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Summary 
 

 
In an ever-increasing digital world, the application of Artificial Intelligence (AI) methods is 

becoming more and more common. Their contribution can accelerate the progress in many 

different fields, from logistics and security to engineering and medicine, providing solutions 

or accelerating their constitution thus making human life easier. One major form of AI is 

Reinforcement Learning (RL) whose way of learning a task can be summarized as a 

procedure of trial and error regardless of a problem’s complexity. In this thesis, two state of 

the art actor-critic RL algorithms are explored, using the game environment of Streetfighter 

for their implementation. First of all, a retrospection of AI attempts and effectiveness in 

playing various games through the years is presented; along with RL's theoretical 

background and its basic methods. Next, the methods used in the experimental process are 

examined by analyzing their basic characteristics, followed by a description of the 

environment of Street fighter II and the parameters that were used for the implementation 

of these methods. Finally, the experimental results are presented, compared, and discussed, 

ultimately determining the best model for the present application. 
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Περίληψη 

Mε τη διαρκή επέκταση της ψηφιοποίησης, η ανάπτυξη και η εφαρμογή μεθόδων  

Τεχνητής Νοημοσύνης γίνεται όλο και πιο συχνή και γι’αυτό καθίσταται επιτακτική η μελέτη 

τους και η αναλυτική προσέγγισή τους. Η συμβολή τους μπορεί να επιταχύνει την πρόοδο 

σε πολλούς διαφορετικούς τομείς, από τα logistics και την ασφάλεια μέχρι τη μηχανική και 

την ιατρική, δίνοντας λύσεις ή επιταχύνοντας τη λύση πολλών προβλημάτων, κάνοντας την 

ανθρώπινη ζωή ευκολότερη. Η Ενισχυτική Μάθηση αποτελεί μια ιδιαιτέρως σημαντική 

μορφή της τεχνίτης νοημοσύνης και συγκεκριμένα της Τεχνίτης Μάθησης και συνιστά ένα  

τρόπο εκμάθησης μιας εργασίας την οποία μπορεί να συνοψιστεί ως μια διαδικασία 

δοκιμής και σφάλματος, ανεξάρτητα από την πολυπλοκότητα της. Σε αυτή τη διατριβή,  

γίνεται πειραματική δόκιμη δυο σύγχρονων μεθόδων βαθιάς ενισχυτικής μάθησης actor- 

critic, χρησιμοποιώντας ως πεδίο αναφοράς, το περιβάλλον του παιχνιδιού Streetfighter ΙΙ 

για την υλοποίησή τους. Πρώτα απ' όλα, παρουσιάζεται μια αναδρομή στις επιδόσεις 

εφαρμογών τεχνητής νοημοσύνης σε διάφορα παιχνίδια μέχρι και σήμερα, καθώς και το  

θεωρητικό υπόβαθρο της ενισχυτικής μάθησης και των βασικών της μεθόδων. Στη 

συνέχεια, εξετάζονται οι αλγόριθμοι που χρησιμοποιήθηκαν κατά την πειραματική 

διαδικασία αναλύοντας τα βασικά τους χαρακτηριστικά, ενώ ακολουθεί η περιγραφή του  

περιβάλλοντος του Street fighter II και των παραμέτρων που χρησιμοποιήθηκαν κατά την 

εκπαίδευση τους σε αυτό. Τέλος, παρουσιάζονται τα πειραματικά αποτελέσματα, τα όποια  

συγκρίνονται και σχολιάζονται, καθορίζοντας εν τέλη το καλύτερο μοντέλο στην παρούσα  

εφαρμογή. 
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1. INTRODUCTION 

 

 
In this chapter, the basic ideas behind Reinforcement Learning are described, along with 

examples of its application in game platforms emphasizing its most important 

implementations. 

 

1.1. Introduction to Reinforcement Learning 

The science of Machine Learning is categorized in supervised learning, unsupervised 

learning and reinforcement learning [1]. The first category includes algorithms that given 

labeled datasets they derive mapping functions which are then able to then predict outputs 

from given inputs. In the second category, algorithms try to find patterns between sparse 

data without given sets of input and output data. In contrast to those methods, 

reinforcement learning requires little to no previous information and algorithms learn tasks 

thru trial and error. This process takes place in the interactions between the agent and the 

environment, which are the source of the data and consistently accumulate experiences 

which are highly correlated. Using this sequential set of information, an optimum solution 

may be found, even though this process creates one significant challenge for RL algorithms, 

known as exploration versus exploitation. 

 

Within the agent-environment structure, the agent first evaluates the current environment 

state, denoted by  , in discrete time steps t, and then decides upon an action, denoted by 

𝐴𝑡 . The action causes a reaction to the environment which then moves to a new state 

denoted by 𝑆𝑡+1. Additionally, the agent receives a reward denoted by the letter 𝑅𝑡 for his 

action [2]. As seen in figure 1.1, the agent and the environment interact in a loop caused by 

an action that leads to the next state 𝑆𝑡+1. 
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Figure 1.1: Depiction of the series of events in the agent-environment framework 
 

 
As a consequence, the agent has to learn how to assess states and utilize these state 

evaluations to acquire the greatest outcome, considering the reward of a transition and all 

of the potential future rewards. By following the strategy that maximizes the future rewards, 

the best outcome is attained. To put it another way, the agent is trying to come up with a 

policy that maps every state in S, to an action in A, in such a way that when it is 

implemented, it provides a series of transitions that yields the maximum sum of rewards for 

each transition. 

 

One major distinction in Reinforcement Learning methods is the possible existence of a 

model for the environment of a problem. In model-based learning, an agent creates a model 

that describes features of the environment he lives in, through attained experiences of 

interacting with it. In this kind of system, the direct effects of actions have less importance 

for the agent because of the predispositions created by the model. Thus, the values of the 

future states are taken into consideration rather than those of immediate actions (in 

contrast to model-free methods), and so are tied to the external structure of the 

environment and the internal model. 

On the other hand, in model-free learning, the consequences of actions are found through 

experience. Specifically, an action will be carried out multiple times and a policy for optimal 

rewards will be adjusted, based on the outcomes. In other words, the case when the agent 

performs an action in order to find out what the result may be, corresponds to model-free 

learning. As a result, each of the two classes is useful for different applications. 

 
A common analogy to RL is that of games, where the environment acts as the game itself 

and the agent is one of the players. The reward signal reflects how good the action was at 
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the given state, for instance, the winning move in a game of chess would give the agent a 

positive reward, whereas a losing move would give the agent a negative reward (penalty).  

The aim of the agent is defined as maximizing the total rewards it receives from the 

environment. Thus, the reward signal can be understood as a stimulus to the agent guiding it  

toward an optimal strategy in the environment. 

 

 
1.2. RL in Games 

The idea of using computer systems and algorithms to train agents or just learn specific 

games is not new. For decades, scientists had thought of using computers to beat both 

computer and board games. Since the first tries, computer intelligence has come a long way 

and game platforms have a significant role in the advancement of the field. Some of them 

can be very complex with many limitations and parameters to consider and thus can 

showcase the capabilities of an algorithm. For that reason, it has become common place in 

the scientific community to use games as a testing platform for RL algorithms since they 

provide a perfect test-bed for measuring the progress of complicated AI systems. 

 
The first time a computer program was successfully created to play against a human, was in 

1979. In a friendly match, the BKG 9.8 backgammon computer program prevailed against the 

reigning World Backgammon Champion, Luigi Villa, by 7 points to have a historically 

important impact [3]. That was the first time that a human-created machine had ever been 

successful in dethroning a world champion in a recognized intellectual activity. There are a 

total of 1020 different positions that may be played in the game of backgammon, which is a 

game of both skill and chance (use of dice) and is comparable to the perplexity of checkers 

or bridge [4],[5]. Because it was heuristic software, it did not base its judgments on a 

comprehensive representation of the game of backgammon. Aside from a few pre- 

calculated tables, the whole software is based on heuristic functions that had been precisely 

optimized. 

 

However, the incident that left a more significant mark in the history books happened from 

1996 to 1997, when IBM challenged Garry Kasparov to a chess match against its chess- 

playing computer, Deep Blue [6]. Kasparov won the 1996 match 4-2 but in the next year’s 
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rematch, he lost 3 games while drawing 1 to the upgraded version of Deep Blue. It was a 

historic moment when a chess-playing computer, for the first time, prevailed against a 

reigning world champion under the standard conditions of a chess tournament. Since chess 

had been seen as the pinnacle of artificial intelligence evaluation for many decades, the 

achievement was commemorated as a watershed moment in the development of the field 

of artificial intelligence [7]. Deep Blue was artificial intelligence (AI), but in reality, it was 

more of a hybrid since it depended less on machine learning than modern systems do and 

more on a brute force approach. This meant that it used sheer processing capacity to test 

every option rather than sophisticated approaches to enhance efficiency [8]. The concept of 

big data was still in its infancy, and the technology at the time could not have supported 

enormous networks. The software was responsible for the more fundamental components 

of the chess calculations, while the hardware's accelerator chips were responsible for 

searching through a tree of potential outcomes to determine the optimal moves based upon 

an alpha-beta search algorithm. 

 
 
 

In 2011, people all across the globe watched as IBM's Watson succeeded in a friendly match 

of Jeopardy against the show's two most renowned players, one of whom had won 74 

straight programs in a row. Watson, a computer system that functions as a search engine 

and has remarkable natural language processing (NLP) and reasoning skills, has shown that 

computers are capable of not just excelling in mathematical strategy games but also games 

based on knowledge and communication. A Game State Evaluator, also known as a GSE, was 

trained using millions of rounds of simulated games between Watson and humans to assess 

the influence that a wager has on a player's likelihood of winning [36]. A feature description 

of the current game state is given as an input into the GSE, which then uses a neural network 

to achieve smooth nonlinear function approximation and generates an estimate of the 

chance that Watson would eventually win based on the game's present state. The players 

scores and different measurements of remaining game time were stored in a feature vector, 

which was used to train the algorithm [37]. 

 

In 2016 another milestone in the AI development took place when Google’s Deepmind 

managed to defeat the 18 times and current world champion (at the time) in GO, Lee 
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Sedolusing four to one [9]. Before then, it was expected that it would be at least 10 years 

before computers were able to beat professional Go players in the full-sized game. The 

earlier attempts of using artificial intelligence to defeat a human being in a game 

environment are not comparable to AlphaGo’s implementation for which machine learning 

was utilized to figure out how to play and practice the game rather than pre-programmed 

probability calculations. It is claimed that the board game Go, which originated in China 

more than two thousand five hundred years ago, is the oldest board game that is still being 

played today [10]. The game of Go is deceptively difficult while having some rather 

straightforward rules. In comparison to chess, go has a larger board with a greater range of 

possible moves, lengthier games, and, on average, more potential moves to evaluate before 

making a decision. The number of atoms in the known universe is thought to be on the order 

of 1080, while the number of permissible board places in Go has been computed to be 

roughly 2.1 × 10170 that is significantly higher. The program made use of three different 

policy networks, two of which were trained using supervised learning on experts' 

movements, and one of which was learned using policy gradients and self-play approaches 

(reinforcement learning) [11]. These three methods were merged into one in the Monte 

Carlo tree search, which used the value function obtained by the Rl algorithm to determine 

how its branches should be set up. 

 

After their success, the company made two upgraded versions of the same algorithm, the 

AlphaGo Zero in 2017 and the AlphaZero in 2018. The first surprisingly outperformed its 

predecessor AlphaGo just 36hours later, and managed to win 100 to 0, only using one neural 

network and training only thru self-play which was the most important difference from 

AlphaGO [12], [14]. The latter was deployed across multiple computers and used a total of 

48 tensor processing units (TPUs), but AlphaGo Zero only utilized a single system with 4 

TPUs. AlphaZero is a generalized extension of its predecessor that is also capable of 

successfully playing chess and shogi [15]. Within the first twenty-four hours of its training, 

the algorithm acquired a top notch standard of competition in these games as shown by its 

victory against the world-champion programs Stockfishm, Elmo, and the three-day version of 

AlphaGo Zero[16]. Shogi is played on a larger board than chess and is a significantly harder 

game in terms of computational complexity. The Computer Shogi Association (CSA) world- 

champion Elmo, was the strongest shogi program and had only recently defeated human 
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champions [17]. The next year, DeepMind published a new study describing MuZero [18], a 

new algorithm capable of generalizing AlphaZero's applications by playing both Atari and 

board games without knowledge of the game's rules or representations. 

 

A year and a half later, the same firm revealed AlphaStar, a computer program taught to play 

Starcraft II, a video game that was a significant obstacle for artificial intelligence researchers 

for more than a decade. The AI that was trained achieved the level of GrandMaster after 

defeating the top player Grzegorz "MaNa" Komincz and his colleague Dario "TLO" Wünsch 

with a score of 5-0 [20]. It subsequently achieved a ranking that was higher than 99.8 

percent of all current players. The game is an example of a multi-agent problem in which 

several participants fight against one another for influence and resources. It is an incomplete 

information game since in some cases the map can only be viewed up to a point by a local 

camera [19], [21]. The agent has to explore his surroundings to identify the opponent's state 

and integrate the essential knowledge. In addition, the action space is broad and varied, and 

the user utilizes a point-and-click interface to pick actions from a continuous space 

containing around 108 possible outcomes. Games often continue for many thousands of 

frames and actions, and the player is required to make choices early with implications that 

may not be evident until much later in the game, leading to a diverse set of problems. 

Human game replays were used to teach agents throughout the first stages of their training 

process. Afterwards, it continued with matches against actual league opponents. To build 

these models, a deep neural network was used, which was trained using just original data 

from the game. Subsequently, the policy parameters were taught by reinforcement learning, 

which made use of a policy gradient approach, the Asynchronous Advantage Actor-Critic 

(A3C). 

