UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Timing analysis of VLSI circuits in advanced technology

nodes

Diploma Thesis

Vagenas Anastasios-loulios

Supervisor: George Stamoulis

IovAog 2022






UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Timing analysis of VLSI circuits in advanced technology

nodes

Diploma Thesis

Vagenas Anastasios-loulios

Supervisor: George Stamoulis

IovAog 2022

111






I[TANEIIIZTHMIO OEXXAAIAX
ITOAY TEXNIKH 2XOAH
TMHMA HAEKTPOAOT'QN MHXANIKOQN KAI MHXANIKOQN YITOAOI'TETOQN

AvVAAVG1 YPOVICHOUV KUKAMUATOV TOAD PEYAANS KMUOKOS

OLOKAMPMGTGS GE TPONYUEVES TEYVOLOYIES

Awmiouotikn Epyacia

Bayevag Avaostaocioc-loviog

Emprénov: ['eovpyrog Zrapoving

IovAog 2022






Approved by the Examination Committee:

Supervisor

Member

Member

George Stamoulis
Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

Nestor Evmorfopoulos
Associate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Christos Sotiriou
Associate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

vil






Acknowledgements

To my friends and family.

X






DISCLAIMER ON ACADEMIC ETHICS
AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work / con-
tributions of third parties for which the permission of the authors / beneficiaries is required
and are not a product of partial or complete plagiarism, while the sources used are limited
to the bibliographic references only and meet the rules of scientific citing. The points where
I have used ideas, text, files and / or sources of other authors are clearly mentioned in the
text with the appropriate citation and the relevant complete reference is included in the bib-
liographic references section. I also declare that the results of the work have not been used
to obtain another degree. I fully, individually and personally undertake all legal and admin-
istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism.

The declarant

Vagenas Anastasios-loulios

xi



xii Abstract

Diploma Thesis

Timing analysis of VLSI circuits in advanced technology nodes

Vagenas Anastasios-Ioulios

Abstract

The rapid scaling of process technology and the widespread use of integrated circuits in
our daily lives render the task of gate-level timing analysis highly challenging. The resistivity
of on-chip interconnects, signal non-linearity, crosstalk, and driver-receiver interdependen-
cies introduce challenges in accurate timing estimation. Moreover, timing analysis engines
have to be highly efficient in order to scale for the ever-increasing design sizes and to be
integrated in timing-driven optimization flows for placement/routing. In this thesis, we intro-
duce anovel iterative methodology for gate-level stage timing estimation using current source
models and the concept of multiple slew and effective capacitance values. The iterative ap-
proach utilizes piecewise linear waveforms to approximate the driver waveform, computa-
tionally fast closed-form formulas, and efficient topological traversals of the RC' interconnect
of the stage to propagate the slew and effective capacitance values. Unlike previous works,
our methodology considers the resistive shielding effect, the Miller effect, and takes into ac-
count the driver-receiver interdependencies existing in deep nanometer technology stages.
Experimental evaluation on 2.2 million <driver, interconnect, receiver(s)> gate-level stages
implemented using the ASU ASAP 7 nm FinFET Predictive PDK show that our approach
can achieve up to 5.40% mean relative error against SPICE. Furthermore, it consumes only
0.38 MB of memory while also providing timing estimates in 8.16 s for 2.2 million stages.
Thus, it may be easily integrated into iterative timing-driver optimization flows to provide

signoff accuracy and accelerate timing closure.

Keywords:
Timing analysis, current source models, effective capacitance, resistive shielding, Miller ef-

fect



Lepiinym xiil

Authopoatikny Epyacio
Avaivon YpovicRoy KUKA®MUATOV TOAD PEYAAS KAMUOKOS OAOKAPOOS
0€ TPONYUEVES TEYVOAOYIES

Bayevac Avaotdoroc-Ioviog

Iepiinyn

H ovveyng khipdkwon g teyvoroyiog tov tpaviictop kol n gvpeia ypnon Twv olo-
KApopéveov KukAopdtov otig kadnuepveés pag Cwég, £xouv Kavel EEAPETIKA AmALTTIKO
T0 £pY0 NG OVOAVGONG XPOVIGHOV G eMimedo TOANG. H avtioctaon tov dtacuvdiécewy, 1 un-
YPOUUIKOTNTO TOV CNUATOV, TO GOVOUEVO TOL BopvPov, Kot 1 aAANA0EEAPTNON OTNV AVA-
Ao TLA®V Kot SLGVVOECEMV 00N YEL GE VEEC TPOKANGELG OTNV aKPIPY| EKTIUNOT YPOVIGHOV.
EmuAéov, n avéivon ypoviopol Ba mpénet va gival amodoTikn MOTE Vo KAMUOKOVEL Y10l K-
KAOUATO 0A0EVa Kol avEAVOIEVOL peYEBOLS Kot vo UTopel va evompatmOel e emavaAnmti-
k&G poég PertioTomoinong ota oTddo TG YWPOoBETNONES TLADY KOt dSPOLOAIYNONG SLOGVV-
déoemv. Xg T 11 SWTAMUOTIKY, TOPOVGLALOVUE Lo VEQ ETAVOANTTIKY peBodoloyia Yo
avAALG XPOVIGHOV GTASIMV GE EMITEDO TOANG, YPNOLUOTOUDVTAG LOVTEAD TTNYADV PEVLOTOG
KO TV £VVOol0 TV TOALATA®Y KMGE®MV GTLLOTOG KOt 1000VVOU®VY Yopntikottov. H enava-
INTTIKN S1od1KOGI0 YPNOIULOTTOLEL TUNLOTIKA YPOLLUIKES KUUATOUOPPES Y10l VO TPOCEYYIGEL
TOL U1 YPOUUIKG GLLOTO, VTOAOYIOTIKGE OOO0TIKEG POPLOVAES, KOl YPIYOPES TOTOAOYIKEG
dwmepdoelc Tov RC povtélov yio vo TpomOncet TG TOAATAES KMOELS KOl IGOSVVALEG (O~
PNTIKOTNTEG. X avTIOEDT L TPONYOVUEVEG TPOCEYYIGELS, N HEBoAOYiO pag AapPavel vToOy
TO POVOUEVO TPOGTAGLOG OVTIGTAONG, TO Pavopevo Miller, kot tig aAinioelaptnoelg mo-
AOV-0106VVIECEMV GE TEYVOAOYIES YapMADV vavouétpov. H mepopatiky pog a&toAdynon
o€ 2.2 gkatoppdplo. <odmyos, OlcVLVOEST], OEKTEC™> GTAOLN EMTEOOV TUANG, VAOTOMUEVE GE
teyvoroyia 7 vavouétpov FINFET tov ASU ASAP Predictive PDK, deiyvetl 6Tt 1) vhomoinon
pog umopel kot vor £yl eng kat 5.40% péco opdipa cuykpitikd pe SPICE mpocopoimon.
Emnpocfétmc, katavalover 0.38 MB puviung evad vroroyilel Tovg ypoviopotg o 8.16 dgv-
tepoOLenTa Yia 2.2 ekatoppdpla otddwn. Ev kotakdeidl, n mpotevopevn pebodoroyio pmopet

va emrayOHVeEL EMAVIANTTIKEG POEC PEATIOTONMOINGNG EVOG OAOKANP®OUEVOL KUKAMUOTOS, TToL-



Xiv Hepiinyn

pEYoOvVTOG aKpIPN EKTIHON YPOVIGLOV.

