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xii Abstract

Diploma Thesis

Timing analysis of VLSI circuits in advanced technology nodes

Vagenas Anastasios-Ioulios

Abstract

The rapid scaling of process technology and the widespread use of integrated circuits in

our daily lives render the task of gate-level timing analysis highly challenging. The resistivity

of on-chip interconnects, signal non-linearity, crosstalk, and driver-receiver interdependen-

cies introduce challenges in accurate timing estimation. Moreover, timing analysis engines

have to be highly efficient in order to scale for the ever-increasing design sizes and to be

integrated in timing-driven optimization flows for placement/routing. In this thesis, we intro-

duce a novel iterativemethodology for gate-level stage timing estimation using current source

models and the concept of multiple slew and effective capacitance values. The iterative ap-

proach utilizes piecewise linear waveforms to approximate the driver waveform, computa-

tionally fast closed-form formulas, and efficient topological traversals of theRC interconnect

of the stage to propagate the slew and effective capacitance values. Unlike previous works,

our methodology considers the resistive shielding effect, the Miller effect, and takes into ac-

count the driver-receiver interdependencies existing in deep nanometer technology stages.

Experimental evaluation on 2.2 million <driver, interconnect, receiver(s)> gate-level stages

implemented using the ASU ASAP 7 nm FinFET Predictive PDK show that our approach

can achieve up to 5.40% mean relative error against SPICE. Furthermore, it consumes only

0.38 MB of memory while also providing timing estimates in 8.16 s for 2.2 million stages.

Thus, it may be easily integrated into iterative timing-driver optimization flows to provide

signoff accuracy and accelerate timing closure.

Keywords:
Timing analysis, current source models, effective capacitance, resistive shielding, Miller ef-

fect
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Διπλωματική Εργασία

Ανάλυση χρονισμού κυκλωμάτων πολύ μεγάλης κλίμακας ολοκλήρωσης

σε προηγμένες τεχνολογίες

Βαγενάς Αναστάσιος-Ιούλιος

Περίληψη

Η συνεχής κλιμάκωση της τεχνολογίας των τρανζίστορ και η ευρεία χρήση των ολο-

κληρωμένων κυκλωμάτων στις καθημερινές μας ζωές, έχουν κάνει εξαιρετικά απαιτητικό

το έργο της ανάλυσης χρονισμού σε επίπεδο πύλης. Η αντίσταση των διασυνδέσεων, η μη-

γραμμικότητα των σημάτων, το φαινόμενο του θορύβου, και η αλληλοεξάρτηση στην ανά-

λυση πυλών και διασυνδέσεων οδηγεί σε νέες προκλήσεις στην ακριβή εκτίμηση χρονισμού.

Επιπλέον, η ανάλυση χρονισμού θα πρέπει να είναι αποδοτική ώστε να κλιμακώνει για κυ-

κλώματα ολοένα και αυξανόμενου μεγέθους και να μπορεί να ενσωματωθεί σε επαναληπτι-

κές ροές βελτιστοποίησης στα στάδια της χωροθέτησης πυλών και δρομολόγησης διασυν-

δέσεων. Σε αυτή τη διπλωματική, παρουσιάζουμε μια νεα επαναληπτική μεθοδολογία για

ανάλυση χρονισμού σταδίων σε επίπεδο πύλης, χρησιμοποιώντας μοντέλα πηγών ρεύματος

και την έννοια των πολλαπλών κλίσεων σήματος και ισοδύναμων χωρητικοτήτων. Η επανα-

ληπτική διαδικασία χρησιμοποιεί τμηματικά γραμμικές κυματομορφές για να προσεγγίσει

τα μη γραμμικά σήματα, υπολογιστικά αποδοτικές φόρμουλες, και γρήγορες τοπολογικές

διαπεράσεις του RC μοντέλου για να προωθήσει τις πολλαπλές κλίσεις και ισοδύναμες χω-

ρητικοτήτες. Σε αντίθεση με προηγούμενες προσεγγίσεις, η μεθολογία μας λαμβάνει υπόψη

το φαινόμενο προστάσιας αντίστασης, το φαινόμενο Miller, και τις αλληλοεξαρτήσεις πυ-

λών-διασυνδέσεων σε τεχνολογίες χαμηλών νανομέτρων. Η πειραματική μας αξιολόγηση

σε 2.2 εκατομμύρια <οδηγος, διασύνδεση, δέκτες> στάδια επιπέδου πύλης, υλοποιημένα σε

τεχνολογία 7 νανομέτρων FinFET του ASU ASAP Predictive PDK, δείχνει ότι η υλοποίησή

μας μπορεί και να έχει εως και 5.40% μέσο σφάλμα συγκριτικά με SPICE προσομοίωση.

Επιπροσθέτως, καταναλώνει 0.38 MB μνήμης ενώ υπολογίζει τους χρονισμούς σε 8.16 δευ-

τερόλεπτα για 2.2 εκατομμύρια στάδια. Εν κατακλείδι, η προτεινόμενη μεθοδολογία μπορεί

να επιταχύνει επαναληπτικές ροές βελτιστοποίησης ενός ολοκληρωμένου κυκλώματος, πα-
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ρέχοντας ακριβή εκτίμιση χρονισμού.

Λέξεις-κλειδιά:
Ανάλυση χρονισμού, μοντέλα πηγών ρεύματος, ισοδύναμη χωρητικότητα, προστασία αντι-

στασης, φαινόμενο Miller
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Chapter 1

Introduction

Over recent years, Integrated Circuits (ICs) have become an integral part of our daily life,

with many applications in low-power devices (e.g., watches, smartphones, sensors), medi-

cal devices, home appliances, and automobiles. The requirements for massive production of

ICs, coupled with the increasing customer needs for performance and accessibility of next-

generation technology, pose a challenge for the Electronic Design Automation (EDA) indus-

try. In addition, the desire for higher performance and lower power consumption in modern

ICs brought rapid scaling of technology to deep nanometer nodes (45 nm and below). Con-

sequently, there is an increase in design complexity and size (transistor count), the resistivity

of parasitic interconnects, and process variation.