 
The same year OpenAI, a promising non-profit organization in this field, created a machine 

learning system, OpenAI 5 which competed and won against a team of human gamers in 

Dota 2. Specifically, a system of 5 neural networks took on a team of five top 0,5% of 

professional gamers in 3 matches of which it won the 2 [24]. The algorithm used was 

Proximal Policy Optimization (PPO) and a self-play strategy which means that the algorithm 

learns to duel against itself, gradually getting better over a long period. Dota 2 is a very 

complicated game in which the agent has to take thousands of actions such as moving 
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around by clicking, casting abilities, or buying items and at the same time taking into 

consideration the progress of each team. On top of that, like in Starcraft the payback for 

those actions only arrives much later in the game while it is also an imperfect information 

game. Its continuous action space has high dimensionality and it is much more complex for 

an algorithm to deal with in comparison to Atari’s, which is a relatively small discrete one. To  

cope with all these difficulties, it trained by playing 180 years of game experience every day 

and using 128.000 CPU’s and 256 of the biggest GPU’s available [22],[23]. 

 
Another addition to the state of the art RL performances in games happened in 2021 when 

Sony AI in collaboration with Polyphony Digital (PDI), and Sony Interactive Entertainment 

(SIE) developed GT Sophy, a revolutionary superhuman racing agent that plays Grand 

Turismo and managed to win top human racers [25]. Grand Turismo is a pc game first 

released in 1989, which emphasizes in racing simulation and is designed to emulate the look 

and performance of a wide variety of cars, the majority of which are authorized 

reproductions of actual automobiles from the real world. Undoubtedly, GT Sophy raised the 

bar for game AI by overcoming the difficulty of a hyper-realistic simulator. This is 

accomplished by mastery of real-time control of vehicles with intricate dynamics, game 

strategies, and split-second decision-making, all while adhering to the rules of proper game 

etiquette. Gran Turismo Sport was used as the training ground for GT Sophy, which was 

taught using cutting-edge learning algorithms and training situations created by Sony AI and 

utilizing unique deep reinforcement learning methods. In particular, an innovative deep RL 

technique that trains neural networks asynchronously and goes by the name of QR-SAC was 

applied. QR-SAC is an expanded form of Soft Actor-Critic. This strategy educates both a 

policy (an actor) that chooses an action based on the agent's observations and a value 

function (a critic) that evaluates the potential future rewards of each action. 

 

In addition, a French firm called NukkAI produced an artificial intelligence that defeated 

eight world champions in the card game bridge. The bridge is a game in which human 

superiority has successfully defied the advance of computers up until this point. A card game 

based on the concept of taking risks, bridge is played between two teams of two players 

each. The victory signified a new milestone for AI since players in bridge operate with partial  

knowledge and are required to respond to the behavior of numerous other players. This is a 
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situation that is far closer to human decision-making when compared to games such as Go 

and chess [27]. These characteristics create challenges as well as opportunities for research 

into AI. As a result of just having access to some relevant information, the search area 

available for planning is exponentially bigger than the one for completely observable 

scenarios. Additionally, the multi-agent feature (two players versus two, both collaborative 

and antagonistic) makes the branching factor higher than in games with only two players. 

Instead of learning by endless repetition of a single game, it first learns the rules and then 

refines its skills through further practice. It combines systems that are rules-based with 

those that use deep learning [28] [29]. 

 
 
 

In conclusion, it has been proved that machine learning can be trained in different types of  

games that need completely different approaches successfully. More and more technology 

corporations nowadays, create algorithms that compete in different types of games 

searching for new challenges that will finally optimize and showcase their performance. Even 

though the current reinforcement learning algorithms are much simpler and less capable 

than human intellects, with enough training data and compute resources they can solve 

surprising complex problems. Some of these systems may not do much more than 

overfitting on a very dense sampling of the problem but it is evident that they have managed 

to solve very complex problems and actually win the top of the professional gamers in many 

different occasions. To create even more powerful AI, algorithms that could use the already 

acquired knowledge and adapt it to new environments achieving equal or better 

performance should be developed. 
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1.3. Thesis Organization 

The rest of this thesis is compiled in five more chapters, specifically from chapters two to six 

In Chapter 2: The background of reinforcement learning theory is described providing 

the necessary techniques and equations, on which more advanced RL methods, are based. 

In Chapter 3: Deep Reinforcement Learning policy gradient and actor-critic methods 

are presented along with the theory behind them. 

In Chapter 4: Elaboration on the basic parts of the game environment and the 

application of the algorithms. 

In Chapter 5: The results of the RL methods that were implemented are presented 

and discussed. 

In Chapter 6: The conclusion underlines the purposes of this thesis and suggestions 

for further research are proposed. 
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2. REINFORCEMENT LEARNING LITERATURE REVIEW 

  

2.1. Fundamentals 

The agent can be anything that understands and acts in an environment while trying to carry 

out his objectives and become better at the same time. He has an objective function whose 

expected value is trying to maximize. The sum of possible decisions he may take in the 

environment is called action space and can be either discrete or continuous. In the case of 

continuous spaces, discretization is used usually to make the problem simpler even though 

the accuracy is going to decrease. 

 

As mentioned before, the environment is the word where the agent lives in and chooses 

actions to make. More specifically, anything that the agent cannot modify deliberately is 

deemed as part of its environment. The sum of the information the agent takes in at a 

specific time t is called state space and can be considered the same as the observation space 

if the environment is completely observable by the agent. In some games, not all of the 

information that there is in the environment can be accessed by the agent.  

 

The environment can be categorized based on different traits. It can either be deterministic 

or stochastic. In the first, given the present state and action, the new state can certainly be 

predicted while in the second, it is not always possible to be foreseen.  

   There is also the single-agent and the multi-agent environment. Obviously, in the single-

agent environment only one active agent is present and is able to interact with it while in 

the multi agent environment there can be more than one agent dealing with the 

environment simultaneously. Moreover, there are discrete and continuous environments 

which constitute a very important distinction, since that can be a factor in determining the 

right algorithm to use.  
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   Two other distinctive types of environments that are of interest are episodic and 

sequential, which have different temporal properties. An episodic task is one that happens in 

episodes. An episode can be many things, such as games or decision points, but the thing 

that identifies them is that for each episode the reward accumulated can be summed before 

a new one begins. This allows for expressing basic parameters, such as the reward, in 

episodes instead of time steps and finally optimizing by finding a maximum score in most of 

these applications. In such a setting, the agent's activities are restricted to the current 

episode alone and are not dependent on any actions taken in earlier episodes.  

Sequential environments do not have such an endpoint since the present actions are 

associated with the actions that happened in earlier stages of the environment and as such 

cannot rewards cannot be maximized in the same way.  

   Finally, there are the fully observable and the partially observable Environments which 

were mentioned in the previous part about the implementation of RL algorithms in games. 

The first category corresponds to the setting where an agent has full access to his 

environment and its overall status at a particular moment. However, when the agent cannot 

always observe the whole environmental conditions of the world where he lives, the 

environment is called partially observable. 

 

 

The activities of the agent have an effect on the condition of the environment in the future, 

which in turn changes the options and possibilities that are available.  The action space can 

also be divided in discrete and continuous and it hasn’t had to match the environment’s type 

space. For example, discrete action-space can exist in a continuous environment. Correct 

decision-making necessitates consideration of the long-term repercussions of actions and 

the reward function is a significant factor to consider. The reward is given to the agent after 

every action he makes in the environment and can be a number, negative or positive. 

Generally, it shows the significance of the state the agent is in a specific time t.  The agent's 

purpose is to maximize the total return that he gets. 
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2.2. Markov Decision Process (MDP) 

For the purpose of addressing the reinforcement learning issue, the agent-environment 

interaction is represented as a MDP. That means that the next state and reward can be 

forecasted using only the current state and action. 

 

 

Figure 2.1: Interaction between agents and their environments in a MDP. Every step involves 

the agent choosing an action taken in response to environmental data and receiving a reward signal 

as a result of the action chosen [32]. 

 

Using the information given by the environment about the current state St, an action At is 

selected by the agent that will bring it with a certain probability to a new state St+1, and will 

earn him a reward Rt+1 as a result of the chosen action, for every time step t = 0, 1,..., ]. The 

agent uses a policy that maps the possibilities of choosing each of the selectable actions 

from each which is symbolized by π and πt (α|s) is the probability of At =α when St =s. If the 

process is finite, the agent will eventually reach the terminal state, and the series will come 

to an end [33]. The time sequence of events from the beginning state S0 to the terminal 

state ST is known as an episode in a finite MDP and must always occur in the following order: 

 

S0, A0, R1, S1, A1, R2, S2, A2..., RT , ST, AT.                             (2.1) 

 

Since the problem is defined as an MDP, each state and reward in an episode is solely 

influenced by the state and action pair that came before it.  As a result, given a non-

deterministic system, the probability of obtaining a specific reward and ending up in a 

specific state can be stated as 
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                        p(s′, r |s, α) = Pr {St+1 = s′, Rt+1 = r |St = s, At = α}                             (2.2) 

 

where s, s′, and α in (2.2) are states and actions that are contained inside the entire set of 

conceivable states S, and actions A respectively.  

 

2.2.1 Rewards and expected returns 

As mentioned previously, a reward is a signal that the agent receives at each time step as a 

gauge of how favorable it is to take a specific action. Although these rewards can be 

provided by the environment, they must be consciously selected in some applications. 

 

                                𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯ + 𝑅𝑇                                              (2.3) 

 

The primary objective of reinforcement learning is to optimize the anticipated return, 

written as  𝐺𝑡, that is the accumulation of all the predicted rewards in certain episodes. As a 

result, partial rewards must be closely linked with the agent's ultimate objective. 

Additionally, the function (2.3) is modified using γ, which is the discount rate γ∈ [0, 1] that 

indicates the present significance of future rewards. Specifically, when it is closer to 1, future 

rewards gain more weight whereas immediate rewards are considered more when is closer 

to 0. It is a more generalized formulation that takes into account the decreasing importance 

of future rewards at the current time step. 

 

                𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ = ∑  ∞
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1                               (2.4) 

 

The statement above is known as the expected discounted return which is also appropriate 

for continuous tasks. 

 

2.2.2 Value Functions 

Learning a value function, which maps every possible state in the environment to its 

expected return when following a certain behavior, is a common strategy for solving the 

reinforcement learning problem. This behavior, known as policy in the literature and 

indicated by π, represents the agent's likelihood of picking a particular action when in a 



14 
 

certain state, πt(α|s) . The state-value function can be written under policy π when using 

this notion. 

                             𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠] = 𝐸𝜋[∑  ∞
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠]                            (2.5) 

 

However, the action-value function (2.6), considers not only the value of existing in a specific 

state, but also the aftermath of taking a particular action firstly and then adhering to a 

specific policy π from that point forward: 

 

              𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝐸𝜋[∑  ∞
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]            (2.6) 

 

As previously stated, the agent's goal is to increase the expected return by doing a number 

of measures. For each state and action, if the real action-value function is known, the 

problem can be simply solved by picking the action that maximizes the expected return in 

each state. In that circumstance, the agent is said to be pursuing the optimal policy. As a 

result, any alternative policy's return must always be lower or equal to the optimal policy: 

 

                                                               𝑣∗(𝑠) = 𝑚𝑎𝑥
𝜋

𝑣𝜋(𝑠)                                                             (2.7) 

 

                                                           𝑞∗(𝑠, 𝑎) = 𝑚𝑎𝑥
𝜋

𝑞𝜋(𝑠, 𝑎)                                                        (2.8) 

 

2.2.3 Bellman Equation 

The Bellman equation describes a connection between the value of some state and state’s 

that immediately follows it. It takes an average of all the possibilities and weights them 

according to the likelihood of them happening. It stipulates that the beginning state’s value 

has to match the value of the estimated new one state adding the anticipated reward 

through the process. Thus, equation (2.5) can be demonstrated perpetually in the following 

states using come MDP properties as shown below: 
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 𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠]                                                               
                                                                

      = 𝐸𝜋[𝑅𝑡+1 +  𝛾𝐺𝑡+1| 𝑆𝑡 = 𝑠]                                  

      = 𝐸𝜋 [∑  

∞

𝑘=0

𝛾𝑘 𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠]                                

 

                                  = ∑  

𝑎

𝜋(𝑎|𝑠) ∑  

𝑠′

∑  

𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝐸𝜋[𝐺𝑡+1
 |𝑆𝑡+1 = 𝑠′]]

                                           = ∑  

𝑎

𝜋(𝑎|𝑠) ∑  

𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠′)]                                 (2.9)

 

 

This equation is a series of equations, where each one corresponds to a state. Specifically, in 

N states, there are going to be N equations involving N unknowns. Taking into consideration 

that the policy is being selected so that the return is maximized the condition which is 

known as Bellman optimality equation for the state-value function must be:  

 

                                  𝑣∗(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

𝑞𝜋∗
(𝑠, 𝑎)  

 = 𝑚𝑎𝑥
𝑎

 Ε𝜋∗[𝑅𝑡+1 +  𝛾𝐺𝑡+1| 𝑆𝑡 = 𝑠] 

 = 𝑚𝑎𝑥
𝑎

 𝐸[𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

                                             = 𝑚𝑎𝑥
            𝑎

 
 

∑  𝑠′,𝑟 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝜐∗
 (𝑠′)]                                         (2.10) 

 

   𝑞∗(𝑠, 𝑎) =
 

 Ε [𝑅𝑡+1 +  𝑚𝑎𝑥𝑞∗
𝑎′

(𝑆𝑡+1,𝑎
′)| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

                                                    =
            

 

∑  𝑠′,𝑟 𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑚𝑎𝑥𝑞∗
𝑎′

(𝑠′, 𝑎′)]                            (2.11) 

 

In case the state space is finite and the environment’s behavior is determined, the solution 

to the preceding formulas can be obtained. As a result, the ideal policy can be discovered 

when acting greedily throughout every state from the start to the finish of the episode. It's 

worth noting that the greedy action in each state isn't always the one that maximizes the 

immediate reward in this case, but rather the end return, which is determined by the 

Bellman optimality equation in each state. 
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2.3. Dynamic Programming (DP) 

A set of techniques known as DP can be used to compute optimal policies when a perfect 

model of the environment known as an MDP is given. However, traditional DP algorithms 

are rarely used in RL problems since they assume a perfect model and they need a lot of 

computations in order to be applicable, their contribution to the theoretical base of other 

algorithms is undeniable. 

