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Tulay Ercan
Department of Mechanical Engineering, University of Thessaly, 2022

Supervisor: Prof. Costas Papadimitriou

Abstract

In structural dynamics, optimal experimental design (OED) aims to maximize the information

gained from data by optimizing the location, type and number of sensors and actuators as

well as the excitation characteristics. In this thesis, a Bayesian OED framework is presented

for (a) virtual sensing and (b) parameter estimation, to support the decision-making processes

regarding structural health, safety, and performance. The OED framework utilizes information

theoretic-based measures to build a utility function robust to measurement, modeling and input

uncertainties. The information contained in the data collected from a sensor configuration is

defined as the Kullback-Leibler divergence between the prior and posterior distribution of the

model parameters or the predicted response quantities of interest, estimated using Bayesian

learning techniques. The multidimensional integrals over the prior distribution of the model

parameters, the modeling uncertainties and input variabilities, arising in the formulation, are

estimated by using asymptotic approximations, as well as Monte Carlo and/or sparse grid

techniques.

The optimization of the utility function in terms of the type and location of sensors is per-

formed using genetic algorithms and heuristic forward and backward sequential sensor place-

ment (SSP) algorithms. The computational effort and accuracy of the optimization algorithms

is investigated and a new SSP algorithm is proposed that exploits the computational efficiency

of the less accurate forward SSP algorithm and the accuracy of the computationally expensive

backward SSP algorithm.

The optimal sensor placement (OSP) framework for virtual sensing is developed based

on modal expansion and Kalman-based input-state estimation techniques. The framework is

applicable to response and/or input time history reconstruction over the structure given output-

only vibration measurements. The Gaussian nature of the response estimates for linear models

of structures is exploited to derive useful and informative analytical expressions for the util-
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ity function in terms of the covariance of the error of the reconstructed response and/or input

quantities of interest. The advantages and limitations of each technique for response and input

reconstruction as well as their potential for fusing different types of vibration sensors are in-

vestigated. The effect of the measurement and model/prediction errors and their uncertainties,

as well as the input uncertainties on the optimal sensor configuration is thoroughly studied,

highlighting the importance of accounting for robustness to errors and other uncertainties.

A Bayesian OED framework for reliable parameter estimation of linear and nonlinear mod-

els of structures using input-output response time history measurements is also developed, ac-

counting for the modelling and input uncertainties. Optimal sensor locations are selected as

the ones that maximize the information gained from the data for evaluating the system pa-

rameters. Asymptotic approximations, valid for large number of data, simplify part of the

multidimensional integrals arising in the utility formulation in terms of a scalar measure of

the sensitivities of model responses at the measured locations with respect to the model pa-

rameters to be inferred from the data. Such approximations provide valuable insight into the

information provided from the data and the information built into the prior distribution quan-

tifying the uncertainties in the model parameters. Robustness of OSP to nuisance parameters

related to modeling and input uncertainties is investigated. In particular, the framework ad-

dresses the problem where the excitation is measured from installed sensors but its time his-

tory remains unknown at the experimental design phase. Stochastic models used to simulate

the random variability of the excitation time histories and characteristics are incorporated into

the framework to optimally design sensor configurations, robust to unknown input variability.

The applicability and effectiveness of the method is demonstrated for structures with restoring

forces exhibiting hysteretic nonlinearities. The high computational cost and excessive storage

requirements for robust OSP designs are pointed out and remedies to resolve such issues are

proposed. Structural differences at the utility function between the design of optimal sensor

configuration and the design of optimal actuator and excitation characteristics are addressed.

The effectiveness of the OED framework for virtual sensing is finally demonstrated with

artificial and real measurements using full-scale components of engineering structures, includ-

ing a wind turbine blade and a helicopter blade tested at a laboratory environment.
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Chapter 1. Introduction

1.1 Research Background and Motivation

Design of experiments is a critical task in order to obtain high quality data for a thorough

understanding of physical systems and improve future predictions throughout their numerical

models. In practical applications, some constraints exist and considerably affect the quality of

the obtained data. The possible sensor locations may reach millions of points when deciding

the most suitable experimental setup, the positioning of sensors to measure input and output

in critical locations might be difficult, or even impossible. Another limitation is the type and

number of sensors due to their cost. Therefore, a judicious design is needed to obtain the most

efficient data to achieve the purpose of the experiment, taking into account these constraints.

1.1.1 The purpose of the experiment

Optimal experimental design (OED) has a broad area of application in science and engineering

in the design process or during operation; in the material, component, substructure, or system

level. In addition to areas such as psychology [1], biology [2, 3], epidemiology [4, 5], the OED

finds application in structural dynamics for data gathering related to safety, predictive and pre-

ventive maintenance actions of critical infrastructures. The importance of building digital

twins of critical and complex systems such as renewable energy structures [6–8] is increas-

ing recently as a result of their economic and environmental impact. The use of techniques

to improve experimental data that help to build better computational models that represent

realistic operational conditions becomes significant, as well. The purpose of experiments in-

cludes building trusted, data-informed virtual models (digital twins), selecting the best model

among the competing models of the systems, and virtual sensing of important output quantity

of interests (QoIs).

In dynamic simulations of civil, mechanical and aerospace systems, virtual sensing is used

to estimate unmeasured QoIs from available measurements. This is particularly important for

fatigue assessment when direct strain measurements are not available at hot spot locations.
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Predicting responses at unmeasured locations or estimating loads using a set of available mea-

surements such as accelerations, displacements, or strains, it is possible to foresee the remain-

ing lifetime of structural components [9, 10]. Among others, model based solutions including

modal expansion to reconstruct the responses [11–15] and filtering techniques to reconstruct

the responses and inputs [16–20] are extensively used in the literature and industrial applica-

tions. However, the design of the sensor configuration to reduce the error in the predictions

remains an issue to investigate. Although a number of OSP methods have been developed for

the reconstruction of responses to support the reliability of future predictions [21–24], little

has been done to address the problem of optimally designing a sensing system under unknown

input using output only vibration measurements [25, 26].

Experimental data can provide useful information for deciding how detailed or complex

model is needed to explain observations, update model parameters, and even detect damages

in terms of location and severity by monitoring the damage sensitive features. Usually, nu-

merical models that explain the observations contain modelling errors, and it is important to

consider these errors in the predictions. Furthermore, measurements are sensitive to noise and

uncertainties associated with the experimental and environmental conditions. Thus, Bayesian

methods have been found to be beneficial in quantifying uncertainty for model updating prob-

lems [27, 28]. Many OSP techniques have been developed in the past for reliable parameter

estimation of linear systems [29–33], for model selection [34], and for damage identification

[35–37].

OED problems considering input characteristics [38] and system nonlinearities [39] have

been addressed in the literature. In particular, the selection of the input characteristics in

the experiment are investigated for the purpose of activating and identifying the nonlinear

features. However, there is a lot of room for improvement for the OED methods for estimating

the parameters of nonlinear models and considering complex loading conditions. Especially

the structures operating in highly dynamic environment, exposed to random loads such as

wind, wave, and earthquake requires comprehensive understanding of the physics and require

consideration of the uncertainties of the exciting loads.

OED can be formulated as an optimization problem to minimize (or maximize) a user-

defined objective function related to the specific target of the experiment and the characteristics

of a system, where the design variables are defined as discrete or continuous variables. In the

context of structural dynamics, the objective function has been defined in various forms [40].
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Modal identification based techniques such as effective independence (EI) [41], and kinetic

energy [42, 43] and information based approaches are commonly used for structural dynamics

and structural health monitoring (SHM) applications. Information-theoretic measures such as

Kullback-Leibler divergence (KL-div) [44, 45], mutual information [46, 47], the information

entropy [30, 32, 34, 48, 49], the joint entropy [50, 51] of the anticipated uncertainty of the

model parameters, or quantities derived from them, provide useful criteria for building ob-

jective functions taking into account all possible values of data, operational and experimental

variabilities.

1.1.2 Bayesian optimal experimental design

Bayesian methods allow us to refine our prior knowledge (which is not affected by the experi-

mental procedure and is often available before the data are gathered) of the predicted quantity

with the experimental data through a prediction model. In OED, it allows us to consider all

possible values of data that are not available before the experiment and uncertainties in the

model and measurements. Lindley presented a comprehensive introduction to the Bayesian

treatment of decision theory and optimal experimental design [45]. Since its introduction, it

has been applied using various utility functions [52]. Fisher information matrix (FIM) based

approaches (based on the determinant or trace of FIM) have been used to form the objective

function of the OED in the past [41, 53, 54]. Flynn and Todd [55] presented a Bayesian OSP

framework based on a metric related to the probability of damage detection. Undoubtedly, the

definition of the most suitable utility function is critical to reach the target of the experimental

design. Studies on comparison of the utility functions used in Bayesian OED can be found in

the literature [56].

An information entropy based approach for OSP is introduced by Papadimitriou et al. [48]

by extending the Bayesian model updating framework presented by Beck and Katafygiotis

[27]. Information entropy is used to form the objective function that suits the purpose of

the experiment, which is reliable parameter estimation. It is shown that information entropy

allows one to trace the information gain from additional sensors, and thus is beneficial for

cost-effective OSP by minimizing the number of sensors. For large number of data, asymptotic

approximations of the information entropy are introduced [29, 48]. When an exact solution of

posterior can not be obtained easily, it is shown that asymptotic techniques are computationally

efficient compared to sampling techniques [44] and are convenient with sufficient accuracy

3

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



[57, 58]. Solutions to the problem of information redundancy obtained with closely spaced

sensors are presented by introducing a correlation to the prediction error covariance matrix

[57].

Several optimization models have also been developed for multi objective decision-making

problems. In [59], OSP is formulated as a multi-objective problem for model selection using

the Pareto front concept. Yuen and Kuok [30] present a sequential algorithm for the multi-type

sensor placement problem. More recently, OSP has been concerned from the perspective of

decision-making using the value of information [60–62]. Mehrjoo et al. [63] considered sensor

installation cost in the design of the optimal sensor configuration for parameter estimation and

virtual sensing. Colombo et al. [64] presented a multi-objective OSP that minimizes the cost.

Some research has studied the effect of excitation characteristics, since the design of the

optimal sensor configuration depends on the location, intensity, and frequency content of the

inputs. Yuen and Katafygiotis considered the issue of unknown excitations [33] in OSP for

parameter identification. The design of optimal input characteristics for nonlinear models is

investigated in [39].

Developments on Bayesian OED paved the way for progress in robust OED studies to make

the experimental set-up insensitive to modelling and input uncertainties. Bayesian OSP is

implemented by considering the influence of measurement noise [65] and prediction error [66],

uncertainties in the prior and nuisance parameters [67]. For the purpose of response prediction,

OSP techniques have been presented by considering uncertain [38] loads. Additionally, some

studies developed robust OED techniques considering the sensor failure [68].

Despite the theoretical developments on OED, the computational cost to perform the opti-

mization is still a challenge. Various algorithms are available to solve optimization problem.

Reviews of computational challenges in Bayesian OED exist in the literature [40, 69, 70].

Among others, heuristic search methods and genetic algorithms (GA) provide computation-

ally effective near optimal solutions.

1.2 Research Objectives

The main objective of the research presented in this thesis is to develop novel Bayesian op-

timal experimental design methods in order to define the most informative and effective test

campaigns to improve and validate models and perform reliable model-based predictions. Fur-
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thermore, it aims developing OED strategies to be robust to uncertainties arising from experi-

mental conditions, and environmental and manufacturing variabilities. In Fig. 1.1 the overall

OED concept with methods of analysis, type of analysis, design varaibles and applications is

shown.

Fig. 1.1. A schematic representation of the optimal experimental design framework. The
subjects that are explored in this thesis are shown in blue.

Major accomplishments of the thesis are as follows.

• Development of a comprehensive Bayesian OED framework with software tools to max-

imize the quality of experimental data used to improve models and model-based predic-

tions.

• Extension of the framework for robustness to the uncertainties arising from experimental

conditions, environmental, and manufacturing variabilities considering the measurement

and model errors, input and prior distribution uncertainties.

• Provide a framework that can be used for nonlinear models of systems, considering the

different kind of inputs and their uncertainties.

• Addressing the challenges in computational effort of optimization due to the complexity

of the computational models by integrating heuristic tools, GA, and parallel computing
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strategies.

• Demonstration and validation of the developed methods using virtual examples and lab-

oratory experiments on components of full-scale industrial structures.

1.3 Contributions and Organization of the Thesis

The current work presents an efficient theoretical OED framework to support decision-making

related to the selection of the type, location, and number of sensors that provide the most in-

formative data for parameter estimation of models structures and also for reliable response

predictions. It addresses the problem of reconstructing responses for the case of linear models

of structures and output-only vibration measurements. Also it addresses the problem of pa-

rameter estimation of nonlinear models of structures. The developed methods enable the max-

imization of information in the data and allow narrowing the uncertainties in the predictions

and/or the parameter estimates. Modeling and input uncertainties are taken into consideration,

leading to a cost-effective and robust OED. Optimization of the dynamic characteristics of

the actuating forces, such as location of actuator(s) and excitation characteristics (amplitude

and frequency content), which is specifically important for parameter estimation of nonlinear

models of structures are also covered in this study.

Efforts made on the framework have led to a journal [71] and peer-reviewed conference

papers [72–74]. Additionally, a paper has been submitted for review and possible publication

[75].

Chapter 1 introduces the background and motivation of Bayesian OED, highlighting the

contributions and clarifying the organization of the present work. The novel theoretical de-

velopments in this thesis are presented in Chapter 2 to 4, while in Chapter 5 part of these

developments are applied on components of energy related and industrial structures. A de-

tailed chapter-by-chapter overview is given below.

Chapter 2. Optimal Sensor Placement for Reliable Virtual Sensing Using Modal Expan-

sion and Information Theory

(https://doi.org/10.3390/s21103400, Published in Sensors)

Chapter 2 presents a novel Bayesian OED framework for response reconstruction/virtual sens-
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ing for linear models of structures using output-only vibration measurements by combining

the modal expansion technique for response predictions and information theory for measur-

ing the information in the data. Informative mathematical expressions for the utility function

are derived using the Gaussian nature of the response QoI and its linear relationship with the

modal coordinates. The utility function to be optimized is shown to be independent of the data,

which allows performing the OSP in the experimental design phase. A plate FE model is used

to demonstrate the methodology by designing the optimal location of the strain or displace-

ment sensors. The effect of model, prediction, and measurement errors and their uncertainties,

as well as the prior uncertainties in the modal coordinates, on the information gained from

the data and selection of the optimal sensor configuration are discussed. The importance of

robustness to modeling errors and other uncertainties is pointed out. The effect of the Finite

element (FE) mesh size and the spatial correlation in model error on the information gain and

the optimal sensor configuration is investigated. Heuristic forward and backward sequential

sensor placement (SSP) strategies are combined to obtain a more reliable estimate of near-

optimal sensor locations. The effectiveness of the proposed OSP methodology is shown for

reliable strain response reconstruction that are important for providing data-driven safety and

performance estimates of systems, and predicting fatigue damage accumulation.

Chapter 3. Information Theoretic-Based Optimal Sensor Placement for Virtual Sensing

using Augmented Kalman Filtering

(https://doi.org/10.5281/zenodo.6508382, Submitted for review and possible publication to

Mechanical Systems and Signal Processing (MSSP))

Chapter 3 extends the Bayesian OED framework presented in Chapter 2, with the use of the fil-

tering methods for virtual sensing. In contrast to modal expansion techniques used in Chapter

2, filtering techniques allows to fuse different types of sensors (e.g. acceleration, displacement

and strain sensors) and extends the OED for response and input reconstruction. Following the

framework in Chapter 2, a novel OSP framework is presented for reliable response and input

prediction based on the augmented Kalman filtering (AKF) technique for input-state-response

estimation and information theory for measuring the information in the data. The utility func-

tion that quantifies the expected information gained from the data is built using the KL-div

measure of the information gain provided from a sensor configuration, AKF equations and

the Gaussian nature of the response QoI. The utility function is taken as the expected infor-
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mation gain over all possible data that would arise under all possible input realizations. The

optimal sensor configuration is obtained by maximizing the utility function. To solve the op-

timization problem, heuristic forward and backward SSP strategies are combined in a way to

overcome the large computational expense that may arise due to the large size of optimiza-

tion domain, without sacrificing accuracy. GA are used as an alternative to the heuristic SSP

algorithms. The effectiveness of the framework is presented by using a FE model of a plate

and designing the optimal sensor configuration for reliable input and response reconstruction

by fusing different types of sensors. The importance of rationally selecting the measurement

and model/prediction errors and their uncertainties, as well as the input uncertainties, is high-

lighted.

Chapter 4. Bayesian Optimal Experimental Design for Parameter Estimation Under

Modeling and Loading/Input Uncertainty

Chapter 4 introduces the Bayesian OED for parameter estimation of nonlinear models of struc-

tures using input-output vibration measurements and considering modeling and input uncer-

tainties. The utility function is built from the appropriate measures of information in the data.

The information gain from a sensor configuration is quantified using KL-div between the prior

and posterior distributions of the model parameters. For a large number of data, asymptotic ap-

proximations are proposed for estimating part of the multidimensional integrals arising in the

utility formulation in terms of the sensitivities of model responses at the measured locations

with respect to the model parameters to be estimated. The uncertainties in nuisance (non-

inferred or non-updatable) parameters are also considered by estimating the expected utility

value over all possible values of the nuisance parameters. In particular, the formulation handles

the case where the input loads on the structure, assumed to be measured during the inference

process, are actually unknown at the experimental design phase. An example is the inference

of the model parameters of civil infrastructure during earthquake excitation. The seismic loads

are often measured using properly installed sensors. However, at the OED phase they are un-

known and are modelled by available stochastic processes. The OSP is then performed by

maximizing the expected utility function over all possible realizations of the stochastic input.

The effectiveness of the method is demonstrated for a system involving restoring force nonlin-

earities represented by the Bouc-Wen model. The OED is also extended to consider as design

variables the location of actuators and/or the characteristics of the excitation (amplitude vari-
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ation and frequency content). Different types of inputs including white noise, filtered white

noise and harmonic inputs are used and the influence of their uncertainties to OED is explored.

The computational burden and excessive storage requirements are pointed out. Based on the

results of the analysis, remedies are provided for reducing the high computational cost and the

storage requirements.

Chapter 5. Optimal Sensor Placement for Virtual Sensing: Applications to Wind Turbine

and Helicopter Blade

Chapter 5 demonstrates the OED applications for reliable response predictions (acceleration,

displacement, and strain) under unknown excitation using output-only vibration measurements

on components of two energy-related and industrial examples: a wind turbine blade and a

helicopter blade. It demonstrates and validates the optimal sensor placement tools proposed in

Chapters 2 and 3 for the two laboratory examples using synthetic and available experimental

data under the existence of modelling errors and uncertainties in loads and environmental or

operating conditions.

Chapter 6 summarizes the conclusions of this dissertation, providing also future research

directions.

1.4 References

[1] J. I. Myung and M. A. Pitt. Optimal experimental design for model discrimination. Psy-

chological review, 116(3):499, 2009.

[2] E. Balsa-Canto, A. A. Alonso, and J. R. Banga. Computational procedures for optimal

experimental design in biological systems. IET systems biology, 2(4):163–172, 2008.

[3] X. Wang, N. Rai, B. Merchel Piovesan Pereira, A. Eetemadi, and I. Tagkopoulos. Ac-

celerated knowledge discovery from omics data by optimal experimental design. Nature

communications, 11(1):1–9, 2020.

[4] A. R. Cook, G. J. Gibson, and C. A. Gilligan. Optimal observation times in experimental

epidemic processes. Biometrics, 64(3):860–868, 2008.

[5] M. Chatzimanolakis, P. Weber, G. Arampatzis, D. Wälchli, I. Kičić, P. Karnakov, C. Pa-
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Chapter 2. Optimal Sensor Placement for Reliable Virtual Sensing Us-
ing Modal Expansion and Information Theory

Original paper: T. Ercan and C. Papadimitriou. Optimal Sensor Placement for Reliable

Virtual Sensing Using Modal Expansion and Information Theory, Sensors (2021).

https://doi.org/10.3390/s21103400

ABSTRACT

A framework for optimal sensor placement (OSP) for virtual sensing using the modal expan-

sion technique and taking into account uncertainties is presented based on information and

utility theory. The framework is developed to handle virtual sensing under output-only vi-

bration measurements. The OSP maximizes a utility function that quantifies the expected

information gained from the data for reducing the uncertainty of quantities of interest (QoI)

predicted at the virtual sensing locations. The utility function is extended to make the OSP

design robust to uncertainties in structural model and modeling error parameters, resulting in

a multidimensional integral of the expected information gain over all possible values of the

uncertain parameters and weighted by their assigned probability distributions. Approximate

methods are used to compute the multidimensional integral and solve the optimization problem

that arises. The Gaussian nature of the response QoI is exploited to derive useful and infor-

mative analytical expressions for the utility function. A thorough study of the effect of model,

prediction and measurement errors and their uncertainties, as well as the prior uncertainties

in the modal coordinates on the selection of the optimal sensor configuration is presented,

highlighting the importance of accounting for robustness to errors and other uncertainties.

2.1 Introduction

Virtual sensing is used to complement the physical sensing when the direct observations are

not available in field and laboratory experiments. Virtual sensing is accomplished by com-

bining the information in output-only vibration measurements with the information contained

in a model (usually a finite element model) of the system to predict response time histories

18

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



of various quantities of interest (QoI). The subject of virtual sensing, also known as response

reconstruction, has received a lot of attention recently due to its importance in monitoring crit-

ical performance and safety-related quantities such as accelerations, displacements, structural

shapes, interstory drifts, strains/stresses and fatigue damage accumulation in structures that

operate in a dynamic environment.

Filtering techniques for input, state and parameter estimation as well as modal expansion

techniques for response reconstruction are the two type of methods extensively used in the

literature for virtual sensing and response reconstruction. The optimal sensor placement tech-

niques developed in this work are based on modal expansion techniques for virtual sensing.

The modal expansion technique represents the system response QoI (acceleration, displace-

ment, strain, etc.) as a modal superposition involving the modeshapes of the structure (e.g.,

displacement or strain modeshapes) and a fixed number of modal coordinates. This allows

the prediction (virtual sensing) of any response QoI by estimating the temporal variability

of the modal coordinates from measured response time histories and borrowing the informa-

tion from a finite element model for representing the rest of the quantities involved in the

modal expansion. The modal expansion method has been used in structural dynamics for

reconstructing stress/strain fields using limited number of acceleration measurements [1] or

displacement/strain measurements [2–4]. It is pointed out that estimating the strains/stresses

is important for fatigue damage identification. The potential of providing fatigue damage ac-

cumulation predictions in the entire body of metallic structures based on virtual strain/stress

sensing has been demonstrated for the first time in [5, 6] by combining output-only vibration

measurements, finite element models and filtering techniques with stochastic and deterministic

fatigue theories. Such predictions are based on the actual operating conditions of structures

and thus provide realistic fatigue estimates consistent with existing fatigue theories.

Following these works, the modal expansion and filtering techniques were applied for

strain/stress virtual sensing [3, 7–15] and fatigue estimation [16–21] for a number of structures

using limited number of displacement/strain physical sensors. In particular, modal expansion

techniques have been used in mechanical and aerospace systems for shape and/or strain recon-

struction using sparse displacement and/or strain measurements [22–29] or fusing acceleration

and strain measurements [30]. The aforementioned studies cover a number of applications, in-

cluding components of mechanical structures [1, 2], components of civil structures such as

railway bridges [20], wind turbine jacket substructures [11], truss structures [12], wind turbine
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towers [7–10, 16, 25], wind turbine blades [27, 28], offshore structures [11], components of

industrial structures [17, 21], roller coaster [18], rotating [26] and underwater structures [13],

as well as biologicaly inspired wing structures for robotic applications [29]. Recently, it is

suggested to use virtual sensing in isolated linear components of linear and nonlinear models

of structures [31–34] considering the forces at the interface between the analyzed linear com-

ponent and the rest of the structure as unknown forces. In a limited number of past studies

the effect of the number and location of sensors, as well as the measurement error, on the

accuracy of the response reconstruction was investigated and its importance was pointed out

[2, 22–24, 35].

Bayesian methods were applied for modal identification and virtual sensing using modal

expansion techniques to better account for the model and measurement errors in the modal

coordinates estimation [36] and response predictions [37–39] and also used for damage de-

tection [40–42]. Such methods have the advantage of predicting also the uncertainty in the

modal coordinates and/or predictions. In particular, the uncertainty formulation is useful for

optimizing the location and number of sensors by minimizing the uncertainty in the estimates

of the modal coordinates [36] and response predictions or virtual sensing [38, 43, 44].

OSP techniques have been developed in the past for the purpose of extracting the most

informative data from a given number of sensors. A recent article [45] reviews methods

and optimization algorithms for optimizing the location of sensor in a structure. Selecting

the most informative sensor configuration is often performed using information theory based

approaches. Measures of information that have been used in the past for structural dynam-

ics problems include the Fisher information matrix (FIM) [46–51], the information entropy

[52–64], the joint entropy [65, 66], the expected Kullback–Liebler divergence (KL-div) index

[67–69] and mutual information [70, 71], and the value of information [72–74]. FIM-based

OSP techniques address problems of parameter estimation of physics-based models for linear

structural systems [46–48], modal estimation [51], as well as identification of distributed pa-

rameter systems [49, 50]. The OSP techniques based on information and joint entropy address

problems of parameter estimation of linear systems subjected to known [54–56, 63, 64] and

unknown [53] excitation, model updating [52, 61], modal identification [59], model selection

[58], structural health monitoring and damage detection [60, 62]. In particular, techniques

to avoid sensor clustering by taking into account the redundant information contained in the

measurements have been discussed in [57, 59]. OSP approaches based on expected KL-div
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and utility theory also address problems of parameter estimation of linear [70, 75–77] and

nonlinear [78] structural systems, modal estimation [71, 79] and structural health monitoring

[80, 81]. Finally, OSP issues related to multi-type sensor placement have also been addressed

[56, 65]. The aforementioned methods, however, have focused on OSP problems for parameter

estimation of physics-based or mathematical models. Using information theory formulations,

the OSP problem for response reconstruction has been studied recently considering that the

input forces are known [38, 44]. OSP for response reconstruction under unknown input forces

modeled by stochastic processes has been attempted in [82] using the kriging technique. An

OSP formulation to handle the case of output-only vibration measurements has also been pre-

sented recently by combining filtering techniques with information theory [43].

In this work, considering output-only vibration measurements, a novel OSP framework

is presented for accurate response reconstruction and virtual sensing in linear systems based

on modal expansion techniques and information theory. The information gained by a sen-

sor configuration is measured by the KL-div [83] between the posterior and prior probability

distribution of the response QoI to be virtually sensed or reconstructed, by combining avail-

able modal expansion techniques and data. The KL-div is averaged over all possible QoI to be

sensed. This is obtained using the Lindley’s utility function [68, 84] quantifying the average in-

formation in the data over all possible measurements generated by the prediction error model.

The measure is extended to include uncertainties in the model parameters, as well as in the

model/prediction and measurement errors which are assigned in the modeling process for the

Bayesian estimation of the posterior distribution of the modal coordinates. The optimal sensor

configuration is obtained by maximizing the utility function. For the case of uncertainties in

model parameters, the utility function involves a multidimensional integral over the uncertain

parameter space which can be computed using sparse grid or Monte Carlo techniques. Due

to the linearity of the response QoI and the modal coordinates, exact analytical expressions

are developed for the utility function in terms of the variance of the responses of the QoI to

be sensed. The structure of the analytical expressions developed are used to derive useful

formulas that show the effect of measurements and model/prediction errors on the expected

information gained from the data, as well as derive the dependence of the information gain as

a function of the number of sensors.

This study is organized as follows: in Section 2.2, the modal expansion is outlined for

formulating the uncertainty in the predictions of response QoI. In Section 2.3, the optimal
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sensor placement methodology for predicting response time histories of desirable QoI (virtual

sensing) with the least uncertainty is presented based on utility and information theory. In Sec-

tion 2.4, models for the model/prediction and measurement errors required in the formulation

are introduced. Section 2.5 discusses implementation issues and the importance of taking into

account the uncertainties in the input characteristics for optimizing the sensor placement. An

application on a square plate structure is used in Section 2.6 to demonstrate the capabilities

and effectiveness of the OSP methodology for reliable virtual sensing. Conclusions are drawn

in Section 2.8.

2.2 Bayesian Virtual Sensing Using the Modal Expansion Method

Consider a structural model used to predict the temporal variability of the response vector

z(t;φ) ∈ Rnz (e.g., accelerations, displacements, strain or stresses) at nz locations given

the values of a structural model parameter set φ (e.g., stiffness, mass and damping related

parameters) and the excitation vector u (t) ∈ Rnu . Let D =
{
y(t) ∈ RN0

}
be the vector of

response time history data collected by placing N0 sensors in the structure. These data depend

on the sensor configuration vector δ ∈ RN0 indicating the location and measurement direction

of sensors placed in a structure. The data may consist of either acceleration, displacement and

strain measurements. In what follows, a linear model of the structure is assumed. Additionally,

it is assumed that the excitation time histories u (t) are not available.

2.2.1 Modal Expansion for Virtual Sensing

Given output-only data y (t), the modal expansion technique is used to predict responses at

measured and unmeasured output QoI z(t;φ) using modal coordinates and mode shape vec-

tors. Based on the modal expansion technique, the measured displacement or strain response

time histories atN0 degrees of freedom (DOFs) are given with respect to the modal coordinates

by the mode superposition equation

y(t) = L(δ)Φ(φ)ξ(t) + e(t) (2.1)

where ξ(t) ∈ Rm is the vector of m modal coordinates satisfying the modal equations,

L(δ) ∈ RN0×n is the observation matrix that maps the displacements at all n model DOF
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to the measured displacement or strain quantities indicated by the sensor location vector δ,

Φ(φ) ∈ Rn×m is the displacement mode shape matrix corresponding to the n model DOF and

m contributing modes, and e (t) is a multi-variable zero-mean Gaussian noise term with co-

variance matrixQe that accounts for measurement and model errors. The modal can be written

as

ξ̈(t) + Z(φ)ξ̇(t) + Λ(φ)ξ(t) = ΦT (φ)Mu(t) (2.2)

where Λ is the diagonal matrix of the squares ω2
r of the modal frequencies ωr, Z is the diagonal

matrix with the r-th diagonal element equal to 2ωrζr, ζr is the modal damping ratio, and

M ∈ Rn×nu is a matrix of zeros and ones associating the independent excitations in the vector

u(t) to the DOF of the structural model. Displacement, strain and/or stress predictions at

output locations or DOF are given by the prediction equation

z(t) = Ψ(φ)ξ(t) + ε(t) (2.3)

where Ψ(φ) ∈ Rnz×m are the corresponding displacement, strain and/or stress mode shapes

that relates the modal coordinates to displacement, strain and/or stress QoI, and ε (t) is a zero-

mean prediction error with covariance matrix Qε accounting for model error. The mode shape

matrices Φ(φ) and Ψ(φ) are available by analyzing the model (e.g., finite element model) of

the structure.

It should be noted that formulation using Eq. 2.1 and Eq. 2.3 can also be used when the

available measurements and predictions consist of accelerations. In this case the modal vector

ξ (t) in Eq. 2.1 and Eq. 2.3 refers to the second derivatives of the modal coordinates with

respect to time.

2.2.2 Bayesian Virtual Sensing

Bayesian inference is next used to estimate the modal vector parameter ξ(t) ≡ ξ(t; δ, φ) and

its uncertainties based on the data collected from a sensor configuration δ and then propagate

these uncertainties to predictions of output QoI z(t) ≡ z(t; δ, φ). The posterior probability

distribution function (PDF) p
(
ξ(t)|y(t), δ, φ

)
quantifying the uncertainty in the modal coor-

dinates ξ(t) at time t, given the data y(t), the sensor configuration δ and the model parameters
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φ, takes the form

p
(
ξ(t)|y(t), δ, φ

)
∝ p

(
y(t)|ξ(t), δ, φ

)
p
(
ξ(t)|φ

)
(2.4)

where, using the assumption that e(t) in Eq. 2.1 follows a Gaussian distribution N(e(t)|0, Qe)

with mean 0 and covariance Qe, the likelihood takes the form

p
(
y(t)|ξ(t), δ, φ

)
= N

(
y(t)|L(δ)Φ(φ)ξ(t), Qe

)
(2.5)

The prior PDF p(ξ(t)|φ) is postulated to be a zero-mean Gaussian p
(
ξ (t) |φ

)
= N

(
ξ (t) |0, S

)
with covariance matrix S. Substituting Eq. 2.5 into Eq. 2.4 it is straightforward to show that

the output modal coordinates follow a multi-variable normal distribution [37, 43]

p
(
ξ(t)|y(t), δ, φ

)
= N

(
ξ(t)|ξ̂(t; δ, φ),Σξ|D(δ, φ)

)
(2.6)

with mean

ξ̂(t; δ, φ) =
[
ΦT (φ)LT (δ)Q−1

e (δ, φ)L(δ)Φ(φ) + S−1
]−1

ΦT (φ)LT (δ)Q−1
e (δ, φ)y(t) (2.7)

and covariance matrix

Σξ|D(δ, φ) =
[
ΦT (φ)LT (δ)Q−1

e (δ, φ)L(δ)Φ(φ) + S−1
]−1

(2.8)

Using Eq. 2.3 and Eq. 2.6 to propagate uncertainty to output QoI z(t), it can be readily

obtained that z(t) also follows a multivariable normal distribution

p
(
z(t)|y(t), δ, φ

)
= N

(
z(t)|ẑ(t; δ, φ),Σz|D(δ, φ)

)
(2.9)

with mean

ẑ(t; δ, φ) = Ψ(φ) ξ̂(t; δ, φ) (2.10)
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that depends on the data, and covariance matrix Σz|D(δ, φ) given by

Σz|D(δ, φ) = Ψ(φ)
[
ΦT (φ)LT (δ)Q−1

e (δ, φ)L(δ)Φ(φ) + S−1
]−1

ΨT (φ) +Qε (2.11)

In particular, the variance of the i-th element zi(t; δ, φ) of the response vector z(t; δ, φ) is

given by the i-th diagonal element Σzi|D(δ, φ) of the covariance matrix Σz|D(δ, φ) as follows

Σzi|D(δ, φ) = ψT
i (φ)

[
ΦT (φ)LT (δ)Q−1

e (δ, φ)L(δ)Φ(φ) + S−1
]−1

ψi(φ) +Qεi (2.12)

where ψi(φ) denotes the i-th column of the matrix ΨT (φ), andQεi is the i-th diagonal element

of the matrix Qε.