Most EDA design flows for an Application-Specific Integrated Circuit (ASIC) include

timing analysis steps as a verification method. The main objective of timing analysis is to

analyze the circuit for timing violations (e.g., setup, hold) and guarantee correct operation at

a target clock frequency. Furthermore, timing analysis is essential in timing-driven optimiza-

tion flows for placement/routing [1, 2] and the final signoff that determines whether the IC

is ready for manufacturing. Recent studies show that timing analysis can take up to 60% of

the total design time [3].

Static Timing Analysis (STA) [2] and Dynamic Timing Analysis (DTA) [4] engines are

employed to tackle the problem of timing verification of contemporary ICs. STA tools need to

be orders of magnitude faster than SPICE while being highly accurate (2-3% over SPICE).

For that to happen, industrial STA tools have to scale to accommodate larger designs and

be capable of modeling the complex electrical phenomenona (e.g., interconnect resistivity,

signal non-linearity, crosstalk) during circuit delay calculation. In order for timing analysis to

1



2 Chapter 1. Introduction

be feasible during the ASIC design flow, the existence of an efficient STA tool is necessary.

1.1 Motivation

Circuit delay calculation is performed at the gate-level stage [2], where each stage con-

sists of a driver gate, anRC interconnect, and multiple receiver gates. Due to the interdepen-

dence between driver and receivers, which is very prevalent in advanced technology nodes,

an iterative approach is mandatory for stage timing estimation.

1.1.1 Gate timing

Gate modeling uses Lookup Table-based (LUT) models, such as the Current Source

Model (CSM) [5, 6] and the less accurate Voltage Response Model (VRM), to effectively

estimate the gate output delay and slew. However, these models are pre-characterized into

standard cell libraries using lumped capacitive loads, posing a significant challenge for highly

resistive interconnects in advanced technology nodes. Traditional techniques approximate

the driving point admittance of an interconnect using a single effective capacitance (Ceff) [7],

which fails in capturing the non-linear characteristics of the driver waveform. Moreover,

most works ignore the Miller effect introduced by the receivers to the interconnect [7, 8, 9].

Instead,Ceff values computed in multiple voltage regions are required to capture these effects

using CSMs [10, 11].

1.1.2 Interconnect timing

Interconnect timing has become crucial, as interconnect delay takes up a large portion

of the total stage delay [12]. SPICE simulation of RC interconnects is devoid of expensive

transistor parameter evaluation but requires substantial resources (i.e., runtime, memory) and

is prohibitive for optimization-based flows [13, 14]. On the other hand, fast moment-based

timing metrics [15, 16, 17, 18, 19] are computationally more efficient and easily scale on

large designs but might be highly inaccurate as they rely on simplistic assumptions. Even

higher-order moment-based metrics, such as AWE and RICE [12, 20], suffer from numerical

instability and do not capture the effects in modern RC interconnects. More specifically,

moment-based methods/metrics do not take into account the resistive shielding effect present

in highly resistive interconnects, assume step inputs (instead of non-linear waveforms), and



1.2 Contributions 3

might not be applicable for some interconnect topologies (π-models). In contrast, another

approach in [21] used closed-form formulas and Ceff to account for resistive shielding but

ignored the signal non-linearity and the Miller effect.

1.2 Contributions

This work focuses on the timing analysis of gate-level stages, using the concept of Ceff

and CSMs, with the main contributions being:

• A fast iterative algorithm for stage timing calculation that approximates the Piece-

Wise Linear (PWL) voltage waveforms using multiple Ceff values while considering

the Miller effect. Compared to previous works, it considers the driver-interconnect in-

terdependencies and does not require expensive computation ofmoments or a reduction

to a π-model.

• Experimental evaluation on representative stages implemented on 7 nm FinFet tech-

nology, where timing and Ceff calculation is challenging. The iterative algorithm is

compared against methods based on established techniques (i.e., π-model reduction,

moments computation). Results show that ourmethodology achieves up to 5.40%mean

Relative Error (RE) against SPICE while requiring extremely low amount of memory

(0.6 MB).

Part of this work was published in [22], which also won the first place in the ACMTAU 2021

student contest in timing analysis.

1.3 Thesis organization

The rest of the thesis is organized as follows:

• Chapter 2 (Background): The basics of the ASIC design flow, timing analysis, STA,

and the problems that arise during stage timing estimation.

• Chapter 3 (Proposed methodology): The proposed iterative algorithm for stage tim-

ing estimation, including explanation of each step and the implementation details.
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• Chapter 4 (Experimental evaluation): The evaluation of the proposed iterative al-

gorithm against established methods in terms of accuracy, runtime, and memory con-

sumption.

• Chapter 5 (Conclusions): Conclusions of this work, potential enhancements and fu-

ture directions.



Chapter 2

Background

In this section, we present the theoretical background needed for gate-level stage timing

estimation. Firstly, we describe the top-level steps of the ASIC design flow and the significant

role timing analysis plays during each step. Secondly, we delve into the details of STA, how

timing paths are formed, examples of timing constraints, and the different methods of STA

used. Finally, we describe the problem of stage timing analysis with the difficulties arising in

gate and interconnect timing.

2.1 Design flow

Modern VLSI circuits contain billions of transistors and require significant amount of

resources and time for manufacturing. Furthermore, the customer needs for lower power,

reduced chip area, and higher clock frequencies have exponentially increased the complexity

and the number of verification methods required during the design of an ASIC. These needs

have led to the multi-step flow performed for the complete manufacturing of an ASIC, which

can be broadly split into the frontend and backend parts of the flow.