 

Assuming the environment can be characterized as an MDP, we assume that its state S, 

action A, and reward R are finite, and that its dynamics are given by a set of probabilities 

p(s, r |s*, α). Using value functions for organizing the exploration to find effective policies is 

the core concept of DP and reinforcement learning in general. Thus, DP methods that can be 

defined like the Bellman equations are presented below [34], [35]. 

 

2.3.1. Policy Iteration 

To evaluate learning, a technique called policy evaluation is utilized, that deals with the 

problem of calculating the value function for some arbitrary policy. There are two types of 

policy evaluation that are commonly used, which recursively help to add value to the other. 

One is the state evaluation 𝑣𝜋 which is used to estimate the total value that a given state will 

bring following a certain policy, and is given by the Bellman equation (2.9) which is turned 

into an update rule, 𝑣𝑘(s′) → 𝑣𝑘+1(s) and iteratively converges towards the solution, 𝑣𝜋(𝑠). 

In summary, 𝑣𝜋(𝑠) estimates the value of the current state, by foreseeing the next one and 

adding the reward that it would gain from the state transition. Additionally, there is a way of 

evaluating state-action pairs, 𝑞𝜋 which is actually the inner component of the state 

evaluation and it takes into account only a single action [34].  

 

                           𝑞𝜋(𝑠, 𝑎) = ∑  𝑠′ 𝑝(𝑠′ ∣ 𝑠, 𝑎)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛾𝑣𝜋(𝑠′))                           (2.12)     

 

According to the algorithm that is chosen in each case, either the state evaluation or the 

state-action evaluation is going to be used in the system, as they both give ways to different 

interpretations of the system. 
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On the other hand, there is the policy Improvement method that takes an old policy and 

makes a new and improved one by selecting greedy actions according to the value function 

of the original policy. In other words, this method determines if it would be more beneficial 

to change the already in use policy by moving to a new one.  

In case 𝑞𝜋(𝑠, 𝑎)(2.12), the value of taking an action an in state s and then following the 

policy π, is greater than,𝑣𝜋(𝑠) (2.9), then the better choice would be to once again take the 

action α  whenever in state s and the new policy would be superior to the previous one. This 

special case is called the policy improvement theorem. The new greedy policy is given 

bellow:  

                                    𝜋′(𝑠) = arg 𝑚𝑎𝑥
𝑎

𝑞𝜋(𝑠, 𝑎)

= arg 𝑚𝑎𝑥
𝑎

𝔼[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                     (2.13) 
 

 

, where arg 𝑚𝑎𝑥
𝑎

 indicates the value of the action α that maximizes the following expression. 

Because the greedy policy is in agreement with the policy improvement thorium it cannot be 

worse than the original policy. The policy improvement theorem and the general ideal of the 

method can be also applicable for stochastic policies. 

 

Combining the policy evaluation and improvement method, the policy iteration emerges. 

After improving a policy 𝜋, utilizing 𝑣𝜋   to produce a better one 𝜋1, another value function 

𝑣𝜋1 can be computed which can also be improved find an even better 𝜋2. As a result, a series 

of policies with value functions can be generated that will be improved monotonically: 

 

                                    𝜋0 ⟶
E

𝑣𝜋 ⟶
I

𝜋1 ⟶
E

𝑣𝜋1 ⟶
I

𝜋2 ⟶
E

⋯ ⟶
I

𝜋∗ ⟶
E

𝑣∗                             (2.14) 

 

 ,‘E’ standing for policy evaluation and ‘I’ for policy improvement. As seen above, if the 

present policy is not optimal; every new policy will be an improvement of the previous one 

and this process continues until an optimal policy and optimal value function is found in a 

finite number of iterations. 
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θ: a small number, π:  a deterministic policy, V ~ v*, 

s.t   π~π* , V ~ 𝑣 * 

Function PolicyIteration is 

/* Initialization  

Initialize V(s) arbitrarily; 

Randomly initialize policy π(s); 

/* Policy-Evaluation  

Δ ← 0 

while Δ < θ do 

     for each s ∈S do 

            𝑣 ← V(s): 

            V ←   
 

∑  𝑠′,𝑟 𝑝(𝑠′, 𝑟|𝑠, 𝜋(𝑠))[𝑟 + 𝛾𝑉(𝑠′)] 

            Δ ←  𝑚𝑎𝑥(Δ,|𝑣 — V(s)|) 

     end 

end 

/* Policy Improvement  

policy_stable ← True 

for each s∈S do 

       old_action ← 𝜋(𝑠) 

       𝜋(𝑠) ←  arg 𝑚𝑎𝑥𝑎 ∑  𝑠′,𝑟′ 𝑝(𝑠′, 𝑟|𝑠, 𝛼)[𝑟 + 𝛾𝑉(𝑠′)] 

       if old_action != 𝜋(𝑠) then policy-stable ← False 

end 

if policy_stable then 

    return V ~ v*, and π~π*: 

else 

    go to Policy-Evaluation 

end 

Algorithm 1: Dynamic Programming - Policy Iteration 

 

 

2.3.2 Value Iteration 

This method avoids the application of policy evaluation during every iteration which is the 

case at the previous algorithm. The frequencies of policy evaluation step application can 

actually variate, while keeping the same convergence that is provided in the policy iteration 

method. Specifically, when it is applied only one time at each state, the method is called 

value iteration. It's based on the Bellman optimality equation (2.10) that is converted into an 

update rule. Its update is very similar to the policy evaluation update, with the only 

difference being that it is required that the maximum needs to be chosen for each action.   

 



19 
 

θ: a small number, π:  a deterministic policy,  

s.t   π~π* , V ~ 𝑣 * 

/* Initialization  

Initialize V(s) arbitrarily, except V (terminal) 

V(terminal) ← 0 

/* Loop Until Convergence 

Δ ← 0 

while Δ < θ do 

     for each s ∈ S do 

            𝑣 ← V(s): 

            V(s) ←  𝑚𝑎𝑥𝑎 
 

∑  𝑠′,𝑟′ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑉(𝑠′)] 

            Δ ←  𝑚𝑎𝑥(Δ,|𝑣 — V(s)|) 

     end 

end 

/* Return Optimal Policy 

return π  s.t. π(s) = ←  arg 𝑚𝑎𝑥𝑎 ∑  𝑠′,𝑟′ 𝑝(𝑠′, 𝑟|𝑠, 𝛼)[𝑟 + 𝛾𝑉(𝑠′)] 

Algorithm 2: Dynamic Programming - Value Iteration 

 

Theoretically, the algorithm ends when it converges to v* but practically, it does so when 

there is not significant improvement between consecutive value functions. 

 

2.3.3 General Policy Iteration 

As previously seen in value iteration, the standard model of sequential interchange between 

policy evaluation and policy improvement is not always necessary to achieve converging to 

the optimal policy. The General Policy Iteration model represents that idea of alternating 

between the two policy methods without following the basic model used in policy iteration. 

 

                                                 

Figure 2.2: Depiction of the back and forth between the policy iteration and policy evaluation of the 

GPI’s approach 
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General policy iteration can be used to describe most of the RL approaches that are used 

today, since they use value and policy functions that communicate in order to achieve 

optimality. Specifically, the latter gets better and better in accordance to the value 

function, while the first keeps approaching the policy's value function. Both become stable 

once a greedy policy in regard to its evaluation function is achieved. 

 

2.4. Monte Carlo Methods 

As mentioned before, dynamic programming algorithms require complete knowledge of the 

environment and the probability distributions of its transitions. The methods described in 

this section try to approximate the exact solution using simulations. These follow an empiric 

strategy based on experiences gathered by the agent when interacting with the 

environment. 

 

The Monte Carlo algorithm (MC) for evaluating a given policy estimates the value function at 

every state by averaging the sample returns over various trajectories. In this method the 

value of all the states visited in the episode is updated only when the episode ends. Based 

οn whether only the first visit or all the visits to the same state during an episode are used to 

calculate the average return, two algorithms with different theoretical properties are 

obtained. It can be proved that both methods converge to the optimal solution as the 

number of visits to all the states goes to infinity. The pseudo-code below corresponds to the 

first visit MC. 

Initialize  

       π ← policy to evaluate 

       V ← initialization of value function 

       Returns(s) ← empty list, for all s∈S 

 

Repeat: 

       Generate an episode using π 

       For each state S appearing in the episode: 

               G ← sum rewards from first instance of state to end of episode 

               Returns(s) ← append G  

               V(s) ← average (Returns(s))                                                                                                                          

Algorithm 3: First visit MC method for policy evaluation 
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In this and the following algorithms the boolean variable is used to indicate whether or not 

the episode has ended. The method can be easily modified to calculate  𝑞𝜋 instead of 𝑣𝜋. 

However, these methods can only be used to evaluate a certain policy but not to find the 

optimal one. One way to do so would be to update the policy as new information about the 

value of every state and action comes in. This method is known in dynamic programming as 

generalized policy iteration (GPI). 

 

2.4.1 On-policy Monte Carlo 

On policy methods attempt to guarantee that all regions in the state-action space are 

sufficiently visited by initially deploying a more relaxed policy where the probability of 

selecting any of the actions in a given state is greater than 0. 

One such policy is called ϵ-greedy and the parameter ϵ stands for the chance of selecting a 

random action as opposed to the greedy one. Hence, by combining this strategy with policy 

evaluation and policy improvement shown in dynamic programming an algorithm that can 

be shown to converge to the optimal solution is obtained. 

 

Randomly Initialize: π  

Initialize action value function:  Q  

Allocate memory: states, rewards, returns  

repeat 

     Sample initial state: s 

     while not done do 

           αmax  ← maxα Q(s, α) 

          α ← choose αmax or random a with probability ϵ and 1- ϵ 

            s′, r  done ← take step 

            states, actions, rewards ← append s, a, r 

            s ← s′ 

      end 

      for each different s - a pair in states-actions do 

            G ← sum rewards from first instance of state-action to end of 

            episode 

            returns(s, a) ← append G 

            Q(s, α) ← average returns(s, α) 

      end  

end 

Algorithm 4: On-policy ϵ-greedy MC method for control 
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2.4.2 Off-policy Monte Carlo 

Although in the previous section soft policies where introduced to allow some environment 

exploration instead of taking greedy action in every iteration, this had the consequence of 

making the method learn from a policy that was not entirely optimal. We will now present a 

different approach where two policies are used instead. The first one, known as behavior 

policy, is meant to explore and add new experiences, while the other, the target policy, uses 

the information provided by the first one to make improvements until converging to an 

optimal strategy. 

 

A key concept in off-policy algorithms is importance sampling. This is used to correct for the 

fact that the data generated to update our target policy comes from a different distribution 

returns of the target policy. 

 

                                                      𝑉(𝑠) =
∑  𝑡∈𝑇(𝑠) 𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝑇(𝑠)∨
                                                    (2.15) 

 

, T(s) is the group of all the time steps in which state s has been visited. Equations 2.13 and 

2.14 are the ordinary and weighted importance sampling estimators of V(S) respectively. 

 

The 𝜌𝑡:𝑇 − 1 term is the importance sampling ratio which measures the relative probability 

that a trajectory occurs when following target and behavior policies:  

 

                          𝜌𝑡:𝑇−1 =
∏  𝑇−1

𝑘=𝑡 𝜋(𝐴𝑘∨𝑆𝑘)𝑝(𝑆𝑘+1∨𝑆𝑘,𝐴𝑘)

∏  𝑇−1
𝑘=𝑡 𝑏(𝐴𝑘∨𝑆𝑘)𝑝(𝑆𝑘+1∨𝑆𝑘,𝐴𝑘)

= ∏  𝑇−1
𝑘=𝑡

𝜋(𝐴𝑘∨𝑆𝑘)

𝑏(𝐴𝑘∨𝑆𝑘)
                            (2.16) 
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Initialize target policy π 

Define behavioral soft policy b Initialize action value function: C 

Set G = 0, W = 1 

Allocate memory: states, rewards, returns 

repeat 

      Sample initial state: s 

       while not done do 

            action ← choose an action following b 

            s′, r, done ← take step 

            states, actions, rewards  ← append s, α, r 

 s ← Q(s, α∗) s′ 

       end 

       for each ⟨ s, α, r ⟩ tuple from terminal to initial state do 

             G ← γG + r 

             C(s, α) ← C(s, α) + W 

              Q(s, α) ← Q(s, α) + 
𝑊

𝐶(𝑠,𝑎)
 [G − Q(s, α)] 

             π(s) ← arg maxa∗∈A Q(s, α∗) 

               W ← 𝑊  𝜋(𝛼|𝑠)

𝑏(𝑎|𝑠)
 

             if W = 0 then 

                  break  

             end       

       end 

end 

Algorithm 5: Off-policy MC control method. Estimating optimal policy π ≈ π∗ 

 

Where W is a variable holding the importance sampling weights at every step of the episode 

and C(St, At) is the cumulative sum of weights in each particular state-action pair.  

 

The expression used for the action-value function update is equivalent to equation (2.15) 

and allows to reestimate the expected return incrementally as new information comes in. 

 

                                   𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) +
𝑊

𝐶(𝑆𝑡 ,𝐴𝑡)
[𝐺 − 𝑄(𝑆𝑡 , 𝐴𝑡)]                                  (2.17) 

 

2.5. Temporal Difference methods 

Even though, as discussed in the previous section, Monte Carlo techniques are proved to 

converge to the optimal solution they make inadequate use of the information and can 
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perform poorly in practice. The fact that each episode has to be concluded in order to use 

the true sample return to make a change in our value function, can have a strong negative 

impact especially in situations where episodes are long or even infinite. 

