
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Customer Lifetime Value Prediction using Machine

Learning Techniques

Diploma Thesis

Argyrios Adam

Supervisor: Panagiota Tsompanopoulou

June 2022

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Customer Lifetime Value Prediction using Machine

Learning Techniques

Diploma Thesis

Argyrios Adam

Supervisor: Panagiota Tsompanopoulou

June 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Πρόβλεψη Αξίας Κύκλου Ζωής Πελατών με Τεχνικές

Μηχανικής Μάθησης

Διπλωματική Εργασία

Αργύριος Αδάμ

Επιβλέπουσα: Παναγιώτα Τσομπανοπούλου

Ιούνιος 2022

v

Approved by the Examination Committee:

Supervisor Panagiota Tsompanopoulou

Associate Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

Member Michael Vassilakopoulos

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

Member Aspassia Daskalopulu

Assistant Professor, Department of Electrical and Computer Engi-

neering, University of Thessaly

vii

Acknowledgements

Throughout my journey to complete my undergraduate studies, a great number of people

supported and encouraged me. Therefore I would like to convey my most heartfelt apprecia-

tion to these individuals, without whom I would not have made it.

To begin, I would like to express my profound gratitude to my supervisor, Associate Pro-

fessor Panagiota Tsompanopoulou, for all of the assistance she has givenme and for providing

me with the opportunity to work on an very intriguing project that is highly connected to my

areas of interest. Additionally, I fell inclined to extend my sincere appreciation to Emeritus

Professor Elias N. Houstis, who not only exposed me to the fields of artificial intelligence

and data science but also supported me with his expertise and made many resources available

to me.

Furthermore, I would like to express my gratitude to my friends and my girlfriend who

have provided me with many joyful experiences throughout the years and have been very

supportive of me.

Finally, I want to express my heartfelt gratitude tο my family, my parents and my siblings,

for their unconditional love and support they have shown me during all of these wonderful

years. Without you, I know for a fact that I would not be the person that I am today, nor would

I have been capable of achieving the things that I have accomplished.

This Diploma Thesis is dedicated to my parents, Konstantinos and Eleni

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Argyrios Adam

xi

xii Abstract

Diploma Thesis

Customer Lifetime Value Prediction using Machine Learning

Techniques

Argyrios Adam

Abstract

Customer relationship management (CRM) has become more important as businesses strive

to preserve a competitive advantage in today’s market (CRM). The primary goal of customer

relationship management (CRM) is to increase an organization’s profitability by creating

long-term relationships with profitable customers. However, in order for anything like this

to occur, it is necessary to first identify these valuable customers. It is common for compa-

nies to define a client’s profitability in terms of customer lifetime value (CLV), which is the

total amount of money they earn from a customer throughout the period of their relation-

ship with the firm. Ultimately, the purpose of this research is to demonstrate how Machine

Learning may be used to forecast CLV at both an individual and a collective level. Two dif-

ferent strategies are employed in order to achieve this goal: in the first approach, we propose

a method for CLV prediction on individual consumers; in the second approach, we perform

customer segmentation and suggest a method for classifying customers into these groups.

Empirical assessments based on a publicly available dataset from the domain of online shop-

ping demonstrate that our suggested models produce outcomes that are competitive in terms

of performance.

Keywords:
Artificial Intelligence, Data Science, Machine Learning, Customer Relationship Manage-

ment, Customer Lifetime Value, RFM Analysis

Περίληψη xiii

Διπλωματική Εργασία

Πρόβλεψη Αξίας Κύκλου Ζωής Πελατών με Τεχνικές Μηχανικής

Μάθησης

Αργύριος Αδάμ

Περίληψη

Η διαχείριση πελατειακών σχέσεων (CRM) έχει γίνει πιο σημαντική καθώς οι επιχειρήσεις

προσπαθούν να διατηρήσουν ένα ανταγωνιστικό πλεονέκτημα στη σημερινή αγορά. Ο πρω-

ταρχικός στόχος της διαχείρισης πελατειακών σχέσεων (CRM) είναι να αυξήσει την κερδο-

φορία ενός οργανισμού δημιουργώντας μακροπρόθεσμες σχέσεις με κερδοφόρους πελάτες.

Ωστόσο, για να συμβεί κάτι τέτοιο, είναι απαραίτητο να εντοπίσουμε πρώτα αυτούς τους

πολύτιμους πελάτες. Είναι σύνηθες για τις εταιρείες να ορίζουν την κερδοφορία ενός πε-

λάτη με βάση την αξία ζωής του πελάτη (CLV), που είναι το συνολικό χρηματικό ποσό που

κερδίζουν από έναν πελάτη καθ’ όλη την περίοδο της σχέσης τους με την επιχείρηση. Ου-

σιαστικά, ο σκοπός αυτής της έρευνας είναι να καταδείξει πώς η Μηχανική Μάθηση μπορεί

να χρησιμοποιηθεί για την πρόβλεψη του CLV τόσο σε ατομικό όσο και σε συλλογικό επί-

πεδο. Δύο διαφορετικές στρατηγικές χρησιμοποιούνται για την επίτευξη αυτού του στόχου:

στην πρώτη προσέγγιση, προτείνουμε μια μέθοδο για την πρόβλεψη CLV σε μεμονωμένους

καταναλωτές, ενώ στη δεύτερη προσέγγιση, πραγματοποιούμε τμηματοποίηση πελατών και

προτείνουμε μια μέθοδο για την ταξινόμηση των πελατών σε αυτές τις ομάδες. Εμπειρικές

αξιολογήσεις που βασίζονται σε ένα δημοσίως διαθέσιμο σύνολο δεδομένων από τον το-

μέα των διαδικτυακών αγορών καταδεικνύουν ότι τα προτεινόμενα μοντέλα μας παράγουν

ανταγωνιστικά αποτελέσματα απόδοσης.

Λέξεις-κλειδιά:
Τεχνητή Νοημοσύνη, Επιστήμη Δεδομένων, Μηχανική Μάθηση, Διαχείρηση Πελατειακών

Σχέσεων, Αξία Κύκλου Ζωής Πελατών, Ανάλυση RFM.

