατή η εκτίμηση των υδατικών απαιτήσεων της λεκάνης απορροής με τη χρήση εξειδικευμένου μοντέλου. Χρησιμοποιείται ο αλγόριθμος ενεργειακού ισοζύγιου επιφάνειας για έδαφος SEBAL (Surface Energy Balance for Land) για να αντληθούν τιμές πραγματικής εξατμισοδιανοποίησης χρησιμοποιώντας υψηλής ανάλυσης εικόνες του LANDSAT TM για την καλλιεργητική περίοδο 2007. Οι μηνιαίες τιμές εξατμισοδιανοποίησης χρησιμοποιούνται ως δεδομένα εισόδου στο μοντέλο Cropwat και τα αποτελέσματα του Cropwat ως δεδομένα εισόδου για το διαχειριστικό μοντέλο WEAP. Το σενάριο βάσης που αναπτύχθηκε βασίζεται στην πραγματική κατάσταση του δικτύου ανοιχτών αγωγών για την καλλιεργητική περίοδο 2007. Το ΣΠΔ βαθμονομήθηκε με τη χρήση παρατηρημένων τιμών του 2007 και τη διαμετροποίηση του δικτύου έγινε με την πραγματική λειτουργία του δικτύου. Η λειτουργία του επιφανειακού δικτύου προσομοιώνεται με το μοντέλο Technologismikι ενώ η λειτουργία του υπο πίεση δικτύου Κάρλας με το μοντέλο WaterCad.

Από την άλλη το ΣΠΔ (Σύστημα Προσομοίωσης Λεκάνης Απορροής) αξιολογεί την δυναμική των υδατικών πόρων καθώς και τη χρήση νερού σε διάφορες αρδευτικές ζώνες. Το σύστημα περιλαμβάνει συνδεδεμένα μοντέλα για την μοντελοποίηση των επιφανειακών και υπόγειων υδατικών στοιχείων της λεκάνης απορροής, τη λειτουργία των υδροτεχνικών έργων (λειτουργία ταμειαίων και αρδευτικών έργων), την εκτίμηση των υδατικών χρήσεων και την διαχείριση νερού για διάφορες στρατηγικές διαχείρισης νερού σε συνθήκες μη λειτουργίας του ταμειαίου της Κάρλας αλλά και σε συνθήκες λειτουργίας του. Το ΣΠΔ (Σύστημα προσομοίωσης λεκάνης απορροής) περιλαμβάνει α) το μοντέλο υδατικού ισοζύγιου του Πανεπιστημίου Θεσσαλίας UTHBAL (University of Thessaly water BALance model) για την εκτίμηση των επιφανειακών υδρολογικών διεργασιών και τον υπολογισμό της (κατεύθυνσης) φόρτισης του υπόγειου υδροφορέα β) το μοντέλο ταμειαίου/λίμνης του Πανεπιστημίου Θεσσαλίας UTHRL (University of Thessaly Reservoir/Lake model) για την προσομοίωση της λειτουργίας του ταμειαίου γ) το μοντέλο προσομοίωσης λιμνής/υπόγειου υδροφορέα LAK3 (Lake/Aquifer simulation model) και δ) το μοντέλο υπόγειων υδατικών πόρων MODFLOW για την προσομοίωση του υπόγειου υδροφορέα.

Η συνιστώσα της κλιματικής αλλαγής προσεγγίζεται με μια μεθοδολογία στατιστικού καταβιβασμού κλίμακας η οποία αναπτύχτηκε για την εκτίμηση μηνιαίων χρονοσειρών θερμοκρασίας και βροχόπτωσης για μελλοντικές κλιματικές περιόδους. Τα αποτελέσματα έξοδου του παγκόσμιου μοντέλου κυκλοφορίας CGCM3 του καναδίζεκου κέντρου για ανάλυση κλιματικών μοντέλων (Canadian Centre for Climate Modeling Analysis) εφαρμόστηκαν για τρία κοινωνικοοικονομικά σενάρια εκπομπής, δηλαδή SRES B1, SRES A1B και SRES A2 για την εκτίμηση των επιπτώσεων της κλιματικής μεταβολής στις μετεωρολογικές μεταβλητές βροχόπτωσης και θερμοκρασίας. Η μεθοδολογία αναπτύχτηκε για την ιστορική περίοδο 1980-2000 και στη συνέχεια εφαρμόστηκε για δύο μελλοντικές περιόδους 2030-2050 και 2080-2100. Η ιστορική και
οι μελλοντικές περιόδους συγκρίθηκαν σε επίπεδο μηνός αλλά και έτους χρησιμοποιώντας διάφορα στατιστικά κριτήρια όπως ο μέσος και η τυχική απόκλιση. Η ανάλυση έδειξε ότι η κλιματική αλλαγή θα έχει μικρές επιπτώσεις στην βροχόπτωση και ακόμα μικρότερες στη θερμοκρασία.

Δύο στρατηγικές λειτουργίας της ανάπτυξης των υδροτεχνικών έργων συνδυάστηκαν με τρεις στρατηγικές ζήτησης νερού. Συνολικά οκτώ στρατηγικές ζήτησης νερού εξετάστηκαν για ιστορικές κλιματικές συνθήκες και είκοσι τέσσερις για μελλοντικές κλιματικές συνθήκες. Τα αποτελέσματα έδειξαν ότι υπό την υπόχρεωση διαχείριση το έλλειμμα νερού στη λεκάνη απορροής της λίμνης Κάρλας είναι μεγάλο και θα γίνει κρίσιμο στο μέλλον που οι επιπτώσεις της κλιματικής αλλαγής είναι μέτριες. Επιπλέον πρέπει να αναφερθεί ότι έγινε ανάλυση αβεβαιότητας του συστήματος χρησιμοποιώντας διαφορετικό μέθοδο καταβίβασμο κλίμακας αλλά και αποτελέσματα από πέντε διαφορετικά μοντέλα παγκόσμιας κυκλοφορίας. Τα αποτελέσματα έδειξαν ότι το σύστημα διαχείρισης λειτουργεί επιτυχώς ανεξαρτήτως των δεδομένων εισόδου.