 

In contrast, temporal difference learning methods, TD, base the updates on previous 

estimations of the value function at subsequent states: 

 

                                    𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)]                                    (2.18) 

 

Where 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1), instead of Gt, is used as the approximation of the expected return 

at St. The TD learning alternative to algorithm 1 used for policy evaluation is outlined below 

 

Define: policy π to evaluate 

Initialize value function: V  

repeat 

     Sample initial state: s 

     while not done do 

           α ← choose an action following π 

           s’, r, done ← take step ′ 

           V (s) ← V (s) + α [r + γV (s ) - V (s)] 

            s  ← s′ 

      end 

end 

Algorithm 6 : TD learning for policy evaluation 

 

The technique applied in algorithm 4 is known as bootstrapping and it allows performing 

updates more frequently than the Monte Carlo methods while still converging to the optimal 

solution. Practically, the efficient use of data and memory in TD learning methods normally 

leads to faster learning. However, there is no mathematical proof supporting this empirical 

fact yet.  

 

Although the methods presented in this and the following sections are based solely on the 

reward obtained after a single step, waiting a few more steps to do the update normally 

leads to faster convergence. This is the idea used by n-step TD methods which intend to 

combine the low bias high variance estimate of MC methods with the high bias low variance 
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1-step TD update. The value of St is updated after n steps using the intermediate rewards 

and the current estimate of the return at St+n. 

 

2.5.1 On-policy Temporal Difference: Sarsa 

The on-policy version of TD control algorithms is known as Sarsa. As in Monte carlo method, 

Generalized Policy Iteration is also applied to evaluate and improve the action choices but in 

this case the value function update is done online and not at the end of every episode.  

 

                     𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡 , 𝐴𝑡)]                   (2.19) 

 

At last, the objective is to get an approximation of the action-value function Q(s, a) at every 

state action pair in order to be able to make decisions on what actions to take, by comparing 

the expected returns in a particular state. Because this is an on policy method we need to 

deploy soft policies in order to allow some exploration around the state-action space. 

Algorithm 5 presents the Sarsa TD method for control with -greedy policy 

 

Randomly initialize policy: π  

Initialize action value function: Q  

repeat 

      Sample initial state: s 

      αmax  ← maxα Q(s, α) 

       α  ← choose αmax  or random α with probability ϵ and 1- ϵ 

       while not done do 

              s′, r, done ← take step 

              αmax  ←   maxα’ Q(s′, α′) 

              α′  ← choose α′max or random a′  with probability ϵ and 1- ϵ  

              Q(s, α) ← Q(s, α) + α [r + γQ(s′, α′) - Q(s, α)] 

               s ← s′,   α  ←  α′ 

       end 

end 

Algorithm 7: On-policy TD method for control, Sarsa 

 

The algorithm above will certainly converge to the optimal policy if all the state- action pairs 

are visited an unlimited number of times and at the same time, the soft policy gradually 

becomes the greedy. 
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2.5.2 Off-policy Temporal Difference: Q-Learning 

Q-learning appears as a simple but interesting off-policy variant of Sarsa. In this approach, 

the value function is modified after a single step by making use of the immediate reward and 

the current actual prediction of the greedy action in the new stage, which is: 

 

                    𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)]                   (2.20) 

 

In this method the policy being followed is not the same as the one used in the greedy policy 

that updates the action value function. Even though it is labeled as an off-policy method, it 

differentiates from the off-policy standard mentioned in 2.4.2, because the target and 

behavioral policies are the same and the update is performed using the next state’s greedy 

action. Therefore, the policy must be soft to ensure some exploration. 

 

Randomly initialize policy: π 

Initialize action value function: Q 

repeat 

      Sample initial state: s 

      while not done do 

            αmax ← maxα Q(s, α) 

            α  ← choose αmax or random α with probability ϵ and 1 - ϵ  

            s′, r, done ← take step 

            Q(s, α) ← Q(s, α) + α [r + γQ(s′, α′) - Q(s, α)]            

             s ←  s′ 

       end 

end 

Algorithm 8: TD off-policy method, Q-learning 

 

The method works very well in practice and has been proved to converge considering that all 

the state-action pairs are visited enough.  

 

A straightforward strategy for achieving equilibrium between exploration and exploitation is 

the Epsilon-Greedy algorithm that involves making exploration and exploitation decisions in 

completely random order. The epsilon-greedy strategy, in which "epsilon" relates to the 
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likelihood of selecting to explore, exploits for the most of the time while leaving a short 

window of opportunity to explore. When ε=1, it means exploration. A random number is 

created at each step to ascertain whether the agent will choose to engage in exploration or 

exploitation. If the random number is larger than e, the agent will decide to engage in 

exploitation as his next course of action. In such a scenario, the agent will select from the q 

table the action that has the greatest q value for the present condition. However, in the 

opposite scenario, the agent will select his next action randomly. 

 

 In general, exploration enables an agent to increase its existing knowledge about each 

choice he makes, which will possibly benefit him in the long-term. By increasing the 

precision of the anticipated action values, an agent will be able to make judgments in the 

future that are more in line with the available data. Exploitation, on the other hand, selects 

the course of the greedy-action that will result in the largest reward by taking into account 

the agent's most recent action-value assessments. In this way, greedy action-value 

estimations, might not lead to the highest reward but to a less ideal performance. During the 

exploration process, the agent obtains estimations of action values that have higher 

accuracy while during exploitation he has a chance of receiving greater rewards. The right 

balance between exploring and exploiting is a significant challenge of the field. 

 

2.5.3 The λ-Return 

An intermediary method between TD and Monte Carlo is to use the n-step return as the TD 

target. This samples experience from n interactions with the environment and bootstraps 

the remainder with the discounted estimate of the n state’s value.  

 

                                𝐺𝑡:𝑡+𝑛 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ + 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛�̃�(𝑠𝑡+𝑛)                            (2.21) 

 

This bridges the TD and MC methods by reducing the prejudice that exists at TD. However, 

taking the average returns of n-steps can be a better middle ground between the two 

methods. That is exactly what the TD (λ) algorithm does, it summarizes the n-step updates 

where each is weighted proportionally to λn-1 and normalized with (1 − λ) to make sure that 

the sum of all the weights is 1. This return is known as the λ-return (2.22).  
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                                                  𝐺𝑡
𝜆 = (1 − 𝜆) ∑  ∞

𝑛=1 𝜆𝑛−1𝐺𝑡:𝑡+𝑛                                                 (2.22)  

 

 When λ which ranges in the space [0,1] equals 1, the resulting method is Monte Carlo while 

when λ = 0, it is 1-step TD. As the λ-return depends on late future rewards, a natural 

approximation is the truncated λ-return: 

 

                                         𝐺𝑡:𝑡+𝑘
𝜆 = (1 − 𝜆) ∑  𝑘−1

𝑛=1 𝜆𝑛−1𝐺𝑡:𝑡+𝑛 + 𝜆𝑘−1𝐺𝑡:𝑡+𝑘                            (2.23) 

 

 where the longest available k-step return 𝐺𝑡:𝑡+𝑘  is given a residual weight of 𝜆𝑘−1 . In order 

to use the truncated λ-return, k steps of experience have to be sampled before the TD 

update can be made. Most TD(λ) algorithms rely on the fact that (2.21) can be written as 

 

                                                 𝐺𝑡:𝑡+𝑘
𝜆 = 𝑣(𝑠𝑡) + ∑  𝑡+𝑘−1

𝑖=𝑡 (𝛾𝜆)𝑖−𝑡𝛿𝑖                                           (2.24) 

With 

                                                  𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑣(𝑠𝑡+1) − 𝑣(𝑠𝑡)                                                  (2.25) 

 

The figure below depicts the TD(λ) algorithm and specifically how every n-step return is 

constructed by a number of states, actions and a reward and at the same time, how they are 

weighted.            

               

Figure 2.3: Depiction of the innerworkings of the TD (λ) method 
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3. DEEP REINFORCEMENT LEARNING AND ALGORITHMS 

 

The fact that separates Deep RL methods from classic reinforcement learning is the 

utilization of deep artificial neural networks (ANN) that approximates the value functions 

and also estimates the policy parameters. ANNs are non-linear, differentiable functions 

which take a real-valued input x ∈ R m and give a real-valued output y ∈ R n :  

 

f(x, w) = y,                                                              (3.1) 

 

   , where w are the network weights. As f is differentiable it is possible to calculate the 

gradient according to w for some loss function and use gradient descend to optimize the 

network’s predictions. 

 

An ANN's basic infrastructure is a network that is made up of numerous layers, each 

consisting of several neurons. Prior to transmitting information to the next layer, a weighted 

sum of all the outputs is computed by every neuron, which is then passed via an activation 

function. Even more sophisticated structures exist which can be designed to gain mastery 

over a particular task.  Deep Learning is a thriving research topic that is nowadays at the 

cutting edge of machine learning. 

 

3.1 Stochastic Gradient Descent (SGD) 

Before explaining the stochastic gradient descent method, it is important to describe 

gradient descent which is the optimization technique it was based on. Both are very popular 

methods in Machine Learning and constitute a base for plenty of algorithms. 

 



30 
 

A first-order iterative optimization process known as Gradient Descent is used to search for a 

differentiable function's local minimum value. It is an iterative process that begins at a 

random point on a function and works its way down the slope of that function in stages until 

it reaches the lowest point. This is done to discover the values that reduce the cost function 

as much as feasible. The update to the parameters is: 

 

                                                            𝜃 = 𝜃 − 𝜂 ∗ 𝛻𝜃𝐽(𝜃)                                                            (3.3) 

 

The parameters of a model are used in order to parameterize the objective function J(θ). 

The value of θ is brought down to its smallest possible value, by performing an update on its 

parameters in the antipodes of the gradient of the objective function ∇θJ(θ) [40]. The 

degree of progress that must be made to attain a (local) minimum is proportional to the 

learning rate η. 

 

When used in big datasets, batch gradient descent might result in repetitive calculations 

because before the change of each parameter, it recalculates gradients for similar situations. 

SGD eliminates the need for this duplication by only requiring a single update at any given 

moment.  

 

                                                         𝜃 = 𝜃 − 𝜂 ∗ 𝛻𝜃𝐽(𝜃, 𝑥(𝑖), 𝑦(𝑖))                                              (3.2) 

 

Consequently, it can be considerably faster and in addition, it might be used to learn online 

(a type of learning where at each time step, the greatest predictor is updated based on data 

that become accessible sequentially and is used to update the best predictor for future data 

during every step). The regular updates with large variance that SGD uses, tend to cause 

significant shifts in the objective function. SGD's unpredictable nature allows it to explore 

new and maybe superior local minima but can also to destabilize existing ones because since 

SGD will continue to veer off course, convergence to the actual minimum might be 

hampered [40] [41]. All in all, it has been shown that SGD exhibits the same characteristic of 

convergence as batch gradient descent when the learning rate is progressively decreased. 

Accordingly, this results in an almost certain achievement of either global or local minimum 

for non-convex and convex functions correspondingly. 
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3.2 Policy Gradient 

 

 

Figure 3.1: Categorization of the different RL algorithms 

 

In the technique known as the value-function approach, all of the work put into 

approximating a function is put into forecasting a value function, and the action-selection 

policy is expressed explicitly as the "greedy" policy about the estimated values. In policy 

gradients, instead of estimating a value function and then utilizing it to calculate a 

deterministic policy, a stochastic policy is directly determined by employing an independent 

function approximator that has its own parameters. It is possible to model the policy using a 

neural network that receives state representations, outputs action selection probabilities, 

and policy parameters as its weights. After that, the policy parameters are adjusted 

proportionally to the gradient: 

 

                                                       ∆θ ≈ α ∂ρ ∂θ                                                                  (3.4) 

 

The parameter ρ measures the performance of the policy using the policy variables 

embedded in vector θ and α represents one positive-definite step during the policy 

implementation [38]. Given the fact that the stated goals are met, θ could typically be 

capable of guarantying that the performance measure will eventually converge to a local 
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optimum policy. In contrast to the value-function method, in this technique minor 

adjustments in θ will not create serious changes to the policy and to the frequency of visiting 

a state. For any differentiable policy πθ the policy gradient is: 

 

 

                         𝛻𝜃𝐽(𝜃) = 𝐸𝜏[∑  𝑇−1
𝑡=0 𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑄𝑤(𝑠𝑡, 𝑎𝑡)]                                 (3.5) 

 

In any regard, it is of great importance that the influence of policy shifts does not 

affect the distribution of states [39]. This makes the sampling process to get an 

approximation of the gradient quite easy. Additionally, Qπ(s,a) is not often known and must 

be calculated. One strategy is to utilize the actual returns, Rτ as an estimate for each Qπ 

(st,αt), as is seen in the following equation:  

 

                                     𝛻𝜃𝐽(𝜃) = 𝐸𝜏∼𝜋𝜃(𝜏)[𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝜏)𝑅(𝜏)]                                        (3.6) 

 

 

3.3 Actor-Critic Methods 

Actor-Critic techniques are a kind of TD learning that is always on policy and combines the 

two distinct forms of Reinforcement Learning algorithms, policy-based and value-based, into 

a single framework. For this purpose, they have an individual memory structure that clearly 

represents their policy independent of the value function. As a result of its role in selecting 

acts and returning a probability distribution across the possible outcomes, the policy 

structure is referred to as "the actor." The critic is the name given to the estimated value 

function which is responsible for calculating the anticipated return for the agent. This is done 

by analyzing the agent's actions based on the current policy during a particular state [46]. In 

other words, the actor revises the policy distribution in the same general direction that the 

critic suggests (such as with policy gradients). 
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Figure 3.2: Depiction of the basic process in actor-critic methods with TD evaluation 

 

Many actor-critic methods make use of the Advantage function, which approximates what 

the relative value of the selected action is at that stage. It is basically the subtraction of the 

baseline estimate from the discounted rewards, where the baseline estimate is the value 

function that tries to give an estimate of the final reward, at the end of the episode starting 

from the current one. The value keeps updating itself like a supervised problem. Simply put, 

the advantage estimate indicates if the action that the agent did had or worse results than 

expected. So if the advantage function is positive, which means the action that was taken 

was better than expected, the probability of choosing it again when being in the same state 

is increased. 