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Subject of the thesis . 2

1.1.1 Contribution . 2

1.2 Thesis Synopsis . 3

2 Theoretical Background 5

2.1 Introduction to Machine Learning . 5

2.2 Supervised Learning . 7

2.2.1 Regression Analysis . 9

2.2.2 Evaluating Regression Analysis 10

2.2.3 Classification Analysis . 11

2.3 Unsupervised Learning . 14

2.3.1 Cluster Analysis . 15

2.4 Customer Lifetime Value (CLV) . 17

xv

xvi Table of contents

2.4.1 Calculation of CLV . 17

2.4.2 Importance of CLV . 18

2.5 Customer Segmentation . 19

3 Overview of the proposed methods 21

3.1 Linear Regression Models . 21

3.1.1 Linear Regression . 21

3.1.2 Ridge Regression . 22

3.1.3 Lasso Regression . 22

3.2 Support Vector Machines (SVM) . 23

3.2.1 Linearly Separable Problems . 23

3.2.2 Non-Linearly Separable Problems 26

3.3 Decision Trees . 27

3.4 Bagging and Boosting Algorithms . 29

3.4.1 Bagging . 29

3.4.2 Random Forest . 30

3.4.3 Boosting . 32

3.4.4 Boosting Algorithms . 32

3.5 K-Nearest Neighbours (KNN) . 33

3.6 K-Means Clustering . 35

4 Data 37

4.1 Dataset . 37

4.2 Data Pre-processing . 38

4.2.1 Exploratory Data Analysis (EDA) 38

4.2.2 Data Cleaning . 43

4.3 Feature Engineering . 44

4.3.1 RFM analysis . 45

4.3.2 Additional Features . 46

5 Approach A: Experiments and Results 47

5.1 Individual Approach . 47

5.2 HyperParameter Tuning . 48

5.2.1 Data Separation . 48

Table of contents xvii

5.2.2 Cross-Validation . 49

5.2.3 Grid-Search . 50

5.3 Experiments and Results . 51

5.3.1 Linear Regression . 51

5.3.2 Ridge Regression . 52

5.3.3 Lasso Regression . 52

5.3.4 Decision Tree Regression . 52

5.3.5 Random Forest Regression . 53

5.3.6 XGBoost Regression . 53

5.3.7 Overall . 53

6 Approach B: Experiments and Results 55

6.1 Customer Segmentation Approach . 55

6.2 Clustering . 55

6.3 Classification Performance Metrics . 58

6.3.1 Confusion Matrix . 58

6.3.2 Multi-Class Confusion Matrix . 59

6.4 Classification Experiments and Results . 61

6.4.1 Decision Tree Classification . 62

6.4.2 Random Forest Classification . 63

6.4.3 K-Nearest Neighbours Classification 64

6.4.4 XGBoost Classification . 65

6.4.5 AdaBoost Classification . 66

6.4.6 SVM Classification . 67

6.4.7 Overall . 68

7 Conclusion 71

7.1 Summary and Conclusions . 71

Bibliography 73

APPENDICES 81

xviii Table of contents

Appendix

Code and System Specifications 83

1 Code . 83

1.1 Feature Engineering . 83

1.2 Regression Example . 84

1.3 Clustering . 85

1.4 Classification Example . 85

2 System Specifications . 86

List of figures

2.1 Machine Learning Workflow Diagram . 7

2.2 Supervised Learning . 8

2.3 Linear vs Nonlinear Regression . 9

2.4 Fitting Cases . 11

2.5 Regression vs Classification . 12

2.6 Binary vs Multiclass Classification . 13

2.7 Multiclass vs Multi-Label Classification 14

2.8 Unsupervised Learning . 15

2.9 Hierarchical Clustering . 16

2.10 Customer Segmentation . 20

3.1 Graphic representation of a support vector machine 24

3.2 Soft-Margin . 26

3.3 Non-linear SVM with the kernel trick . 27

3.4 Decision Tree example . 29

3.5 Bagging Algorithm for Classification . 30

3.6 Random Forest . 31

3.7 Boosting . 32

3.8 K-Nearest Neighbours example with k=5 35

3.9 K-means clustering . 36

4.1 Sample of our dataset . 38

4.2 Number of Invoices by Country . 39

4.3 Number of Unique Invoices by Country 39

4.4 Cancelled/Abandoned Invoices vs Normal Invoices 40

4.5 Sample of data with negative values in “Quantity” 41

xix

xx List of figures

4.6 Percentage of negative values in “Quantity” 41

4.7 Missing values in each attribute . 42

4.8 Unique Customer by Country . 43

4.9 Newly formed dataframe . 45

5.1 Dataframe with CLV target column . 48

5.2 Train-Validation-Test split . 49

5.3 5-fold Cross-validation . 50

6.1 Elbow Method . 56

6.2 Clusters . 57

6.3 Dataframe with Clusters . 57

6.4 RFM of Clusters . 58

6.5 Multi-class Confusion Matrix . 60

6.6 Decision Tree Classification . 62

6.7 Random Forest Classification . 63

6.8 K-nearest Neighbours Classification . 64

6.9 XGBoost Classification . 65

6.10 AdaBoost Classification . 67

6.11 SVM Classification . 68

List of tables

4.1 Number of Invoices by Country . 40

4.2 Number of Unique Invoices by Country 40

4.3 Number of Missing values . 42

4.4 Unique Customers by Country . 42

4.5 Data after cleaning . 44

5.1 Linear Regression Results . 51

5.2 Ridge Regression Results . 52

5.3 Lasso Regression Results . 52

5.4 Decision Tree Regression Results . 53

5.5 Random Forest Regression Results . 53

5.6 XGBoost Regression Results . 53

5.7 Overall Regression Results . 54

6.1 Confusion Matrix . 58

6.2 Decision Tree Classification Results . 62

6.3 Decision Tree Misclassified Customers 62

6.4 Random Forest Classification Results . 63

6.5 Random Forest Misclassified Customers 63

6.6 K-Nearest Neighbours Classification Results 64

6.7 K-Nearest Neighbours Misclassified Customers 65

6.8 XGBoost Classification Results . 66

6.9 XGBoost Misclassified Customers . 66

6.10 AdaBoost Classification Results . 66

6.11 AdaBoost Misclassified Customers . 66

6.12 SVM Classification Results . 67

xxi

xxii List of tables

6.13 SVM Misclassified Customers . 68

6.14 Overall Classification Results . 69

6.15 Overall Misclassification Results . 69

Abbreviations

CRM Customer Relationship Management

CLV Customer Lifetime Value

AI Artificial Intelligence

OCR Optical Character Recognition

SVM Support Vector Machine

MAE Mean Absolute Error

MSE Mean Squared Error

MBE Mean Bias Error

MSLE Mean Squared Logarithmic Error

KNN K-Nearest Neighbours

RF Random Forest

AAC Allowable Acquisition Cost

IAC Investment Acquisition Cost

RSS Residual Sum of Squared Errors

KNN K-Nearest Neighbours

SSE Sum of Squared Errors

EDA Exploratory Data Analysis

RFM Recency Frequency Monetary

xxiii

Chapter 1

Introduction

Firms must create innovation activities in order to capture client wants and enhance cus-

tomer satisfaction and retention in today’s business environment, which is becoming increas-

ingly complicated and competitive [1]. When it comes to acquiring and retaining customers,

customer relationship management (CRM) is an established method that has been widely

used. The primary goal of customer relationship management (CRM) is to establish long-

term and profitable relationships with customers [2]. A huge number of databases providing

detailed information on demographics and client transactions exist in this area. Different cus-

tomer relationship management (CRM) systems may be used to examine this data in order

to determine client profitability. Customer Lifetime Value (CLV) is a term in client relation-

ship management (CRM) that represents the present value of all future profits generated by

a customer [3]. The use of customer lifetime value (CLV) to allocate marketing resources

is predicated on the assumption that the future worth of a client can be properly predicted.

This assumption is rarely challenged, and there is little actual evidence to support or refute

its validity. Customers’ future worth may be anticipated with increasing precision along a

continuum. One extreme is when customers’ prior behavior and the firm’s marketing efforts

are exactly predicted, this is called a perfect prediction. The other extreme is where the fu-

ture behavior of consumers is completely independent of their previous behavior and the

firm’s marketing initiatives. In order to determine whether or not to implement relationship

marketing and customer equity tactics, the company must first determine where it lies on

the continuum [4]. Spending disproportionate resources on certain clients makes undeniable

sense when their future activity can be anticipated correctly; but, when future behavior is un-

known, such an investment makes no sense. As a result, the key issue for these organizations

1

2 Chapter 1. Introduction

is to figure out how to maximize the likelihood that their investments will be lucrative by

developing models that can accurately anticipate future behavior of customers.

1.1 Subject of the thesis

The goal of this thesis is to demonstrate how machine learning techniques can be used to

forecast customer lifetime value, a metric that is extremely important for marketing teams of

firms who want to determine which customers are more valuable to the organization.