AgEarc-kre0na:
Avaivon ypovicpol, LOVTEAL TNYOV PEOUOTOC, 1IGOOVVAUTN YOPNTIKOTNTA, TPOCTOGIO OVTL-

otaong, eowvouevo Miller



Table of contents

|Acknowledgements ix
xii

xiii

[Table of contents XV
xvii
List of tables Xix
[Abbreviations Xxiii
1 Introduction 1
[[.1 Motivation . . . . . . . o o o e 2
[[.L1.1 Gatetiming . . . . . . . . . o v 2

[1.1.2  Interconnecttiming . . . . . . . . . . . . v v 2

1.2 Contributions . . . . . . o v v 3

[[.3  Thesis organization] . . . . . . . . v v v e 3

2 Background 5
R.1 Design flow . . . . . o o e 5
R.1.1 Frontend . ... .. . . . . . . 5

R.1.2 Backend. . ... ... . . . ..o 6

R.2  Timing analysiS . . . . . o v v v e e 7
P.2.1 Static Timing Analysi§ . . . . . . . . . . . . . 9

R.3  Stage timing estimation . . . . . . . . v vt e e e 11

XV



XVi Table of contents
2.3.1 Problem formulation . . . . . . . ... . ... .. 11

3.2 Gatetiming . . . . . . . . e 13

R2.3.3 Interconnect timing . . . . . . . . . .o e 16

B  Proposed methodologyl 19
B.1 [Iterative algorithm| . . . . . . . . . . . . 19
B.2 TImplementation detaild . . . . . . . . . . . . ... 21
B.2.1 Algorithm setup and modifications . . . . . . . . . . . . ... ... 21

B.2.2  Driver delay and output slew computation . . . . . . . . . ... .. 21

B.2.3 Receiver input pin capacitance computation . . . . . . . . . ... . 22

4 Experimental evaluation 23
A1 Setup . . . . . . e 23

B2 Accuracy evaluation . . . . . . .o e e e 25

4.3 Runtime and memoryresults . . . . . . . . ... 27

5 Conclusion 29
‘; D | Y 31



List of figures

2.1 The ASIC design flow) . . . . . . . . . . . . . . 8
R.2 Timing paths on asimpledesign| . . . . . . . . . . . . . ... ... .... 11
2.3 Combinational network example along with potential timing paths| . . . . . 12
2.4 GBA and PBA methods for STA|. . . . . . . . . . . ... ... ... ... 12
R.5 A timing stage example with multiple receivers and annotated RC values) . 13
2.6 Comparison of the NLDM and CCS timing model| . . ... ... ..... 14
“.1 The testcases used for the experimental evaluation! . . . .. ... ... .. 26

xvii






List of tables

.1 Timing paths examples for Figure 2.2 . . . . . . . . . . . . . . ... ... 11
4.1  ASU ASAP 7nm SPICE MOSFET parameters . . . . . . . . . .. .... 25
4.2  Mean RE/AE against SPICE of the examined approaches across all testcases 25
4.3  Mean RE/AE against SPICE of our methodology for different testcases . . 27
4.4 Runtime and memory of the examined approaches across all testcases . . . 28

XX






List of Algorithms

1 Stage timing estimation using CSM

XX1






Abbreviations

ASIC Application-Specific Integrated Circuit
CAD Computer-Aided Design

CCS Composite Current Source

CSM Current Source Model

DTA Dynamic Timing Analysis

EDA Electronic Design Automation

GBA Graph-Based Analysis

HDL Hardware Description Language

IC Integrated Circuit

LUT Look-Up Table

NLDM Non-Linear Delay Model

PBA Path-Based Analysis

PPA Power, Performance, and Area

RTL Register Transfer Level

SI Signal Integrity

SPICE Simulation Program with Integrated Circuit Emphasis
STA Static Timing Analysis

SSTA Statistical Static Timing Analysis
VLSI Very Large Scale Integration

VRM Voltage Response Model

XXxiil






Chapter 1

Introduction

Over recent years, Integrated Circuits (ICs) have become an integral part of our daily life,
with many applications in low-power devices (e.g., watches, smartphones, sensors), medi-
cal devices, home appliances, and automobiles. The requirements for massive production of
ICs, coupled with the increasing customer needs for performance and accessibility of next-
generation technology, pose a challenge for the Electronic Design Automation (EDA) indus-
try. In addition, the desire for higher performance and lower power consumption in modern
ICs brought rapid scaling of technology to deep nanometer nodes (45 nm and below). Con-
sequently, there is an increase in design complexity and size (transistor count), the resistivity

of parasitic interconnects, and process variation.

Most EDA design flows for an Application-Specific Integrated Circuit (ASIC) include
timing analysis steps as a verification method. The main objective of timing analysis is to
analyze the circuit for timing violations (e.g., setup, hold) and guarantee correct operation at
a target clock frequency. Furthermore, timing analysis is essential in timing-driven optimiza-
tion flows for placement/routing [|1, 2] and the final signoff that determines whether the IC
is ready for manufacturing. Recent studies show that timing analysis can take up to 60% of
the total design time [3]].

Static Timing Analysis (STA) [2] and Dynamic Timing Analysis (DTA) [4] engines are
employed to tackle the problem of timing verification of contemporary ICs. STA tools need to
be orders of magnitude faster than SPICE while being highly accurate (2-3% over SPICE).
For that to happen, industrial STA tools have to scale to accommodate larger designs and
be capable of modeling the complex electrical phenomenona (e.g., interconnect resistivity,

signal non-linearity, crosstalk) during circuit delay calculation. In order for timing analysis to

1



2 Chapter 1. Introduction

be feasible during the ASIC design flow, the existence of an efficient STA tool is necessary.

1.1 Motivation

Circuit delay calculation is performed at the gate-level stage [2], where each stage con-
sists of a driver gate, an RC' interconnect, and multiple receiver gates. Due to the interdepen-
dence between driver and receivers, which is very prevalent in advanced technology nodes,

an iterative approach is mandatory for stage timing estimation.

1.1.1 Gate timing

Gate modeling uses Lookup Table-based (LUT) models, such as the Current Source
Model (CSM) [35, 6] and the less accurate Voltage Response Model (VRM), to effectively
estimate the gate output delay and slew. However, these models are pre-characterized into
standard cell libraries using lumped capacitive loads, posing a significant challenge for highly
resistive interconnects in advanced technology nodes. Traditional techniques approximate
the driving point admittance of an interconnect using a single effective capacitance (Ceg) [[7],
which fails in capturing the non-linear characteristics of the driver waveform. Moreover,
most works ignore the Miller effect introduced by the receivers to the interconnect [[7, 8, 9].
Instead, C's values computed in multiple voltage regions are required to capture these effects

using CSMs [[10] [I1].

1.1.2 Interconnect timing

Interconnect timing has become crucial, as interconnect delay takes up a large portion
of the total stage delay [12]. SPICE simulation of RC' interconnects is devoid of expensive
transistor parameter evaluation but requires substantial resources (i.e., runtime, memory) and
is prohibitive for optimization-based flows [13, 14]. On the other hand, fast moment-based
timing metrics [|15, 16, 17, 18, [19] are computationally more efficient and easily scale on
large designs but might be highly inaccurate as they rely on simplistic assumptions. Even
higher-order moment-based metrics, such as AWE and RICE [[12, 20], suffer from numerical
instability and do not capture the effects in modern RC' interconnects. More specifically,
moment-based methods/metrics do not take into account the resistive shielding effect present

in highly resistive interconnects, assume step inputs (instead of non-linear waveforms), and



1.2 Contributions 3

might not be applicable for some interconnect topologies (7-models). In contrast, another
approach in [21] used closed-form formulas and C.g to account for resistive shielding but

ignored the signal non-linearity and the Miller effect.