                                            𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠)                                                      (3.7) 

 

There is more than one method that can be used to compute the advantage estimate which 

can be one of the bellow: 

  

                                                    𝐴𝜑(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) − 𝑉𝜑(𝑠)                                                         (3.8) 

 

                                      𝐴(𝑠, 𝑎) = 𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)                                                       (3.9) 
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                     𝐴𝜑(𝑠, 𝑎) = ∑  𝑛−1
𝑘=0 𝛾𝑘𝑟𝑡+𝑘+1 + 𝛾𝑛𝑉𝜑(𝑠𝑡+𝑛+1) − 𝑉𝜑(𝑠𝑡)                         (3.10) 

 

, with the first (3.8) being the Monte Carlo advantage estimate in which the actual return 

takes over the role of the Q-value of each action, the second (3.9) which is the TD advantage 

estimate and the third (3.10) which is the n-step advantage estimate [47]. 

 

3.3.1 Advantage Actor Critic (A2C) 

The Advantage Actor Critic approach (A2C), is a synchronous, deterministic implementation 

that serves as an option for the asynchronous policy gradient version of A3C. Thru testing, 

OpenAI researchers concluded that it performs better and is less cost effective.  

 

 

Figure 3.3: Depiction of the difference between the A3C asynchronous and the A2C synchronous 

algorithm 

 

 This method waits for each actor to complete their portion of the experience before it 

updates, and it takes an average across all of the actors [49]. The objective function that 

uses the n-step advantage is shown below: 

 

                                 𝛻𝜃𝐽(𝜋𝜃) = 𝐸
𝜏∼𝜋𝜃

[∑  𝑇
𝑡=0 𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝐴𝜋𝜃(𝑠𝑡, 𝑎𝑡)]                            (3.11) 

 

      𝛻𝜃𝐽(𝜃) = 𝐸𝑠𝑡∼𝜌𝜋,𝑎𝑡∼𝜋𝜃
[𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑠𝑡, 𝑎𝑡) (∑  𝑛−1

𝑘=0 𝛾𝑘𝑟𝑡+𝑘+1 + 𝛾𝑛𝑉𝜑(𝑠𝑡+𝑛+1) − 𝑉𝜑 (𝑠𝑡))]                                  

                                                                                                                                                          (3.12) 
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Assume global shared parameter vectors 𝜃 and 𝜃𝜐  

Initialize thread step counter 𝑡 ←1  

Initialize episode counter 𝐸 ←1 

repeat 

   Reset gradients: 𝑑𝜃← 0 and 𝑑𝜃𝜐 ← 0  

   𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡      

   Get state  𝑠𝑡  

   repeat  

         Perform 𝑎𝑡 according to policy 𝜋(𝛼𝑡| 𝑠𝑡 , 𝜃) 

         Receive reward  𝑟𝑡 and new state 𝑠𝑡+1    

         𝑡 ← 𝑡 + 1 

   until terminal 𝑠𝑡  or 𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 == 𝑡𝑚𝑎𝑥  

  for 𝑖 ∈ { 𝑡 − 1, … . , 𝑡𝑠𝑡𝑎𝑟𝑡}  do 

     𝑅← 𝑟𝑖 + 𝛾𝑉𝜃𝜐
′ (𝑠𝑡) 

     Accumulate gradients 𝑑𝜃 ← 𝑑𝜃 + 𝛻𝜃′𝑙𝑜𝑔 𝜋𝜃′(𝑠𝑡 , 𝑎𝑡)(∑ 𝛾𝑘𝑟𝑡+𝑘+1 + 𝛾𝑛𝑉 (𝑠𝑡+𝑛+1) − 𝛾𝑉𝜃𝜐
′ (𝑠𝑡)𝑛−1

𝑘=0 ) 

     Accumulate gradients 𝑑𝜃𝜐 ← 𝑑𝜃𝜐 + ( 𝑅 − 𝑉𝜃𝜐
′ (𝑠𝑖))(𝑑𝑉𝜃𝜐

′ (𝑠𝑖)/𝑑𝜃𝜐) 

  end for 

  Update of 𝜃, 𝜃𝜐 

  𝐸 ← 𝐸 + 1 

until 𝐸 > 𝐸𝑚𝑎𝑥 

Algorithm 9: Advantage Actor-Critic (A2C) 

 

Within the domain of this technique, the term "expectation" (abbreviated as E) refers to the 

empirical average calculated from a finite batch of samples. The approach combines 

sampling and optimization in alternating steps.  

 

                                                 𝐿𝑃𝐺(𝜃) = 𝐸𝑡[𝑙𝑜𝑔 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝑡]                                                  (3.13) 

.  

Although it may seem like a good idea to execute many stages of optimization for the 

loss function (3.13) while using the same trajectories, doing so is not well justified, and 

practical evidence shows that it often results in big policy changes that can be very damaging 

to the performance of the algorithm [49]. 

 

 



36 
 

3.3.2 Trust Region Policy Optimization 

Although a simple policy gradient might work, it doesn’t always give promising results. If a 

gradient descent keeps running on one batch of collective experience(on policy trait),  the 

network's variables are then changed to such a great extent that they fall outside of the 

range in which these data were gathered; consequently, the advantage function will be 

utterly inaccurate, and the policy will be of no utility. This actor-critic method was derived in 

order to minimize the possibility of a false policy by using a vanilla policy gradient that takes 

advantage of Kullback–Leibler (KL) divergence as a constraint. The only other difference from 

a classic policy gradient method is that the 𝑙𝑜𝑔 function is replaced with the policy ratio. 

These traits assure that there cannot be an extended difference between the old and the 

new policy [52] [53]. Thus the new algorithm is: 

                                  
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝜃
= 𝐸𝑡 [

𝜋𝜃(𝑎𝑡∨𝑠𝑡)

𝜋𝜃old 
(𝑎𝑡∨𝑠𝑡)

𝐴𝑡]
 
 

                                                   (3.14) 

                            subject to 𝐸𝑡 [𝐾𝐿[𝜋𝜃old 
(⋅∨ 𝑠𝑡), 𝜋𝜃(⋅∨ 𝑠𝑡)]] ≤ 𝛿.                             (3.15) 

 

The KL-divergence or relative entropy ensures that a new policy cannot be very different 

from the current one. This is a statistical distance that measures how one probability 

distribution is different from a second. A simple interpretation of the divergence of 𝜋𝜃old 
 

from 𝜋𝜃 is the expected excess surprise from using the second as a model when the actual 

distribution is 𝜋𝜃old 
 [51].The loss function can be expressed  as is in (3.17) where 𝑟𝑡(𝜃) is the 

probability ratio. 

                                           𝑟𝑡(𝜃) =
𝜋𝜌(𝑎𝑡|𝑠𝑡)

𝜋𝜃old 
(𝑎𝑡|𝑠𝑡)

                                                               (3.16) 

 

                      𝐿𝐶𝑃𝐼(𝜃) = 𝐸𝑡 [
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃old 
(𝑎𝑡|𝑠𝑡)

) 𝐴𝑡] = 𝐸𝑡[𝑟𝑡(𝜃)𝐴𝑡]                                (3.17) 

 

3.3.3 Proximal Policy Optimization 

The PPO algorithm is the evolution of the TRPO and is a more stable version that is easier to 

implement and at the same time has similar or even better performance. The existence of 

the constraint in TRPO, KL-divergence often disturbs the optimization of the algorithm and 

may result in unwanted behavior patterns during learning [55]. The PPO algorithm while 
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being based on TRPO, manages to satisfy the same effect (old policy closer to the updated 

one) without using a separate constraint. The PPO objective function is: 

 

                  𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)]                     (3.18) 

 

Where 𝜖  is a hyperparameter that usually equals 0,2. The term,  𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 +

𝜖)𝐴𝑡, limits the probability ratio inside the space of [1 − 𝜖, 1 + 𝜖] whenever it becomes 

much bigger or smaller in comparison to its previous rate. At the end, the goal is a lower 

constraint on the unclipped objective given the least of the clipped and unclipped objectives. 

 

                

Figure 3.4: Clipping of the PPO loss function with limitation based on the advantage function.  

 

For instance, in the left diagram where the actions yielded greater than expected return 

(A>0), if the return (r) gets too high at an instance, the advantage is flattened and as a result, 

the objective function gets limited to restrict the gradient update's influence. The most 

common implementation of PPO is via summing the already calculated loss function with 

two more as depicted below.  

 

                  𝐿𝑡
𝑃𝑃𝑂(𝜃) = 𝐸𝑡[𝐿𝑡

𝐶𝐿𝐼𝑃(𝜃) − 𝑐1𝐿𝑡
𝑉𝐹(𝜃) + 𝑐2𝑆[𝜋𝜃](𝑠𝑡)]                                 (3.19) 

 

, the 𝑐1𝐿𝑡
𝑉𝐹(𝜃) term is the value estimation network that estimates the average amount of 

discounted rewards that are expected to be received [54] [56]. A big part of the value 

network is shared with the policy network. The last term, 𝑐2𝑆[𝜋𝜃](𝑠𝑡) is the entropy which is 

in charge of ensuring that the agent does enough exploring during training as it is a measure 
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of how unpredictable an outcome of this variable actually is. The higher the entropy, the 

higher the exploration and thus the random pick of actions. The c1 and c2 are 

hypermarameters of the two extra terms 

 

Input: initialize policy parameters 𝜃0, clipping threshold ε  

for 𝑘 =  0, 1, 2, . .. do  

      Collect set of partial trajectories 𝐷𝐾  on policy 𝜋𝜅  = 𝜋(𝜃𝜅) 

      Estimate advantages 𝐴�̂�  𝜋𝜅 using any advantage estimation algorithm  

      Compute policy update  

                                                 𝜃𝜅+1= arg max
𝜃

𝐿𝜃𝜅

𝐶𝐿𝐼𝑃(𝜃)  

      by taking K steps of mini-batch SGD (via Adam), where 

                𝐿𝜃𝜅

𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝜏~𝜋𝜅
[ ∑  𝛵

𝑡=0 [𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴�̂�  𝜋𝜅
 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴�̂�  𝜋𝜅)]]                      

end for 

Algorithm 10: PPO with Clipped Objective 

 

Bellow the implementation of PPO based on actor critic methods is presented where T timesteps are 

collected by N actors in mini-batches of size M.  

 

for iteration=1, 2, . . . do 

     for actor=1, 2, . . . , N do 

           Run policy πθold in environment for T timesteps 

           Compute advantage estimates A1, . . . , AT 

     end for 

      Optimize surrogate L wrt θ, with K epochs and mini-batch size M ≤ NT 

      𝜃𝑜𝑙𝑑 ← 𝜃 

end for 

Algorithm 11: Proximal Policy Optimization – Actor Critic edition 

 

3.4 Convolutional Neural Networks (CNN) 

The utilization of picture and audio signals as input makes the use of CNNs ideal. All the 

images used as an input, are represented by a 3 dimension tensor that includes the height, 

the width, and the color channels (RGB image). 
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3.4.1 Structure 

CNN generally made up of three different layers, referred to as the convolution, the pooling 

and also the fully connected layers. The sophistication of the CNN rises with each layer, 

allowing it to recognize more of the picture characteristics as it progresses. The first one may 

be followed by any number of further convolutional layers or pooling layers, and then 

feature extraction can be carried out. The fully connected layer is the last of the structure 

and is responsible for mapping the characteristics extracted into the final output, for 

instance, classification [42].  

                  

Figure 3.5: Depiction of Convolution Neural Network 

 

The convolution layer is a specific kind of linear operation that is used for feature extraction. 

During this kind of process, a little range of integers known as kernels is employed from 

across input, which is another sequence of digits known as a tensor. This application's 

output, known as the feature map, is derived by performing a summary of the numbers at 

each position of the tensor in accordance with the kernel. This technique is carried out 

several times, with various kernels being applied each time. A random number of feature 

maps, each representing a particular part of the input tensors, are formed due through this 

process. Therefore, it is possible to consider the different kernels as the various feature 

extractors whose size and number are necessary hyperparameters. Following this, nonlinear 

activation is applied, usually utilizing ReLU algorithm, to the outputs of convolution after the 

linear process. This algorithm gives the neural network the ability to take in non-linear 

interactions and thus when applied to a given matrix, ReLU makes all negative values equal 

to zero while maintaining the other values at their original rate. Its formula is presented 

below:  
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                                                                    g(z) = max{0, z}                                                           (3.20) 

 

A common downsampling technique is provided by a Pooling layer, which decreases the in-

plane dimensionality of the feature maps. This happens for two reasons. The first is to create 

a translation invariance on small changes and deformities which actually means that an 

object could be recognized even if its appearance on the image slightly changes. For 

instance, the ability to identify a face shown vertically, horizontally, with more or less light.  

The second is to restrict the number of variables that can be learned in the future. It is 

essential to take note that not a single one of the pooling layers has a variable that may be 

learned. However, during the pooling procedures, the filter-size along with stride and 

padding, are all examples of hyperparameters that are utilized. The max-pooling operation is 

by far the most common kind of pooling operation. This form of pooling, takes patches from 

the feature maps, returns the ones with the largest values, and throws away the remaining 

ones. 