Η παρούσα διατριβή διαρθρώνεται σε δύο βασικά μέρη αυτό της βιβλιογραφικής επισκόπησης και εκείνο της μεθοδολογίας. Είναι σαφές ότι στα πλαίσια της βιβλιογραφικής επισκόπησης παρουσιάστηκαν οι επιπτώσεις της κλιματικής αλλαγής σε βασικές υδρομετεορολογικές παραμέτρους μέσα από τις ειδικές αναφορές του IPCC σε παγκόσμιο, ευρωπαϊκό και εθνικό επίπεδο. Επίσης έγινε εκτενής ανάλυση των βασικότερων μεθοδολογιών καταβίβασμο κλίμακας των αποτελεσμάτων εξόδου των GCM καθώς και των βασικών βημάτων μεθοδολογίας. Παρουσιάστηκε δηλαδή το θεωρητικό υπόβαθρο τόσο του στατιστικού καταβίβασμο όσο και του δυναμικού. Ακόμη αναλύθηκε η βασική θεωρία προσομοίωσης δικτύων άρδευσης, τόσο των επιφανειακών όσο και των υπό πίεση ενώ παρουσιάστηκαν και οι βασικότερες μέθοδοι άρδευσης σε επίπεδο αγρού. Τα ειδικά συμπέρασμα του προέκυψαν από την εφαρμογή της μεθοδολογίας παρουσιάζονται στην επόμενη παράγραφο.

17.2 ΕΙΔΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΗΝ ΔΙΑΤΡΙΒΗ

Όπως αναφέρθηκε στην προηγούμενη παράγραφο το ΣΠΑ εμπεριέχει ένα γεωγραφικό σύστημα πληροφοριών η ανάπτυξη του οποίου οδήγει σε σημαντικές διαπιστώσεις. Η ερευνή πέδιου που πραγματοποιήθηκε για την ψηφιοποίηση του επιφανειακού αρδευτικού δικτύου του Τοπικού Οργανισμού Εγγείων Βελτιώσεων Πηνείου φανερώσε τα σημαντικά προβλήματα στη διαχείριση του αγροτικού νερού στην υδρολογική λεκάνη της Κάρλας. Είναι σαφές ότι η λειτουργία του δικτύου είναι ελληνικής δεδομένου ότι η συντήρηση των καναλιών είναι μηδαμία αφού οι διατομές τους είναι κατακλυσμένες από πόθηκη βλάστηση. Επίσης κατά τη μέτρηση της στάθμης των καναλιών την περίοδο λειτουργίας των αντλοστασίων του Τ.Ο.Ε.Β Πηνείου διαπιστώθηκε ότι λόγω της βλάστησης η στάθμη είναι αυστηρά μεγάλη για τέτοιου είδους τραπεζοειδείς διατομές (Εμπρ.Βάσης ≥ 10 m, Εμπρ.Βάσης ≥ 7 m). Αυτό είχε ως αποτέλεσμα να χρησιμοποιηθεί πολύ
ψηφιοδοτεί συντελεστής Manning κατά την προσομοίωση του δικτύου με το μοντέλο Technologismiki works.

Επίσης η ανάπτυξη της βάσης δεδομένων τηλεπικόπτησης στηρίζετε στον προσδιορισμό των χρήσεων για μέσο του αλγορίθμου μέγιστης πιθανότητας, που είναι η συνιστώμενη μέθοδος από πολλούς ερευνητές σε μελέτες χαρτογράφησης χρήσεων γης. Η ακρίβεια ταξινόμησης προσεγγίστηκε χρησιμοποιώντας τον πίνακα σύγχρονης ή μέθοδο επικύρωσης πίνακα έκτακτης ανάγκης. Η εφαρμογή της μεθόδου επικύρωσης έδειξε ότι η συνολική βαθμολογία ταξινόμησης ήταν 88,4%, το οποίο δείχνει μια αποδεκτή ακρίβεια ταξινόμησης και διασφαλίζει ότι οι μεμονωμένες τάξεις παρουσιάζονται ικανοποιητικά. Ο χάρτης χρήσης γης αποτελείται από εικονοστοιχία που αντιπροσωπεύουν διαφορετικές καλλιέργειες και η ανάλυση έδειξε ότι το βαμβάκι και το χειμερινό σιτάρι κυριαρχούσε σε αυτές τις περιοχές χωρίς υποτίμηση των υπολοίπων χρήσεων γης που περιλάμβαναν καλλιέργειες καλαμποκικού και δέντρων, βοσκότοπους και γρασίδι.