In order to complete this work, we divided it into two phases. First, we handle each cus-

tomer’s situation on an individual basis. Specifically, we attempt to estimate CLV for each

customer, in this case the net profit of their transactions, by applying regression techniques

to do so. Then we take a different approach to the problem, one that is more collaborative in

nature. To be more specific, we seek to segment our customers by generating clusters of con-

sumers, which we then attempt to utilize in order to classify new clients into the predefined

categories.

In order to make our models as accurate as possible, we place a strong focus on data-

preprocessing, which includes cleaning, normalization, and feature extraction. Finally, we

examine and evaluate our models, using different metrics for each methodology, in order to

draw conclusions about the efficacy of our models.

1.1.1 Contribution

The overall thesis contributions are summarized as follows:

• To research howCLVmay be evaluated and forecasted by using two distinct approaches

to the problem: individually and collectively.

• To demonstrate how detailed examination of our data may be utilized to uncover vital

information that is concealed behind raw data.

• To examine numerous of machine learning methods for each strategy.

• To assess our proposed models with the goal of determining the one that is best suitable

for our dataset.

1.2 Thesis Synopsis 3

1.2 Thesis Synopsis

In Chapter 2, we will cover the fundamental theoretical background regarding machine

learning, customer lifetime value (CLV), and customer segmentation. In Chapter 3, we dis-

cuss the algorithms that will be utilized to estimate CLV for our different approaches. In

Chapter 4, we explore and analyze our data. In particular, we do an in-depth exploration be-

fore moving on to pre-processing and feature engineering. In Chapters 5 and 6, we will assess

the models that have been proposed so that we can pick the ones that perform the best for

the different cases. The final chapter, Chapter 7, presents a summary of our work as well as

a conclusion and some suggestions for potential future study.

Chapter 2

Theoretical Background

2.1 Introduction to Machine Learning

Machine learning falls under the broad field known as Artificial intelligence (AI). Un-

derstanding the structure of data and incorporating that knowledge into models that can be

utilized and comprehended by humans is the ultimate purpose of machine learning.

Despite being a sub-field of computer science, machine learning might be considered to

be separate from more conventional computational approaches. Traditional algorithms are

sets of instructions that have been carefully programmed and are used by computers to do

calculations or solve issues. The techniques of machine learning, on the other hand, make it

possible for computers to learn from data inputs and then use statistical analysis in order to

produce results that are contained within a specific range [5]. As a consequence of this, ma-

chine learning enables computers to construct models from sample data in order to automate

decision-making mechanisms which are based on the data inputs.

Every single person who uses a piece of technology today has profited from machine

learning. Users of social media networks may soon be able to tag and share photographs

of their friends with the use of face recognition technology. [6] The technique known as

optical character recognition (OCR) can convert photographs of written text into movable

type [7]. Recommendation systems driven by machine learning make suggestions to users on

which movies or television shows they should watch next based on the user’s preferences [8].

Automobiles that drive themselves and rely on machine learning to navigate may soon be

available for purchase by consumers [9].

A machine learning process consists, in general, from the following steps:

5

6 Chapter 2. Theoretical Background

1. Data Collection, that will be used for training and testing the model

2. Data Pre-Processing. The data should then be “cleaned”, that is, to remove poor qual-

ity data, sort it into a desired sequence, and ultimately modify it to have a single format.

These first steps are usually time consuming and very important as well since they are

the basis on which the models are later built.

3. Selection of Machine Learning model. At this stage the experimentation is done in

order to choose which models should be used. There are many models of machine

learning and there is no clear categorization of which model suits which problem. In

this thesis we use various models which will be discussed in more detail later.

4. Training. This stage can be considered by many as the essence of machine learning.

At this point a portion (approximately 60-80%) of the well-organized data collected in

the previous stages passes through the model machine learning in order to “train” and

learn to analyze similar data.

5. Validation. At this point a smaller chunk of the data (10-20%) is used in order to test

whether the now trained model can respond to new inputs and thus make the final

calculations and corrections depending on its performance.

6. Testing. After that, the last piece of data will be used to measure the final performance

of the model.

7. Model Improvement. Most of the time after testing, changes need to be done in both

the model architecture and the hyperparameters in order to have the desired result. In

this case the process returns in the initial steps and the new model is tested again.

The described process can be visualized in Figure 2.1 which shows a standard machine

learning workflow diagram.

2.2 Supervised Learning 7

Figure 2.1: Machine Learning Workflow Diagram

Source : http://www.theobjects.com/dragonfly/dfhelp/2020-

1/Content/Resources/Images/deep-learning/data-preparation-workflow.png

Machine learning algorithms can be divided into various categories depending on the

format of the training data, how it is processed and type of the prediction/forecast. In this

research we will focus on supervised and unsupervised learning.

2.2 Supervised Learning

Supervised Learning entails building a mathematical model that maps provided inputs

(training set) to known desired outputs, which are frequently referred to as labels, with the

ultimate objective of generalizing this model to unknown inputs. For instance, if we want to

know if a picture contains a specific item the training data for a supervised learning algorithm

will contain photos with and without this object (input data) as well as tags for each image

(output data). These labels indicate whether or not each image contains the relevant object.

A typical workflow diagram of supervised learning is depicted in Figure 2.2.

8 Chapter 2. Theoretical Background

Figure 2.2: Supervised Learning

Let us formalize the supervised machine learning setup. Our training data comes in pairs

of inputs (x, y), where x ∈ Rd is the input instance and y its label. The entire training data

is denoted as

D = {(x1, y1), . . . , (xn, yn)} ⊆ Rd × C (2.1)

where:

• Rd is the d-dimensional feature space

• xi is the input vector of the ith sample

• yi is the label of the ith sample

• C is the label space

The data points (xi, yi) are drawn from some (unknown) distributionP(X,Y). Ultimately

we would like to learn a function h such that for a new pair (x, y) ∼ P , we have h(x) = y

with high probability (or h(x) ≈ y) [10].

Based on the format of the output / response, he most common supervised learning algo-

rithms are “regression” that fits the data and “classification” that separates the data.

2.2.1 Regression Analysis 9

2.2.1 Regression Analysis

A number of different machine learning techniques are included into the process of re-

gression analysis. These techniques enable the value of one or more continuous outcome

variables (y) to be predicted based on the value of one or more predictor variables (x). It is

currently common practice to apply regression models in a broad range of contexts, including

but not limited to the following:

• Financial forecasting (like house price estimates, or stock prices)

• Sales and promotions forecasting

• Testing automobiles

• Weather analysis and prediction

• Drug response modeling

• Time series forecasting

Some of the familiar types of regression algorithms are Linear Regression, Polynomial

Regression, Ridge Regression, Lasso Regression, Decision Tree Regression, Support Vector

Machine(SVM) Regression and others. A few of them will be extensively discussed and

examined for our regression problem in Chapter 3. In Figure 2.3 we can see the difference

between linear and nonlinear regression.

(1) Linear Regression (2) Nonlinear Regression

Figure 2.3: Linear vs Nonlinear Regression

10 Chapter 2. Theoretical Background

2.2.2 Evaluating Regression Analysis

Loss Functions

The sole factor that is taken into consideration while evaluating a statistical model is its

performance, which refers to how accurate the model’s conclusions are. Because of this, a

method is required to quantify the degree to which a certain iteration of the model deviates

from the true values. This is where loss functions come into play. Loss functions are used to

quantify the degree to which an estimated value deviates from the actual value. The following

are some examples of loss functions that might be applied to regression problems:

1. Mean Absolute Error (MAE)

2. Mean Squared Error (MSE)

3. Mean Bias Error (MBE)

4. Mean Squared Logarithmic Error (MSLE)

We will see a couple of them more extensively in Chapter 5, where we evaluate the re-

gression algorithms we used.