1.2 Contributions

This work focuses on the timing analysis of gate-level stages, using the concept of Cigr

and CSMs, with the main contributions being:

» A fast iterative algorithm for stage timing calculation that approximates the Piece-
Wise Linear (PWL) voltage waveforms using multiple Cr values while considering
the Miller effect. Compared to previous works, it considers the driver-interconnect in-
terdependencies and does not require expensive computation of moments or a reduction

to a m-model.

* Experimental evaluation on representative stages implemented on 7 nm FinFet tech-
nology, where timing and C. calculation is challenging. The iterative algorithm is
compared against methods based on established techniques (i.e., 7-model reduction,
moments computation). Results show that our methodology achieves up to 5.40% mean

Relative Error (RE) against SPICE while requiring extremely low amount of memory

(0.6 MB).

Part of this work was published in [22], which also won the first place in the ACM TAU 2021

student contest in timing analysis.

1.3 Thesis organization

The rest of the thesis is organized as follows:

* Chapter 2 (Background): The basics of the ASIC design flow, timing analysis, STA,

and the problems that arise during stage timing estimation.

« Chapter [ (Proposed methodology): The proposed iterative algorithm for stage tim-

ing estimation, including explanation of each step and the implementation details.



Chapter 1. Introduction

« Chapter { (Experimental evaluation): The evaluation of the proposed iterative al-
gorithm against established methods in terms of accuracy, runtime, and memory con-

sumption.

« Chapter § (Conclusions): Conclusions of this work, potential enhancements and fu-

ture directions.



Chapter 2

Background

In this section, we present the theoretical background needed for gate-level stage timing
estimation. Firstly, we describe the top-level steps of the ASIC design flow and the significant
role timing analysis plays during each step. Secondly, we delve into the details of STA, how
timing paths are formed, examples of timing constraints, and the different methods of STA
used. Finally, we describe the problem of stage timing analysis with the difficulties arising in

gate and interconnect timing.

2.1 Design flow

Modern VLSI circuits contain billions of transistors and require significant amount of
resources and time for manufacturing. Furthermore, the customer needs for lower power,
reduced chip area, and higher clock frequencies have exponentially increased the complexity
and the number of verification methods required during the design of an ASIC. These needs
have led to the multi-step flow performed for the complete manufacturing of an ASIC, which

can be broadly split into the frontend and backend parts of the flow.

2.1.1 Frontend

The frontend part of the design flow, as shown in Figure .1, is responsible for the trans-
formation of the ASIC design specification into an equivalent Register Transfer-Level (RTL)

circuit description.



6 Chapter 2. Background

Design Specification

Initially, the customer (or the market trend) describes the problem and the product specifi-
cations (e.g., Power, Performance, and Area [PPA]). Then, the designer formulates a solution
in the form of a top-level description, including the protocols, the package die, and the power
supply voltage used.

Architecture

After the design specification, the designer creates the architecture that characterizes the

ASIC. The architectural choices for the ASIC can be some of the following:

* Arithmetic units (i.e., adder) architecture
* Chip and functional module hierarchy
* Module connections and relationships

* Design time and resource allocation for each module

Logic Design and Verification

The last step of the frontend involves describing the data flow of each functional module
in a Hardware Description Language (HDL) like Verilog, VHDL, or System Verilog. Before
moving to the backend part of the flow, the behavioral circuit is simulated logically to check

for correct operation.

2.1.2 Backend

The backend part of the design flow, as shown in Figure .1], is responsible for the trans-

formation of the RTL circuit description into the final physical chip.

Synthesis

Synthesis transforms the RTL circuit description into a standard cell gate-level represen-
tation using a technology library (.lib file) based on the design constraints (e.g., timing). This
representation, also called netlist, is simulated for logical equivalency with the behavioral

circuit and initial PPA estimation.



2.2 Timing analysis 7

Floorplanning

After synthesis, a rough estimate of the total area required for the circuit is possible.
Combining this estimate along with the package die restrictions, the designer creates the
floorplan where the cells will be placed. This phase usually includes power planning, meaning

the creation of the power/ground network.

Placement

Following the floorplanning step, the standard cells are placed inside legal positions of the
floorplan while keeping the connections (wires) lengths minimal. Even though connections
between cells do not exist at this step, the distances are approximated using the total wire

length and routing congestion.

Routing

The final physical step of the backend is the wire routing. The pins of the cells are con-
nected using multiple metal layers (up to 15), with each metal situated at a specific track
(height). Furthermore, the router aims to minimize the length (along with timing) and reduce

the congestion of the metals in the floorplan.

Signoff

After the physical design of the ASIC, the final signoft-level verification follows. The
routed design goes through verification checks for timing (e.g., setup, hold), Design Rule
Violations (DRV), electromigration phenomena, and more. Once the design passes all of the

final verification checks, it is ready for manufacturing.

2.2 Timing analysis

Timing analysis is one of the numerous and most commonly used verification methods in
the design flow of an ASIC. The primary goal of timing analysis is the timing and functional
verification of the design. Timing verification examines the circuit for timing violations to
guarantee stable operation at a target clock frequency, which is usually the major constraint
in a design. Functional verification incorporates the inspection of the logical operation of the

design, which is carried out by sensitizing the circuit’s input(s) with several input vectors.



8 Chapter 2. Background

Frontend

Design . : : S

Backend

F 3

Figure 2.1: The ASIC design flow.

On the one hand, timing analysis needs to be highly accurate in order to achieve timing
closure of the design and reduce unnecessary loops in the design flow (e.g., from routing
back to synthesis). The complex electrical phenomena during delay calculation, such as in-
terconnect resistivity, signal non-linearity, and crosstalk, heavily disturb the task of an EDA
timing tool since they greatly affect its accuracy. On the other hand, timing analysis needs to
be efficient (in terms of memory/runtime) since iterative optimization flows, which operate
during each step of the design flow, utilize it to ensure that changes do not impact the timing
or functionality of the design. This, coupled with the sheer complexity of VLSI circuits of

billions of transistors (or millions of gates), further complicates the task of timing analysis.

It is apparent that timing analysis needs to be quick, accurate, and scale for the the ever
increasing circuit sizes. A single timing analysis methodology is insufficient to cover all
the timing and functional verification needs of the design, hence multiple types exist and
are employed during the flow. The main variants of timing analysis methodologies used are
1) Static Timing Analysis (STA), which verifies the timing integrity of the design using a
fast wost-case vectorless approach, and ii) Dynamic Timing Analysis (DTA) that also covers
the functional verification aspect with a slower input-vector dependent approach. Finally,
during the signoff step of the flow, more complex and computationally expensive timing
methodologies that are extensions of the above can be employed, such as Statistical STA

(SSTA) [23], IR-drop aware timing analysis, and Signal Integrity (SI) aware timing analysis.



2.2.1 Static Timing Analysis 9

2.2.1 Static Timing Analysis

STA is the cornerstone of timing analysis and the core of any EDA tool since it is the
most commonly used analysis throughout the entire design flow of an ASIC. The analysis is
static” since no input vectors are required to excite the circuit input pins. Moreover, it can
produce pessimistic (worst delay/slew) and optimistic (best delay/slew) results for the target
circuit, providing an upper and lower bound for the design timing.

