
Volos, 2022

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

Application of Reinforcement Learning Techniques in Streetfighter II

Environment

by

SPILIOPOULOS CHARALAMPOS

Submitted in partial fulfillment of the requirements for the degree of Diploma

in Mechanical Engineering at the University of Thessaly

Volos, 2022

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

Application of Reinforcement Learning Techniques in Streetfighter II

Environment

by

SPILIOPOULOS CHARALAMPOS

Submitted in partial fulfillment of the requirements for the degree of Diploma

in Mechanical Engineering at the University of Thessaly

ii

© 2022CharalamposSpiliopoulos

Allrightsreserved. The approval of the present DThesis by the Department of Mechanical
Engineering, School of Engineering, University of Thessaly, does not imply acceptance of the
views of the author (Law 5343/32 art. 202).

iii

Approved by the Committee on Final Examination:

Advisor Dr. Konstantinos Ampountolas,

Associate Professor, Department of Mechanical Engineering,

University of Thessaly

Member Dr. Pandelis Dimitrios,

Professor, Department of Mechanical Engineering, Aristotle

University of Thessaly

Member Dr. Saharidis Georgios,

Professor, Department of Mechanical Engineering, University of

Thessaly

Date Approved: [30th of June, 2022]

iv

Acknowledgments

I would like to especially thank my teacher and thesis supervisor Dr. Konstantino

Ampountola, for giving me the chance to work on this project and for providing me with his

valuable help and time. Moreover, I am thankful to the rest of the members of the

examination committee, professors Dr. Pandeli Dimitrio and Dr. Saharidi Georgio for reading

and evaluating my thesis.

Lastly, I am thankful to my parents, Vasili and Agapi for supporting me in every possible way

and being patient with me, especially during the times of writing this thesis. I dedicate this

work to my grandfather Charalampo, who would be more than happy to know i completed

my thesis.

v

Application of Reinforcement Learning Techniques in Streetfighter II

Environment

SPILIOPOULOS CHARALAMPOS

Department of Mechanical Engineering, University of Thessaly, 2022

Supervisor: Dr Konstantinos Ampountolas

Associate Professor of Automatic Control Systems in Mechanical Engineering

Summary

In an ever-increasing digital world, the application of Artificial Intelligence (AI) methods is

becoming more and more common. Their contribution can accelerate the progress in many

different fields, from logistics and security to engineering and medicine, providing solutions

or accelerating their constitution thus making human life easier. One major form of AI is

Reinforcement Learning (RL) whose way of learning a task can be summarized as a

procedure of trial and error regardless of a problem’s complexity. In this thesis, two state of

the art actor-critic RL algorithms are explored, using the game environment of Streetfighter

for their implementation. First of all, a retrospection of AI attempts and effectiveness in

playing various games through the years is presented; along with RL's theoretical

background and its basic methods. Next, the methods used in the experimental process are

examined by analyzing their basic characteristics, followed by a description of the

environment of Street fighter II and the parameters that were used for the implementation

of these methods. Finally, the experimental results are presented, compared, and discussed,

ultimately determining the best model for the present application.

vi

ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΩΝ ΕΝΙΣΧΥΤΙΚΗΣ ΜΑΘΗΣΗΣ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ

STREETFIGHTER II

Σπηλιόπουλος Χαράλαμπος

Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας, 2022

Επιβλέπων Καθηγητής: Δρ. Κωνσταντίνος Αμπουντώλας,

Αναπληρωτής Καθηγητής Συστημάτων Αυτομάτου Eλέγχου

Περίληψη

Mε τη διαρκή επέκταση της ψηφιοποίησης, η ανάπτυξη και η εφαρμογή μεθόδων

Τεχνητής Νοημοσύνης γίνεται όλο και πιο συχνή και γι’αυτό καθίσταται επιτακτική η μελέτη

τους και η αναλυτική προσέγγισή τους. Η συμβολή τους μπορεί να επιταχύνει την πρόοδο

σε πολλούς διαφορετικούς τομείς, από τα logistics και την ασφάλεια μέχρι τη μηχανική και

την ιατρική, δίνοντας λύσεις ή επιταχύνοντας τη λύση πολλών προβλημάτων, κάνοντας την

ανθρώπινη ζωή ευκολότερη. Η Ενισχυτική Μάθηση αποτελεί μια ιδιαιτέρως σημαντική

μορφή της τεχνίτης νοημοσύνης και συγκεκριμένα της Τεχνίτης Μάθησης και συνιστά ένα

τρόπο εκμάθησης μιας εργασίας την οποία μπορεί να συνοψιστεί ως μια διαδικασία

δοκιμής και σφάλματος, ανεξάρτητα από την πολυπλοκότητα της. Σε αυτή τη διατριβή,

γίνεται πειραματική δόκιμη δυο σύγχρονων μεθόδων βαθιάς ενισχυτικής μάθησης actor-

critic, χρησιμοποιώντας ως πεδίο αναφοράς, το περιβάλλον του παιχνιδιού Streetfighter ΙΙ

για την υλοποίησή τους. Πρώτα απ' όλα, παρουσιάζεται μια αναδρομή στις επιδόσεις

εφαρμογών τεχνητής νοημοσύνης σε διάφορα παιχνίδια μέχρι και σήμερα, καθώς και το

θεωρητικό υπόβαθρο της ενισχυτικής μάθησης και των βασικών της μεθόδων. Στη

συνέχεια, εξετάζονται οι αλγόριθμοι που χρησιμοποιήθηκαν κατά την πειραματική

διαδικασία αναλύοντας τα βασικά τους χαρακτηριστικά, ενώ ακολουθεί η περιγραφή του

περιβάλλοντος του Street fighter II και των παραμέτρων που χρησιμοποιήθηκαν κατά την

εκπαίδευση τους σε αυτό. Τέλος, παρουσιάζονται τα πειραματικά αποτελέσματα, τα όποια

συγκρίνονται και σχολιάζονται, καθορίζοντας εν τέλη το καλύτερο μοντέλο στην παρούσα

εφαρμογή.

vii

Table of Contents

Chapter 1. INTRODUCTION ...10

1.1 Introduction to Reinforcement Learning .. 1

1.2 RL in Games ... 3

1.3 Thesis Organization .. 9

Chapter 2. REINFORCEMENT LEARNING LITERATURE REVIEW..10

2.1 Fundamentals .. 10

2.2 Markov Decision Process ... 12

2.2.1 Reward and expected return .. 13

2.2.2 Value Functions ... 13

2.2.3 Bellman Equation... 14

2.3 Dynamic Programming ... 16

2.3.1 Policy Iteration .. 16

2.3.2 Value Iteration ... 18

2.3.3 General Policy Iteration ... 19

2.4 Monte Carlo Methods (MC) ... 20

2.4.1 Off-policy Monte Carlo... 21

2.4.2 On-policy Monte Carlo ... 22

2.5 Temporal Difference learning (TD) ... 24

2.5.1 On-policy TD Learning .. 25

2.5.2 Off-policy TD Learning.. 26

2.5.3 λ-Return .. 27

Chapter 3. DEEP REINFORCEMENT LEARNING ..29

3.1 Stochastic Gradient Descent .. 29

3.2 Policy Gradient... 31

3.3 Actor Critic Methods .. 32

3.3.1 Advantage Actor Critic (A2C) ... 34

3.3.2 Trust Region Policy Optimization (TRPO) ... 36

3.3.3 Proximal Policy Optimization (PPO) ... 36

3.4 Convolutional Neural Networks ... 38

3.4.1 Structure ... 39

3.4.2 Optimizers ... 40

Chapter 4. APPLICATION TO STREETFIGHTER..43

4.1 Introduction to Street Fighter .. 43

4.1.1 Game Mechanics ... 44

4.1.2 Game Mechanics ... 44

viii

4.2 Game and Environment Set Up .. 45

4.2.1 Gym Retro ... 46

4.2.1 Game Environment.. 46

4.3 Rewards ... 47

4.4 Algorithms Implementation ... 49

4.5 Evaluation .. 52

Chapter 5. RESULTS AND DISCUSSION ..53

5.1 PPO Results .. 53

5.2 A2C Results .. 57

5.3 Comparison of PPO and A2C .. 60

Chapter 6. CONCLUSION AND FUTURE WORK ..64

Code ...71

References ... 66

ix

LIST OF TABLES

Table 4.1: PPO loss functions shaped in the Stable Baselines Implementation50

Table 4.2: A2C loss functions shaped in the Stable Baselines Implementation......................50

Table 4.3: Default Hyperparameters of PPO and A2C ...51

Table 5.1: Computer Specifications ..53

Table 5.2: Training diagrams of PPO ...54

Table 5.3: Mean Reward and Mean Episode Length using PPO algorithm and reward 155

Table 5.4: Mean Reward and Mean Episode Length using PPO algorithm and reward 255

Table 5.5: Mean Reward and Mean Episode Length using PPO algorithm and reward 356

Table 5.6: Training diagrams for A2C using Adam CNN optimizer ...57

Table 5.7: Training diagrams for A2C using RMS CNN optimizer ...58

Table 5.8: A2C models comparison when trained with reward 1 ..59

Table 5.9: A2C models comparison when trained with reward 2 ..59

Table 5.10: A2C models comparison when trained with reward 3 ..60

Table 5.11: Comparison of all the algorithms trained with Reward 161

Table 5.12: Comparison of all the algorithms trained with Reward 261

Table 5.13: Comparison of all the algorithms trained with Reward 362

Table 5.14: Comparison between the number of enemies beaten62

x

LIST OF FIGURES

Figure 1.1: Depiction of the series of events in the agent-environment framework2

Figure 2.1: Interaction between agents and their environments in a MDP12

Figure 2.2: Depiction of the GPI dynamic programming method ...19

Figure 2.3: Depiction of the inner workings of the TD (λ) method ...28

Figure 3.1: Categorization of the different RL algorithms ..33

Figure 3.2: Depiction of the basic process in actor-critic methods with TD evaluation.34

Figure 3.3: Depiction of the difference between the A3C and the A2C algorithm35

Figure 3.4: Clipping of the PPO loss function ...38

Figure 3.5: Depiction of a Convolutional Neural Network ...40

Figure 4.1: Streetfighter II Special Champion Edition for Sega-Genesis console44

Figure 4.2: Controls for the Streetfighter II in Sega Genesis console46

Figure 4.3: Reward Signal 1 ...48

Figure 4.4: Reward Signal 2 ...48

Figure 4.5: Reward Signal 3 ...49

Figure 4.6: CNN used in A2C and PPO ...52

1

1. INTRODUCTION

In this chapter, the basic ideas behind Reinforcement Learning are described, along with

examples of its application in game platforms emphasizing its most important

implementations.

1.1. Introduction to Reinforcement Learning

The science of Machine Learning is categorized in supervised learning, unsupervised

learning and reinforcement learning [1]. The first category includes algorithms that given

labeled datasets they derive mapping functions which are then able to then predict outputs

from given inputs. In the second category, algorithms try to find patterns between sparse

data without given sets of input and output data. In contrast to those methods,

reinforcement learning requires little to no previous information and algorithms learn tasks

thru trial and error. This process takes place in the interactions between the agent and the

environment, which are the source of the data and consistently accumulate experiences

which are highly correlated. Using this sequential set of information, an optimum solution

may be found, even though this process creates one significant challenge for RL algorithms,

known as exploration versus exploitation.

Within the agent-environment structure, the agent first evaluates the current environment

state, denoted by , in discrete time steps t, and then decides upon an action, denoted by

𝐴𝑡 . The action causes a reaction to the environment which then moves to a new state

denoted by 𝑆𝑡+1. Additionally, the agent receives a reward denoted by the letter 𝑅𝑡 for his

action [2]. As seen in figure 1.1, the agent and the environment interact in a loop caused by

an action that leads to the next state 𝑆𝑡+1.

2

Figure 1.1: Depiction of the series of events in the agent-environment framework

As a consequence, the agent has to learn how to assess states and utilize these state

evaluations to acquire the greatest outcome, considering the reward of a transition and all

of the potential future rewards. By following the strategy that maximizes the future rewards,

the best outcome is attained. To put it another way, the agent is trying to come up with a

policy that maps every state in S, to an action in A, in such a way that when it is

implemented, it provides a series of transitions that yields the maximum sum of rewards for

each transition.

One major distinction in Reinforcement Learning methods is the possible existence of a

model for the environment of a problem. In model-based learning, an agent creates a model

that describes features of the environment he lives in, through attained experiences of

interacting with it. In this kind of system, the direct effects of actions have less importance

for the agent because of the predispositions created by the model. Thus, the values of the

future states are taken into consideration rather than those of immediate actions (in

contrast to model-free methods), and so are tied to the external structure of the

environment and the internal model.

On the other hand, in model-free learning, the consequences of actions are found through

experience. Specifically, an action will be carried out multiple times and a policy for optimal

rewards will be adjusted, based on the outcomes. In other words, the case when the agent

performs an action in order to find out what the result may be, corresponds to model-free

learning. As a result, each of the two classes is useful for different applications.

A common analogy to RL is that of games, where the environment acts as the game itself

and the agent is one of the players. The reward signal reflects how good the action was at

3

the given state, for instance, the winning move in a game of chess would give the agent a

positive reward, whereas a losing move would give the agent a negative reward (penalty).

The aim of the agent is defined as maximizing the total rewards it receives from the

environment. Thus, the reward signal can be understood as a stimulus to the agent guiding it

toward an optimal strategy in the environment.

1.2. RL in Games

The idea of using computer systems and algorithms to train agents or just learn specific

games is not new. For decades, scientists had thought of using computers to beat both

computer and board games. Since the first tries, computer intelligence has come a long way

and game platforms have a significant role in the advancement of the field. Some of them

can be very complex with many limitations and parameters to consider and thus can

showcase the capabilities of an algorithm. For that reason, it has become common place in

the scientific community to use games as a testing platform for RL algorithms since they

provide a perfect test-bed for measuring the progress of complicated AI systems.

The first time a computer program was successfully created to play against a human, was in

1979. In a friendly match, the BKG 9.8 backgammon computer program prevailed against the

reigning World Backgammon Champion, Luigi Villa, by 7 points to have a historically

important impact [3]. That was the first time that a human-created machine had ever been

successful in dethroning a world champion in a recognized intellectual activity. There are a

total of 1020 different positions that may be played in the game of backgammon, which is a

game of both skill and chance (use of dice) and is comparable to the perplexity of checkers

or bridge [4],[5]. Because it was heuristic software, it did not base its judgments on a

comprehensive representation of the game of backgammon. Aside from a few pre-

calculated tables, the whole software is based on heuristic functions that had been precisely

optimized.

However, the incident that left a more significant mark in the history books happened from

1996 to 1997, when IBM challenged Garry Kasparov to a chess match against its chess-

playing computer, Deep Blue [6]. Kasparov won the 1996 match 4-2 but in the next year’s

4

rematch, he lost 3 games while drawing 1 to the upgraded version of Deep Blue. It was a

historic moment when a chess-playing computer, for the first time, prevailed against a

reigning world champion under the standard conditions of a chess tournament. Since chess

had been seen as the pinnacle of artificial intelligence evaluation for many decades, the

achievement was commemorated as a watershed moment in the development of the field

of artificial intelligence [7]. Deep Blue was artificial intelligence (AI), but in reality, it was

more of a hybrid since it depended less on machine learning than modern systems do and

more on a brute force approach. This meant that it used sheer processing capacity to test

every option rather than sophisticated approaches to enhance efficiency [8]. The concept of

big data was still in its infancy, and the technology at the time could not have supported

enormous networks. The software was responsible for the more fundamental components

of the chess calculations, while the hardware's accelerator chips were responsible for

searching through a tree of potential outcomes to determine the optimal moves based upon

an alpha-beta search algorithm.