2.1.1 Frontend

The frontend part of the design flow, as shown in Figure 2.1, is responsible for the trans-

formation of the ASIC design specification into an equivalent Register Transfer-Level (RTL)

circuit description.

5



6 Chapter 2. Background

Design Specification

Initially, the customer (or the market trend) describes the problem and the product specifi-

cations (e.g., Power, Performance, and Area [PPA]). Then, the designer formulates a solution

in the form of a top-level description, including the protocols, the package die, and the power

supply voltage used.

Architecture

After the design specification, the designer creates the architecture that characterizes the

ASIC. The architectural choices for the ASIC can be some of the following:

• Arithmetic units (i.e., adder) architecture

• Chip and functional module hierarchy

• Module connections and relationships

• Design time and resource allocation for each module

Logic Design and Verification

The last step of the frontend involves describing the data flow of each functional module

in a Hardware Description Language (HDL) like Verilog, VHDL, or System Verilog. Before

moving to the backend part of the flow, the behavioral circuit is simulated logically to check

for correct operation.

2.1.2 Backend

The backend part of the design flow, as shown in Figure 2.1, is responsible for the trans-

formation of the RTL circuit description into the final physical chip.

Synthesis

Synthesis transforms the RTL circuit description into a standard cell gate-level represen-

tation using a technology library (.lib file) based on the design constraints (e.g., timing). This

representation, also called netlist, is simulated for logical equivalency with the behavioral

circuit and initial PPA estimation.
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Floorplanning

After synthesis, a rough estimate of the total area required for the circuit is possible.

Combining this estimate along with the package die restrictions, the designer creates the

floorplanwhere the cells will be placed. This phase usually includes power planning, meaning

the creation of the power/ground network.

Placement

Following the floorplanning step, the standard cells are placed inside legal positions of the

floorplan while keeping the connections (wires) lengths minimal. Even though connections

between cells do not exist at this step, the distances are approximated using the total wire

length and routing congestion.

Routing

The final physical step of the backend is the wire routing. The pins of the cells are con-

nected using multiple metal layers (up to 15), with each metal situated at a specific track

(height). Furthermore, the router aims to minimize the length (along with timing) and reduce

the congestion of the metals in the floorplan.

Signoff

After the physical design of the ASIC, the final signoff-level verification follows. The

routed design goes through verification checks for timing (e.g., setup, hold), Design Rule

Violations (DRV), electromigration phenomena, and more. Once the design passes all of the

final verification checks, it is ready for manufacturing.

2.2 Timing analysis

Timing analysis is one of the numerous and most commonly used verification methods in

the design flow of an ASIC. The primary goal of timing analysis is the timing and functional

verification of the design. Timing verification examines the circuit for timing violations to

guarantee stable operation at a target clock frequency, which is usually the major constraint

in a design. Functional verification incorporates the inspection of the logical operation of the

design, which is carried out by sensitizing the circuit’s input(s) with several input vectors.
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Figure 2.1: The ASIC design flow.

On the one hand, timing analysis needs to be highly accurate in order to achieve timing

closure of the design and reduce unnecessary loops in the design flow (e.g., from routing

back to synthesis). The complex electrical phenomena during delay calculation, such as in-

terconnect resistivity, signal non-linearity, and crosstalk, heavily disturb the task of an EDA

timing tool since they greatly affect its accuracy. On the other hand, timing analysis needs to

be efficient (in terms of memory/runtime) since iterative optimization flows, which operate

during each step of the design flow, utilize it to ensure that changes do not impact the timing

or functionality of the design. This, coupled with the sheer complexity of VLSI circuits of

billions of transistors (or millions of gates), further complicates the task of timing analysis.

It is apparent that timing analysis needs to be quick, accurate, and scale for the the ever

increasing circuit sizes. A single timing analysis methodology is insufficient to cover all

the timing and functional verification needs of the design, hence multiple types exist and

are employed during the flow. The main variants of timing analysis methodologies used are

i) Static Timing Analysis (STA), which verifies the timing integrity of the design using a

fast wost-case vectorless approach, and ii) Dynamic Timing Analysis (DTA) that also covers

the functional verification aspect with a slower input-vector dependent approach. Finally,

during the signoff step of the flow, more complex and computationally expensive timing

methodologies that are extensions of the above can be employed, such as Statistical STA

(SSTA) [23], IR-drop aware timing analysis, and Signal Integrity (SI) aware timing analysis.
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2.2.1 Static Timing Analysis

STA is the cornerstone of timing analysis and the core of any EDA tool since it is the

most commonly used analysis throughout the entire design flow of an ASIC. The analysis is

”static” since no input vectors are required to excite the circuit input pins. Moreover, it can

produce pessimistic (worst delay/slew) and optimistic (best delay/slew) results for the target

circuit, providing an upper and lower bound for the design timing.

A circuit typically contains sequential (typically Flip-Flops [FF]) and combinational el-

ements connected together (e.g., NOR, AND, XOR gates), which form timing paths 1. STA

is performed on these paths, which are made up of the following: [24]:

• Startpoint: The path starting point, where data is propagated by a clock edge or is

constrained by a specific timing. Startpoints can be either input ports or register clock

pins.

• Combinational logic network: Combinational logic, meaning elements that do not

have any state or memory.

• Endpoint: The path ending point, where data is captured by a clock edge or is con-

strained by a specific timing. Endpoints can be either register data input pins or output

ports.

Figure 2.2 and Table 2.1 show a design example and the possible timing paths that might

exist in a design. Each ”logic bubble” represents a combinational network with each path

starting from a data launch point and ending at a data capture point. The typical STA flow

breaks down the design into timing paths to check for the specified timing constraints, with

the most common being:

• Setup specifies the time needed for the data to be available at the input pin of a sequen-

tial cell before the capturing clock edge. During setup analysis the longest path has to

meet the setup time constraint.