For a Gaussian prior PDF N(ξ(t)|0,Σξ) of the modal coordinate vector ξ(t), the predic-

tion of the QoI z prior to the data can be readily obtained from Eq. 2.3 to be Gaussian with

mean zero and covariance matrix Σz(φ) = Ψ(φ)Σξ(φ)Ψ
T (φ) + Qϵ, where Σξ(φ) = S is the

covariance matrix corresponding to the assigned prior distribution. In particular, the variance

of the i-th element zi(t;φ) prior to the data is given by

Σzi(φ) = ψT
i (φ)Sψi(φ) +Qεi (2.13)

The posterior and prior variances Σzi|D(δ, φ) in Eq. 2.12 and Σzi(φ) in Eq. 2.13, described in

terms of the parameters φ and the sensor locations δ, are the main quantities involved in the

next section to solve the optimal sensor location problem for virtual sensing and response re-

construction. It is clear that these variances are independent of the measurements/data y(t) and

depend only on the structural model parameters φ, the model and measurement error covari-

ances Qe and Qε, as well as the covariance matrix S of the prior probability distribution of the

modal coordinates ξ(t). For practical convenience and without loss of generality, stationarity

conditions are assumed, where the covariance matrices Qe, Qϵ and S are independent of time

t. As a results the posterior and prior variances defined in Eq. 2.12 and Eq. 2.13 do not depend

on time t. The parameters that define the model/prediction and measurement error covariances

can be included in the parameter set φ. A probability distribution p(φ) can be postulated to

quantify the uncertainties in the values of model and input characteristics involved in φ.

Note that the matrix ΦT (φ)LT (δ)Q−1
e (δ, φ)L(δ)Φ(φ) in Eq. 2.12 is nonsingular only if

the number of sensors is greater or equal to the number of modes. Thus, for S = 0, the
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condition N0 ≥ m should be met in order for the system to be identifiable [36]. The prior

covariance matrix S is particularly important when the condition N0 ≥ m is not met. This

matrix contributes subjective information from the prior that allows the inversion of the matrix

appearing in the first term of Eq. 2.11 for values of N0 < m.

2.3 Optimal Sensor Placement Formulation

2.3.1 Expected Utility Using Information Gain

Information theory is next combined with utility theory to measure the usefulness of a sensor

configuration for reliable virtual sensing that is robust to modeling and measurement uncer-

tainties. The objective is to select the sensor locations that maximize the information contained

in the data for predicting with the least uncertainty the output response QoI at desirable loca-

tions. A measure of the information gain for estimating a response QoI zi, given a set of data

y and the model parameters φ, is the KL-div [83] between the prior and posterior probability

distribution of the output QoI zi, defined for an experimental design δ as

D̃i(δ, y, φ) =

∫
Zi

p(zi|y, δ, φ) ln
p(zi|y, δ, φ)
p(zi|φ)

dzi (2.14)

For several output QoI included in the vector z, the measure can be extended to the

weighted average of the information gain for all possible output QoI, given as

D̃(δ, y, φ) =
Nz∑
i=1

wiD̃i(δ, y, φ) (2.15)

with
∑Nz

i=1wi = 1, wi ≥ 0, where the values of the weight wi are selected to quantify the

importance of the i-th QoI zi in the design of the sensor configuration.

In the initial design phase the data are not available. Instead they can be generated by the

prediction error model Eq. 2.1 for given values of the model parameters φ and the probability

distribution of the prediction error term e(t). Following Lindley’s work [68], utility theory is

used to measure the usefulness of the experiment with the utility function selected to be the

expected value of the information gain in Eq. 2.15 over all possible values of the experimental

data. Extending the utility function to include the uncertainty in the model parameters φ as
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well, one introduces the expected utility function

U(δ) =

∫
Φ̃

∫
Y

D̃(δ, φ, y) p(y, φ|δ) dy dφ =
Nz∑
i=1

wiUi(δ) (2.16)

that quantifies the usefulness of learning from the data for predicting the output QoI included

in the vector z, in the presence of model and measurement uncertainties, where

Ui(δ) =

∫
Φ̃

∫
Y

D̃i(δ, φ, y) p(y, φ|δ) dy dφ (2.17)

is the expected utility function that accounts for a component zi of the response QoI z, p(y, φ|δ) =

p(y|φ, δ) p(φ), p(y|φ, δ) is the uncertainty in the outcome y given the model parameters φ, and

p(φ) is the uncertainty in the model parameters. The utility function defined in Eq. 2.16 and

Eq. 2.17 is an average of the information gain over all the possible data outcomes.

It is shown in Appendix A that the expected utility function Ui(δ) can be formulated in

terms of the change in the expected information entropy before and after the data are collected,

given by

Ui(δ) =

∫
Φ

Hzi(φ) p(φ) dφ−
∫
Φ̃

∫
Y

Hzi|D(δ, y, φ) p(y|φ, δ) dy p(φ) dφ (2.18)

where Hzi(φ) is the prior information entropy in zi(t) given the model parameter set φ, and

Hzi|D(δ, y, φ) is the posterior information entropy in zi(t) given the data y and the model

parameter set φ. For Gaussian probability distribution of the response zi(t), the posterior

information entropy given the values of the data set and the model parameter set φ is given in

terms of the i-th diagonal component of the covariance matrix Σz|D(δ, φ) of the error in the

estimate of z as follows

Hzi|D(δ, y, φ) ≡ Hzi|D(δ, φ) =
1

2
[ln (2π) + 1] +

1

2
ln detΣzi|D(δ, φ) (2.19)

Thus it depends on the sensor locations and the values of the parameters set φ, while it

is independent of the data. For the prior information entropy Hzi(φ) an expression similar to

Eq. 2.19 holds with the posterior Σzi|D(δ, φ) replaced by the prior Σzi(φ).

Taking into account that the prior information entropyHzi(φ) in Eq. 2.18 is constant, inde-

pendent of the sensor configuration δ, and that the posterior information entropy Hz|D(δ, y, φ)
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does not depend on the data, the expected utility function Ui finally takes the form

Ui(δ) = −∆H̄i(δ) = −
[
H̄zi|D(δ)− H̄zi

]
= −1

2

∫
Φ̃

ln
Σzi|D(δ, φ)

Σzi(φ)
p(φ) dφ (2.20)

where

H̄zi|D(δ) =

∫
Φ̃

Hzi|D(δ, φ) p(φ) dφ (2.21)

and

H̄zi =

∫
Φ̃

Hzi(φ) p(φ) dφ (2.22)

are respectively the expected posterior and prior information entropies over all possible values

of the model parameters φ, weighted by the PDF p(φ) of the model parameters.

Substituting Eq. 2.20 into Eq. 2.16, the expected utility function that accounts for all re-

sponse entries in the vector z takes the form

U(δ) = −∆H̄(δ) = −
nz∑
i=1

wi∆H̄i(δ) = −1

2

nz∑
i=1

wi

∫
Φ

ln r(δ, φ) p(φ) dφ (2.23)

where r(δ, φ) is defined as the ratio

r(δ, φ) =
Σzi|D(δ, φ)

Σzi(φ)
(2.24)

Using equal weight values wi = 1/nz, the utility function takes the form

U(δ) = − 1

2nz

∫
Φ̃

ln

∏nz

i=1

[
Σzi|D(δ, φ)

]∏nz

i=1

[
Σzi(φ)

] p(φ) dφ (2.25)

The integral in Eq. 4.10 or Eq. 2.25 is a probability integral over the space of uncertain

parameters φ. This integral represents the robust information entropy change before and after

the data are available, weighted over all possible values of the model parameters quantified by

the PDF p(φ). The multidimensional integral can be evaluated using Monte Carlo techniques

or sparse grid methods [85, 86]. It is verified in Appendix B that the ratio r(δ, φ) in Eq. 2.24

cannot exceed the value of 1 and so the information entropy change is always non-positive or,
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equivalently the utility function is non-negative as expected, meaning that there can be only

information gain when placing a given number of sensors in the structure.

2.3.2 Optimal Sensor Placement

The optimal sensor configuration δopt is obtained by maximizing the utility U (δ) or, equiv-

alently, minimizing the change in information entropy ∆H̄z|D(δ), with respect to the design

variables δ, that is

δopt = argmax
δ

U(δ) = argmin
δ

∆H̄z|D(δ) (2.26)

The optimal number of sensors in the sensor configuration can be estimated by monitoring

the gain in information as additional sensors are placed in the structure. Usually, after suf-

ficiently number of sensors are placed in the structure, the information gain using additional

sensors is relatively small and the process of adding sensors in the structure is terminated.

The optimization in Eq. 2.26 may result in multiple local/global solutions [57]. The opti-

mization problem can be solved using continuous design variables δ accounting for the location

of the sensors over the physical domain of the structure or discrete design variables δ account-

ing for the discrete locations (e.g., DOF at nodes for placing displacement/acceleration sensors

or Gauss integration points for placing strains sensors in a finite element mesh). Global opti-

mization algorithms [87, 88] as well as stochastic optimization algorithms, such as CMA-ES

[89] and genetic algorithms [45, 90–93] can be employed in order to avoid premature con-

vergence to a local optimum. Alternative heuristic forward and backward sequential sensor

placement (FSSP/BSSP) algorithms [54, 57] are effective in solving the optimization prob-

lem. The heuristic algorithms bypass the problem of multiple local/global optima manifested

in optimal experimental designs, providing near optima solutions in a fraction of the computa-

tional effort required in stochastic optimization algorithms or exhaustive search methods [52].

For a total of Nall possible sensors positions and N0 sensors to be placed in the structure, for

N0 relatively small compared toNall the FSSP algorithm requires approximatelyNF = N0Nall

function evaluations, while the BSSP algorithm requires approximatelyNB = Nall(Nall+1)/2

function evaluations [54]. Although the computational effort for the BSSP is approximately

NB/NF ≈ 0.5Nall/N0 times larger than the computational effort of FSSP and thus FSSP

should be preferred for N0 << Nall, the estimate from BSSP may in some cases be better than
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the FSSP estimate and thus the combined estimate should be used in the optimization. More

details are presented in the applications Section 2.6.

2.4 Model Prediction Error Formulation

Following the analysis in Section 2.2.1, the prediction error e = emeas + emodel in Eq. 2.1 is

partly due to a term, emeas, accounting for the measurement error and partly due to a term,

emodel, accounting for the model error. Assuming that measurement and model errors are

independent and zero-mean Gaussian vectors with covariance matrices Qe,meas and Qe,model,

the covariance of the total prediction error is

Qe = Qe,meas +Qe,model (2.27)

To proceed with the optimal sensor placement design one has to select the values of the

covariance matrices Qe,meas and Qe,model. The selection depends on the nature of the problem

analyzed. The following selections follow the suggestions presented in [94]. For the measure-

ment error term it is reasonable to assume independence of the values of the errors from the

intensity of the response so that Qe,meas = s2I , where I is the identity matrix, and the level

s depends on the sensor accuracy and characteristics. A reasonable choice of the model error

variance Q(ii)
e,model at the i-th DOF is to have it proportional to the square of the intensity of the

QoI at DOF i, given by Q(ii)
y . That is, we select Q(ii)

e,model = σ2
eQ

(ii)
y , where σe denotes the level

of model error in relation to the intensity of the QoI. In this way, the level of model error is

independent on the intensity of the response. In addition, a certain degree of correlation is ex-

pected for the model errors between two neighborhood locations, arising from the underlining

model dynamics [57]. This correlation can be taken into account by selecting a non-diagonal

covariance matrixQe,model. The correlationQ(ij)
e,model between the predictions errors ei,model and

ej,model at DOFs i and j, respectively, can be assumed to be

Q
(ij)
e,model =

√
Q

(ii)
e,modelQ

(jj)
e,model ρ(dij) (2.28)

so that it accounts for the spatial distance dij between the DOFs i and j, where ρ(dij) is a cor-

relation function satisfying ρ(0) = 1. However, in the experimental design phase where data
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are not available, the actual errors and correlations should be postulated in order to proceed

with the design of the optimal sensor locations. Several correlation functions can be explored.

For demonstration purposes in this study, the following exponentially decaying correlation

function is assumed:

ρ(dij) = exp

(
−dij
λ

)
(2.29)

where λ is a measure of the spatial correlation length. However, the formulation in this work

is general and does not depend on the choice of the correlation model.

Using the aforementioned selections, the covariance matrix Qe in Eq. 2.27, required in

Eq. 2.12, simplifies to

Qe = s2I + σ2
eQ̃

1/2
y RQ̃1/2

y (2.30)

where the notation Q̃ denotes a diagonal matrix that contains in i-th diagonal entry the quantity

Q
(ii)
y , Q̃1/2 represents a diagonal matrix with elements the square roots of the elements in Q̃,

and R is the correlation matrix with the (i, j) element Rij equal to ρ(dij).

A similar formulation can be used for the variance Qϵi involved in Eq. 2.12 of the error εi

for the predicted QoI zi. In this case only the model error exists and the i-th diagonal element

of the covariance matrix can be selected to be

Qεi = σ2
εQzi (2.31)

were Qzi is the square of the intensity of the predicted QoI zi(t), and σε is the level of model

error in relation to the intensity of the predicted QoI.

The formulation for the errors and the mathematical structure of the ratio r(θ, φ) in Eq. 2.24

can be used to show a number of useful properties for the utility function and thus for the

information gain. Specifically, in Appendix B.1 it is shown that as the measurement and

model/prediction errors increase for a given sensor configuration, the ratio r(θ, φ) increases

and so the utility function decreases. This indicates that the higher the errors, the less the

information gain from the sensor configuration. Finally, another important property shown in

Appendix B.2 is that adding a sensor in an existing sensor configuration increases the infor-

mation gain, which is similar to the results presented in [54] for parameter estimation. This
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should be expected since as a sensor is added in an existing sensor configuration, there can

be null or extra information provided by this sensor. As a result, the maximum and minimum

value of the utility function is an increasing function of the number of sensors. Lastly, the spa-

tially correlated structure of the model error, introduced in Eq. 2.29, has the important effect

of avoiding clustering of sensors as it was theoretically shown in [57] for OSP for parameter

estimation.

2.5 Implementation

It should be noted that the estimate in Eq. 2.10 of the response QoI z and the error in the

estimate, quantified by the covariance matrix Σz(δ, φ) in Eq. 2.12, depends on the measure-

ment/model and prediction error covariance matrices Qe and Qϵ, as well as the covariance

matrix S of the prior Normal distribution assumed for the modal coordinates ξ(t). The ef-

fect of the values of these covariance matrices on the optimal sensor placement for response

predictions is investigated in this work.

The selection of the the covariance matrix S of the prior normal distribution should take

into account the relative contribution of the different modal coordinates on the response of

the system. Such contribution depends highly on the excitation characteristics. Eq. 2.30 and

Eq. 2.31 also suggest that the values of the covariance matricesQe andQε of the model predic-

tion errors should be carefully selected based on the intensity of the measured and predicted

responses which are not known at the OSP design phase. To proceed with rational selections,

the intensities of measured and predicted QoI have to be considered which depend on the char-

acteristics of the excitation. Thus, the characteristics of the excitation have to be considered

in the analysis in order to decide on the values of the covariance matrices S, Qe and Qϵ upon

which the OSP design will be based. Failing to consider the intensity of the modal coordinates

and the responses in the selection of the prior and error covariance matrices may lead to OSP

designs that are based on non-rational choices of these error covariance matrices.

Due to the uncertainty in the excitation characteristics the values to be assigned for the

model/prediction and measurement errors involve large uncertainty. We proceed with a thor-

ough investigation of the effect of the model/prediction and measurement errors as well as

the effect of the uncertainty in the prior distribution on the information gain and the optimal

sensor location. Finally, the robust design proposed in this work will take into account these
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uncertainties in the design of the optimal sensor configuration.

To demonstrate concepts, we assume a zero-mean stationary white noise excitation. We

also assume, without loss of generality, that the location of the excitation is known. Unknown

locations or multiple excitation components can as well be treated in the formulation. How-

ever, such an analysis is beyond the scope of the present work. Using a linear model (e.g., a

finite element model) of the structure, one can readily obtain the covariance Qξ of the modal

quantities, as well as the covariance of the response QoI (displacements, velocities, strains and

stresses) Qy and Qz. These matrices can be used in Eq. 2.30 and Eq. 2.31 to make the proper

assignment for Qe and Qε through the proper selection of the prediction error parameters σe,

σε and s. Furthermore, accepting that the excitation is white noise, it is also reasonable to

assume that the covariance of the prior distribution for ξ(t) is selected to be proportional to the

covariance Qξ of the modal quantities ξ(t), i.e.,

S = α2Qξ (2.32)

where α quantifies the extent of the uncertainty in the prior distribution. This assignment

will correctly take into account the participation of each mode in the vibration analysis of the

structure.

The analysis for estimating the covariance matrix Qξ of the modal coordinates and the

covariance matrices Qy and Qz of various response QoI is presented next based on the finite

element model of the structure and a discrete state space representation of the modal equations

in Eq. 2.2. Introducing the state space vector xTk = [ ξT
k

ξ̇
T

k
]T at time instant t = k∆t, where

ξ
k
= ξ(k∆t) and ∆t is the sampling time of a signal, the modal in Eq. 2.2 can be written in

the discrete state space form

xk+1 = Axk +Buk (2.33)

where, using zero-order hold, the state space matrices are given as A = exp(Ac∆t) and B =

(A− I)A−1
c Bc with

Ac =

 0 I

−Λ −Z

 , Bc =

 0

ΦTM

 (2.34)
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An output vector QoI hk at time t = k∆t, either it corresponds to measured quantities y or

predicted quantities z, can be written in the form

hk = Cxk +Duk (2.35)

where the matrices C and D relate the response QoI to the state vector and input load vector,

respectively. For displacement, strain or stress responses at all DOF of the structure, the ma-

trices C = GΦ[ I 0 ] and D = 0, where the matrix G relates the displacement DOF with

the output QoI (displacements, strains and stresses). For acceleration responses the matrices

C = GΦ[ −Λ −Z ] and D = GΦΦTM . Here it is assumed that Φ is mass normalized. In

particular, to estimate ξ̈
k

one uses Eq. 2.35 with C = [ −Λ −Z ] and D = ΦTM .

Assuming a scalar stationary zero-mean Gaussian white noise excitation with variance σ2
wn,

the covariance Qx of the state vector under stationary conditions is given by Qx = σ2
wnQ̄x,

where Q̄x can be obtained by solving the discrete Liapunov equation

AQ̄xA
T − Q̄x +BBT = 0 (2.36)

Using Eq. 2.35, the covariance of the output response QoI in the vector h(t) is given by

Qh = σ2
wn(CQ̄xC

T +DDT ) (2.37)

and is proportional to the variance σ2
wn of the discrete white noise excitation. Setting h = y,

or h = z, or h = ξ, the covariance matrices Qy, or Qz, or Qξ are obtained, required in the

error covariance matrices Qe and Qεi in Eq. 2.30 and Eq. 2.31 and the prior distribution S in

Eq. 2.32.

2.6 Applications

The methodology is demonstrated for a square plate structure modeled by thin-shell finite

elements (FEs). The plate is fixed at the left edge. The model is meshed with eight-node shell

elements containing six DOFs per node (Fig. 2.1). To investigate the effect of mesh size on the

optimal sensor placement, two models are considered corresponding to different mesh types:

a coarse and a fine mesh. The coarse mesh model consist of 420 elements, 441 nodes, while
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the fine mesh model consists of 3660 elements and 3721 nodes. Linear elastic behavior is

assumed. The lowest eight natural frequencies of the models for the coarse and fine mesh are

presented in Table 2.1.

Table 2.1: Modal frequencies of the plate modeled with coarse and fine mesh.

Natural Frequency (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Coarse mesh 0.956 2.344 5.897 7.520 8.563 14.989 17.176 17.895
Fine mesh 0.956 2.344 5.868 7.497 8.532 14.934 16.909 17.696

% difference 0.00 0.00 0.49 0.31 0.36 0.37 1.55 1.11

(a) (b)

Fig. 2.1. Square thin plate with left edge fixed (shown in red line); (a) coarse mesh, (b) fine
mesh.

2.6.1 Strain Predictions Using Strain Observations

Normal strain measurements and predictions are considered along the x direction at the mid-

points of all finite elements of the plate surface comprising the mesh. OSP of strain sensors is

performed for predicting the strains at all finite elements of the mesh (Fig. 2.1). Contribution

of the lower eight modes to the dynamic behavior of the plate is assumed in designing the

optimal location of sensors.

2.6.1.1 Model/Prediction Errors, Measurement Error and Prior Distribution

Reasonable choices of the error parameters s, σe and σε involved in the covariance matrices

Qe and Qε in Eq. 2.30 and Eq. 2.31 of the model/prediction and measurement error models

are next considered. For this, it is assumed that the plate is subjected to a concentrated load
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applied at the right bottom corner A, as shown in Fig. 2.1. A broad band excitation is consid-

ered, modeled by a discrete Gaussian white noise sequence with standard deviation σwn. To

select the standard deviation s of the measurement error, the intensities of the normal strain

responses along the x direction predicted for white noise input are computed and shown in

Fig. 2.2(a) and (b) for the coarse and fine mesh, respectively. The intensity of a response QoI

zi is quantified by the standard deviation Q1/2
zi computed by solving the Liapunov Eq. 2.36 and

using Eq. 4.38. The results in Fig. 2.2 are normalized with respect to the intensity σwn of the

white noise input. Approximately 98% of the computed intensities of the strains in all plate

elements are greater than ϵmin ≡ Q
1/2
z,min = 10−6, while the maximum strain intensity value is

approximately ϵmax ≡ Q
1/2
z,max = 2x10−5 = 20ϵmin. To investigate the effect of measurement

error, the parameter s of the error covariance matrix in Eq. 2.30 is selected as shown in Ta-

ble 2.2 to have four different values corresponding to very small, small, moderate and large

measurement error, respectively. The σe of the model error and σε of the prediction error in-

volved in Eq. 2.30 and Eq. 2.31 are selected to be σe = σε = 0.01 and 0.001 corresponding to

small and very small model/prediction errors, respectively. The case of uncorrelated prediction

error is considered (λ = 0 in Eq. 2.29).

The intensities of the modal coordinates ξ(t) predicted for white noise input are shown

in Fig. 2.2(c). It is clear that the intensities of the modal coordinates vary considerably from

mode to mode. This reinforces the fact that the covariance of the prior distribution of the

modal coordinates should carefully be chosen using Eq. 2.32 to take into account the different

intensities of each mode. These modal intensities highly depend on the spatial and temporal

excitation characteristics (number and location of excitation, frequency characteristics, etc.).

The value of α in Eq. 2.32 is selected to be α = 102 and α = 1 corresponding respectively to

large and small uncertainties in the prior distribution of the modal coordinates ξ.

Table 2.2: Different measurement errors s assumed. ϵmin = Q
1/2
z,min ≈ 10−6 is the minimum

value of the element strain that cover 98% of the plate surface. ϵmax = Q
1/2
z,max ≈ 2× 10−5 is

the maximum value of the strain in the plate surface.

Measurement Error s s/εmin s/εmax

Very small 10−9 10−3 5× 10−5

Small 10−8 10−2 5× 10−4

Moderate 10−7 10−1 5× 10−3

Large 10−6 100 5× 10−2
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(a) (b)

(c)

Fig. 2.2. Intensities of normal strains computed along the x direction at the middle of the
finite elements of the mesh (a) for coarse mesh, (b) for fine mesh. (c) Intensities of the modal

coordinates Q1/2
ξ as a function of the number of modes.

FSSP and BSSP Algorithms

The results for the utility values obtained using the FSSP and BSSP algorithms for σe =

σε = 0.01 (small model/prediction errors), s = 10−7 (moderate measurement error) and

α = 102 (large prior uncertainty in modal coordinates) are compared in Fig. 2.3 for coarse

(Fig. 2.3(a)) and fine meshes (Fig. 2.3(b)). The estimates from the two algorithms differ due

to the fact that both algorithms are heuristic and provide approximate values. In this specific

case and for the coarse mesh, the BSSP algorithm provides better solutions for the maximum

and minimum utility for more than eight sensors, while the FSSP algorithm provides better

solution than the BSSP algorithm for one to seven sensors. This observation is not consistent

for the fine mesh where FSSP algorithms provides better estimates for the minimum utility for

all number of sensors, while the BSSP provides a better estimate for the maximum utility for

seven sensors. Similar behavior for the accuracy of the results provided from the FSSP and
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BSSP algorithms is observed for other error cases as well.
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(b)

Fig. 2.3. Comparison of the maximum and minimum utility values as a function of the
number of sensors obtained from FSSP and BSSP algorithms for (a) coarse mesh and (b) fine

mesh.

To increase the reliability of the estimates arising from the two heuristic algorithms, the

final solution is taken from the combination of the FSSP and BSSP solutions. Specifically,

for each sensor configuration containing a fixed number of sensors, the final maximum utility

value is taken to be Umax = max(UF,max, UB,max), where UF,max and UB,max are the max-

imum values estimated from the FSSP and BSSP algorithms, respectively. Additionally, the

optimal sensor placement is selected among the FSSP and BSSP optimal sensor placement

that corresponds to the value of Umax. A similar procedure is used for the minimum utility

value, i.e., Umin = max(UF,min, UB,min). The combined FSSP/BSSP result will be referred

from here on as the sequential sensor placement (SSP) estimate.

The use of BSSP to obtain results has the effect of raising substantially the computational

cost in relation to FSSP. Specifically, comparing the number of function evaluations NF and

NB for the FSSP and BSSP algorithms one has that for N0 = 30 sensors that NB/NF =

0.5Nall/N0 ≈ 6 for the coarse mesh and NB/NF ≈ 60 for the fine mesh. The number of

functions evaluations for BSSP for the fine mesh is two order of magnitude larger than the one

required for FSSP. Additionally, for the spatially correlated prediction error case, the FSSP

and BSSP require the repeated solutions of algebraic linear system of equations of size (see

Eq. 2.12) as high as N0 and Nall, respectively, raising substantially the computational effort

for BSSP in relation to FSSP for the common case for which the number of possible sensor

locations Nall is usually much higher than number of sensors N0 (Nall >> N0) in a sensor
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configuration.

2.6.1.2 Information Gain versus Number of Sensors

The SSP results for the maximum and minimum utility values as a function of the number

of sensors for the optimal and worst sensor configurations for up to 30 sensors are shown in

Fig. 2.4 for different measurement and model/prediction errors for both coarse (Fig. 2.4(a) and

(c)) and fine (Fig. 2.4(b) and (d)) meshes. Large prior uncertainty in the modal coordinates

is assumed (α = 102). Comparing the maximum utility values in Fig. 2.4(a) and (c) for

the coarse mesh with the corresponding maximum utility values in Fig. 2.4(b) and (d) for

the fine mesh, it can be seen that the results are almost indistinguishable. Thus, the mesh

size does not affect the maximum value of the expected information gain, as it should be

expected since the dynamic characteristics from both meshes do not differ significantly as

shown in Table 2.1. However, the mesh size affects the minimum value of the information

gain, providing substantially lower values of the utility for the fine mesh. This is due to the

fact that a fine mesh contains significantly more finite elements and thus more strain sensor

locations with non-informative strains than the coarse mesh does. It should be noted that the

difference between maximum and minimum expected information entropy values for a fixed

number of sensors gives the maximum information gain that can be achieved by employing

the optimal sensor placement methodology.

To interpret the results in Fig. 2.4, it should be kept in mind that for eight contributing

modes one needs at least eight sensors in order for the information matrix in Eq. 2.12 to be

invertible and the problem to be identifiable without the use of the subjective information

from the prior PDF of the modal coordinates. For less than eight sensors the information

matrix in Eq. 2.12 is not invertible without prior information. The prior covariance matrix

S of the modal coordinates provides the missing information required to make the problem

identifiable. From the results in Fig. 2.4(a), it is observed that the expected information gain

steadily increases as one adds from one to seven sensors due to the increase of the information

from the data, and rises sharply from seven to eight sensors due to the fact that eight sensors

placed at their optimal positions provide the necessary information without the need of the

small complementary information from the prior.
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(a) (b)

(c) (d)

Fig. 2.4. SSP results for maximum and minimum utility values for model/prediction error
σe = σε = 0.001 (a,b) and σe = σε = 0.01 (c,d) obtained for the coarse (a,c) and fine (b,d)

meshes. Results are presented for different measurement errors s as shown in the legend and
for α = 102. The horizontal lines are the maximum utility values that can be achieved by

using strain sensors at all finite elements of the coarse and fine meshes.

Normalized utility values obtained by dividing the maximum and minimum utility values

in Fig. 2.4 by the utility values obtained by placing the maximum number of strain sensors

at all finite elements of the mesh (420 for coarse mesh and 3660 for fine mesh) are presented

in Fig. 2.5 for each measurement and model/prediction error case. By tracking the maximum

normalized information gain values as a function of the number of sensors, it is possible to de-

cide on the number of sensors to be kept in an optimal sensor configuration. One should stop

adding sensors in the structure when the information gained by additional sensors is not sig-

nificant compared to the information gained by the existing sensors, or when the information

gained by a number of sensors is a sufficiently large percentage of the maximum information

that can be achieved by placing sensors at all possible locations (e.g., all finite elements of the

mesh in the plate problem).
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(a) (b)

(c) (d)

Fig. 2.5. Normalized utility values for model/prediction error σe = σϵ = 0.001 (a,b) and
σe = σϵ = 0.01 (c,d) obtained for the coarse (a,c) and fine (b,d) meshes. Results are

presented for different measurement errors s as shown in the legend and for α = 102.

2.6.1.3 Information Gain versus Measurement Error

As seen in Fig. 2.5(a) and (b), for very small model error (σe = σϵ = 0.001) and for very

small (s = 10−9) to small (s = 10−8) measurement error, eight sensors placed at their optimal

positions account for approximately 97% to 93% of the maximum information that can be

gained by adding strain sensors at all possible locations. For moderate (s = 10−7) and large

(s = 10−6) measurement error, eight optimally located sensors provide an information gain of

the order of 84% and 79% for the coarse mesh and 79% and 70% for the fine mesh compared to

the maximum information gain that can be achieved for the coarse and fine mesh, respectively.

These lower values are due to the fact that information extracted from sensors is affected by

the model and measurement errors. The higher the error, the less the information extracted

from the sensors. Additionally, comparing the normalized information gain values for the fine

and coarse meshes, smaller normalized information gain values are reported for the fine mesh

due to the fact that in these large error case the 3660 strain sensors provide more information
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than the 440 strain sensors placed at all finite element of the fine and coarse mesh, respectively.

Thus the normalizing quantity for the fine mesh is highest for the fine mesh and as a result the

normalized information gain values for the fine mesh appear smaller than the corresponding

ones for the coarse mesh.

For the small measurement error cases (s = 10−9 and s = 10−8), eight sensors placed

at their optimal positions provide most of the information for accurate response prediction

(Fig. 2.5). Given that eight sensors have been placed on the structure, there is very small gain

in information (less than 7%) if the plate is fully populated with sensors. This is mainly due to

the fact that quality of the measurements is very good and/or the model error is small, so the

number of sensors needed is at most the number of sensors required for making the problem

identifiable. For large measurement errors in Fig. 2.5, the quality of information deteriorates

significantly due to measurements and/or model error and so the minimum number of eight

sensors required for identifiability appears less informative than the case of small measure-

ment error. More than eight sensors increase further the utility values, providing significant

additional information to counterbalance the deteriorated quality of the measurements.

Considering the cost of instrumentation, the process of placing more sensors optimally in

the structure in order to gain a higher percentage of the total information should be considered

with care and in some cases might not be justifiable (like in the case of small measurement

and model error for the plate problem). Nevertheless, the final choice of the number of sensors

to be placed in the structure depends on the cost of instrumentation which may also affect the

location of sensors, especially for the cases where instrumentation cost depends on the location

of sensors. For example, not easily accessible areas in a structure, such as underwater locations

in off-shore platforms or wind turbines, might substantially increase the cost of adding sensors

in relation to the cost of instrumenting easily accessible areas. However, considering cost

issues in designing the sensor configuration falls outside the objectives of this work and the

reader is referred to value of information formulations (e.g., [72, 73]).

Fig. 2.6 and Fig. 2.7 plots the information gain as a function of the measurement error s

for 8, 30 and Nall sensors, for both the coarse and the fine mesh, where Nall is the number

of finite elements in the coarse or fine mesh. For fixed number of sensors, the information

gain decreases as the measurement error increases. This is due to the fact that the quality

of information contained in measurements decreases due to higher noise to signal ratio, and

thus the information gain is lower as the measurement error increases. The decrease is more
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pronounced for very small modeling error (σe = σϵ = 0.001) since most of the error in this

case, modeled in the covariance matrix Qe in Eq. 2.27, arises from the measurement error. For

higher model error (σe = σϵ = 0.01) shown in Fig. 2.6(c) and (d), the information gain values

are less sensitive to the measurement error values of s = 10−9 (very small), s = 10−8 (small)

and s = 10−7 (moderate), while there is a more pronounced drop in information gain for large

measurement error (s = 10−6). This insensitivity of the information gain to smaller values of

the measurement error is due to the fact that the larger value of model error dominates the very

small to moderate measurement errors as seen by the mathematical model for Qe in Eq. 2.30.

The quality of information in the data will be further deteriorated only for sufficiently large

values of measurement error (here s = 10−6).

8 sen, =10
2

30 sen, =10
2

400 sen, =10
2

8 sen, =1

30 sen, =1

400 sen, =1

(a)

8 sen, =10
2

30 sen, =10
2

3600 sen, =10
2

8 sen, =1

30 sen, =1

3600 sen, =1

(b)

(c) (d)

Fig. 2.6. Information gain values versus measurement error for 8, 30 sensors and Nall

sensors (Nall = 440 and 3660 respectively for the coarse and fine mesh), for α = 102 and
α = 1; (a,b) σe = σϵ = 0.001, (c,d) σe = σϵ = 0.01, (a,c) coarse mesh, (b,d) fine mesh.

Comparing the results in Fig. 2.6 for values of α = 1 and α = 102 corresponding to small

and large prior uncertainty in the modal coordinates, it is clearly seen that the information
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gain for small prior uncertainty is less than the information gain for large prior uncertainty

since significant part of the information is provided from the more informative (due to nar-

rower bounds) prior distribution of the modal coordinates ξ(t), making the data effectively

less informative. Comparing the results in Fig. 2.7, the decrease in the percentage informa-

tion gain, normalized with respect to the maximum information that can be achieved by fully

populating the plate with strain sensors, is more pronounced as the measurement error in-

creases. For example, 30 sensors placed at their optimal position using α = 1 (narrower prior

bounds) accounts for approximately 70% of the information that can be gained from strain

sensor placement as opposed to approximately 90% of the percentage information gain that

can be achieved with α = 102 (large prior uncertainty bounds). This is expected since in the

case of α = 1 the prior contains significant information in relation to the information provided

from the data.