In 2011, people all across the globe watched as IBM's Watson succeeded in a friendly match

of Jeopardy against the show's two most renowned players, one of whom had won 74

straight programs in a row. Watson, a computer system that functions as a search engine

and has remarkable natural language processing (NLP) and reasoning skills, has shown that

computers are capable of not just excelling in mathematical strategy games but also games

based on knowledge and communication. A Game State Evaluator, also known as a GSE, was

trained using millions of rounds of simulated games between Watson and humans to assess

the influence that a wager has on a player's likelihood of winning [36]. A feature description

of the current game state is given as an input into the GSE, which then uses a neural network

to achieve smooth nonlinear function approximation and generates an estimate of the

chance that Watson would eventually win based on the game's present state. The players

scores and different measurements of remaining game time were stored in a feature vector,

which was used to train the algorithm [37].

In 2016 another milestone in the AI development took place when Google’s Deepmind

managed to defeat the 18 times and current world champion (at the time) in GO, Lee

5

Sedolusing four to one [9]. Before then, it was expected that it would be at least 10 years

before computers were able to beat professional Go players in the full-sized game. The

earlier attempts of using artificial intelligence to defeat a human being in a game

environment are not comparable to AlphaGo’s implementation for which machine learning

was utilized to figure out how to play and practice the game rather than pre-programmed

probability calculations. It is claimed that the board game Go, which originated in China

more than two thousand five hundred years ago, is the oldest board game that is still being

played today [10]. The game of Go is deceptively difficult while having some rather

straightforward rules. In comparison to chess, go has a larger board with a greater range of

possible moves, lengthier games, and, on average, more potential moves to evaluate before

making a decision. The number of atoms in the known universe is thought to be on the order

of 1080, while the number of permissible board places in Go has been computed to be

roughly 2.1 × 10170 that is significantly higher. The program made use of three different

policy networks, two of which were trained using supervised learning on experts'

movements, and one of which was learned using policy gradients and self-play approaches

(reinforcement learning) [11]. These three methods were merged into one in the Monte

Carlo tree search, which used the value function obtained by the Rl algorithm to determine

how its branches should be set up.

After their success, the company made two upgraded versions of the same algorithm, the

AlphaGo Zero in 2017 and the AlphaZero in 2018. The first surprisingly outperformed its

predecessor AlphaGo just 36hours later, and managed to win 100 to 0, only using one neural

network and training only thru self-play which was the most important difference from

AlphaGO [12], [14]. The latter was deployed across multiple computers and used a total of

48 tensor processing units (TPUs), but AlphaGo Zero only utilized a single system with 4

TPUs. AlphaZero is a generalized extension of its predecessor that is also capable of

successfully playing chess and shogi [15]. Within the first twenty-four hours of its training,

the algorithm acquired a top notch standard of competition in these games as shown by its

victory against the world-champion programs Stockfishm, Elmo, and the three-day version of

AlphaGo Zero[16]. Shogi is played on a larger board than chess and is a significantly harder

game in terms of computational complexity. The Computer Shogi Association (CSA) world-

champion Elmo, was the strongest shogi program and had only recently defeated human

6

champions [17]. The next year, DeepMind published a new study describing MuZero [18], a

new algorithm capable of generalizing AlphaZero's applications by playing both Atari and

board games without knowledge of the game's rules or representations.

A year and a half later, the same firm revealed AlphaStar, a computer program taught to play

Starcraft II, a video game that was a significant obstacle for artificial intelligence researchers

for more than a decade. The AI that was trained achieved the level of GrandMaster after

defeating the top player Grzegorz "MaNa" Komincz and his colleague Dario "TLO" Wünsch

with a score of 5-0 [20]. It subsequently achieved a ranking that was higher than 99.8

percent of all current players. The game is an example of a multi-agent problem in which

several participants fight against one another for influence and resources. It is an incomplete

information game since in some cases the map can only be viewed up to a point by a local

camera [19], [21]. The agent has to explore his surroundings to identify the opponent's state

and integrate the essential knowledge. In addition, the action space is broad and varied, and

the user utilizes a point-and-click interface to pick actions from a continuous space

containing around 108 possible outcomes. Games often continue for many thousands of

frames and actions, and the player is required to make choices early with implications that

may not be evident until much later in the game, leading to a diverse set of problems.

Human game replays were used to teach agents throughout the first stages of their training

process. Afterwards, it continued with matches against actual league opponents. To build

these models, a deep neural network was used, which was trained using just original data

from the game. Subsequently, the policy parameters were taught by reinforcement learning,

which made use of a policy gradient approach, the Asynchronous Advantage Actor-Critic

(A3C).

The same year OpenAI, a promising non-profit organization in this field, created a machine

learning system, OpenAI 5 which competed and won against a team of human gamers in

Dota 2. Specifically, a system of 5 neural networks took on a team of five top 0,5% of

professional gamers in 3 matches of which it won the 2 [24]. The algorithm used was

Proximal Policy Optimization (PPO) and a self-play strategy which means that the algorithm

learns to duel against itself, gradually getting better over a long period. Dota 2 is a very

complicated game in which the agent has to take thousands of actions such as moving

7

around by clicking, casting abilities, or buying items and at the same time taking into

consideration the progress of each team. On top of that, like in Starcraft the payback for

those actions only arrives much later in the game while it is also an imperfect information

game. Its continuous action space has high dimensionality and it is much more complex for

an algorithm to deal with in comparison to Atari’s, which is a relatively small discrete one. To

cope with all these difficulties, it trained by playing 180 years of game experience every day

and using 128.000 CPU’s and 256 of the biggest GPU’s available [22],[23].

Another addition to the state of the art RL performances in games happened in 2021 when

Sony AI in collaboration with Polyphony Digital (PDI), and Sony Interactive Entertainment

(SIE) developed GT Sophy, a revolutionary superhuman racing agent that plays Grand

Turismo and managed to win top human racers [25]. Grand Turismo is a pc game first

released in 1989, which emphasizes in racing simulation and is designed to emulate the look

and performance of a wide variety of cars, the majority of which are authorized

reproductions of actual automobiles from the real world. Undoubtedly, GT Sophy raised the

bar for game AI by overcoming the difficulty of a hyper-realistic simulator. This is

accomplished by mastery of real-time control of vehicles with intricate dynamics, game

strategies, and split-second decision-making, all while adhering to the rules of proper game

etiquette. Gran Turismo Sport was used as the training ground for GT Sophy, which was

taught using cutting-edge learning algorithms and training situations created by Sony AI and

utilizing unique deep reinforcement learning methods. In particular, an innovative deep RL

technique that trains neural networks asynchronously and goes by the name of QR-SAC was

applied. QR-SAC is an expanded form of Soft Actor-Critic. This strategy educates both a

policy (an actor) that chooses an action based on the agent's observations and a value

function (a critic) that evaluates the potential future rewards of each action.

In addition, a French firm called NukkAI produced an artificial intelligence that defeated

eight world champions in the card game bridge. The bridge is a game in which human

superiority has successfully defied the advance of computers up until this point. A card game

based on the concept of taking risks, bridge is played between two teams of two players

each. The victory signified a new milestone for AI since players in bridge operate with partial

knowledge and are required to respond to the behavior of numerous other players. This is a

8

situation that is far closer to human decision-making when compared to games such as Go

and chess [27]. These characteristics create challenges as well as opportunities for research

into AI. As a result of just having access to some relevant information, the search area

available for planning is exponentially bigger than the one for completely observable

scenarios. Additionally, the multi-agent feature (two players versus two, both collaborative

and antagonistic) makes the branching factor higher than in games with only two players.

Instead of learning by endless repetition of a single game, it first learns the rules and then

refines its skills through further practice. It combines systems that are rules-based with

those that use deep learning [28] [29].

In conclusion, it has been proved that machine learning can be trained in different types of

games that need completely different approaches successfully. More and more technology

corporations nowadays, create algorithms that compete in different types of games

searching for new challenges that will finally optimize and showcase their performance. Even

though the current reinforcement learning algorithms are much simpler and less capable

than human intellects, with enough training data and compute resources they can solve

surprising complex problems. Some of these systems may not do much more than

overfitting on a very dense sampling of the problem but it is evident that they have managed

to solve very complex problems and actually win the top of the professional gamers in many

different occasions. To create even more powerful AI, algorithms that could use the already

acquired knowledge and adapt it to new environments achieving equal or better

performance should be developed.

9

1.3. Thesis Organization

The rest of this thesis is compiled in five more chapters, specifically from chapters two to six

In Chapter 2: The background of reinforcement learning theory is described providing

the necessary techniques and equations, on which more advanced RL methods, are based.

In Chapter 3: Deep Reinforcement Learning policy gradient and actor-critic methods

are presented along with the theory behind them.

In Chapter 4: Elaboration on the basic parts of the game environment and the

application of the algorithms.

In Chapter 5: The results of the RL methods that were implemented are presented

and discussed.

In Chapter 6: The conclusion underlines the purposes of this thesis and suggestions

for further research are proposed.

10

2. REINFORCEMENT LEARNING LITERATURE REVIEW

2.1. Fundamentals

The agent can be anything that understands and acts in an environment while trying to carry

out his objectives and become better at the same time. He has an objective function whose

expected value is trying to maximize. The sum of possible decisions he may take in the

environment is called action space and can be either discrete or continuous. In the case of

continuous spaces, discretization is used usually to make the problem simpler even though

the accuracy is going to decrease.

As mentioned before, the environment is the word where the agent lives in and chooses

actions to make. More specifically, anything that the agent cannot modify deliberately is

deemed as part of its environment. The sum of the information the agent takes in at a

specific time t is called state space and can be considered the same as the observation space

if the environment is completely observable by the agent. In some games, not all of the

information that there is in the environment can be accessed by the agent.

The environment can be categorized based on different traits. It can either be deterministic

or stochastic. In the first, given the present state and action, the new state can certainly be

predicted while in the second, it is not always possible to be foreseen.

 There is also the single-agent and the multi-agent environment. Obviously, in the single-

agent environment only one active agent is present and is able to interact with it while in

the multi agent environment there can be more than one agent dealing with the

environment simultaneously. Moreover, there are discrete and continuous environments

which constitute a very important distinction, since that can be a factor in determining the

right algorithm to use.

11

 Two other distinctive types of environments that are of interest are episodic and

sequential, which have different temporal properties. An episodic task is one that happens in

episodes. An episode can be many things, such as games or decision points, but the thing

that identifies them is that for each episode the reward accumulated can be summed before

a new one begins. This allows for expressing basic parameters, such as the reward, in

episodes instead of time steps and finally optimizing by finding a maximum score in most of

these applications. In such a setting, the agent's activities are restricted to the current

episode alone and are not dependent on any actions taken in earlier episodes.

Sequential environments do not have such an endpoint since the present actions are

associated with the actions that happened in earlier stages of the environment and as such

cannot rewards cannot be maximized in the same way.

 Finally, there are the fully observable and the partially observable Environments which

were mentioned in the previous part about the implementation of RL algorithms in games.

The first category corresponds to the setting where an agent has full access to his

environment and its overall status at a particular moment. However, when the agent cannot

always observe the whole environmental conditions of the world where he lives, the

environment is called partially observable.

The activities of the agent have an effect on the condition of the environment in the future,

which in turn changes the options and possibilities that are available. The action space can

also be divided in discrete and continuous and it hasn’t had to match the environment’s type

space. For example, discrete action-space can exist in a continuous environment. Correct

decision-making necessitates consideration of the long-term repercussions of actions and

the reward function is a significant factor to consider. The reward is given to the agent after

every action he makes in the environment and can be a number, negative or positive.

Generally, it shows the significance of the state the agent is in a specific time t. The agent's

purpose is to maximize the total return that he gets.

12

2.2. Markov Decision Process (MDP)

For the purpose of addressing the reinforcement learning issue, the agent-environment

interaction is represented as a MDP. That means that the next state and reward can be

forecasted using only the current state and action.

Figure 2.1: Interaction between agents and their environments in a MDP. Every step involves

the agent choosing an action taken in response to environmental data and receiving a reward signal

as a result of the action chosen [32].

Using the information given by the environment about the current state St, an action At is

selected by the agent that will bring it with a certain probability to a new state St+1, and will

earn him a reward Rt+1 as a result of the chosen action, for every time step t = 0, 1,...,]. The

agent uses a policy that maps the possibilities of choosing each of the selectable actions

from each which is symbolized by π and πt (α|s) is the probability of At =α when St =s. If the

process is finite, the agent will eventually reach the terminal state, and the series will come

to an end [33]. The time sequence of events from the beginning state S0 to the terminal

state ST is known as an episode in a finite MDP and must always occur in the following order:

S0, A0, R1, S1, A1, R2, S2, A2..., RT , ST, AT. (2.1)

Since the problem is defined as an MDP, each state and reward in an episode is solely

influenced by the state and action pair that came before it. As a result, given a non-

deterministic system, the probability of obtaining a specific reward and ending up in a

specific state can be stated as

13

 p(s′, r |s, α) = Pr {St+1 = s′, Rt+1 = r |St = s, At = α} (2.2)

where s, s′, and α in (2.2) are states and actions that are contained inside the entire set of

conceivable states S, and actions A respectively.

2.2.1 Rewards and expected returns

As mentioned previously, a reward is a signal that the agent receives at each time step as a

gauge of how favorable it is to take a specific action. Although these rewards can be

provided by the environment, they must be consciously selected in some applications.

 𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯ + 𝑅𝑇 (2.3)

The primary objective of reinforcement learning is to optimize the anticipated return,

written as 𝐺𝑡, that is the accumulation of all the predicted rewards in certain episodes. As a

result, partial rewards must be closely linked with the agent's ultimate objective.

Additionally, the function (2.3) is modified using γ, which is the discount rate γ∈ [0, 1] that

indicates the present significance of future rewards. Specifically, when it is closer to 1, future

rewards gain more weight whereas immediate rewards are considered more when is closer

to 0. It is a more generalized formulation that takes into account the decreasing importance

of future rewards at the current time step.

 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ = ∑ ∞
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1 (2.4)

The statement above is known as the expected discounted return which is also appropriate

for continuous tasks.

2.2.2 Value Functions

Learning a value function, which maps every possible state in the environment to its

expected return when following a certain behavior, is a common strategy for solving the

reinforcement learning problem. This behavior, known as policy in the literature and

indicated by π, represents the agent's likelihood of picking a particular action when in a

14

certain state, πt(α|s) . The state-value function can be written under policy π when using

this notion.

 𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠] = 𝐸𝜋[∑ ∞
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠] (2.5)

However, the action-value function (2.6), considers not only the value of existing in a specific

state, but also the aftermath of taking a particular action firstly and then adhering to a

specific policy π from that point forward:

 𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝐸𝜋[∑ ∞
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.6)

As previously stated, the agent's goal is to increase the expected return by doing a number

of measures. For each state and action, if the real action-value function is known, the

problem can be simply solved by picking the action that maximizes the expected return in

each state. In that circumstance, the agent is said to be pursuing the optimal policy. As a

result, any alternative policy's return must always be lower or equal to the optimal policy:

 𝑣∗(𝑠) = 𝑚𝑎𝑥
𝜋

𝑣𝜋(𝑠) (2.7)

 𝑞∗(𝑠, 𝑎) = 𝑚𝑎𝑥
𝜋

𝑞𝜋(𝑠, 𝑎) (2.8)

2.2.3 Bellman Equation

The Bellman equation describes a connection between the value of some state and state’s

that immediately follows it. It takes an average of all the possibilities and weights them

according to the likelihood of them happening. It stipulates that the beginning state’s value

has to match the value of the estimated new one state adding the anticipated reward

through the process. Thus, equation (2.5) can be demonstrated perpetually in the following

states using come MDP properties as shown below:

15

 𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠]

 = 𝐸𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1| 𝑆𝑡 = 𝑠]

 = 𝐸𝜋 [∑

∞

𝑘=0

𝛾𝑘 𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠]

 = ∑

𝑎

𝜋(𝑎|𝑠) ∑

𝑠′

∑

𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝐸𝜋[𝐺𝑡+1
 |𝑆𝑡+1 = 𝑠′]]

 = ∑

𝑎

𝜋(𝑎|𝑠) ∑

𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠′)] (2.9)

This equation is a series of equations, where each one corresponds to a state. Specifically, in

N states, there are going to be N equations involving N unknowns. Taking into consideration

that the policy is being selected so that the return is maximized the condition which is

known as Bellman optimality equation for the state-value function must be:

 𝑣∗(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

𝑞𝜋∗
(𝑠, 𝑎)

 = 𝑚𝑎𝑥
𝑎

 Ε𝜋∗[𝑅𝑡+1 + 𝛾𝐺𝑡+1| 𝑆𝑡 = 𝑠]

 = 𝑚𝑎𝑥
𝑎

 𝐸[𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

 = 𝑚𝑎𝑥
 𝑎

∑ 𝑠′,𝑟 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝜐∗
 (𝑠′)] (2.10)

 𝑞∗(𝑠, 𝑎) =

 Ε [𝑅𝑡+1 + 𝑚𝑎𝑥𝑞∗
𝑎′

(𝑆𝑡+1,𝑎
′)| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

 =

∑ 𝑠′,𝑟 𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑚𝑎𝑥𝑞∗
𝑎′

(𝑠′, 𝑎′)] (2.11)

In case the state space is finite and the environment’s behavior is determined, the solution

to the preceding formulas can be obtained. As a result, the ideal policy can be discovered

when acting greedily throughout every state from the start to the finish of the episode. It's

worth noting that the greedy action in each state isn't always the one that maximizes the

immediate reward in this case, but rather the end return, which is determined by the

Bellman optimality equation in each state.

16

2.3. Dynamic Programming (DP)

A set of techniques known as DP can be used to compute optimal policies when a perfect

model of the environment known as an MDP is given. However, traditional DP algorithms

are rarely used in RL problems since they assume a perfect model and they need a lot of

computations in order to be applicable, their contribution to the theoretical base of other

algorithms is undeniable.

Assuming the environment can be characterized as an MDP, we assume that its state S,

action A, and reward R are finite, and that its dynamics are given by a set of probabilities

p(s, r |s*, α). Using value functions for organizing the exploration to find effective policies is

the core concept of DP and reinforcement learning in general. Thus, DP methods that can be

defined like the Bellman equations are presented below [34], [35].

2.3.1. Policy Iteration

To evaluate learning, a technique called policy evaluation is utilized, that deals with the

problem of calculating the value function for some arbitrary policy. There are two types of

policy evaluation that are commonly used, which recursively help to add value to the other.

One is the state evaluation 𝑣𝜋 which is used to estimate the total value that a given state will

bring following a certain policy, and is given by the Bellman equation (2.9) which is turned

into an update rule, 𝑣𝑘(s′) → 𝑣𝑘+1(s) and iteratively converges towards the solution, 𝑣𝜋(𝑠).

In summary, 𝑣𝜋(𝑠) estimates the value of the current state, by foreseeing the next one and

adding the reward that it would gain from the state transition. Additionally, there is a way of

evaluating state-action pairs, 𝑞𝜋 which is actually the inner component of the state

evaluation and it takes into account only a single action [34].

 𝑞𝜋(𝑠, 𝑎) = ∑  𝑠′ 𝑝(𝑠′ ∣ 𝑠, 𝑎)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛾𝑣𝜋(𝑠′)) (2.12)

According to the algorithm that is chosen in each case, either the state evaluation or the

state-action evaluation is going to be used in the system, as they both give ways to different

interpretations of the system.

17

On the other hand, there is the policy Improvement method that takes an old policy and

makes a new and improved one by selecting greedy actions according to the value function

of the original policy. In other words, this method determines if it would be more beneficial

to change the already in use policy by moving to a new one.

In case 𝑞𝜋(𝑠, 𝑎)(2.12), the value of taking an action an in state s and then following the

policy π, is greater than,𝑣𝜋(𝑠) (2.9), then the better choice would be to once again take the

action α whenever in state s and the new policy would be superior to the previous one. This

special case is called the policy improvement theorem. The new greedy policy is given

bellow:

 𝜋′(𝑠) = arg 𝑚𝑎𝑥
𝑎

𝑞𝜋(𝑠, 𝑎)

= arg 𝑚𝑎𝑥
𝑎

𝔼[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.13)

, where arg 𝑚𝑎𝑥
𝑎

 indicates the value of the action α that maximizes the following expression.

Because the greedy policy is in agreement with the policy improvement thorium it cannot be

worse than the original policy. The policy improvement theorem and the general ideal of the

method can be also applicable for stochastic policies.

Combining the policy evaluation and improvement method, the policy iteration emerges.

After improving a policy 𝜋, utilizing 𝑣𝜋 to produce a better one 𝜋1, another value function

𝑣𝜋1 can be computed which can also be improved find an even better 𝜋2. As a result, a series

of policies with value functions can be generated that will be improved monotonically:

 𝜋0 ⟶
E

𝑣𝜋 ⟶
I

𝜋1 ⟶
E

𝑣𝜋1 ⟶
I

𝜋2 ⟶
E

⋯ ⟶
I

𝜋∗ ⟶
E

𝑣∗ (2.14)

 ,‘E’ standing for policy evaluation and ‘I’ for policy improvement. As seen above, if the

present policy is not optimal; every new policy will be an improvement of the previous one

and this process continues until an optimal policy and optimal value function is found in a

finite number of iterations.

18

θ: a small number, π: a deterministic policy, V ~ v*,

s.t π~π* , V ~ 𝑣 *

Function PolicyIteration is

/* Initialization

Initialize V(s) arbitrarily;

Randomly initialize policy π(s);

/* Policy-Evaluation

Δ ← 0

while Δ < θ do

 for each s ∈S do

 𝑣 ← V(s):

 V ←

∑ 𝑠′,𝑟 𝑝(𝑠′, 𝑟|𝑠, 𝜋(𝑠))[𝑟 + 𝛾𝑉(𝑠′)]

 Δ ← 𝑚𝑎𝑥(Δ,|𝑣 — V(s)|)

 end

end

/* Policy Improvement

policy_stable ← True

for each s∈S do

 old_action ← 𝜋(𝑠)

 𝜋(𝑠) ← arg 𝑚𝑎𝑥𝑎 ∑ 𝑠′,𝑟′ 𝑝(𝑠′, 𝑟|𝑠, 𝛼)[𝑟 + 𝛾𝑉(𝑠′)]

 if old_action != 𝜋(𝑠) then policy-stable ← False

end

if policy_stable then

 return V ~ v*, and π~π*:

else

 go to Policy-Evaluation

end

Algorithm 1: Dynamic Programming - Policy Iteration

2.3.2 Value Iteration

This method avoids the application of policy evaluation during every iteration which is the

case at the previous algorithm. The frequencies of policy evaluation step application can

actually variate, while keeping the same convergence that is provided in the policy iteration

method. Specifically, when it is applied only one time at each state, the method is called

value iteration. It's based on the Bellman optimality equation (2.10) that is converted into an

update rule. Its update is very similar to the policy evaluation update, with the only

difference being that it is required that the maximum needs to be chosen for each action.

19

θ: a small number, π: a deterministic policy,

s.t π~π* , V ~ 𝑣 *

/* Initialization

Initialize V(s) arbitrarily, except V (terminal)

V(terminal) ← 0

/* Loop Until Convergence

Δ ← 0

while Δ < θ do

 for each s ∈ S do

 𝑣 ← V(s):

 V(s) ← 𝑚𝑎𝑥𝑎

∑ 𝑠′,𝑟′ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑉(𝑠′)]

 Δ ← 𝑚𝑎𝑥(Δ,|𝑣 — V(s)|)

 end

end

/* Return Optimal Policy

return π s.t. π(s) = ← arg 𝑚𝑎𝑥𝑎 ∑ 𝑠′,𝑟′ 𝑝(𝑠′, 𝑟|𝑠, 𝛼)[𝑟 + 𝛾𝑉(𝑠′)]

Algorithm 2: Dynamic Programming - Value Iteration

Theoretically, the algorithm ends when it converges to v* but practically, it does so when

there is not significant improvement between consecutive value functions.

2.3.3 General Policy Iteration

As previously seen in value iteration, the standard model of sequential interchange between

policy evaluation and policy improvement is not always necessary to achieve converging to

the optimal policy. The General Policy Iteration model represents that idea of alternating

between the two policy methods without following the basic model used in policy iteration.

Figure 2.2: Depiction of the back and forth between the policy iteration and policy evaluation of the

GPI’s approach

20

General policy iteration can be used to describe most of the RL approaches that are used

today, since they use value and policy functions that communicate in order to achieve

optimality. Specifically, the latter gets better and better in accordance to the value

function, while the first keeps approaching the policy's value function. Both become stable

once a greedy policy in regard to its evaluation function is achieved.

2.4. Monte Carlo Methods

As mentioned before, dynamic programming algorithms require complete knowledge of the

environment and the probability distributions of its transitions. The methods described in

this section try to approximate the exact solution using simulations. These follow an empiric

strategy based on experiences gathered by the agent when interacting with the

environment.

The Monte Carlo algorithm (MC) for evaluating a given policy estimates the value function at

every state by averaging the sample returns over various trajectories. In this method the

value of all the states visited in the episode is updated only when the episode ends. Based

οn whether only the first visit or all the visits to the same state during an episode are used to

calculate the average return, two algorithms with different theoretical properties are

obtained. It can be proved that both methods converge to the optimal solution as the

number of visits to all the states goes to infinity. The pseudo-code below corresponds to the

first visit MC.

Initialize

 π ← policy to evaluate

 V ← initialization of value function

 Returns(s) ← empty list, for all s∈S

Repeat:

 Generate an episode using π

 For each state S appearing in the episode:

 G ← sum rewards from first instance of state to end of episode

 Returns(s) ← append G

 V(s) ← average (Returns(s))

Algorithm 3: First visit MC method for policy evaluation

21

In this and the following algorithms the boolean variable is used to indicate whether or not

the episode has ended. The method can be easily modified to calculate 𝑞𝜋 instead of 𝑣𝜋.

However, these methods can only be used to evaluate a certain policy but not to find the

optimal one. One way to do so would be to update the policy as new information about the

value of every state and action comes in. This method is known in dynamic programming as

generalized policy iteration (GPI).

2.4.1 On-policy Monte Carlo

On policy methods attempt to guarantee that all regions in the state-action space are

sufficiently visited by initially deploying a more relaxed policy where the probability of

selecting any of the actions in a given state is greater than 0.

One such policy is called ϵ-greedy and the parameter ϵ stands for the chance of selecting a

random action as opposed to the greedy one. Hence, by combining this strategy with policy

evaluation and policy improvement shown in dynamic programming an algorithm that can

be shown to converge to the optimal solution is obtained.

Randomly Initialize: π

Initialize action value function: Q

Allocate memory: states, rewards, returns

repeat

 Sample initial state: s

 while not done do

 αmax ← maxα Q(s, α)

 α ← choose αmax or random a with probability ϵ and 1- ϵ

 s′, r done ← take step

 states, actions, rewards ← append s, a, r

 s ← s′

 end

 for each different s - a pair in states-actions do

 G ← sum rewards from first instance of state-action to end of

 episode

 returns(s, a) ← append G

 Q(s, α) ← average returns(s, α)

 end

end

Algorithm 4: On-policy ϵ-greedy MC method for control

22

2.4.2 Off-policy Monte Carlo

Although in the previous section soft policies where introduced to allow some environment

exploration instead of taking greedy action in every iteration, this had the consequence of

making the method learn from a policy that was not entirely optimal. We will now present a

different approach where two policies are used instead. The first one, known as behavior

policy, is meant to explore and add new experiences, while the other, the target policy, uses

the information provided by the first one to make improvements until converging to an

optimal strategy.

A key concept in off-policy algorithms is importance sampling. This is used to correct for the

fact that the data generated to update our target policy comes from a different distribution

returns of the target policy.

 𝑉(𝑠) =
∑ 𝑡∈𝑇(𝑠) 𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝑇(𝑠)∨
 (2.15)

, T(s) is the group of all the time steps in which state s has been visited. Equations 2.13 and

2.14 are the ordinary and weighted importance sampling estimators of V(S) respectively.

The 𝜌𝑡:𝑇 − 1 term is the importance sampling ratio which measures the relative probability

that a trajectory occurs when following target and behavior policies:

 𝜌𝑡:𝑇−1 =
∏ 𝑇−1

𝑘=𝑡 𝜋(𝐴𝑘∨𝑆𝑘)𝑝(𝑆𝑘+1∨𝑆𝑘,𝐴𝑘)

∏ 𝑇−1
𝑘=𝑡 𝑏(𝐴𝑘∨𝑆𝑘)𝑝(𝑆𝑘+1∨𝑆𝑘,𝐴𝑘)

= ∏ 𝑇−1
𝑘=𝑡

𝜋(𝐴𝑘∨𝑆𝑘)

𝑏(𝐴𝑘∨𝑆𝑘)
 (2.16)

23

Initialize target policy π

Define behavioral soft policy b Initialize action value function: C

Set G = 0, W = 1

Allocate memory: states, rewards, returns

repeat

 Sample initial state: s

 while not done do

 action ← choose an action following b

 s′, r, done ← take step

 states, actions, rewards ← append s, α, r

 s ← Q(s, α∗) s′

 end

 for each ⟨ s, α, r ⟩ tuple from terminal to initial state do

 G ← γG + r

 C(s, α) ← C(s, α) + W

 Q(s, α) ← Q(s, α) +
𝑊

𝐶(𝑠,𝑎)
 [G − Q(s, α)]

 π(s) ← arg maxa∗∈A Q(s, α∗)

 W ← 𝑊 𝜋(𝛼|𝑠)

𝑏(𝑎|𝑠)

 if W = 0 then

 break

 end

 end

end

Algorithm 5: Off-policy MC control method. Estimating optimal policy π ≈ π∗

Where W is a variable holding the importance sampling weights at every step of the episode

and C(St, At) is the cumulative sum of weights in each particular state-action pair.

The expression used for the action-value function update is equivalent to equation (2.15)

and allows to reestimate the expected return incrementally as new information comes in.

 𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) +
𝑊

𝐶(𝑆𝑡 ,𝐴𝑡)
[𝐺 − 𝑄(𝑆𝑡 , 𝐴𝑡)] (2.17)

2.5. Temporal Difference methods

Even though, as discussed in the previous section, Monte Carlo techniques are proved to

converge to the optimal solution they make inadequate use of the information and can

24

perform poorly in practice. The fact that each episode has to be concluded in order to use

the true sample return to make a change in our value function, can have a strong negative

impact especially in situations where episodes are long or even infinite.

In contrast, temporal difference learning methods, TD, base the updates on previous

estimations of the value function at subsequent states:

 𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)] (2.18)

Where 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1), instead of Gt, is used as the approximation of the expected return

at St. The TD learning alternative to algorithm 1 used for policy evaluation is outlined below

Define: policy π to evaluate

Initialize value function: V

repeat

 Sample initial state: s

 while not done do

 α ← choose an action following π

 s’, r, done ← take step ′

 V (s) ← V (s) + α [r + γV (s) - V (s)]

 s ← s′

 end

end

Algorithm 6 : TD learning for policy evaluation

The technique applied in algorithm 4 is known as bootstrapping and it allows performing

updates more frequently than the Monte Carlo methods while still converging to the optimal

solution. Practically, the efficient use of data and memory in TD learning methods normally

leads to faster learning. However, there is no mathematical proof supporting this empirical

fact yet.

Although the methods presented in this and the following sections are based solely on the

reward obtained after a single step, waiting a few more steps to do the update normally

leads to faster convergence. This is the idea used by n-step TD methods which intend to

combine the low bias high variance estimate of MC methods with the high bias low variance

25

1-step TD update. The value of St is updated after n steps using the intermediate rewards

and the current estimate of the return at St+n.

2.5.1 On-policy Temporal Difference: Sarsa

The on-policy version of TD control algorithms is known as Sarsa. As in Monte carlo method,

Generalized Policy Iteration is also applied to evaluate and improve the action choices but in

this case the value function update is done online and not at the end of every episode.

 𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡 , 𝐴𝑡)] (2.19)

At last, the objective is to get an approximation of the action-value function Q(s, a) at every

state action pair in order to be able to make decisions on what actions to take, by comparing

the expected returns in a particular state. Because this is an on policy method we need to

deploy soft policies in order to allow some exploration around the state-action space.

Algorithm 5 presents the Sarsa TD method for control with -greedy policy

Randomly initialize policy: π

Initialize action value function: Q

repeat

 Sample initial state: s

 αmax ← maxα Q(s, α)

 α ← choose αmax or random α with probability ϵ and 1- ϵ

 while not done do

 s′, r, done ← take step

 αmax ← maxα’ Q(s′, α′)

 α′ ← choose α′max or random a′ with probability ϵ and 1- ϵ

 Q(s, α) ← Q(s, α) + α [r + γQ(s′, α′) - Q(s, α)]

 s ← s′, α ← α′

 end

end

Algorithm 7: On-policy TD method for control, Sarsa

The algorithm above will certainly converge to the optimal policy if all the state- action pairs

are visited an unlimited number of times and at the same time, the soft policy gradually

becomes the greedy.

26

2.5.2 Off-policy Temporal Difference: Q-Learning

Q-learning appears as a simple but interesting off-policy variant of Sarsa. In this approach,

the value function is modified after a single step by making use of the immediate reward and

the current actual prediction of the greedy action in the new stage, which is:

 𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] (2.20)

In this method the policy being followed is not the same as the one used in the greedy policy

that updates the action value function. Even though it is labeled as an off-policy method, it

differentiates from the off-policy standard mentioned in 2.4.2, because the target and

behavioral policies are the same and the update is performed using the next state’s greedy

action. Therefore, the policy must be soft to ensure some exploration.

Randomly initialize policy: π

Initialize action value function: Q

repeat

 Sample initial state: s

 while not done do

 αmax ← maxα Q(s, α)

 α ← choose αmax or random α with probability ϵ and 1 - ϵ

 s′, r, done ← take step

 Q(s, α) ← Q(s, α) + α [r + γQ(s′, α′) - Q(s, α)]

 s ← s′

 end

end

Algorithm 8: TD off-policy method, Q-learning

The method works very well in practice and has been proved to converge considering that all

the state-action pairs are visited enough.

A straightforward strategy for achieving equilibrium between exploration and exploitation is

the Epsilon-Greedy algorithm that involves making exploration and exploitation decisions in

completely random order. The epsilon-greedy strategy, in which "epsilon" relates to the

27

likelihood of selecting to explore, exploits for the most of the time while leaving a short

window of opportunity to explore. When ε=1, it means exploration. A random number is

created at each step to ascertain whether the agent will choose to engage in exploration or

exploitation. If the random number is larger than e, the agent will decide to engage in

exploitation as his next course of action. In such a scenario, the agent will select from the q

table the action that has the greatest q value for the present condition. However, in the

opposite scenario, the agent will select his next action randomly.

 In general, exploration enables an agent to increase its existing knowledge about each

choice he makes, which will possibly benefit him in the long-term. By increasing the

precision of the anticipated action values, an agent will be able to make judgments in the

future that are more in line with the available data. Exploitation, on the other hand, selects

the course of the greedy-action that will result in the largest reward by taking into account

the agent's most recent action-value assessments. In this way, greedy action-value

estimations, might not lead to the highest reward but to a less ideal performance. During the

exploration process, the agent obtains estimations of action values that have higher

accuracy while during exploitation he has a chance of receiving greater rewards. The right

balance between exploring and exploiting is a significant challenge of the field.

2.5.3 The λ-Return

An intermediary method between TD and Monte Carlo is to use the n-step return as the TD

target. This samples experience from n interactions with the environment and bootstraps

the remainder with the discounted estimate of the n state’s value.

 𝐺𝑡:𝑡+𝑛 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ + 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑣̃(𝑠𝑡+𝑛) (2.21)

This bridges the TD and MC methods by reducing the prejudice that exists at TD. However,

taking the average returns of n-steps can be a better middle ground between the two

methods. That is exactly what the TD (λ) algorithm does, it summarizes the n-step updates

where each is weighted proportionally to λn-1 and normalized with (1 − λ) to make sure that

the sum of all the weights is 1. This return is known as the λ-return (2.22).

28

 𝐺𝑡
𝜆 = (1 − 𝜆) ∑  ∞

𝑛=1 𝜆𝑛−1𝐺𝑡:𝑡+𝑛 (2.22)

 When λ which ranges in the space [0,1] equals 1, the resulting method is Monte Carlo while

when λ = 0, it is 1-step TD. As the λ-return depends on late future rewards, a natural

approximation is the truncated λ-return:

 𝐺𝑡:𝑡+𝑘
𝜆 = (1 − 𝜆) ∑  𝑘−1

𝑛=1 𝜆𝑛−1𝐺𝑡:𝑡+𝑛 + 𝜆𝑘−1𝐺𝑡:𝑡+𝑘 (2.23)

 where the longest available k-step return 𝐺𝑡:𝑡+𝑘 is given a residual weight of 𝜆𝑘−1 . In order

to use the truncated λ-return, k steps of experience have to be sampled before the TD

update can be made. Most TD(λ) algorithms rely on the fact that (2.21) can be written as

 𝐺𝑡:𝑡+𝑘
𝜆 = 𝑣(𝑠𝑡) + ∑  𝑡+𝑘−1

𝑖=𝑡 (𝛾𝜆)𝑖−𝑡𝛿𝑖 (2.24)

With

 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑣(𝑠𝑡+1) − 𝑣(𝑠𝑡) (2.25)

The figure below depicts the TD(λ) algorithm and specifically how every n-step return is

constructed by a number of states, actions and a reward and at the same time, how they are

weighted.

Figure 2.3: Depiction of the innerworkings of the TD (λ) method

29

3. DEEP REINFORCEMENT LEARNING AND ALGORITHMS

The fact that separates Deep RL methods from classic reinforcement learning is the

utilization of deep artificial neural networks (ANN) that approximates the value functions

and also estimates the policy parameters. ANNs are non-linear, differentiable functions

which take a real-valued input x ∈ R m and give a real-valued output y ∈ R n :

f(x, w) = y, (3.1)

 , where w are the network weights. As f is differentiable it is possible to calculate the

gradient according to w for some loss function and use gradient descend to optimize the

network’s predictions.

An ANN's basic infrastructure is a network that is made up of numerous layers, each

consisting of several neurons. Prior to transmitting information to the next layer, a weighted

sum of all the outputs is computed by every neuron, which is then passed via an activation

function. Even more sophisticated structures exist which can be designed to gain mastery

over a particular task. Deep Learning is a thriving research topic that is nowadays at the

cutting edge of machine learning.

3.1 Stochastic Gradient Descent (SGD)

Before explaining the stochastic gradient descent method, it is important to describe

gradient descent which is the optimization technique it was based on. Both are very popular

methods in Machine Learning and constitute a base for plenty of algorithms.

30

A first-order iterative optimization process known as Gradient Descent is used to search for a

differentiable function's local minimum value. It is an iterative process that begins at a

random point on a function and works its way down the slope of that function in stages until

it reaches the lowest point. This is done to discover the values that reduce the cost function

as much as feasible. The update to the parameters is:

 𝜃 = 𝜃 − 𝜂 ∗ 𝛻𝜃𝐽(𝜃) (3.3)

The parameters of a model are used in order to parameterize the objective function J(θ).

The value of θ is brought down to its smallest possible value, by performing an update on its

parameters in the antipodes of the gradient of the objective function ∇θJ(θ) [40]. The

degree of progress that must be made to attain a (local) minimum is proportional to the

learning rate η.

When used in big datasets, batch gradient descent might result in repetitive calculations

because before the change of each parameter, it recalculates gradients for similar situations.

SGD eliminates the need for this duplication by only requiring a single update at any given

moment.

 𝜃 = 𝜃 − 𝜂 ∗ 𝛻𝜃𝐽(𝜃, 𝑥(𝑖), 𝑦(𝑖)) (3.2)

Consequently, it can be considerably faster and in addition, it might be used to learn online

(a type of learning where at each time step, the greatest predictor is updated based on data

that become accessible sequentially and is used to update the best predictor for future data

during every step). The regular updates with large variance that SGD uses, tend to cause

significant shifts in the objective function. SGD's unpredictable nature allows it to explore

new and maybe superior local minima but can also to destabilize existing ones because since

SGD will continue to veer off course, convergence to the actual minimum might be

hampered [40] [41]. All in all, it has been shown that SGD exhibits the same characteristic of

convergence as batch gradient descent when the learning rate is progressively decreased.

Accordingly, this results in an almost certain achievement of either global or local minimum

for non-convex and convex functions correspondingly.

31

3.2 Policy Gradient

Figure 3.1: Categorization of the different RL algorithms

In the technique known as the value-function approach, all of the work put into

approximating a function is put into forecasting a value function, and the action-selection

policy is expressed explicitly as the "greedy" policy about the estimated values. In policy

gradients, instead of estimating a value function and then utilizing it to calculate a

deterministic policy, a stochastic policy is directly determined by employing an independent

function approximator that has its own parameters. It is possible to model the policy using a

neural network that receives state representations, outputs action selection probabilities,

and policy parameters as its weights. After that, the policy parameters are adjusted

proportionally to the gradient:

 ∆θ ≈ α ∂ρ ∂θ (3.4)

The parameter ρ measures the performance of the policy using the policy variables

embedded in vector θ and α represents one positive-definite step during the policy

implementation [38]. Given the fact that the stated goals are met, θ could typically be

capable of guarantying that the performance measure will eventually converge to a local

32

optimum policy. In contrast to the value-function method, in this technique minor

adjustments in θ will not create serious changes to the policy and to the frequency of visiting

a state. For any differentiable policy πθ the policy gradient is:

 𝛻𝜃𝐽(𝜃) = 𝐸𝜏[∑ 𝑇−1
𝑡=0 𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑄𝑤(𝑠𝑡, 𝑎𝑡)] (3.5)

In any regard, it is of great importance that the influence of policy shifts does not

affect the distribution of states [39]. This makes the sampling process to get an

approximation of the gradient quite easy. Additionally, Qπ(s,a) is not often known and must

be calculated. One strategy is to utilize the actual returns, Rτ as an estimate for each Qπ

(st,αt), as is seen in the following equation:

 𝛻𝜃𝐽(𝜃) = 𝐸𝜏∼𝜋𝜃(𝜏)[𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝜏)𝑅(𝜏)] (3.6)

3.3 Actor-Critic Methods

Actor-Critic techniques are a kind of TD learning that is always on policy and combines the

two distinct forms of Reinforcement Learning algorithms, policy-based and value-based, into

a single framework. For this purpose, they have an individual memory structure that clearly

represents their policy independent of the value function. As a result of its role in selecting

acts and returning a probability distribution across the possible outcomes, the policy

structure is referred to as "the actor." The critic is the name given to the estimated value

function which is responsible for calculating the anticipated return for the agent. This is done

by analyzing the agent's actions based on the current policy during a particular state [46]. In

other words, the actor revises the policy distribution in the same general direction that the

critic suggests (such as with policy gradients).

33

Figure 3.2: Depiction of the basic process in actor-critic methods with TD evaluation

Many actor-critic methods make use of the Advantage function, which approximates what

the relative value of the selected action is at that stage. It is basically the subtraction of the

baseline estimate from the discounted rewards, where the baseline estimate is the value

function that tries to give an estimate of the final reward, at the end of the episode starting

from the current one. The value keeps updating itself like a supervised problem. Simply put,

the advantage estimate indicates if the action that the agent did had or worse results than

expected. So if the advantage function is positive, which means the action that was taken

was better than expected, the probability of choosing it again when being in the same state

is increased.

 𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) (3.7)

There is more than one method that can be used to compute the advantage estimate which

can be one of the bellow:

 𝐴𝜑(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) − 𝑉𝜑(𝑠) (3.8)

 𝐴(𝑠, 𝑎) = 𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠) (3.9)

34

 𝐴𝜑(𝑠, 𝑎) = ∑ 𝑛−1
𝑘=0 𝛾𝑘𝑟𝑡+𝑘+1 + 𝛾𝑛𝑉𝜑(𝑠𝑡+𝑛+1) − 𝑉𝜑(𝑠𝑡) (3.10)

, with the first (3.8) being the Monte Carlo advantage estimate in which the actual return

takes over the role of the Q-value of each action, the second (3.9) which is the TD advantage

estimate and the third (3.10) which is the n-step advantage estimate [47].

3.3.1 Advantage Actor Critic (A2C)

The Advantage Actor Critic approach (A2C), is a synchronous, deterministic implementation

that serves as an option for the asynchronous policy gradient version of A3C. Thru testing,

OpenAI researchers concluded that it performs better and is less cost effective.