A circuit typically contains sequential (typically Flip-Flops [FF]) and combinational el-
ements connected together (e.g., NOR, AND, XOR gates), which form timing paths i STA

is performed on these paths, which are made up of the following: [24]:

 Startpoint: The path starting point, where data is propagated by a clock edge or is
constrained by a specific timing. Startpoints can be either input ports or register clock

pins.

* Combinational logic network: Combinational logic, meaning elements that do not

have any state or memory.

* Endpoint: The path ending point, where data is captured by a clock edge or is con-
strained by a specific timing. Endpoints can be either register data input pins or output

ports.

Figure 2.2 and Table 2.1| show a design example and the possible timing paths that might
exist in a design. Each “logic bubble” represents a combinational network with each path
starting from a data launch point and ending at a data capture point. The typical STA flow
breaks down the design into timing paths to check for the specified timing constraints, with

the most common being:

 Setup specifies the time needed for the data to be available at the input pin of a sequen-
tial cell before the capturing clock edge. During setup analysis the longest path has to

meet the setup time constraint.

» Hold specifies the time needed for the data to be stable at the input pin of a sequential
cell after the capturing clock edge. During hold analysis the shortest path has to meet

the hold time constraint.

IFor brevity, only data timing paths are considered.



10 Chapter 2. Background

A single combinational network can potentially contain multiple paths, as illustrated in
Figure 2.3, and each one can be further broken down into <driver-connection(s)-receiver(s)>
timing stages. Each stage is a self-contained entity where delay/slew calculation occurs, there-
fore the STA unit cell for timing analysis is the stage. It is important to note that a stage’s
connection (e.g., net) delay is initially calculated using LUTs or empirical wire-delay models.
However, after the placement/routing step of the design flow, the net connection becomes an
RC parasitic interconnect (Figure 2.3).

The main task of an STA tool is to find the propagation delay/slew at the endpoints of the
timing paths and perform the setup/hold violation checks. Initially, the slew constraints are
set at the startpoint of each timing path and they are propagated across the stages that form
the combinational network up to the corresponding endpoint. At each successive stage, the
delay is accumulated in order to find the total propagation delay and the input slew at the
endpoint, which are both used to perform the setup/hold violation checks. For that reason,
the majority of runtime during STA delay calculation is spent in stage timing estimation,
which also heavily depends on the complexity and size of the RC' interconnect itself. Finally,
depending on the analysis mode of the STA tool (Path-Based Analysis [PBA] or Graph-Based
Analysis [GBA]) the way the slew/delay values are propagated changes appropriately.

Graph-Based Analysis

GBA is the STA-mode that is mostly used during the design flow. In this mode, only the
worst (or best) input slew is propagated from the input pin of each gate to the output, in order
to produce the gate delay/slew (Figure 2.4). This approach is computationally efficient since
it runs in polynomial time (i.e., proportional to the number of gates on the design), but adds

unnecessary pessimism to the design’s timing.

Path-Based Analysis

PBA is the second, more accurate, STA mode used during the design flow. In this mode,
the actual slew is used on an input pin of the gate, with the real slew/delay value being prop-
agated across the stages of each timing path (Figure 2.4). This mode of analysis is the most
accurate gate-level analysis, but requires potentially exponential time (i.e., proportional to

the number of paths on the design).



2.3 Stage timing estimation 11

e

~ - -

Figure 2.2: Timing paths on a simple design.

Path Startpoint Endpoint

Path 1 Input port Data pin of FF

Path 2 | Clock pin of FF | Data pin of FF

Path 3 | Clock pin of FF | Output port

Path 4 Input port Output port

Table 2.1: Timing paths examples for Figure
2.3 Stage timing estimation

2.3.1 Problem formulation

Consider the stage of Figure 2.3, where the driver gate output (i.e., the source node 0) is
connected to the input of the receiver gates via a distributed interconnect. Each node ¢ of the
parasitic RC' tree has a capacitance to ground C; and is connected with a resistance 1?;_,; to
each fanout node 5. We denote the slew at node ¢ by S;, its total downstream capacitance (i.e.,
the sum of all the capacitances of the subtree starting at node 7) by C,, and the corresponding
effective capacitance by Ces,. More specifically, the resistance value (R;_,5) from node 1 to
fanout node 5 is 5 £(2, the capacitance value (Cg) of node 6 is 1 fF, and the downstream
capacitance value (Ciy,) of node 2 is 2 fF. A special case can be made for the downstream
capacitance of node 0, since it is the entire RC' tree’s capacitance sum and is denoted as the

total capacitance (Ciy) of the stage.



12 Chapter 2. Background

......
.,

......

Pre-routing Load }

T T P A
- o )

Short path ’

l— l— | Fastslew

\ " Slow slew
A

Figure 2.4: GBA and PBA methods for STA.

Problem: The main objective of this work is to accurately estimate the driver delay
(Dgry ), the driver output slew (S ), the interconnect delay to the target receiver (D, ), and the
target receiver input slew (S, ), given the driver input slew (S ) and the output capacitance

values (C2%) at the receivers [typically set to Ciy of the respective fanout stage].

Typical solving approach: First, the interconnect input admittance is approximated by



2.3.2 Gate timing 13

5kQ 5kQ 5kQ

10 kQ

! 2.2fF

A —Z— AMA—ZAMA

5kQ 5kQ 5kQ ...

11F 1F
!5.3 fF

Figure 2.5: A timing stage example with multiple receivers and annotated RC' values.

Cefr and the driver output voltage waveform is computed in order to estimate driver delay and
output slew. Then, this waveform (or the estimated slew value(s)) is used for interconnect
delay estimation as well as for estimation of the receiver input voltage waveform (or slew

value(s)). The receiver input slew can then used as input in the analysis of the next stage.

2.3.2 Gate timing
Library compatible CSMs - VRMs

Gate modelling uses LUT-based models, which are precharacterized into 1D/2D tables
of technology libraries to be used for stage delay/slew estimation, such as the CSM and the
VRM model. Our methodology primarily focuses on the Composite Current Source (CCS)
model [5] for CSMs and Non-Linear Delay Model (NLDM) on the side of VRMs. Below we
provide a demonstration of the NLDM and CCS driver/receiver models.

NLDM driver model captures the output slew/delay as a function of driver input slew
(Sin ) and output load (C$™). A single value is used for the slew/delay estimation, hence, non-
linearities of the driver waveform cannot be effectively modeled. As shown in Figure 2.6,
this information is stored in cell rise/fall and rise/fall transition LUTs,
for gate delay and slew, respectively.

NLDM receiver model uses a single input pin capacitance (C}) value to model the non-

linear receiver transistor input capacitance. As depicted in Figure 2.6, the NLDM receiver



14 Chapter 2. Background

capacitance value is stored in rise/fall capacitance fields of each standard cell.
Unfortunately, this way of modeling the receiver capacitance does not capture the Miller
effect or the dependency of C, to the input slew (S.,) and the output load (CZy) of the
receiver cell.

CCS driver model captures the output current as a function of driver input slew (SI)
and output load (CJv). As shown in Figure R.6, this information is stored in output curr-
ent rise/fall LUTs. The time instant when the corresponding driver input voltage
crosses the delay threshold (usually 0.5Vy4), which is necessary to calculate gate delay, is
also stored as reference time in these LUTs.