Η λειτουργία του επιφανειακού δικτύου Πηγείου προσομοίωθηκε χρησιμοποιώντας το λογισμικό Technologismiki Works. Το μοντέλο βαθμονομήθηκε και μεριστές ροής (τετραγωνικοί κόμβοι) έχουν τοποθετηθεί σε συγκεκριμένους κόμβους δικτύων, όπου τα κύρια κανάλια χωρίζονται σε δευτερεύοντα κανάλια. Το υδραυλικό μοντέλο που χρησιμοποιείται για το νέο δίκτυο του Τ.Ο.Ε.Β Κάρλας είναι το WaterCAD, το οποίο είναι ένα προηγμένο εργαλείο κυρίως για χρήση στην προσομοίωση και ανάλυση συστημάτων διανομής νερού. Η προσομοίωση του επιφανειακού δικτύου φανέρωσε το έλλειμμα νερού της υφιστάμενης κατάστασης καθώς το νερό δεν επαρκεί για να καλύψει όλες τις εξωτερικά μεταβλητές περιοχές του δικτύου και τις ιδιαίτερα τις νοτιοανατολικές. Από την άλλη η λειτουργία του κανονισμού δικτύων υποδηλώνει ότι μπορεί να αποτελέσει τη βάση για μείωση του υδατικού ελέγχους του στη λεκάνη απορροής της Κάρλας.

Όπως αναφέρθηκε Δύο βασικές στρατηγικές διαχείρισης νερού και τρία διαχειριστικά σενάρια (συνολικά οκτώ) αναλύονται στην λεκάνη απορροής της Κάρλας:

i) Βασική στρατηγική διαχείρισης δίχως επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού (υφιστάμενη κατάσταση – Σενάριο 1)

1. Μείωση των απολεούσ των καναλιών (Σενάριο 1α)
2. Αλλαγή των μεθόδων άρδευσης (Σενάριο 1β)
3. Αντικατάσταση καλλιέργειας βαμβακιού με θερμοκηπική καλλιέργεια τομάτας (Σενάριο 1γ)

ii) Βασική στρατηγική διαχείρισης με επιχειρησιακή εφαρμογή του ταμιευτήρα και του νέου αρδευτικού (μελλοντική κατάσταση – Σενάριο 2)

1. Μείωση των απολεούσ των καναλιών (Σενάριο 2α)
2. Αλλαγή των μεθόδων άρδευσης (Σενάριο 2β)
3. Αντικατάσταση καλλιέργειας βαμβακιού με θερμοκηπική καλλιέργεια ντομάτας (Σενάριο 2')

Τα πρώτα τρία σενάρια εφαρμόστηκαν στο δίκτυο άρδευσης του Τ.Ο.Ε.Β Πηνειού και το τέταρτο στο δίκτυο του Τ.Ο.Ε.Β Κάρλας. Τα αποτελέσματα της προσομοίωσης μοντέλου WEAP έδειξαν ότι η ζήτηση νερού άρδευσης ποικίλλει ανάλογα με το σενάριο αναφοράς. Το σενάριο μειωμένων απολεονίων όπως αναμενόταν δείχνει μικρότερες ποσότητες νερού. Επίσης, το σενάριο αλλαγής των μεθόδων άρδευσης έχει μειώσει τον απαιτούμενο όγκο νερού. Από την άλλη πλευρά, το σενάριο της εισαγωγής καλλιέργειας θερμοκηπικού δείχνει ότι η ζήτηση νερού θα αυξηθεί ειδικά κατά τους χειμερινούς μήνες. Αυτό το εύρημα είναι λογικό επειδή η καλλιέργεια θερμοκηπικού απαιτεί νερό κατά τους χειμερινούς μήνες και συνεχίζει να απαιτεί νερό κατά τους μήνες της άνοιξης και του καλοκαιριού αυξάνοντας τον απαιτούμενο όγκο νερού. Οι υπολοίποι καλλιέργειες χρειάζονται άρδευση μόνο κατά τους μήνες της άνοιξης και του καλοκαιριού. Ως αποτέλεσμα, η συνολική ετήσια ζήτηση νερού αυξάνεται σημαντικά για το σενάριο εισαγωγής θερμοκηπικής ντομάτας.