8 sen, =10
2

30 sen, =10
2

400 sen, =10
2

8 sen, =1

30 sen, =1

400 sen, =1

(a)

8 sen, =10
2

30 sen, =10
2

3600 sen, =10
2

8 sen, =1

30 sen, =1

3600 sen, =1

(b)

(c) (d)

Fig. 2.7. Normalized information entropy versus measurement error for 8, 30 and Nall

sensors (Nall = 440 and 3660 respectively for the coarse and fine mesh), for α = 102 and
α = 1; (a,b) σe = σϵ = 0.001, (c,d) σe = σϵ = 0.01, (a,c) coarse mesh, (b,d) fine mesh.
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2.6.2 Optimal Locations of Strain Sensors

Optimal strain sensor positions for 8 and 30 sensors are shown in Fig. 2.8 and Fig. 2.9 for

model/prediction errors σe = σϵ = 0.001 and 0.01, respectively. The optimal sensor locations

are compared for different values of the measurement errors. Comparing Fig. 2.8(a) and (b)

for eight sensors and Fig. 2.8(c) and (d) for 30 sensors, it can be seen that the results for the

coarse and the fine mesh are very similar for a given measurement error. For very small mea-

surement error, sensors are placed towards the right edge of the plate where strains are small

compared to the strains at the left side and middle area of the plate. The reason is that the OSP

methodology for predicting strain responses in all finite elements of the plate has a tendency to

spread the sensors to cover the whole surface of the plate as long as the quality of information

is very good over the plate surface. In the very small measurement error case, the errors are

much smaller than the intensity of the strains and so signal to noise ratio is high and most

strain locations in the plate are informative. For large measurement errors, placing sensors

in the right edge is avoided since the signal to noise ratio decreases and the quality of infor-

mation from sensors placed towards the right edge is substantially deteriorated. For higher

model/prediction error values of σe = σϵ = 0.01 (see Fig. 2.9) there is a tendency that the sen-

sor moves from left to the right, towards strains with smaller intensities. This is due to the fact

that higher model/prediction error dominates the overall error, with the size of measurement

error playing a lesser role in the optimal sensor placement design. In this case, since the model

error is assigned in each position as a fraction of the intensity of the strains measured in the

respective positions, all positions on the surface plate do provide similar information with the

noise (here model error) to signal ratio to be the same, thus the sensors towards the left edge

are equally counted in the optimal sensor placement methodology.
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(a) (b)

(c) (d)

Fig. 2.8. Best sensor positions obtained with model/prediction error σe = σϵ = 0.001 for 8
sensor for (a) coarse and (b) fine mesh, and for 30 sensor for (c) coarse and (d) fine mesh.
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(a) (b)

(c) (d)

Fig. 2.9. Best sensor positions obtained with model/prediction error σe = σϵ = 0.01 for 8
sensor for (a) coarse and (b) fine mesh, and for 30 sensor for (c) coarse and (d) fine mesh.

2.6.3 Effect of Spatial Correlation of Model Error

It is observed in Fig. 2.8(c) and (d) and Fig. 2.9(c) and (d) that the 30 sensors placed optimally

in the structure are clustered in specific regions on the plate surface. The size of each clustering

region is proportional to the size of the finite element used for coarse and fine mesh. So

clustering in similar for both coarse and fine mesh sizes. To avoid sensor clustering one has to

use the spatial correlation function in Eq. 2.29 [57] for the prediction error.
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(a) (b)

(c)

Uncorrelated

Correlated

(d)

Fig. 2.10. Comparison of optimal sensor placement for 30 sensors for the spatially
uncorrelated (λ = 0) and correlated (λ = 0.1) cases; σe = σϵ = 0.01, α = 102 and

measurement error (a) very small (s = 10−9), (b) small (s = 10−8), (c) moderate (s = 10−7),
(d) large (s = 10−6).

The effect of correlation in the model error is next investigated as a function of the size of

measurement and model error. Fig. 2.10 compares the optimal sensor locations for 30 sensors

for spatially uncorrelated (ρ = 0) and correlated (ρ = 0.1) prediction error models for different

values of the measurement error and for model/prediction error equal to σe = σε = 0.01. The

results clearly indicate that for the correlated case clustering is avoided and the 30 sensors

are more uniformly distributed over the surface of the plate for relatively small to moderate

measurement error. This is due to the fact that the model error dominates the prediction error
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for relatively small measurement error and thus the measurement error has a small effect on the

design of optimal sensor locations. However, for large measurement error, clustering persists

(Fig. 2.10(d)) since the measurement error is the dominant source of error compared to the

model error. Thus model error and as a result the effect of spatial correlation structure of the

model error is insignificant and does not affect the design of the sensors for large (s = 10−6)

values of the measurement error. So the clustering problem reappears and the model error

correlation structure has no effect on the optimal sensor placement.

2.6.4 Effectiveness of Optimal Sensor Configuration for Response Predictions

The effectiveness of the best sensor configuration is next investigated using simulated mea-

surements. For this, simulated strain response time histories are generated from the model of

the plate subjected to white noise input at location A (Fig. 2.1) and using up to eight con-

tributing modes. The simulations are generated using a sampling period ∆t = 0.01 seconds

and the standard deviation σwn = 1 of a Gaussian white noise sequence. To simulate mea-

surement error (noise from sensors), zero mean Gaussian white noise with standard deviation

1% of the simulated response at each time instant is added to generate the noise contaminated

measurements. Alternatively, to simulate model error, the measured data are simulated using

a model with mass values for all finite elements randomly perturbed by adding to the nominal

mass values zero-mean Gaussian distributed values with standard deviation equal to 5% of the

nominal mass values.

The relative errors between the strain responses predicted by the modal expansion tech-

nique given a fixed number of sensors and the simulated measurements are used to demon-

strate the effectiveness of the optimal sensor configuration in the presence of measurement or

model error. The relative strain error at each location is defined as the ratio of the root mean

square error ϵ between the predicted and measured responses over the root mean square value

(intensity) of the measured strain response time history, given by

ϵi,rel =

√
1
N

∑N
k=1 [ẑi (k)− zi (k)]

2√
1
N

∑N
k=1 [zi (k)]

2
(2.38)

where N is the number of data points in the time histories, ẑi (k) is the predicted values

from the nominal model based on the modal expansion Eq. 2.10, and zi (k) is the simulated
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“measurements” at the i-th DOF, and k indicates the time index corresponding to time instant

tk = k∆t.

Fig. 2.11(a) and (b) presents the results for the relative errors of the optimal sensor config-

uration design for eight sensors corresponding to information gain value of U = 8.38 (92% of

the maximum that could be achieved by fully populating the plate surface with strain sensors),

and for two alternative sub-optimal sensor configurations for eight sensors (Fig. 2.11(c) and

(d))) corresponding to lower information gain value of U = 7.4 (81%) and for higher num-

ber of 10 sensors (Fig. 2.11(e) and (f)) also corresponding to lower information gain value of

U = 7 (80%). For the optimal sensor configuration cases the predictions are quite reliable

with relative errors less than 2% and 0.8% over 90% of the surface of the plate for measure-

ments simulated for noise and model error, respectively. The errors are higher over 10% of

the surface close to the right edge where strain level are very low with high noise to signal

ratio in the measured time histories. For both measurement errors (Fig. 2.11(a),(c) and (e))

and model/prediction error (Fig. 2.11(b),(d) and (f)), the predictions from the optimal sensor

configuration (Fig. 2.11(a) and (b)) are consistently better than the predictions obtained from

the sub-optimal sensor configurations since the relative errors based on the optimal sensor

configuration are overall lower than the relative errors obtained from the sub-optimal sensor

configurations over the surface of the plate. In particular, for the case of measurement error,

the predictions based on a sensor configuration with higher number of 10 sub-optimal sensors

(Fig. 2.11(e)) are significantly worse than the predictions from the optimal configuration con-

taining less number of eight sensors (Fig. 2.11(a)), emphasizing the need of a cost-effective

design of the sensor network in a structure. It is also clear that the errors in response pre-

dictions obtained at the measured locations is lower than errors in the predictions at other

non-measured locations. Finally, it should be noted that there exist sensor configurations cor-

responding to information gain values closer to the minimum information gain (not shown in

the figures) that provide relative errors higher than 100% which means that predictions can be

completely unreliable from such non-optimal sensor configurations.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.11. Relative error in response predictions with 8 optimally located strain sensors
corresponding to information gain U = 8.38 (92%) (a,b), with alternative sensor locations
with 8 sensors corresponding to information gain U = 7.4 (81%) (c,d) and with 10 sensors
corresponding to information gain U = 7 (77%) (e,f); (a,c,e) for measurement error, (b,d,f)

for model error. The location of sensors are shown with the box-cross symbols in each
subfigure. (σe = σϵ = 0.01, s = 10−7 and α = 102).

Fig. 2.12 presents relative error results for two optimal sensor configurations for seven
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sensors designed using large prior uncertainty (α = 102) in the modal coordinates and for

two choices of the covariance matrix S of the prior distribution. The first case corresponds to

covariance matrix of the prior proportional to the non-diagonal covariance matrix of the modal

coordinates obtained for white noise input (see Eq. 2.32), while the second choice corresponds

to diagonal isotropic covariance matrix with strength proportional to the variance of the first

modal coordinate (S = α2Qξ(1, 1)I). In the first case the relative intensity of the modal

coordinates is taken into account in the definition of the prior covariance matrix, while in the

second case this relative intensity is ignored and all modal coordinates are equally considered

in the definition of the covariance matrix S of the prior distribution. It can be seen that the error

distribution over the plate surface differs for the two optimal designs. Moreover, the relative

errors in the predictions obtained from the first optimal sensor configuration are lower than

the errors obtained from the second optimal sensor configuration, signifying the importance

in considering the intensity of each mode, affected by the excitation frequency content, in the

choice of the prior.

(a) (b)

Fig. 2.12. Relative error in response prediction with 7 best sensor positions (a) with
S = α2Qξ and (b) with S = α2Qξ(1, 1)I . (σe = σϵ = 0.01, s = 10−7 and α = 102).

2.6.5 Robustness to Model/Prediction and Measurement Error Uncertainties

Robust optimal sensor placement results are next obtained by taking into account the uncer-

tainties in the model/prediction error parameters σe and σε and the measurement error pa-

rameter s. Specifically, the re-parameterization σe = σε = 10−βσ and s = 10−βs is used

and uniform uncertainty is assigned in the values of βσ and βs with bounds that cover the

previously lower and upper values of these parameters. The distributions are selected to be
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βσ ∼ U(2, 3), βs ∼ U(6, 9), where U(a, b) denotes a uniform distribution with lower bound a

and upper bound b. This case accounts for the realistic scenario of uncertain model/prediction

and measurement errors assigned in the formulation, arising mostly from the uncertain exci-

tation intensities and frequency content that have to be taken into account in the design of the

optimal sensor configuration. The uncertain parameters βσ and βs are included in the nuisance

parameter set φ and their uncertainty is taken into account in the generalized utility function in-

troduced in Eq. 2.25. The sparse grid algorithm [86] of order 4 is used to evaluate the integrals

in Eq. 2.25.

Results for the maximum robust information gain values are compared in Fig. 2.13(a) and

(b) with the corresponding maximum information gain values obtained by fixing the uncertain

error parameters values (σe, σε and s) to the minimum values by selecting βσ = 3 and βs = 9,

as well as maximum values by selecting βσ = 2 and βs = 6. The corresponding optimal sensor

locations are compared in Fig. 2.13(c) and (d). It can be seen that the robust information gain

estimates differ from the estimates obtained from the fixed minimum and maximum values of

the model/prediction and measurement error parameters. As expected the results for the robust

information gain values are found between the information gain values using the minimum or

maximum values of the error parameters. The optimal sensor configuration proposed by the

robust OSP methodology differs from the optimal sensor configuration obtained by the OSP

methodology corresponding to minimum values of the error parameters. Specifically, for the

very small model/prediction error case the sensors tend to be placed towards the right edge

of the plate since, despite the smaller strain intensity in this area, the noise to signal ratio is

very small and thus the measurements from this right edge are also informative. The robust

OSP design seems to be closer to the OSP design corresponding to the maximum values of

the error parameters. This is due to the high measurement and model/prediction errors that are

taken into account in the assigned probability distribution of the error parameters. As a result,

sensors designed according to the robust information gain are placed farther away from the

right edge of the plate due to larger noise to signal ratio in the locations close to the right edge.

53

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



(a) (b)

(c) (d)

Fig. 2.13. Comparison of best SSP robust results with best SSP results obtained from large
and small model/prediction and measurement error cases for the coarse mesh and strain

sensors; (a) maximum utility values, (b) normalized utility values; Optimal sensor placement
for (c) 8 sensors, and (d) 30 sensors.

2.7 Strain Predictions Using Displacement Observations

The methodology is next applied to the case where displacement sensors are used for predict-

ing strains at the midpoints of all finite elements of the coarse mesh. Displacement sensors

measure out-of-plane displacements at the nodes of the mesh, perpendicular to the plate sur-

face. As before, the number of contributing modes are kept to eight. For choosing the mea-

surement and model/prediction error parameters, the intensities of the displacement responses

at all nodes of the finite element mesh to a white noise excitation at the right lower corner of

the plate (point A in Fig. 2.1) are shown in Fig. 2.14. Based on the results in this figure the

54

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



measurement errors can now be selected as in Table 2.3.

Fig. 2.14. Intensities of the displacement observation Q1/2
y as a function of the number of

modes for the coarse mesh.

Table 2.3: Different measurement errors assumed. dmin = Q
1/2
z,min ≈ 10−4 is the minimum

value of the node displacements to discrete white noise input with σwn that cover 92% of the
plate surface. dmax = Q

1/2
z,max ≈ 5× 10−3 is the maximum value of the displacement to same

white noise input.

Measurement Error s s/dmin s/dmax

Very small 10−7 10−3 2× 10−5

Small 10−6 10−2 2× 10−4

Moderate 10−5 10−3 2× 10−4

Large 10−4 100 2× 10−2

Uncertainties in the model/prediction error parameters σe and σε and the measurement er-

ror parameter s are accounted for in the sensor placement design. As before, the re-parameterization

σe = σε = 10−βσ and s = 10−βs is used and uniform uncertainty is assigned in the values of

βσ and βs with bounds to cover the lower and upper values of these parameters shown in

Table 2.3. Thus, the distributions are selected to be βσ ∼ U(2, 3), βs ∼ U(4, 7).

Results for the maximum robust information gain values are compared in Fig. 2.15(a) and (b)

with the corresponding maximum information gain values obtained for very small errors (βσ =

3 and βs = 7) as well as large errors (βσ = 2 and βs = 4). The corresponding optimal sen-

sor locations are compared in Fig. 2.15(c) for eight sensors and Fig. 2.15(d) for 30 sensors.

Comparing the results for the robust error case with the ones for small and large error cases,

the results are found to be qualitatively similar to the ones obtained for strain sensor measure-

ments in Fig. 2.13. Specifically, the robust sensor placement design differs significantly from

the design based on small error case, while it is closer to the sensor placement design based
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on the large error case. The optimal location of displacement sensors for the small error case

tends to also cover the left fixed edge of the plate where displacements are relatively small

compared to the middle and right locations of the plate since the noise to signal ratio from

these displacement locations is small and thus the measured displacements, despite their rela-

tive small values, are informative. The optimal sensor placement for large error tends to move

towards the left edge of the plate where the displacements are usually large and the noise to

signal ratio is small. The locations close to the left edge (fixed support) of the plate are avoided

in this case due to high noise to signal ratio for large measurement errors.

(a) (b)

(c) (d)

Fig. 2.15. Comparison of best SSP robust results with best SSP results obtained from large
and small model/prediction and measurement error cases for the coarse mesh and

displacement sensors; (a) maximum utility values, (b) normalized utility values; Optimal
sensor placement for (c) eight sensors, and (d) 30 sensors.

Fig. 2.16(a) and (b) presents the results for the relative errors for the optimal displacement
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sensor configuration for 8 sensors corresponding to information gain value of U = 7.3 (84%),

and for two alternative sub-optimal sensor configurations for 8 sensors (Fig. 2.16(c) and (d))

corresponding to lower information gain value of U = 6.8 (78%) and for higher number

of 10 sensors (Fig. 2.16(e) and (f)) also corresponding to lower information gain value of

U = 6.6 (75%). Comparing the effectiveness of the optimal and the two sub-optimal sensor

configurations, the results are qualitatively similar to the ones presented in Fig. 2.11(a) and

(b) for the strain sensor case. The relative errors for the optimal sensor configurations are

lower than the relative errors for the two sub-optimal sensor configurations for both 8 and 10

sensors and for both measurement (Fig. 2.16(a),(c) and (e)) and model (Fig. 2.16(b),(d) and

(f)) errors, pointing out the superiority of the optimal sensor configuration for reliable response

predictions.

Comparing Fig. 2.15(a) and (b) with Fig. 2.13(a) and (b), it is clear that the information

gain values for strain sensors in Fig. 2.13(a) and (b) are higher than the information gain

values for displacement sensors in Fig. 2.15(a) and (b). Thus, among the two type of strain

and displacement sensors it is preferred to place in the structure strain sensors. This is also

confirmed from the relative errors values for the optimal sensor configuration obtained for the

displacement sensors in Fig. 2.16(a) and (b). These relative errors reach values as high as 13%

and 1% for the simulated measurement error and the model/prediction error cases, respectively,

which are higher than the corresponding values of 2% and 0.8% for strain sensors presented

in Fig. 2.11(a) and (b). However, this result holds for the specific plate structure analysed

and cannot be generalized for other applications. An investigation for the best combination of

displacement and strain sensors has to be performed for each application. The methodology

proposed in this work can be extended to fuse sensors by optimally placing simultaneously

displacement and strain sensors for gaining the maximum information for response predictions

with the smallest uncertainty.

57

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



(a) (b)

(c) (d)

(e) (f)

Fig. 2.16. Relative error in response prediction with eight optimally located displacement
sensors corresponding to information gain U = 7.3 (84%) (a,b), with alternative sensor

locations with eight sensors corresponding to information gain U = 6.8 (78%) (c,d) and with
10 sensors corresponding to information gain U = 6.6 (75%) (e,f); (a,c,e) for measurement
error, (b,d,f) for model error. The location of sensors are shown with the box-cross symbols

in each subfigure. (σe = σϵ = 0.01, s = 10−5).
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2.8 Conclusions

Using information and utility theory, the optimal sensor placement problem for reliable virtual

sensing and response reconstruction is formulated based on the modal expansion technique as a

problem of maximizing a multi-dimensional integral quantifying the information gain from the

data. The framework addresses the challenging case of output-only vibration measurements

and provides optimal sensor configurations that are robust to uncertainties in model parame-

ters as well as in model/prediction and measurement errors. Such uncertainties are usually not

known in the initial optimal experimental design phase and thus need to be postulated using

prior distributions. Sparse grid or Monte Carlo techniques can be used to estimate the multi-

dimensional integral that arises in the robust formulation. Computationally efficient heuristic

forward and backward sequential sensor placement strategies are combined to estimate the

near optimal sensor locations. Useful expressions are derived for the effect of measurement

and model/prediction errors on the information gained by a sensor configuration. As these

errors increase, it was shown analytically that the information gain decreases. In addition, it

was analytically derived that the information increases as one adds sensors in the structure, as

it would be intuitively expected.

The methodology was demonstrated by designing the optimal strain or displacement sen-

sors over a plate model of a structure. A thorough investigation was conducted on the effect of

measurement and model/prediction errors, the size of the prior uncertainty in the modal coordi-

nates, the spatial correlation structure of the model error, the uncertainties in model/prediction

and measurement errors on the optimal sensor placement and the variation of the highest and

lowest utility (information gain) values as a function of the number of sensors. The issue

of the effect of the excitation characteristics on the design of the optimal sensor configura-

tion was also pointed out. Excitation characteristics (location, intensity and frequency content

of excitations) affect response intensities and thus the selection of the level of measurement

errors due to sensor accuracy and the model/prediction error levels due to different mecha-

nisms activated/re-activated from different excitation levels and/or excitation frequencies. It

was demonstrated that sensor accuracy (measurement error), related to noise to signal ratio,

affected the optimal placement of sensors. The model/prediction error has also an effect on

the optimal design. In particular, when model/prediction error dominates the measurement

error, the accuracy of the sensors plays insignificant role in the design of the optimal sensor
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configuration. The level of noise to signal ratio are not known a priori since the intensity and

frequency content of the excitation and thus the level of measured response is not known. The

size of model/prediction errors due to model inadequacy is also not known a priori. Thus a

robust design is more rational to use in order to better account for uncertainty in measurements

and model/prediction errors. Such robust design over wide uncertainty bounds of errors leads

to optimal sensor placement designs that are closer to the ones obtained for high measurement

and model/prediction errors, provided that measurement error dominates the model/prediction

error. The effectiveness of the optimal designs was validated against sub-optimal ones by

comparing errors in the predictions between the modal expansion method and simulated noise

and/or model error contaminated measurements. It was also found that strain measurements

are slightly more informative than displacement measurements for virtual strain sensing for

the specific application. The proposed information-based method can be extended to select the

optimal sensor configuration that contains both displacement and strain sensors.

The proposed OSP methodology is appropriate to use for reliably reconstructing responses

that are important for providing data-driven safety and performance estimates of systems, as

well as reconstructing stress response time histories that are needed for predicting fatigue

damage accumulation.

Appendix A. Proof of Eq. 2.18

Substituting Eq. 2.14 into the inner integral of Eq. 2.17 and using the properties of the loga-

rithm (ln(A/B) = lnA− lnB), one has

∫
Y

D̃i(δ, φ, y) p(y, φ|δ) dy =

∫
Y

∫
Z

p(zi|y, δ, φ) ln p(zi|y, δ, φ) dzi p(y|φ, δ) dy

−
∫
Z

[∫
Y

p(zi|y, δ, φ) p(y|φ, δ) dy
]
ln p(zi|φ) dzi (A.1)

=

∫
Y

∫
Z

p(zi|y, δ, φ) ln p(zi|y, δ, φ) dzi p(y|φ, δ) dy

−
∫
Z

p(zi|φ, δ) ln p(zi|φ) dzi (A.2)

where the last equality is obtained by interchanging the order of integration of the double

integral in the second term of Eq. A.1 and noting that

∫
Y

p(zi|y, δ, φ) p(y|φ, δ) dy = p(zi|δ, φ) (A.3)
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Introducing the prior information entropy

Hzi

(
φ
)
= −

∫
Z

p(zi|φ, δ) ln p(zi|φ) dzi (A.4)

of zi(t) given the model parameter set φ, and the posterior information entropy

Hzi|D(y, δ, φ) = −
∫
Z

p(zi|y, δ, φ) ln p(zi|y, δ, φ) dzi (A.5)

of zi(t) given the data y and the model parameter set φ, the integral in Eq. A.2 simplifies to

∫
Y

D̃i(δ, φ, y) p(y, φ|δ)dy = −
∫
Y

Hzi|D(y, δ, φ) p(y|φ, δ) dy +Hzi

(
φ
)

(A.6)

Eq. 2.18 is readily obtained by substituting Eq. A.6 into Eq. 2.17.

Appendix B. Properties of Information Gain (Utility Function)

For notational convenience, in the following analysis the dependence of the quantities on the

uncertain parameter set φ is dropped. From the mathematical structure of the covariance ma-

trix Σzi|D(δ) appearing in Eq. 2.12, one can readily observe that the quantity Σzi|D(δ) is non-

negative. Additionally, for four matricesA1 ∈ Rn×n,B1 ∈ Rm×m, V ∈ Rm×n andU ∈ Rm×n,

the following useful property for the inverse of the sum of two matrices holds

(UTB1V + A1)
−1 = A−1

1 − A−1
1 UT (B1 + V A−1

1 UT )−1V A−1
1 (B.1)

Setting A1 = S−1, B1 = Q−1
e , U = V = L(δ)Φ and applying Eq. B.1, the covariance

matrix Σzi|D(δ) in Eq. 2.12 can be written in the alternative form

Σzi|D(δ) = ψT

i
S ψ

i
− ψT

i
SΦTLT (δ)

[
L(δ)ΦSΦTLT (δ) +Qe

]−1
L(δ)ΦSψ

i
+Qεi (B.2)

The ratio between the posterior and prior covariance matrices in Eq. 2.24 can thus be

simplified in the form

rzi|D (δ) = 1−
(L(δ)ΦSψ

i
)T

[
L(δ)ΦSΦTLT (δ) +Qe

]−1
(L(δ)ΦSψ

i
)

ψT

i
S ψ

i
+Qεi

(B.3)

Taking into account that the matrices S and L(δ)ΦSΦTLT (δ) +Qe are semi-positive defi-
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nite and that Qεi > 0, it can be concluded that the second term in Eq. B.3 is non-negative and

thus the value of the ratio is always less than or equal to one, i.e., rzi|D (δ) ≤ 1. As a result,

the utility function, quantifying the information gain from the data for least uncertainty in the

response prediction, is always greater than or equal to zero.

Appendix B.1. Effect of Modelling and Measurement Errors

Next we examine the effects of measurement and model errors quantified by the matrices Qe

and Qε. The higher the value of the prediction error variance Qεi , the higher the value of the

denominator ψT

i
S ψ

i
+ Qεi in Eq. B.3 and the smaller the information gained by the sensor

configuration. Let now Q
′
e be an error covariance matrix similar to Eq. 2.30, corresponding

to higher values of the measurement and model error, so that it admits the representation

Q
′
e = Qe+∆Qe, where ∆Qe is positive definite matrix. This representation is true for the case

where the values of σe and/or σem in Eq. 2.30 are increased to represent higher measurement

and/or modeling error. Substituting Q
′
e in place of Qe in Eq. B.3 and using the expansion

Eq. B.1 for the inverse of [L(δ)ΦSΦTLT (δ) + Q
′
e] = [L(δ)ΦSΦTLT (δ) + Qe + ∆Qe] by

setting A = [L(δ)ΦSΦTLT (δ) + Qe], B = ∆Qe and U = V = I , the following expression

for the new ratio r′zi|D (δ) corresponding to the error covariance matrix Q′
e arises

r
′

zi|D (δ) = rzi|D (δ) +
gT

[
∆Qe + (L(δ)ΦSΦTLT (δ) +Qe)

−1
]−1

g

ψT

i
S ψ

i
+Qεi

(B.4)

where g = (L(δ)ΦSΦTLT (δ) + Qe)
−1(L(δ)ΦSψ

i
). The numerator in the second term in

the right hand side of Eq. B.4 is positive due to the fact that both the matrices ∆Qe and

(L(δ)ΦSΦTLT (δ) + Qe) are positive definite matrices. Thus, the ratio r′zi|D (δ) > rzi|D (δ)

which implies that the information gain decreases as the measurement and model/prediction

errors increase. As the model or measurement errors σe, σε and σem become very large (in the

limit as errors approach infinity), the ratio rzi|D(δ) between the posterior and prior covariance

matrices approach zero and the information gain is zero, independent of the number of sensors

placed in the structure.

Appendix B.2. Utility Versus Number of Sensors

Consider a sensor configuration δ and a new sensor configuration δ1 which consists of the

sensors in the configuration δ and one additional sensor placed in the structure. We will show

that the utility value for the sensor configuration δ1, containing an extra sensor, cannot be
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lower than the utility value of the sensor configuration δ, that is, Ui(δ1) ≥ Ui(δ). Let L(δ1)

and Q̃e be the sensor locator matrix and the covariance error matrix in Eq. 2.24 for rzi|D(δ1)

corresponding to the augmented sensor configuration δ1. Then one has the partitions

LT (δ1) =
[
LT (δ) ℓ1

]
, Q̃1,e =

 Qe q
1

qT
1

Q0

 and Q̃−1
1,e =

 Q̃−1
e p

1

pT
1

p−1
0

 (B.5)

where using the properties of the inverse of a partitioned matrix Q̃e one has

p0 = Q0 − qT
1
Q−1

e q
1

(B.6)

Q̃e = Qe − q
1
Q−1

0 qT
1

(B.7)

Q̃−1
e = Q−1

e +∆Q̃e (B.8)

∆Q̃e = Q−1
e q

1
[Q0 − qT

1
Q−1

e q
1
]−1qT

1
Q−1

e (B.9)

and p
1

depends on the partitions of Q̃1,e. Eq. B.7 was derived using the identity in Eq. B.1.

Using the third of Eq. B.5 and Eq. B.7, the quantity LT (δ1)Q
−1
1,eL(δ1) involved in the ratio

rzi|D(δ1) simplifies to

LT (δ1)Q
−1
1,eL(δ1) =

[
LT (δ) ℓ1

] Q̃−1
e p

1

pT
1

p−1
0


 L(δ1)

ℓT1

 (B.10)

=

[
LT (δ) ℓ1

] Q−1
e 0

0T 0


 L(δ)

ℓT1

+ LT (δ1)

 ∆Q̃−1
e p

1

pT
1

p−1
0

L(δ1) (B.11)

= LT (δ)Q−1
e L(δ) + LT (δ1)∆Q̃1,eL(δ1) (B.12)

where

∆Q̃1,e =

 ∆Q̃−1
e p

1

pT
1

p−1
0

 (B.13)

Note that p0 in Eq. B.6 is positive since it is the diagonal element of the inverse of a

covariance matrix. Thus ∆Q̃e in Eq. B.9 is a positive definite matrix and as a result ∆Q̃1,e in

Eq. B.13 is also a positive definite matrix.

Substituting in the numerator in Eq. 2.24 for the sensor configuration δ1, setting E =

ΦTLT (δ)Q−1
e L(δ)Φ+S−1 and using Eq. B.1 with A = E, B = ∆Q̃1,e and U = V = L(δ1)Φ,
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the ratio r(δ1) for the sensor configuration δ1 takes the form

rzi|D(δ1) =
ψT

i
[ΦTLT (δ)Q−1

e L(δ)Φ + ΦTLT (δ1)∆Q̃1,eL(δ1)Φ + S−1]−1ψ
i
+Qεi

ψT

i
Q−1

e ψ
i
+Qεi

=
ψT

i
[E + ΦTLT (δ1)∆Q̃1,eL(δ1)Φ]

−1ψ
i
+Qεi

ψT

i
Q−1

e ψ
i
+Qεi

=
ψT

i
E−1ψ

i
− ψT

i
Z(δ1)ψi

+Qε

ψT

i
Q−1

e ψ
i
+Qεi

=
ψT

i
E−1ψ

i
+Qεi

ψT

i
Q−1

e ψ
i
+Qεi

−
ψT

i
Z(δ1)ψi

ψT

i
Q−1

e ψ
i
+Qεi

= rzi|D(δ)Ui(δ)−
ψT

i
Z(δ1)ψi

ψT

i
Q−1

e ψ
i
+Qεi

(B.14)

where

Z(δ1) = E−1ΦTLT (δ1)[∆Q̃1,e + L(δ1)ΦE
−1ΦTLT (δ1)]

−1L(δ1)ΦE
−1 (B.15)

from which it follows that rzi|D(δ1) ≤ rzi|D(δ) since the matrices ∆Q̃1,e, Qe, E and thus

Z(δ1) are symmetric and semi-positive definite. As a result, Ui(δ1) ≥ Ui(δ) and thus the

information gained by adding a sensor in an existing sensor configuration, which is consistent

with intuition. Moreover, it is straightforward to conclude that the maximum information gain

is an increasing function of the number of sensors.
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Chapter 3. Information Theoretic-Based Optimal Sensor Placement for
Virtual Sensing using Augmented Kalman Filtering

Original paper: T. Ercan, O. Sedehi, L. S. Katafygiotis and C. Papadimitriou. Information

Theoretic-Based Optimal Sensor Placement for Virtual Sensing using Augmented Kalman

Filtering, Mechanical Systems and Signal Processing. Submitted. (2022).

https://doi.org/10.5281/zenodo.6508382

ABSTRACT

An optimal sensor placement (OSP) framework for virtual sensing using the augmented Kalman

Filter (AKF) technique is presented based on information and utility theory. The framework

is applicable to input and response reconstruction when output-only vibration measurements

are available. Using information theory, a utility function is built to quantify the expected

information gained from the data for reducing the uncertainty of unmeasured quantities of in-

terest (QoI). Taking into account the AKF equations and exploiting the Gaussian nature of the

response QoI arising from linear dynamic systems, useful and informative analytical expres-

sions are derived for the utility function. Subsequently, the utility function is extended to make

the OSP design robust to uncertainties in the structural model and modeling error parameters,

resulting in a multidimensional integral of the expected information gain over all possible

values of the uncertain parameters, weighted by their assigned probability distributions. The

proposed OSP framework maximizes this utility function through heuristic sequential sensor

placement (SSP) strategies (forward and backward SSP) and genetic algorithms (GA) to opti-

mize the type and location of sensors. A new modified SSP strategy is proposed that exploits

the computational efficiency of the less accurate forward SSP algorithm and the accuracy of

the computationally expensive backward SSP algorithm. A thorough study of the effect of the

measurement and model/prediction errors and their uncertainties, as well as the input uncer-

tainties on the selection of the optimal sensor configuration is presented using a finite element

model of a plate loaded by a single concentrated input force, highlighting the importance of

accounting for robustness to errors and other uncertainties.
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3.1 Introduction

In the context of structural identification, the calculation of dynamical responses is required

for system identification, damage detection, reliability analysis, and fatigue monitoring. Al-

though physical sensors serve to provide such information, their usage naturally visits budget

constraints, as well as practical considerations like inaccessibility of positions and infeasibil-

ity of obtaining direct measurements. Consequently, the reconstruction of unknown quantities

from a limited number of physical sensors, also referred to as ”virtual sensing”, has attracted

extensive attention due to its pivotal role in monitoring performance/safety-related indices,

e.g., accelerations, displacements, inter-story drifts, strains, and stresses. However, the suc-

cess of virtual sensing in structural dynamics heavily depends on proper placement of a limited

number of sensors, which is the subject of the present work.

Modal expansion [1–6] and filtering techniques [7–15] are conventional virtual sensing

tools. Although the former technique can reconstruct unobserved history responses, it cannot

calculate external loadings applied to the structure. Additionally, the modal expansion is not

flexible enough for fusing different types of physical sensors as it only applies to estimating

dynamical responses, e.g., strains, displacements, and accelerations, from the same kind of

sensors. In contrast, filtering techniques, including Minimum-Variance Unbiased filters [8]

and Bayesian filtering methods [16, 17], can handle both input reconstruction and multi-type

sensor fusion.

Virtual sensing of strain/stress responses is necessary for fatigue damage identification.

Papadimitriou et al. [18, 19] were the first to combine output-only vibration measurements,

finite element models, and virtual sensing tools with stochastic and deterministic fatigue the-

ories for characterizing fatigue damage accumulation in the entire body of metallic structures.

Such predictions are based on the actual operating conditions of structures and thus provide

realistic fatigue estimates consistent with existing fatigue theories. In recent years, modal

expansion and filtering techniques were applied for strain/stress virtual sensing [3, 20–28]

and fatigue estimation [29–34] for numerous structures using a limited number of displace-

ment/strain sensors. Substructure decoupling of linear and nonlinear models of structures has

been integrated into fatigue monitoring methods, which uses filtering techniques for identify-

ing the forces at the interface between the analyzed linear substructure (or component) and the

rest of the structure [35–38].
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Optimal sensor placement techniques for structural dynamics applications have been pro-

posed to extract the most informative data that will increase the accuracy of the estimates from

a given number of sensors. A recent article [39] reviews the subject, summarizing methods and

optimization algorithms for optimizing the location of sensors in structural dynamics applica-

tions. However, a limited number of OSP studies exist for virtual sensing based on output-only

vibration measurements.