 

It is common practice to flatten the output features extracted from the final convolution or 

pooling layer and link them to one or more fully-connected layers (dense layers). Inside 

these layers, every input is linked to output by applying a learnable weight. Finally, an 

activation function is employed to the last of those layers. This function is not the same as 

the previous ones and its selection must be based on the specific requirements of each 

activity. Sigmoid, Softmax, and Identity are some of the most common options for the 

activation function of the last layer 

 

3.4.2 Optimizers 

The procedure of optimizing the parameters is carried out in order to reduce, as much as 

possible, the gap between the model's outputs and the ground truth labels. Algorithms and 

methodologies known as optimizers modify the neural network's attributes, such as its 

inputs and learning rate, in a way that lowers the network's overall function and minimizes 

losses [43]. A significant percentage of them, such as RMSprop and Adam which are two of 

the most popular for NN implementation, is based on gradient descent. 
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The RMSprop method is a gradient-based optimization strategy that is used in the training of 

neural networks. Geoff Hinton is the one who came up with the idea for this adaptive 

learning rate approach which has not been published yet. It is common for the gradients of 

very complicated functions, such as neural networks, to either, disappear entirely or explode 

as the data moves through the function. RMSprop is a stochastic learning algorithm designed 

specifically for use with mini-batch data. 

 

The problem as mentioned above is addressed by the RMSprop algorithm, which normalizes 

the gradient by calculating a moving average of squared gradients. This normalization brings 

the step size (momentum) into balance by reducing it when the gradient is big enough and 

increasing it when it gets too little [43] [45]. The following constructs are used to generate 

the RMSprop update vector:  

 

                             𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡 
2𝜃𝑡+1 = 𝜃𝑡 −

𝜂

√𝐸[𝑔2]𝑡+𝜖
𝑔𝑡                 (3.21) 

 

It uses an exponentially declining average of squared gradients to divide the learning rate 

rather than considering it as a hyper-parameter. Hinton recommends that γ should be set to 

0.9 and that 0.001 would be an appropriate default number for the learning rate. 

 

One equally or more significant optimization method for determining the adaptive learning 

rate of each variable is Adaptive Moment Estimation (Adam). Not only does Adam keeps an 

exponentially decaying average of previous gradients like SGD with momentum 𝑚𝑡, but also 

an exponentially decaying average of previous gradients 𝑣𝑡 like RMSprop: 

 

                                                     𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

 
                                                    (3.22) 

                                                     𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                                                      (3.23) 

 

𝑚𝑡  and 𝑣𝑡  are estimates of the first two instances of each gradient correspondingly. In other 

words, an exponential moving average of 𝑔𝑡  and 𝑔𝑡
2 is estimated and the decay rates of the 

moving averages are determined by the variables  𝛽1 and 𝛽2. It has been noticed that since 

𝑚𝑡  and 𝑣𝑡   are both starting as vectors of zeros, they have a bias toward it, particularly at the 
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first time steps and especially in situations when the decay rates are on the lower end [43] 

[44]. By producing approximations of the first and second bias-corrected moments they 

manage to lessen the impact of those biases. The Adam update rule is: 

 

                                                     𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√𝑣
 
𝑡+𝜖

𝑚
 

𝑡                                                         (3.24) 

 

The authors recommend the following settings for the default parameters: 0.9 for β1, 0.999 

for β2, and 10-8 for ε. Actual evidence is provided supporting that this optimizer can actually 

be effective and perform in the same range as other adaptive learning technique algorithms. 
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4. APPLICATION TO STREETFIGHTER II 

 

4.1     Introduction to Streetfighter II 

 

Figure 4.1: Streetfighter II Special Champion Edition for Sega-Genesis console 

 

The Streetfighter II arcade fighting game was first made available in the year 1991 and is the 

sequel to the original game developed by Capcom [58]. It is mostly known for its well-known 

two player option, which demands players to compete against one another in a head-to-

head setting, which kept the arcade video game industry alive which was in decline at that 

moment. With the release of Street Fighter II, the competitive dynamic in arcades evolved 

from just achieving high scores to beating other human contestants. It is regarded as one of 

the finest video games ever made, but it is also regarded as one of the most important 

fighting games that have ever been developed. 
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4.1.1 Game Mechanics 

The player faces off against other players in one-on-one combat scenarios in a series of 

encounters where they compete to win two out of three games[60]. This video game offers 

a cast of eight different characters that the player may control. Each fighter has to face off 

against seven other key fighters in the single-player tournament, which is the format that 

will be employed for this dissertation. After that, the player has to face off against the Grand 

Masters, a set of four opponents which cannot be used by the player. Each game aims to 

reduce the opponent's vitality as quickly as possible before the timer expires. If both 

combatants have the same level of health remaining, this results in a "double KO," also 

known as a "draw game," and the contest continues until sudden death. A match may go for 

as many as four rounds. In the event that the conclusion of the last stage does not reveal a 

clear victor, the computer-controlled opponent will win by default in the single-player mode. 

In the same mode of the game, a bonus stage is unlocked after every third match that 

awards extra points. These bonus stages include a barrel-breaking stage, car-breaking stage, 

and drum-breaking stage. A global map is used to choose the next match site between each 

match. 

 

4.1.2 Controls 

The controls consist of a joystick with eight direction keys and either six or three attack 

buttons (which actually give access to six moves when the start button is pressed) [59]. By 

using the joystick that controls the movements, the fighter is able to move left and right, 

block, jump and crouch. There are three different punching power levels and three different 

kicking power levels, ranging from light to medium to heavy, on each button. Each type of 

move is useful under different situations in regards to the speed of the attack and the 

distance from the enemy.  
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Figure 4.2: Controls for the Streetfighter II in Sega Genesis console 

 

In every accessible position of the game, the fighter is able to conduct a range of basic 

moves, including grasping and throwing assaults. Combos have a higher impact on the 

player's overall performance and are accomplished by combining directional and button-

based inputs. Special moves are performed by combining these two types of inputs and do 

more damage than the basic attack moves. Moreover, each fighter has his own “close 

attacks” and “special moves” that can be implemented by using a combo of moves under the 

right circumstances. The first category of attacks can only be accessed when the two fighters 

are right next to each other and consists of throws and holds while the second has no 

specific constraints. 

 

4.2    Game and Environment Error! Bookmark not defined. 

The programming language used for the experimenting of the algorithms used in this thesis 

for the StreetfighterII environment is Python and the code was implemented using Jupyter 

notebook. Additionally, Pytorch and Stable-baselines 3 were used for the application of the 

algorithms. 
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4.2.1 Gym Retro 

OpenAI’s Gym is a Python toolkit that provides a natural cross platform and emulator 

compatibility for the purpose of performing RL agents that function inside the provided 

environments of different video games [64], [65]. Currently, there are thousands of games 

available to use with Gym Retro. Anyone can use the integration tool, which helps to locate 

memory addresses of game state variables such as score, to incorporate new ROMs into the 

library. The idea that Gym establishes an interface, which all of the agents and environments 

are required to comply with, is one of the system's many significant advantages. 

Consequently, the execution of an agent is not reliant on its surroundings and vice versa. 

Because the consistent interface will ensure that the dataset the agent obtains is virtually 

precisely the same in each context, it will be easier to compare and contrast the results of 

different environments. It is not necessary to make significant adjustments to an agent in 

order for it to function well in diverse settings. Because of this consistency, it is easier to 

compare one agent's efficiency under varying settings and the performance of many agents 

under the same conditions.  

 

 

4.2.2 Game environment 

Two different methods are described by the Gym interface. The first one is reset, which 

brings the environment to a new starting point and outputs the original observation. The use 

of this function is needed for the initiation of the next episode given the fact that the 

previous one has ended [65]. The second is step, which is a function that takes action as an 

input and returns the next observation (environment’s state) in addition to the reward that 

comes from carrying out the action. 

 

The action space, the observation space, and the reward function of the environment have 

to be specified. In the case of Streetfighter II, the action space is Multi-binary(12), which 

means that the discrete actions are interpreted as a binary sequence of numbers that can be 

accessed thru 12 buttons (8 for movement, 3 for attacks, 1 for changing between punches 

and kicks). As a result, during each time step, there is a massive number of usable button 

combinations that correspond to 12! = 480000. However, using the ‘retro.Actions.Filtered’ 
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command provided by Gym, only the applicable combinations are accessible preventing the 

training from unwanted behavior. 

 

The observation space is Box [(200, 256, 3), uint8], which is interpreted as an 8-bit image 

with dimensions 200x256 that uses 3 RGB colors. To achieve faster training times, the 

preprocessing that has been implemented makes changes to the observation in three 

different ways. Firstly, the RGB images are subjected to greyscaling and then reframed from 

(200, 256, 3) to (84, 84, 1). Finally, instead of using as input the whole image, the 

frame_delta uses only the pixels of the image that have been subjected to changes between 

each time step. 

 

4.3    Reward function 

To find out the best way the agent can be trained, 3 different reward signals have been 

implemented. All three, use as input the information that is derived from the environment 

during each step. The information includes: ‘enemy_matches_won’, ‘matches_won’, 

‘enemy_health’, ‘health’, ‘score’ and ‘continue_timer’. 

 

The parameter which includes the most data for each step is the score and is utilized for the 

two out of three rewards. For every fight, the player gets score points every time he inflicts 

damage to the opponent and every time he wins a fight. However, numerous factors 

influence the number of score points at every instance they are awarded. 

Specifically, more powerful attacks and better combos lead to even higher score points per 

move while if they are implemented during the end of the game. After each match that has 

been won, bonus points are given based on the time that is left on the game, the amount of 

the player’s health that has been depleted along with the number of levels cleared. Every 

time a new fight begins, the player initially has zero points. 

 

During the first tests, the simplest possible reward function was used for the training of each 

action. In this way, the agent only gets only positive rewards equal to the score of each time 

step and thus does not base his learning on his mistakes.  
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Figure 4.3: Reward Signal 1 

 

Apparently, this signal does not allow the agent to develop any defense mechanism since no 

negative rewards are given to the agent. Based on that idea a new reward signal was formed 

that emphasizes on the health of each player (‘enemy_health’, ‘health’) and does not take 

into account the ‘score’, which lacks information regarding the absorbing damage of the 

agent. In this way, positive rewards can be given for damage inflicted to the opponent and 

negative for the absorbed both providing equal high values. Additionally, a constant positive 

reward is given to the agent every time he wins a fight and a negative equal every time that 

he loses. Both of those rewards given at the end of each episode are significantly higher than 

those accumulated during the fight, in order to highlight the significance of actually winning 

the fight, a trait that also exists in the first reward function and is encoded in 'score'. This 

specific number is the maximum penalty or reward the agent can get during a fight 

 

 

Figure 4.4: Reward signal 2 

 

Lastly, a third reward function was used that was based on both previous rewards. While the 

score function is used for positive rewards given during the fight and at the end of it, 

negative rewards equal to the absorbed damage multiplied by 10 every time the agent gets 

hit. In this way there is no lack of information regarding the positive values awarded and at 
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the same time the penalties are also taken into account to transform a more complete 

reward. More than that, every time a fight between the agent and a new opponent 

concludes, the rewards given during the next fight are increased by 10%. In this way, the 

least amount of in game event information is lost while the agent is punished for losing life 

points and losing each game. 

 

 

Figure 4.5: Reward signal 3 

 

 

4.4    Algorithms Implementation 

Firstly the loss functions of each algorithm are presented according to the stable baselines 

default implementation [60], [61], [62]. 
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𝐿 
𝜋(𝜃) = −[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴�̂� 𝜋𝜅

 
, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴�̂�  )] 

𝐿 
𝑣(𝜃) = (𝑅𝑡 − 𝑉(𝑠𝑡))2    

𝐿 
𝑠(𝜃) = − 𝑙𝑜𝑔 𝑃𝜃(𝑎𝑡|𝑠𝑡)  

𝐿 
𝐹(𝜃) = 𝐸𝑡[𝐿 

𝜋(𝜃) + 𝑐1𝐿 
𝑣(𝜃) − 𝑐2𝐿 

𝑠(𝜃)] 

Table 4.1: PPO loss functions shaped in the Stable Baselines Implementation 

 

As observed bellow the only difference between the loss functions of each algorithm is the 

policy loss which in PPO uses a probability ratio 𝑟𝑡(𝜃) instead of the log function and also 

makes use of the clipping effect which was discussed in chapter 3 

 

𝐿𝜋(𝜃) = −[log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝑡] 

𝐿 
𝑣(𝜃) = (𝑅𝑡 − 𝑉(𝑠𝑡))

2
 

𝐿 
𝑠(𝜃) = − 𝑙𝑜𝑔 𝑃𝜃(𝑎𝑡|𝑠𝑡)  

𝐿 
𝐹(𝜃) = 𝐸𝑡[𝐿 

𝜋(𝜃) + 𝑐1𝐿 
𝑣(𝜃) − 𝑐2𝐿 

𝑠(𝜃)] 

Table 4.2: A2C loss functions shaped in the Stable Baselines Implementation 

 

However, there are some other differences that take place during training of the two 

algorithms. Firstly, the PPO uses normalization of its advantage which even though it could 

enhance the algorithm’s execution, it could also cause significant information loss, regarding 

the significance of specific actions. Moreover, it does multiple gradient updates on mini-

batches of the rollout data equal to 64. In contrast, only one gradient update is done in A2C 

on the whole batch of rollout data [26]. 
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The algorithms PPO and A2C that were analyzed in chapter 3 were trained using the 

proposed hyperparameters by Stable Baselines [56], [66]. 

 

PPO 

Hyperparameters 
Parameter Values 

n_steps 2048 

learning_rate 0.0003 

gae_lambda 0.95 

gamma 0.99 

clip_range 0.2 

ent_coef 0 

vf_coef 0.5 

max_grad_norm 0.5 

 
Table 4.3: Default Hyperparameters of PPO and A2C 

 

Moreover, both of the algorithms were trained using the CNN policy that was chosen since it 

promises the best results when video and images are used as input. However, for the 

training of the A2C algorithm, 2 variants of that policy were implemented. The first one 

made use of Adam optimizer for the CNN policy while the used a custom variant of the 

RMSprop optimizer proposed by Stable Baselines[26], which is not included in Pytorch and is 

called RmspropTFLike. It has been reported to achieve better results when combined with 

the CNN policy, closer to the ones of PPO [66]. 