CCS receiver model typically uses two different input C, values, C'1 and C'2, to model
the non-linear receiver transistor input capacitance and the Miller effect. This is very impor-
tant since the load seen by the driver depends both on the interconnect RC network and the
input pin capacitance of the multiple receiver gates. As depicted in Figure .6, CCS receiver
capacitance values are stored in receiver capacitance 1/2 rise/fall LUTs,

and are also dependent on the S, and C'®" of the receiver cell.

cv

Sdn:_//_- r\\\»San/__ 'Y X Sfij/_- [:::>

out
! CO ! Cn ! Cp ! Cmv

CCS DRIVER MODEL CCS RECEIVER MODEL
output current rise receiver capacitancel rise receiver capacitance2 rise
itt, V)§ > Car > Clov \ o
L 1A\ #]01]0.2 102 |04
AAN 04|05 b I 0.8 | 1.2
NLDM DRIVER MODEL NLDM RECEIVER MODEL
cell rise rise transition
o Pl rise capacitance
$[o1]o2]| [%]01]02
04|05 04|05

Figure 2.6: Comparison of the NLDM and CCS timing model.



2.3.2 Gate timing 15

Modeling the RC interconnect load with C

In advanced technology nodes, on-chip RC' interconnect loads become increasingly re-
sistive, which complicates their modeling with a single capacitance value for gate timing
estimation with CSMs. The simplest approximation of the driving point admittance of an
RC interconnect is Clo,. However, this results in pessimistic gate timing estimation, as it
totally ignores the resistive shielding effect, where interconnect resistance shields a part of

Ototal .

To address this limitation, the concept of C. is introduced in [[7], which is an equivalent
capacitance such that gate timing is the same when using (i) the driving point admittance
and (ii) the estimated C as a load. The traditional approach for Cg estimation includes
two steps [[7]. First, the distributed interconnect is approximated by a m-model, proposed by
O’Brien and Savarino [25]. Then, C. is computed by equating the charge absorbed by the -
model and the charge absorbed by C.¢, up to the delay threshold (i.e., the time instant when
driver output voltage crosses 0.5Vyq). However, a single C.g value focuses only on delay
estimation and is inadequate to approximate slew, as it assumes that driver output voltage
waveform is a linear ramp. Moreover, it does not consider the Miller effect, neglecting the

impact of receiver input capacitance (C},) on Cey, delay, and slew estimation.

In order to accurately approximate the non-linear driver waveform, C.s must be com-
puted in multiple voltage regions. Recently, authors in [[10] presented a CSM-based method to
compute driver output Csr and slew in multiple regions, considering the Miller effect, for a 7-
model load approximation. The main drawback of [[10] is that the reduction of the distributed
interconnect to a m-model induces significant error in advanced technologies while introduc-

ing memory overhead, as we demonstrate in Section [

Another interesting Cls estimation technique [21] handles the distributed interconnect as
connected m-models and iteratively refines Cls (along with delay and slew) on each RC-tree
node by repeated forward-backward traversals. However, it does not exploit CSMs and still
approximates signal waveforms by linear ramps, assuming a single C.¢ on each node while

ignoring the Miller effect.

To support our methodology, we extended [|10, 21]] to compute multiple C values, avoid-

ing a m-model reduction. In our modeling, for each node 7 of the RC-tree (see Figure 2.6),



16 Chapter 2. Background

Cef, for each region (aVyy — SVyq), where «, 8 € [0.0,1.0] and o < S, is calculated by:

Cor’=Ci+ Y K 7xC, (2.1)

each fanout j

(B—a) ge—h

7

_ a _ B8 a—F
_ X(.!_ﬂ a—p a—p _ Ri%ij
whereK;‘ CR (e X —e X )andea B T

In the above formula, S;" 7 is the slew of node i while Cgff; f is the Cegr of the fanout node j,
corresponding to region (a/Vgg—3Vyq). As can be seen, Cf}f_ # accounts for a different shielding
factor (Kf*’g ) for each fanout node j, which shields Ctot]. and depends on R;_,;, Cg}g A , and
S o properly account for the resistive shielding. Note that only for receiver input pins, C;
also incorporates the receiver input capacitance (including the Miller component) computed
in the corresponding region (Cg‘ﬁ ).

The main advantage of using multiple C. regions for each RC-tree node is that the non-
linear driver output waveform can be accurately approximated by a PWL ramp, exploiting
library compatible CSMs to compute the slew of each region using the corresponding Ceg
value. As a result, our approach achieves superior accuracy compared to [21,, [10], especially

for driver output slew, while it is also essential for accurate interconnect analysis.

2.3.3 Interconnect timing

The most accurate interconnect timing estimation is obtained by transient analysis using
SPICE. Although SPICE provides golden results and is devoid of expensive transistor pa-
rameter evaluation, it fails to meet the performance and memory requirements for full-chip
analysis. This is due to the fact that it involves detailed computations with runtime propor-
tional to the number of time steps and the RC' network complexity. On the contrary, several
lighter analytical models, based on the first few moments of the impulse response, have been
proposed for fast timing analysis of interconnects [|15, 16, 17, |18, [19]. However, these models
assume step inputs while ignoring the resistive shielding and the interdependence between
slew and C.. For each node ¢ of the RC-tree, the j-th (m§i)) moment can be recursively

calculated by:
m§-i) = Z RkiCkmj(ﬁ), where m = 1, (2.2)

each node k

where Ry; is the common resistance of paths 0 — ¢ and 0 — k£, C';, the node capacitance, and

for each node ¢ the initial condition mj) is set to 1.



2.3.3 Interconnect timing 17

In contrast to conventional delay and slew models []15, [16, 17, [18, 19], the iterative
refinement-based method proposed in [21] exploits the C.g concept for accurate gate-level
interconnect timing estimation. More specifically, interconnect delay is computed by an ex-
tended version of Elmore delay, which uses Ceg; instead of Ci, on each interconnect node
i. For the RC-tree of Figure P.6, the delay from driver output (node 0) to each node i is
computed by:

Dy = Z Rkinfg°'5, (2.3)

each node k&

where Ry; is the common resistance of paths 0 — ¢ and 0 — k. On the other hand, in [21], a
single slew value is computed on each node, using Cg’f;0~5 and ignoring the Miller capacitance,
which is insufficient to accurately approximate the non-linear signal waveform.

To enable accurate stage timing analysis, we generalized the slew metric of [21] to any
voltage region, considering the respective C. [computed by Eq. (2.1))]. In our method, for

each node 7, the slew of region (a/Vgy — SVyq) is propagated to each fanout node j as follows:

a—@
sohf — Si . (2.4

] ——a 3
1—X;*‘5(1—e X; )







Chapter 3

Proposed methodology

In this section, we present our iterative stage timing estimation algorithm that considers

the strong interdependencies of Eq. (.1], 2.3, R.4), along with its implementation details.

3.1 Iterative algorithm

The details of our initial iterative algorithm for post-PnR stage timing estimation are
described in Algorithm . First, the Ce, of each node ¢ is initialized to the downstream ca-
pacitance, for each voltage region, using the NLDM capacitance for receivers (step ). In
the first step of the main iterative loop, Dy, and Sy, are estimated by computing the driver
output PWL voltage ramp using CSMs and multiple C.;, values (step [I]). In step P, during
a forward Breadth-First Search (BFS) traversal of the RC-tree, the modified Elmore delay
(Dy_s;) from driver output to node i is computed using Eq. (2.3), while the multiple slew
values (S;) of node 7 are propagated to each fanout node j using Eq. (2.4). When the multiple
slew values of the PWL voltage ramps have been propagated to the target and side receivers,
their Cesr values for all regions are updated using the CSM receiver model, which considers
the Miller effect (step [§). Finally, in step H, the RC-tree is traversed backward using BFS to
update C., per region based on Eq. (2.1)). This iterative refinement of C, delay, and slew
values is performed until the multiple driver output Cyg, values converge within a specified
tolerance (e.g., 0.01 fF).