Based on filtering techniques introduced for the case of unknown loads, a number of

OSP methods have been developed recently for state estimation and response reconstruction

[28, 40, 41], as well as for load estimation [42, 43]. The methods are based on minimizing a

scalar measure of the steady-state reconstruction error covariance of the response and/or input

with respect to the location of sensors. In most of the approaches, the scalar measure is cho-

sen to be the trace of the reconstruction error covariance matrix. The use of a scalar measure

(usually the trace) of the steady-state covariance of the reconstruction error is borrowed from

optimal sensor placement strategies proposed in structural dynamics applications for response

reconstruction based on Kalman-type filter methods subjected to known loads [44–46]. The

size of the reduction of the measure as a function of the number of sensors is used to select

a reasonable number of sensors. More specifically, in [47] a multi-type OSP strategy is pro-

posed based on Gillijns and De Moor filtering technique [48], demonstrating the OSP to be

independent of the type and time evolution of the external excitation(s). The forward sequen-

tial sensor placement (FSSP) technique [49] was used as a heuristic algorithm to carry out the

optimization problem in which acceleration and strain sensors were added sequentially at their

optimal location that maximizes the estimation error of the reconstructed responses. In a very

similar approach, Peng et al. [41] proposed the backward sequential placement (BSSP) algo-

rithm [49], instead of the FSSP algorithm, to optimize the location of acceleration and strain

sensors.

Focusing on optimal sensor placement for multiple load estimation, a method is proposed

in [43] based on the condition number of a system observability metric using AKF for linear

systems [7, 50] and using extended Kalman filter for nonlinear system [51]. Recognising that

observability offers only the minimum requirements for a stable estimation, two alternative

metrics for best load identification are proposed in [42], based on steady-state error covariance

of the load estimation and sensor bandwidth through the transfer function between real and

estimated inputs. The metric in the first method involves the trace of the steady-state error co-
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variance of the load estimation. Satisfying conditions of observability and invertability, Maes

et al. [52] proposed an optimal sensor layout for load estimation which leads to a minimum

set of position and acceleration sensors equal to the number of loads to be identified.

Information theoretic-based methods have also been used in structural dynamics to opti-

mize the sensor configuration [53–64]. In these methods a measure of the information gained

from the sensor data, such as mutual information, relative entropy and Kullback-Leibler diver-

gence (KL-div) computed from a Bayesian formulation is optimized with respect to the sensor

locations. OSP techniques based on information-theoretic methods for virtual sensing has also

proposed based on either modal expansion technique [65–67] or filtering techniques [68, 69].

In this work, considering the availability of output-only vibration measurements, a novel

OSP framework is presented for accurate virtual sensing (response and/or load reconstruc-

tion) in linear systems based on the AKF technique and information theory. The information

gained by a sensor configuration is measured by the KL-div [70] between the posterior and

prior probability distribution of the response QoI to be virtually sensed or reconstructed at

each time step, by combining available AKF techniques and sensor data. This is obtained

using the Lindley’s utility function [71, 72] quantifying the average information in the data

over all possible measurements generated by the prediction error model. For more than one

reconstructed QoI, the KL-div is averaged over all possible virtually sensed QoI. For linear

models of systems, exact analytical expressions are developed for the utility function in terms

of the variance of the responses of the virtually sensed QoI. The utility measure is extended

to include uncertainties in the model parameters, as well as in the model/prediction and mea-

surement errors, which during the experimental design phase are subjectively assigned in the

modeling and filtering process. The optimal sensor configuration is finally obtained by maxi-

mizing the expected information gain over all possible values of the uncertain parameters. The

resulting multidimensional integral are computed using sparse grid or Monte Carlo techniques.

Heuristic algorithms and a GA are introduced to carry out the discrete optimization problem.

The high computational burden associated with BSSP and the lack of sufficient accuracy of

the FSSP are discussed, and remedies are proposed to attain an accurate and computationally

efficient algorithm.

This study is organized as follows: In Section 3.2, the AKF technique is outlined for

characterizing the uncertainty in the prediction of input and response QoI. In Section 3.3, the

optimal sensor placement methodology is presented based on utility and information theory.
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An application on a square plate structure is used in Section 3.4 to demonstrate the capabilities

and effectiveness of the OSP methodology for reliable virtual sensing. Conclusions are drawn

in Section 3.5.

3.2 Bayesian Virtual Sensing Using Augmented Kalman Filter

Consider a structural model used to predict the temporal variability of the response z(t;φ) ∈

Rnz (e.g., accelerations, displacements, strain or stresses) at nz locations given the values of

a structural model parameter set φ (e.g., stiffness, mass and damping related parameters) and

the excitation vector u (t) ∈ Rnu . Let D =
{
y(t) ∈ RN0

}
be the vector of response time

history data collected by placing N0 sensors on the structure. These data depend on the sensor

configuration vector δ ∈ RN0 indicating the location and measurement direction of sensors.

The data may consist of acceleration, displacement, and strain measurements.

In what follows, a linear finite element model of the structure is assumed with n degrees of

freedom (DOF). The governing equations of motion are developed either in the physical space

or in the modal space using modal analysis and keeping up to m contributing modes.

3.2.1 State-Space Formulation

The governing equations of motion of the structure are formulated in state-space form by

defining the state vector x(t) ∈ Rn of the displacement and velocity vector or, for the case of

modal analysis, the state vector is defined as x(t) = (ξ(t), ξ̇(t))T , with respect to the modal

coordinate vector ξ(t) ∈ Rm and its first derivative. Converting the continuous state space

equation into the discrete state space using the notation xk = x(k∆t), where k is the time

index and ∆t is the discretization time interval, the discrete state-space system becomes

xk+1 = Axk +Buk + wk (3.1)

where A and B are the system matrices and wk the process noise assumed to be zero-mean

Gaussian, i.e. wk ∼ N(0, Q) with process noise covariance Q ∈ Rm×m. The observation

equation is given by

y
k
= Gxk + Juk + vk (3.2)
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where the measurement error term follows a zero-mean Gaussian distribution, i.e. vk ∼

N(0, R), with measurement error covariance R ∈ RN0×N0 . The prediction equation takes

a similar form to the observation equation,

zk = G̃xk + J̃uk + εk (3.3)

where the prediction error term also follows a Gaussian distribution, i.e. εk ∼ N(0, Rε), with

prediction error covariance Rε ∈ Rnz×nz .

3.2.2 Review of AKF

In this work, it is assumed that the excitation time histories denoted by u (t) are not available.

Lourens et al. [7] presented an AKF technique to identify the dynamic forces applied to the

structure and also estimate the state of the system This is achieved by using a random walk

model for the forces [50, 73]

uk+1 = uk + η
k

(3.4)

where uk ≡ u(k∆t) is the input force at tk = k∆t, η
k
∼ N(0, S) is a zero-mean Gaussian

prediction error with covariance matrix S ∈ Rnu×nu . The unknown forces are added in the

state vector, and then this augmented vector can be estimated using a standard KF. Specifically,

introducing the augmented state vector xak = [xTk , u
T
k ]

T ∈ R2m+nu and using Eq. 3.1 and

Eq. 3.4, the augmented state-space model and observation equations are formulated as follows:

xak+1 = Aax
a
k + ζ

k

y
k
= Gax

a
k + vk

(3.5)

where the augmented state space matrix Aa ∈ R(2m+nu)×(2m+nu) and observation matrix Ga ∈

RN0×(2m+nu) are defined as

Aa =

A B

0 I

 , Ga =
[
G J

]
(3.6)

while the augmented process noise covariance matrix Qa ∈ R(m+nu)×(m+nu) of the zero-mean
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Gaussian white noise sequence ζ
k
∼ N(0, Qa) is given as

Qa =

Q 0

0 S

 (3.7)

The augmented state vector can be estimated through the standard Kalman filter (KF),

which provides the estimate x̂ak|k and the error covariance matrix Pk|k ∈ R(2m+nu)×(2m+nu)

obtained using the following time and measurement update steps:

Time update:

x̂ak|k−1 = Aax̂
a
k−1|k−1

Pk|k−1 = AaPk−1|k−1A
T
a +Qa

(3.8)

Measurement update:

Lk = Pk|k−1G
T
a (GaPk|k−1G

T
a +R)−1

x̂ak|k = x̂ak|k−1 + Lk(yk −Gax̂
a
k|k−1)

Pk|k = Pk|k−1 − LkGaPk|k−1

(3.9)

It should be noted that these equations provide the mean and covariance of the underlying

Gaussian distribution. Substituting the first of Eq. 3.9 into the third of Eq. 3.9, the error

covariance matrix Pk|k also takes the convenient form

Pk|k = Pk|k−1 − Pk|k−1G
T
a (GaPk|k−1G

T
a +R)−1GaPk|k−1 (3.10)

Using the augmented formulation, the prediction equation Eq. 3.3 takes the form

zk = Ψxak + εk (3.11)

where Ψ =
[
G̃ J̃

]
with mean ẑk = Ψx̂ak and error covariance matrix Pz,k|k ≡ E[(zk −

ẑk)(zk − ẑk)
T ] given by

Pz,k|k = ΨPk|kΨ
T +Rε (3.12)

81

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



For practical convenience and without loss of generality, stationarity conditions are next

assumed, implying that the covariance matrices R, Rε and S are independent of the time index

k. Moreover, the parameter set φ is augmented to include the parameters defining the covari-

ance matrices R, Rε and S. Although it is not explicitly stated in the above formulation, the

error covariance matrices Pk|k−1 and Pk|k at the time update and the measurement update steps,

respectively, depend on the parameter set φ and the sensor configuration δ. This dependence

will be explicitly introduced in the formulation provided in the following section.

3.2.3 Steady-State Formulation of Prediction Error Covariance Matrices for Time and

Measurement Update

In particular, the steady-state solution is obtained by setting Pk+1|k = Pk|k−1 = P∞ ≡

P∞(δ, φ) ∈ R(2m+nu)×(2m+nu), where the last notation is introduced to represent the depen-

dence of P∞ on the model parameter set φ and the sensor configuration δ. Substituting Eq. 3.10

into the first line equation of Eq. 3.9, the converged steady state error covariance P∞ at the time

update step is then obtained by solving the following discrete-time algebraic Riccati equation:

AaP∞A
T
a − P∞ − AaP∞G

T
a (GaP∞G

T
a +R)−1GaP∞A

T
a +Qa = 0 (3.13)

The steady-state solution for the error covariance matrix at the measurement update step is

denoted by Pk|k ≡ Σx|D(δ, φ). Setting Pk|k−1 = P∞ and Pk|k = Σx|D(δ, φ) in Eq. 3.10, one

derives that Σx|D(δ, φ) is given in terms of P∞ as follows:

Σx|D(δ, φ) = P∞ − P∞G
T
a (GaP∞G

T
a +R)−1GaP∞ (3.14)

Finally, the steady-state error covariance matrices Pz,k|k−1 ≡ Σz(δ, φ) and Pz,k|k ≡ Σz|D(δ, φ)

of the predicted QoI z at the time update and the measurement update steps, respectively, are

derived from Eq. 3.14 to be in the form

Σz(δ, φ) = ΨP∞(δ, φ)ΨT +Rε (3.15)

Σz|D(δ, φ) = ΨΣx|D(δ, φ)Ψ
T +Rε (3.16)

Note that from the structure of the process, observation, and prediction equations, the response
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prediction vector z follows a multivariable normal distribution

p(z|(δ, φ) = N
(
z|ẑ(δ, φ),Σ(δ, φ)

)
(3.17)

with mean ẑ(δ, φ) given by Eq. 3.11 that depends on the data, and covariance matrix Σ(δ, φ)

given by Eq. 3.15 for the time update step and by Eq. 3.16 for the measurement update step

that does not depend on the data. In particular, the variance of the i-th element zi(t; δ, φ) of

the response vector z(t; δ, φ) is given by the i-th diagonal element of the covariance matrix,

which simplify to

Σzi(δ, φ) = ψT
i P∞(δ, φ)ψi +Rεii (3.18)

Σzi|D(δ, φ) = ψT
i Σx|D(δ, φ)ψi +Rεii (3.19)

for the time update and the measurement update steps, respectively, where ψi is the i-th row

of the matrix Ψ.

The prior variance Σzi(δ, φ) in Eq. 3.18 and the posterior variance Σzi|D(δ, φ) in Eq. 3.19,

described in terms of the parameters φ and the sensor locations δ, are the main quantities

involved in the next section to solve the optimal sensor location problem for response recon-

struction. It is clear that these variances are independent of the measurements/data y(t) and

depend only on the structural model parameters φ, the process, measurement and prediction

error covariances Qa, R and Rε.

3.3 Optimal Sensor Placement Formulation

3.3.1 Expected Utility Using Information Gain

The design objective is to select the sensor configuration (type, location, and number of sen-

sors) that maximizes the information contained in the data for predicting with the least un-

certainty in the output response QoI zi at desirable DOF or locations i. This is achieved by

combining the information theory with utility theory to evaluate the usefulness of a sensor con-

figuration. A measure of the information gained from a sensor configuration δ for estimating

a response QoI zi, given a set of data D and the model parameters φ, is the KL-div [70] be-

tween the prior and posterior probability distribution of the output QoI zi. Following Lindley’s
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work [71], utility theory is used to measure the usefulness of the sensor configuration, with

the utility function selected to be the expected value of the information gain quantified by the

expected KL-div over all possible values of the experimental data.

At each time step, the information is gained only in the measurement update step of the KF

formulation. By solving the Riccati equation, the stationary prior variance Σzi(δ, φ) can be up-

dated, giving the stationary posterior variance Σzi|D(δ, φ). Using the steady-state formulation

and recognising that the probability distributions of the estimates at the time and measurement

update steps are Gaussian with the variances of these distribution to be independent of the

data, the information gained using the data from k − 1 to k time instances is given by [66]

Ui(δ, φ) = −∆Hi(δ) = −
[
Hzi|D(δ, φ)−Hzi(δ, φ)

]
(3.20)

where Hzi(δ, φ) and Hzi|D(δ, φ) are the information entropies corresponding to the Gaussian

distributions with variances given by Eq. 3.18 and Eq. 3.19 at the time update and measurement

update steps of the KF formulation. Using the expressions for the information entropy of a

Gaussian distribution scalar variable written with respect to the variance of the variable, the

expected utility function Ui finally takes the form [66]

Ui(δ) = −1

2
ln

Σzi|D(δ, φ)

Σzi(δ, φ)
(3.21)

Here, Ui(δ) represents the expected information gain over all possible values of the data, given

the value of the model parameters φ.

For several output QoI included in the vector z, the information gain measure can be ex-

tended to the weighted average of the information gain for all possible output QoI, given as

Ū(δ) =
Nz∑
i=1

wiUi(δ) (3.22)

with
∑Nz

i=1wi = 1, wi ≥ 0, where the values of the weight wi are selected to quantify the im-

portance of the i-th QoI zi in the design of the sensor configuration. Substituting Eq. 3.21 into

Eq. 3.22, and extending the utility function to include the uncertainty in the model parameters

φ, the expected utility function that accounts for all response entries in the vector z takes the
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form

U(δ) =

∫
Φ

Ū(δ) p(φ) dφ = −1

2

nz∑
i=1

wi

∫
Φ

ln
Σzi|D(δ, φ)

Σzi(δ, φ)
p(φ) dφ (3.23)

Using equal weight values wi = 1/nz, the utility function takes the form

U(δ) = − 1

2nz

∫
Φ̃

ln
nz∏
i=1

Σzi|D(δ, φ)

Σzi(δ, φ)
p(φ) dφ (3.24)

where p(φ) is a probability distribution that is postulated to quantify the uncertainties in the

values of model and input characteristics involved in φ; U(δ) represents the expected informa-

tion gain over all possible values of the model parameters φ, weighted by the prior PDF p(φ)

of the model parameters. The multidimensional integral in Eq. 3.23 or Eq. 3.24 is a proba-

bility integral representing the robust information gain. The multidimensional integral can be

evaluated using Monte Carlo techniques or sparse grid methods [74, 75].

3.3.2 Optimal Sensor Placement

The optimal sensor configuration δopt is obtained by maximizing the utility U (δ) with respect

to the design variables δ, i.e.

δopt = argmax
δ

U(δ) (3.25)

The optimal number of sensors in the sensor configuration can be estimated by monitoring

the information gain as additional sensors are placed in the structure. Usually, once suffi-

cient number of sensors is placed, the information gain using additional sensors is relatively

small and the process of adding sensors in the structure is terminated. The optimization prob-

lem is solved using discrete design variables associated with either the DOF where accelera-

tion/displacement sensors are placed or the Gauss integration points where strain sensors are

placed. To implement the discrete optimization algorithms for two types of sensors simultane-

ously, sayNa acceleration sensors andNs strain sensors, we order the possible sensor locations

in a new set containing all Nall = Na +Ns sensor locations consisting of 1 to Na acceleration

sensors and Na + 1 to Na +Ns strain sensors and the optimization is then performed over the

new set of Nall sensors. The optimization is performed using the SSP and/or GA algorithms.
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3.3.2.1 Heuristic SSP Algorithms

Heuristic algorithms [39, 49, 63] have been used to effectively solve the optimization problem

and provide near optimal solutions. Herein, the forward and backward sequential sensor place-

ment (FSSP/BSSP) algorithms [49, 76] and the combined FSSP/BSSP algorithm [66], termed

SSP, are used to provide near optima solutions [53]. Let N0 be the number of sensors to be

placed in the structure at Nall possible sensors positions. As demonstrated in the past [53],

FSSP and BSSP algorithms offer systematic and computationally very efficient approaches for

computing sequentially a near optimal sensor configuration involving 1 to N0 sensors. Specif-

ically, for the FSSP algorithm, given the positions of (i− 1) sensors in the structure computed

in the previous (i−1) steps, the position of the next ith sensor is obtained as the one, out of the

remaining (Nall − i+ 1) possible sensor positions, that gives the highest increase in the infor-

mation gain for i sensors, with the positions of the first (i−1) sensors fixed at the optimal ones

already obtained in the previous (i − 1) steps. This process starts for i = 1 and is continued

for up to N0 sensors. BSSP algorithm starts with Nall sensors placed at all possible position

of the structure and proceeds by removing sequentially one sensor at a time from the position

that results in the smallest decrease in the information gain. Given that i sensor remain in the

structure after removing Nall− i+1 sensors, the process of evaluating which sensor to remove

from the remaining i positions involves evaluating i sensor configuration each one involving

i − 1 sensors. This procedure is repeated, starting from i = Nall until it terminates for i = 2.

It should be noted that the FSSP provides the optimal sensor location for 1 up to N0 sensors,

while BSSP provides the optimal sensor configuration for 1 to Nall sensors.

The computational cost depends on the number of function evaluations and the floating-

point operations involved in each function evaluation. Note that the floating-point operations

for solving the Riccatti equation (Eq. 3.13) is expected to increase as the number of sensors in

a sensor configuration increases.

BSSP evaluates sensors configurations starting with as many as Nall sensors and sequen-

tially removing 1 sensor at each step until a sensor configuration with 1 sensor is reached. Con-

versely, FSSP evaluates sensor configurations starting with 1 sensor and sequentially adding a

sensor until a sensor configuration with N0 sensors is reached.

For Nall > N0, i.e. for the case that the number of sensors to be placed in the structure

is small compared to the number of possible sensor positions, usually the case in structural

86

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



dynamics applications, the use of BSSP to obtain results has the effect of raising substantially

the computational cost as compared to FSSP. Thus, from the computational point of view, the

FSSP algorithm should be the preferred algorithm in applications. However, the estimates

from the two algorithms are expected to differ due to the fact that both algorithms are heuristic

and provide approximate values.

To increase the reliability of the estimates arising from the two heuristic algorithms, the fi-

nal solution is taken from the combination of the FSSP and BSSP solutions, referred as the

SSP estimate. Specifically, for each sensor configuration containing a fixed number of sensors,

the final maximum utility value is taken to be Umax = max(UF,max, UB,max), where UF,max and

UB,max are the maximum values estimated from the FSSP and BSSP algorithms, respectively.

Additionally, the optimal sensor placement is selected among the FSSP and BSSP optimal

sensor placement that corresponds to the value of Umax. A similar procedure is used for the

minimum utility value, i.e., Umin = max(UF,min, UB,min).

When FSSP is used to compute the best sensor configuration, in order to meet the AKF sta-

bility conditions for np input loads, the first np sensors are required to be acceleration sensors

placed at their optimal positions. Similarly, when the worst sensor configuration is computed,

the first np sensors are selected to be acceleration sensors placed at their worst positions.

3.3.2.2 Genetic Algorithms (GA)

Genetic algorithms can also be used with discrete design variables to estimate the optimal

sensor locations as well as the type of sensors to be combined. In this work, the GA routine

in Matlab is used for optimizing the location of N0 sensors, consisting of acceleration and/or

strain sensors. In this case, there are N0 discrete-valued design variables with the values of

each one constrained to be a lower bound of 1 and an upper bound of Nall. In order to meet

the AKF stability conditions, for the case where both acceleration and strain sensors are used

simultaneously, the first Np design variables out of the N0 design variables are constrained to

involve acceleration sensors only by allowing the values of the design variable to vary from

1 to Na, excluding the values of Na + 1 to Nall that correspond to strain sensors. The GA is

carried out using a population size of 10×N0 and maximum generations of 10000. GA stops

if the average relative change in the best fitness function value is less than a tolerance value

selected as 10−8.
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3.3.3 State, Observation and Model Prediction Errors

The covariance R of the observation error is assumed to be diagonal with the (i, i) component

R(ii) given in the form [66, 76, 77]

R(ii) = s2 + σ2
eQ

(ii)
y (3.26)

where Q(ii)
y is the square of the intensity of the QoI yi at DOF i. The first term accounts for the

measurement error and its value is considered to be independent of the response intensity, with

the level s of the measurement error to depend on the sensor accuracy and characteristics. The

second term accounts for the model error with the error at DOF i selected to be proportional to

the varianceQ(ii)
y of the square of the intensity of the observed QoI yi at DOF i. The parameter

σe denote the levels of model error in relation to the intensity of the QoI. Spatial correlation

between the errors in the two measured QoI has also been introduced [76] to avoid sensor

clustering due to the redundant information provided by closely spaced sensors measuring the

same QoI. More details about the choice of the observation error and the rationale behind it

can be found in a number of previous works on the subject [66, 76, 77].

A similar formulation can be used for the variance Rεi involved in Eq. 3.16 of the error εi

for the predicted QoI zi. In this case, only the model error exists and the i-th diagonal element

of the covariance matrix can be selected to be

Rεi = σ2
εQzi (3.27)

where Qzi is the square of the intensity of the predicted QoI zi(t), and σε is the level of model

error adjusted in relation to the intensity of the predicted QoI.

The process noise covariance matrixQ is defined based on the magnitude of the state vector

Q = σ2
xdiag(Qx) (3.28)

where the standard deviation σx controls the order of magnitude of error, while the input force

vector error covariance matrix S is defined based on the magnitude of the input intensity

S = α2diag(Qu) (3.29)
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which signifies that the random walk fluctuations of the input is a fraction α of the input

intensity.

3.4 Applications

A square plate structure (Fig. 3.1) modeled by thin-shell finite elements (FEs) is used to

demonstrate the methodology. The plate is fixed at the left edge. The model is meshed with

eight-node shell elements containing six DOF per node. The mesh consists of 420 elements

and 441 nodes. Linear elastic behavior is considered. For demonstration purposes, it is as-

sumed that only the lowest eight modes contribute to the response. The lowest eight natural

frequencies of the model are presented in Table 3.1. The modal damping ratios for all con-

tributing modes are taken to be equal to 2%. The optimal location of acceleration and/or strain

sensors is obtained for the purpose of predicting strains in the structure.

Fig. 3.1. Square thin plate with left edge fixed (shown in red line), meshed with 8-node
square elements.

Table 3.1: Contributing modal frequencies of the plate.

Mode Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Natural Frequency (Hz) 0.956 2.34 5.90 7.52 8.56 14.99 17.18 17.90
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3.4.1 Selection of Process/Plant, Measurement, Model/Prediction and Load Error Pa-

rameters

It is assumed that the plate is subjected to a concentrated load applied at the right bottom corner

A shown in Fig. 3.1. The effect of the values of the process/plant, measurement and prediction

error covariance matrices Q, R and Rε on the optimal sensor placement for reliable response

reconstruction is investigated in this work. For this, to study the effect of small, moderate and

large errors, it is required to carefully select the quantities appearing in the definition of Q, R

and Rε in Eq. 3.28, Eq. 3.26 and Eq. 3.27, respectively. Specifically, the quantities Qx, Q(ii)
y

andQzi are selected based on a nominal broadband excitation applied at point A, modeled by a

Gaussian white noise sequence with standard deviation σwn. Estimates of the intensities (root

mean square) of the accelerations at the DOF perpendicular to the xy plane (plate surface) and

the normal strains along the x direction on the upper plate surface are then readily obtained.

Specifically, for a scalar discrete stationary zero-mean Gaussian white noise excitation u(t)

with variance σ2
wn, the covariance matrix Qz of the response QoI z defined in Eq. 3.3 with

εk = 0 is given by

Qz = σ2
wn(G̃Q̄xG̃

T + J̃SJ̃T ) (3.30)

while the covariance matrix Qx of the state vector xk is given by Qx = σ2
wnQ̄x, where using

Eq. 3.1 under stationary conditions and withwk = 0, the covariance matrix Q̄x can be obtained

by solving the discrete Liapunov equation

AQ̄xA
T − Q̄x +BBT = 0 (3.31)

The estimated value of Qx is used in Eq. 3.28, the value of Qz is used in Eq. 3.27, while the

value of Qy in Eq. 3.26 is obtained by setting z = y in Eq. 3.30.

The value of σe of the model error in Eq. 3.26 and the values of σε of the prediction error in

Eq. 3.27 are selected to be σe = σε = 0.001, 0.01 and 0.1 corresponding to a small, moderate

and large model error.

To complete the formulation for the errors, one needs to select the values of the measure-

ment error parameter s in Eq. 3.26. For this, the intensities of the acceleration at all nodes

and the strains for all finite elements along the x direction of the plate surface are shown in
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Fig. 3.2, normalized by the strength σwn of the white noise.

(a) (b)

Fig. 3.2. Intensities of (a) accelerations and (b) strains when the plate analysed is subjected
to a discrete zero-mean white noise input sequence applied at point A, with standard

deviation equal to 1.

The selected values of the measurement error parameter s corresponding to three cases of

small, moderate and measurement errors are given in Table 3.2 for acceleration and strain

sensors. In Table 3.2, ϵmin is the minimum value of the strain and acceleration that covers 98%

of the plate surface. The values in the table for moderate error indicate that the measurement

error parameter s is selected in a way that it corresponds to the 1% − 2% of the average

value of the intensity of the response QoI (acceleration or strain). Finally, the value of the

covariance matrix S is selected to be S = 1, which for the nominal white noise excitation used

it corresponds to σwn = 1.

Table 3.2: Model, measurement and prediction error, process noise, and load model error
parameters. ϵmin is the minimum value of the nodal accelerations or element strains that

cover 98% of the plate surface. ϵmax and ϵrms are respectively the maximum value and the
intensity (root mean square) of the nodal acceleration or element strain in the plate surface.

Error Sensor type σe, σϵ s s/ϵrms s/ϵmin s/ϵmax σx α

Small Acceleration 10−3 10−3 10−3 1.4× 10−2 2.7× 10−4 10−3 1
Small Strain 10−3 10−8 1.6× 10−3 10−2 5.6× 10−4 10−3 1

Moderate Acceleration 10−2 10−2 10−2 1.4× 10−1 2.7× 10−3 10−3 1
Moderate Strain 10−2 10−7 1.6× 10−2 10−1 5.6× 10−3 10−3 1

Large Acceleration 10−1 10−1 10−1 1.4× 100 2.7× 10−2 10−3 1
Large Strain 10−1 10−6 1.6× 10−1 100 5.6× 10−2 10−3 1
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3.4.2 Strain Predictions Using a Combination of Acceleration and Strain Observations

The positions of the acceleration and strain sensors are optimized for reliable strain prediction

in all 400 finite elements of the plate. The strain sensors are assumed to be placed at the

midpoint of each finite element, measuring the normal strain along the x direction on the plate

surface.

Taking into account that a single load at A is applied, to be able to have a stable estimation

with AKF to be used in the utility function, at least one acceleration sensor is required. Thus,

in the optimization procedure, the first sensor is forced to be an acceleration sensor.

3.4.2.1 Information Gain versus Number of Sensors

The utility results estimated using GA and SSP algorithms as a function of the number of

sensors are given in Fig. 3.3 for up to 30 sensors for the moderate error case presented in

Table 3.2. The maximum information Uall
max that can be reached (shown by horizontal line in

Fig. 3.3(a)) is calculated by assuming that 420 acceleration and 400 strain sensors are placed

at all possible locations. Comparing the utility values calculated by the SSP and the GA

algorithm, it can be seen that very similar maximum utility values are obtained for most of the

sensor numbers in a sensor configuration (Fig. 3.3(a)). For less than 9 sensors the GA is more

accurate than the SSP method. The SSP algorithm gives overall higher utility values for 9 or

more sensors, demonstrating in this case an improved accuracy compared to the GA algorithm.

However, it is expected that the estimates from the GA algorithm can be improved at a higher

computational cost if one uses lower tolerance values for stopping the GA algorithm.
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(a) (b)

Fig. 3.3. (a) Utility values, and (b) normalized utility values. The maximum utility is
obtained by using 820 acceleration and strain sensors, 400 strain sensors, and 420

acceleration sensors, placed at all possible positions, is shown with black, red, and blue
horizontal lines, respectively.

Observing the utility values as a function of the number of sensors, it is seen that the infor-

mation gain increases as additional sensors are placed at their optimal locations. Significant

information is gained by each additional sensor for up to 9 sensors placed in the structure.

Adding more than 9 sensors, the information gain for each additional sensor placed in the

structure is relatively small compared to the information gained for the first nine sensors. Nor-

malized utility values obtained by dividing the utility values in Fig. 3.3(a) by the maximum

utility value that can be achieved by placing the maximum number of 420 acceleration and

400 strain sensors are presented in Fig. 3.3(b). Tracking the maximum normalized informa-

tion gain values as a function of the number of sensors helps decide on the number of sensors

to be kept in a sensor configuration. The number of sensors is considered to be adequate when

the maximum information gained is a large percentage of the maximum information Uall
max or

the information gained by each additional sensors is not significant compared to the informa-

tion gained by the existing sensors. Based on the results in Fig. 3.3(b), it is reasonable to use

9 sensors placed at their optimal positions since the information gained is 91% of Uall
max and

the increase in information gain by adding a sensor at a time is relatively small. Such informa-

tion gain should be weighted with the cost of the information [67] so that a cost-effective and

highly informative sensor configuration is obtained.

Comparison of FSSP, BSSP and GA algorithms can be seen in Fig. 3.4. It is evident

that the GA algorithm also provides a near optimal solution, as the heuristic FSSP and BSSP
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algorithms do. The BSSP provides the best accuracy for 9 or more sensors, while GA provides

more accurate solutions for less than 9 sensors. The FSSP gives better accuracy than BSSP

for less than 9 sensors. The GA estimate depends on the tolerance values used. Improving

this estimate using lower tolerance values for stopping the algorithm may be computationally

a very costly procedure.

(a) (b)

Fig. 3.4. Comparison of FSSP, BSSP, M-BSSP and GA. (a) Maximum utility values, and (b)
minimum utility values. The max utility obtained by using 820 acceleration and strain

sensors, 400 strain sensors, and 420 acceleration sensors, placed at all possible positions, is
shown with black, red, and blue horizontal lines, respectively.

The time-to-solution (TTS) required for estimating the optimal and worst sensor placement

results for 1 to 30 sensors from the different algorithms is given in Table 3.3. This TTS is 1

min for FSSP, 842 min for BSSP, 843 min for SSP, and 32 min for GA. The results reveal

that the FSSP method is computationally very efficient, while the BSSP method can be very

inefficient if the number of possible sensor positions Nall is large.

The computational efficiency of GA is significantly less than FSSP and higher than BSSP.

However, the computational cost for BSSP can be drastically improved by starting the BSSP

with a configuration that involves significantly less number of sensors Nstart selected to be

higher than the number N0 of sensors to be optimized. The starting sensor configuration with

Nstart sensors must be selected to be optimal. Such sensor configuration can be obtained using

the FSSP or the GA algorithm. Following this procedure, results from the modified BSSP

(M-BSSP) algorithm for Nstart = 100 and 200, instead of 820, are given in Table 3.3 and also

in Fig. 3.4 for Nstart = 100. It is clearly seen in Fig. 3.4 that the estimates of the utility values

almost coincide with those of the original BSSP algorithm. Estimating the starting sensor

94

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



configuration for Nstart = 100 using FSSP, the total computation time for running M-BSSP is

5.7 min. Specifically, the TTS is 0.7 min to compute the optimal sensor configuration for 1-100

sensors using BSSP and 5 min the required time to run FSSP for 1-100 sensors. Estimating the

starting sensor configuration using the GA algorithm for 100 sensors, the TTS drops to 1 min

(0,7 min to compute the optimal sensor configuration for 1-100 sensors using BSSP and 0.3

min the required time to run GA for 100 sensors) which is approximately the same as the TTS

required to compute the optimal sensor configuration for 1-30 sensors using FSSP. As a results,

the computational time using M-BSSP is approximately two to three orders of magnitude less

than the computational time of 842 min required for the original BSSP algorithm.

Table 3.3: Time-to-solution (TTS) for computing the optimal and worst sensor
configurations for 1 to 30 sensors from different algorithms.

Method FSSP BSSP SSP GA | FSSP GA M-BSSP | FSSP GA M-BSSP
Sensors 1-30 1-30 1-30 1-30 | 1-100 100 1-100 | 1-200 200 1-200

TTS (min) 1 842 843 32 | 5 0.3 0.7 | 14 0.1 3

3.4.2.2 Optimal Location of Acceleration and Strain Sensors

Fig. 3.5(a) shows the best acceleration (circle) and strain (square) sensor locations (estimated

using GA and SSP algorithms) for 9 sensors. For SSP results, the best type of sensors to be

used are 5 acceleration sensors and 4 strain sensors out of the total of 9 sensors. The 4 strain

sensors are placed on the plate at a reasonable distance from each other and far from the right

edge which has a very small strain intensity and so the noise-to-signal ratio is expected to be

large. The acceleration sensors are placed closer to the right edge, far away from the fixed

support, since there again the noise-to-signal ratio is expected to be smaller than places close

to the fixed support. Similar results in terms of the number and location of the acceleration

and strain sensors are obtained using GA, promoting 5 acceleration sensors and 4 strain sen-

sors. For the worst sensor positions (Fig. 3.5(b)), SSP and GA results are consistent in terms

of showing that nine acceleration sensors (no strain sensors) placed close to the left edge,

where the noise-to-signal ratio in acceleration time histories is large, will give the worst strain

predictions.
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Fig. 3.5. (a) Best 9 sensor positions, and (b) worst 9 sensor positions.