Variance

The amount that the estimate of the target function shifts in response to using different

sets of training data is referred to as the variance. [11] The relationship between the input

(features) and the output variables(values to predict) is determined by the target function,

which is usually denoted by f . Since the model should be general enough to adapt to different

training data, the target function should be able to maintain its stability with only a small

amount of variation. In order to prevent making inaccurate forecasts, we need to make sure

that the variance is quite minimal. Because of this, the model has to be expanded so that

it can account for previously undiscovered aspects of our data and generate more accurate

forecasts.

Bias

Bias may be defined as the tendency of an algorithm to repeatedly learn the incorrect

things because it does not take into consideration all the information from the input. It is

2.2.3 Classification Analysis 11

essential for our model to have a low level of bias in order for it to be accurate. In the occasion

that the dataset has inconsistencies like missing values, outliers or mistakes in the input data,

the bias will be large and the value predicted will be inaccurate.

Overfitting vs Underfitting

In order for a model to be considered optimal, it is anticipated that it would have low

variance, low bias, and low error. In order to accomplish this, we will need to divide the

dataset into a train dataset and a test dataset. After that, the model will learn patterns from

the training dataset, and its effectiveness will be tested using the test dataset. In order to

minimize the amount of mistake that occurs when the model is learning, we introduce an

error function. If the model just memorizes or imitates the training data that is given to it,

rather than detecting patterns in the data, then it will make inaccurate predictions on data

that has not yet been seen. The accuracy of the model when applied to the test data is poor

since the curve that is created from the training model will always pass through all of the data

points. This phenomenon is referred to as overfitting, and it is caused by high variance. On

the other hand, underfitting occurs when the model performs well on the test data but with

poor accuracy on the training data. These fitting cases are depicted in Figure 2.4

Figure 2.4: Fitting Cases

2.2.3 Classification Analysis

In the field of machine learning, classification is considered a supervised learning ap-

proach. It also refers to a challenge in predictive modeling, in which a class label is fore-

casted for a given example [12]. Mathematically speaking, what it does is map a function (f)

from the variables that serve as input (X) to the variables that serve as output (Y) as target,

label, or categories. It is possible to carry out the process on either structured or unstructured

12 Chapter 2. Theoretical Background

data in order to forecast the class of provided data points. For instance, churn prediction for

detecting which customers are likely to leave a service or to cancel a subscription, might be

an example of a classification challenge. The most important distinction that can be made

between classification and regression is that classification can forecast discrete class labels,

whereas regression can help forecast a continuous quantity. The differences between classi-

fication and regression models are illustrated with a specific example in Figure 2.5. There

is frequently located to be some degree of overlap between the two categories of machine

learning algorithms.

Figure 2.5: Regression vs Classification

Source : https://searchengineland.com/experiment-trying-predict-google-rankings-253621

In what follows, we will provide a synopsis of the major classification problems.

• Binary Classification: Binary classification is when there are just two possible class

labels, such as “true” and “false” or “yes” and “no” [12]. For instance, in a task requir-

ing binary classification, one class may represent the normal condition, while another

class would represent the abnormal state. For example, the phrase “not spam” describes

the normal condition of a task that requires filtering emails, but the phrase “spam” de-

scribes the problematic state of the work.

• Multiclass Classification:Multiclass classification often refers to classification prob-

lems that involve more than two different class labels [12]. In contrast to binary classi-

fication problems, the multiclass classification does not utilize the idea of normal and

abnormal result distributions. Instead, instances are categorized as belonging to one of

2.2.3 Classification Analysis 13

many distinct classes from among a range of possible classifications. For instance, it

can be a multiclass classification to classify patient hospital re-admission stay, where

the possible categories are: 0 days, less than 30 days and more than 30 days [13].

• Multi-label classification: When it comes to machine learning, multi-label classifi-

cation is an essential approach to take into account in situations where a single sam-

ple might be linked with many categories or labels. Therefore, it is an extension of

multiclass classification, in which the classes involved in the issue are organised hi-

erarchically, and each sample can concurrently belong to more than one class in each

hierarchical level, such as in multi-level text classification. For instance, Stack Over-

flow posts may be presented under different tags such as “python”, “data science”,

“machine learning” and so on [14]. In contrast to traditional classification tasks, which

utilize class labels that are exclusive to one another, multi-label classification utilizes

advanced machine learning algorithms that support the prediction of multiple mutually

non-exclusive classes or labels [15].

In Figure 2.6 we see the difference between binary and multiclass classification and in

Figure 2.7 the difference between multiclass and multi-label classification.

Figure 2.6: Binary vs Multiclass Classification

Source : https://medium.com/analytics-vidhya/ml06-intro-to-multi-class-classification-

e61eb7492ffd

In the literature on machine learning and data science, a great deal of emphasis has been

placed on the development of classification algorithms. Some of the most popular ones are

Logistic Regression, Naïve Bayes, K-Nearest Neighbours(KNN), Decision Tree, Random

14 Chapter 2. Theoretical Background

Figure 2.7: Multiclass vs Multi-Label Classification

Source : https://towardsdatascience.com/building-a-multi-label-text-classifier-using-bert-

and-tensorflow-f188e0ecdc5d

Forest(RF), Support Vector Machine(SVM) and others. In Chapter 3 we will examine some

of them more extensively.

2.3 Unsupervised Learning

Unsupervised learning is a process of machine learning in which a function is approxi-

mated to describe hidden structure in unlabeled data (for example, a categorization or a clas-

sification that was not included in the original data). Because the samples that are included in

the learning model are not labeled in any way, there is no evaluation of the structure that the

model ultimately discovers. One of the most popular applications of unsupervised learning

is the estimate of the probability density function in distributions. However, unsupervised

learning may be used to other issues as well, such as the extraction of concealed features, the

identification of relevant patterns and structures and the grouping of data. A typical workflow

diagram of unsupervised learning is depicted in Figure 2.8.

Clustering, density estimation, feature learning, dimensionality reduction, finding associ-

ation rules, anomaly detection, are some of the most prevalent types of unsupervised learning

tasks. In this thesis in order to do our customer segmentation task we will focus on clustering

methods.

2.3.1 Cluster Analysis 15

Figure 2.8: Unsupervised Learning

2.3.1 Cluster Analysis

Cluster analysis, which is also known as clustering, is an unsupervised method of ma-

chine learning that is used to locate and group similar data points in huge datasets without

caring about the precise output. It achieves this by categorizing a set of attributes in such a

manner that things in the same category, which is termed a cluster, are in some way more

similar to each other than those that are in other clusters [12]. It is a technique for analyzing

data that is frequently used to find interesting trends or patterns in the data, such as categories

of consumers based on their behavior or transaction history. Clustering has a wide variety of

potential applications, including but not limited to market research and customer segmen-

tation, biological data and medical imaging, recommendation engine, pattern recognition,

social network analysis, image processing, etc. In what follows, we will explore and outline

many sorts of clustering algorithms in a short and concise manner.

• Partitioning methods: This clustering strategy organizes the data into a number of

different groups or clusters by taking into account the attributes and correlations that

exist within the data. In most cases, the number of clusters that should be produced

by the techniques of clustering is decided either statically or dynamically by the data

scientists or analysts, depending on the kind of applications that are intended to be used.

K-means [16], K-Medoids [17], CLARA [18], and many other algorithms are some of

the most prevalent clustering approaches that are based on partitioning methods.