The overall time complexity of Algorithm [l is O(k|V|| E|), where k is the number of
iterations needed for convergence, |V| is the number of voltage regions used, and | F| is the

number of edges on the RC' interconnect tree. The computation of the CSM PWL voltage

19



20 Chapter 3. Proposed methodology

ramp can be considered a constant-time operation, as they may differ across CSM variants
and do not depend on |E| or |V|. In contrast, the most prominent costs during the operation
of Algorithm [l| are the two BFS traversals across the edges of the RC' tree and the multiple
(|V']) Si/Ces, values that are propagated across each edge (i.e., m-model). Finally, the iterative
procedure (steps [Il-4)) is performed for a number of iterations, typically 5 iterations, which

sets the overall complexity to O(k|V||E|).

Algorithm 1: Stage timing estimation using CSM

Function stage CSM timing (stage, multiple (aVyy — $Vyq) regions) :
0. Initialization:

+ Setall Cgff: 5 values for each RC-tree node i to Chot;

(using NLDM capacitance for receivers)

while driver output C’;/,; P values not_converged do

1. Compute driver CSM PWL voltage ramp using Cgff_o f values

2. Forward Traversal (driver-to-receivers):
« Compute Elmore delay (Dg_,;) to node i using Eq. (2.3)
* Compute S;‘_B values for each fanout node j using Eq. (2.4)

3. Update Ce?%f_l # values on receivers using CSM receiver model

4. Backward Traversal (receivers-to-driver):

* Compute C’:ffj 5 values of node i using Eq. (2.1))

end
End Function

It is worth noting that several other moment-based metrics have been evaluated for delay
(e.g., D2M [117], WED [[16]) and slew (e.g., SS2M [[17], LnS [[19]) propagation, along with
PERI [26] to extend metrics to saturated ramp inputs. However, our metrics employed in
step @ of our proposed Algorithm [l| lead to better accuracy results, while they do not require

expensive computation of moments.



3.2 Implementation details 21

3.2 Implementation details

3.2.1 Algorithm setup and modifications
Voltage regions

Algorithm [If can be configured in arbitrary voltage regions but the most common con-
figuration would be using 3 regions with 4 thresholds V' = {0, Viow, Vielay, Vhign }, Which
match the gates’ library predefined thresholds. Depending on the complexity of the RC' in-
terconnect and the accuracy needed, the algorithm can be enhanced by increasing the voltage
thresholds in between those. Nevertheless, for the rest of the thesis we use a configuration
of V={0,0.1Vyq, 0.5V4q4, 0.9V44}, that matches the technology library’s thresholds used in the

experimental evaluation of the methodology in Section J.

NLDM integration

The CCS model is the default model used in the configuration of Algorithm [I], as shown
during the algorithmic steps. However, simple modifications can be made to the voltage re-
gions used and steps ([Il, B, B)), in order to support only the NLDM driver/receiver model
instead of CCS.

Firstly, Algorithm || should be configured with a single voltage region using 2 thresholds
V' = {Viow, Vhign }, since NLDM will not benefit from more regions. Secondly, the driver
delay Dy, and output slew Sy, are calculated by accessing the NLDM cell rise/fall
and rise/fall transition LUTs (step [l}), respectively. Then, Eq. (2.3) used in step
is modified and uses C'%""¢" instead of C%3. Finally, in step [ the updating of the C'%" ™"

receiver value is done using the NLDM receiver model.

3.2.2 Driver delay and output slew computation

To calculate driver delay Dy, and output slew Sy in step |l| of Algorithm , we first
access the CCS output current rise/fall LUTs to find the four closest output
current waveforms for the current (Si,, Cor'), (S, Ca™),(Sk,, Cop—™") breakpoints.
Then, we transform them into CSM PWL voltage waveforms by integrating using the Trape-
zoidal rule, and compute the time instants when the actual voltage waveform crosses 0V,

0.1Vaqg, 0.5V44, and 0.9V, using interpolation. To compute output slew in three regions



22 Chapter 3. Proposed methodology

(S0, 81070, 520799 we use the corresponding time instants, while Sy is calculated
by Sy = S10790 1 820790 " Ag for Dy, estimati the ref ti -
Y Sany = S30 20-90 " As for Dy, estimation, we use the reference time cor

responding to an input voltage waveform having slew equal to SI , which is computed by

interpolating on the reference times of the closest CCS output current waveforms.

3.2.3 Receiver input pin capacitance computation

To compute receiver Cyg values in step § of Algorithm [, we use the input slew per region

(59,10, 51050 /55090 and fixed receiver load C°%, to access the CCS receiver capaci-

rcv rcv Icv ICcv

tance 1/2 rise/fall LUTsand compute the corresponding input capacitance Cj, (i.e.,

C1or C2).



Chapter 4

Experimental evaluation

In this section, we present the experimental results of our proposed methodology against

established approaches in the literature using different configurations of Algorithm [l

4.1 Setup

For the evaluation of the proposed approach, we integrated Algorithm [l| into the C++
framework of the ACM TAU 2021 contest [27], which generates representative <driver, in-
terconnect, receiver(s)> stages of VLSI circuits. Each stage contains one or more receivers,
with each stage having a designated “target” receiver of which we attempt to estimate the
timing of (i.e., D,cy, Siey) and “’side” receivers which are the remaining ones in the stage. The
framework is capable of generating different topologies of stages and assessing the accuracy
of each methodology employed against the Xyce electrical simulator [28]. The types of stages

generated, as illustrated in Figure [4.1], are the following:

* standard: The general case meant to test typical signal propagation across stages. It

is an intermediary type as it is a combination of all the other following testcases.

* stress_0: The simplest case of stage, a single receiver-driver pair connected with a

single-layer wire. Tests short signal propagation effects.

* stress_1: A single receiver-driver pair connected with a long two-layer wire that

transitions multiple times between the layers. Tests long signal propagation effects.

* stress_2: A multi-receiver case of a stage, where the side receivers are located very

close to the driver of the wire. The target receiver rests at the end of the longest branch.

23



24 Chapter 4. Experimental evaluation

Tests strong side load effects followed by long signal propagation.

* stress_3: A multi-receiver case of a stage, where the side receivers are situated
very close to the target receiver (end of the wire). A long wire routed on the highest
layer connects all together. Tests long signal propagation followed by strong side load

effects.

In order to evaluate our approach, we compare it against established methodologies,

which are modifications of Algorithm [l, namely:

« Moments: During the forward traversal of the RC tree in step [, we utilize moment-
based metrics, Elmore for delay and SS2M [|17] for slew computation. Furthermore,
we use PERI [26] to extend the metrics from step to ramp inputs. Finally, Algorithm I
is configured with two voltage thresholds V={0.1Vq, 0.9V}

« O’Brien: During the backwards traversal of the RC tree in step f, we approximate the
input admittance of the interconnect by a m-model per region [25] and then compute

Cegr using [[10].

Xyce was configured using a maximum timestep of 0.1 ps for the duration of the sim-
ulation, a direct method of solving, and other options that guarantee the highest possible
accuracy. For our experiments we generated a million standard stages and 300k of each

stress xx case, totalling 2.2 million stages of VLSI circuits.

The driver/receiver gates where chosen from the ASU ASAP 7 nm FinFET Predictive
PDK [29], with only the inverter/buffer gates being used. Table summarizes some of the
SPICE parameters of the technology library used in the evaluation. Moreover, the library’s
voltage thresholds V' = {0, Viow, Vielay, Vhign } are set to V={0, 0.1V44, 0.5V4q, 0.9V44}, hence
the Algorithm configuration described in Section 3.2.1]. The stages were generated so that the
driver output Clg, the driver input slew, and the receiver output capacitance cover the entire

range of the library’s precharacterized LUTs and even beyond that.