Από την άλλη το ΣΠΛ εφαρμόστηκε για την εκτίμηση του επιφανειακού και υπόγειου υδατικού δυναμικού της λεκάνης απορρόφησης της Λίμνης Κάρλας. Η εκτίμηση του επιφανειακού υδατικού δυναμικού της υφιστάμενης κατάστασης βασίστηκε στο πρόγραμμα άντλησης του Τ.Ο.Ε.Β Πηνειού απ’όπου προέκυψε ότι απαιτούνται 111,09 hm³ σε πραγματικές συνθήκες λειτουργίας ενώ οι απολήξεις φτάνουν τα 211,2 hm³ (παροχές σχεδιασμού) για την ικανοποίηση των αναγκών και το γέμισμα του ταμειοτήρα της Κάρλας. Ωσον αφορά τον ταμειοτήρα, η κατάσκευή του έγινε πέραν των άλλων λόγω και για να θρο크αστεί αντιπλημμυρικά η πεδιάδα και για το λόγο αυτό κατασκευάστηκαν οι συλλεκτήρες και οι τάφροι που κατευθύνουν την απορροή όλης της λεκάνης απορροφής εντός αυτού. Η προσομοίωση του έγινε με το μοντέλο UTHRL και αναφορικά με τις εκροές, η εξάτμιση υπολογίστηκε για την υδάτινη εισαγωγή της λίμνης έκτασης 32000 στρ., οι απολήξεις για άρδευση θεωρήθηκαν αμετάβλητες και ίσες με 46 hm³ τον χρόνο, και οι διαφυγές, ενώ στην αρχή ελήφθησαν ίσες με 20 hm³ τον χρόνο στη συνέχεια προσαρμόστηκαν σε αυτές που προκύπτουν από το ΛΑΚ3, που είναι 18 hm³ τον χρόνο, όπως παρουσιάζεται μετέπειτα. Ο εκμεταλέυσιμος όγκος νερού του ταμειοτήρα υπολογίστηκε 79,2 hm³. Η προσομοίωση του υπόγειου υδροφόρου με το μοντέλο MODFLOW έδειξε την περιβαλλοντική υποβάθμιση του υπόγειου υδροφορία της Κάρλας και το υπόγειο υδατικό δυναμικό υπολογίστηκε σε 107,7 hm³. Αναφορικά με τη μελλοντική κατάσταση όπου ο ταμειοτήρας τίθεται σε λειτουργία το επιφανειακό υδατικό δυναμικό αυξάνεται σε 190,4 hm³ αφού προστίθενται ο εκμεταλέυσιμος όγκος του ταμειοτήρα και το υπόγειο υδατικό δυναμικό αυξάνεται σε 125,7 hm³ αφού προστίθενται οι υπόγειες διαφυγές από τον ταμειοτήρα προς τον υπόγειο υδροφόρο. Οι υδατικές απαιτήσεις υπολογίστηκαν διακριτοποιημένα για κάθε ζώνη και συνολικά για τη λεκάνη απορροής. Τελικά η ανάλυση έγινε για τις δύο Στρατηγικές Διαχείρισης νερού και τα 3 διαχειριστικά σενάρια. Ειδικότερα η λεκάνη απορροής χωρίστηκε σε (6)
έξι αρδευτικές ζώνες και έγινε υπολογισμός των μηνιαίων υδατικών απαιτήσεων των καλλιεργειών σε χιλιόστα. Τα αποτελέσματα εδείχησαν ότι για την Βασική Στρατηγική διαχείρισης 1 (Υφιστάμενη κατάσταση) οι συνολικές υδατικές απαιτήσεις της λεκάνης απορροής 323,93 hm³ ενώ για τα σενάρια 1°, 10, 11 υπολογίστηκαν σε 245,42 hm³, 308,41 hm³, 633,86 hm³ αντίστοιχα. Είναι σαφές ότι το σενάριο 11 (μείωση των απολειών των καναλιών) εμφανίζει τις μικρότερες υδατικές απαιτήσεις λόγω των αυξημένων απολειών των καναλιών ξεκινά της ελλιπούς συντήρησής τους. Από την άλλη το σενάριο αντικατάστασης της καλλιέργειας βαμβακιού με αυτή της θερμοκηπιακής τομάτας εμφανίζει την πιο εντατικοποιημένη άρδευση (λόγω των υψηλότερων υδατικών απαιτήσεων). Αυτό συμβαίνει διότι οι απαιτήσεις άρδευσης της τομάτας θερμοκηπίου περιλαμβάνουν όλως τους μήνες του έτους. Αναφορικά με τη Στρατηγική διαχείρισης 2 οι υδατικές απαιτήσεις υπολογίστηκαν σε 322,50 hm³ ενώ για τα σενάρια 2°, 2°, 2°, 244,16 hm³, 308,41 hm³ και 632,28 hm³ αντίστοιχα.

Το επόμενο στάδιο της διατριβής επεκτάθηκε στις επιπτώσεις της κλιματικής αλλαγής στις μετεωρολογικές μεταβλητές της λεκάνης της λίμνης Κάρλας. Οι έξοδοι του CGCM3.1 έχουν υιοθετηθεί για στατιστικό καταβιβασμό κλίμακας της μηνιαίας βροχόπτωσης και θερμοκρασίας, για να διορθώσουν μεροληπτική τη μέθοδο καταβιβασμού και να εκτιμήσουν μελλοντικές χρονοσειρές βροχόπτωσης και θερμοκρασίας για δύο μελλοντικές περιόδους (2030-2050 και 2080-2100) και τρία κοινωνικοοικονομικά σενάρια (SRES B1, SRES A1B και SRES A2). Τα στατιστικά χαρακτηριστικά των παραγόμενων χρονοσειρών έδειξαν ότι η μέθοδος είναι σε θέση να αναπαράγει τις στατιστικές ιδιότητες της παραπροηγούμενης μηνιαίας βροχόπτωσης και θερμοκρασίας για την περίοδο 1980-2000. Τα στοχαστικά παραγόμενα αποτελέσματα της βροχόπτωσης και της θερμοκρασίας, έδειξαν ότι τα σενάρια κλιματικής αλλαγής προβάλλουν ήπιες αλλαγές για τη βραχυπρόθεσμη περίοδο και μέτριες για τη μακροπρόθεσμη περίοδο. Η ετήσια θερμοκρασία αυξάνεται ελαφρώς για όλα τα σενάρια και για τα δύο μελλοντικές περιόδους και η ετήσια βροχόπτωση μειώνεται μόνο για τα σενάρια A1B και A2. Παρόμοια αποτελέσματα παρουσιάζονταν για μηνιαίες χρονοσειρές όπου η θερμοκρασία σχεδόν σε όλους τους μήνες προβλέπεται να αυξηθεί και η βροχόπτωση μειώθηκε, εκτός από το σενάριο B1 όπου η βροχόπτωση αυξηθεί σχεδόν σε όλους τους μήνες. Μεγαλύτερες διαφορές παρατηρούνται όπως αναφέρεται για τη μακροπρόθεσμη μελλοντική περίοδο (2080-2100). Τα αποτελέσματα της παρούσας μελέτης δείχνουν την ακρίβεια, την αξιοπιστία και την αβεβαιότητα της μεθόδου στατιστικού καταβιβασμού κλίμακας για τις τρέχουσες και τις μελλοντικές κλιματικές συνθήκες.