16 Chapter 2. Theoretical Background

• Density-based methods: These models utilize the idea that a cluster in the data space

is an area of continuous high point density that is separated from other such clusters

by regions of continuous low point density. This allows them to recognize separate

groups or clusters. The points that do not belong to any cluster are referred to as noise.

DBSCAN [19], OPTICS [20], and other similar algorithms are examples of common

clustering methods that are based on density. In most cases, the density-based algo-

rithms have difficulty dealing with clusters of data that have a comparable density and

high dimensionality.

• Hierarchical-based methods:When doing hierarchical clustering, the goal is often to

build a hierarchy of clusters, also known as the tree structure. In most cases, there are

two distinct categories of hierarchical clustering strategies: (i) Agglomerative, which

is a “bottom-up” technique in which each observations begin in their own cluster and

pairs of clusters are merged as one, progressing up the hierarchy, and (ii) Divisive,

which is a “top-down” approach in which all observations begin in one cluster and

splits are conducted recursively, moving down the hierarchy, as seen in Figure 2.9.

Figure 2.9 illustrates both of these approaches.

Figure 2.9: Hierarchical Clustering

Source : https://harshsharma1091996.medium.com/hierarchical-clustering-996745fe656b

• Grid-based methods: Grid-based clustering is an approach that works particularly

well when dealing with enormous datasets. The approach behind obtaining clusters is

to first summarize the dataset using a grid representation, and then to merge grid cells

2.4 Customer Lifetime Value (CLV) 17

after the grid representation has been completed. STING [21], CLIQUE [22], and other

similar algorithms are examples of the conventional grid-based clustering methods.

2.4 Customer Lifetime Value (CLV)

Customer Lifetime Value (CLV) is one of the most essential key performance indicators

(KPIs) to track and examine in relation to the customer experience. It is a measurement of

how valuable a client is to a company in the long run in comparison to the initial transaction

that the customer made with the firm. A fair Cost-per-Acquisition may be determined, among

other things, with the use of this statistic, which is helpful to marketers. To be more exact, this

measure indicates the total value that a customer brings to an organization during the course

of their relationship with that company. There is no question that it is less expensive for

businesses to keep a potential client than it is to acquire new customers. Therefore, the goal

of most organizations should be to grow by maximizing the value of their current clientele.

For instance, if the CLV of an average client at a store is € 2,000 and it costs that business

more than € 2,000 to acquire a new customer (when taking into account the cost of advertising,

promotions, and so on), then the store may experience a loss in revenue. Companies are able

to build plans to not just bring in new consumers, but also to keep the ones they already have

while keeping their profit margins when they have knowledge of the CLV.

2.4.1 Calculation of CLV

Let’s say a client has been going to the same supermarket in his area and purchasing

cleaning supplies with a total value of € 100 each and every month for the past two years.

His CLV for this specific supermarket is worth € 2400 Euros, which is calculated as follows:

100 Euros each purchase, multiplied by 12 Months, and then multiplied by 2 Years. On the

other hand, as we can probably guess, determining the CLV for larger organizations is not a

straightforward process.

Because of the numerous challenges that might develop, such as volatility in marketing

and an inability to support computer systems and technology, a lot of businesses don’t even

bother to make an attempt to calculate the CLV of their consumers. If, on the other hand, busi-

nesses are able to successfully integrate their data silos and precisely quantify the expenses

of their numerous operations, then determining the CLV is a simple procedure. CLV can be

18 Chapter 2. Theoretical Background

calculated with the following steps:

• Determine the touchpoints at which the client contributes value to the company

• Understand and calculate the customer journey, which is the total of the experiences

that a customer has with a company or a brand during the course of their relationship

with the business

• Measurement of revenue at each touchpoint

• Calculate the sum of all for the lifetime of a customer

2.4.2 Importance of CLV

For giant corporations with hundreds of executives and sophisticated computer systems,

the CLV may not be a significant barrier; but, for smaller corporations, the computation of

the CLV can be extremely complicated and difficult.

However, as long as you keep in mind the value that a client gives throughout the course

of his connection with a firm, there is no need to bother with complex calculations and proce-

dures. With the responses to questions centered on the Customer Experience and the record-

ing of feedback across all touchpoints, we can start to have a grasp on the fundamental CLV

principles.

Once we have some information on the CLV of the consumers, we have two choices to

choose from in order to determine howmuchmoney has to be spent to acquire new customers:

• Allowable Acquisition Cost (AAC): This is the maximum amount that we are willing

to spend on any individual client provided that the total cost is lower than the profit

that we make from the first sale to them. This is a technique that is employed for the

short-term and places a greater emphasis on cash flow.

• Investment Acquisition Cost (IAC): This is the maximum amount that we are willing

to spend on each consumer, knowing that we will make a loss on either the first or

subsequent transaction made by that customer. This indicates that we are able to absorb

the initial marketing expenditure in this long-term approach and that we have sufficient

cash flow and other resources to do so.

Customer lifetime value (CLV) is the single most important factor that will decide how prof-

itable a company is.

2.5 Customer Segmentation 19

2.5 Customer Segmentation

When it comes to marketing, one strategy that may help raise earnings is to connect with

consumers in order to learn what those individuals want [23]. Communication is constructed

in a manner that takes into account the qualities of the customer. When it comes to commu-

nication, taking a personal approach is quite challenging to develop. Customer segmentation

refers to the process of dividing consumers into groups based on the traits that they share

in common; this process is required because it is essential. Schneider [24] defined market

segmentation, as the process of separating prospective consumers into distinct groups. In its

e-book, the e-commerce platform Magento[25] describes customer segmentation as an ac-

tion that involves dividing consumers into groups that all have the same criteria. Customer

segmentation offers a number of advantages, including the following: it makes it possible for

us to match a customer with an offer of similar products; it modifies the manner in which we

communicate with customers based on the information they provide; it identifies the most

profitable customers; and it enables us to modify our products and services so that they

better fulfill customer requirements. Customer segmentation is the process of categorizing

or classifying an item or subject as belonging to a group that has been recognized as having

certain characteristics in commonwith one another [23]. To visualize this, we can refer to Fig-

ure 2.10. In his study, Baer[23] examines Customer Segmentation Intelligence as a means of

enhancing marketing by providing products or services that are tailored to match the require-

ments of certain customer groups. Customer Segmentation is the process of categorizing or

classifying an item into a group that has a similarity in characteristic [26]. Segmentation is

also used in CRM (Customer RelationshipManagement) to classify customers based on some

similarities by segmenting the records of customer database.

20 Chapter 2. Theoretical Background

Figure 2.10: Customer Segmentation

Source : https://www.nutshell.com/blog/market-segmentation

Chapter 3

Overview of the proposed methods

3.1 Linear Regression Models

3.1.1 Linear Regression

Amethod for modeling the connection that exists between an output variable(or a vector)

and one or more input variables(independent variables) is known as linear regression [27].

It is utilized in circumstances when it is anticipated that the relationship will be linear. The

mathematical formula for the simple linear regression, which has one variable serving as an

explanatory factor is:

ŷi = β0 + β1 ∗ xi + ϵi (3.1)

where ŷi is the dependant variable, xi is the independent variable, β0 is the intercept, β1 is the

slope and ϵi is the error/disturbance term, often called random noise, for instance i.Multiple

linear regression is the extension of the above, where we consider n observations of one

dependent variable and p explanatory variables. The basic multiple linear regression formula

is:

ŷi = β0 + β1 ∗ xi1 + β2 ∗ xi2 + . . .+ βp ∗ xip + ϵi (3.2)

for each observation i = 1, . . . , n

Simplified, the above equation can be written as:

ŷi = β0 +

p∑
j=1

(βj ∗ xij) + ϵi (3.3)

The model is validated by determining all of the relevant βj and β0 coefficients that min-

imize a cost function. To be more specific, the approach of least squares, which minimizes

21

22 Chapter 3. Overview of the proposed methods

the residual sum of squared errors (RSS), is the one that is used the most frequently in fitting

data.