 

The CNN policy term stands for the class that controls all the networks used in the training 

process and not only the network used to predict actions [68], meaning that it is used for 

both policy and value prediction. The default shared CNN used in Stable Baselines is the one 

proposed in [67]. Its architecture consists of three convolutional layers. The first has input 

channels equal to 4,  output channels to 32, kernel size to 8 and moving stride to 4. The next 

2 layers following have output channels equal to 64 each, with strides 2 and 1 and kernel 

size 4 and 3 correspondingly. The hidden layers dimensionality is 512 [68], [69] . 

A2C 

Hyperparameters 
Parameter Values 

n_steps 5 

learning_rate 0.0007 

gae_lambda 1 

gamma 0.99 

rms_prop_eps 0.00001 

ent_coef 0 

vf_coef 0.5 

max_grad_norm 0.5 
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Figure 4.6: CNN used in A2C and PPO algorithms 

 

4.5    Evaluation 

Every algorithm was trained for 10 million steps and saved in batches of 10.000 time steps. 

The evaluation process of the agent’s behavior includes quantitative and qualitative metrics. 

The first consists of diagrams taken from Tensorboard regarding the mean reward and 

episode length while also training diagrams like the entropy and value loss.  

The mean reward of the models trained under different reward functions is not comparable 

and the mean episode length is not always indicative of progress since an agent can play 

more matches but beat less enemies. For instance, a model that has beaten three enemies 

may have played 9 games while another that has beaten four enemies could have only 

played 8 games if does not lose any game through the process. For that exact reason, after 

the different algorithms have been compared for every reward, the qualitative evaluation 

takes place, by inspecting renders of in-game progress. Specifically, the performance of the 

best algorithms is tested through 10 episodes and evaluated by calculating how many 

enemies are defeated during every episode.  
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5. RESULTS AND DISCUSSION 

 

In this chapter the results of the training using PPO and A2C algorithms in the Streetfighter II 

environment are presented and compared using diagrams from Tensorboard. Each 

algorithm’s training session needed around 10 hours to complete on a computer that 

consists of the following specifications. 

 

GPU GTX 1060 3GB VRAM 

CPU INTEL  i5-4460 3.20GH 

RAM 16GB DDR3 

ROM SSD 850 EVO 

Table 5.1: Computer Spicifications 

 

5.1. PPO RESULTS 

Firstly the performance and training results of the PPO algorithm using the three different 

rewards and the default hyperparameters proposed by Stable Baselines are depicted 

through Tensorboard plots. Before analyzing the training diagrams of the PPO algorithm 

different models, it is important to understand the meaning of the metrics.  

 

The value-loss parameter is the mean loss of the value function update.  In other words, it 

shows if the capability the model has to successfully predict each state’s value. During the 

training, there metric should be increasing for some time while the agent is still learning and 

thereafter keep decreasing until it stabilizes. Ideally, the line graph should show an upwards 

trend as the reward is increasing and by the time it stabilizes, should decrease and become 

constant near zero. The explained variance metric, estimates the percentage of the variance 

of the predictions made by each model. Practically, it is the difference between the expected 
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value and the predicted value that indicates how efficiently the value network can predict 

the future reward. It should become as high as possible until it stabilizes. The entropy 

indicates the randomness of the model’s decisions and for efficient training, it should slowly 

but constantly follow a downwards trend. However, proper tuning is required when it 

decreases fastly or remains the same. In the first case, the actions are chosen randomly from 

a subset of actions while in the second, the same actions are chosen repeatedly. The policy 

gradient loss is indicative of the changes that happen in policy and should oscillate until 

decreasing as the learning progresses.  

 

     

 

 

 
Table 5.2:  Training diagrams of PPO including the entropy loss, the value loss, the explained variance 

and the policy loss. The training data of the algorithm trained with the first reward function is 

depicted by the red line, the second by the pink and the third by the green one. 
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Table 5.3:  Mean Reward and Mean Episode Length using PPO algorithm and reward 1 

 

 

 

 

 

 

 

Table 5.4: Mean Reward and Mean Episode Length using PPO algorithm and reward 2 
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Table 5.5: Mean Reward and Mean Episode Length using PPO algorithm and reward 3 

 

As discussed in paragraph 4.5, comparing directly the results of these algorithms is pointless 

since the rewards are different. The results of the model trained with reward 1 are 

controversial since they show good performance but inefficient training. The mean reward 

shows a constant rise and the mean episode length also follows the same trend while also 

being the highest of the models presented. However, the value loss instead of decreasing as 

the reward increases, it keeps surging. More than that, the entropy shows an early decline 

while the policy loss and the explained variance have plateaued near 0. It is thus 

comprehended that the model is unable to successfully predict the next rewards and at the 

same time it does not sufficiently explore different actions. The models trained with rewards 

2 and 3 seem to play for significantly less time even though their training is smoother and 

more in line with the behavior that is preferred. However, unless the results are compared 

to the A2C ones and the in-game behavior inspected, we cannot be sure of the models' 

performance.   
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5.2. A2C Results 

In this section, the same reward functions are tested using A2C algorithm and CNN policy 

that either uses Adam or Rms optimizer. In the first part, the algorithm is trained using the 

Adam optimizer for the actor-critic policy, while at the second; a custom RMS optimizer 

suggested by stable-baselines is used, called RMSpropTFLike. For continence the A2C model 

that used Adam optimizer for its policy network is referred to as ‘A2C.1’ while the one that 

used Rms is referred to as ‘A2C.2’.  

 

      

                                               

Table 5.6: Training diagrams of entropy loss, value loss and explained variance for the A2C.1 models. 

The training data for the reward 1 model is depicted by the blue line, for the reward 2 by the grey 

and for the reward 3 by the orange 
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Table 5.7: Training diagrams of entropy loss, value loss, and explained variance for the A2C.2 models. 

The training data for the reward 1 model is depicted by the light blue line, for the reward 2 by the 

red and the reward 3 by the dark blue line. 

 

The training graphs above illustrate a much worse behavior than the one provided by the 

PPO models. The A2C training shows a lack of exploration and ability to predict the future 

rewards, with models trained on reward 1 showing the worst performance.  

 



59 
 

 

Table 5.8: The A2C.1 is depicted by the dark blue line while the A2C.2 by the light blue and both have 

provided underwhelming performance.  

 

 

 

 

      

 

Table 5.9: Using reward function 2, A2C.2 which is depicted by the pink line, provides better statistics 

both in episode length and mean reward keeping an upwards trend with fewer fluctuations that 

when A2C.1.  
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Table 5.10: Using reward function 3, A2C.1 depicted by the orange line provides better results having 

a steady increase in mean reward in contrast to A2C.2 depicted by the dark blue line, which shows a 

decline both in mean episode length and reward. 

 

It is observed that the models using the Rms optimizer in the CNN policy network of the A2C, 

fail to show any progress when using reward 3 and especially 1. The only similarity between 

these rewards is the ‘score’ information which produces a big variety of results and thus, its 

complexity might be the reason it causes problems to the training. In contrast, the A2C 

models that were trained using Adam as the optimizer of the CNN policy, that in contrast to 

Rms, takes into account the average of the second moments of the gradient, produces much 

better results when the same reward functions are used.  However, when reward 2 is used, 

which outputs less sparce results, the Rms trained model performs the best. 

 

 

5.3. Comparison of the models 

The first step to identify the best model is to compare the results of all the trained 

algorithms based on each reward function and point out the greatest for every category. 

Even though, extensive hyperparameter tuning of the models would change the behavior of 

these models and provide more successful training, for the purpose of this experimentation 

we want to identify the best model trained with the proposed parameters. 
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Table 5.11: Comparison of all the algorithms trained with Reward 1. The PPO model is depicted by 

the red line, A2C.2 by the dark blue and A2C.1 by the light blue line.  

 

It can be clearly seen from the line graph above, that the PPO model performs the best while 

the A2C.2 performs the worst, plunging by the early stages of the training in both reward 

and episode length. Additionally, the A2C.1 shows little to no progress at all having stuck to a 

specific level of performance.  

 

Table 5.12: Comparison of all the algorithms trained with Reward 2. The PPO model is depicted by 

the pink line, A2C.1 by the grey and A2C.1 by the red line.  

 

In contrast to other comparisons, when trained with reward 2 the algorithms and especially 

the A2C ones, show a similar progress even though they yield different results through the 

process. The A2C.2 seems to perform the best yielding the highest stats and following a 

steady rise more in mean episode reward and less in mean episode length. 
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Table 5.13: Comparison between the PPO, A2C.1, and A2C.2 algorithms trained with reward 3. The 

PPO model is depicted by the orange line, the A2C.1 with the green and A2C.2 with the blue line. 

 

Following the comparison of the models based on each reward, it is clearly seen that some 

algorithms achieved better performance than others while PPO algorithms had the steadier 

and most successful training sessions. In the case of using reward 1, the PPO model showed 

significantly better results than the A2C trained models with the A2C.2 completely failing. 

However, when the rewards 2 and 3 were used for the training, the results were more 

competitive and A2C algorithms performed the best, having A2C.2 prevail with reward 2 and 

A2C.1 with reward 3. As discussed in the paragraph 4.5, in order to identify the reward-

algorithm pair that has the most success, their performance must be compared based on the 

number of enemies the agent is able to defeat. The results during the evaluation of 10 

episodes are presented below: 

 

 

Table 5.14: Comparison between the number of enemies beaten during each episode of 

every algorithm’s implementation 
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As can be clearly seen from the bar graph, the A2C algorithm with the Rms optimizer used 

for its policy network yields the best scores. The agent presented the highest percentages of 

beating 5 and 4 enemies corresponding to 20% and 30% of the trials respectively. The other 

50% consists of 30% of beating 3 enemies and 20% of beating 2 enemies. None of the other 

2 algorithms were able to beat more than 3 enemies 50% of the time. The second best 

performance is provided by the PPO trained model which beat 3 enemies 40% of the time 

and 2 enemies 30% of the time. In the remainder trials it beat two times 4 enemies and only 

once more than that. The best algorithm trained with the third reward, provided less 

significant results since the agent did not win more than 2 enemies for the majority of the 

testing.  

By testing all of the three algorithms, it was observed that for every  model, even though the 

mean reward and episode length would increase, the agent chose almost randomly specific 

actions included in the ‘special moves’ category, something that was expected when noticing 

the training results and the understanding the construction of the game. These moves inflict 

the most damage to the opponent and can also be used defensively, being equally or more 

effective that strictly defense moves in many cases. At the same time, there is not restriction 

in using them other than pressing a series of buttons with the correct timing which does not 

apply for a non-human player, and as a result the agent shows a big bias towards them. In 

more modern games of the same category as Streetfighter, special moves cannot be 

overused and each time they are executed, there is an energy bar that gets depleted. 

However, with proper hyperparameter tuning and more training this bias could possibly 

deteriorate. 

All things considered, each algorithm performed best when paired with a specific reward, 

with the best being the A2C with its policy network optimized by the RMS optimizer. 
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6. CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY 

This thesis has focused on reporting the basic aspects of Reinforcement Learning, 

emphasizing on actor-critic methods and experimentation in the environment of the 

Streetfighter II game. After the presentation of the most impactful and successful 

implementations of Machine learning in digital and non-digital game environments, the 

primal concepts of the RL methods such as the Markov Decision Process. A variety of 

algorithms based on Dynamic Programming were then covered before introducing the 

characteristics of Deep Reinforcement Learning. Consequently, the content emphasized on 

policy gradient and actor-critic methods before introducing the proximal policy optimization 

(PPO) and the advantage actor-critic (A2C) algorithms that were used for the 

experimentation process. Last but not least, the inner workings of a CNN were discussed and 

some of the most favorable optimizers based on stochastic gradient descent were 

presented.  

 

Following the theory presentation, the Streetfighter game and its adaption to the Gym Retro 

platform for the implementation of the algorithms were described. Specifically, that 

included the presentation of the mechanics and controls of the game along with an 

explanation of its action and observation space. Following, three reward signals that were 

developed based on different combinations of in-game information were outlined, and the 

thought process behind them along with their differences was explained. Lastly, the 

specifications of the implementation of the algorithm such as the loss functions and their 

hyperparameters were reported. 

 

In the final chapter, the results of the training and testing of the algorithms were presented 

and discussed. It was observed, that none of the rewards shaped for this application was 

equally effective for the implementation of every algorithm and even the interchange of 

optimizers in the A2C implementations had a significant influence in the results. Indeed, it 
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was observed that the Rms optimizer was possibly not as able to optimize the model with 

rewards 3 and 1, as it was with reward 1. The latter, achieved the overall best performance 

among all the algorithm trials, beating the most opponents in more than half of the 

evaluation process constituted of ten episodes.  