Στο επόμενο στάδιο της διατριβής υπολογίστηκαν οι μελλοντικές υδατικές απαιτήσεις στην υδρολογική λεκάνη της Κάρλας. Είναι σαφές ότι η λεκάνη απορροής Κάρλας χορηγεί σε επιμέρους αρδευτικές ζώνες (οι οποίες παρουσιάστηκαν) στις σποίς υπολογιστήκαν ξεχωριστές μηνιαίες υδατικές απαιτήσεις αλλά και συνολικές ετήσιες. Οι μελλοντικές υδατικές απαιτήσεις εκτιμήθηκαν για καθεμία υπολεκάνη/ζώνη άρδευσης/περιοχή μεμονωμένα. Συμπερασματικά διαπιστώθηκε ότι η μεταβολή των συνολικών υδατικών απαιτήσεων της λεκάνης απορροής της Κάρλας γίνεται ανάλογα με
σενάρια 1 μείωση των υδατικών απαιτήσεων της λεκάνης απορροής είναι σενάριο 1 2 και 2° όπου μειώνονται οι απώλειες των καναλιών του επιφανειακού δικτύου και με αυτό τον τρόπο σημειώνεται μείωση των υδατικών αναγκών (24,24% μείωση για το σενάριο 1°, 24,27% για το σενάριο 2°). Επιπρόσθετα η διερεύνηση των σεναρίων 1 2δείχνει μείωση των υδατικών απαιτήσεων κατά 4,78% και 5,95% αντίστοιχα. Τέλος για τα σενάρια 1° και 2° σημειώνεται σημαντική αύξηση της τάξης 95,6% και 95,2%. Η διερεύνηση του τα σεναρίων κλιματικής αλλαγής υποδηλώνει ότι η μεταβολή των υδατικών απαιτήσεων είναι σαφώς μικρότερη σε σχέση με τα διαχειριστικά σενάρια. Ειδικότερα η ανάλυση των σεναρίων 1, 1°, 1δείχνει ότι η μεταβολή των απαιτήσεων είναι της τάξης από 1% ως 4,2% (ανάλογα με το κλιματικό σενάριο και την μελλοντική περίοδο) ενώ η διερεύνηση του σενάριο 1° δείχνει ότι το εύρος μεταβολής είναι από 0,3% ως 1,2%. Ακόμη ο έλεγχος των σεναρίων 2, 2°, 2δείχνει ότι η μεταβολή των υδατικών απαιτήσεων κυμαινείται από 0,7% ως 3,9% ενώ στο σενάριο 2° από 0,2% ως 1,1%. Για την προσομοίωση του μηνιαίου υδρολογικού ισοζυγίου και την εκτίμηση της κατεξοόδους στον υπόγειο υδροφορέα εφαρμόστηκε το μηνιαίο υδρολογικό μοντέλο UTHBAL [4] στην ημικατανεμημένη του μορφή. Όπως περιγράφηκε (κεφάλαιο 8) το μοντέλο κάνει χρήση των χωρικά κατανεμημένων υδρομετεωρολογικών δεδομένων εισόδου σε 2 υψομετρικές ζώνες σε περιβάλλον ενός Γεωγραφικού Συστήματος Πληροφοριών. Τα αποτελέσματα του μοντέλου παρέχουν χωρικά ημικατανεμημένα δεδομένα για τις διάφορες συνιστώσες των υδρολογικών διεργασιών (υδρολογικός κύκλος). Τα δεδομένα εισόδου του μοντέλου για το υδρολογικό μοντέλο UTHBAL ήταν οι στατιστικά καταβιβασμένες μελλοντικές μετεωρολογικές μεταβλητές (βροχόπτωση, θερμοκρασία και εξατμιστική) και με τον τρόπο αυτό δημιουργήθηκαν μελλοντικά σενάρια επιφανειακής απορροής. Η μέση επίδραση επιφανειακής απορροής κατά τη διάρκεια της ιστορικής περιόδου εκτιμήθηκε στα 59.8 mm ενώ για τη βραχυπρόθεσμη περίοδο 2030-2050 παρατηρείται μια αύξηση 4.2% για το σενάριο SRES B1 , και μείωση κατά 1.4% και 6.4% για τα σενάρια SRES A1B και SRES A2 αντίστοιχα. Αναφορικά με την μακροπρόθεσμη περίοδο 2080-2100 οι μεταβολές είναι μεγαλύτερες δεδομένων ότι το σενάριο SRES B1 προβάλλει μείωση κατά 2.2%, το σενάριο SRES A1B κατά 10% και το σενάριο SRES A2 κατά 11.8%. Η Στρατηγική Διαχείρισης 1 όπως αναφέρθηκε διερευνά τη λειτουργία του υπόγειου υδροφορέα χωρίς να περιλαμβάνει την ενεργοποίηση του ταμιευτήρα. Η υπεράνθληση του υπόγειου υδροφορέα και κατά συνέπεια ταπείνωση της στάθμης του επιδεινώνεται υπό συνθήκες κλιματικής αλλαγής. Τα υδραυλικά ύψη νερού κατά τη διάρκεια της περιόδου 2030-2050 έχουν ένα εύρος από -100 τως 60 m στην περίπτωση της περιόδου 2080-2100 εμφανίζεται μεγάλη μείωση που σε ορισμένες περιπτώσεις προσεγγίζει και τα -160 m. Η Στρατηγική Διαχείρισης 2 (λειτουργία ταμιευτήρα) φανερώνει ουσιαστική βελτίωση του υδραυλικού ύψους ιδιαίτερα στην νοτιοανατολική περιοχή όπου βρίσκεται ο ταμιευτήρας της Κάραλας. Το μεγαλύτερο πρόβλημα εμφανίζεται στη κεντρική περιοχή του υπόγειου υδροφορέα όπου ανευρίσκονται και οι περισσότερες αρδευτικές
γεωτρήσεις τόσο για την περίοδο 2030-2050 όσο και για την περίοδο 2080-2100 (μεγαλύτερη πτώση του υδραυλικού ύψους). Στη διάρκεια της περιόδου 2030-2050 το υδραυλικό ύψος έχει εύρος από -80 ως 60 m ενώ στην περίπτωση της περιόδου 2080-2100 αυξηθεί μείωση που σε ορισμένες περιπτώσεις φτάνει τα -140 m. Η διαφοροποίηση μεταξύ των κλιματικών σεναρίων είναι ανάλογη της έντασης του κάθε εξεταζόμενου σεναρίου. Το υδραυλικό ύψος βελτιώνεται και στις τέσσερεις περιπτώσεις των σεναρίων 2, 2a, 2b και 2γ συγκριτικά με τα 1, 1a, 1b και 1γ.