The optimal sensor configuration for 6 sensors is found to involve 4 acceleration sensors

and 2 strain sensors (Fig. 3.5(a)). It is worth noting that the maximum information gain that

can be achieved for 6 sensors is 3.28, which is slightly higher (see Fig. 3.3) than the maximum

information gained with 420 acceleration sensors placed at all possible positions (blue hori-

zontal line in Fig. 3.3). It is thus obvious that a combination of the two type of sensors can

give a very effective sensor configuration with a very small number of 6 sensors, avoiding the

use of the large number of 420 acceleration sensors that achieves inferior information.

It should be pointed out that based on the utility values presented in Fig. 3.3, the SSP

results for the optimal sensor configuration are slightly more informative than the GA results.

Nevertheless, it is expected that both algorithms will give reasonable near optimum sensor

configurations. The observed variability in the near optimal sensor configuration between the

predictions from the SSP and GA algorithms is due to the fact that among all 4.4e+20 possible

sensor configurations of 9 sensors placed at 820 positions, a small fraction of them give near

optimum solutions. This small fractions can be a large number of sensor configurations that

are promoted by the SSP and GA algorithms used.

The AKF method for response reconstruction and virtual sensing is able to fuse accelera-

tion and strain sensors. Despite the fact that the predictions are strains throughout the plate, the

type of sensors that are promoted for monitoring are both acceleration and strain sensors. In

contrast, the optimal sensor placement based on modal expansion [66] limits the type of sen-

sors that can be used. For example, for strain predictions, only strain or displacement sensors
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can be used.

3.4.2.3 Effect of Measurement and Model Errors

The effect of the measurement and model errors on the OSP results is next investigated. OSP

results for small, moderate, and large measurement errors are obtained by selecting the values

of the error covariance matrix parameter s (in Eq. 3.26) to vary as indicated in Table 3.2

and letting the model error parameters to be σe = σε = 0.01, corresponding to moderate

model error. The utility results for the three measurement error cases estimated using the M-

BSSP and GA algorithms are presented in Fig. 3.6. Similar results for moderate measurement

error are compared in Fig. 3.7 for three different values of the model error selected to be

σe = σε = 10−3 (small model error), 10−2 (moderate model error) and 10−1 (large model

error). It is clear that the information gain decreases as the measurement error or the model

error increases, signifying that less information is gained from noisy measurements or less

accurate models.

(a) (b)

Fig. 3.6. Comparison of utility (information gain) results for different measurement error
cases. Color and black symbols represent results obtained from M-BSSP and GA algorithms,

respectively. (a) Utility values, (b) normalized utility values. The max utility obtained by
using 820 acceleration and strain sensors, 400 strain sensors, and 420 acceleration sensors,

placed at all possible positions, is shown with black horizontal lines.
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(a) (b)

Fig. 3.7. Comparison of utility (information gain) results for different model error cases.
Color and black symbols represent results obtained from M-BSSP and GA algorithms,

respectively. (a) Utility values, (b) normalized utility values. The max utility obtained by
using 820 acceleration and strain sensors, 400 strain sensors, and 420 acceleration sensors,

placed at all possible positions, is shown with black horizontal lines.

For small to moderate measurement errors (see Fig. 3.6b), nine sensors placed at their op-

timal location account for 95% to 90% approximately of the maximum information Uall
max that

can be achieved by adding 820 strain and acceleration sensors at all possible locations. In

contrast, for large measurement error the information gain that can be achieved with 9 sensors

placed at their optimal locations is 65% of the maximum information gain Uall
max. This signifi-

cantly lower information extracted from the measurements is due to the higher noise to signal

ratio in the measurements. Specifically, more sensors are needed to extract significant infor-

mation, with 30 sensors providing only 75% of Uall
max. The higher the measurement error, the

less the information extracted from the sensors, which is consistent with the results obtained

from a similar work based on modal expansion technique for response reconstruction [66].

Similar observations can be made for the different model errors. The higher the model

error, the less the information gained from a sensor configuration involving a fixed number of

sensors. There is, however, a qualitative difference for the effect of the number of sensors on

the information gain for the two different types of errors. As the measurement error increases,

the maximum information gain Umax
all that can be achieved with 820 strain and acceleration

sensors does not deteriorate significantly as can be seen by the horizontal lines in Fig. 3.6(a).

However, increasing the measurement error to large values, the information gained by using 9

sensors is only 60% of Uall
max, and a large number of sensors are required to gain the remaining
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40% of the information. In contrast, increasing the model error to large values (Fig. 3.7(a)),

the maximum information gain that can be achieved with 820 strain and acceleration sensors

reduces substantially to 60% and 45% of the maximum information gained for moderate and

small model error values, respectively. However, for large model error, a large percentage,

around 94%, of the maximum information gain Umax
all , can be achieved with as many as 9

sensors placed at their optimal locations. Adding more sensors from 10 to 820 will only result

in a very small increase (5%) of the maximum information gain. Thus, for high model error a

small number of sensors placed at their optimal locations will obtain most of the information

that can be achieved by fully populating the structure with sensors, while for high measurement

error, the same small number of sensors will only contain a percentage of the information gain

and many more sensors are required to gain the large amount of the remaining information.

The optimal sensor positions for nine sensors obtained using the combined M-BSSP es-

timates are compared for the different values of the measurement errors and moderate model

error in Fig. 3.8(a) and for moderate measurement error and different values of model error in

Fig. 3.8(b). For small measurement errors in Fig. 3.8(a), the strain sensors are placed towards

the right edge of the plate where, although the strains are relatively small, the noise to signal

ratio is small and the quality of information is very good. For large measurement errors in

Fig. 3.8(a), placing strain sensors in the right edge is avoided since the signal to noise ratio for

strains decreases and the quality of information from strain sensors placed towards the right

edge is substantially deteriorated. In addition, for the large error case, the strain sensors to-

wards the right edge tend to be replaced by acceleration sensors. The worst sensors are found

to be acceleration sensors (not shown in the figures) for all error cases placed at the nodes

closest to the left support.

From Fig. 3.8(b) it can be seen that there is not a clear trend in the placement of sensors

for different levels of model error. One does not expect to have the tendency observed with

increasing measurement error since the model error, quantified at each point in the plate as a

fixed error with respect to the intensity of the measured/predicted QoI at this point, is set to be

the same over the whole surface. So locations with higher or lower signal-to-noise ratio should

not be preferred.
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(a) (b)

Fig. 3.8. Comparison of best sensor locations for 9 sensors using M-BSSP (a) for different
measurement error cases, (b) for different model error cases. Acceleration and strain sensors

are shown with circle and square, respectively.

3.4.2.4 Robustness to Measurement and Model Error Uncertainties

The level of noise to signal ratio are not known a priori since the intensity and frequency

content of the excitation and thus the level of measured response is not known. The size of

model/prediction errors due to unmodelled dynamics is also not known a priori. Thus, it is

more rational to use a robust design to better account for uncertainty in measurements and

model/prediction errors. Two robust designs R1 and R2 are next considered. In robust design

R1, the uncertainties for measurement errors are considered by letting s = 10β and assigning

a uniform prior distribution of the measurement error parameter β with large enough bounds,

given by β ∼ U(−8,−6) for strain sensors and β ∼ U(−3,−1) for acceleration sensors,

covering the domain in the parameter space that correspond to small, moderate and large mea-

surement errors. The uncertain parameter space has dimension two since it involves one pa-

rameter for the measurement error for accelerations and one parameter for strains. Similarly,

in robust designR2, the uncertainties for model errors are considered by letting σe = σε = 10γ

and assigning a uniform prior distribution of the model error parameter γ with large enough

bounds, given by γ ∼ U(−3,−1) for strain and acceleration sensors, covering the domain

in the parameter space that corresponds to small, moderate and large model errors. The un-

certain parameter space has dimension one. OSP robust results are calculated for moderate

measurement error using the sparse grid algorithm of order 10.
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The number of strain and acceleration sensors estimated for each optimal sensor configu-

ration forN0 ranging from 1 to 30 for the two robust casesR1 andR2 are compared in Fig. 3.9

with the ones obtained for the deterministic case for moderate model and measurement error.

It can be seen that there is an increase in strain sensors in the robust case R1 compared to

the strain sensors required in the deterministic case. The number of acceleration sensors in

the robust case R1 is two for all values of N0 > 1 considered. Also for the robust case R2,

there is no clear change in the number of strain and acceleration sensors in a sensor config-

uration when compared to the deterministic case. The optimal sensor configuration obtained

for 1 to 30 sensors for the robust case R1 (or the robust case R2), is used to estimate the

utility values, denoted by UR1
s , UR1

m and UR1
l (or UR2

s , UR2
m and UR2

l ) for the three determin-

istic cases corresponding to small, moderate and large measurement error, respectively. The

ratio UR1,2
s /Umax

s , UR1,2
m /Umax

m and UR1,2
l /Umax

l of the computed utility values to the maxi-

mum utility values Umax
s , Umax

m and Umax
l for the deterministic cases for small, moderate and

measurement (respectively model) errors are shown in Fig. 3.10. Such ratios provide the per-

centage of information gain that the robust OSP can achieve for the three measurement or

model error cases in relation to the maximum information gain that could be achieved by the

three deterministic cases. The closeness of these values to unity indicates the effectiveness of

the OSP robust case when applied to the three deterministic cases of small, moderate and large

error. It can be seen that the robust case is effective for large model or measurement errors.

Decreasing these errors, the effectiveness of the robust cases deteriorates, reaching informa-

tion gain values that are as low as 88% of the information entropy values that can be achieved

by the OSP obtained for the deterministic cases.
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Fig. 3.9. Number of acceleration sensors and total number of sensors versus number of
sensors for deterministic and robust cases R1 and R2. The number of strain sensors is the

difference between the total number of sensors and the number of acceleration sensors.

Fig. 3.10. Ratios UR1,2
s /Umax

s , UR1,2
m /Umax

m and UR1,2
l /Umax

l for the robust cases R1 and R2,
computed using (a) GA for 1 to 8 sensors, and (b) M-BSSP for 9 to 30 sensors.

3.4.3 OSP for Strain Prediction using Acceleration-Only or Strain-Only Measurements

Next, the optimal sensor placement for reliable strain prediction in all 400 finite elements

is performed using either acceleration or strain sensors. For optimally locating acceleration

sensors, the maximum utility results calculated using SSP and GA algorithms are given in

Fig. 3.11(a) for moderate model and measurement error (see Table 3.2) as a function of the

number of sensors. For 8 or more sensors, the utility values found by the SSP and the GA

algorithms are almost the same (Fig. 3.11(a)). For 5 to 7 sensors, the GA algorithm is more

accurate providing slightly higher values than the ones predicted by SSP. It is apparent that the
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optimal number of acceleration sensors is 8 placed at their optimal positions since the informa-

tion gain is almost the same as the information gained by populating the plate with as many as

420 acceleration sensors at all possible locations. Comparing the maximum information gain

Umax
all in Fig. 3.11(a) with the one in Fig. 3.3(a), it can be seen that an optimal sensor configura-

tion consisting of a combination of strain and acceleration sensors provides significantly higher

information than an optimal sensor configuration consisting of acceleration sensors only.

(a) (b)

Fig. 3.11. Comparison of SSP and GA. Utility values obtained by (a) acceleration sensors,
(b) strain sensors. The max utility values obtained by using acceleration or strain sensors

placed at all possible positions are shown with a horizontal line (420 acceleration sensors in
(a), 400 strain sensors (with one acceleration) in (b).

The maximum utility values as a function of strain sensors optimally located in the plate

are given in Fig. 3.11(b). To maintain stability of the Kalman filter, the positions of the strain

sensors are optimized by introducing an acceleration sensor at the input location. For 8 or more

strain sensors, the utility values estimated by SSP are slightly higher than the ones estimated by

GA, while for less than 8 sensors GA provides slightly better results than SSP. Comparing the

results in Fig. 3.11(b) for strain sensors and 1 acceleration sensor at the load location, with the

ones in Fig. 3.3(a) for a combination of strain and acceleration sensors optimally placed in the

structure, the information gain obtained using strain sensors only (and 1 acceleration sensor)

is not significantly less than the information provided by sensor configurations consisting of

a combination of optimally placed acceleration and strain sensors. As a result, in contrast

to the significantly less informative sensor configurations consisting of acceleration sensors

(compare Fig. 3.11(a) with Fig. 3.3(a)), sensor configurations involving strain sensors only

(and one acceleration sensor to maintain filter stability) can provide almost as good information

103

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



as the combination of strain and acceleration sensors (compare Fig. 3.11(b) and Fig. 3.3(a)).

However, installation, calibration and maintenance complexities involved with strain sensors

make their use less favorable than acceleration sensors. Thus, a combination of acceleration

and strain sensors is the most preferred sensor configuration as presented in Section 3.4.2.

The TTS required for optimizing the acceleration or the strain sensors for 1 to 30 sensors

from different algorithms is given in Table 3.4. The TTS for computing the optimal and worst

locations of acceleration sensors is 17 min for SSP algorithm (0.7 min for FSSP) and 30 min

for GA algorithm. The TTS for computing the optimal and worst locations of strain sensors is

32 min with SSP (0.7 min for FSSP) and 18 min with GA algorithm.

The computational effort for SSP (combination of FSSP and BSSP) algorithm can be

substantially reduced by one to two orders of magnitude by using M-BSSP algorithm with

Nstart = 100 sensors. Specifically, the TTS for acceleration sensors drops from 17 min for

SSP to 3.1 and 0.7 min for M-BSSP using respectively FSSP and GA algorithm to compute

the starting sensor configuration for Nstart = 100 sensors, while for strain sensors drops from

32 min for SSP to 3.1 and 0.7 min for M-BSSP using respectively FSSP and GA algorithm

to compute the starting sensor configuration for Nstart = 100 sensors. The results reveal that

the FSSP method is computationally very efficient, while the BSSP method can be inefficient

if the number of possible sensor positions Nall is large, leading to computational effort that

might exceed that of GA algorithm. The proposed M-BSSP algorithm exploits the compu-

tational efficiency of FSSP and the accuracy of BSSP. These results are consistent with the

results reported in Table 3.3. Comparing the computational savings gained using M-BSSP in

Table 3.3 for Nall = 820 and Table 3.4 for Nall = 400 or 420, it can be concluded that higher

savings are expected as Nall increases.

Table 3.4: Time-to-solution (TTS) for computing the optimal and worst sensor
configurations for 1 to 30 acceleration only or strain only sensors from different algorithms.

Method FSSP BSSP SSP GA | FSSP GA M-BSSP | FSSP GA M-BSSP
Sensors 1-30 1-30 1-30 1-30 | 1-100 100 1-100 | 1-200 200 1-200

TTS (min) - Accel. sensors 0.7 16 17 30 | 2.5 0.1 0.6 | 5.4 0.1 2.6
TTS (min) - Strain sensors 0.7 31 32 18 | 2.5 0.1 0.6 | 5.6 0.1 2

The best sensor locations for 8 sensors obtained using the GA and SSP algorithms are given

in Fig. 3.12(a) for acceleration sensors only and in Fig. 3.12(b) for strain sensors only. For each

case, both SSP and GA provide qualitatively similar sensor positions. The acceleration sensors
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are distributed towards to the right edge which has higher acceleration intensity and thus low

noise to signal ratio. Similarly, the strain sensors are distributed towards the left edge since the

strain values are higher and the noise to signal ratio is low.

0 1 2
0

1

2

(a)

0 1 2
0

1

2

(b)

Fig. 3.12. (a) Best 8 acceleration sensor positions, (b) best 8 strain sensor positions.

3.4.4 Optimal Sensor Configuration for Input Estimation

The optimal design of sensor configuration for input reconstruction is next considered. The

maximum and minimum information gain values estimated by the M-BSSP algorithm as a

function of the number of sensors is given in Fig. 3.13(a). These values are compared with the

maximum and minimum information gain values estimated for strain response predictions. A

similar trend is observed, although the maximum information gain for input estimation is less

than the maximum information gain for strain response predictions. In contrast to the strain

response predictions where 9 sensors provide more than 90% of the maximum information

Uall
max, 7-9 sensors and as many as 30 sensors optimally placed for input estimation provide

approximately 70% and 80% of the Uall
max, respectively. One needs more than 30 sensors to

achieve an information gain higher than 90% of the Uall
max.

Comparison of the optimal sensor configurations involving 9 sensors for input and response

reconstruction is shown in Fig. 3.13(b). The optimal sensor configurations present some differ-

ences which are expected, since the objectives differ in the two design cases. Fig. 3.13(a) also

includes the information gain values Us(δin) for the strain predictions for 1 to 30 sensors that

can be achieved for the sensor configuration optimally designed for reconstructing the input.
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Similarly, the information gain curve Uin(δs) for input estimation that can be achieved for the

sensor configuration optimally designed for estimating strains is also presented. It can be seen

that in both cases of the optimal sensor configuration for a design objective is suboptimal for

another design objective. The information loss is of the order of approximately 20% loss.

(a) (b)

Fig. 3.13. Comparison of OSP results for strain or input reconstruction. (a) utility values, (b)
best sensor positions found by M-BSSP. The maximum utility obtained by using 820

acceleration and strain sensors, 400 strain sensors, and 420 acceleration sensors, placed at all
possible positions, is shown with black lines. Acceleration and strain sensors are shown with
circle and square symbols, respectively. Us(δin) (respectively Uin(δs)) is the information gain

for the strain (respectively input) reconstruction using the sensor configuration optimally
designed for reconstructing the input (respectively strain).

3.4.5 Effectiveness of Optimal Sensor Configuration for Response Predictions

The effectiveness of the best sensor configuration is next investigated using simulated mea-

surements. For this, a white noise input at location A (Fig. 3.1) is first used to simulate strain

response time histories at all finite elements considering up to eight contributing modes. The

standard deviation of the Gaussian white noise sequence is set to σwn = 1. A sampling pe-

riod of ∆t = 0.01 seconds and a response duration of 10 seconds are used to generate the

simulated time histories. To simulate noise contaminated measurements and thus consider the

effect of the measurement error (noise from sensors), independent zero-mean Gaussian white

noise sequences with standard deviation equal to 2% of the intensity of the simulated response

is added to each simulated strain response time history.

The relative errors between the strain responses predicted by AKF with a fixed number
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of sensors and the simulated, noise contaminated measurements are used to demonstrate the

effectiveness of the optimal sensor configuration in the presence of measurement error. The

relative strain error at each location is defined as the ratio of the root mean square error be-

tween the predicted and measured responses over the root mean square value (intensity) of the

measured strain response time history. The relative errors for the strain predictions obtained

using AKF for 9 best sensor positions found by SSP algorithm for moderate measurement

and model errors are presented in Fig. 3.14(a). The information gain for the best sensor con-

figuration is 91% of Umax. These errors should be compared with the relative errors shown

in Fig. 3.14(b), obtained using 9 sensors placed at arbitrarily selected sensor positions and

corresponding to lower utility value of 68% of Umax. It is clear that the errors for the arbitrar-

ily selected sensor configuration are significantly higher than the ones for the optimal sensor

configuration. In particular, the average relative error over the plate surface is 4.23% for the ar-

bitrary sensor configuration, which should be compared to the average relative error of 1.67%

for the optimal sensor configuration. The average relative errors computed between input time

history predicted by AKF and the simulated input are found to be 16.21% and 11.87% for

the arbitrary and optimal sensor configuration, respectively. These higher errors are consistent

with the finding in Section 3.4.4 where optimal sensor placement for response reconstruction

is suboptimal for input reconstruction and that a small number of sensors (9 sensors in this

case) contain 60% of the maximum information gain that can be achieved by fully populating

the plate with sensors. In general, the aforementioned results confirm the effectiveness of the

proposed OSP methodology.
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(a) (b)

Fig. 3.14. Relative errors in strain response for white noise excitation using simulated data
with 2% added Gaussian noise (measurement error). (a) Best sensor configuration with 9
sensors obtained for moderate measurement and model error; U = 5.21 corresponding to
91.32% of Umax; average strain error 1.67%; average input error 11.87%. (b) Arbitrarily
selected sensor configuration with 9 sensors; U = 3.88 corresponding to 68% of Umax;

average strain error 4.23%; average input error 16.21%.

Similar results are presented in Fig. 3.15, corresponding to inflicted model errors instead

of measurement errors. The model errors are introduced by simulating measurements from

a finite element model of the plate with all nodal masses perturbed independently by 10% (a

zero-mean Gaussian perturbation with standard deviation 0.1 is used) around their nominal

values. The relative errors in the strain predictions using the optimal sensor configuration for

moderate measurement and large model error corresponding to information gain of 93% of

Umax remain less than approximately 3% with an average relative error to be 1.14% over the

plate surface, while the relative errors for the arbitrarily selected sensor configuration corre-

sponding to lower information gain of 71% of Umax is significantly higher with an average

relative error of 5.6%. The average relative errors computed for the input predicted by AKF

and simulated input are found to be 49.4% and 21.74% for the arbitrary and the optimal sensor

configuration, respectively.
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(a) (b)

Fig. 3.15. Relative errors in strain response predictions for white noise excitation using
simulated data with 10% model error. (a) Best sensor configuration with 9 sensors obtained
for moderate measurement and large model error; U = 3.16 corresponding to 93% of Umax;

average strain error 1.14%; average input error 21.74%. (b) Arbitrarily selected sensor
configurations with 9 sensors; U = 2.41 corresponding to 71% of Umax; average strain error

5.60%; average input error 49.4%.

The study is repeated for impulse excitation applied at location A. The impulse is simulated

as a triangular excitation of maximum value of one and duration equal to t0 = T8/5, where T8

is the modal period of the last contributing mode. For t > t0 the triangular excitation is set to

zero. The discretization time is ∆t = t0/6. The duration of the response to impulse excitation

is selected to be approximately T = −log(0.1)/(ζ1ω1), where ω1 = 2πf1 is the first modal

frequency with f1 is the value of the fundamental modal frequency in Hz given in Table 1.

At the end of the duration T , the response is expected to fall off to approximately 10% of the

maximum response values observed in the beginning of the excitation. Simulated data for the

acceleration and strain response time histories over the plate surface are generated by adding

in each time history a Gaussian noise of standard deviation equal to 2% of the acceleration and

strain intensity.

Results for the effectiveness of the optimal and arbitrary sensor configurations involving

9 sensors are shown in Fig. 3.16(a) and Fig. 3.16(b), respectively. The average relative error

over the plate surface is 25% for the arbitrary sensor configuration which should be compared

to the average relative error of 13% for the optimal sensor configuration. The average relative

errors computed between input time history predicted by AKF and the simulated input for

the duration 0 − t0 sec are found to be 27% and 18% for the arbitrary and optimal sensor

configuration (for 0 − t0 sec). The errors for the arbitrarily selected sensor configuration are
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found to be significantly higher than the ones for the optimal sensor configuration, confirming

the effectiveness of the proposed optimal sensor placement methodology.

(a) (b)

Fig. 3.16. Relative errors in strain response predictions for impulse excitation using
simulated data with 2% added Gaussian noise (measurement error). (a) Best sensor

configuration with 9 sensors obtained for moderate measurement and model error; U = 5.21,
91.3% of Umax, average strain error 13%, average input error 18%. (b) Arbitrarily selected

sensor configuration with 9 sensors; U = 3.88, 68% of Umax, average strain error 25%,
average input error 27%.

3.5 Conclusions

A methodology is presented for optimizing the type and location of sensors in a structure for

reliable response and input reconstruction (virtual sensing) in the challenging case of output-

only vibration measurements. AKF is used for input-state estimation and virtual sensing. The

utility function to be optimized with respect to the type and location of sensors is defined as the

information gained from the data during the measurement update step of the AKF, quantified

as the KL-div between the prior and the posterior PDF of the response QoI obtained during

the AKF update and measurement step. Exploiting the linearity of the dynamic system and

the Gaussian nature of the input and response predictions, the utility is formulated in terms

of the corresponding variances of the errors in the predictions of the input and/or response

QoI, readily obtained by solving the steady-state Riccati equation. The utility is extended to

account for uncertainties in structural model parameters, as well as measurement and model

error parameters.

Two types of optimization methods, a heuristic algorithm and a GA algorithm, are used to
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estimate the optimal and worst sensor configurations as a function of the number of sensors.

For the heuristic algorithm, various versions of the SSP algorithm are introduced and tested for

computational efficiency and accuracy. Comparisons with the GA algorithm are made. The

FSSP algorithm is by far the computationally most efficient one but may suffer from accuracy

problems. For a sufficiently large number of sensors, the BSSP algorithm is the most accurate

one, but it requires orders of magnitude higher computational cost than FSSP or GA. A new

modified M-BSSP heuristic algorithm is also proposed to drastically reduce the computational

burden to levels that are orders of magnitude less than the GA algorithm, while maintaining

the accuracy of the original BSSP algorithm. GA provides nearly optimal solutions, which

for a sufficiently large number of sensors are less accurate than the ones estimated by BSSP

or M-BSSP. Results suggest that the combined estimate of heuristic FSSP, M-BSSP, and GA

algorithms can be used to optimize a sensor configuration.

The proposed methodology was demonstrated by designing the optimal location of strain

and/or acceleration sensors over the surface of a plate structure subjected to a single excita-

tion at a known location. A thorough investigation of the effect of plant/process, measurement

and model/prediction errors, and the intensity of the excitation was conducted, considering

the uncertainties in these errors on the optimal type and location of sensors and on the vari-

ation of the highest and lowest information gain as a function of the number of sensors. It

is demonstrated that an increase in measurement and model error has an effect of decreasing

the information gain. The effect of the two types of errors is qualitatively different. For small

measurement error or large model error, a fixed number of 9 sensors placed at their optimal

location provide most of the information that can be achieved by fully populating the structure

with 820 sensors. In contrast, for large measurement error or small model error, a fixed num-

ber of 9 sensors placed at their optimal locations provides only a fraction of the information

that can be achieved by fully populating the plate with 820 sensors and thus there is significant

information that can be gained by adding a large number of sensors. It was also found that

the optimal sensor configuration fuses a mixed-type of acceleration and strain sensors which

can be significantly more informative than sensor configurations involving only acceleration

sensors.

The framework also provides optimal sensor configurations that are robust to uncertainties

in model parameters as well as in model/prediction and measurement errors. Such uncertain-

ties are not known in the initial optimal experimental design phase and thus are postulated
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using prior distributions. The robust designs over wide uncertainty bounds of errors leads to

optimal sensor placement designs that are closer to the ones obtained for high measurement

and model/prediction errors. Finally, the effectiveness of the optimal designs was validated

against sub-optimal ones by comparing errors in the predictions between the AKF method and

simulated measurements contaminated by noise or model errors.

The proposed general OSP framework can be used to reliably reconstruct responses and in-

puts that are important for providing data-driven safety and performance estimates of systems.

In particular, it can be used in reconstructing stress response time histories that are important

for reliably predicting fatigue damage accumulation estimates.
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Chapter 4. Bayesian Optimal Experimental Design for Parameter Esti-
mation under Structural Modeling and Input Uncertainty

ABSTRACT

A Bayesian optimal experimental design (OED) framework for model parameter estimation in

nonlinear structural dynamics models is proposed, based on maximizing a utility function built

from appropriate measures of information contained in the input-output response time history

data. The information gain is quantified using Kullback-Leibler divergence (KL-div) between

the prior and posterior distribution of the model parameters. The design variables may include

the location of sensors, as well as the actuator location and/or the characteristics of the ex-

citation (amplitude variation and frequency content). Asymptotic approximations, valid for

large number of data, provide valuable insight into the measure of information. Robustness

to uncertainties in nuisance (non-updatable) parameters associated with modeling and excita-

tion uncertainties is considered by maximizing the expected information gain over all possible

values of the nuisance parameters. In particular, the framework handles the case where the

excitation time history is measured by installed sensors but remains unknown at the experi-

mental design phase. Introducing stochastic excitation models, the expected information gain

is taken over the large number of uncertain parameters used to model the random variability

in the input time histories. Monte Carlo or sparse grid methods estimate the multidimensional

probability integrals arising in the formulation. Heuristic algorithms are used to solve the op-

timization problem. The effectiveness of the method is demonstrated for a multi-degree of

freedom (DOF) spring-mass chain system with restoring elements that may exhibit hysteretic

nonlinearities.

4.1 Introduction

Experimental data are used to inform a digital twin of a system operating under various con-

ditions, selecting models of system components, estimating model parameters, improving vir-

tual sensing capabilities and model-based predictions of important output quantities of interest

(QoI). Combining data with models of systems are crucial in making decisions regarding per-
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formance, structural health, safety and maintenance. Optimally designed experiments and

sensor systems provide substantial benefits to update models and model-based predictions and

to support decisions in many fields of science, health and engineering, as well as to reduce

cost of experimentation, instrumentation, or monitoring. By designing an optimal experimen-

tal set-up, it is possible to cost-effectively improve structural models, narrow the uncertainties

in the model parameters and the model-based predictions of output QoI. A recent review of

optimal sensor placement (OSP) strategies is covered in [1].

Information theoretic-based approaches provide useful measures of the information con-

tained in the data collected by a sensor configuration for estimating the model parameters.

Past OSP approaches for parameter estimation have used measures of information such as

Fisher Information Matrix (FIM) [2–7], information entropy [8–20], joint entropy [21, 22],

KL-div [23–26], mutual information [27, 28] and value of information [29–31]. The aforemen-

tioned OSP techniques address parameter estimation of linear models of structures subjected

to known inputs [10–13, 19, 27]. Such studies cover applications to model updating [8, 17],

modal identification [15, 28, 32], model selection [14], structural health monitoring and dam-

age detection [16, 18, 25, 33]. OSP for parameter estimation under unknown input can be

found in [9] using spectral estimators. Information theoretic measures have also been intro-

duced to measure the information gain for the purpose of response reconstruction for the case

of known input [34, 35] as well as the case of output-only vibration measurements [36, 37] for

linear models of structures. The response reconstruction under unknown input is carried out

using Bayesian modal expansion techniques [36–39] and/or filtering techniques [40, 41].

These studies have mostly concentrated on linear models of structural dynamics. Limited

studies are available for OSP for parameter estimation of nonlinear models based on infor-

mation theoretic approaches. Information entropy and mutual information are used to design

the optimal locations of sensors in for parameter estimation of nonlinear suspension models

of vehicles [42], nonlinear elastic models [43] and nonlinear hysteretic laws in finite element

models of civil infrastructure [20]. For nonlinear models, an issue that is also related to OED is

the optimal design of actuator configuration (location and number of actuators) and the optimal

design of input characteristics (frequency and amplitude content) so that the model nonlinear-

ities are sufficiently activated, and thus the parameters related to model nonlinearities can be

inferred from the measured data. The information entropy based approach introduced in [8]

was used for the design of optimal input characteristics for linear and nonlinear suspension
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models of vehicles in [42].

In this work, the problem of optimizing the sensor configuration (type, number and loca-

tion of sensors) and excitation characteristics (amplitude and frequency content) is investigated

for reliable parameter estimation of nonlinear models under modeling and input uncertainties.

It is assumed that the excitation time histories and the response time histories at the sensor

locations are measured. Investigating the actuating forces known to enhance the information

provided from sensors is important especially for nonlinear models. By optimizing the actuat-

ing characteristics (e.g. exciting at resonance frequency or with large amplitudes), nonlinear

features can be activated and the quality of experimental data can be improved. The OED

problem is addressed using information theoretic-based approaches. Such approached include

sampling [23] and asymptotic techniques [8]. In particular, asymptotic approximations, valid

for large number of data, were demonstrated to provide useful insight into the measure of the

information [8, 10, 44, 45] from a sensor configuration and it is the preferred techniques used

in the present study. Past studies on OSP for parameter estimation using input-output vibra-

tion measurements assume that the input is available at the experimental design phase (e.g.

[8, 10, 20, 42, 43]). This is the case of laboratory experiments where one can control the input

or the case of full-scale experiments performed on civil infrastructure using actuators where

the input can also be controlled. However, there are a number of cases and physical phenom-

ena, such as earthquakes, where the excitation is measured using sensors but is completely

unknown during the experimental design phase. As a result, the OED should take into account

the input uncertainty.

This study is mainly focused on nonlinear models of systems. The purpose is twofold.

First, the modeling and input uncertainties are taken into account in the design of the OSP.

Modeling uncertainties are associated with non-updatable (nuisance) parameters that their val-

ues are uncertain. Such uncertainties can be quantified by assigning a prior probability distri-

bution function (PDF) and included in the formulation for OSP by generalizing the definition

of the information gain so that such uncertainties are taken into account in the design. This

work also addresses for the first time the uncertainty of the input response time history in the

OSP design. Input uncertainties are associated with the fact that the sensor system installed in

a structure is designed to measure the time history of the excitation(s) when it occurs, but such

measurements are not available at the experimental design phase. An application is on earth-

quake excited civil infrastructure (e.g. building, bridges) where sensors (mainly acceleration
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sensors) are installed to measure the excitation(s) at the base(s) of the structure. However, such

excitation is unavailable during the experimental design phase. OSP design should take into

account such uncertainties. Stochastic processed/fields can be used to model the variability in

ground motion. For example, such variability can be described by simplified ground motion

models (e.g. [46, 47]) and seismological models [48] used in the past to represent the ground

motion by a large number of random parameters [49, 50]. The input can then be obtained as

a specific realization of the underlining stochastic process, and the OSP should account for all

such input realizations. The high computational cost associated with the proposed framework

is pointed out, and computational issues for carrying out the OSP under model and input un-

certainties are also addressed. The second purpose of the work is to point out the differences

between the design of optimal sensor configuration and the design of optimal actuator and

excitation characteristics.

The presentation is organised as follows. Section 4.2 introduces briefly the Bayesian infer-

ence formulation for parameter estimation. The formulation is used in Section 4.3 to introduce

the utility function built from the information gain quantified by the KL-div between the prior

and posterior distribution of the model parameters to be inferred. The information gain is

generalized to account for uncertainties in nuisance (non-inferred) parameters associated with

model and input uncertainties. In addition, the problem of optimally designing the actuator

configuration and excitation characteristics is formulated. The application of the proposed

methodology in a spring-mass chain model of Bouc-Wen nonlinear hysteretic restoring force

introduced to represent a high-rise building excited by stochastic earthquake excitation models

is presented in Section 4.4. Numerical results demonstrating the applicability and effectiveness

of the methodology are presented in Section 4.5. Concluding remarks are drawn in Section 4.6.