• Hold specifies the time needed for the data to be stable at the input pin of a sequential

cell after the capturing clock edge. During hold analysis the shortest path has to meet

the hold time constraint.
1For brevity, only data timing paths are considered.
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A single combinational network can potentially contain multiple paths, as illustrated in

Figure 2.3, and each one can be further broken down into <driver-connection(s)-receiver(s)>

timing stages. Each stage is a self-contained entity where delay/slew calculation occurs, there-

fore the STA unit cell for timing analysis is the stage. It is important to note that a stage’s

connection (e.g., net) delay is initially calculated using LUTs or empirical wire-delay models.

However, after the placement/routing step of the design flow, the net connection becomes an

RC parasitic interconnect (Figure 2.3).

The main task of an STA tool is to find the propagation delay/slew at the endpoints of the

timing paths and perform the setup/hold violation checks. Initially, the slew constraints are

set at the startpoint of each timing path and they are propagated across the stages that form

the combinational network up to the corresponding endpoint. At each successive stage, the

delay is accumulated in order to find the total propagation delay and the input slew at the

endpoint, which are both used to perform the setup/hold violation checks. For that reason,

the majority of runtime during STA delay calculation is spent in stage timing estimation,

which also heavily depends on the complexity and size of theRC interconnect itself. Finally,

depending on the analysis mode of the STA tool (Path-Based Analysis [PBA] or Graph-Based

Analysis [GBA]) the way the slew/delay values are propagated changes appropriately.

Graph-Based Analysis

GBA is the STA-mode that is mostly used during the design flow. In this mode, only the

worst (or best) input slew is propagated from the input pin of each gate to the output, in order

to produce the gate delay/slew (Figure 2.4). This approach is computationally efficient since

it runs in polynomial time (i.e., proportional to the number of gates on the design), but adds

unnecessary pessimism to the design’s timing.

Path-Based Analysis

PBA is the second, more accurate, STA mode used during the design flow. In this mode,

the actual slew is used on an input pin of the gate, with the real slew/delay value being prop-

agated across the stages of each timing path (Figure 2.4). This mode of analysis is the most

accurate gate-level analysis, but requires potentially exponential time (i.e., proportional to

the number of paths on the design).
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D Q D QLogicA

CLK

Logic ZLogic

Path 1 Path 2 Path 3

Path 4

Figure 2.2: Timing paths on a simple design.

Path Startpoint Endpoint

Path 1 Input port Data pin of FF

Path 2 Clock pin of FF Data pin of FF

Path 3 Clock pin of FF Output port

Path 4 Input port Output port

Table 2.1: Timing paths examples for Figure 2.2

2.3 Stage timing estimation

2.3.1 Problem formulation

Consider the stage of Figure 2.5, where the driver gate output (i.e., the source node 0) is

connected to the input of the receiver gates via a distributed interconnect. Each node i of the

parasitic RC tree has a capacitance to ground Ci and is connected with a resistance Ri→j to

each fanout node j. We denote the slew at node i by Si, its total downstream capacitance (i.e.,

the sum of all the capacitances of the subtree starting at node i) byCtoti , and the corresponding

effective capacitance by Ceffi . More specifically, the resistance value (R1→5) from node 1 to

fanout node 5 is 5 kΩ, the capacitance value (C6) of node 6 is 1 fF, and the downstream

capacitance value (Ctot2) of node 2 is 2 fF. A special case can be made for the downstream

capacitance of node 0, since it is the entire RC tree’s capacitance sum and is denoted as the

total capacitance (Ctotal) of the stage.
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INV_x2 Wireload

Load Delay
(ns)


1 10.5

2 20.4

4 32.5

Post-routing

D Q D Q

Short path


Long path

Pre-routing

Figure 2.3: Combinational network example along with potential timing paths.

D Q D Q

GBA

D Q D Q

PBA

Fast slew

Slow slew

Figure 2.4: GBA and PBA methods for STA.

Problem: The main objective of this work is to accurately estimate the driver delay

(Ddrv), the driver output slew (Sdrv), the interconnect delay to the target receiver (Drcv), and the

target receiver input slew (Srcv), given the driver input slew (S in
drv) and the output capacitance

values (Cout
rcv ) at the receivers [typically set to Ctotal of the respective fanout stage].

Typical solving approach: First, the interconnect input admittance is approximated by
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Figure 2.5: A timing stage example with multiple receivers and annotated RC values.

Ceff and the driver output voltage waveform is computed in order to estimate driver delay and

output slew. Then, this waveform (or the estimated slew value(s)) is used for interconnect

delay estimation as well as for estimation of the receiver input voltage waveform (or slew

value(s)). The receiver input slew can then used as input in the analysis of the next stage.

2.3.2 Gate timing

Library compatible CSMs - VRMs

Gate modelling uses LUT-based models, which are precharacterized into 1D/2D tables

of technology libraries to be used for stage delay/slew estimation, such as the CSM and the

VRM model. Our methodology primarily focuses on the Composite Current Source (CCS)

model [5] for CSMs and Non-Linear Delay Model (NLDM) on the side of VRMs. Below we

provide a demonstration of the NLDM and CCS driver/receiver models.

NLDM driver model captures the output slew/delay as a function of driver input slew

(S in
drv) and output load (Cout

drv). A single value is used for the slew/delay estimation, hence, non-

linearities of the driver waveform cannot be effectively modeled. As shown in Figure 2.6,

this information is stored in cell_rise/fall and rise/fall_transition LUTs,

for gate delay and slew, respectively.

NLDM receiver model uses a single input pin capacitance (Cp) value to model the non-

linear receiver transistor input capacitance. As depicted in Figure 2.6, the NLDM receiver
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capacitance value is stored in rise/fall_capacitance fields of each standard cell.

Unfortunately, this way of modeling the receiver capacitance does not capture the Miller

effect or the dependency of Cp to the input slew (Srcv) and the output load (Cout
rcv ) of the

receiver cell.