Τελικά η εκτίμηση του υδατικού ισοζύγιου έγινε σε μηνιαίο και ετήσιο βήμα για τα τρία σενάρια (SRESB1, SRESA1B και SRESA2) και τις δύο συνθετικές περιόδους κλιματικής αλλαγής (2030-2050 και 2080-2100). Το σήμα κλιματικής μεταβολής είναι μικρό και στις τρεις περιπτώσεις των σεναρίων. Από την άλλη, η προβλεπόμενη έναρξη λειτουργίας του ταμειανότητα για τη δεύτερη Στρατηγική Διαχείρισης - μελλοντική κατάσταση (2, 2a, 2b) προβάλλει σημαντική βελτίωση του υδατικού ισοζύγιου της λεκάνης απορροής κατά τη διάρκεια όλου του έτους. Αναφορικά με το σενάριο SRESA2 (το εντονότερο από τα τρία σενάρια κλιματικής αλλαγής) στην ανάλυση του διαχειριστικού σεναρίου 2α παρατηρήθηκε σημαντική βελτίωση του υδατικού ισοζύγιου.

Συμπεράσματικά η ανάλυση της ιστορικής περιόδου αναφοράς (1980-2000) δείχνει στην περίπτωση της Στρατηγικής Διαχείρισης 1 ότι το συνολικό υδατικό δυναμικό της λεκάνης απορροής της Κάρλας είναι 214,3 hm3 ενώ στην περίπτωση του σενάριο 2 το υδατικό δυναμικό ανέρχεται στα 311,5 hm3. Η διακύμανση του υδατικού δυναμικού είναι περίπου ίδια με τη διακύμανση των σεναρίων κλιματικής αλλαγής (αναφορικά με την ένταση τους, B1 το ηπιότερο, A2 το εντονότερο) και για τις δύο συνθετικές περιόδους. Κατά τη διάρκεια της ιστορικής περιόδου 1980-2000 η λεκάνη απορροής παρουσίασε υδατικό έλλειμμα για τη Στρατηγική Διαχείρισης 1 (-133,06 hm3) και για τη Στρατηγική Διαχείρισης 2 (-78,45 hm3). Ακόμη, από την ανάλυση των αποτελεσμάτων προέκυψε ότι η επίδραση του σηματος της κλιματικής αλλαγής είναι ήπια και αντίστοιχη ήπια είναι η επίδραση της στους υδατινούς πόρους (επιφανειακούς & υπόγειους) της λεκάνης απορροής της Κάρλας. Βασική παρατήρηση αποτελεί το γεγονός ότι, τα διαχειριστικά σενάρια έχουν μεγαλύτερη επίδραση στους υδατικούς πόρους και στο ισοζύγιο συγκριτικά με τα κλιματικά. Είναι προφανές ότι η ομάδα σεναρίων 2 (σενάριο 2 - σενάριο 2α) είναι σε θέση να αναπτύξει τις προϋποθέσεις υδατικού πλεονάσματος τόσο σε συνθήκες παρόντος αλλά και μελλοντικού κλίματος.