However, many of the training sessions provided unstable data and showed inefficient 

learning even for models that achieved high rewards. Consequently, it would be interesting 

to test different parameters to the models and apply proper hyperparameter tuning in order 

to achieve the best performance possible. At the same time, the fact that the 

implementation of both algorithms included just one shared network between actor and 

critic, leaves the possibility of using 2 separate networks for each algorithm open for 

examination along with each network’s architecture.  Moreover, training the agent for every 

stage (enemy) of the game separately could make the learning process faster and more 

efficient, allowing the agent to progress even more in the game. Another worth exploring 

idea would be to apply a discrentizer and do the necessary changes to the code to allow the 

utilization of more algorithms that have proven to be effective, such as DQN. Last but not 

least, even more, reward function could be tested if there was access to more in-game 

information. A case in point would be to create a CNN that maps the movements of the 

players to output information regarding their distance at each time step. In this way, more 

complex rewards could be created that enforce specific strategies by exploiting the game 

mechanics and each enemy’s characteristics. 
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Code 

         

from gym import Env 

from gym.spaces import Box, MultiBinary 

import numpy as np 

import cv2 

import time 

import numpy  

 

class StreetFighter(Env): 

    def __init__(self): 

        super().__init__() 

        self.observation_space = Box(low=0, high=255, shape=(84, 84, 1), 

dtype=np.uint8) 

        self.action_space = MultiBinary(12) 

        self.game = retro.make(game='StreetFighterIISpecialChampionEdition-

Genesis', use_restricted_actions=retro.Actions.FILTERED) 

        #self.score = 0 

     

    def step(self, action): 

    

        obs, reward, done, info = self.game.step(action) 

        obs = self.preprocess(obs) 

         

        frame_delta = obs  

 

         

        ####--Shape reward--### 

         

        #1st Variation  

         

        #reward = info['score'] - self.score  

        #self.score = info['score'] 

         

         

        #2nd Variation  

         

        if  info['health']==0 and info['enemy_health']==0: 

            reward=0 

            self.enemy_health = info['enemy_health'] 

            self.health = info['health'] 

             

        if  info['health']<0 and info['health']!=self.health and in-

fo['enemy_health']!=0: 

            reward=(-176+((info['health'] - 

self.health)))*info['enemy_health'] 

            self.enemy_health = info['enemy_health'] 

            self.health = info['health'] 

             

        elif info['enemy_health']<0 and in-

fo['enemy_health']!=self.enemy_health and info['health']!=0: 
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            reward=(176-(info['enemy_health'] - 

self.enemy_health))*(info['health']) 

            self.enemy_health = info['enemy_health'] 

            self.health = info['health']  

             

        else:  

            reward=((info['health'] - self.health))-(info['enemy_health'] - 

self.enemy_health) 

            self.enemy_health = info['enemy_health'] 

            self.health = info['health'] 

      

     

             

         #3rd Variation  

         

      #  rew2=((-176+(info['health']-self.health))* info['enemy_health']) 

       # rew4=(info['health'] - self.health)*10 #dmg absorbed 

         

         

        #if  info['health']==0 and info['enemy_health']==0: 

         #   reward=0 

          #  self.enemy_health = info['enemy_health'] 

            #self.health = info['health'] 

           #  

        #elif info['health']<0 and info['health']!=self.health and in-

fo['enemy_health']!=0: 

         #   reward=rew2+(rew2*info['enemy_matches_won']/20)#καποια σταθερα 

          #  self.enemy_health = info['enemy_health'] 

           # self.health = info['health'] 

            #self.score = info['score'] 

            # 

        #elif info['enemy_health']<0 and in-

fo['enemy_health']!=self.enemy_health and info['health']!=0: 

         #   reward = info['score'] - self.score  

          #  self.score = info['score'] 

           # self.enemy_health = info['enemy_health'] 

            #self.health = info['health'] 

            # 

        #else: 

         #   if  (info['health']< self.health) and (in-

fo['enemy_health']==self.enemy_health):  

          #     self.enemy_health = info['enemy_health'] 

           #     self.health = info['health'] 

            #    self.score = info['score'] 

                 

            #elif (info['health']< self.health) and (info['enemy_health']< 

self.enemy_health): 

             #    reward= 10*(((info['health'] - self.health))-

(info['enemy_health'] - self.enemy_health))#den pairnei score se isopalia 

              #   self.enemy_health = info['enemy_health'] 

               #  self.health = info['health']    

                # print('double_damage',reward) 

            #else: 

             #    reward = (info['score'] - self.score)    

              #   self.score = info['score'] 

               #  self.enemy_health = info['enemy_health'] 

                # self.health = info['health']    

                                                              

        return frame_delta, reward, done, info,  

     

    def render(self, *args, **kwargs):  
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        self.game.render() 

     

    def reset(self): 

        self.previous_frame = np.zeros(self.game.observation_space.shape) 

         

        # Frame delta 

        obs = self.game.reset() 

        obs = self.preprocess(obs) 

        self.previous_frame = obs 

         

        # Create initial variables 

        self.score = 0 

        self.enemy_health=0 

        self.health=0 

 

        return obs 

     

    def preprocess(self, observation):  

        gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY) 

        resize = cv2.resize(gray, (84,84), interpolation=cv2.INTER_CUBIC) 

        state = np.reshape(resize, (84,84,1)) 

        return state 

     

    def close(self):  

        self.game.close() 

         

env = StreetFighter() 

 

env.observation_space.shape 

 

## Checking Rewards functionality 

import time 

obs = env.reset() 

done = False 

for game in range(5): 

    while not done:  

        if done:  

            obs = env.reset() 

        env.render() 

        obs, reward, done, info = env.step(env.action_space.sample()) 

        if reward!=0: 

           print(reward,info['health'],info['enemy_health']) 

        time.sleep(0.01) 

         

import torch 

torch.cuda.empty_cache() 

 

# Import A2C, PPO  

from stable_baselines3 import A2C, PPO 

# Import wrappers 

from stable_baselines3.common.monitor import Monitor 

from stable_baselines3.common.vec_env import DummyVecEnv, VecFrameStack 

import os  

 

LOG_DIR = './logs/' 

 

from stable_baselines3.common.callbacks import BaseCallback 

class TrainAndLoggingCallback(BaseCallback): 

 

    def __init__(self, check_freq, save_path, verbose=1): 

        super(TrainAndLoggingCallback, self).__init__(verbose) 
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        self.check_freq = check_freq 

        self.save_path = save_path 

 

    def _init_callback(self): 

        if self.save_path is not None: 

            os.makedirs(self.save_path, exist_ok=True) 

 

    def _on_step(self): 

        if self.n_calls % self.check_freq == 0: 

            model_path = os.path.join(self.save_path, 

'best_model_{}'.format(self.n_calls)) 

            self.model.save(model_path) 

 

        return True   

         

CHECKPOINT_DIR = './train_a2c_rew2_rmsprop/' 

#CHECKPOINT_DIR = './train_a2c_rew2/' 

#CHECKPOINT_DIR = './train_ppo_rew2/' 

callback = TrainAndLoggingCallback(check_freq=10000, 

save_path=CHECKPOINT_DIR) 

 

##Training 

env.close() 

env = StreetFighter() 

env = Monitor(env, LOG_DIR) 

env = DummyVecEnv([lambda: env]) 

env = VecFrameStack(env, 4, channels_order='last') 

 

# A2C parameters 

model_params = {'n_steps': 5, 'gamma': 0.99, 'gae_lambda':1, 'learn-

ing_rate': 7e-4, 'vf_coef': 0.5,'ent_coef': 0.0,'max_grad_norm':0.5, 

'rms_prop_eps':1e-05 } 

# PPO parameters 

#model_params = {'n_steps': 2048, 'gamma': 0.99, 'learning_rate': 0.0003, 

'clip_range': 0.2, 'gae_lambda': 0.95, 'ent_coef': 0.0, 'vf_coef': 0.5, 

'max_grad_norm': 0.5} 

 

model_params 

 

import torch 

from torch.optim import Optimizer 

class RMSpropTF(Optimizer): 

    """Implements RMSprop algorithm (TensorFlow style epsilon) 

    NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps ap-

plied before sqrt 

    and a few other modifications to closer match Tensorflow for matching 

hyper-params. 

    Noteworthy changes include: 

    1. Epsilon applied inside square-root 

    2. square_avg initialized to ones 

    3. LR scaling of update accumulated in momentum buffer 

    Proposed by G. Hinton in his 

    `course 

<http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_

. 

    The centered version first appears in `Generating Sequences 

    With Recurrent Neural Networks 

<https://arxiv.org/pdf/1308.0850v5.pdf>`_. 

    Arguments: 

        params (iterable): iterable of parameters to optimize or dicts de-

fining 
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            parameter groups 

        lr (float, optional): learning rate (default: 1e-2) 

        momentum (float, optional): momentum factor (default: 0) 

        alpha (float, optional): smoothing (decay) constant (default: 0.9) 

        eps (float, optional): term added to the denominator to improve 

            numerical stability (default: 1e-10) 

        centered (bool, optional) : if ``True``, compute the centered 

RMSProp, 

            the gradient is normalized by an estimation of its variance 

        weight_decay (float, optional): weight decay (L2 penalty) (default: 

0) 

        decoupled_decay (bool, optional): decoupled weight decay as per 

https://arxiv.org/abs/1711.05101 

        lr_in_momentum (bool, optional): learning rate scaling is included 

in the momentum buffer 

            update as per defaults in Tensorflow 

    """ 

 

    def __init__(self, params, lr=1e-2, alpha=0.9, eps=1e-10, 

weight_decay=0, momentum=0., centered=False, 

                 decoupled_decay=False, lr_in_momentum=True): 

        if not 0.0 <= lr: 

            raise ValueError("Invalid learning rate: {}".format(lr)) 

        if not 0.0 <= eps: 

            raise ValueError("Invalid epsilon value: {}".format(eps)) 

        if not 0.0 <= momentum: 

            raise ValueError("Invalid momentum value: {}".format(momentum)) 

        if not 0.0 <= weight_decay: 

            raise ValueError("Invalid weight_decay value: 

{}".format(weight_decay)) 

        if not 0.0 <= alpha: 

            raise ValueError("Invalid alpha value: {}".format(alpha)) 

 

        defaults = dict( 

            lr=lr, momentum=momentum, alpha=alpha, eps=eps, cen-

tered=centered, weight_decay=weight_decay, 

            decoupled_decay=decoupled_decay, lr_in_momentum=lr_in_momentum) 

        super(RMSpropTF, self).__init__(params, defaults) 

 

    def __setstate__(self, state): 

        super(RMSpropTF, self).__setstate__(state) 

        for group in self.param_groups: 

            group.setdefault('momentum', 0) 

            group.setdefault('centered', False) 

 

    @torch.no_grad() 

    def step(self, closure=None): 

        """Performs a single optimization step. 

        Arguments: 

            closure (callable, optional): A closure that reevaluates the 

model 

                and returns the loss. 

        """ 

        loss = None 

        if closure is not None: 

            with torch.enable_grad(): 

                loss = closure() 

 

        for group in self.param_groups: 

            for p in group['params']: 

                if p.grad is None: 



76 
 

                    continue 

                grad = p.grad 

                if grad.is_sparse: 

                    raise RuntimeError('RMSprop does not support sparse 

gradients') 

                state = self.state[p] 

 

                # State initialization 

                if len(state) == 0: 

                    state['step'] = 0 

                    state['square_avg'] = torch.ones_like(p)  # PyTorch in-

its to zero 

                    if group['momentum'] > 0: 

                        state['momentum_buffer'] = torch.zeros_like(p) 

                    if group['centered']: 

                        state['grad_avg'] = torch.zeros_like(p) 

 

                square_avg = state['square_avg'] 

                one_minus_alpha = 1. - group['alpha'] 

 

                state['step'] += 1 

 

                if group['weight_decay'] != 0: 

                    if group['decoupled_decay']: 

                        p.mul_(1. - group['lr'] * group['weight_decay']) 

                    else: 

                        grad = grad.add(p, alpha=group['weight_decay']) 

 

                # Tensorflow order of ops for updating squared avg 

                square_avg.add_(grad.pow(2) - square_avg, al-

pha=one_minus_alpha) 

                # square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - al-

pha)  # PyTorch original 

 

                if group['centered']: 

                    grad_avg = state['grad_avg'] 

                    grad_avg.add_(grad - grad_avg, alpha=one_minus_alpha) 

                    avg = square_avg.addcmul(grad_avg, grad_avg, value=-

1).add(group['eps']).sqrt_()  # eps in sqrt 

                    # grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha)  # 

PyTorch original 

                else: 

                    avg = square_avg.add(group['eps']).sqrt_()  # eps moved 

in sqrt 

 

                if group['momentum'] > 0: 

                    buf = state['momentum_buffer'] 

                    # Tensorflow accumulates the LR scaling in the momentum 

buffer 

                    if group['lr_in_momentum']: 

                        buf.mul_(group['momentum']).addcdiv_(grad, avg, 

value=group['lr']) 

                        p.add_(-buf) 

                    else: 

                        # PyTorch scales the param update by LR 

                        buf.mul_(group['momentum']).addcdiv_(grad, avg) 

                        p.add_(buf, alpha=-group['lr']) 

                else: 

                    p.addcdiv_(grad, avg, value=-group['lr']) 

 

        return loss 
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model = A2C('CnnPolicy', env, tensorboard_log=LOG_DIR, verbose=1, 

**model_params, policy_kwargs=dict(optimizer_class=RMSpropTF)) 

#For default Adam Optimizer: model = A2C('CnnPolicy', env, tensor-

board_log=LOG_DIR, verbose=1, **model_params) 

#For PPO algorithm: model = PPO('CnnPolicy', env, tensorboard_log=LOG_DIR, 

verbose=1, **model_params) 

 

model.learn(total_timesteps=10000000, callback=callback) 

env.close() 

 

##Testing Loop 

env = StreetFighter() 

env = Monitor(env, LOG_DIR) 

env = DummyVecEnv([lambda: env]) 

env = VecFrameStack(env, 4, channels_order='last') 

final_reward=0 

won_en=[] 

for episode in range(10):  

    obs = env.reset() 

    done = False 

    total_reward = 0 

    enemies_won=0 

    while not done:  

        action, _ = model.predict(obs) 

        obs, reward, done, info = env.step(action) 

        env.render() 

        #time.sleep(0.001)    

        total_reward += reward 

        if info['matches_won']==2:      #οτι νικησε δλδ εναν αντιπαλο 

            enemies_won+=1 

    won_en.append(enemies_won) 

 

    print('Total Reward for episode {} is {} and total enemies won is 

{}'.format(episode, total_reward, enemies_won))    

    final_reward+=total_reward    

print('Final Reward for 10 episodes is', final_reward, won_en)       
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