CCS driver model captures the output current as a function of driver input slew (S in
drv)

and output load (Cout
drv). As shown in Figure 2.6, this information is stored in output_curr-

ent_rise/fall LUTs. The time instant when the corresponding driver input voltage

crosses the delay threshold (usually 0.5Vdd), which is necessary to calculate gate delay, is

also stored as reference_time in these LUTs.

CCS receiver model typically uses two different input Cp values, C1 and C2, to model

the non-linear receiver transistor input capacitance and the Miller effect. This is very impor-

tant since the load seen by the driver depends both on the interconnect RC network and the

input pin capacitance of the multiple receiver gates. As depicted in Figure 2.6, CCS receiver

capacitance values are stored in receiver_capacitance_1/2_rise/fall LUTs,

and are also dependent on the Srcv and Cout
rcv of the receiver cell.

Cn CpC0

Sdrv Sdrv Srcv
in

CCS DRIVER MODEL CCS RECEIVER MODEL

i(t, V)

output_current_rise

in
S d

rv

out
Cdrv

0.1 0.2

0.4 0.5

receiver_capacitance1_rise

0.2 0.4

0.8 1.2


receiver_capacitance2_rise

C1 C2

0.1

rise_capacitance

S r
cv

out
Crcv

out
Crcv

S r
cv

NLDM RECEIVER MODEL
NLDM DRIVER MODEL


0.1 0.2

0.4 0.5

cell_rise

0.1 0.2

0.4 0.5

rise_transition

in
S d

rv in
S d

rv

out
Cdrv

out
Cdrv

Crcv
out

Figure 2.6: Comparison of the NLDM and CCS timing model.
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Modeling theRC interconnect load with Ceff

In advanced technology nodes, on-chip RC interconnect loads become increasingly re-

sistive, which complicates their modeling with a single capacitance value for gate timing

estimation with CSMs. The simplest approximation of the driving point admittance of an

RC interconnect is Ctotal. However, this results in pessimistic gate timing estimation, as it

totally ignores the resistive shielding effect, where interconnect resistance shields a part of

Ctotal.

To address this limitation, the concept of Ceff is introduced in [7], which is an equivalent

capacitance such that gate timing is the same when using (i) the driving point admittance

and (ii) the estimated Ceff as a load. The traditional approach for Ceff estimation includes

two steps [7]. First, the distributed interconnect is approximated by a π-model, proposed by

O’Brien and Savarino [25]. Then,Ceff is computed by equating the charge absorbed by the π-

model and the charge absorbed by Ceff, up to the delay threshold (i.e., the time instant when

driver output voltage crosses 0.5Vdd). However, a single Ceff value focuses only on delay

estimation and is inadequate to approximate slew, as it assumes that driver output voltage

waveform is a linear ramp. Moreover, it does not consider the Miller effect, neglecting the

impact of receiver input capacitance (Cp) on Ceff, delay, and slew estimation.

In order to accurately approximate the non-linear driver waveform, Ceff must be com-

puted in multiple voltage regions. Recently, authors in [10] presented a CSM-basedmethod to

compute driver outputCeff and slew in multiple regions, considering theMiller effect, for a π-

model load approximation. The main drawback of [10] is that the reduction of the distributed

interconnect to a π-model induces significant error in advanced technologies while introduc-

ing memory overhead, as we demonstrate in Section 4.

Another interesting Ceff estimation technique [21] handles the distributed interconnect as

connected π-models and iteratively refines Ceff (along with delay and slew) on eachRC-tree

node by repeated forward-backward traversals. However, it does not exploit CSMs and still

approximates signal waveforms by linear ramps, assuming a single Ceff on each node while

ignoring the Miller effect.

To support our methodology, we extended [10, 21] to computemultipleCeff values, avoid-

ing a π-model reduction. In our modeling, for each node i of the RC-tree (see Figure 2.6),
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Ceffi for each region (αVdd − βVdd), where α, β ∈ [0.0, 1.0] and α < β, is calculated by:

Cα−β
effi = Ci +

∑
each fanout j

Kα−β
j ∗ Ctotj , (2.1)

whereKα−β
j = 1− Xα−β

j

(β−α)

(
e
− α

X
α−β
j − e

− β

X
α−β
j

)
and Xα−β

j =
Ri→jC

α−β
effj

Sα−β
i

.

In the above formula, Sα−β
i is the slew of node i while Cα−β

effj is the Ceff of the fanout node j,

corresponding to region (αVdd−βVdd). As can be seen,Cα−β
effi accounts for a different shielding

factor (Kα−β
j ) for each fanout node j, which shields Ctotj and depends on Ri→j , Cα−β

effj , and

Sα−β
i to properly account for the resistive shielding. Note that only for receiver input pins,Ci

also incorporates the receiver input capacitance (including the Miller component) computed

in the corresponding region (Cα−β
p ).

The main advantage of using multiple Ceff regions for each RC-tree node is that the non-

linear driver output waveform can be accurately approximated by a PWL ramp, exploiting

library compatible CSMs to compute the slew of each region using the corresponding Ceff

value. As a result, our approach achieves superior accuracy compared to [21, 10], especially

for driver output slew, while it is also essential for accurate interconnect analysis.