Στο τελικό στάδιο της διατριβής πραγματοποιήθηκε η ανάλυση αβεβαιότητας του συστήματος. Τα πεδία αβεβαιότητας ήταν αυτό του στατιστικού καταβιβασμού κλίμακας και προσεγγίστηκε με διαφορετική μεθοδολογία καταβιβασμού (μέθοδος ποσοτικής χαρτογράφησης) αλλά και με τη χρήση πέντε διαφορετικών παγκόσμιων μοντέλων κυκλοφορίας. Το υδατικό ισοζύγιο της λεκάνης απορροής είναι ελλειμματικό κατά την ιστορική περίοδο κατά 74,60 hm3 ενώ το μοντέλο CGCM3 προβάλλει το μικρότερο έλλειμμα κατά 82,40 hm3 και το μοντέλο HADLEY το μεγαλύτερο κατά 122,51 hm3. Από την άλλη, η εφαρμογή του διαχειριστικού σεναρίου 2α βελτιώνει σημαντικά την κατάσταση αφού για την ιστορική περίοδο 1980-2000 το υδατικό έλλειμμα της λεκάνης απορροής ελαχιστοποιείται (-0,2 hm3) και τα παγκόσμια κλιματικά μοντέλα
Η παρούσα έρευνα, παρόλο που εμπλέκεται σε μια πληθώρα εφαρμογών αναφορικά με την υδρολογία και τη διαχείριση των υδάτικων πόρων, χρησιμοποιούνται πολλαπλές μεθοδολογίες και μοντέλα, θα μπορούσε να διευρυνθεί και να εξελιχθεί. Είναι σαφές ότι θα μπορούσε κάλλιστα να διερευνηθεί η εικοσαετία 2000-2020 η οποία είναι παρελθοντική και θα μπορούσε να επαληθεύσει τις προβλέψεις του συστήματος η ακόμα και να φανερώσει αδυναμίες του. Ωστόσο πρέπει να αναφερθεί ότι η έλλειψη δεδομένων στην παρούσα φάση, ειδικά για την δεκαετία 2010-2020 είναι κρίσιμη καθώς επίσης και το γεγονός ότι ο ταμιευτήρας και νέο δίκτυο της Κάρλας έχουν μεν κατασκευαστεί αλλά δε βρίσκονται σε όμαλη λειτουργία όπως αυτή έχει προσομοιωθεί με το ΣΠΛ. Συγκεκριμένα η ποσότητα νερού στον ταμιευτήρα δεν είναι η ενδεδειγμένη αφού η πλήρωση του γίνεται άναρχα χωρίς να ακολουθεί τις προβλεπόμενες μελέτες. Επίσης οι αντλήσεις για τις ανάγκες του αρδευτικού δικτύου γίνονται απρογραμματιστά χωρίς κανέναν έλεγχο σαν αντλία χωρίς να ακολουθεί τις προβλεπόμενες μελέτες. Επίσης οι αντλήσεις για τις ανάγκες του αρδευτικού δικτύου γίνονται απρογραμματιστά χωρίς κανέναν έλεγχο σαν αντλία χωρίς να ακολουθεί τις προβλεπόμενες μελέτες. Επίσης οι αντλήσεις για τις ανάγκες του αρδευτικού δικτύου γίνονται απρογραμματιστά χωρίς κανέναν έλεγχο σαν αντλία χωρίς να ακολουθεί τις προβλεπόμενες μελέτες.

Το προτεινόμενο ΣΠΛ θα μπορούσε να αποκτήσει μεγαλύτερη ακρίβεια με την επικαιροποίηση των χρονοσειρών των δεδομένων που μεταβάλλονται με την παρούσα του χρόνου. Αυτό προϋποθέτει την ανάπτυξη δικτύων τηλεμετριών μετεωρολογικών και παροχομετρικών σταθμών για την on line συλλογή των εν λόγω δεδομένων.

- Η διασύνδεση των μοντέλων προσομοίωσης έχει γίνει σε πολύ μεγάλο βαθμό ευθύνη θα βελτιωνόνταν σημαντικά η ταχύτητα των υπολογισμών με τη χρήση μίας ηλεκτρονικού φάσματος συνεργασίας, μέσω του οποίου η εφαρμογή του συστήματος θα ήταν ευκολότερη.
- Η μείωση του χρόνου και όγκου υπολογισμού των στοχαστικών διεργασιών μπορεί να βελτιωθεί μέσω ενός εξειδικευμένου κώδικα βάση μιας γλώσσας προγραμματισμού.
- Η ενσωμάτωση περισσότερων μεθοδολογιών καταβίβασης κλίμακας θα επέτρεπε τον πλουραλισμό στον εν δυνάμει χρήσεις και θα τον διευκολύνει ανάλογα με την επιτυχή εφαρμογή.
- Η αυτοματοποίηση του καταβιβασμού κλίμακας ώστε να δέχεται ως είσοδο μόνο τις μετεωρολογικές μεταβλητές εξόδου των παγκόσμιων κλιματικών μοντέλων.
ΧΡΗΜΑΤΟΔΟΤΗΣΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ - ΔΗΜΟΣΙΕΥΣΕΙΣ

ΧΡΗΜΑΤΟΔΟΤΗΣΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Η οικονομική στήριξη της ερευνητικής εργασίας πραγματοποιήθηκε από τα κάτωθι ερευνητικά προγράμματα:

- Ανάπτυξη ολοκληρωμένου συστήματος παρακολούθησης και διαχείρισης ποσότητας και ποιότητας υδατικών πόρων αγροτικών λεκανών απορροφής υπό συνθήκες κλιματικής αλλαγής. Εφαρμογή στη λεκάνη απορρόφησης της λίμνης Κάρλας, που συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Ταμείο Περιφερειακής Ανάπτυξης - ΕΤΠΑ) και από εθνικούς πόρους, μέσω του Επιχειρησιακού Προγράμματος «ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ & ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ» ΚΑΙ «ΠΕΡΙΦΕΡΕΙΩΝ ΣΕ ΜΕΤΑΒΑΣΗ» του Εθνικού Στρατηγικού Πλαίσιο Αναφοράς (ΕΣΠΑ 2007-2013) - Δράση Εθνικής Εμβέλειας - Συνεργασία 2009 – Ερευνητικό Χρηματοδοτούμενο Έργο «ΥΔΡΟΜΕΝΤΩΡ»

- Αειφορική χρήση αρδευτικού νερού στη Μεσόγειο - Sustainable use of irrigation water in the Mediterranean region (SIRRIMED), που χρηματοδοτήθηκε από το 7ο Ευρωπαϊκό Πρόγραμμα Πλαίσιο (FP7-KBBE-2009-3) στον «Τομέα Τρόφιμα, Αλιεία και Βιοτεχνολογία».