Finally, we ran all experiments on a Linux workstation with a 3.80 GHz 12-thread AMD®

Ryzen 3600X CPU and 16 GB of memory.



4.2 Accuracy evaluation 25

SPICE Parameter Value

Structure Selector (GEOMOD) || 1 (triple-gate)

Channel Length (L) 21 nm
Fin Height (H ;) 32nm
Fin Thickness (7'fi,) 6.5 nm
Threshold Voltage (Vi n, Vinp) | 0.25V, =0.2V
Oxide Permittivity (€,,) 34.53 pF/m
Physical Oxide Thickness (75,)) 21 nm

Table 4.1: ASU ASAP 7nm SPICE MOSFET parameters

4.2 Accuracy evaluation

In the first part of the accuracy evaluation, we compare the aforementioned methods
against our proposed approach. We measured the mean Relative Error (RE) and the mean
Absolute Error (AE) against SPICE for each timing metric (i.e., Dyry, Sdrys Drcys Srey), CT0SS
all testcases cumulatively and for each testcase individually. As shown in Table 4.2, the estab-
lished approaches fail to achieve signoft-level accuracy, with the O’ Brien and Moments
approaches inducing significant error due to the m-model and moments’ approximation, re-
spectively. More specifically, these approaches fail in capturing the non-linear effects of the
driver waveform, with large errors in the driver’s timing estimates (e.g., 22.15% and 26.17%
for Dy ). In contrast, our methodology is superior across all metrics compared to the other
approaches, with the best RE in Dy, (5.98% over 11.10%/11.89%) and the worst in D,
(5.40% over 8.31%/8.91%). This trend is also apparent in the mean AE of all the approaches,

where our method achieves extremely low AE (e.g., 5 ps for Dy,,) against SPICE.

Mean RE against SPICE Mean AE against SPICE
Dary Sarv Dy Srev Dary Sarv | Drev | Srev
O’Brien | 22.15% | 11.10% | 8.31% | 8.57% | 163 ps | 20.6 ps | 83 ps | 19.1 ps
Moments | 26.17% | 11.89% | 8.91% | 13.18% | 19.1 ps | 21.3ps | 8.9 ps | 26.5 ps
Ours 6.71% | 5.98% | 5.40% | 5.78% | 5.0 ps | 11.5ps | 5.3 ps | 12.6 ps

Method

Table 4.2: Mean RE/AE against SPICE of the examined approaches across all testcases

In the second part of the accuracy evaluation, we examine the results of our approach



26 Chapter 4. Experimental evaluation

Multiple secondary receivers
randomly connected

£ -

)

Main receiver on longest

' ' segment

(a[1) standard stage topology

Short wire routed on a s

| single layer | ingle short end receiver

(BLJ) stress_0 stage topology

Single far end receiver
Long wire with multiple up-down
layer transitions

(yL)) stress_1 stage topology

Multiple secondary
receivers close to near end

Main receiver on longest

I I branch

(01)) stress_2 stage topology

Long trunk on higher layer
with multiple receivers
grouped at the far end

> N

(el)) stress_3 stage topology

Main receiver

Figure 4.1: The testcases used for the experimental evaluation.

on a per-testcase basis, as shown in Table §.3. Initially, our proposed methodology performs

well, with similar RE on most metrics for the standard, stress 0, and stress 3



4.3 Runtime and memory results 27

testcases. Out of these testcases, the best performance of our approach is in D, (4.8%) for
stress 3 whilethe worstisin Dy, (7.44%) for st ress 0. In contrast, as the testcases get
increasingly more complex (stress 1 and stress_2), our method performs far worse,
especially in Dy, for both the testcases, and Sy, for stress_ 1 specifically. In the case of
stress 1, the slew values are propagated across a long chain of m-models (up to 25) and
they degrade rapidly as each consecutive approximation in each w-model adds a slight error
to Siv. The loss of accuracy in Dy, which is also apparent for the rest of the testcases, is
due to the fact that the non-linear effects of the driver waveform are not captured effectively.
While the waveform total time is approximated well (i.e., Sq4v), the timepoints required for

the estimation of delay are not calculated as precisely.

Mean RE against SPICE Mean AE against SPICE
Darv Sarv | Drev Stev | Darv | Sarv | Drev | Srev
standard | 5.36% | 6.10% | 5.30% | 497% | S.1ps | 143 ps | 52ps | 11.8 ps
stress_0 | 7.44% | 6.27% | 6.11% | 4.66% | 5.6ps | 10.6 ps | 6.1 ps | 7.6 ps
stress_1 | 10.07% | 6.73% | 6.54% | 12.53% | 40ps | 6.0ps | 6.5ps | 32.5ps
stress_2 | 8.76% | 5.46% | 5.03% | 491% | 6.3 ps | 10.5ps | 5.0ps | 9.4 ps
stress 3 | 531% | 5.42% | 480% | 591% | 25ps | 6.0ps | 4.7ps | 8.3 ps

Testcase

Table 4.3: Mean RE/AE against SPICE of our methodology for different testcases

4.3 Runtime and memory results

The runtime and memory of the examined approaches are shown in Table #.4. As can be
seen, our approach has the largest runtime out of all the approaches. This increase in run-
time is due to the non-linear operations required for the computation of C.gr, compared to the
linear operations (only additions/multiplications) of the O’ Brien and the Moments meth-
ods, during the forwards/backwards traversals in Algorithm [I|. Also, the Moments method
requires the moments of each node in the RC-tree to be computed only once, taking approxi-
mately 33% less time than the O’ Brien method. Nevertheless, these simpler approaches do
not capture the complexity of the interconnect or the non-linear effects of the driver/receivers
as effectively as our methodology On the other hand, our approach is the most efficient in

terms of memory (0.38 MB), since it does not require any saving of moments or admittance



28

Chapter 4. Experimental evaluation

parameters but instead calculates everything on-the-fly during the traversals of the RC'-tree.

Method | Memory (MB) | Runtime (s)
O’Brien 2.08 2.80
Moments 0.67 4.19
Ours 0.38 8.16

Table 4.4: Runtime and memory of the examined approaches across all testcases



Chapter 5

Conclusion

In this work, we presented a novel iterative approach for gate-level stage timing estima-
tion using CSMs and the concept of multiple slew and Ce values. This iterative procedure
uses PWL waveforms and closed-form formulas to propagate the slew/delay values across the
stage in order to approximate the driver/receiver waveform. The procedure, initially propa-
gates forward the driver waveform across the RC' interconnect of the stage up to the receivers
cells. Using that waveform, the receiver input pin capacitance is calculated and a backwards
traversal is performed to recalculate the new Cl values of the driver. Unlike previous works,
this methodology considers the non-linearity of the driver waveform by using PWL ramps to
approximate it, does not make simplistic assumptions like other approaches, and considers
the gate-interconnect interdependence. Experimental results on 2.2 million <driver, intercon-
nect, receiver(s)> stages implemented using the ASU ASAP 7 nm FinFET Predictive PDK
indicate that our method exhibits good correlation with SPICE, achieving 6.71% for Dy,
5.98% for Sy, 5.40% for D, and 5.78% for S,.,. Moreover, the proposed method is highly
efficient, since it requires only 8.16 s and 0.38 MB of memory to complete the timing esti-
mation for 2.2 million stages. This feature renders the approach very attractive for iterative

timing-driven optimization steps in placement or early stages of routing.