RSS =
n∑

i=1

(ŷi − yi)
2 =

n∑
i=1

(yi −
p∑

j=1

(βj ∗ xij)− β0)
2 (3.4)

where ŷi are the predictions and yi are the true values.

3.1.2 Ridge Regression

The Ridge Regression approach applies the same line of reasoning as the standard least

squares method, but in addition, it includes a lambda regularization parameter in its analysis.

The lambda parameter has a value that is positive, and its purpose is to reduce the size of the

regression coefficients β of the linear model. This brings down the variance of the predictions

that are produced by the model, as well as the danger of overfitting [28]. At this point, the

objective is to minimize the loss function:

RSSridge =
n∑

i=1

(yi −
p∑

j=1

(βj ∗ xij)− β0)
2 + λ

p∑
j=1

β2
j (3.5)

Equation 3.5 becomes the same as Equation 3.4 when the lambda value is set to zero,

and at that point, we deal with the problem of normal least squares. When the value of the

lambda parameter increases, the size of the coefficients β decrease, and when the coefficients

β reach extremely low levels, the model loses its credibility of providing accurate predictions

(Underfitting) [28]. As a result, the value of the lambda parameter needs to be meticulously

chosen and placed at an ideal value. The name of the technique that RidgeRegression employs

in order to achieve the desired level of regularization is called L2 regularization [29].

3.1.3 Lasso Regression

The Lasso regression method, also known as the Least Absolute Shrinkage and Selection

Operator, is another variation of the normal least squares method. This method, like the Ridge

model, reduces the size of the regression coefficients b by using a regularization parameter

called lambda. However, the Lasso regression method encourages sparsity [30] by providing

a regularized feature selection [31], which translates to choosing the most significant ones

and ignoring the ones that do not have a major impact on the forecast. The following is the

loss equation that has to be minimized:

3.2 Support Vector Machines (SVM) 23

RSSlasso =
n∑

i=1

(yi −
p∑

j=1

(βj ∗ xij)− β0)
2 + λ

p∑
j=1

|βj| (3.6)

Everything that pertains to the lambda normalization parameter of the Ridge regression is

likewise applicable to the Lasso Regression. The primary distinction between the two models

is that Lasso model makes use of L1 regularization, whereas the Ridge model makes use

of the L2 regularization [29]. The size of the coefficients shrink by the regularization L2

process, but they are not driven to zero. In contrast, Lasso regularization L1 accomplishes

feature selection by excluding the coefficients for those attributes that have a minor impact

on the prediction [31].

3.2 Support Vector Machines (SVM)

Support Vector Machines are a type of supervised machine learning approach that may

be used for issues involving regression and classification. This method works by analyzing

data in order to find patterns in the data. Support Vector Machines were conceived by Cortes

and Vapnik in 1995 [32].

The calculation of a hyperplane of separation is the core concept of support vector ma-

chines (SVMs), which aims to maximize the margins between different data classes.It is gen-

erally agreed that support vector machines (SVMs) are among the most effective techniques

for the categorization and modeling of data. Nevertheless, despite the excellent performance

it offers, this method does have a few drawbacks. In particular, its performance on issues

involving more than two classes cannot be compared to the performance it has on problems

involving only two classes (binary classification). This is due to the fact that it employs an ap-

proximation technique to minimize complexity, which ultimately results in the model having

less effectiveness.

3.2.1 Linearly Separable Problems

Support Vector Support Engines can be used to solve a binary classification problem by

maximizing the distance between the nearest points in each class. The end outcome is the

discovery of a single unique divisive hyperplane that maximizes the margin throughout the

whole training dataset, hence attaining much improved classification performance.

24 Chapter 3. Overview of the proposed methods

Let us consider a set ofN sample pairs (input-output pairs) of a training set: {xi, yi}, i =

1, ..., N , where yi ϵ{−1,+1} and xiϵR2. We want to create a function f(x) that calculates y

at x.

f(x) = wτx+ b =

p∑
i=1

wixi + b (3.7)

wherewτx+b = 0 is our hyperplane (a line in this case) andw is the vector perpendicular

to the hyperplane as we can see in Figure 3.1.

Figure 3.1: Graphic representation of a support vector machine

Source : https://staesthetic.wordpress.com/2014/02/20/update-on-digit-recognizer-using-

svm-library/

The support vectors are the points closest to the hyperplane. This method aims at choosing b

and w so that the data can be described with the following inequations.

wτxi + b ≤ −1, with yi = −1 (3.8)

wτxi + b ≥ +1, with yi = +1 (3.9)

which can be written as

yi(w
τxi + b) ≥ 1 ⇒ yi(w

τxi + b)− 1 ≥ 0 (3.10)

3.2.1 Linearly Separable Problems 25

while the support vectors can be described by two hyperplanes (lines)

wτxi + b = −1 (3.11)

wτxi + b = +1 (3.12)

The distance between these two hyperplanes is equal to 2
||w||2 . The algorithm’s purpose is to

maximize this distance

max
2

||w||2
, subject to : yi(w

τxi + b)− 1 ≥ 0 (3.13)

or

min
||w||2

2
, subject to : yi(w

τxi + b)− 1 ≥ 0 (3.14)

Hard-Margin

In the case where classes are perfectly separable, the above solution works fine. However,

in most real-world problems some points belond to the wrong side of the hyperplane.

Soft-Margin

In order to tackle to aforementioned issue we introduce a set of “soft” variables ξ =

{ξ1, ξ2, ..., ξn} for the points in the wrong side [33]. This way we accomplish a partial relax-

ations of our limitations.

Similarly to what we did before the optimization function becomes:

min
||w||2

2
, subject to :

yi(w

τxi + b) ≥ 1− ξi

ξi ≥ 0∑N
i=1 ξi ≤ K

(3.15)

which can be rewritten as

min
||w||2

2
+ C

N∑
i=1

ξi, subject to :

yi(w
τxi + b) ≥ 1− ξi

ξi ≥ 0

(3.16)

26 Chapter 3. Overview of the proposed methods

Figure 3.2: Soft-Margin

Source : https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-

and-kernel-trick-4c9729dc8efe

where C is the regularization parameter giving more weight in minimizing the error. The

soft-margin approach can be seen in Figure 3.2.

3.2.2 Non-Linearly Separable Problems

We went through how SVMs may be used to tackle linearly separable issues in circum-

stances when the training data can be fully separated using a hyperplane (hard-margin SVM),

or at least with some points that have been incorrectly categorized (soft-margin SVM) [33].

In situations in which classes cannot be linearly distinguished in any way, support vector

machines can be expanded to handle the task. If this is the case, then we will need to use non-

linear functions in order to transfer the points in our data onto a new space that has a higher

dimension. The transformation into a space with a greater dimension can be accomplished by

the use of a technique known as the kernel trick (Figure 3.3). At this point, we will discuss one

of the most well-known kernels, which is called the Gaussian kernel [34], and it is described

by the mathematical relationship that is presented below:

ϕ(x, x′) = exp(−γ||x−x′||2) (3.17)

where ϕ is the kernel function that transforms a point x into x′ in the new space and γ > 0 a

3.3 Decision Trees 27

parameter controlling the width of the Gaussian distribution. Large γ causes overfitting while

small γ causes underfitting.