- Αρχηγός ΙΙΙ - Ανάπτυξη ενός ολοκληρωμένου συστήματος παρακολούθησης, προσομοίωσης και διαχείρισης υδατικών πόρων με περιβαλλοντική και κοινωνικοοικονομική δυναμική - Εφαρμογή του συστήματος στη λεκάνη απορρόφησης της λίμνης Κάρλας, που χρηματοδοτήθηκε από τη Γενική Γραμματεία Έρευνας και Τεχνολογίας.

ΔΗΜΟΣΙΕΥΣΕΙΣ

i) Δημοσιεύσεις σε επιστημονικά περιοδικά

ii) Δημοσιεύσεις σε Πρακτικά Συνεδρίων μετά από κρίση κειμένου

7. Τζαμπύρας Γ., Διδακτορική Διατριβή, Πανεπιστήμιο Θεσσαλίας, Τμήμα Πολιτικών Μηχανικών

9. Τζαμπύρας Γ., Λουκάς Α., Φαφύτης Χ., Σπηλιώτοπος Μ., Σιδηρόπουλος Π., Κόκκινος Κ., Βασιλειάδης Λ., Παπαϊωάννου Γ., Μυλόπουλος, 2015. Ανάπτυξη ενός ολοκληρωμένου συστήματος πληροφοριών για τον σχεδιασμό και διαχείριση υδατικών πόρων αγροτικών λεκανών απορροής και τη στρατηγική λήψη αποφάσεων, Τμηματικός τόμος για τον κ. Καθ. Γιαννόπουλο, Σ., ΑΠΘ.
Σύστημα προσομοίωσης υδατικών πόρων αγροτικών λεκανών απορροής υπό συνθήκες κλιματικής αλλαγής και μεταβλητότητας

-Κεφάλαιο 17ο: Συμπεράσματα και προτάσεις-

ΒΙΒΛΙΟΓΡΑΦΙΑ

α) Ξενόγλωσση βιβλιογραφία

Conference of Protection and Restoration of the Environment, 28 June - 1 July, Mykonos.

57. Loukas A., Mylopoulos N., Vasiliades L., 2007. A modeling system for the evaluation of water resources management strategies in Thessaly, Greece, Water resources management, 21 (10), 1673-1702

94. SOGREAH – GRENOBLE, 1974. Μελέτη αναπτύξεως υπόγειων υδάτων πεδιάδος Θεσσαλίας. Τελική έκθεση, R 11971, Υπουργείο Γεωργίας, Διεύθυνση Γεωργ. Αναπ. & YEB.

Σύστημα προσομοίωσης υδατικών πόρων αγροτικών λεκανών απορροής υπό συνθήκες κλιματικής αλλαγής και μεταβλητότητας

Κεφάλαιο 17: Συμπεράσματα και προτάσεις

β) Ελληνική βιβλιογραφία

1. Αλαμάνος Α., 2019. Ολοκληρωμένο σύστημα υποστήριξης αποφάσεων για τη βιώσιμη διαχείριση υδατικών πόρων, μέσω υδρο-οικονομικής μοντελοποίησης και πολυκριτηριακής ανάλυσης. Διδακτορική Διατριβή, Τμήμα Πολιτικών Μηχανικών, του Πανεπιστημίου Θεσσαλίας.
Σύστημα προσομοίωσης υδατικών πόρων αγροτικών λεκάνων απορροής υπό συνθήκες κλιματικής αλλαγής και μεταβλητότητας

-Κεφάλαιο 17ο: Συμπεράσματα και προτάσεις

3. Καμπράγκου Ε., 2006. Ολοκληρωμένη διαχείριση των υδατικών πόρων, Εφαρμογή του πινακα ισορροπημένης στοχευσίας στη Λεκάνη Απορροής του Νέστου, Διδακτορική Διατριβή, Τμήμα Πολιτικών Μηχανικών, ΑΠΘ.

4. Κολοκυθά Ε., 1999. Διαχείριση της ζήτησης στον τομέα της ύδρευσης στην Ελλάδα. Διδακτορική Διατριβή, Τμήμα Πολιτικών Μηχανικών, ΑΠΘ.

5. Κωνσταντινίδης Δ. και Περγαλιώτης Π., 1984. Ανάπτυξη υπόγειων υδάτων Θεσσαλίας. Μαθηματικά Μοντέλα. Υπουργείο Γεωργίας, Αθήνα.

6. Λουκάς Α., Μυλόπουλος Ν. και Αργύρης Α., 2006. Διαχείριση των Έργων Μεταφοράς και Αποθήκευσης Νερού από τον Άνω Ρου του Ποταμού Αχελώου. 5ο Εθνικό Συνέδριο της ΕΕΔΥΠ "Ολοκληρωμένη Διαχείριση Υδατικών Πόρων με Βάση την Λεκάνη Απορροής", 6-9 Απριλίου, 2006, Ξάνθη.

17. Τσακής Γ., 2010. Υδραυλικά Έργα, Σχεδιασμός & Διαχείριση, Ι, Αστικά Υδραυλικά Έργα, Εκδόσεις Συμμετρία, Αθήνα.

20. Ψιλοβίκος Α., 1999. Βέλτιστη Διαχείριση Υπόγειων Υδροφορέων. Συγκριτική Αξιολόγηση με τις Μεθόδους Γραμμικού και μη Γραμμικού Προγραμματισμού. Διδακτορική Διατριβή, Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών, Εργαστήριο Γεωργικής Υδραυλικής, Α.Π.Θ., σελ. 253.

Σύστημα προσοροίσης υδατικών πόρων αγροτικών λεκανών απορροής υπό συνθήκες κλιματικής αλλαγής και μεταβλητότητας

-Κεφάλαιο 17: Συμπεράσματα και προτάσεις-