Figure 3.3: Depiction of the difference between the A3C asynchronous and the A2C synchronous

algorithm

 This method waits for each actor to complete their portion of the experience before it

updates, and it takes an average across all of the actors [49]. The objective function that

uses the n-step advantage is shown below:

 𝛻𝜃𝐽(𝜋𝜃) = 𝐸
𝜏∼𝜋𝜃

[∑ 𝑇
𝑡=0 𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝐴𝜋𝜃(𝑠𝑡, 𝑎𝑡)] (3.11)

 𝛻𝜃𝐽(𝜃) = 𝐸𝑠𝑡∼𝜌𝜋,𝑎𝑡∼𝜋𝜃
[𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑠𝑡, 𝑎𝑡) (∑ 𝑛−1

𝑘=0 𝛾𝑘𝑟𝑡+𝑘+1 + 𝛾𝑛𝑉𝜑(𝑠𝑡+𝑛+1) − 𝑉𝜑 (𝑠𝑡))]

 (3.12)

35

Assume global shared parameter vectors 𝜃 and 𝜃𝜐

Initialize thread step counter 𝑡 ←1

Initialize episode counter 𝐸 ←1

repeat

 Reset gradients: 𝑑𝜃← 0 and 𝑑𝜃𝜐 ← 0

 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡

 Get state 𝑠𝑡

 repeat

 Perform 𝑎𝑡 according to policy 𝜋(𝛼𝑡| 𝑠𝑡 , 𝜃)

 Receive reward 𝑟𝑡 and new state 𝑠𝑡+1

 𝑡 ← 𝑡 + 1

 until terminal 𝑠𝑡 or 𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 == 𝑡𝑚𝑎𝑥

 for 𝑖 ∈ { 𝑡 − 1, … . , 𝑡𝑠𝑡𝑎𝑟𝑡} do

 𝑅← 𝑟𝑖 + 𝛾𝑉𝜃𝜐
′ (𝑠𝑡)

 Accumulate gradients 𝑑𝜃 ← 𝑑𝜃 + 𝛻𝜃′𝑙𝑜𝑔 𝜋𝜃′(𝑠𝑡 , 𝑎𝑡)(∑ 𝛾𝑘𝑟𝑡+𝑘+1 + 𝛾𝑛𝑉 (𝑠𝑡+𝑛+1) − 𝛾𝑉𝜃𝜐
′ (𝑠𝑡)𝑛−1

𝑘=0)

 Accumulate gradients 𝑑𝜃𝜐 ← 𝑑𝜃𝜐 + (𝑅 − 𝑉𝜃𝜐
′ (𝑠𝑖))(𝑑𝑉𝜃𝜐

′ (𝑠𝑖)/𝑑𝜃𝜐)

 end for

 Update of 𝜃, 𝜃𝜐

 𝐸 ← 𝐸 + 1

until 𝐸 > 𝐸𝑚𝑎𝑥

Algorithm 9: Advantage Actor-Critic (A2C)

Within the domain of this technique, the term "expectation" (abbreviated as E) refers to the

empirical average calculated from a finite batch of samples. The approach combines

sampling and optimization in alternating steps.

 𝐿𝑃𝐺(𝜃) = 𝐸𝑡[𝑙𝑜𝑔 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝑡] (3.13)

.

Although it may seem like a good idea to execute many stages of optimization for the

loss function (3.13) while using the same trajectories, doing so is not well justified, and

practical evidence shows that it often results in big policy changes that can be very damaging

to the performance of the algorithm [49].

36

3.3.2 Trust Region Policy Optimization

Although a simple policy gradient might work, it doesn’t always give promising results. If a

gradient descent keeps running on one batch of collective experience(on policy trait), the

network's variables are then changed to such a great extent that they fall outside of the

range in which these data were gathered; consequently, the advantage function will be

utterly inaccurate, and the policy will be of no utility. This actor-critic method was derived in

order to minimize the possibility of a false policy by using a vanilla policy gradient that takes

advantage of Kullback–Leibler (KL) divergence as a constraint. The only other difference from

a classic policy gradient method is that the 𝑙𝑜𝑔 function is replaced with the policy ratio.

These traits assure that there cannot be an extended difference between the old and the

new policy [52] [53]. Thus the new algorithm is:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝜃
= 𝐸𝑡 [

𝜋𝜃(𝑎𝑡∨𝑠𝑡)

𝜋𝜃old
(𝑎𝑡∨𝑠𝑡)

𝐴𝑡]

 (3.14)

 subject to 𝐸𝑡 [𝐾𝐿[𝜋𝜃old
(⋅∨ 𝑠𝑡), 𝜋𝜃(⋅∨ 𝑠𝑡)]] ≤ 𝛿. (3.15)

The KL-divergence or relative entropy ensures that a new policy cannot be very different

from the current one. This is a statistical distance that measures how one probability

distribution is different from a second. A simple interpretation of the divergence of 𝜋𝜃old

from 𝜋𝜃 is the expected excess surprise from using the second as a model when the actual

distribution is 𝜋𝜃old
 [51].The loss function can be expressed as is in (3.17) where 𝑟𝑡(𝜃) is the

probability ratio.

 𝑟𝑡(𝜃) =
𝜋𝜌(𝑎𝑡|𝑠𝑡)

𝜋𝜃old
(𝑎𝑡|𝑠𝑡)

 (3.16)

 𝐿𝐶𝑃𝐼(𝜃) = 𝐸𝑡 [
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃old
(𝑎𝑡|𝑠𝑡)

) 𝐴𝑡] = 𝐸𝑡[𝑟𝑡(𝜃)𝐴𝑡] (3.17)

3.3.3 Proximal Policy Optimization

The PPO algorithm is the evolution of the TRPO and is a more stable version that is easier to

implement and at the same time has similar or even better performance. The existence of

the constraint in TRPO, KL-divergence often disturbs the optimization of the algorithm and

may result in unwanted behavior patterns during learning [55]. The PPO algorithm while

37

being based on TRPO, manages to satisfy the same effect (old policy closer to the updated

one) without using a separate constraint. The PPO objective function is:

 𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)] (3.18)

Where 𝜖 is a hyperparameter that usually equals 0,2. The term, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 +

𝜖)𝐴𝑡, limits the probability ratio inside the space of [1 − 𝜖, 1 + 𝜖] whenever it becomes

much bigger or smaller in comparison to its previous rate. At the end, the goal is a lower

constraint on the unclipped objective given the least of the clipped and unclipped objectives.

Figure 3.4: Clipping of the PPO loss function with limitation based on the advantage function.

For instance, in the left diagram where the actions yielded greater than expected return

(A>0), if the return (r) gets too high at an instance, the advantage is flattened and as a result,

the objective function gets limited to restrict the gradient update's influence. The most

common implementation of PPO is via summing the already calculated loss function with

two more as depicted below.

 𝐿𝑡
𝑃𝑃𝑂(𝜃) = 𝐸𝑡[𝐿𝑡

𝐶𝐿𝐼𝑃(𝜃) − 𝑐1𝐿𝑡
𝑉𝐹(𝜃) + 𝑐2𝑆[𝜋𝜃](𝑠𝑡)] (3.19)

, the 𝑐1𝐿𝑡
𝑉𝐹(𝜃) term is the value estimation network that estimates the average amount of

discounted rewards that are expected to be received [54] [56]. A big part of the value

network is shared with the policy network. The last term, 𝑐2𝑆[𝜋𝜃](𝑠𝑡) is the entropy which is

in charge of ensuring that the agent does enough exploring during training as it is a measure

38

of how unpredictable an outcome of this variable actually is. The higher the entropy, the

higher the exploration and thus the random pick of actions. The c1 and c2 are

hypermarameters of the two extra terms

Input: initialize policy parameters 𝜃0, clipping threshold ε

for 𝑘 = 0, 1, 2, . .. do

 Collect set of partial trajectories 𝐷𝐾 on policy 𝜋𝜅 = 𝜋(𝜃𝜅)

 Estimate advantages 𝐴𝑡̂ 𝜋𝜅 using any advantage estimation algorithm

 Compute policy update

 𝜃𝜅+1= arg max
𝜃

𝐿𝜃𝜅

𝐶𝐿𝐼𝑃(𝜃)

 by taking K steps of mini-batch SGD (via Adam), where

 𝐿𝜃𝜅

𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝜏~𝜋𝜅
[∑ 𝛵

𝑡=0 [𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡̂ 𝜋𝜅
 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡̂ 𝜋𝜅)]]

end for

Algorithm 10: PPO with Clipped Objective

Bellow the implementation of PPO based on actor critic methods is presented where T timesteps are

collected by N actors in mini-batches of size M.

for iteration=1, 2, . . . do

 for actor=1, 2, . . . , N do

 Run policy πθold in environment for T timesteps

 Compute advantage estimates A1, . . . , AT

 end for

 Optimize surrogate L wrt θ, with K epochs and mini-batch size M ≤ NT

 𝜃𝑜𝑙𝑑 ← 𝜃

end for

Algorithm 11: Proximal Policy Optimization – Actor Critic edition

3.4 Convolutional Neural Networks (CNN)

The utilization of picture and audio signals as input makes the use of CNNs ideal. All the

images used as an input, are represented by a 3 dimension tensor that includes the height,

the width, and the color channels (RGB image).

39

3.4.1 Structure

CNN generally made up of three different layers, referred to as the convolution, the pooling

and also the fully connected layers. The sophistication of the CNN rises with each layer,

allowing it to recognize more of the picture characteristics as it progresses. The first one may

be followed by any number of further convolutional layers or pooling layers, and then

feature extraction can be carried out. The fully connected layer is the last of the structure

and is responsible for mapping the characteristics extracted into the final output, for

instance, classification [42].

Figure 3.5: Depiction of Convolution Neural Network

The convolution layer is a specific kind of linear operation that is used for feature extraction.

During this kind of process, a little range of integers known as kernels is employed from

across input, which is another sequence of digits known as a tensor. This application's

output, known as the feature map, is derived by performing a summary of the numbers at

each position of the tensor in accordance with the kernel. This technique is carried out

several times, with various kernels being applied each time. A random number of feature

maps, each representing a particular part of the input tensors, are formed due through this

process. Therefore, it is possible to consider the different kernels as the various feature

extractors whose size and number are necessary hyperparameters. Following this, nonlinear

activation is applied, usually utilizing ReLU algorithm, to the outputs of convolution after the

linear process. This algorithm gives the neural network the ability to take in non-linear

interactions and thus when applied to a given matrix, ReLU makes all negative values equal

to zero while maintaining the other values at their original rate. Its formula is presented

below:

40

 g(z) = max{0, z} (3.20)

A common downsampling technique is provided by a Pooling layer, which decreases the in-

plane dimensionality of the feature maps. This happens for two reasons. The first is to create

a translation invariance on small changes and deformities which actually means that an

object could be recognized even if its appearance on the image slightly changes. For

instance, the ability to identify a face shown vertically, horizontally, with more or less light.

The second is to restrict the number of variables that can be learned in the future. It is

essential to take note that not a single one of the pooling layers has a variable that may be

learned. However, during the pooling procedures, the filter-size along with stride and

padding, are all examples of hyperparameters that are utilized. The max-pooling operation is

by far the most common kind of pooling operation. This form of pooling, takes patches from

the feature maps, returns the ones with the largest values, and throws away the remaining

ones.

It is common practice to flatten the output features extracted from the final convolution or

pooling layer and link them to one or more fully-connected layers (dense layers). Inside

these layers, every input is linked to output by applying a learnable weight. Finally, an

activation function is employed to the last of those layers. This function is not the same as

the previous ones and its selection must be based on the specific requirements of each

activity. Sigmoid, Softmax, and Identity are some of the most common options for the

activation function of the last layer

3.4.2 Optimizers

The procedure of optimizing the parameters is carried out in order to reduce, as much as

possible, the gap between the model's outputs and the ground truth labels. Algorithms and

methodologies known as optimizers modify the neural network's attributes, such as its

inputs and learning rate, in a way that lowers the network's overall function and minimizes

losses [43]. A significant percentage of them, such as RMSprop and Adam which are two of

the most popular for NN implementation, is based on gradient descent.

41

The RMSprop method is a gradient-based optimization strategy that is used in the training of

neural networks. Geoff Hinton is the one who came up with the idea for this adaptive

learning rate approach which has not been published yet. It is common for the gradients of

very complicated functions, such as neural networks, to either, disappear entirely or explode

as the data moves through the function. RMSprop is a stochastic learning algorithm designed

specifically for use with mini-batch data.

The problem as mentioned above is addressed by the RMSprop algorithm, which normalizes

the gradient by calculating a moving average of squared gradients. This normalization brings

the step size (momentum) into balance by reducing it when the gradient is big enough and

increasing it when it gets too little [43] [45]. The following constructs are used to generate

the RMSprop update vector:

 𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2𝜃𝑡+1 = 𝜃𝑡 −

𝜂

√𝐸[𝑔2]𝑡+𝜖
𝑔𝑡 (3.21)

It uses an exponentially declining average of squared gradients to divide the learning rate

rather than considering it as a hyper-parameter. Hinton recommends that γ should be set to

0.9 and that 0.001 would be an appropriate default number for the learning rate.

One equally or more significant optimization method for determining the adaptive learning

rate of each variable is Adaptive Moment Estimation (Adam). Not only does Adam keeps an

exponentially decaying average of previous gradients like SGD with momentum 𝑚𝑡, but also

an exponentially decaying average of previous gradients 𝑣𝑡 like RMSprop:

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

 (3.22)

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (3.23)

𝑚𝑡 and 𝑣𝑡 are estimates of the first two instances of each gradient correspondingly. In other

words, an exponential moving average of 𝑔𝑡 and 𝑔𝑡
2 is estimated and the decay rates of the

moving averages are determined by the variables 𝛽1 and 𝛽2. It has been noticed that since

𝑚𝑡 and 𝑣𝑡 are both starting as vectors of zeros, they have a bias toward it, particularly at the

42

first time steps and especially in situations when the decay rates are on the lower end [43]

[44]. By producing approximations of the first and second bias-corrected moments they

manage to lessen the impact of those biases. The Adam update rule is:

 𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√𝑣

𝑡+𝜖

𝑚

𝑡 (3.24)

The authors recommend the following settings for the default parameters: 0.9 for β1, 0.999

for β2, and 10-8 for ε. Actual evidence is provided supporting that this optimizer can actually

be effective and perform in the same range as other adaptive learning technique algorithms.

43

4. APPLICATION TO STREETFIGHTER II

4.1 Introduction to Streetfighter II

Figure 4.1: Streetfighter II Special Champion Edition for Sega-Genesis console

The Streetfighter II arcade fighting game was first made available in the year 1991 and is the

sequel to the original game developed by Capcom [58]. It is mostly known for its well-known

two player option, which demands players to compete against one another in a head-to-

head setting, which kept the arcade video game industry alive which was in decline at that

moment. With the release of Street Fighter II, the competitive dynamic in arcades evolved

from just achieving high scores to beating other human contestants. It is regarded as one of

the finest video games ever made, but it is also regarded as one of the most important

fighting games that have ever been developed.

44

4.1.1 Game Mechanics

The player faces off against other players in one-on-one combat scenarios in a series of

encounters where they compete to win two out of three games[60]. This video game offers

a cast of eight different characters that the player may control. Each fighter has to face off

against seven other key fighters in the single-player tournament, which is the format that

will be employed for this dissertation. After that, the player has to face off against the Grand

Masters, a set of four opponents which cannot be used by the player. Each game aims to

reduce the opponent's vitality as quickly as possible before the timer expires. If both

combatants have the same level of health remaining, this results in a "double KO," also

known as a "draw game," and the contest continues until sudden death. A match may go for

as many as four rounds. In the event that the conclusion of the last stage does not reveal a

clear victor, the computer-controlled opponent will win by default in the single-player mode.

In the same mode of the game, a bonus stage is unlocked after every third match that

awards extra points. These bonus stages include a barrel-breaking stage, car-breaking stage,

and drum-breaking stage. A global map is used to choose the next match site between each

match.

4.1.2 Controls

The controls consist of a joystick with eight direction keys and either six or three attack

buttons (which actually give access to six moves when the start button is pressed) [59]. By

using the joystick that controls the movements, the fighter is able to move left and right,

block, jump and crouch. There are three different punching power levels and three different

kicking power levels, ranging from light to medium to heavy, on each button. Each type of

move is useful under different situations in regards to the speed of the attack and the

distance from the enemy.