Figure 3.3: Non-linear SVM with the kernel trick

Source : https://www.researchgate.net/figure/Kernel-trick-ph-from-a-Input-Space-to-b-

Feature-Space-an-unsupervised-learning-approach_fig2_339097504

3.3 Decision Trees

Decision trees [35] are widely recognized as one of the most effective supervisedmachine

learning methods. It is a technique for building and approximately approximating functions

with outputs that can either be discrete or continuous values. This algorithm’s output is a tree

structure with nodes and branches (Figure 3.4) that describe the data as well as the rules that

were used to construct the tree (decision rules). Each internal node of the tree corresponds

to a value control condition of an attribute of the instances used in the construction of the

tree. Each branch moving away from a parent node (next level) refers to a different potential

value or range of values that have a similar class for the feature that was being checked on

that node. Moving onto the next level, the data is then segmented according to this attribute,

and this process is repeated until the algorithm reaches the outer nodes of the tree (leaves),

which correspond to the output values of the data.

The simplicity with which decision trees can provide a natural interpretation of the data

that are derived from them is perhaps the most significant benefit that they offer. The com-

putational cost of tree structures has a complexity O(logn) [36] in the case of binary trees,

which are the most frequent. This means that tree structures are not only easy to use and com-

prehend by the user, but also easy to construct. At each stage of the calculation, the optimal

attribute is chosen to be computed (which corresponds to a new node, one level below), and

28 Chapter 3. Overview of the proposed methods

only the data relating to that node, which is now the algorithm, is involved each time, rather

than the complete original dataset.

A principle from the field of information theory is used in the search procedure for the

ideal attribute. This is the Entropy [37] notion, which that measures the impurity or uncer-

tainty in a group of observations. It determines how a decision tree chooses to split data.

Entropy may be calculated using the following formula:

E = −
N∑
i=1

pi log2 pi (3.18)

where pi the probability of randomly selecting an instance in class i and N the number of

classes.

Entropy, of course, does not provide any information on whether or not the entropy of the

remaining data will change if the particular feature is chosen. As a result of this, the idea of

Information Gain [38] is presented. This concept illustrates whether or not the entropy of

training data will be decreased in the event that the next feature Ai is chosen from the set of

features Ai, ..., An. The formula for determining Information Gain looks like this:

IG(T,A) = E(T)−
∑
uϵA

|Tu|
T

∗ E(tu) (3.19)

where T is the target column, A is the variable we are testing and u each value in A.

If the feature Ai is selected to act as a separation variable, the information gain will, in

essence, result in a decrease in the amount of entropy in the entire data set. A increase in

the density of information and, as a result, a more “compact” representation of the data is

achieved through the reduction of entropy. In reality, the second term of the above relation

3.19 provides the entropy of the data after it has been separated depending on the specific fea-

ture that will be used. Therefore, the information gain for each candidate attribute is computed

at each node, and the attribute that consistently yield the maximum overall gain is chosen as

the winning candidate.

3.4 Bagging and Boosting Algorithms 29

Figure 3.4: Decision Tree example

3.4 Bagging and Boosting Algorithms

3.4.1 Bagging

TheBootstrapAggregating (Bagging) [39] approach is utilized in an effort to improve the

stability and precision of machine learning algorithms that are employed in regression and

classification. It is a “voting” approach, in which weak learners are diversified by training

them in training sets of data that fluctuate very little from one another.

With the Bootstrap method we have L samples with replacement of our original training

set. Take into consideration the following example in order to comprehend this idea. Let’s

say we have a box with N balls of varying colors at our disposal. The next step is to pick an

item at random from among them, record its color, place it back in the box and repeat for N

times (size of training set). As a consequence of this, certain observations may be selected

more than once, while others may not be selected at all. In order to make use of these different

variations of data, the base regressor or classifier has to be weak. This ensures that evenminor

shifts in the data used for training can result in significant shifts in the output. Unless they are

weak learners, we will end up with a combination of classifiers or regressors that are nearly

identical to one another. The most popular weak learners are decision trees.

Bagging Algorithm :

• Consider a training set with N observations and t samples with replacements.

1. Take a sample with replacement of size N from the training set

2. Apply the weak learner algorithm on it

3. Save the model

30 Chapter 3. Overview of the proposed methods

• For each of the t models (classification case):

1. Predict class

2. Return the class with most predictions

In Figure 3.5 we can see how the workflow for the bagging algorithm in the classification

case.

Figure 3.5: Bagging Algorithm for Classification

Source : https://corporatefinanceinstitute.com/resources/knowledge/other/bagging-

bootstrap-aggregation/

3.4.2 Random Forest

The Bagging approach [39] discussed previously is what makes the Random Forest al-

gorithm [40] innovative and differentiates it from simple decision trees. The algorithm that

is utilized throughout the training process is referred to as the base classifier, and in the case

of Random Forest, the Decision Tree is utilized. In the following stage, the findings from

this step are compared to the results from the previous step in order to determine which one

is the most appropriate. In the case of issues involving classification, the results are deter-

mined via the use of the voting technique, but in the case of problems involving regression,

the results are often determined by the calculation of an average. In general, one may utilize

a variety of statistical approaches in order to compare the findings. The nature of the issue

being considered will determine which one of these solutions is applicable.

The ultimate purpose of the random forest technique is to lessen the impact of the bagging

variance by lowering the correlation levels between individual trees. Wemay accomplish this

by picking the input variables in a random order. To be more specific, after expanding a tree

3.4.2 Random Forest 31

in the bootstrapped set and prior to each separation, we randomly choose m of the total p

input variables, wherem ≤ p, to serve as candidates for separation.

The implementation algorithm for the Random Forest method, which is depicted in Figure

3.6, is as follows:

for b = 1, ...,B

1. Create a bootstrap sample C with size N from the training set

2. We generate a random tree, Tb, using our data until the required number of nodes,

nmin, is attained. This is done by selecting m out of p variables and picking the most

appropriate ones.

3. Create the random trees
[
Tb

]B
1

4. • Regression:We have f̂(x) = 1
B

∑B
b=1 Tb(x)

• Classification:We have Ĉ(x) = majorityvote
[
Ĉb(x)

]B
1

Figure 3.6: Random Forest

Source : https://ai-pool.com/a/s/random-forests-understanding

32 Chapter 3. Overview of the proposed methods

3.4.3 Boosting

Boosting techniques construct many models from a single piece of data by utilizing other

methods of model construction, such as decision trees, which may not always result in an

extremely accurate model [41]. The fundamental premise of boosting is to assign a weight to

each observation that makes up the data collection. If some of the models wrongly classifies

the observation, the weights assigned to them are increased.

The relative weights given to the data tend to move in both positive and negative direc-

tions when one model gives way to the next. Because the final model is cumulative and is

composed of a series of models, each of the preceding models now has a degree of signif-

icance as a result (Figure 3.7). The boosting approach has several benefits, one of which is

that it takes very little adjustment, and another is that the only assumption we have to make

about base model is that it should be a weak learner. The drawback of boosting is that it is

sensitive to random errors and can fail either when there is insufficient data or when the weak

models are excessively complicated.

In order to put the method to use, one must first provide satisfactory responses to a pair

of fundamental inquiries. Two questions need to be answered: the first is how each weak

classifier/regressor should be picked, and the second is how, after multiple of these weak

learners have been collected, they may be combined into a single model.

Figure 3.7: Boosting

Source : https://towardsdatascience.com/boosting-algorithms-explained-d38f56ef3f30

3.4.4 Boosting Algorithms

Wewill briefly refer to the twomost popular boostingmachine learning algorithms: Adap-

tive Boosting (AdaBoost) and Extreme gradient boosting (XGBoost) .