4.2 Bayesian Inference for Parameter Estimation

Consider a parameterized structural model and let θ ∈ Rnθ be the model parameters to be

estimated using a set of data D = {y
δ
(k) ∈ Rny , uδ(k) ∈ Rnu , k = 1, . . . , nd}, where y

δ
(k)

is the data of ny output quantities (acceleration, velocity, displacement or strain) provided

by a sensor network, uδ(k) is the input data of nu input forces assumed to be measured by

the sensor network, k denotes the time index at time t (t = k∆t) for nd sampled data and

∆t is the sampling period. The data y
δ
(k) depends on the sensor configuration δ related
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to the number, location and measurement direction of sensors placed on the structure. Let

g(k; θ, φ) ∈ Rn be the time histories of n response QoI predicted for the specific values of the

parameter set θ by the structural model at all possible locations or DOF given the input time

histories. These predictions depend also on a parameter set φ that may include the excitation

characteristics (e.g. amplitude and frequency content, random variables such as white noise

variables defining the uncertain temporal and spatial variability of the excitation, number and

location of actuators), and nuisance parameters associated with non-updatable parameters of

the structural and/or prediction error model.

To account for modeling errors in the predictions, quantified by additive zero-mean Gaus-

sian noise terms, the prediction from the model at the locations defined by the sensor configu-

ration δ are expressed as:

g̃
δ
(k; θ, φ) = L(δ) g(k; θ, φ) + L(δ) e(k; Σe) (4.1)

where L(δ) ∈ Rny×n is the selection matrix that selects the DOF from the response vector

g(k; θ, φ) that correspond to sensor configuration δ, e ∼ N(0,Σe) is a zero-mean Gaussian

measurement and model error term with a covariance equal to Σe ∈ Rn×n. Models for the

prediction error covariance Σe are introduced by following the approach used in [13, 37, 45].

The covariance matrix Σe is taken as

Σe(ϑ, φ) = s2I + σ2
eQ̃

1/2
g (ϑ, φ) (4.2)

where I is the identity matrix and the notation Q̃ denotes a diagonal matrix that contains

in the i-th diagonal entry the square of the intensity of the i-th element of g(k; θ, φ). The

first term in Eq. 4.2 accounts for the measurement error with error values to be independent

of the response intensity, with the level s of the error to depend on the sensor accuracy and

characteristics. The second term in Eq. 4.2 accounts for the model error. A reasonable choice

of the model error variance at the i-th DOF is to have it proportional to the square of the

intensity of the QoI at DOF i, given by g2
i
(k; θ, φ), where σe denotes the level of model error

in relation to the intensity of the QoI. Spatial correlation between prediction errors is neglected

in the aforementioned formulation. Details about the correlation structure and its significance

in structural dynamics can be found in [13].

125

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



Applying the Bayesian theorem, the posterior probability density function (PDF) of the

parameter set θ, given the measured data D, takes the form

p(θ|D, δ, φ) = c̃
1

(
√
2π)

nd
√

det[L(δ)ΣeLT (δ)]
× exp[−ndny

2
J(θ|D, δ, φ)]π(θ) (4.3)

where

J(θ|D, δ, φ) = 1

ndny

nd∑
k=1

[y
δ
(k)− L(δ) g(k; θ, φ)]T [L(δ) Σe(θ;φ) L

T (δ)]−1

[y
δ
(k)− L(δ) g(k; θ, φ)]

(4.4)

expresses the deviation between the measured and model predicted quantities. π(θ) is the

prior distribution for θ and c̃ is a normalization constant guaranteeing that the posterior PDF

p(θ|D, δ) integrates to one. Eq. 4.3 quantifies the posterior uncertainty in the parameter values

θ based on the information contained in the measured data.

4.3 Bayesian Optimal Experimental Design Methodology for Parameter
Estimation

4.3.1 Information Content from Sensor Network for Parameter Estimation

The information content in the data is quantified through a utility function selected as the

information gained by the experiment. The utility function is related to the relative entropy or

the KL-div [51] between the prior and posterior PDF of the model parameters obtained from

an experimental design δ. Using utility theory [52], the OED is accomplished by maximizing

the expected information gain over all possible data generated from the prediction error model.

It can be shown that asymptotically for large number of data and small prediction errors, the

utility function that measures the expected information gain from the data for given φ, can be

simplified as follows [20, 27, 28, 37]:

U(δ, φ) = Hθ(φ)−
∫
θ

Hθ|D(δ; θ, φ) π(θ)dθ (4.5)

where, using Eq. 4.3, Hθ(φ) is the information entropy of the prior PDF of the model pa-

rameters, Hθ|D(δ; θ, φ) is the average information entropy of the posterior PDF of the model

parameters over all data, asymptotically approximated for large number of data by the expres-
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sion [10, 45]

Hθ|D(δ; θ, φ) =
1

2
nθ[ln(2π) + 1]− 1

2
ln det[Q(δ; θ, φ) +Qπ(φ)] (4.6)

where Q(δ; θ, φ) ∈ Rnθ×nθ is the Fisher information matrix, a semi-positive definite matrix

given by:

Q(δ; θ, φ) =

nd∑
k=1

∇θ[L(δ) g(k; θ, φ)]
T [L(δ) Σe(θ;φ) L

T (δ)]−1 ∇T
θ [L(δ) g(k; θ, φ)] (4.7)

∇θ = [∂/∂θ1, · · · , ∂/∂θnθ
] is the gradient operator and g(k; θ, φ) is the vector of response

time histories at all possible sensor locations.

For truncated Gaussian prior distribution π(θ) = NT (θ;µ,Σπ, a, b), where a and b are

vectors defining the lower and upper truncation bounds of the distribution, the information

entropy of the prior distribution of the model parameters is given by

Hθ(φ) =
1

2
nθ[ln(2π) + 1]− 1

2
ln det[Qπ(φ)] + hT (µ,Σπ, a, b) (4.8)

whereQπ(φ) is the inverse of the covariance matrix Σπ of the prior. For a Gaussian distribution

π(θ) = N(θ;µ,Σπ), the last term hT (µ,Σπ, a, b) = 0. For independent components in θ, each

one following a truncated Gaussian normal distribution, denoted as NT (θi;µi, σi, ai, bi) = for

the parameter θi, the function hT (µ,Σπ, a, b) takes the form

hT (µ,Σπ, a, b) =

Nθ∑
i=1

[
ln (Φ(βi)− Φ(αi))−

1

2

βiϕ(βi)− αiϕ(αi)

Φ(βi)− Φ(αi)

]
(4.9)

where ϕ and Φ is the probability and the cumulative distribution function of a standard normal

variable, respectively, βi = (bi − µi)/σi and αi = (ai − µi)/σi, ai and bi are the lower and

upper bounds of the truncated normal distribution for the parameter θi, µi is the mean and σi

is the standard deviation.

The expected utility function finally takes the form

U(δ, φ) = ∆H̄(δ, φ) = Eθ[∆H(δ, φ, θ)] =

∫
Θ

∆H(δ, φ, θ) π(θ) dθ (4.10)

where ∆H(δ, φ, θ) = Hθ(φ)−Hθ|D(δ; θ, φ) is the change of the information entropy between
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the prior and the posterior distribution estimated at a parameter value θ within the support of

the prior distribution, given by

∆H(δ, φ, θ) =
1

2
ln

det[Q(δ; θ, φ) +Qπ(φ)]

detQπ(φ)
+ hT (µ,Σπ, a, b) (4.11)

The utility function is based on the Fisher information matrix and it is an average of the

information gain over all possible values of the model parameters over the support of the

prior distribution, weighted by the values of the prior distribution. An estimate of the integral

in Eq. 4.10 can be obtained using either Monte Carlo or Sparse Grids methods [53, 54] as

follows:

U(δ, φ) = −Eθ[∆H(δ, φ, θ)] ≈ −
N∑
j=1

wj∆H(δ, φ, θ(j)) (4.12)

where θ(j), j = 1, . . . , N are sparse grid points or samples from the prior distribution π(θ) and

wj are the sparse grid or Monte Carlo weights.

4.3.2 Optimal Sensor Placement Conditional on φ

The optimal values δopt of the design variables are obtained by maximizing the utility U(δ, φ)

or, equivalently, minimizing the expected change in information entropy ∆H̄(δ.φ) taken with

respect to θ values over the support of the prior distribution, that is,

δopt(φ) = argmax
δ

U(δ, φ) = argmin
δ

∆H̄(δ, φ) (4.13)

The optimization problem involves discrete design variables δ (e.g. DOF at nodes for placing

displacement/acceleration sensors or Gauss integration points for placing strains sensors in a

finite element mesh). Heuristic algorithms (e.g. [27]), including forward and backward se-

quential sensor placement (FSSP/BSSP) algorithms [10, 13], or genetic algorithms [1, 55, 56]

can be employed to solve the optimization problem. The heuristic FSSP/BSSP algorithms by-

pass the problem of multiple local/global optima manifested in OEDs, providing near optima

solutions in a fraction of the computational effort required in stochastic optimization algo-

rithms or exhaustive search methods [8]. The heuristic FFSP algorithms is used in this study.
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4.3.3 Optimal Sensor Placement Considering Modeling and Input Uncertainties

The utility function in Eq. 4.10 depends on the values of the parameter set φ. The values of

φ are usually uncertain and this has to be accounted in the design of the optimal sensor con-

figuration. The source of uncertainties vary from excitation uncertainties to structural model

and prediction error model uncertainties. The excitation uncertainties are associated with the

uncertain characteristics of environmental loads. Such loads are usually modelled by stochas-

tic processes that correspond to a parameterized spectrum. For example, earthquake loads are

often represented by the Kanai-Tajimi spectrum [46, 47] which belongs to a class of filtered

white noise processes where the filter is represented by a second-order differential equation

excited by white noise. More involved models [48–50] connected with the physics-based pa-

rameters such as earthquake source, source to site propagation properties, directional effects

and local soil conditions also exist to characterize the earthquake excitation uncertainties at a

site by a stochastic process corresponding to a parameterized spectrum. The uncertain param-

eters φ are associated with the Gaussian white noise sequence used to generate realization of

the stochastic load [49, 50] and also with the Gaussian, lognormal or other distributions used

to quantify the uncertainties in the parameters defining the spectrum. The OSP should be de-

signed to cover all possible realizations of the stochastic process generated by all realizations

of the load spectrum parameters.

The parameter vector φ is composed of two independent parameter sets, φ = (φ
wn
, φ

nu
),

where the set φ
wn

is associated with the Gaussian white noise sequence used for represent-

ing the stochastic nature of the excitation and the set φ
nu

contains the parameter of the load

spectrum, as well as the nuisance (non-updatable) parameters of the structural and predic-

tion error models, such as the parameter set σ = (s, σe) in Eq. 4.2. Using the fact that

the parameter vector φ is an uncertain vector modelled by a prior probability distribution

π(φ) = π(φ
wn
) π(φ

nu
), the information contained in the sensor measurements is defined

to be the expected information gain, quantified by the expected utility function

U(δ) =

∫
Φ

U(δ, φ) π(φ) dφ = −
∫
Φ

∫
Θ

∆H(δ, φ, θ) π(φ)π(θ) dφ dθ ≡ −∆H̄(δ) (4.14)

over all possible values of the parameter set φ. The optimal sensor configuration δopt is selected
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to optimize the expected utility function, i.e.

δopt = argmax
δ

U(δ) = argmin
δ

∆H̄(δ) (4.15)

over all possible sensor configurations δ, where ∆H̄(δ) is the expected change in the informa-

tion entropy between the prior and posterior distribution.

An estimate of the multidimensional integral in Eq. 4.14 can be obtained using Monte

Carlo sampling for the white noise sequence parameters, while the parameters of the spectrum

can be treated exactly the same as the model parameters θ so that sparse grid or Monte Carlo

estimates can be used to estimate the integral in the form

U(δ) =
1

M

M∑
i=1

U(δ, φ(i)

wn
) (4.16)

where

U(δ, φ
wn
) = −Eθ,φ

nu
[∆H(δ, {φ

wn
, φ

nu
}, θ)] ≈ −

N∑
j=1

wj∆H(δ, {φ
wn
, φ(j)

nu
}, θ(j)) (4.17)

For each white noise sequence, Eq. 4.17 averages over all possible values of the model param-

eters in the support of the prior distributions of the updatable and non-updatable parameters.

Eq. 4.16 averages the utility function over different realizations of the white noise sequence

and represents robustness in the time history details of the stochastic excitation.

4.3.4 Optimal Sensor, Actuator and Excitation Characteristics

The problem of selecting the number and location of sensors and actuators, as well as the exci-

tation characteristics is next considered. For this, the parameter set φ is augmented to include

the design variables d associated with the location of actuators and the excitation character-

istics, along with the rest of the uncertain parameters {φ
wn
, φ

u
} that include the white noise

sequence parameters for the case of stochastic excitations and the nuisance parameters.

Thus, the parameter set φ is partitioned to the set d of design variables to be selected so that

the information in the data is the highest, and the set {φ
wn
, φ

un
} of uncertain parameters. The

expected utility function quantifying the expected information gain over all possible values of

130

Institutional Repository - Library & Information Centre - University of Thessaly
13/05/2024 21:30:43 EEST - 18.118.254.249



the uncertain parameter set {φ
wn
, φ

un
} takes the form

U(δ, d) = −Eθ,φ
un

,φ
un
[∆H(δ, {d, φ

wn
, φ

un
}, θ)]

≈ − 1

M

M∑
i=1

N∑
j=1

wj∆H(δ, {d, φ(i)

wn
, φ(j)

un
}, θ(j))

(4.18)

It should be noted that the utility is a function of the sensor configuration δ, the actuator

locations and the excitation characteristics included in the set d. The optimal values δopt and

dopt are selected to maximize the expected information gain, i.e.

{δopt, dopt} = argmax
{δ,d}

U(δ, d) (4.19)

with respect to the sensor configuration δ, the actuator locations and the excitation character-

istics d.

There are qualitative structural differences between the design of optimal sensor configu-

ration and the design of optimal actuator and excitation characteristics. The expected utility

function is a scalar measure of the sensitivity of the responses at the measured locations with

respect to the parameters to be inferred. A sensor configuration affects which response sen-

sitivities are involved in the information gain measure. An actuator configuration and the

excitation characteristics affects the value of the information gain but does not alter the struc-

ture of the information gain built from the response sensitivities corresponding to a sensor

configuration.

4.3.5 Computational Cost and Storage Requirements

The computationally most efficient algorithm to perform the OSP is to avoid re-computing

the sensitivities of the time history responses in Eq. 4.7 with respect to the parameters θ for

sensors configuration that contain common locations. These sensitivities have to be computed

once and then stored for all possible sensor locations. This computation has to be repeated

for each sample θ(j) and φ(j) of the updatable and non-updatable (nuisance) model parameter

drawn from the prior distribution and for each realization φwn
(i) of the stochastic input. These

sensitivity computations can substantially increase the computational burden of the method-

ology as well as the storage requirements, especially when the number n of possible sensor
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locations, number N of samples drawn from the prior distribution and the number M of input

realizations are large. The computational burden depends on the number of runs required to

compute the response sensitivities. For the case that the response sensitivities can be obtained

analytically by direct differentiation methods, the number of simulation runs for solving the

equations for the sensitivities of the response to each parameter are as many as the number

of model parameters nθ. For n number of possible sensor locations, N number of samples

in Eq. 4.17, M input realizations in Eq. 4.16, nθ number of updatable model parameters, and

nd points in a time history, the total number of simulation is thus nθNM , while the storage

requirements are of the order of 8nθnndNM10−9 GB. Once the response sensitivities have

been stored, the optimization of the utility function is performed with the utility built from the

stored response sensitivities.

To get an idea of the computational cost and the storage requirements, for the small case

of nθ = 10, n = 100, N = 100, M = 100 and nd = 100 and nd = 100 the system simulation

runs is of the order of 105 and the storage requirement is 8GB, while for a moderate case of

nθ = 10, n = 1000, N = 1000, M = 1000 and nd = 1000 the simulation runs is of the

order of 107 and the storage requirements is 8 × 104 GB. It is obvious that the computational

cost and especially the storage requirements can become excessive even for moderate cases

encountered in structural dynamics. Parallel computing can help to scale the computational

effort by the number of available cores available.

4.4 Application in Nonlinear Spring-Mass Chain Model

Without loss of generality, the application in this work is confined to MDOF nonlinear spring-

mass chain models shown in Fig. 4.1. The restoring force is considered to be hysteretic,

modelled by Bouc-Wen model [57, 58]. The equations of motion are briefly summarized

in Section 4.4.1 and extended in Section 4.4.2 for ground excitations modelled by filtered

white noise input. Direct differentiation techniques are used to develop the equations for the

response sensitivities with respect to the model parameters for the Bouc-Wen restoring force

nonlinearity, required in the OSP formulation (see Eq. 4.7).
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Fig. 4.1. Multi DOF nonlinear spring-mass chain model.

4.4.1 Formulation of Dynamic Equations of Motion

Let qi(u, u̇, t) be the restoring force for the nonlinear link i, where ui and u̇i are the relative

displacement and velocity time histories of floor i with respect to the base. The restoring force

is given by

q(u, u̇, z) = c ◦ (L̃u̇(t)) + diag(α ◦ k)(L̃u(t)) + diag((1− α) ◦ k)z(t) (4.20)

where c is a vector related to damping values and k is a vector containing the stiffness param-

eters of each floor. α is a vector of the rigidity ratios (i.e. the ratio of final tangent stiffness kN

to initial stiffness ki, with (0 < α < 1) and α = 1 corresponds to linear system) and zi is the

hysteresis displacement of each floor. Here the notation a◦b denotes the element-wise product

of the vectors a and b, and L̃ ∈ RN×N is a lower triangular transformation matrix given by

L̃ =



1

−1 1

0
. . . . . .

... . . . −1 1

0 · · · 0 −1 1


(4.21)

The non linearity is represented by Bouc-Wen hysteretic model given by

ż = A ◦ (Lu̇)− β ◦ |Lu̇| ◦ z ◦ |z|◦(n−1) − γ ◦ (Lu̇) ◦ |z|◦n (4.22)
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where parameter A and n controls the hysteresis amplitude and the smoothness of the hys-

teretic curve respectively. Along with n, the hysteretic parameters β, γ determine the basic

shape of the hysteretic loop. Their sum or difference will define a hardening or softening re-

lationship. Pinching effect, stiffness and strength degradation are neglected in this hysteresis

formulation. Using the vector of restoring force q(u, u̇, t) ∈ Rn, the equations of motion for

the nonlinear system can be written as follows:

Mü(t) + L̃T q(u, u̇, t) = LfF (t) (4.23)

and using Eq. 4.20, Eq. 4.23 it can be rearranged as:

Mü(t) + Cu̇(t) + L̃Tdiag(α ◦ k)L̃u(t) + L̃Tdiag((1− α) ◦ k)z(t) = LfF (t) (4.24)

The system of equations of motion Eq. 4.24 can be solved by introducing the state space vector
y
1
(t)

y
2
(t)

y
3
(t)

 =


u(t)

u̇(t)

z(t)

 (4.25)

and deriving the state space form:


ẏ
1
(t)

ẏ
2
(t)

ẏ
3
(t)


=


y
2
(t)

−M−1(Cy
2
(t) + LTdiag(α ◦ k)Ly

1
(t) + LTdiag((1− α) ◦ k)y

3
(t))

A ◦ (Ly
2
(t))− β ◦ |Ly

2
(t)| ◦ y

3
(t) ◦ |y

3
(t)|n−1 − γ ◦ [Ly

2
(t)] ◦ |y

3
(t)|n


+


0

f(t)

0


(4.26)

where

f(t) =M−1LfF (t) (4.27)

The equations of motion for a ground acceleration input üg(t) are obtained by settingLfF (t) =

−M1üg(t), leading to f(t) =M−1LfF (t) = −M−1M1üg(t) = −1üg(t).
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The nonlinear hysteretic part q
nl

of the restoring force q is defined in matrix form as:

q
nl
= diag((1− α) ◦ k)y

3
(4.28)

Let y
iθ
=

∂y
i
(t)

∂θ
be the sensitivity of the response y

i
(t) with respect to a parameter θ. Then

the equations for the sensitivities are readily obtained by direct differentiation of Eq. 4.26 in

the form:

ẏ
1θ

= y
2θ

+ 0 (4.29)

ẏ
2θ

=−M−1
θ (Cy

2
+ LT diag(α ◦ k)Ly

1
+ LT diag((1− α) ◦ k)Ly

3
)

−M−1(Cθy2 + Cy
2θ

+ LT diag(αθ ◦ k + α ◦ kθ)Ly1 + LT diag(α ◦ k)Ly
1θ

+ LT diag(−αθ ◦ k + (1− α) ◦ kθ)y3 + LT diag((1− α) ◦ k)y
3θ
) + f

θ
(t)

(4.30)

ẏ
3θ

=Aθ ◦ (Ly2) +A ◦ (Ly
2θ
)− β

θ
◦ |Ly

2
| ◦ y

3
◦ |y

3
|◦(n−1)

− β ◦ sign(Ly
2
) ◦ (Ly

2θ
) ◦ y

3
◦ |y

3
|◦(n−1)

− β ◦ |Ly
2
| ◦ n ◦ |y

3
|◦(n−1)y

3θ
− γ

θ
◦ (Ly

2
) ◦ |y

3
|◦n − γ ◦ (Ly

2θ
) ◦ |y

3
|◦n

− γ ◦ (Ly
2
) ◦ nsign(y

3
)|y

3
|◦(n−1)y

3θ
− β ◦ |Ly

2
(t)| ◦ y

3
(t) ◦ |y

3
(t)|◦(n−1) ◦ log(|y

3
(t)|) ◦ nθ

− γ ◦ (Ly
2
(t)) ◦ |y

3
(t)|◦n ◦ log(|y

3
(t)|) ◦ nθ + 0

(4.31)

4.4.2 Implementation of Kanai-Tajimi Model

The Kanai-Tajimi filter is a commonly used model to represent the strong motion content, and

it is given as [59],

üg = ẍg + cwt = −2ζgωgẋg − ω2
gxg (4.32)

where üg is the base acceleration, ωg is the characteristic frequency of the soil layer, ζg is the

damping ratio of the filter, c is the intensity of the white noise input, and wt is a zero-mean

Gaussian white noise input sequence, with sample at discrete time t following a Gaussian

distribution N(wt|0, 1) of unit variance. The equation of motion of the filter can be written as,
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ẍg + 2ζgωgẋg + ω2
gxg = −cwt (4.33)

with xg(0) = ẋg(0) = 0. Introducing the state vector
y4(t)

y5(t)

 =


xg(t)

ẋg(t)

 (4.34)

to augment the state vector in Eq. 4.25, the additional equations for the state vector Eq. 4.34

are given by
ẏ4(t)

ẏ5(t)

 = Ac


y4(t)

y5(t)

−Bccwt (4.35)

where

Ac =

 0 1

−ω2
g −2ζgωg

 , Bc =

 0

1

 (4.36)

and the forcing term in Eq. 4.26 takes the form f(t) = 1(2ζgωgy5 + ω2
gy4). The sensitivity

equations Eq. 4.29, Eq. 4.30 and Eq. 4.31 can be augmented by the equations
ẏ4θ

ẏ5θ

 =


y5θ

−2ζgωgy5θ − ω2
gy4θ − 2(ζgθωg + ζgωgθ)y5 − 2ωgωgθy4

 (4.37)

where the sensitivity of the forcing term in Eq. 4.26 is given by f
θ
(t) = 1[2ζgωgy5θ + ω2

gy4θ +

2(ζgθωg + ζgωgθ)y5 + 2ωgωgθy4].

In the analysis, for a fair comparison of the utilities, the intensity of filtered input is kept

the same for different values of uncertain filtered parameters ωg and ζg. This is accomplished

by selecting the value of the white noise input intensity c. Specifically, using a discrete state

space representation of the Kanai-Tajimi model Eq. 4.33, applying the Liapunov equation,

and assuming a scalar stationary zero-mean Gaussian white noise excitation with variance
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σ2
wn = c2, the variance of the ground motion acceleration is given by

σ2
üg

= c2(GQ̄xG
T + JJT ) (4.38)

where Q̄x can be obtained by solving the discrete Liapunov equation

AQ̄xA
T − Q̄x +BBT = 0 (4.39)

with the discrete state space matrices given, using zero-order hold, as A = exp(Ac∆t) and

B = (A − I)A−1
c Bc, and ∆t is the sampling time, and G = [ −ω2

g −2ζgωg ]. Given the

intensity σüg of the excitation and the filter parameters ωg and ζg, the intensity c of the white

noise input is computed from Eq. 4.38.

4.5 Numerical Results

4.5.1 6-DOF nonlinear spring-mass system

A 6 DOF nonlinear spring-mass chain model of the structure is first considered (Fig. 4.1). The

structure could be a 6-story building represented by a shear model with each link modeling the

interstory stiffness and each mass modelling the floor mass. Rayleigh damping C = αRM +

βRK is assumed with αR = 0.23 and βR = 0.001, where M and K are the mass and stiffness

matrices of the linear model of the system. The parameter set θ is introduced for the 1st and the

2nd links of the chain model. The parameter set θ includes the stiffness k and the Bouc-Wen

model parameters A, β, α, n of the 1st and 2nd links. γ is assigned to be 1 − β . The model

parameters of two links are assumed to be independent from each other. Thus the number of

model parameters to be inferred is 10. It is assumed that the other springs are linear. A normal

prior PDF is assumed for each model parameter in θ with mean µ and standard deviation

σ given in Table 4.1. The bounds of Bouc–Wen model parameters are selected to meet the

following conditions: A > 0, n > 1, β > 0, α ∈ (0, 1).
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Table 4.1: Mean and standard deviation of normal distribution, θi ∼ N(µ, σ), quantifying
the prior information of the model parameters θi.

Parameter (µ, σ)

k1, k2 (1, 0.2)
A1, A2 (1, 0.2)
β1, β2 (0.7, 0.2)
n1, n2 (2, 0.2)
α1, α2 (0.5, 0.1)

The objective of the application is to find an optimal acceleration sensor placement layout

that maximizes the information for computing the model parameters θ. The time histories of

the response used for the OED are contained in the interval [t1, t1 +T ] where the variable t1 is

chosen to be t1 = 1 sec in order to reduce the transient effects and T is chosen to be T = 10

sec in order to have a reasonable signal duration to be a multiple of the largest modal period

of 0.92 sec for the nominal values of the model parameters.

The structure is subjected to a base acceleration modelled by a zero-mean Gaussian white

noise process with variance c2, defined at discrete times with time step dt = 0.01sec. The

amplitude c is selected to be c = 100 in order to activate model nonlinearities. The nonlinear

restoring force of the 1st and 2nd links to the white noise input is presented in Fig. 4.2 for the

nominal values of the model parameters. Fig. 4.3 shows the intensities (root-mean-square of

the responses) of the acceleration responses at the six DOF.

Fig. 4.2. Hysteretic force vs story drift for the first and second link computed for the
nominal (mean) values of model parameters

(k = 1, A = 1, β = 0.7, γ = 0.3, n = 2, α = 0.5).
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Fig. 4.3. Intensities of absolute accelerations for mean values of the model parameters vs
DOF.

4.5.2 Effect of model and measurement error parameters

The effects of the model and measurement error parameters on OSP is explored by considering

different measurement and model error cases given in Table 4.2. For error cases 1 and 5, the

standard deviations for the error covariance matrices are selected so that the model error cor-

responds to 1% (small model error) and 10% (large model error) of the intensity of measured

QoI, while the measurement error is fixed to 0.4% (small measurement error) of the average

intensity of the measured QoI given in Fig. 4.3. For cases 1 to 4, the model error is fixed to 1%

(small) of the intensity of measured QoI, while the measurement error corresponds to 0.4%

(small), 1% (moderate), 4% (large) and 40% (very large) of the average intensity of measured

QoI given in Fig. 4.3.

Table 4.2: Different cases of model and measurement error parameters. ϵrms is the intensity
(root mean square) of the floor absolute accelerations.

Case model measurement σe s s/ϵrms

error error

1 small very small 0.01 0.1 ∼ 0.4%
2 small small 0.01 0.3 ∼ 1%
3 small moderate 0.01 1 ∼ 4%
4 small large 0.01 10 ∼ 40%
5 large small 0.1 0.1 ∼ 0.4%

To consider the uncertainty in the unknown temporal variability of the input, the OSP

design is based on 100 realizations of the white noise input. The expectation over the uncertain

input parameter space is calculated using the expected information gain (utility) values in

Eq. 4.14 as a function of the number of sensors placed at their optimal locations. Results are
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presented in Fig. 4.4(a). Fig. 4.4(b) shows the utility values normalized by the maximum utility

value for the sensor configuration containing six sensors. Results obtained from different error

cases are compared in these figures.

(a) (b)

Fig. 4.4. (a) Maximum utility values and (b) normalized maximum and minimum utilities
values as a function of the number of sensors.

As observed from the expected utility values, there is a significant information gain when

sensors are placed to the system to estimate the model parameters. Depending on the model

and measurement error case, the first sensor optimally located on the structure provides 71-

87% of the information that one would get by placing all six acceleration sensors in all six

DOF. Each additional sensor provides some extra information for estimating the model pa-

rameters, until the maximum information is reached for 6 sensors. From Fig. 4.4(a) results,

as measurement error increases from case 1 to case 4, the information gain decreases, which

is consistent with intuition that higher measurement error corresponds to higher noise to sig-

nal ratio in the measurements and thus the information recovered is less. In the presence of

noisy signals, one requires more sensors to gain the same information for parameter estima-

tion. A similar trend can be observed for the model error comparison between case 1 and case

5. Higher model error requires more sensors to gain the same information as one gains with

smaller model error.

The optimal and the worst sensor locations are shown in Fig. 4.5 as a function of the

number of sensors. The best locations for the most informative sensor configurations and

the worst locations for the least informative sensor configurations for all sensors are found to

slightly depend on the model and measurement error cases. According to the optimal sensor
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location result, the 1st sensor should be placed in the 1st DOF, independently of the model and

measurement error case considered, to reliably estimate the model parameters associated with

the 1st and 2nd links. This optimal location turns out to be the location between the two links

that involve the unknown parameters to be inferred from the measurements. The best location

of the second sensors turns out to be the 2nd DOF for most error cases and DOF 6 for the case

of large measurement error. For almost all cases, the worst location of one sensor is 5th or 6th

DOF, which correspond to DOF that are further away from the parameterized first two links.

(a) (b)

Fig. 4.5. The best and worst sensor locations as a function of the number of sensors.

4.5.3 Computational Issues

For the 6 DOF system, the size of the input file (the actual storage requirements) for 100 white

noise input realizations is 8nθnndNM10−9 = 8×10×6×1001×400×100×10−9 = 19 GB.

To create the input file for 100 white noise input cases, nθNM = 10×400×100 = 4×105 runs

of the response sensitivity equations is required which amounts to 4.5 hours of computation

time performed in a 32-core computer to handle the problem in parallel workers. Finally, the

optimization over the sensor configuration, performed using the stored values for the response

sensitivities, takes around 30 min with FSSP algorithm, which amounts to 10% of the time

required to compute and store the response sensitivities.

4.5.4 Effect of input intensity

To explore the effect of the input intensity, the OSP problem is solved with different values c

of the white noise excitation intensity, ranging from 0.1 to 500, and for the measurement and
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model error case 3 (small model error and moderate measurement error) presented in Table 4.2.

In this analysis, only 1 white noise input realization is considered. Results for the maximum

information gain are presented in Fig. 4.6 for three different sensor configurations correspond-

ing to 1, 3 and 6 number of sensors. As expected, the information gain is increasing with the

input amplitude since as the values of the input intensity increase, the level of nonlinearity

in the system links are progressively activated into higher levels and thus more information

can be extracted from the data to reliably estimate parameters related to the nonlinearity. The

higher the value of the input intensity, the smaller the increase in the information gain. As

the value of the intensity increases, a sharper increase of the information gain is observed for

smaller values of the input intensity c since the system moves progressively from a linear or

weakly nonlinear state to a strongly nonlinear state. Once the nonlinearities are strongly acti-

vated, further increase of the intensity causes the system nonlinearities to increase further but

the extra information gain is relatively small compared to the information gain obtained for

smaller intensities that strongly activate the nonlinearities. Specifically, it can be noted that the

increase of the intensity from 200 to 500 results in an extra information gain of 3 for one op-

timally placed sensor, which is only a small fraction of approximately 10% of the information

gain of 27 obtained from an increase of c from 0.1 to 200.

Fig. 4.6. Maximum utility values versus input intensity for white noise input obtained with
1, 3 and 6 sensors.

4.5.5 Effect of prior uncertainty

To investigate the effect of prior uncertainty, the problem is solved with truncated Gaussian

prior distributions. The truncated Gaussian distribution NT (θ;µ, σ, a, b) is used in order to be

able to increase the uncertainty in the prior of the updated parameters, avoiding the violation
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of hard constrains in the allowable values of the model parameters. The parameters µ, σ

and the bounds a and b of the truncated prior distribution are given in Table 4.3. Results are

obtained for only a single input white noise realization and for model and measurement error

case 3. Results are compared in Fig. 4.7 for different values of the standard deviation σ: 0.1,

0.5, 1 and 10. The increase of the uncertainty of prior distribution leads to an increase in the

utility values. This is consistent with the fact that the apparent information gain that a given

set of data provides is larger for larger uncertainty in the prior. This is due to the fact that

large prior uncertainty corresponds to smaller values of detQπ in Eq. 4.11, while for a fixed

Fisher information matrix Q determined from the data, the contribution of Qπ in Q + Qπ is

negligible. As a result, the increase in the uncertainty in the prior results in a decrease in

the denominator in Eq. 4.11 which corresponds to an increase in the utility value. From the

normalized utility values in Fig. 4.7(b), it can be concluded that the normalized information

gain, seen as a fraction of the maximum information gain that can be achieved for 6 sensors,

is almost independent of the large differences in the prior uncertainty.

Table 4.3: Mean, standard deviation and bounds of truncated normal distribution,
θi ∼ NT (µ, σ, a, b), quantifying the prior information of the model parameters θi.

Parameter (µ, σ, a, b)

k1, k2 (1, σ, 0.4, 1.6)
A1, A2 (1, σ, 0.1, 10)
β1, β2 (0.7, σ, 0.1, 2)
n1, n2 (2, σ, 1.1, 5)
α1, α2 (0.5, σ, 0.1, 0.9)

(a) (b)

Fig. 4.7. Maximum and minimum (a) utility values and (b) normalized utility values using
truncated Gaussian priors.
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4.5.6 Optimal excitation characteristics

To study the effect of excitation characteristics on the information gain, the optimal excitation

frequency of a harmonic base acceleration given by F (t) = c sin (2πΩit) is obtained. For

this the maximum information gain is estimated for different excitation frequency values Ωi,

ranging from 0.2 to 10Hz with ∆Ωi = 0.1Hz. The intensity of the harmonic input is selected

as c = 30, c = 60 and c = 90 to progressively activate the nonlinearities. The maximum utility

values are calculated with acceleration sensors placed at all 6 DOF of the chain and the results

are compared with the ones obtained from a linearized system by using the same input.

The time histories of the response used for the OED are contained in the interval [t1, t1+T ].