45

Figure 4.2: Controls for the Streetfighter II in Sega Genesis console

In every accessible position of the game, the fighter is able to conduct a range of basic

moves, including grasping and throwing assaults. Combos have a higher impact on the

player's overall performance and are accomplished by combining directional and button-

based inputs. Special moves are performed by combining these two types of inputs and do

more damage than the basic attack moves. Moreover, each fighter has his own “close

attacks” and “special moves” that can be implemented by using a combo of moves under the

right circumstances. The first category of attacks can only be accessed when the two fighters

are right next to each other and consists of throws and holds while the second has no

specific constraints.

4.2 Game and Environment Error! Bookmark not defined.

The programming language used for the experimenting of the algorithms used in this thesis

for the StreetfighterII environment is Python and the code was implemented using Jupyter

notebook. Additionally, Pytorch and Stable-baselines 3 were used for the application of the

algorithms.

46

4.2.1 Gym Retro

OpenAI’s Gym is a Python toolkit that provides a natural cross platform and emulator

compatibility for the purpose of performing RL agents that function inside the provided

environments of different video games [64], [65]. Currently, there are thousands of games

available to use with Gym Retro. Anyone can use the integration tool, which helps to locate

memory addresses of game state variables such as score, to incorporate new ROMs into the

library. The idea that Gym establishes an interface, which all of the agents and environments

are required to comply with, is one of the system's many significant advantages.

Consequently, the execution of an agent is not reliant on its surroundings and vice versa.

Because the consistent interface will ensure that the dataset the agent obtains is virtually

precisely the same in each context, it will be easier to compare and contrast the results of

different environments. It is not necessary to make significant adjustments to an agent in

order for it to function well in diverse settings. Because of this consistency, it is easier to

compare one agent's efficiency under varying settings and the performance of many agents

under the same conditions.

4.2.2 Game environment

Two different methods are described by the Gym interface. The first one is reset, which

brings the environment to a new starting point and outputs the original observation. The use

of this function is needed for the initiation of the next episode given the fact that the

previous one has ended [65]. The second is step, which is a function that takes action as an

input and returns the next observation (environment’s state) in addition to the reward that

comes from carrying out the action.

The action space, the observation space, and the reward function of the environment have

to be specified. In the case of Streetfighter II, the action space is Multi-binary(12), which

means that the discrete actions are interpreted as a binary sequence of numbers that can be

accessed thru 12 buttons (8 for movement, 3 for attacks, 1 for changing between punches

and kicks). As a result, during each time step, there is a massive number of usable button

combinations that correspond to 12! = 480000. However, using the ‘retro.Actions.Filtered’

47

command provided by Gym, only the applicable combinations are accessible preventing the

training from unwanted behavior.

The observation space is Box [(200, 256, 3), uint8], which is interpreted as an 8-bit image

with dimensions 200x256 that uses 3 RGB colors. To achieve faster training times, the

preprocessing that has been implemented makes changes to the observation in three

different ways. Firstly, the RGB images are subjected to greyscaling and then reframed from

(200, 256, 3) to (84, 84, 1). Finally, instead of using as input the whole image, the

frame_delta uses only the pixels of the image that have been subjected to changes between

each time step.

4.3 Reward function

To find out the best way the agent can be trained, 3 different reward signals have been

implemented. All three, use as input the information that is derived from the environment

during each step. The information includes: ‘enemy_matches_won’, ‘matches_won’,

‘enemy_health’, ‘health’, ‘score’ and ‘continue_timer’.

The parameter which includes the most data for each step is the score and is utilized for the

two out of three rewards. For every fight, the player gets score points every time he inflicts

damage to the opponent and every time he wins a fight. However, numerous factors

influence the number of score points at every instance they are awarded.

Specifically, more powerful attacks and better combos lead to even higher score points per

move while if they are implemented during the end of the game. After each match that has

been won, bonus points are given based on the time that is left on the game, the amount of

the player’s health that has been depleted along with the number of levels cleared. Every

time a new fight begins, the player initially has zero points.

During the first tests, the simplest possible reward function was used for the training of each

action. In this way, the agent only gets only positive rewards equal to the score of each time

step and thus does not base his learning on his mistakes.

48

Figure 4.3: Reward Signal 1

Apparently, this signal does not allow the agent to develop any defense mechanism since no

negative rewards are given to the agent. Based on that idea a new reward signal was formed

that emphasizes on the health of each player (‘enemy_health’, ‘health’) and does not take

into account the ‘score’, which lacks information regarding the absorbing damage of the

agent. In this way, positive rewards can be given for damage inflicted to the opponent and

negative for the absorbed both providing equal high values. Additionally, a constant positive

reward is given to the agent every time he wins a fight and a negative equal every time that

he loses. Both of those rewards given at the end of each episode are significantly higher than

those accumulated during the fight, in order to highlight the significance of actually winning

the fight, a trait that also exists in the first reward function and is encoded in 'score'. This

specific number is the maximum penalty or reward the agent can get during a fight

Figure 4.4: Reward signal 2

Lastly, a third reward function was used that was based on both previous rewards. While the

score function is used for positive rewards given during the fight and at the end of it,

negative rewards equal to the absorbed damage multiplied by 10 every time the agent gets

hit. In this way there is no lack of information regarding the positive values awarded and at

49

the same time the penalties are also taken into account to transform a more complete

reward. More than that, every time a fight between the agent and a new opponent

concludes, the rewards given during the next fight are increased by 10%. In this way, the

least amount of in game event information is lost while the agent is punished for losing life

points and losing each game.

Figure 4.5: Reward signal 3

4.4 Algorithms Implementation

Firstly the loss functions of each algorithm are presented according to the stable baselines

default implementation [60], [61], [62].

50

𝐿
𝜋(𝜃) = −[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡̂ 𝜋𝜅

, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡̂)]

𝐿
𝑣(𝜃) = (𝑅𝑡 − 𝑉(𝑠𝑡))2

𝐿
𝑠(𝜃) = − 𝑙𝑜𝑔 𝑃𝜃(𝑎𝑡|𝑠𝑡)

𝐿
𝐹(𝜃) = 𝐸𝑡[𝐿

𝜋(𝜃) + 𝑐1𝐿
𝑣(𝜃) − 𝑐2𝐿

𝑠(𝜃)]

Table 4.1: PPO loss functions shaped in the Stable Baselines Implementation

As observed bellow the only difference between the loss functions of each algorithm is the

policy loss which in PPO uses a probability ratio 𝑟𝑡(𝜃) instead of the log function and also

makes use of the clipping effect which was discussed in chapter 3

𝐿𝜋(𝜃) = −[log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝑡]

𝐿
𝑣(𝜃) = (𝑅𝑡 − 𝑉(𝑠𝑡))

2

𝐿
𝑠(𝜃) = − 𝑙𝑜𝑔 𝑃𝜃(𝑎𝑡|𝑠𝑡)

𝐿
𝐹(𝜃) = 𝐸𝑡[𝐿

𝜋(𝜃) + 𝑐1𝐿
𝑣(𝜃) − 𝑐2𝐿

𝑠(𝜃)]

Table 4.2: A2C loss functions shaped in the Stable Baselines Implementation

However, there are some other differences that take place during training of the two

algorithms. Firstly, the PPO uses normalization of its advantage which even though it could

enhance the algorithm’s execution, it could also cause significant information loss, regarding

the significance of specific actions. Moreover, it does multiple gradient updates on mini-

batches of the rollout data equal to 64. In contrast, only one gradient update is done in A2C

on the whole batch of rollout data [26].

51

The algorithms PPO and A2C that were analyzed in chapter 3 were trained using the

proposed hyperparameters by Stable Baselines [56], [66].

PPO

Hyperparameters
Parameter Values

n_steps 2048

learning_rate 0.0003

gae_lambda 0.95

gamma 0.99

clip_range 0.2

ent_coef 0

vf_coef 0.5

max_grad_norm 0.5

Table 4.3: Default Hyperparameters of PPO and A2C

Moreover, both of the algorithms were trained using the CNN policy that was chosen since it

promises the best results when video and images are used as input. However, for the

training of the A2C algorithm, 2 variants of that policy were implemented. The first one

made use of Adam optimizer for the CNN policy while the used a custom variant of the

RMSprop optimizer proposed by Stable Baselines[26], which is not included in Pytorch and is

called RmspropTFLike. It has been reported to achieve better results when combined with

the CNN policy, closer to the ones of PPO [66].

The CNN policy term stands for the class that controls all the networks used in the training

process and not only the network used to predict actions [68], meaning that it is used for

both policy and value prediction. The default shared CNN used in Stable Baselines is the one

proposed in [67]. Its architecture consists of three convolutional layers. The first has input

channels equal to 4, output channels to 32, kernel size to 8 and moving stride to 4. The next

2 layers following have output channels equal to 64 each, with strides 2 and 1 and kernel

size 4 and 3 correspondingly. The hidden layers dimensionality is 512 [68], [69] .

A2C

Hyperparameters
Parameter Values

n_steps 5

learning_rate 0.0007

gae_lambda 1

gamma 0.99

rms_prop_eps 0.00001

ent_coef 0

vf_coef 0.5

max_grad_norm 0.5

52

Figure 4.6: CNN used in A2C and PPO algorithms

4.5 Evaluation

Every algorithm was trained for 10 million steps and saved in batches of 10.000 time steps.

The evaluation process of the agent’s behavior includes quantitative and qualitative metrics.

The first consists of diagrams taken from Tensorboard regarding the mean reward and

episode length while also training diagrams like the entropy and value loss.

The mean reward of the models trained under different reward functions is not comparable

and the mean episode length is not always indicative of progress since an agent can play

more matches but beat less enemies. For instance, a model that has beaten three enemies

may have played 9 games while another that has beaten four enemies could have only

played 8 games if does not lose any game through the process. For that exact reason, after

the different algorithms have been compared for every reward, the qualitative evaluation

takes place, by inspecting renders of in-game progress. Specifically, the performance of the

best algorithms is tested through 10 episodes and evaluated by calculating how many

enemies are defeated during every episode.

53

5. RESULTS AND DISCUSSION

In this chapter the results of the training using PPO and A2C algorithms in the Streetfighter II

environment are presented and compared using diagrams from Tensorboard. Each

algorithm’s training session needed around 10 hours to complete on a computer that

consists of the following specifications.

GPU GTX 1060 3GB VRAM

CPU INTEL i5-4460 3.20GH

RAM 16GB DDR3

ROM SSD 850 EVO

Table 5.1: Computer Spicifications

5.1. PPO RESULTS

Firstly the performance and training results of the PPO algorithm using the three different

rewards and the default hyperparameters proposed by Stable Baselines are depicted

through Tensorboard plots. Before analyzing the training diagrams of the PPO algorithm

different models, it is important to understand the meaning of the metrics.

The value-loss parameter is the mean loss of the value function update. In other words, it

shows if the capability the model has to successfully predict each state’s value. During the

training, there metric should be increasing for some time while the agent is still learning and

thereafter keep decreasing until it stabilizes. Ideally, the line graph should show an upwards

trend as the reward is increasing and by the time it stabilizes, should decrease and become

constant near zero. The explained variance metric, estimates the percentage of the variance

of the predictions made by each model. Practically, it is the difference between the expected

54

value and the predicted value that indicates how efficiently the value network can predict

the future reward. It should become as high as possible until it stabilizes. The entropy

indicates the randomness of the model’s decisions and for efficient training, it should slowly

but constantly follow a downwards trend. However, proper tuning is required when it

decreases fastly or remains the same. In the first case, the actions are chosen randomly from

a subset of actions while in the second, the same actions are chosen repeatedly. The policy

gradient loss is indicative of the changes that happen in policy and should oscillate until

decreasing as the learning progresses.

Table 5.2: Training diagrams of PPO including the entropy loss, the value loss, the explained variance

and the policy loss. The training data of the algorithm trained with the first reward function is

depicted by the red line, the second by the pink and the third by the green one.

55

Table 5.3: Mean Reward and Mean Episode Length using PPO algorithm and reward 1

Table 5.4: Mean Reward and Mean Episode Length using PPO algorithm and reward 2

56

Table 5.5: Mean Reward and Mean Episode Length using PPO algorithm and reward 3

As discussed in paragraph 4.5, comparing directly the results of these algorithms is pointless

since the rewards are different. The results of the model trained with reward 1 are

controversial since they show good performance but inefficient training. The mean reward

shows a constant rise and the mean episode length also follows the same trend while also

being the highest of the models presented. However, the value loss instead of decreasing as

the reward increases, it keeps surging. More than that, the entropy shows an early decline

while the policy loss and the explained variance have plateaued near 0. It is thus

comprehended that the model is unable to successfully predict the next rewards and at the

same time it does not sufficiently explore different actions. The models trained with rewards

2 and 3 seem to play for significantly less time even though their training is smoother and

more in line with the behavior that is preferred. However, unless the results are compared

to the A2C ones and the in-game behavior inspected, we cannot be sure of the models'

performance.

57

5.2. A2C Results

In this section, the same reward functions are tested using A2C algorithm and CNN policy

that either uses Adam or Rms optimizer. In the first part, the algorithm is trained using the

Adam optimizer for the actor-critic policy, while at the second; a custom RMS optimizer

suggested by stable-baselines is used, called RMSpropTFLike. For continence the A2C model

that used Adam optimizer for its policy network is referred to as ‘A2C.1’ while the one that

used Rms is referred to as ‘A2C.2’.

Table 5.6: Training diagrams of entropy loss, value loss and explained variance for the A2C.1 models.

The training data for the reward 1 model is depicted by the blue line, for the reward 2 by the grey

and for the reward 3 by the orange

58

Table 5.7: Training diagrams of entropy loss, value loss, and explained variance for the A2C.2 models.

The training data for the reward 1 model is depicted by the light blue line, for the reward 2 by the

red and the reward 3 by the dark blue line.

The training graphs above illustrate a much worse behavior than the one provided by the

PPO models. The A2C training shows a lack of exploration and ability to predict the future

rewards, with models trained on reward 1 showing the worst performance.

59

Table 5.8: The A2C.1 is depicted by the dark blue line while the A2C.2 by the light blue and both have

provided underwhelming performance.

Table 5.9: Using reward function 2, A2C.2 which is depicted by the pink line, provides better statistics

both in episode length and mean reward keeping an upwards trend with fewer fluctuations that

when A2C.1.

60

Table 5.10: Using reward function 3, A2C.1 depicted by the orange line provides better results having

a steady increase in mean reward in contrast to A2C.2 depicted by the dark blue line, which shows a

decline both in mean episode length and reward.

It is observed that the models using the Rms optimizer in the CNN policy network of the A2C,

fail to show any progress when using reward 3 and especially 1. The only similarity between

these rewards is the ‘score’ information which produces a big variety of results and thus, its

complexity might be the reason it causes problems to the training. In contrast, the A2C

models that were trained using Adam as the optimizer of the CNN policy, that in contrast to

Rms, takes into account the average of the second moments of the gradient, produces much

better results when the same reward functions are used. However, when reward 2 is used,

which outputs less sparce results, the Rms trained model performs the best.

5.3. Comparison of the models

The first step to identify the best model is to compare the results of all the trained

algorithms based on each reward function and point out the greatest for every category.