2.3.3 Interconnect timing

The most accurate interconnect timing estimation is obtained by transient analysis using

SPICE. Although SPICE provides golden results and is devoid of expensive transistor pa-

rameter evaluation, it fails to meet the performance and memory requirements for full-chip

analysis. This is due to the fact that it involves detailed computations with runtime propor-

tional to the number of time steps and the RC network complexity. On the contrary, several

lighter analytical models, based on the first few moments of the impulse response, have been

proposed for fast timing analysis of interconnects [15, 16, 17, 18, 19]. However, these models

assume step inputs while ignoring the resistive shielding and the interdependence between

slew and Ceff. For each node i of the RC-tree, the j-th (m(i)
j ) moment can be recursively

calculated by:

m
(i)
j =

∑
each node k

RkiCkm
(k)
j-1 , where m

(k)
0 = 1, (2.2)

whereRki is the common resistance of paths 0 → i and 0 → k, Ck the node capacitance, and

for each node i the initial conditionmi
0 is set to 1.
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In contrast to conventional delay and slew models [15, 16, 17, 18, 19], the iterative

refinement-based method proposed in [21] exploits the Ceff concept for accurate gate-level

interconnect timing estimation. More specifically, interconnect delay is computed by an ex-

tended version of Elmore delay, which uses Ceffi instead of Ctoti on each interconnect node

i. For the RC-tree of Figure 2.6, the delay from driver output (node 0) to each node i is

computed by:

D0→i =
∑

each node k

RkiC
0−0.5
effi , (2.3)

where Rki is the common resistance of paths 0 → i and 0 → k. On the other hand, in [21], a

single slew value is computed on each node, usingC0−0.5
eff and ignoring theMiller capacitance,

which is insufficient to accurately approximate the non-linear signal waveform.

To enable accurate stage timing analysis, we generalized the slew metric of [21] to any

voltage region, considering the respective Ceff [computed by Eq. (2.1)]. In our method, for

each node i, the slew of region (αVdd−βVdd) is propagated to each fanout node j as follows:

Sα−β
j =

Sα−β
i

1−Xα−β
j

(
1− e

− 1

X
α−β
j

) (2.4)
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Proposed methodology

In this section, we present our iterative stage timing estimation algorithm that considers

the strong interdependencies of Eq. (2.1, 2.3, 2.4), along with its implementation details.

3.1 Iterative algorithm

The details of our initial iterative algorithm for post-PnR stage timing estimation are

described in Algorithm 1. First, the Ceffi of each node i is initialized to the downstream ca-

pacitance, for each voltage region, using the NLDM capacitance for receivers (step 0). In

the first step of the main iterative loop, Ddrv and Sdrv are estimated by computing the driver

output PWL voltage ramp using CSMs and multiple Ceff0 values (step 1). In step 2, during

a forward Breadth-First Search (BFS) traversal of the RC-tree, the modified Elmore delay

(D0→i) from driver output to node i is computed using Eq. (2.3), while the multiple slew

values (Si) of node i are propagated to each fanout node j using Eq. (2.4). When the multiple

slew values of the PWL voltage ramps have been propagated to the target and side receivers,

their Ceff values for all regions are updated using the CSM receiver model, which considers

the Miller effect (step 3). Finally, in step 4, the RC-tree is traversed backward using BFS to

update Ceffi per region based on Eq. (2.1). This iterative refinement of Ceff, delay, and slew

values is performed until the multiple driver output Ceff0 values converge within a specified

tolerance (e.g., 0.01 fF).

The overall time complexity of Algorithm 1 is O(k|V ||E|), where k is the number of

iterations needed for convergence, |V | is the number of voltage regions used, and |E| is the

number of edges on the RC interconnect tree. The computation of the CSM PWL voltage

19
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ramp can be considered a constant-time operation, as they may differ across CSM variants

and do not depend on |E| or |V |. In contrast, the most prominent costs during the operation

of Algorithm 1 are the two BFS traversals across the edges of the RC tree and the multiple

(|V |) Si/Ceffi values that are propagated across each edge (i.e., π-model). Finally, the iterative

procedure (steps 1-4) is performed for a number of iterations, typically 5 iterations, which

sets the overall complexity to O(k|V ||E|).

Algorithm 1: Stage timing estimation using CSM

Function stage_CSM_timing(stage, multiple (αVdd − βVdd) regions):
0. Initialization:

• Set all Cα−β
effi values for each RC-tree node i to Ctoti

(using NLDM capacitance for receivers)

while driver output Cα−β
eff0

values not_converged do
1. Compute driver CSM PWL voltage ramp using Cα−β

eff0 values

2. Forward Traversal (driver-to-receivers):

• Compute Elmore delay (D0→i) to node i using Eq. (2.3)

• Compute Sα−β
j values for each fanout node j using Eq. (2.4)

3. Update Cα−β
effi values on receivers using CSM receiver model

4. Backward Traversal (receivers-to-driver):

• Compute Cα−β
effi values of node i using Eq. (2.1)

end
End Function

It is worth noting that several other moment-based metrics have been evaluated for delay

(e.g., D2M [17], WED [16]) and slew (e.g., SS2M [17], LnS [19]) propagation, along with

PERI [26] to extend metrics to saturated ramp inputs. However, our metrics employed in

step 2 of our proposed Algorithm 1 lead to better accuracy results, while they do not require

expensive computation of moments.
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3.2 Implementation details

3.2.1 Algorithm setup and modifications

Voltage regions

Algorithm 1 can be configured in arbitrary voltage regions but the most common con-

figuration would be using 3 regions with 4 thresholds V = {0, Vlow, Vdelay, Vhigh}, which

match the gates’ library predefined thresholds. Depending on the complexity of the RC in-

terconnect and the accuracy needed, the algorithm can be enhanced by increasing the voltage

thresholds in between those. Nevertheless, for the rest of the thesis we use a configuration

of V ={0, 0.1Vdd, 0.5Vdd, 0.9Vdd}, that matches the technology library’s thresholds used in the

experimental evaluation of the methodology in Section 4.

NLDM integration

The CCS model is the default model used in the configuration of Algorithm 1, as shown

during the algorithmic steps. However, simple modifications can be made to the voltage re-

gions used and steps (1, 2, 3), in order to support only the NLDM driver/receiver model

instead of CCS.