The variable t1 is chosen to be 10 sec so that the effect of the transient part of the response

disappears, while the duration of the response is chosen to be T = 5Ti, where Ti = 2π/Ωi

is the excitation period, so that there are at least 5 cycles of the excitation frequency in the

response. Here the sampling period of the input signal is selected to be dt = Ti/Nt where

the number of points Nt within the excitation period Ti is selected to be 20. These selections

guarantee that the number of points per period remain the same, independent of the excitation

frequency. These selections are important in order to compare the utility values over different

excitation frequencies.

The intensity of the drift response time history at the lowest story versus the input fre-

quencies is presented in Fig. 4.8 for the linear and nonlinear system for the harmonic input

intensities c = 30, 60 and 90. The natural frequencies of the linearised system are shown with

the vertical lines. The intensity of the drift response close to the first and second linear reso-

nance frequency attains its maximum at a value slightly lower than the natural frequency due

to the softening nonlinearity that is activated. The level of nonlinearity increases with the level

of excitation, increasing the distance between the excitation frequency for which the intensity

peaks and the linear resonance frequency. The width of the resonance region also increases

with the level of excitation c since it affects the level of nonlinearity activated.

The utility U(δ,Ω) as a function of the excitation frequency Ω is presented in Fig. 4.9.

Comparing Fig. 4.9 with Fig. 4.8, it is observed that the optimal excitation frequency is close

to the first and the second resonant frequencies of the linear model. The most optimal exci-

tation frequency is the one closer and slightly lower than the lowest modal frequency of the

linear model. Moreover, the width of the utility function, seen as a function of the excita-
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tion frequency Ω, around the lowest resonance region is larger than the width of the intensity

response function around the resonance region shown in Fig. 4.8, signifying that the the se-

lection of the optimal excitation frequency is not that sensitive to the accuracy with which the

resonance frequency is known.

The information gain in the neighborhood of the second resonance frequency increases as

the intensity c of the excitation frequency increases due to the fact nonlinear mechanism is

progressively activated and thus more information is gained for identifying the parameters of

the nonlinear hysteretic behavior. This increase in the information gain is less evident in the

resonance region very close to the lowest mode due to the fact that the response at all three

levels of excitation c is very large, strongly exciting the nonlinearities at all these three levels,

so the information gained from higher values of c are not more informative for estimating the

hysteretic parameters than the information gained from lower c values. Also, for excitation

frequencies higher than 4 Hz, it can be seen that the utility values U(δ,Ω) almost coincide

for all three excitation levels, mostly demonstrating that the nonlinearities are not adequately

activated in such excitation frequency and the system behaves close to the linear range, thus

providing very similar information for the parameters associated with the nonlinearities. This

is consistent with the results in Fig. 4.8 which shows that drift intensities in the first floor to be

smaller in the frequency range Ω > 4 Hz compared to the intensities in the lower frequency

range. This is also consistent with the hysteretic curves shown in Fig. 4.10 for the first floor

for the three different excitation intensity levels c = 30, 60 and 90 drawn for the four different

excitation frequencies close to the resonance frequencies 1.08 Hz, 3.19 Hz, 5.11 Hz and 6.74

Hz. Specifically, for excitation frequencies close to the third and fourth resonance frequency,

the nonlinearities are only very slightly activated, with the system behaving almost in the linear

regime.
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Fig. 4.8. Intensity of interstory drift for first story versus the input frequencies for linear and
nonlinear systems.

Fig. 4.9. Maximum utility versus input frequency for linear and nonlinear systems.
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(a) c = 30,Ω = 1.1 (b) c = 30,Ω = 3.2 (c) c = 30,Ω = 5.1 (d) c = 30,Ω = 6.7

(e) c = 60,Ω = 1 (f) c = 60,Ω = 3.2 (g) c = 60,Ω = 5.1 (h) c = 60,Ω = 6.7

(i) c = 90,Ω = 0.9 (j) c = 90,Ω = 3.2 (k) c = 90,Ω = 5.1 (l) c = 90,Ω = 6.7

Fig. 4.10. Hysteretic force versus story drift for the first story for the three different
excitation levels c = 30, 60 and 90 and four different excitation frequencies close to

resonance frequencies 1.08 Hz, 3.19 Hz, 5.11 Hz and 6.74 Hz, estimated for the nominal
(mean) values of model parameters

4.5.7 Optimal actuator location

To explore the effect of actuator location, OSP analysis is performed for the nonlinear system

with harmonic excitation (Ω = 1.1) for different locations of the actuator ranging from the

1st to the 6th DOF. To strongly activate the nonlinearities, the intensity c of the harmonic

excitation is selected to be 1. The activation of the nonlinearities is evident in Fig. 4.11,

showing the hysteretic curves of the restoring force at the first and second story versus story

drift for actuator locations at 1st, 3rd and 6th DOF and for the nominal values of the model

parameters. Results for the maximum utility values U as a function of the actuator location
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are shown in Fig. 4.12(a) for one, two and six sensors placed at their optimal locations. It

can be seen that different actuator locations provide different information. The best actuator

location can be considered at the top floors (DOF 4, 5 or 6) as they provide similar information

gain values. The optimal location of the sensors for different actuator locations, shown in

Fig. 4.12(b), are found to be insensitive to input location for the first 3 sensors. Moreover,

the 1st and 2nd DOF which are closest to the parameterized nonlinear links, are the best two

sensor locations for all actuator location cases. The third best sensor location is the 6-th DOF.

(a) actuator location: 1st DOF

(b) actuator location: 3rd DOF

(c) actuator location: 6th DOF

Fig. 4.11. Hysteretic force versus story drift for the first and second story for actuator
locations at 1, 3 and 6 DOF, for Ω = 1.1 and for the nominal (mean) values of model

parameters.
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(a) (b)

Fig. 4.12. (a) Maximum utility values U for 1, 3 and 6 optimally located sensors, (b)
Optimal sensor locations for different actuator locations. Case i corresponds to the actuator

location at DOF i.

4.5.8 20-DOF nonlinear spring-mass system

As a second numerical example, a 20 DOF nonlinear spring-mass chain model of the structure

shown in Fig. 4.1 is considered. The modal frequencies of the linear system are given in

Table 4.4. The nonlinearity in the system is defined in the form of a Bouc-Wen hysteresis

model for the links 1 to 5. It is assumed that the stiffness of the other links are linear. Rayleigh

damping C = αRM + βRK is assumed with αR = 0.48 and βR = 0.04, where M and K are

the mass and stiffness matrices of the linear model of the system. The parameter set θ includes

the stiffness k and the Bouc-Wen model parametersA,β, n and α for each link from 1-5 floors.

γ is assigned to be 1 − β. The model parameters in θ for links 1 to 4 are considered fully

correlated. The model parameters of link 5 are treated as independent of the model parameters

of link 1 to 4. Thus, the number of modal parameters is 10. A Normal prior PDF is assumed

for each model parameter with mean µ and standard deviation σ given in Table 4.5. The case

3 of small model and moderate measurement error is considered. For each white noise input

realization, the Monte Carlo method with 400 samples is used to calculate the integration in

the utility calculation over the support of the prior values of model parameters φ
nu

and θ.
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Table 4.4: Modal frequencies of the linear system.

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13

Freq. (Hz) 1.02 3.07 5.09 7.09 9.04 10.94 12.78 14.54 16.21 17.79 19.26 20.63 21.87

14 15 16 17 18 19 20

22.99 23.97 24.80 25.50 26.04 26.43 26.66

Table 4.5: Mean and standard deviation of normal distribution, θi ∼ N(µ, σ), quantifying
the prior information of the model parameters.

Parameter (µ, σ)

k1,2,3,4, k5 (1, 0.2)
A1,2,3,4, A5 (1, 0.2)
β1,2,3,4, β5 (0.7, 0.2)
n1,2,3,4, n5 (2, 0.2)
α1,2,3,4, α5 (0.5, 0.1)

4.5.9 Uncertainties in white-noise input characteristics

The structure is subjected to a broadband base acceleration modelled by a discrete zero-mean

Gaussian white noise process with variance c2 (c = 800) selected so that the nonlinearities are

activated. The time samples are given every dt = 0.01 sec. The hysteresis force versus story

drift calculated with the mean values of estimated parameters for the lowest five stories is given

in Fig. 4.13 for a specific realization of the white noise excitation and for c values ranging from

400 to 1000. In Fig. 4.14 the intensities of the acceleration response time histories are given

for all DOF. For the OED, the chosen time interval is [t1, t1 + T ] where t1 = 1 sec is selected

to reduce the effect of the transient part of the response, and T = 2, T = 5 and T = 10 sec are

selected to be able to study the effect of time duration on the information gain. To consider the

effect of the input uncertainty, the expectation over 100 different white noise input realizations

is calculated using Eq. 4.14.
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(a) c = 400

(b) c = 600

(c) c = 800

(d) c = 1000

Fig. 4.13. Hysteretic force vs story drift with mean values of updated parameters.
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(a) (b)

Fig. 4.14. Intensities of the (a) absolute and (b) relative acceleration response estimated for
the mean values of the model parameters versus DOF.

OSP results are presented for the three different signal durations of T = 2, 5 and 10

sec. The maximum and minimum utility values as well as the normalized utility values are

presented in Fig. 4.15. The best and worst sensor locations are presented in Fig. 4.16. From

the utility results, it can be seen that the information gain is affected by the signal duration. The

higher the signal duration, the more the information provided from the data. However, from

the normalized utility values in Fig. 4.15(b), it can be seen that the maximum information

gain from an optimal sensor configuration involving a fixed number of sensors, measured as a

fraction of the maximum information that can be gained by placing as many as 20 acceleration

sensors, is almost independent of the duration of the excitation. From Fig. 4.16, the same can

be concluded for the optimal and the worst sensor locations since these locations are almost

independent of the signal duration. As a result, the OSP for a signal duration remains optimal

for any other signal duration, in terms of normalized information gain and optimal sensor

locations.

For the three cases of signal duration, there is a significant gain of approximately 75% of

the maximum information when the first sensors is placed to its optimal location. According to

the optimal sensor location result, the first 3 sensor locations are not affected from the signal

duration and they should be placed to 4th, 5th and 3th DOF to reliably estimate the model

parameters of the first 5 links. The best locations for more than 3 sensors are slightly different

for the three different signal durations. However, these different sensor configurations are

nearly optimal since they provide utility values that are close to the maximum utility values.

The worst locations of the first sensor is the 17th DOF providing 57% to 66% of the maximum

information that can be achieved by placing acceleration sensors at all 20 DOF.
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(a) (b)

Fig. 4.15. Maximum and minimum (a) Utility values, and (b) normalized utility values
robust to input characteristics for different signal duration T = 2, 5 and 10 sec.

(a) (b)

Fig. 4.16. (a) Best and (b) worst sensor locations robust to input characteristics for different
signal duration T = 2, 5 and 10 sec.

The optimal location of sensors as a function of the number of sensors are reported in

Fig. 4.17 for 100 different realizations of the stochastic excitation. The optimal sensor loca-

tions corresponding to the expected utility values that take into account the input uncertainties

are also shown in this figure. The optimal sensor locations show a slight dependence on the

details of the input realizations of the stochastic excitation. The robust optimal location of the

first sensor is DOF 4. This OSP at DOF 4 for the first sensor is preferred for all 100 input re-

alizations. The robust optimal location of the second sensor is DOF 5. The DOF 5 is preferred

as optimal location of the second sensor for 99 input realization cases. The second preferred

location of the second sensor is DOF 3 for 1 input realization. For the third sensor, the robust
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position is DOF 3, while the optimal position for each input realization is shared among DOF

3 (65% of the input realizations), DOF 20 (34% of the input realizations), and DOF 5 (1% of

the input realizations).

Fig. 4.17. Optimal sensor locations as a function of the number of sensors for 100 different
stochastic input realizations. For a given number of sensors, more than one sensors locations

can be predicted out of the 100 input realizations. The size of the blue square marker is
selected to be proportional to the number of occurrence of each best/worst sensor locations

counted among the 100 input realizations. Also, the robust optimal sensor locations are
shown with yellow triangle.

For the 20 DOF system, the storage storage requirements for 100 white noise input realiza-

tions are 8nθnndNM10−9 = 8× 10× 20× 1000× 400× 100× 10−9 = 64 GB. To create the

input file for 100 white noise input realizations, nθndNM = 10×400×100 = 4×105 runs of

the sensitivity equations is required which amounts to 26 hours of computation time required

in a 32-core computer to handle the problem in parallel workers. Finally, the optimization

over the sensor configuration, performed using the stored values for each sensor involved in a

sensor configuration to compute the utility, takes around 3 hours with FSSP, which amounts to

almost 10% of the time required to compute and store the response sensitivities.

4.5.10 Uncertainties in white noise input intensity

To consider the uncertainty in white noise intensity, the parameter c is assumed to follow a

truncated Gaussian distributionN(c|µc, σc, 0,∞) with mean parameter µc = 800 and standard

deviation parameter σc = 0.3µc = 240. For the OED, a time interval [t1, t1+T ] is chosen with

t1 = 1 and T = 10 sec.

Results for the maximum utility values as a function of the number of acceleration sensors
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placed at the optimal position, as well as the optimal and worst sensor locations are compared

in Fig. 4.18 and Fig. 4.19 for the deterministic c = 800 value and the uncertain c case. The

results for both the deterministic and the uncertain c cases are estimated for only a single

realization of the white noise input. According to the utility results, the uncertain c case

give information gain values that are higher than the ones for the deterministic case. This

is due to the fact that in the uncertain case, the values of c increase significantly, activating

large levels of nonlinearities, and thus there is more information in the data to estimate the

parameters related to the nonlinear restoring force. From the results in Fig. 4.18, the maximum

normalized information gain for both deterministic c = 800 case and the uncertain c case is

almost the same for all optimal sensor configurations involving various number of sensors. In

particular, approximately 80% of the maximum information can be obtained by using 1 sensor

and after that each additional sensors provides some extra information for estimating the model

parameters of lowest 5 nonlinear stories.

Results in Fig. 4.19 suggest that the optimal sensor configuration involving one, two or

four sensors is not affected by the uncertainty in c. The optimal location of 3 sensors differs,

with the third sensor placed optimally at the 20-th DOF for the uncertain c case as opposed to

the 3-rd DOF placed for the deterministic c case. However, both optimal sensor configurations

predicted by the deterministic and uncertain c cases for 3 sensors provide normalized infor-

mation gains that are higher than 99% of the maximum information gain that can be achieved

for 3 sensors. The optimal and worst sensor configurations for 1 to 20 sensors give almost the

same pattern, as seen in Fig. 4.19, for both the deterministic and uncertain c cases.

(a) (b)

Fig. 4.18. Comparison of (a) Utility values, and (b) normalized utility values for the
deterministic (c = 800) and uncertain input intensity c.
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(a) (b)

Fig. 4.19. Comparison of (a) best and (b) worst sensor locations for the deterministic
(c = 800) and uncertain input intensity c.

4.5.11 Uncertainties in filtered input characteristics

The structure is next subjected to a base excitation modelled by the output of the Kanai-

Tajimi model used to simulated earthquake excitations. In [59] the use of ζ = 0.64 and

ωg = 15.56(rad/sn) is recommended for firm soil conditions in a frequency range from

2.1(rad/sn) to 21(rad/sn). In this example, ζg is assumed to be constant equal to 0.64, and

ωg is assumed to be uncertain following a Gaussian distribution with mean 15(rad/sec) and

standard deviation 1.5(rad/sec). The intensity of the filtered input is kept equal to cf = 400

for all values of ωf , in order to activate nonlinearities in the first five links. In Fig. 4.20, com-

parison of the white noise and the filtered input, and the hysteretic force and story drifts (for

the first 5 stories) calculated by using the mean values of updated and uncertain model param-

eter is seen. Case 3 of the small model and moderate measurement error reported in Table 4.2

is considered.
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(a)

(b)

Fig. 4.20. (a) Comparison of the input (blue) and filtered input (red) in time and frequency
domain, (b) hysteretic restoring force versus story drift for the first 5 stories estimated using

the mean values of model parameters.

The portion of the response that is included in the utility estimation corresponds to the

time interval [t1, t1 + T ], where t1 is selected so that the transient part of the response decays

sufficiently, while the duration T is chosen to be a multiple of the lower modal period of

the linear system so that and the response within the interval T achieves stationarity. The

following choices are made t1 = 1 sec and T = 10 sec in order to keep the computational

effort to manageable levels.

The OSP is computed to take into account the uncertainties of the filter parameter ωg and

the time history details of the earthquake excitation. To consider the earthquake acceleration

uncertainty, 100 different filtered white noise input realizations are generated and the utility

is averaged over all input representations. The Monte Carlo method is used to estimate the

integral involved in the utility over the possible values of parameters to be inferred and the

uncertain input parameter with 400 samples.

The robust OSP results obtained using the expected utility value over all realizations are

compared with the results obtained by maximizing the utility value for each one of the 100

realizations of the stochastic excitation. For this, the upper and lower bounds in the maximum
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and minimum utility values computed by using 100 realizations are shown in Fig. 4.21(a). The

averaged maximum and minimum utility values over the 100 input realization is also presented

in Fig. 4.21(a). The upper and lower bounds for the normalized information gain values are

shown in Fig. 4.21(b).

(a) (b)

Fig. 4.21. Upper bounds (UB) and lower bounds (LB) of maximum and minimum
information gain for 100 different input realizations, as well as maximum and minimum of
the expected information entropy robust to input uncertainties. (a) Expected utility values,

and (b) normalized expected utility values.

It can be seen that the maximum and minimum utility values are affected from the details

of the stochastic excitation. Specifically, the maximum and the minimum utility values depend

on the input realization and may vary by approximately 20 to 30% depending on the number of

sensors in a configuration. Similar variation is evident for the minimum utility values. How-

ever, the normalized utility values, normalized with respect to the maximum information gain

that can be achieved by as many as 20 acceleration sensors, demonstrate a smaller variability,

lower than 7%. In addition, the expected utility values and the normalized expected utility

values that take into account the input uncertainties are contained within the aforementioned

bounds. The results in Fig. 4.21(a) suggest that the uncertainty in the details of the input

excitation does not considerably affect the information gain as a function of the number of

optimally placed sensors in relation to the maximum information gain that can be achieved by

populating the structure with the maximum of 20 sensors. 75% of the maximum information

can be obtained by using 1 sensor and after that each additional sensors provides some extra

information for estimating the model parameters of the lower 5 links in the chain.

The optimal and worst location of sensors as a function of the number of sensors are re-
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ported in Fig. 4.22 for 100 different realizations of the stochastic excitation. The optimal and

worst sensor locations corresponding to the expected utility values that take into account the

input uncertainties are also shown in this figure. The optimal and worst sensor locations in

Fig. 4.22 show a slight dependence on the details of the input realizations of the stochastic ex-

citation. The robust optimal location of the first sensor is DOF 4, while the OSP at DOF 4 for

the first sensor is preferred 88% of 100 input realizations, with the second preferred location

of the first sensor to be DOF 3. Similar results are obtained for the second sensor. The robust

optimal sensor location of the second sensor is DOF 1. The preferred locations of the second

sensor are DOF 1 for 88 input realizations and DOF 20 for the rest 12 input realizations. For

the third sensors, the robust position is found to be DOF 20, while the optimal position for

each input realization is shared among DOF 20 (71% of the input realizations), DOF 5 (17%

of the input realizations) and DOF 1 (12% of the input realizations). Finally, the robust OSP

for 1 to 4 sensors are DOF 4, 1, 20 and 5, while the OSP predicted by the 100 input realizations

is 4 (88% occurence), 1 (88% occurence), 20 (71% occurence) and 5 (60% occurence).

Similar to the best sensors location results, worst locations are also found to be less sensi-

tive to the changes in the white noise input characteristics.

(a) (b)

Fig. 4.22. (a) Optimal and (b) worst sensor locations as a function of the number of sensors
for 100 different stochastic input realizations. For a given number of sensors, more than one

sensors locations can be predicted out of the 100 input realizations. The size of the blue
square marker is selected to be proportional to the number of occurrence of each best/worst
sensor locations counted among the 100 input realizations. Also, the robust (a) optimal and

(b) worst sensor locations are shown with yellow triangle.

The different OSP estimates proposed by each one of the 100 input realizations do cor-
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respond to near optimal solutions when the robust utility is computed. To demonstrate this,

the optimal sensor configuration computed for each one of the 100 input realizations is used

to compute the expected information gain taking into account the input uncertainty. The ratio

of the resulting information gain values to the maximum expected information gain values is

computed as a function of the number of sensors for all 100 input realizations. The lower and

upper bounds of this ratio as a function of the number of sensors are plotted in Fig. 4.23. The

values of the ratio are extremely close to one, ranging from 0.985 to 1.0, signifying that the in-

formation loss obtained by designing the optimal sensor configuration based on a single input

realization, any single one out of the 100 input realizations, is not higher than 1 to 1.5%. This

result promotes the idea of using a single realization of a stochastic excitation to design the

optimal sensor configuration and find a near optimal solution, thus avoiding the very high com-

putational cost and storage requirements associated with maximizing the expected information

gain over all possible values of the input realizations.

Fig. 4.23. Lower and upper bounds as a function of the number of sensors of the ratio of the
expected information gain values computed from the OSP corresponding to each one of the

100 input realization and the maximum expected information gain values.

To investigate the effect of the number of parameters to be inferred and the spread of pa-

rameters along the structure, the final case considered is the OSP for estimating the parameters

of the lower five links, assuming that the values of the five parameters k, A, β, n and α of each

link are independent, totalling to as many as 25 parameters. A truncated Normal prior PDF is

assumed for each model parameter θ with mean µ and standard deviation σ given in Table 4.5.

The ground acceleration input is considered to follow the Kanai-Tajimi model with ωg = 15

Hz and ζg = 0.64. The intensity of the filtered input is kept equal to be cf = 400 in order
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to activate nonlinearities in the lower five links. Case 3 of the model and measurement error

reported in Table 4.2 is considered. Results for the maximum and minimum utility values as

a function of acceleration sensors placed at their optimal locations are presented in Fig. 4.24

for 5 different realizations of the stochastic ground excitation. The corresponding optimal and

worst sensors locations are given in Fig. 4.25. It is observed that there is no significant vari-

ability in the maximum information gain values among the 5 different input realizations, while

the variability in the normalized utility values is extremely small. Also, the optimal sensor

locations predicted by the five different input realizations coincide for sensor configuration in-

volving 1 and up to 11 sensors. Similar results are obtained for the worst sensor configurations

estimated from the 5 different realizations. These results confirm that it suffices to use a single

input realization from a stochastic process to find a near optimum sensor configuration, thus

avoiding the computationally very expensive process and reducing the storage requirements

that may arise from averaging the utility function over all possible input realizations. Never-

theless, the last argument should be used with care since it is found to hold for the specific

examples considered in this work and may not be generalizable to other systems and stochas-

tic representations of loads. However, given the necessary computing facilities, the proposed

technique can properly find the robust OSP that accounts for the uncertainties arising from

variabilities in the input time histories.

(a) (b)

Fig. 4.24. Maximum and minimum (a) Utility values, and (b) normalized utility values for
different realizations of the excitation.
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(a) (b)

Fig. 4.25. (a) Best and (b) worst sensor locations for different realizations of the excitation.

4.6 Conclusion

A Bayesian OED framework is presented for parameter estimation of linear and nonlinear

models in structural dynamics using input-output response time history measurements. The

effects of modeling and input uncertainties are comprehensively investigated in this study. Past

studies considered in the OED that the excitation is available. However, although the time his-

tories of the inputs can be measured during the inference process with appropriately installed

sensors, such inputs are not available during OED phase. For this, the temporal variability

of the inputs is described in this work using stochastic process models. An example includes

the Kanai-Tajimi model or available seismological models for quantifying the earthquake ex-

citation process. This study recognises the uncertainties in the excitation time histories and

proposes an optimal design that is robust to such uncertainties.

The design variables include the locations of the sensors and actuators, as well as the in-

put characteristics. Information and utility theory are used to define the objective function to

be maximized, measuring the information gained from a sensor configuration. Asymptotic

approximations simplify the information gain as a scalar measure of the Fisher information

matrix built from the sensitivities of the response QoI at the sensor locations with respect to

the parameters to be inferred. For the case of inadequate data, information is also borrowed

from the prior distribution of the parameters to be inferred. It is demonstrated that the informa-

tion gain for a given sensor configuration depends on location of actuators and the excitation

characteristics. The OED problem involves a simultaneous optimization of the information
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gain with respect to number and locations of sensors, as well as the number and location of the

actuators and the excitation characteristics. The structural differences between the design of

optimal sensor configuration and the design of optimal actuator and excitation characteristics

is pointed out. Based on asymptotic approximation, valid for large number of data, the ex-

pected utility function to be maximized is a scalar measure of the sensitivity of the responses

at the measured locations with respect to the parameters to be inferred. A sensor configuration

affects which response sensitivities are involved in the information gain measure. An actu-

ator configuration and the excitation characteristics affects the value of the information gain

but does not alter the structure of the information gain built from the response sensitivities

corresponding to a sensor configuration.

To take into account the model and input uncertainties the expected information gain is

introduced over all possible model and input uncertainties. The resulting multi-dimensional

probability integrals are estimated using Monte Carlo sampling techniques. Heuristic SSP

algorithms as well as genetic algorithms can be used to optimize the objective function. The

large computational burden associated with the OED robust to model and input uncertainties

is also pointed out and remedies are provided to reduce the computational effort.

The proposed framework is validated using a 6 and a 20-DOF nonlinear spring-mass chain

models with internal spring forces represented by hysteretic nonlinearities of the Bouc-Wen

type. The effect of the model and measurement error parameters and the various input charac-

teristics (amplitude variation and frequency content) on sensor placement is investigated. It is

demonstrated that designing the OSP for a single realization of a stochastic input may suffice

to obtain a very good design for the robust case that takes into account the uncertainty in the

details of the stochastic input.

It is also shown that optimal input characteristics and actuator locations can be calculated

by using the proposed method. According to the results for harmonic input, the information

obtained will be maximum when the system is excited in the neighborhood of the resonance

frequency of the linearized model. The optimal excitation frequency is not sensitive to the

accuracy of the resonant frequency values.
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Chapter 5. Optimal Sensor Placement for Virtual Sensing: Applications
to Wind Turbine and Helicopter Blade

Health monitoring practices for structures operating in a highly dynamic environment (i.e.

energy structures, offshore structures) provide an important source for the understanding of

their performance, improving damage evaluation and life prognostics of structural compo-

nents. Considering the complexity of these dynamic systems, performing experiments to cre-

ate and validate digital twins has crucial importance for predicting the loads or the responses

(i.e. virtual sensing) in the parts where instrumentation is difficult or costly to implement.

OSP strategies can be used to provide informative data by optimizing the experimental set up

in terms of location, number, and type of sensors and eventually lead to reliable predictions.

In this chapter, the effectiveness of the proposed Bayesian optimal experimental design

frameworks [1, 2] are demonstrated by applying it to two realistic structural components: a

wind turbine blade and a helicopter blade. In the applications, the type, location and number

of sensors are optimized for accurate virtual sensing (response and/or load reconstruction)

under unknown excitation. Both a GA and heuristic SSP algorithms are used to solve the

optimization problem in an effort to provide computationally efficient solutions. Validation

studies have been also performed using the simulated, as well as available experimental data

for the helicopter blade, to demonstrate that the proposed approach is applicable and reliable

to optimize the experimental design of industrial structures in the presence of modelling errors

and uncertainties in loads and environmental or operating conditions.

5.1 Application on Wind Turbine Blade (WTB)

The OSP methodology is applied to a small-scale composite WTB structure given in Fig. 5.1.

The structure with its structural and geometrical properties as well as the monitoring campaign

performed at ETH Zurich is presented in detail in references [3, 4]. The blade FE model is

fixed at the left edge and the outer surface consists of 6189528 nodes and 242930 six-degree-

of freedom thin shell elements. The first eight modal frequencies computed from the finite

element model can be found in Table 5.1. The type, number and the locations of sensors are
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optimized for reliable response predictions of unmeasured QoI under unknown excitation. Two

different methods: modal expansion (ME) and Augmented Kalman Filter (AKF) techniques

are used and the efficiency of the techniques is investigated using simulated measurements.

(a) (b)

Fig. 5.1. (a) Sonkyo Windspot 3.5 kW, (b) overview of the experimental set-up (Source:
[3]).

Table 5.1: Modal frequencies of the wind turbine blade.

Mode Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Natural Frequency (Hz) 14.59 38.66 66.18 89.97 113.84 116.64 137.40 152.60

5.1.1 OSP for Strain Predictions

OSP analysis is performed to optimize the location and number of strain sensors for strain

response prediction on the locations marked with red dots in Fig. 5.2. For illustration purposes,

it is assumed that the blade is subjected to a point load defined as a white noise input with a

sampling period ∆t = 0.0025 sec at the location shown in Fig. 5.2. It is assumed that only

the lowest 8 modes contribute to the response. The modal damping ratios for all contributing

modes are taken to be equal to 2%. The positions of strain sensors are optimized by using

modal expansion to form the utility function. Then the same problem is solved by using AKF.

Following that, OSP is performed for strain response and input predictions fusing different

types of sensors by using AKF.

The effectiveness of the optimal sensor placement is investigated by using simulated noise

contaminated measurements. To simulate strain response time histories, a white noise input is

used with a standard deviation of σwn = 1, a sampling period of ∆t = 0.0025 seconds and

a response duration of 10 seconds. To be able to simulate noise contaminated measurements,
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independent zero-mean Gaussian white noise sequences with standard deviation equal to 2% of

the intensity of the simulated response is added to each simulated strain response time history.

The model and measurement error parameters σe, σϵ and s (see Chapter 2 and 3 for def-

inition) are selected according to the intensities of responses (observed QoI) and given in

Table 5.2 with the prior parameter α and parameters for AKF for the process noise σx and the

input uncertainty β (see [1] for the details of parameter selection for modal expansion and [2]

for AKF). The values in Table 5.2 are given for different types of sensors and they correspond

to small model error of the order of 1%, as well as medium to small measurement error ranging

from 20% to 0.4% of the minimum and maximum reported observed QoI in the structure.

Fig. 5.2. Location of input (blue), predictions and possible sensors (red).

Table 5.2: Prior, prediction error, model and measurement error parameters for modal
expansion. ϵmin is the minimum value of the nodal accelerations or element strains that cover
98% of the blade surface. ϵmax and ϵrms are respectively the maximum and the mean value of
the intensity (root mean square) of the nodal acceleration, displacement or element strain in

the blade surface.

Sensor type α σe, σϵ s ∼ s/ϵmin ∼ s/ϵrms ∼ s/ϵmax σx β

Acceleration 102 10−2 102 2× 10−1 10−2 2× 10−3 10−3 1
Displacement 102 10−2 10−3 2× 10−1 10−2 2× 10−3 10−3 1

Strain 102 10−2 10−7 2× 10−1 10−2 4× 10−3 10−3 1

5.1.1.1 OSP results for strain sensors using ME

The OSP results for strain sensors are presented in Fig. 5.3 through the expected information

gain (utility values) as a function of the number of sensors placed at their optimal (or worst)

locations (Fig. 5.3(a)), and the optimal positions of 8 sensors (Fig. 5.3(b)). The maximum
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utility value (Umax=9.17) which can be reached with 245 strain sensors is shown as a grey

horizontal line in Fig. 5.3(a). For less than 8 sensors (the number of contributing modes) the

problem of OSP is unidentifiable and subjective information for placing sensors is borrowed

from the prior PDF. As a result, the information gain for a configuration up to 7 sensors is

significantly less than the maximum information gain that can be achieved with as many as 8

to 245 strain sensors uniformly spread over the blade surface. Including an eight sensor in the

sensor configuration leads to a sharp increase in the information gain, reaching a value which

is very close to the maximum information gain. Adding more than eight sensors at the optimal

locations results in a relatively small increase in information gain. From the optimal sensor

configuration results in Fig. 5.3(b), it can be seen that the strain sensors are well distributed

along the blade for reliable response prediction.

(a) (b)

Fig. 5.3. OSP results through (a) utility and (b) the best sensor locations. The maximum
utility value Umax whichh can be reached with 245 strain sensors is shown as a grey

horizontal line in (a).

For validation purposes, strain responses at the 245 locations shown in Fig. 5.2 are pre-

dicted with simulated measurements from the best, worst and an arbitrary sensor configura-

tions, all involving 8 sensors. Relative root mean square (RRMS) errors between the predic-

tions calculated with ME technique for the best and arbitrary configurations (with their utility

values) are presented in Fig. 5.4. The relative strain error at each location is defined as the

ratio of the root mean square error between the predicted and measured responses over the

root mean square value (intensity) of the measured strain response time history.
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(a) U = 8.71(95% of Umax), eavg = 1.0% (b) U = 7.63(83% of Umax), eavg2.7%

Fig. 5.4. Relative error in response prediction locations using (a) best, and (b) arbitrary
sensor configurations. Magenta shows measured locations.

Very good predictions with average RRMS error equal to 1% are obtained with the optimal

sensor configuration. With the worst sensor locations, the average RRMS error (not shown

in the Figure) in the unmeasured locations is around 20%, much higher than the one found

with the best locations. The results also indicate that the selected arbitrary sensor layout,

corresponding to a utility value that is approximately 20% less than the utility value for the

optimal sensor configuration, also give a higher average RRMS error of 2.7% in the response

prediction in the unmeasured locations.

5.1.1.2 OSP results for strain sensors using AKF

OSP for strain response prediction at locations in Fig. 5.2 is performed using AKF. The ex-

pected information gain as a function of the number of strain sensors placed at their optimal (or

worst) locations is shown in Fig. 5.5(a), while the optimal positions of eight sensors are shown

in Fig. 5.5(b). According to the utility result, the information gain increases as additional sen-

sors are placed at their optimal locations. Significant information is gained by each additional

sensor for up to 8 sensors placed in the structure. The information gain by adding more than

8 sensors, is relatively small compared to the information gained for the first 8 sensors. Best

sensor positions are well distributed along the blade, and they are similar with the ones found

by ME in Fig. 5.3.
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(a) (b)

Fig. 5.5. OSP results through (a) utility and (b) the best sensor locations. The maximum
utility value Umax which can be reached with 245 strain sensors is shown as a grey horizontal

line in (a).

The effectiveness of the optimal sensor placement in response prediction of selected lo-

cations is next investigated through the relative errors between the strain responses predicted

by AKF with a fixed number of sensors and the simulated, noise contaminated measurements.

Response prediction results computed with 8 best strain sensor locations with an acceleration

sensor placed to the input location and 8 arbitrarily selected locations are presented in Fig. 5.6.

In the calculations, Qp is selected as 1. However results are the same for Qp = 108 which is

found by using the L curve.