29






Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. VLSI Physical Design: From

Graph Partitioning to Timing Closure. Springer Science & Business Media, 2011.

J. Bhasker and R. Chadha. Static Timing Analysis for Nanometer Designs: A Practical
Approach. Springer, 2009th edition, 2009.

R. Goering. What’s Needed to “Fix” Timing Signoft? . In Panel of the 50th Design
Automation Conference (DAC), 2013.

Dimitrios Garyfallou, loannis Tsiokanos, Nestor Evmorfopoulos, Georgios Stamoulis,
and Georgios Karakonstantis. Accurate Estimation of Dynamic Timing Slacks using
Event-Driven Simulation. In Proc. of the 21st International Symposium on Quality

Electronic Design (ISQED), pages 225-230, 2020.

Synopsys - Composite Current Source (CCS). http://www.

opensourceliberty.org/ccspaper/. Accessed: Sep. 15, 2021.

Cadence - Effective Current Source Model (ECSM). https://www.cadence.
com/en US/home/alliances/standards—-and-languages/ecsm—

library-format.html. Accessed: Sep. 15, 2021.

Jessica Qian, Satyamurthy Pullela, and Lawrence Pillage. Modeling the "Effective Ca-
pacitance” for the RC Interconnect of CMOS Gates. [EEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 13(12):1526—-1535, 1994.

Ying Zhou, Zhuo Li, Rouwaida N Kanj, David A Papa, Sani Nassif, and Weiping Shi.
A More Effective Ces for Slew Estimation. In Proc. of the International Conference on

Integrated Circuit Design and Technology (ICICDT), pages 14, 2007.

31


http://www.opensourceliberty.org/ccspaper/
http://www.opensourceliberty.org/ccspaper/
https://www.cadence.com/en_US/home/alliances/standards-and-languages/ecsm-library-format.html
https://www.cadence.com/en_US/home/alliances/standards-and-languages/ecsm-library-format.html
https://www.cadence.com/en_US/home/alliances/standards-and-languages/ecsm-library-format.html

32

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Soroush Abbaspour and Massoud Pedram. Calculating the effective capacitance for the
RC interconnect in VDSM technologies. In Proc. of the 2003 Asia and South Pacific De-
sign Automation Conference, ASP-DAC 03, Kitakyushu, Japan, January 21-24, 2003,
pages 43-48, 2003.

Dimitrios Garyfallou et al. Gate Delay Estimation With Library Compatible Current
Source Models and Effective Capacitance. /[EEE Trans. on Very Large Scale Integration
(VLSI) Systems, 29(5):962-972, 2021.

Dimitrios Garyfallou. Novel techniques for timing analysis of VLSI circuits in advanced

technology nodes. Ph.D. thesis, 2021.

Curtis L. Ratzlaff and Lawrence T. Pillage. RICE: rapid interconnect circuit evaluation
using AWE. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 13(6):763-776, 1994.

Synopsys - HSPICE®. https://www.synopsys.com/verification/ams-

verification/hspice.html. Accessed: Sep. 15, 2021.

D. Garyfallou, C. Antoniadis, N. Evmorfopoulos, and G. Stamoulis. A Sparsity-Aware
MOR Methodology for Fast and Accurate Timing Analysis of VLSI Interconnects. In
Proc. of the 16th International Conference on Synthesis, Modeling, Analysis and Sim-
ulation Methods and Applications to Circuit Design (SMACD), pages 89-92, 2019.

Rohini Gupta, Bogdan Tutuianu, and Lawrence T. Pileggi. The Elmore delay as a bound
for RC trees with generalized input signals. /EEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 16(1):95-104, 1997.

Frank Liu, Chandramouli V. Kashyap, and Charles J. Alpert. A delay metric for RC
circuits based on the Weibull distribution. /IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 23(3):443-447, 2004.

Kanak Agarwal, Dennis Sylvester, and David T. Blaauw. Simple metrics for slew rate
of RC circuits based on two circuit moments. In Proc. of the 40th Design Automation

Conference (DAC), pages 950-953, 2003.

Halil B Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley
Pub. Co., 1990.


https://www.synopsys.com/verification/ams-verification/hspice.html
https://www.synopsys.com/verification/ams-verification/hspice.html

Bibliography 33

[19] C.J. Alpert, F. Liu, C. Kashyap, and A. Devgan. Delay and slew metrics using the
lognormal distribution. In Proc. of the 40th Design Automation Conference (DAC),
pages 382-385, 2003.

[20] Lawrence T Pillage and Ronald A Rohrer. Asymptotic Waveform Evaluation for Timing
Analysis. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 9(4):352-366, 1990.

[21] Ruchir Puri, David S Kung, and Anthony D Drumm. Fast and accurate wire delay
estimation for physical synthesis of large ASICs. In Proc. of the 12th Great Lakes
Symposium on VLSI (GLSVLSI), pages 30-36, 2002.

[22] Dimitrios Garyfallou, Anastasis Vagenas, Charalampos Antoniadis, Yehia Massoud,
and George Stamoulis. Leveraging machine learning for gate-level timing estimation
using current source models and effective capacitance. In Proceedings of the Great

Lakes Symposium on VLSI 2022, page 77-83, 2022.

[23] Charalampos Antoniadis, Dimitrios Garyfallou, Nestor Evmorfopoulos, and Georgios
Stamoulis. EVT-based worst case delay estimation under process variation. In Proc.
of the Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1333-1338, 2018.

[24] Synopsys - What is Static Timing Analysis (STA). https://www.synopsys.
com/glossary/what-is-static-timing-analysis.html. Accessed:

Mar. 31, 2022.

[25] Peter R. O’Brien and Thomas L. Savarino. Modeling the driving-point characteristic
of resistive interconnect for accurate delay estimation. In Proc. of the International

Conference on Computer Aided Design (ICCAD), pages 512515, 1989.

[26] Chandramouli Kashyap, C.J. Alpert, Frank Liu, and Anirudh Devgan. Closed-form
expressions for extending step delay and slew metrics to ramp inputs for RC trees.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
23(4):24-31, 2004.


https://www.synopsys.com/glossary/what-is-static-timing-analysis.html
https://www.synopsys.com/glossary/what-is-static-timing-analysis.html

34 Bibliography

[27] TAU 2021 timing contest - Stage Delay Calculator using Current Source Models.
https://sites.google.com/view/tau-contest-2021. Accessed: Sep.
15, 2021.

[28] Xyce - Parallel electronic simulator. Accessed: May 30, 2022. https://xyce.

sandia.gov/.

[29] ASU - ASAP7 PDK. Accessed: Sep. 15, 2021. https://github.com/The-

OpenROAD-Project/asap7/.


https://sites.google.com/view/tau-contest-2021
https://xyce.sandia.gov/
https://xyce.sandia.gov/
https://github.com/The-OpenROAD-Project/asap7/
https://github.com/The-OpenROAD-Project/asap7/

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Motivation
	Gate timing
	Interconnect timing

	Contributions
	Thesis organization

	Background
	Design flow
	Frontend
	Backend

	Timing analysis
	Static Timing Analysis

	Stage timing estimation
	Problem formulation
	Gate timing
	Interconnect timing


	Proposed methodology
	Iterative algorithm
	Implementation details
	Algorithm setup and modifications
	Driver delay and output slew computation
	Receiver input pin capacitance computation


	Experimental evaluation
	Setup
	Accuracy evaluation
	Runtime and memory results

	Conclusion
	Bibliography