Firstly, Algorithm 1 should be configured with a single voltage region using 2 thresholds

V = {Vlow, Vhigh}, since NLDM will not benefit from more regions. Secondly, the driver

delayDdrv and output slew Sdrv are calculated by accessing the NLDM cell_rise/fall

and rise/fall_transition LUTs (step 1), respectively. Then, Eq. (2.3) used in step 2

is modified and uses C low-high
eff instead of C0-50

eff . Finally, in step 3 the updating of the C low-high
eff

receiver value is done using the NLDM receiver model.

3.2.2 Driver delay and output slew computation

To calculate driver delay Ddrv and output slew Sdrv in step 1 of Algorithm 1, we first

access the CCS output_current_rise/fall LUTs to find the four closest output

current waveforms for the current (S in
drv, C

0−10
eff0 ), (S in

drv, C
10−50
eff0 ),(S in

drv, C
50−90
eff0 ) breakpoints.

Then, we transform them into CSM PWL voltage waveforms by integrating using the Trape-

zoidal rule, and compute the time instants when the actual voltage waveform crosses 0Vdd,

0.1Vdd, 0.5Vdd, and 0.9Vdd, using interpolation. To compute output slew in three regions
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(S0−10
drv , S10−50

drv , S50−90
drv ), we use the corresponding time instants, while Sdrv is calculated

by Sdrv = S10−50
drv + S50−90

drv . As for Ddrv estimation, we use the reference_time cor-

responding to an input voltage waveform having slew equal to S in
drv, which is computed by

interpolating on the reference_times of the closest CCS output current waveforms.

3.2.3 Receiver input pin capacitance computation

To compute receiverCeff values in step 3 of Algorithm 1, we use the input slew per region

(S0−10
rcv ,S10−50

rcv ,S50−90
rcv ) and fixed receiver loadCout

rcv , to access the CCSreceiver_capaci-

tance_1/2_rise/fall LUTs and compute the corresponding input capacitanceCp (i.e.,

C1 or C2).
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Experimental evaluation

In this section, we present the experimental results of our proposed methodology against

established approaches in the literature using different configurations of Algorithm 1.

4.1 Setup

For the evaluation of the proposed approach, we integrated Algorithm 1 into the C++

framework of the ACM TAU 2021 contest [27], which generates representative <driver, in-

terconnect, receiver(s)> stages of VLSI circuits. Each stage contains one or more receivers,

with each stage having a designated ”target” receiver of which we attempt to estimate the

timing of (i.e.,Drcv, Srcv) and ”side” receivers which are the remaining ones in the stage. The

framework is capable of generating different topologies of stages and assessing the accuracy

of eachmethodology employed against the Xyce electrical simulator [28]. The types of stages

generated, as illustrated in Figure 4.1, are the following:

• standard: The general case meant to test typical signal propagation across stages. It

is an intermediary type as it is a combination of all the other following testcases.

• stress_0: The simplest case of stage, a single receiver-driver pair connected with a

single-layer wire. Tests short signal propagation effects.

• stress_1: A single receiver-driver pair connected with a long two-layer wire that

transitions multiple times between the layers. Tests long signal propagation effects.

• stress_2: A multi-receiver case of a stage, where the side receivers are located very

close to the driver of the wire. The target receiver rests at the end of the longest branch.

23
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Tests strong side load effects followed by long signal propagation.

• stress_3: A multi-receiver case of a stage, where the side receivers are situated

very close to the target receiver (end of the wire). A long wire routed on the highest

layer connects all together. Tests long signal propagation followed by strong side load

effects.

In order to evaluate our approach, we compare it against established methodologies,

which are modifications of Algorithm 1, namely:

• Moments: During the forward traversal of the RC tree in step 2, we utilize moment-

based metrics, Elmore for delay and SS2M [17] for slew computation. Furthermore,

we use PERI [26] to extend the metrics from step to ramp inputs. Finally, Algorithm 1

is configured with two voltage thresholds V ={0.1Vdd, 0.9Vdd}.

• O’Brien: During the backwards traversal of the RC tree in step 4, we approximate the

input admittance of the interconnect by a π-model per region [25] and then compute

Ceff using [10].

Xyce was configured using a maximum timestep of 0.1 ps for the duration of the sim-

ulation, a direct method of solving, and other options that guarantee the highest possible

accuracy. For our experiments we generated a million standard stages and 300k of each

stress_xx case, totalling 2.2 million stages of VLSI circuits.

The driver/receiver gates where chosen from the ASU ASAP 7 nm FinFET Predictive

PDK [29], with only the inverter/buffer gates being used. Table 4.1 summarizes some of the

SPICE parameters of the technology library used in the evaluation. Moreover, the library’s

voltage thresholds V = {0, Vlow, Vdelay, Vhigh} are set to V ={0, 0.1Vdd, 0.5Vdd, 0.9Vdd}, hence

the Algorithm configuration described in Section 3.2.1. The stages were generated so that the

driver output Ceff, the driver input slew, and the receiver output capacitance cover the entire

range of the library’s precharacterized LUTs and even beyond that.