(a) U = 9.79(96% of
Umax), eavg = 1.3%, einput = 9.4%

(b) U = 8.73(87% of
Umax), eavg = 1.6%, einput = 10%

Fig. 5.6. Relative error in response prediction locations using (a) best and (b) arbitrary
sensor locations. Magenta shows measured locations.
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According to the results in Fig. 5.6, the relative error in the strain predictions is around

1.6% with best 8 strain sensors and 1.6% with arbitrarily selected 8 strain sensors that provide

87% of the Umax. The predictions are quite good except from the free end of the blade which

has a lower strain response (high noise to signal ratio). The arbitrary sensor configuration

correspond to relative high values of the information gain and thus the effectiveness of this

configuration for response predictions is as good as the optimal sensor configuration. It is

expected that the effectiveness of arbitrary sensor configurations corresponding to significantly

lower values of information gain will be reduced.

5.1.1.3 Effect of the measurement and model error parameters

To investigate the effect of the measurement and model errors, OSP is performed with differ-

ent values of measurement and model error parameters given in Table 5.3. In this analysis ME

method is used. A comparison of the results obtained with three different values of measure-

ment and model error parameters can be seen in Fig. 5.7 and Fig. 5.8, respectively. According

to the results, the information extracted from sensors is affected by the model and measure-

ment errors. When the noise in the measurements or the error in the model is higher, the

information extracted from the sensors is less. However, there is a qualitative difference of the

effect of the number of sensors on the information gain for the two different types of errors.

For small to medium measurement error (Fig. 5.7(a)), the maximum information gain is

similar and 8 sensors provide 97-95% of the Umax. For large measurement error the informa-

tion gain with 8 sensors placed at their optimal locations is 86% of the maximum information

gain Umax. Due to the higher noise to signal ratio in the measurements, less information can

be extracted by using the same number of sensors. Therefore, more sensors are needed. Com-

parison of the different model errors shows the similar results. Increasing the model error to

large values (Fig. 5.8(a)), Umax reduces to 75% and 64% of the maximum information gained

with moderate and small model error values, respectively. These results are consistent with the

results presented in [1] based on ME technique and in [2] based on AKF technique. Expected

utilies considering all possible values of model and measurement error parameters can be es-

timated as proposed in [1, 2]. Sensor positions robust to errors are more preferable for reliable

response prediction.
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Table 5.3: Model and measurement error parameters.

Error Sensor type σe,σϵ s ∼ s/ϵmin ∼ s/ϵrms ∼ s/ϵmax

Small Strain 10−3 10−8 2× 10−2 10−3 4× 10−4

Moderate Strain 10−2 10−7 2× 10−1 10−2 4× 10−3

Large Strain 10−1 10−6 2× 100 100 4× 10−1

(a) (b)

Fig. 5.7. Comparison of utility (information gain) results for different measurement error
cases. (a) Utility values and (b) best sensor locations. The maximum utility values Umax

which can be reached with 245 strain sensors is shown as a grey horizontal lines in (a).

(a) (b)

Fig. 5.8. Comparison of utility (information gain) results for different model error cases. (a)
Utility values, (b) best sensor locations. The maximum utility values Umax which can be

reached with 245 strain sensors is shown as a grey horizontal lines in (a).
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5.1.1.4 OSP results for acceleration and strain sensors using AKF

In this section, acceleration and strain sensors are optimized simultaneously for strain response

prediction at selected 245 elements Fig. 5.2. Optimal sensor configuration is searched among

245 nodes for acceleration sensors and 245 elements for strain sensors (490 possible sensor

location). Due to the large computational effort arising from the size of the matrices, FSSP

and MBSSP with initial 100 points are used for optimization. An acceleration sensor that is

required for FSSP to have a stable estimation with AKF is placed to its optimal location, be-

fore the optimization starts. Utility results estimated using FSSP and MBSSP as a function

of number of sensors are given in Fig. 5.9(a). Results from both methods shows that sig-

nificant information (∼ 90% of the maximum utility) can be gained for 9 sensors placed in

the structure. MBSSP improve the results for 9 or more sensors. The best and worst accel-

eration (circle) and strain (square) sensor locations estimated using MBSSP are presented in

Fig. 5.9(b) for 9 sensors. The best sensors are found to be strain sensors mostly. There are

only two acceleration sensors.

(a) (b)

Fig. 5.9. OSP results through (a) utility values and (b) best 9 sensor positions (MBSSP). The
maximum utility value Umax which can be reached with 245 acceleration and 245 strain

sensors are shown as a grey horizontal line in (a). Acceleration and strain sensors are shown
with circle and square, respectively, in (b).

To validate the results, the relative errors in response prediction using best and worst loca-

tions are given in Fig. 5.10. According to the results in Fig. 5.10, the relative error in the strain

predictions is around 1.5% with best 9 sensors and 1.8% with worst 9 sensors. Even with the

worst sensors, prediction are quite good except from the free end of the blade which is not

monitored with strain sensors and have a lower strain response. However, the average errors
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in the input prediction is 3.5% for the optimal sensor configuration and as high as 12% for the

worst sensor configuration. The relatively good predictions from the worst sensor configura-

tion is also due to the fact that such sensor configuration correspond to 43% of the maximum

information gain.

(a) U = 9.81(96% of
Umax), eavg = 1.5%, einput = 3.5%

(b) U = 4.39(43% of
Umax), eavg = 1.8%, einput = 12%

Fig. 5.10. Relative error in response prediction locations using (a) best and (b) worst sensor
locations.

Response predictions by using arbitrarily selected sensor positions are presented in Fig. 5.11.

The arbitrarily selected positions corresponding to lower utility value of 75% of Umax. The

average errors for the arbitrarily selected sensor configuration are 2.6% for the response pre-

dictions and 13% for the input predictions which are higher than the ones for the optimal

sensor configuration.
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(a)
(b) U = 7.65(75% of

Umax), eavg = 2.6%, einput = 13%

Fig. 5.11. Relative error in response prediction locations using arbitrary sensor locations (4
strain and 5 acceleration). Acceleration and strain sensors are shown with circle and square,

respectively.

5.2 Application on Helicopter Blade

OSP studies are presented for a helicopter blade model that is hosted by University of Sheffield

at the Laboratory for Verification and Validation (LVV) in Sheffield UK. The type, number,

and the locations of sensors are optimized for reliable acceleration response predictions at

unmeasured locations under unknown excitation. Verification studies are performed by using

simulated measurements and validation studies using available experimental data.

5.2.1 Test Campaign

The test campaign which is the subject of this study is shown in Fig. 5.12. The test structure is

exposed to a continuous random excitation to excite the blade up to 400 Hz. Fig. 5.13 shows the

input and the 10 sensor locations where measurements (perpendicular to the “horizontal” blade

surface) are obtained. From the experiment, acceleration measurements approximately for a

duration of 7 min with a time step of 1.25e-03 sec are available for validation purposes. The

response time histories and the Fourier transforms of the measured acceleration are presented

in Fig. 5.14.
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Fig. 5.12. Test photos.

The numerical model of the blade is built in ANSYS. The numerical modal frequencies

computed from the ANSYS finite element model and the approximate experimental modal

frequencies of the test structure estimated using peak picking are presented in Table 5.4 for up

to 8 modes.

Fig. 5.13. Representation of the helicopter blade with the location of input (square) and
acceleration sensors (points) in the experiment with their numbers.

Table 5.4: Modal frequencies (Hz).

Mode ANSYS Experimental
(peak peaking)

1 0.963 0.92
2 3.699 3.56
3 5.963 5.90
4 16.566 16.34
5 21.076 21.67
6 32.538 31.70
7 37.403 51.56
8 53.559 72.79
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Fig. 5.14. Response time histories and Fourier transforms of the measured accelerations.

5.2.2 Case 1

In the first case, the positions of the acceleration sensors have been optimized to maximize

the information collected from sensors for reliable model-based acceleration predictions. The

location of the predictions and the possible sensor locations are only the 10 experimental sen-

sor locations shown in Fig. 5.13. The optimal number and locations (among the 10 positions)

are selected in order to make reliable predictions at the same 10 sensor locations used in the

experiment. In applying the OSP methodology [1], it is assumed that the blade is subjected to

white noise input with a sampling period ∆t = 0.0025 sec at location 9 shown in Fig. 5.13
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with 6 contributing modes (Fig. 5.16 presents the mode shapes). The model and measurement

error parameters σe, σϵ and s (see [1] for definition and details) are selected according to the in-

tensities of the acceleration responses (Fig. 5.15). The intensities of the acceleration responses

are computed from the finite element model by applying white noise sampled at ∆t = 0.0025

at the input location used in the experimental setup. The model, measurement and prediction

error and input parameters used modal expansion method are given in Table 5.5. Small model

and measurement errors are considered. The model error is of the order of 1% of the accel-

eration intensities, while the measurement error is of the order of 0.2% of the acceleration

intensities. α is selected to be 102 in order to consider large prior uncertainty in the modal

coordinates. For the filtering method, the same model and measurement error parameters are

used. The process noise and the load model error parameters for filtering are also given in the

Table 5.5.

(a) (b)

Fig. 5.15. Intensities of (a) ξ̈ modal coordinates and (b) acceleration in x-direction

Table 5.5: Model, measurement and prediction error, input parameter (for ME), process
noise (for AKF), and load model error (for AKF) parameters. ϵrms is the intensity (root mean
square) of the nodal acceleration that cover 90% of the selected sensor positions on the blade

surface.

Sensor type σe, σϵ s s/ϵrms α σx β

Acceleration 10−2 10−4 2× 10−3 102 10−3 1
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(a) 1st mode (b) 2nd mode (c) 3rd mode

(d) 4th mode (e) 5th mode (f) 6th mode

Fig. 5.16. The first six mode shapes of the structure (coloured in the out of plane direction
(z-direction)).

5.2.2.1 OSP for acceleration prediction using ME

The modes of the structure excited up to 400 Hz are more than 17. However, when OSP

is performed based on the modal expansion technique, there are certain conditions for the

methodology to be applied. For informative measurements, the number of sensors should

at least be equal to the number of contributing modes. For a number of sensors less than the

number of modes, information in the OSP methodology is borrowed from the prior distribution

subjectively assigned to the modal parameters. The aforementioned condition between the

number of sensorsN0 and the number of modesm has to be taken into account when validation

studies using the experimental set up of the helicopter blade with 10 acceleration sensors and

white noise input exciting as many as 20 to 30 modes is considered. For validation studies, the

number of 10 acceleration sensors in the experimental setup is split into a group of N0 = 6

optimal sensors selected by the methodology as optimal sensor locations and a second group

of 10−N0 sensors to be used for validation. This necessitates the use of up to m = N0 modes.

Since more than N0 = 6 modes are excited from the white noise input (0-400 Hz frequency

content) in the actual experiment, the output measured signals are filtered to keep at most

N0 = 6 modes in the signals. Thus, to be able to compare the response prediction results with
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the data obtained from the test campaign, a band pass filter is applied to the measured data

(almost 7 min duration) to remove the out of band frequencies. A pass band filter of 0.9-35Hz

is used to include contribution up to the 6th mode. The original and filtered signals of each

sensor are shown in Fig. 5.17. Only the contribution of m = 6 modes is taken into account in

the OSP methodology.

Fig. 5.17. Measured acceleration responses time histories for selected time segments
(original and filtered from 0.9 to 35 Hz). Fourier transform of the measured acceleration time

history from 0 to 40 Hz (original and filtered from 0.9 to 35 Hz).

The expected information gain (utility) values is calculated by using exhaustive search for 1 to

10 number of sensors (only 10 experiment sensor locations are allowed) and it is presented in

Fig. 5.18. In this figure, the maximum utility value Umax which can be reached with 10 sensors
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is shown as a straight line. As observed from the expected utility values, each additional

sensor provides some extra information gain for response prediction of the selected points.

However, after m = 5 sensors, the extra information gain provided by each additional sensor

is negligible. It is also clear that the worst locations of the sensors are also found informative as

the difference between the minimum and the maximum utility values is not large. The optimal

and the worst positions for the sensors are shown in Fig. 5.19. The best five sensors are well

distributed along the blade. The best position for the first sensor is found close to the input

location, while the worst sensor position is at the 10th node, which is the one closest to the

fixed boundary and has the smallest response in terms of acceleration intensity. As mentioned

previously, it is expected that the number of sensors to be greater than or equal to the number

of modes in order for the problem to be identifiable and to be able to obtain high information

gain values. However, the OSP results show that the contribution of one of the 6 modes (here

the 2nd mode) is very small, enabling us to obtain good predictions by using 5 instead of the

required number of 6 sensors. Thus, in the following section, 5 optimal sensor positions (found

with exhaustive search) are used for validation purposes.

(a) (b)

Fig. 5.18. (a) Utility values, (b) normalized utility values. The maximum utility is obtained
by using 10 acceleration sensors, placed at the experimental positions, is shown with the grey

horizontal line (Umax = 8.99).
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(a) (b)

Fig. 5.19. (a) Best and (b) worst sensor positions numbered consecutively from 1 to 10.

For validation purposes, responses at the 10 measured locations are predicted from the modal

expansion technique by using the five best sensor locations, the five worst sensor locations,

and an arbitrary sensor configuration (among the 10 sensor positions which are selected to be

uniformly distributed along the blade). The real filtered measurement data are used to estimate

responses in measured and unmeasured locations. RRMS errors between the predictions and

the experimental data are presented in Fig. 5.20 for all three sensor configurations according to

the node numbers shown in Fig. 5.16. In Fig. 5.21, the relative errors in response predictions

are plotted along the blade. 98% of the maximum utility can be gained with five sensors when

they are in their best location. The errors at the unmeasured locations vary from 3% at node

number 3 to 20% at node number 9. At node number 10, very close to the fixed support, the

error is 100%. Comparison of predicted and measured time histories is given for a measured

and an unmeasured location in Fig. 5.22. For this figure predictions are obtained using best 5

sensor locations. With the worst sensor locations, 63% of the maximum utility can be gained

and the average error in the unmeasured locations is much higher than the one found with the

best locations. Additionally, for the arbitrary sensor layout that has a lower utility value than

the best layout, the relative error in response predictions in the unmeasured locations is higher

than the error caused in the unmeasured locations by the optimal sensor placement.
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Fig. 5.20. Relative error in response prediction in 10 test locations by using best
(U = 8.83, 98% of Umax), worst (U = 5.63, 63% of Umax) and arbitrary (U = 6.84, 76% of
Umax) sensor locations. Measured and unmeasured locations are shown in red and blue,

respectively.

(a) U = 8.83(98% of Umax), eavg = %13 (b) U = 5.63(63% of Umax), eavg = %6000

(c) (U = 6.84(76% of Umax)), eavg = %72

Fig. 5.21. Relative error in response prediction locations using (a) 5 best, (b) 5 worst and (c)
5 arbitrary sensor locations.
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(a) (b)

Fig. 5.22. Comparison of measured and predicted time histories (a) at measured location
(node number 1), and (b) unmeasured location (node number 9).

5.2.2.2 OSP for acceleration prediction using AKF

Sensor locations are optimized among the 10 experimental location by using AKF. The ex-

pected information gain as a function of the number of sensors placed at their optimal locations

is presented in Fig. 5.23. In this figure, the maximum utility value Umax which can be reached

with 10 sensors is shown as a straight line. As observed from the expected utility values, each

additional sensor provides some extra information gain for response prediction of the selected

points. However, after 4 sensors, the information gain is relatively small. It is also clear that

the worst locations of the sensors are also found informative as the difference between the min-

imum and the maximum utility values is not large. The optimal and the worst positions for the

sensors are shown in Fig. 5.24. Similar to the ME results, the best position for the first sensor

is found close to the input location, while the worst sensor position is found at the node which

is the one closest to the fixed boundary and has the smallest response in terms of acceleration

intensity. It should be also noted that the best 5 locations found with the exhaustive search

using AKF are the same with the ones found with ME technique. In the following section, 5

best, 5 worst and 5 arbitrary sensors have been used for validation purposes.
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(a) (b)

Fig. 5.23. (a) Utility values, (b) normalized utility values. The maximum utility is obtained
by using 10 acceleration sensors, placed at the experimental positions, is shown with the grey

horizontal line (Umax = 7.08).

(a) (b)

Fig. 5.24. (a) Best and (b) worst sensor positions numbered consecutively from 1 to 10.

To be able to validate OSP results, the responses at the 10 measured locations are predicted

using AKF with the best, worst, and an arbitrary sensor configuration (among the 10 sensor po-

sitions). Response predictions at 10 prediction points are performed by using the experimental

data by assuming that only 5 sensors are available. The average RRMS errors between the

predictions and the experimental data are presented in Fig. 5.25 and in Fig. 5.26. According to

the results, when the sensors are placed to the five best locations where 98% of the maximum

utility can be gained, the errors at the measured locations vary from 15% to 40%. At node

number 10, very close to the fixed support with very small acceleration intensity, the error is

100%. With the worst sensor locations, 70% of the maximum utility can be gained and the

average RRMS error in the unmeasured locations is much higher than the one found with the

best locations. Additionally, for an arbitrary sensor layout, that have a lower utility value than

the best layout (86%), the relative error in response predictions is higher than the one obtained

by the optimal sensor layout.
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Fig. 5.25. Relative error in response prediction in 10 test locations by using best
(U = 6.99, 99% of Umax), worst (U = 4.85, 68% of Umax) and arbitrary (U = 6.35, 90% of
Umax) sensor locations. Measured and unmeasured locations are shown in red and blue,

respectively.

(a) U = 6.99(99% of Umax), eavg = 28% (b) U = 4.85(68% of Umax), eavg = 43%

(c) U = 6.35(90% of Umax), eavg = 32%

Fig. 5.26. Relative error in response prediction locations using (a) 5 best, (b) 5 worst and (c)
5 arbitrary sensor locations.
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5.2.3 Case 2

In case 2, an OSP analysis is performed for response prediction in a larger area on the blade

surface involving 150 predicted locations are selected to cover the blade surface as shown

in Fig. 5.27. The OSP is performed by exhaustive search for 10 possible sensor locations

(the experimental ones. The effectiveness of the best sensor configuration is investigated by

using simulated measurements, as there are no experimental data in the selected 150 predic-

tion locations. For the response prediction, simulated acceleration response time histories are

generated using a sampling period ∆t = 0.0025 sec and a zero-mean Gaussian white noise

sequence with a standard deviation σwn = 1. To simulate noise contaminated measurements

and thus consider the effect of the measurement error (noise from sensors), independent zero-

mean Gaussian white noise sequences with standard deviation equal to 2% of the intensity of

the simulated response is added to each simulated acceleration response time history.

Fig. 5.27. Location of predictions.

5.2.3.1 OSP for acceleration prediction by using ME

OSP results found by ME are presented in Fig. 5.28 and Fig. 5.29 through utility and best and

works sensor locations respectively. The expected information gain results given in Fig. 5.28

show that with five sensors, significant information can be captured to estimate reliable re-

sponses at the selected 150 prediction locations. It is also observed that the maximum infor-

mation that can be reached to predict responses by using the 10 experiment locations is lower

(slightly lower) than in case 1. According to the optimal and the worst position results, the first

optimal positions are sparsely placed along the blade. Similar to the previous case, the worst

sensor locations are found close to the fixed boundary.
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(a) (b)

Fig. 5.28. (a) Utility values, (b) normalized utility values. The maximum utility is obtained
by using 150 acceleration sensors, placed at the possible sensor positions, is shown with the

grey horizontal line (Umax = 8.89).

(a) (b)

Fig. 5.29. (a) Best and (b) worst sensor positions.

Next, validation results are presented through the RRMS errors between the predictions

and the simulated measurements. According to the relative error results presented in Fig. 5.30,

99% of the maximum utility can be gained with five sensors when they are in their best lo-

cation, and the average error in response prediction is 1.3%. With the worst sensor locations,

42% of the maximum utility can be gained, and the average error is found to be much higher

than the one found with the best locations. Additionally, an arbitrary sensor layout (selected

among the experiment locations) that has a lower utility value than the best layout (80% of the

Umax) causes a higher error in the response predictions (the average error is 21%). It should

be noted that with 10 experimental sensor locations, very good predictions can be obtained.
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(a) U = 8.77(99% of Umax), eavg = 1.3% (b) U = 3.74(42% of Umax), eavg = 8.8%

(c) U = 7.11(80% of Umax), eavg = 21% (d) U = 8.89(99% of Umax), eavg = 0.7%

Fig. 5.30. Relative error in response prediction locations using (a) 5 best, (b) 5 worst, (c) 5
experiment and (d) 10 experiment locations.

5.2.4 Case 3

In case 3, 150 possible sensor locations and 150 prediction locations are selected to cover the

blade surface as shown in Fig. 5.27 to demonstrate the OSP analysis. The existence of a sensor

layout which is better than the one used in the experiment is investigated. As in the previous

section, the effectiveness of the best sensor configuration is investigated by using simulated

measurements, as there are no experimental data in the selected prediction and optimal sen-

sor locations. The intensities of the acceleration response in selected locations are given in

Fig. 5.31. Such intensities are simulated using a white noise input.

For this case, optimization is performed by using SSP due to computational cost of exhaus-

tive search for 150 possible sensor locations.
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Fig. 5.31. Intensities of acceleration in the x-direction in possible sensor locations (given in
Fig. 5.27).

5.2.4.1 OSP for acceleration prediction using ME

OSP results found by ME are presented through utility values in Fig. 5.32 for 1 up to 30

sensors. Best and worst sensor locations are presented in Fig. 5.33 for 1 to 10 sensors.

Fig. 5.32. (a) Utility values, (b) normalized utility values up to 30 sensors. The maximum
utility is obtained by using 150 acceleration sensors, placed at the possible sensor positions,

is shown with the grey horizontal line (Umax = 9.19).

Fig. 5.33. (a) Best and (b) worst sensor positions.

The expected information gain results in Fig. 5.32 show that the optimization of the sensor

locations is more effective than the previous cases as the difference between the minimum
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and the maximum utility values are high. With five sensors, most of the information can be

captured to estimate reliable responses at the selected prediction locations. The 5 optimally

located sensors are uniformly distributed along the blade. The 10 sensors are optimally located

in clusters, with the clusters relatively well distributed along the blade. The worst locations

are found close to the fixed boundary, and it is due to very low intensities and thus high

noise to signal ratio. Additionally, the maximum information that can be reached for the case

of 150 sensor positions is higher than in case 1 and case 2 involving only 10 sensors. By

comparing the maximum information gain in Fig. 5.28 with the maximum information gain in

Fig. 5.33, it can be seen that 10 sensors placed at the experimental locations are slightly less

informative than the optimal positions found in this case to predict the responses along the

blade. This is expected since 150 possible sensor locations give more flexibility to provide a

better sensor configuration corresponding to higher information gain than the 10 experimental

sensor locations.

For response predictions, measurements have been simulated as described in the previous

case. According to the average RRMS results presented in Fig. 5.34, 96% of the maximum

utility can be gained with five sensors when they are in their best location, and the average error

in response prediction is 0.7%. With the worst sensor locations, 29% of the maximum utility

can be gained and the average error that is found to be 12% is higher than the one found with

the best locations. An arbitrary sensor layout (with 5 sensors selected among the experiment

locations) that has a lower utility value than the best layout will cause a higher error in the

response prediction (the average error is 20%). Using 10 sensors locations which are used in

the experiment, most of the information can be obtained. However, it is obvious that OSP can

provide the same amount of information with fewer sensors.
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(a) U = 8.85(96% of Umax), eavg = 0.7% (b) U = 2.69(29% of Umax), eavg = 12%

(c) U = 7.11(77% of Umax), eavg = 20% (d) U = 8.89(97% of Umax), eavg = 0.7%

Fig. 5.34. Relative error in response prediction locations using (a) 5 best, (b) 5 worst, (c) 5
arbitrary and (d) 10 experiment locations.

5.2.4.2 OSP for acceleration prediction using AKF

OSP results obtained by using AKF technique is presented next. The expected information

gain as a function of the number of sensors placed at their optimal locations is presented in

Fig. 5.35. In the figure, the maximum utility valueUmax which can be reached with 150 sensors

is shown as a straight line. As observed from the expected utility values, each additional

sensor provides some extra information gain for response prediction of the selected 150 points.

However, after 4 to 5 sensors, the information gain is relatively small. The optimal and the

worst positions for the sensors are shown in Fig. 5.36, and they are well distributed along the

blade. The nodes which are close to the fixed boundary are found to be the worst location.

Comparing results in Fig. 5.36 and Fig. 5.33, some small differences are identified between

the optimal sensor locations promoted by the AKF and ME algorithms.
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(a) (b)

Fig. 5.35. (a) Utility values, (b) normalized utility values up to 30 sensors. The maximum
utility is obtained by using 150 acceleration sensors, placed at the possible sensor positions,

is shown with the grey horizontal line (Umax = 7.23).

(a) (b)

Fig. 5.36. (a) Best 10 and (b) worst 10 sensor locations.

In the following, 5 best, 5 worst and 5 arbitrary sensors have been used for validation

purposes. According to the average RRMS errors between the predictions and the simulated

data presented in Fig. 5.37, 96% of the maximum utility can be gained with five sensors when

they are in their best location, and the average error in response prediction is 1.89%. With the

worst sensor locations, 25% of the maximum utility can be gained and the average error that is

found to be 3.9% is higher than the one found with the best locations. In Fig. 5.37, locations

that are used in the experiment are used to predict responses in 150 locations. With 5 sensors,

85% can be obtained and RRMS error is found 1.68%. with 10 sensors, 96% can be obtained

and RRMS error is found as 1.48%.
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(a) U = 6.93(96% of Umax), eavg = 1.89% (b) U = 1.82(25% of Umax), eavg = 3.9%

(c) U = 6.17(85% of Umax), eavg = 1.68% (d) U = 6.97(96% of Umax), eavg = 1.48%

Fig. 5.37. Relative error in response prediction locations using (a) 5 best, (b) 5 worst, (c) 5
arbitrary sensors and (d) 10 experiment locations.

5.3 Conclusions

In this chapter, the OSP strategies are applied on two full-scale components of engineering

structures, both tested at the laboratory. High fidelity complex finite element models with

a large number of DOF are used to simulate the dynamics of both components. In these

applications, the purpose of OSP is to find the optimal type, number and location of sensors for

virtual sensing (response and input reconstruction) using output-only vibration measurements.

The two different methods, ME and AKF, developed in Chapters 2 and 3, respectively, were

applied and their effectiveness was evaluated.

In the first part, OSP studies are demonstrated by using a wind turbine blade. OSP is per-

formed for reliable strain prediction over the whole surface of the blade. Different combination
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of SSP techniques have been used to estimate the optimal solutions in a computationally ef-

fective way. The effect of the measurement and model error on OSP is investigated. ME

and AKF methods are validated using noise contaminated measurements. OSP for input pre-

diction is also performed and the efficiency of the proposed methods for virtual sensing is

demonstrated.

In the second part, the OSP methodology is applied on a helicopter blade, considering 3

different observation and prediction cases. In case 1, available experimental data is used for

validation purposes. In the 1st and the 2nd cases, exhaustive search is used to optimize sensor

locations, as the possible sensor locations were only 10. For case 1 and 2, the optimal locations

of 5 sensors are found to be the same using ME and AKF. Case 3 involves OSP design over a

large possible number of sensor locations and is performed using the developed heuristic algo-

rithms. Verification studies performed with real and the simulated measurements demonstrate

the applicability and effectiveness of the proposed methodologies. In particular, comparing

predictions with measurements obtained from laboratory experiments, it is demonstrated us-

ing acceleration measurements at 10 locations along the blade surface that the optimal sensor

configuration promoted by the OSP framework outperforms sub-optimal sensor configuration

designs.

These studies are important to demonstrate the capabilities of the proposed OSP frame-

work for full-scale components of energy related and industrial structures operating in a highly

dynamic and uncertain environment. The proposed framework is applicable and effective to

optimize the experimental design for a wide variety of systems that require comprehensive use

of limited resources in the experiment due to the high cost of maintenance and inspection.
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Chapter 6. Conclusions and Future Work

6.1 Concluding Remarks

This dissertation developed novel Bayesian OED methodologies in order to define the most

informative and effective test campaigns to improve and validate models and make model-

based predictions under modeling and input load uncertainties. The optimal design variables

are selected as the ones that maximize the information gain, defined as the KL-div between

the prior and posterior distribution of the model parameters or response QoI estimated us-

ing Bayesian inference. The presented methodologies are applicable to complex and critical

engineering structures, including energy-related structures (e.g. wind turbines and offshore

structures), civil infrastructure (e,g. bridges, buildings), aerostructures and industrial struc-

tures. The proposed framework gives well-designed sensory systems to monitor structures

under operational conditions that provide the most informative data for decision making and

maintenance scheduling.

One of the main contributions of this thesis is the development of OSP tools for reliable

response reconstruction/virtual sensing by using output-only vibration measurements. Em-

ploying the Gaussian nature of the response estimates for linear models of structures, an exact

analytical expression of the utility function is formulated in terms of the variance of the re-

sponses of the virtually sensed QoI.

Widely used methods for virtual sensing, namely modal expansion and a Kalman-based

filtering technique such as AKF, are successfully integrated to the Bayesian OED framework

to formulate the utility function in terms of prior and posterior covariances of the prediction

errors. Useful properties of the utility function and reasonable choices of the model and pre-

diction error parameters are presented and demonstrated by using the numerical examples. It

is shown that the utility depends on the sensor location and the values of nuisance parameters

and is independent of the time history of data. OSP based on modal expansion technique pro-

vide a reliable design of experiments for reconstructing stress response time histories (by us-

ing displacement or strain measurements), useful for predicting fatigue damage accumulation.
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Additionally, the AKF based OSP technique for virtual sensing is advantageous as it allows

fusing different types of physical sensors and reconstructing, in addition to the responses, the

external loads applied to the structures.

Theoretical expressions and demonstrative examples reveal that the choice of the measure-

ment and model/prediction errors and the level of prior uncertainty of the predicted parameters

or the QoI affects the OED. Thus, robust solutions to uncertainties in model parameters as well

as in model/prediction and measurement errors are more preferable. The sensor placement pro-

cedure was extended to consider uncertainties arising from system operational conditions, as

well as the large uncertainties related to the interaction of the system or its components with the

environment. Monte Carlo or sparse grid methods are needed to compute the utilities that have

multidimensional probability integrals over the modeling uncertainties and input variabilities.

The second main contribution of this thesis is the development of an optimal sensor place-

ment framework for model parameter estimation. A Bayesian OED framework for reliable

parameter estimation of linear and nonlinear models of structures is presented, accounting for

the modelling and input uncertainties. Asymptotic approximations, valid for large number of

data, are proposed for estimating the Kullback-Leibler multidimensional probability integrals

arising in the utility formulation. The asymptotic approximations provide insightful expres-

sions, with the expected utility expressed in terms of the sensitivities of model responses at the

measured locations with respect to the estimated parameters. The optimal sensor configuration

maximizes a scalar measure of these response sensitivities which is defined by the determinant

of the Fisher information matrix and the inverse of the covariance matrix of the Gaussian prior.

The effects of input uncertainties are comprehensively investigated. To take into account

input uncertainties, the utility function is generalized to be the expected information gain over

all possible data that would arise under all possible input realizations. In addition to the charac-

teristics of a white noise input, the proposed method can handle uncertainties in the stochastic

excitation characteristics such as frequency content and amplitude. Numerical results reveal

that the information gain and the optimal locations of sensors are affected by the characteris-

tics of inputs. For parameter estimation problems of nonlinear systems, the optimal excitation

frequency is in neighborhood of the lowest resonance frequencies.

The problem of optimizing the locations of actuator(s) and the excitation characteristics

(e.g. amplitude and frequency content) was also investigated for reliable parameter estimation.

For nonlinear systems the choice of actuating force characteristics to activate the nonlinear
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mechanisms and thus enhance the information provided from sensors for the estimation of

parameters associated with these nonlinearities is especially important. By using structural

systems involving nonlinear behavior modelled with Bouc-Wen type hysteresis, it was shown

that information obtained from sensors is increasing with the activated nonlinear features.

Forward and backward heuristic sequential sensor placement algorithms and GA can be

used to optimize the design variables involved in OED. However, for complex problems that

include large number of possible design variables, combination of FSSP and BSSP and possi-

bly GA provides computationally more efficient solutions with sufficient accuracy. FSSP is the

computationally most efficient approach but could suffer from accuracy. For models with large

number of possible sensor locations, BSSP could involve high computational cost, but it is sig-

nificantly more accurate than FSSP. A new modified SSP strategy was proposed to drastically

reduce the computational burden of BSSP and provide sufficiently accurate solutions.

The applicability and the efficiency of the proposed OSP framework using output-only

vibration measurements was investigated by applying methodologies on realistic and com-

ponents of structures. Specifically demonstration was performed for the wind turbine blade

component of an energy related structure and the for the helicopter blade of an aeroelastic

structure. High fidelity complex finite element models were used to model both analysed

components. Using simulated measurements contaminated with noise and/or model error and

available experimental data, it has been shown that optimal placement of a few sensors sig-

nificantly improves the accuracy of response and/or input prediction compared to randomly

placed sensors.

The OED techniques and optimization schemes proposed in this work provide reliable so-

lutions for the design of the experiments that are set up for parameter estimation and response

prediction. Thus, it is important for data-driven safety and performance estimates of systems,

and it contributes to the decision making process.

6.2 Future Work

The research presented in this thesis provides several interesting avenues for Bayesian OED in

structural dynamics. In future work, the developed OSP framework for response reconstruc-

tion under output only vibration measurements can be extended for handling nonlinear models

using filtering techniques. Also, the developed Bayesian OED framework for parameter es-
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timation can be extended for handling model selection and damage identification problems.

Another potential extension of this work is the development of more advance robust tech-

niques. Specifically, robust OED techniques can be used to find sensor configurations that

maximize the expected information gain and minimize the variability of the information gain

over all possible values of the nuisance parameters. For this, the developed methodologies

can be integrated with the multi objective sensor placement algorithms that simultaneously

optimize expected utility and minimize the fluctuation of the utility.

In addition, the methodology can be extended to handle issues related to cost of the instru-

mentation. Such cost depends on the number of sensors used and the location of sensors in

the structure. Specifically, for some structures, installation cost for different sensor locations

should be considered in the OED due to the fact that some positions are more difficult and

thus more costly to access than others. An example includes underwater sensor installation

and sensor requirements in offshore structures, which might be significantly more costly than

installing sensors on the offshore platform. It might be less costly to gain the same amount of

information by using more sensors at accessible locations than using one sensor at an underwa-

ter position that is difficult and very costly to access. By augmenting the optimization problem

to include cost issues, the proposed methodology can effectively deal with such problem and

take into account in the OSP the cost of instrumentation or installation of the monitoring sys-

tem.

Throughout this thesis, exact formulations or asymptotic approximations of the expected

utility functions were developed. For the parameter estimation problem, full sampling tech-

niques available for estimating the multi-dimensional probability integrals involved in infor-

mation gain measures can also be developed further to account for modelling and input uncer-

tainties. Although the methodologies were developed to address structural dynamics problems,

the theoretical developments, uncertainty considerations and optimization algorithms are ap-

plicable to other branches of engineering and applied sciences.
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