Even though, extensive hyperparameter tuning of the models would change the behavior of

these models and provide more successful training, for the purpose of this experimentation

we want to identify the best model trained with the proposed parameters.

61

Table 5.11: Comparison of all the algorithms trained with Reward 1. The PPO model is depicted by

the red line, A2C.2 by the dark blue and A2C.1 by the light blue line.

It can be clearly seen from the line graph above, that the PPO model performs the best while

the A2C.2 performs the worst, plunging by the early stages of the training in both reward

and episode length. Additionally, the A2C.1 shows little to no progress at all having stuck to a

specific level of performance.

Table 5.12: Comparison of all the algorithms trained with Reward 2. The PPO model is depicted by

the pink line, A2C.1 by the grey and A2C.1 by the red line.

In contrast to other comparisons, when trained with reward 2 the algorithms and especially

the A2C ones, show a similar progress even though they yield different results through the

process. The A2C.2 seems to perform the best yielding the highest stats and following a

steady rise more in mean episode reward and less in mean episode length.

62

Table 5.13: Comparison between the PPO, A2C.1, and A2C.2 algorithms trained with reward 3. The

PPO model is depicted by the orange line, the A2C.1 with the green and A2C.2 with the blue line.

Following the comparison of the models based on each reward, it is clearly seen that some

algorithms achieved better performance than others while PPO algorithms had the steadier

and most successful training sessions. In the case of using reward 1, the PPO model showed

significantly better results than the A2C trained models with the A2C.2 completely failing.

However, when the rewards 2 and 3 were used for the training, the results were more

competitive and A2C algorithms performed the best, having A2C.2 prevail with reward 2 and

A2C.1 with reward 3. As discussed in the paragraph 4.5, in order to identify the reward-

algorithm pair that has the most success, their performance must be compared based on the

number of enemies the agent is able to defeat. The results during the evaluation of 10

episodes are presented below:

Table 5.14: Comparison between the number of enemies beaten during each episode of

every algorithm’s implementation

0

0.1

0.2

0.3

0.4

0.5

R1/PPO R2/A2C/RMS R3/A2C/Adam

0 Enemies

1 Enemy

2 Enemies

3 Enemies

4 Enemies

5 Enemies

63

As can be clearly seen from the bar graph, the A2C algorithm with the Rms optimizer used

for its policy network yields the best scores. The agent presented the highest percentages of

beating 5 and 4 enemies corresponding to 20% and 30% of the trials respectively. The other

50% consists of 30% of beating 3 enemies and 20% of beating 2 enemies. None of the other

2 algorithms were able to beat more than 3 enemies 50% of the time. The second best

performance is provided by the PPO trained model which beat 3 enemies 40% of the time

and 2 enemies 30% of the time. In the remainder trials it beat two times 4 enemies and only

once more than that. The best algorithm trained with the third reward, provided less

significant results since the agent did not win more than 2 enemies for the majority of the

testing.

By testing all of the three algorithms, it was observed that for every model, even though the

mean reward and episode length would increase, the agent chose almost randomly specific

actions included in the ‘special moves’ category, something that was expected when noticing

the training results and the understanding the construction of the game. These moves inflict

the most damage to the opponent and can also be used defensively, being equally or more

effective that strictly defense moves in many cases. At the same time, there is not restriction

in using them other than pressing a series of buttons with the correct timing which does not

apply for a non-human player, and as a result the agent shows a big bias towards them. In

more modern games of the same category as Streetfighter, special moves cannot be

overused and each time they are executed, there is an energy bar that gets depleted.

However, with proper hyperparameter tuning and more training this bias could possibly

deteriorate.

All things considered, each algorithm performed best when paired with a specific reward,

with the best being the A2C with its policy network optimized by the RMS optimizer.

64

6. CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY

This thesis has focused on reporting the basic aspects of Reinforcement Learning,

emphasizing on actor-critic methods and experimentation in the environment of the

Streetfighter II game. After the presentation of the most impactful and successful

implementations of Machine learning in digital and non-digital game environments, the

primal concepts of the RL methods such as the Markov Decision Process. A variety of

algorithms based on Dynamic Programming were then covered before introducing the

characteristics of Deep Reinforcement Learning. Consequently, the content emphasized on

policy gradient and actor-critic methods before introducing the proximal policy optimization

(PPO) and the advantage actor-critic (A2C) algorithms that were used for the

experimentation process. Last but not least, the inner workings of a CNN were discussed and

some of the most favorable optimizers based on stochastic gradient descent were

presented.

Following the theory presentation, the Streetfighter game and its adaption to the Gym Retro

platform for the implementation of the algorithms were described. Specifically, that

included the presentation of the mechanics and controls of the game along with an

explanation of its action and observation space. Following, three reward signals that were

developed based on different combinations of in-game information were outlined, and the

thought process behind them along with their differences was explained. Lastly, the

specifications of the implementation of the algorithm such as the loss functions and their

hyperparameters were reported.

In the final chapter, the results of the training and testing of the algorithms were presented

and discussed. It was observed, that none of the rewards shaped for this application was

equally effective for the implementation of every algorithm and even the interchange of

optimizers in the A2C implementations had a significant influence in the results. Indeed, it

65

was observed that the Rms optimizer was possibly not as able to optimize the model with

rewards 3 and 1, as it was with reward 1. The latter, achieved the overall best performance

among all the algorithm trials, beating the most opponents in more than half of the

evaluation process constituted of ten episodes.

However, many of the training sessions provided unstable data and showed inefficient

learning even for models that achieved high rewards. Consequently, it would be interesting

to test different parameters to the models and apply proper hyperparameter tuning in order

to achieve the best performance possible. At the same time, the fact that the

implementation of both algorithms included just one shared network between actor and

critic, leaves the possibility of using 2 separate networks for each algorithm open for

examination along with each network’s architecture. Moreover, training the agent for every

stage (enemy) of the game separately could make the learning process faster and more

efficient, allowing the agent to progress even more in the game. Another worth exploring

idea would be to apply a discrentizer and do the necessary changes to the code to allow the

utilization of more algorithms that have proven to be effective, such as DQN. Last but not

least, even more, reward function could be tested if there was access to more in-game

information. A case in point would be to create a CNN that maps the movements of the

players to output information regarding their distance at each time step. In this way, more

complex rewards could be created that enforce specific strategies by exploiting the game

mechanics and each enemy’s characteristics.

66

REFERENCES

1 Carbonell, J.G., Michalski, R.S., Mitchell, T.M. (1983) An Overview of Machine Learning

In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds) Machine Learning. Symbolic

Computation. Springer, Berlin, Heidelberg

2 Richard S. Sutton, Andrew G. Barto (2014-2015) Reinforcement Learning: An

Introduction

3 Hans J. Berliner, (1980) Backgammon Computer Program

4 R. Teal Witter, (2021) Backgammon is Hard

5 Wikipedia contributors, (2022) Backgammon

6 Dennis DeCost, (1997) The Future of Chess-Playing Technologies and the Significance

Kasparov Versus Deep Blue 7

7 Murray Campbell a,∗, A. Joseph Hoane Jr. b, Feng-hsiung Hsu c, (2002) Deep Blue

8 Wikipedia contributors, (2022) Deep Blue (chess computer)

9 David Silver1 *, Aja Huang1 *, Chris J. Maddison1 , Arthur Guez1 , Laurent Sifre1 ,

George van den Driessche1 , Julian Schrittwieser1 , Ioannis Antonoglou1 , Veda

Panneershelvam1 , Marc Lanctot1 , Sander Dieleman1 , Dominik Grewe1 , John Nham2 ,

Nal Kalchbrenner1 , Ilya Sutskever2 , Timothy Lillicrap1 , Madeleine Leach1 , Koray

Kavukcuoglu1 , Thore Graepel1 & Demis Hassabis1, (2016) Mastering the game of Go

with deep neural networks and tree search

10 Wikipedia contributors, (2022) AlphaGo. In Wikipedia, The Free Encyclopedia

11 Deepmind, (2016) AlphaGo

12 David Silver1 *, Julian Schrittwieser1 *, Karen Simonyan1 *, Ioannis Antonoglou1 , Aja

Huang1 , Arthur Guez1 , Thomas Hubert1 , Lucas Baker1 , Matthew Lai1 , Adrian

Bolton1 , Yutian Chen1 , Timothy Lillicrap1 , Fan Hui1 , Laurent Sifre1 , George van den

Driessche1 , Thore Graepel1 & Demis Hassabis1, (2017) Mastering the game of Go

without human knowledge

13 Wikipedia contributors, (2022) AlphaGo Zero. In Wikipedia, The Free Encyclopedia

67

14 Deepmind, (2017) AlphaGo Zero: Starting from scratch

15 David Silver,1∗ Thomas Hubert,1∗ Julian Schrittwieser,1∗ Ioannis Antonoglou,1

Matthew Lai,1 Arthur Guez,1 Marc Lanctot,1 Laurent Sifre,1 Dharshan Kumaran,1 Thore

Graepel,1 Timothy Lillicrap,1 Karen Simonyan,1 Demis Hassabis1, (2017) Mastering

Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

16 Wikipedia contributors, (2022) AlphaZero. In Wikipedia, The Free Encyclopedia

17 Deepmind ,(2017) AlphaZero: Shedding new light on chess, shogi, and Go

18 Deepmind ,(2018) MuZero: Mastering Go, chess, shogi and Atari without rules

19 Kai Arulkumaran, Antoine Cully, Julian Togelius, (2019) AlphaStar: An Evolutionary

Computation Perspective

20 Wikipedia contributors, (2022) AlphaStar. In Wikipedia, The Free Encyclopedia

21 Deepmind, (2019) AlphaStar: Mastering the real-time strategy game StarCraft II

22 Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung,

Przemysław “Psyho" Dębiak, Christy Dennison, David Farhi, Quirin Fischer,

Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson,

Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman,

Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang

Filip Wolski, Susan Zhang, (2019) Dota 2 with Large Scale Deep Reinforcement Learning

23 JOAKIM BERGDAHL, (2017) Asynchronous Advantage ActorCritic with Adam

Optimization and a Layer Normalized Recurrent Network

24 Wikipedia contributors, (2022) OpenAI Five. In Wikipedia, The Free Encyclopedia

25 Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik

Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert,

Florian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih Lin, Patrick

MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr

Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead, Peter Dürr, Peter Stone,

Michael Spranger & Hiroaki Kitano, (2022) Outracing champion Gran Turismo drivers

with deep reinforcement learning

26 Shengyi Huang, Anssi Kanervisto, Antonin Raffin, Weixun Wang, Santiago Ontañón,

Rousslan Fernand Julien Dossa, (2022) A2C is a special case of PPO

27 Junkang LI,1 Solene THEPAUT, Veronique VENTOS, (2020) Reducing incompleteness in

the game of Bridge using PLP

68

28 Veronique Ventos, Daniel Braun, Colin Deheeger, Jean Pierre Desmoulins, Jean Baptiste

Fantun, Swann Legras, Alexis Rimbaud, Celine Rouveirol, Henry Soldano and Solene

Thepaut, (2022) Construction and Elicitation of a Black Box Model in the Game of Bridge

29 Veronique Ventos, Yves Costel, Olivier Teytaud, Solène Thépaut Ventos, (2017) Boosting

a Bridge Artificial Intelligence

30 PaulGarniera, Jonathan Viquerata, Jean Rabaultb, Aurélien Larchera, Alexander

Kuhnlec, Elie Hachema, (2019) A review on deep reinforcement learning for fluid

mechanics

31 Martijn van Otterlo, (2009) Markov Decision Processes: Concepts and Algorithms

32 Duarte, Fernando & Lau, Nuno & Pereira, Artur & Reis, Luís. (2020). A Survey of Planning

and Learning in Games.

33 Martijn van Otterlo, (2009) Markov Decision Processes: Concepts and Algorithms

34 Edson Antônio Gonçalvesde Souzaa Marcelo SeidoNaganoa Gustavo Alencar Rolim,

(2021), Dynamic Programming algorithms and their applications in machine scheduling:

A review

35 Lucian Bus¸oniu, Robert Babuˇska, Bart De Schutter, and Damien Ernst, (2010)

Reinforcement learning and dynamic programming using function approximators

36 Gerald Tesauro, David C. Gondek, Jonathan Lenchner, James Fan, John M. Prager,

(2013) Analysis of Watson’s Strategies for Playing Jeopardy!

37 David Ferrucci, Anthony Levas, Sugato Bagchi, David Gondek, Erik T.Mueller, (2012)

Watson: Beyond Jeopardy!

38 Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour, (1999) Policy

Gradient Methods for Reinforcement Learning with Function Approximation

39 OpenAI, (2018) Part 3: Intro to Policy Optimization

40 Sebastian Ruder, (2017) An overview of gradient descent optimization algorithms

41 Bottou, L. (2012). Stochastic Gradient Descent Tricks. Neural Networks: Tricks of the

Trade

42 Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, Kaori Togashi, (2018)

Convolutional neural networks: an overview and application in radiology

43 John C. Duchi, Elad Hazan, Yoram Singer (2011) Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization

69

44 Diederik P. Kingma, Jimmy Lei Ba, (2015) ADAM: A METHOD FOR STOCHASTIC

OPTIMIZATION

45 Tieleman, T. and Hinton, G. Lecture 6.5, (2012) RMSProp, COURSERA: Neural Networks

for Machine Learning

46 Oguzhan Dogru, Kirubakaran Velswamy, Biao Huang (2021) Actor–Critic Reinforcement

Learning and Application in Developing Computer-Vision-Based Interface Tracking

47 John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel, (2018)

HIGH-DIMENSIONAL CONTINUOUS CONTROL USING GENERALIZED ADVANTAGE

ESTIMATION

48 Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.

Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, (2016) Asynchronous Methods for

Deep Reinforcement Learning

49 OpenAI Baselines authors, (2017) ACKTR & A2C

50 Wikipedia contributors, (2022) Kullback-Leibler divergence

51 James M. Joyce, (2014) Kullback-Leibler Divergence

52 OpenAi SpinningUp authors, (2016) Trust Region Policy Optimization

53 John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, Pieter Abbeel, (2015)

Trust Region Policy Optimization

54 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov, (2017)

Proximal Policy Optimization Algorithms

55 Xingxing Liang, Yang Ma, Yanghe Feng, Zhong Liu, (2021) PTR-PPO: Proximal Policy

Optimization with Prioritized Trajectory Replay

56 OpenAI SpinningUp authors, (2017) Proximal Policy Optimization

57 Nicholas Renotte, (2022) StreetFighterRL

(https://github.com/nicknochnack/StreetFighterRL)

58 Sega Retro authors, (2019) Street Fighter II: Special Champion Edition

(https://segaretro.org/Street_Fighter_II%27:_Special_Champion_Edition#)

59 Sega manual authors, Street Figher 2 Special Champion Edition Manual

(https://manuals.sega.com/genesismini/pdf/STREET_FIGHTER_2.pdf)

60 Wikipedia Contributors, (2022) Street Fighter II: Champion Edition

61 Stable Baselines3 contributors, stable_baselines3.a2c.a2c (https://stable-

baselines3.readthedocs.io/en/master/_modules/stable_baselines3/a2c/a2c.html#A2C)

https://segaretro.org/Street_Fighter_II':_Special_Champion_Edition
https://manuals.sega.com/genesismini/pdf/STREET_FIGHTER_2.pdf
https://en.wikipedia.org/wiki/Street_Fighter_II:_Champion_Edition

70

62 Stable Baselines3 contributors, stable_baselines3.ppo.ppo (https://stable-

baselines3.readthedocs.io/en/master/_modules/stable_baselines3/ppo/ppo.html#PPO)

63 Stable Baselines3 contributors, stable_baselines3.common.policies (https://stable-

baselines3.readthedocs.io/en/master/_modules/stable_baselines3/common/policies.ht

ml#ActorCriticCnnPolicy)

64 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie

Tang, Wojciech Zaremba, (2016) OpenAI

65 Gym Retro Docs authors, Gym Retro (https://retro.readthedocs.io/en/latest/#)

66 Stable Baselines3 contributors, A2C (https://stable-

baselines3.readthedocs.io/en/master/modules/a2c.html)

67 Stable Baselines3 contributors, Custom Policies (https://stable-

baselines3.readthedocs.io/en/master/guide/custom_policy.html)

68 N. Mazyavkina, S. Moustafa, I. Trofimov, E. Burnaev, (2021) Optimizing the Neural

Architecture of Reinforcement Learning Agents

69 Stable Baselines contributors, Common Policies(https://stable-

baselines.readthedocs.io/en/master/_modules/stable_baselines/common/policies.html)

https://retro.readthedocs.io/en/latest/
https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
(https:/stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html
(https:/stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html

71

Code

from gym import Env

from gym.spaces import Box, MultiBinary

import numpy as np

import cv2

import time

import numpy

class StreetFighter(Env):

 def __init__(self):

 super().__init__()

 self.observation_space = Box(low=0, high=255, shape=(84, 84, 1),

dtype=np.uint8)

 self.action_space = MultiBinary(12)

 self.game = retro.make(game='StreetFighterIISpecialChampionEdition-

Genesis', use_restricted_actions=retro.Actions.FILTERED)

 #self.score = 0

 def step(self, action):

 obs, reward, done, info = self.game.step(action)

 obs = self.preprocess(obs)

 frame_delta = obs

 ####--Shape reward--###

 #1st Variation

 #reward = info['score'] - self.score

 #self.score = info['score']

 #2nd Variation

 if info['health']==0 and info['enemy_health']==0:

 reward=0

 self.enemy_health = info['enemy_health']

 self.health = info['health']

 if info['health']<0 and info['health']!=self.health and in-

fo['enemy_health']!=0:

 reward=(-176+((info['health'] -

self.health)))*info['enemy_health']

 self.enemy_health = info['enemy_health']

 self.health = info['health']

 elif info['enemy_health']<0 and in-

fo['enemy_health']!=self.enemy_health and info['health']!=0:

72

 reward=(176-(info['enemy_health'] -

self.enemy_health))*(info['health'])

 self.enemy_health = info['enemy_health']

 self.health = info['health']

 else:

 reward=((info['health'] - self.health))-(info['enemy_health'] -

self.enemy_health)

 self.enemy_health = info['enemy_health']

 self.health = info['health']

 #3rd Variation

 # rew2=((-176+(info['health']-self.health))* info['enemy_health'])

 # rew4=(info['health'] - self.health)*10 #dmg absorbed

 #if info['health']==0 and info['enemy_health']==0:

 # reward=0

 # self.enemy_health = info['enemy_health']

 #self.health = info['health']

 #

 #elif info['health']<0 and info['health']!=self.health and in-

fo['enemy_health']!=0:

 # reward=rew2+(rew2*info['enemy_matches_won']/20)#καποια σταθερα

 # self.enemy_health = info['enemy_health']

 # self.health = info['health']

 #self.score = info['score']

 #

 #elif info['enemy_health']<0 and in-

fo['enemy_health']!=self.enemy_health and info['health']!=0:

 # reward = info['score'] - self.score

 # self.score = info['score']

 # self.enemy_health = info['enemy_health']

 #self.health = info['health']

 #

 #else:

 # if (info['health']< self.health) and (in-

fo['enemy_health']==self.enemy_health):

 # self.enemy_health = info['enemy_health']

 # self.health = info['health']

 # self.score = info['score']

 #elif (info['health']< self.health) and (info['enemy_health']<

self.enemy_health):

 # reward= 10*(((info['health'] - self.health))-

(info['enemy_health'] - self.enemy_health))#den pairnei score se isopalia

 # self.enemy_health = info['enemy_health']

 # self.health = info['health']

 # print('double_damage',reward)

 #else:

 # reward = (info['score'] - self.score)

 # self.score = info['score']

 # self.enemy_health = info['enemy_health']

 # self.health = info['health']

 return frame_delta, reward, done, info,

 def render(self, *args, **kwargs):

73

 self.game.render()

 def reset(self):

 self.previous_frame = np.zeros(self.game.observation_space.shape)

 # Frame delta

 obs = self.game.reset()

 obs = self.preprocess(obs)

 self.previous_frame = obs

 # Create initial variables

 self.score = 0

 self.enemy_health=0

 self.health=0

 return obs

 def preprocess(self, observation):

 gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)

 resize = cv2.resize(gray, (84,84), interpolation=cv2.INTER_CUBIC)

 state = np.reshape(resize, (84,84,1))

 return state

 def close(self):

 self.game.close()

env = StreetFighter()

env.observation_space.shape

Checking Rewards functionality

import time

obs = env.reset()

done = False

for game in range(5):

 while not done:

 if done:

 obs = env.reset()

 env.render()

 obs, reward, done, info = env.step(env.action_space.sample())

 if reward!=0:

 print(reward,info['health'],info['enemy_health'])

 time.sleep(0.01)

import torch

torch.cuda.empty_cache()

Import A2C, PPO

from stable_baselines3 import A2C, PPO

Import wrappers

from stable_baselines3.common.monitor import Monitor

from stable_baselines3.common.vec_env import DummyVecEnv, VecFrameStack

import os

LOG_DIR = './logs/'

from stable_baselines3.common.callbacks import BaseCallback

class TrainAndLoggingCallback(BaseCallback):

 def __init__(self, check_freq, save_path, verbose=1):

 super(TrainAndLoggingCallback, self).__init__(verbose)

74

 self.check_freq = check_freq

 self.save_path = save_path

 def _init_callback(self):

 if self.save_path is not None:

 os.makedirs(self.save_path, exist_ok=True)

 def _on_step(self):

 if self.n_calls % self.check_freq == 0:

 model_path = os.path.join(self.save_path,

'best_model_{}'.format(self.n_calls))

 self.model.save(model_path)

 return True

CHECKPOINT_DIR = './train_a2c_rew2_rmsprop/'

#CHECKPOINT_DIR = './train_a2c_rew2/'

#CHECKPOINT_DIR = './train_ppo_rew2/'

callback = TrainAndLoggingCallback(check_freq=10000,

save_path=CHECKPOINT_DIR)

##Training

env.close()

env = StreetFighter()

env = Monitor(env, LOG_DIR)

env = DummyVecEnv([lambda: env])

env = VecFrameStack(env, 4, channels_order='last')

A2C parameters

model_params = {'n_steps': 5, 'gamma': 0.99, 'gae_lambda':1, 'learn-

ing_rate': 7e-4, 'vf_coef': 0.5,'ent_coef': 0.0,'max_grad_norm':0.5,

'rms_prop_eps':1e-05 }

PPO parameters

#model_params = {'n_steps': 2048, 'gamma': 0.99, 'learning_rate': 0.0003,

'clip_range': 0.2, 'gae_lambda': 0.95, 'ent_coef': 0.0, 'vf_coef': 0.5,

'max_grad_norm': 0.5}

model_params

import torch

from torch.optim import Optimizer

class RMSpropTF(Optimizer):

 """Implements RMSprop algorithm (TensorFlow style epsilon)

 NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps ap-

plied before sqrt

 and a few other modifications to closer match Tensorflow for matching

hyper-params.

 Noteworthy changes include:

 1. Epsilon applied inside square-root

 2. square_avg initialized to ones

 3. LR scaling of update accumulated in momentum buffer

 Proposed by G. Hinton in his

 `course

<http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_

.

 The centered version first appears in `Generating Sequences

 With Recurrent Neural Networks

<https://arxiv.org/pdf/1308.0850v5.pdf>`_.

 Arguments:

 params (iterable): iterable of parameters to optimize or dicts de-

fining

75

 parameter groups

 lr (float, optional): learning rate (default: 1e-2)

 momentum (float, optional): momentum factor (default: 0)

 alpha (float, optional): smoothing (decay) constant (default: 0.9)

 eps (float, optional): term added to the denominator to improve

 numerical stability (default: 1e-10)

 centered (bool, optional) : if ``True``, compute the centered

RMSProp,

 the gradient is normalized by an estimation of its variance

 weight_decay (float, optional): weight decay (L2 penalty) (default:

0)

 decoupled_decay (bool, optional): decoupled weight decay as per

https://arxiv.org/abs/1711.05101

 lr_in_momentum (bool, optional): learning rate scaling is included

in the momentum buffer

 update as per defaults in Tensorflow

 """

 def __init__(self, params, lr=1e-2, alpha=0.9, eps=1e-10,

weight_decay=0, momentum=0., centered=False,

 decoupled_decay=False, lr_in_momentum=True):

 if not 0.0 <= lr:

 raise ValueError("Invalid learning rate: {}".format(lr))

 if not 0.0 <= eps:

 raise ValueError("Invalid epsilon value: {}".format(eps))

 if not 0.0 <= momentum:

 raise ValueError("Invalid momentum value: {}".format(momentum))

 if not 0.0 <= weight_decay:

 raise ValueError("Invalid weight_decay value:

{}".format(weight_decay))

 if not 0.0 <= alpha:

 raise ValueError("Invalid alpha value: {}".format(alpha))

 defaults = dict(

 lr=lr, momentum=momentum, alpha=alpha, eps=eps, cen-

tered=centered, weight_decay=weight_decay,

 decoupled_decay=decoupled_decay, lr_in_momentum=lr_in_momentum)

 super(RMSpropTF, self).__init__(params, defaults)

 def __setstate__(self, state):

 super(RMSpropTF, self).__setstate__(state)

 for group in self.param_groups:

 group.setdefault('momentum', 0)

 group.setdefault('centered', False)

 @torch.no_grad()

 def step(self, closure=None):

 """Performs a single optimization step.

 Arguments:

 closure (callable, optional): A closure that reevaluates the

model

 and returns the loss.

 """

 loss = None

 if closure is not None:

 with torch.enable_grad():

 loss = closure()

 for group in self.param_groups:

 for p in group['params']:

 if p.grad is None:

76

 continue

 grad = p.grad

 if grad.is_sparse:

 raise RuntimeError('RMSprop does not support sparse

gradients')

 state = self.state[p]

 # State initialization

 if len(state) == 0:

 state['step'] = 0

 state['square_avg'] = torch.ones_like(p) # PyTorch in-

its to zero

 if group['momentum'] > 0:

 state['momentum_buffer'] = torch.zeros_like(p)

 if group['centered']:

 state['grad_avg'] = torch.zeros_like(p)

 square_avg = state['square_avg']

 one_minus_alpha = 1. - group['alpha']

 state['step'] += 1

 if group['weight_decay'] != 0:

 if group['decoupled_decay']:

 p.mul_(1. - group['lr'] * group['weight_decay'])

 else:

 grad = grad.add(p, alpha=group['weight_decay'])

 # Tensorflow order of ops for updating squared avg

 square_avg.add_(grad.pow(2) - square_avg, al-

pha=one_minus_alpha)

 # square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - al-

pha) # PyTorch original

 if group['centered']:

 grad_avg = state['grad_avg']

 grad_avg.add_(grad - grad_avg, alpha=one_minus_alpha)

 avg = square_avg.addcmul(grad_avg, grad_avg, value=-

1).add(group['eps']).sqrt_() # eps in sqrt

 # grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha) #

PyTorch original

 else:

 avg = square_avg.add(group['eps']).sqrt_() # eps moved

in sqrt

 if group['momentum'] > 0:

 buf = state['momentum_buffer']

 # Tensorflow accumulates the LR scaling in the momentum

buffer

 if group['lr_in_momentum']:

 buf.mul_(group['momentum']).addcdiv_(grad, avg,

value=group['lr'])

 p.add_(-buf)

 else:

 # PyTorch scales the param update by LR

 buf.mul_(group['momentum']).addcdiv_(grad, avg)

 p.add_(buf, alpha=-group['lr'])

 else:

 p.addcdiv_(grad, avg, value=-group['lr'])

 return loss

77

model = A2C('CnnPolicy', env, tensorboard_log=LOG_DIR, verbose=1,

**model_params, policy_kwargs=dict(optimizer_class=RMSpropTF))

#For default Adam Optimizer: model = A2C('CnnPolicy', env, tensor-

board_log=LOG_DIR, verbose=1, **model_params)

#For PPO algorithm: model = PPO('CnnPolicy', env, tensorboard_log=LOG_DIR,

verbose=1, **model_params)

model.learn(total_timesteps=10000000, callback=callback)

env.close()

##Testing Loop

env = StreetFighter()

env = Monitor(env, LOG_DIR)

env = DummyVecEnv([lambda: env])

env = VecFrameStack(env, 4, channels_order='last')

final_reward=0

won_en=[]

for episode in range(10):

 obs = env.reset()

 done = False

 total_reward = 0

 enemies_won=0

 while not done:

 action, _ = model.predict(obs)

 obs, reward, done, info = env.step(action)

 env.render()

 #time.sleep(0.001)

 total_reward += reward

 if info['matches_won']==2: #οτι νικησε δλδ εναν αντιπαλο

 enemies_won+=1

 won_en.append(enemies_won)

 print('Total Reward for episode {} is {} and total enemies won is

{}'.format(episode, total_reward, enemies_won))

 final_reward+=total_reward

print('Final Reward for 10 episodes is', final_reward, won_en)

	Application of Reinforcement Learning Techniques in Streetfighter II Environment
	SPILIOPOULOS CHARALAMPOS

	Application of Reinforcement Learning Techniques in Streetfighter II Environment (1)
	SPILIOPOULOS CHARALAMPOS
	Approved by the Committee on Final Examination:
	Acknowledgments
	Application of Reinforcement Learning Techniques in Streetfighter II Environment
	Summary

	ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΩΝ ΕΝΙΣΧΥΤΙΚΗΣ ΜΑΘΗΣΗΣ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ
	Περίληψη

	LIST OF TABLES
	1.1. Introduction to Reinforcement Learning
	1.2. RL in Games
	1.3. Thesis Organization

	2. REINFORCEMENT LEARNING LITERATURE REVIEW
	2.1. Fundamentals
	2.2. Markov Decision Process (MDP)
	2.3. Dynamic Programming (DP)
	2.
	4.1
	4.2
	4.3
	2.4. Monte Carlo Methods
	2.5. Temporal Difference methods

	3. DEEP REINFORCEMENT LEARNING AND ALGORITHMS
	3.1 Stochastic Gradient Descent (SGD)
	3.2 Policy Gradient
	3.3 Actor-Critic Methods
	3.4 Convolutional Neural Networks (CNN)

	4. APPLICATION TO STREETFIGHTER II
	4.1 Introduction to Streetfighter II
	4.2 Game and Environment
	4.4 Algorithms Implementation
	4.5 Evaluation

	5. RESULTS AND DISCUSSION
	5.1. PPO RESULTS
	5.2. A2C Results
	5.1.
	5.3. Comparison of the models

	6. CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY
	REFERENCES
	Code