Finally, we ran all experiments on a Linux workstation with a 3.80 GHz 12-thread AMD®

Ryzen 3600X CPU and 16 GB of memory.
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SPICE Parameter Value

Structure Selector (GEOMOD) 1 (triple-gate)

Channel Length (L) 21 nm

Fin Height (Hfin) 32 nm

Fin Thickness (Tfin) 6.5 nm

Threshold Voltage (Vth,n, Vth,p) 0.25V, −0.2V

Oxide Permittivity (ϵox) 34.53 pF/m

Physical Oxide Thickness (Toxp) 21 nm

Table 4.1: ASU ASAP 7 nm SPICE MOSFET parameters

4.2 Accuracy evaluation

In the first part of the accuracy evaluation, we compare the aforementioned methods

against our proposed approach. We measured the mean Relative Error (RE) and the mean

Absolute Error (AE) against SPICE for each timing metric (i.e.,Ddrv, Sdrv,Drcv, Srcv), across

all testcases cumulatively and for each testcase individually. As shown in Table 4.2, the estab-

lished approaches fail to achieve signoff-level accuracy, with the O’Brien and Moments

approaches inducing significant error due to the π-model and moments’ approximation, re-

spectively. More specifically, these approaches fail in capturing the non-linear effects of the

driver waveform, with large errors in the driver’s timing estimates (e.g., 22.15% and 26.17%

for Ddrv). In contrast, our methodology is superior across all metrics compared to the other

approaches, with the best RE in Ddrv (5.98% over 11.10%/11.89%) and the worst in Drcv

(5.40% over 8.31%/8.91%). This trend is also apparent in the mean AE of all the approaches,

where our method achieves extremely low AE (e.g., 5 ps for Ddrv) against SPICE.

Method
Mean RE against SPICE Mean AE against SPICE

Ddrv Sdrv Drcv Srcv Ddrv Sdrv Drcv Srcv

O’Brien 22.15% 11.10% 8.31% 8.57% 16.3 ps 20.6 ps 8.3 ps 19.1 ps

Moments 26.17% 11.89% 8.91% 13.18% 19.1 ps 21.3 ps 8.9 ps 26.5 ps

Ours 6.71% 5.98% 5.40% 5.78% 5.0 ps 11.5 ps 5.3 ps 12.6 ps

Table 4.2: Mean RE/AE against SPICE of the examined approaches across all testcases

In the second part of the accuracy evaluation, we examine the results of our approach
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Figure 4.1: The testcases used for the experimental evaluation.

on a per-testcase basis, as shown in Table 4.3. Initially, our proposed methodology performs

well, with similar RE on most metrics for the standard, stress_0, and stress_3
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testcases. Out of these testcases, the best performance of our approach is in Drcv (4.8%) for

stress_3while theworst is inDdrv (7.44%) for stress_0. In contrast, as the testcases get

increasingly more complex (stress_1 and stress_2), our method performs far worse,

especially in Ddrv for both the testcases, and Srcv for stress_1 specifically. In the case of

stress_1, the slew values are propagated across a long chain of π-models (up to 25) and

they degrade rapidly as each consecutive approximation in each π-model adds a slight error

to Srcv. The loss of accuracy in Ddrv, which is also apparent for the rest of the testcases, is

due to the fact that the non-linear effects of the driver waveform are not captured effectively.

While the waveform total time is approximated well (i.e., Sdrv), the timepoints required for

the estimation of delay are not calculated as precisely.

Testcase
Mean RE against SPICE Mean AE against SPICE

Ddrv Sdrv Drcv Srcv Ddrv Sdrv Drcv Srcv

standard 5.36% 6.10% 5.30% 4.97% 5.1 ps 14.3 ps 5.2 ps 11.8 ps

stress_0 7.44% 6.27% 6.11% 4.66% 5.6 ps 10.6 ps 6.1 ps 7.6 ps

stress_1 10.07% 6.73% 6.54% 12.53% 4.0 ps 6.0 ps 6.5 ps 32.5 ps

stress_2 8.76% 5.46% 5.03% 4.91% 6.3 ps 10.5 ps 5.0 ps 9.4 ps

stress_3 5.31% 5.42% 4.80% 5.91% 2.5 ps 6.0 ps 4.7 ps 8.3 ps

Table 4.3: Mean RE/AE against SPICE of our methodology for different testcases

4.3 Runtime and memory results

The runtime and memory of the examined approaches are shown in Table 4.4. As can be

seen, our approach has the largest runtime out of all the approaches. This increase in run-

time is due to the non-linear operations required for the computation of Ceff, compared to the

linear operations (only additions/multiplications) of the O’Brien and the Moments meth-

ods, during the forwards/backwards traversals in Algorithm 1. Also, the Moments method

requires the moments of each node in the RC-tree to be computed only once, taking approxi-

mately 33% less time than the O’Brienmethod. Nevertheless, these simpler approaches do

not capture the complexity of the interconnect or the non-linear effects of the driver/receivers

as effectively as our methodology On the other hand, our approach is the most efficient in

terms of memory (0.38 MB), since it does not require any saving of moments or admittance
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parameters but instead calculates everything on-the-fly during the traversals of the RC-tree.

Method Memory (MB) Runtime (s)

O’Brien 2.08 2.80

Moments 0.67 4.19

Ours 0.38 8.16

Table 4.4: Runtime and memory of the examined approaches across all testcases



Chapter 5

Conclusion

In this work, we presented a novel iterative approach for gate-level stage timing estima-

tion using CSMs and the concept of multiple slew and Ceff values. This iterative procedure

uses PWLwaveforms and closed-form formulas to propagate the slew/delay values across the

stage in order to approximate the driver/receiver waveform. The procedure, initially propa-

gates forward the driver waveform across theRC interconnect of the stage up to the receivers

cells. Using that waveform, the receiver input pin capacitance is calculated and a backwards

traversal is performed to recalculate the newCeff values of the driver. Unlike previous works,

this methodology considers the non-linearity of the driver waveform by using PWL ramps to

approximate it, does not make simplistic assumptions like other approaches, and considers

the gate-interconnect interdependence. Experimental results on 2.2 million <driver, intercon-

nect, receiver(s)> stages implemented using the ASU ASAP 7 nm FinFET Predictive PDK

indicate that our method exhibits good correlation with SPICE, achieving 6.71% for Ddrv,

5.98% for Sdrv, 5.40% forDrcv, and 5.78% for Srcv. Moreover, the proposed method is highly

efficient, since it requires only 8.16 s and 0.38 MB of memory to complete the timing esti-

mation for 2.2 million stages. This feature renders the approach very attractive for iterative

timing-driven optimization steps in placement or early stages of routing.
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