3.5 K-Nearest Neighbours (KNN) 33

• Adaboost: Adaptive Boosting, often referred to as AdaBoost is an ensemble learn-

ing procedure that ameliorates weak regressors/classifiers by making use of their mis-

takes during training. In order to achieve that improvement AdaBoost uses an iterative

method. Another name for this concept is called meta-learning [42]. The method used

by Adaboost is called “Sequential ensembling” [43], while in the previously discussed

Random forest technique it is called “Parallel ensembling” [44]. This method is able

to produce a powerful learner by merging a large number of weal learners with low

performance to achieve high accuracy. Considering the above, AdaBoost is referred

to as an adaptive regressor/classifier since it considerably improves the efficiency of

the process. The only drawback to that algorithm is its sensitivity to noise and outliers

which might cause overfitting. The most ideal and common use of AdaBoost is with

decision trees as a base model.

• XGBoost: Similarly to the Random Forest algorithmmentioned earlier in our research,

Gradient Boosting is an ensemble algorithm that constructs the final model by combin-

ing a sequence of weak learners, most frequently decision trees. The gradient is utilized

in order to achieve the goal of minimizing the loss function, which is analogous to how

gradient descent is used to optimize weights in deep learning (neural networks) [45].

XGBoost is a gradient boosting algorithm that takes into consideration more precise

estimates when selecting whichmodel is more accurate. In order to decrease overfitting

an enhance the model’s generalization and its performance it computes advanced regu-

larizations (L1, L2) [29] mentioned previously in Ridge/Lasso Regression. At the same

time in order to minimize the loss it computes second-order gradients [46]. XGBoost

is easy to comprehend and can successfully manage datasets of a large scale.

3.5 K-Nearest Neighbours (KNN)

The K-nearest neighbours (KNN) approach is a regression and classification strategy that

is quiet widespread and frequently utilized. It is based on the utilization of distance-based

metrics [47] [48]. It works on the assumption that the training set contains not only the input

data(features), but also the desired target for each individual element. This is because KNN

is a supervised learning approach. In order to place each newly given observation into the

appropriate class(classification case), it is required to do a distance calculation between the

34 Chapter 3. Overview of the proposed methods

observation and every other element in the training set. In the end, the item is classified

according to the k closest observation or in the regression case based on the average of its k

neighbours.

The k-nearest neighbours approach is considered an instance-based learner [49], which

means that learning is determined by analogy, rather than a generalized model like it is done

in decision trees. Therefore, in the case of KNN, the concept of a “training step” does not

exist and no model is formed until a new observation needs to be predicted. Instance-based

learners are sometimes referred to as “lazy algorithms” for this reason. This process involves

the retention of a large portion of the training set, since in order to estimate a new element

previous observations of the training set are used to make the necessary comparisons; in

comparison to SVMs, which we previously discussed about, where unnecessary observations

that do not provide support can be easily disregarded.

The K-nearest neighbours(KNN) approach has a number of benefits, some of which in-

clude the capability of efficiently identifying complicated connections between variables, the

ease with which it may be implemented and utilized and the typically high performance in

regression and classification problems. The fact that numerous comparisons between obser-

vations are necessary, on the other hand, demands the use of correspondingly highly effective

indexing techniques. Failing to do so will cause the algorithm to take significantly more time

to perform the prediction, particularly in circumstances where the number of neighbours is

large. In addition, the outcome is sensitive to the presence of input features with no impor-

tance as well as the number of neighbours, which increases the danger of overfitting.

As was noted, the fundamental concept underlying the KNNmethod is that any element’s

outcome is predicted according to the elements that are closer to it. To achieve this objective,

distance measurements can be applied in order to quantify the degree of similarity that exists

between the various observations that make up the dataset. The following are the kinds of

distances that are utilized more frequently to measure the similarities of data points.

• Euclidean Distance:
√∑n

i=1(xi − yi)2

• Manhattan Distance:
∑n

i=1 |xi − yi|

• Minkowski Distance: (
∑n

i=1 |xi − yi|p)
1
p

3.6 K-Means Clustering 35

We can see an example of the KNN approach in Figure 3.8 , where we try to classify

the “star” observation using k = 5 neighbours. Three neighbours are “circles” and two are

“squares” and so we classify it as a “circle”.

Figure 3.8: K-Nearest Neighbours example with k=5

3.6 K-Means Clustering

Clustering is primarily an unsupervised learning strategy that seeks to group observations

based on a similarity index so that those who exhibit the most similarity are in the same group

(cluster). Clustering techniques may be broken down into several groups that were mentioned

in 2.3.1. The most popular of all clustering algorithms and the one used most frequently is

K-means clustering.

K-means clustering is a method of vector quantization that was originated from signal

processing and is utilized relatively frequently in the field of data science for the purpose of

cluster analysis [50]. The objective is to divide the total number of observations, n, into k

clusters, where k is a predefined number. The primary goal here is to establish k centers, one

of which should correspond to each of the clusters. Therefore, each observation is though to

belong to the cluster that contains the closest center.

Due to the fact that different settings create varying outcomes, these centers have to be

positioned in the most optimal manner conceivable. Because of this, the most effective strat-

egy is to put as much distance as possible between them. The Euclidean distance is usually

used in the calculation of the distance between observations. The following step is to deter-

mine which center is closest to each observation that is part of our dataset. The initial stage

of the algorithm, known as the main grouping is considered to have been finished when there

are no points left for matching.

36 Chapter 3. Overview of the proposed methods

After that, the new centers need to be recalculated as gravitational centers of the clusters

that were produced in the previous phase [51]. Therefore, in the instance that these k new

cluster centers are computed, a fresh match has to be formed between the data points and the

new cluster centers that are relatively closest to them. This phase is repeated and the centers

of the k clusters are constantly changing until they converge at the optimal points. That is,

until they cease making major improvements, at which point we should move on.

The evaluation of optimization is essentially comprised of nothing more than the process

of minimizing an objective function, which is also referred to as the sum of squared errors

(SSE) which is represented by the following relation:

SSE =
c∑

i=1

ci∑
j=1

(||xi − yj||)2 (3.20)

where ||xi − yj|| is the Euclidean distance between xi which represents the points of the

cluster and yi which represents the center of the cluster, ci is the number of data points in

cluster i and c is the total number of cluster centers.

In Figure 3.9 we can see an example of how data looks before and after k-means clustering

(k=3).

Figure 3.9: K-means clustering

Source : https://h1ros.github.io/posts/k-means-clustering/

Chapter 4

Data

4.1 Dataset

The data are obtained from UCI Machine Learning Repository, which is a free collec-

tion of databases, domain theories, and data generators that are used by the machine learning

community for the empirical analysis of machine learning algorithms[52]. This Online Re-

tail dataset contains all the transactions occurring for a UK-based and registered, non-store

online retail between 01/12/2009 and 09/12/2011. Our dataset contains 1.044.848 rows and

8 columns. In Figure 4.1 we can see a sample of our dataset.

Attribute Information:

• Invoice: Invoice number.Nominal, a 6-digit integral number uniquely assigned to each

transaction. If this code starts with letter ’c’, it indicates a cancellation.

• StockCode: Product (item) code. Nominal, a 5-digit integral number uniquely as-

signed to each distinct product.

• Description: Product (item) name. Nominal.

• Quantity: The quantities of each product (item) per transaction. Numeric.

• InvoiceDate: Invoice Date and time.Numeric, the day and time when each transaction

was generated.

• UnitPrice: Unit price. Numeric, Product price per unit in sterling.

37

38 Chapter 4. Data

• CustomerID: Customer number. Nominal, a 5-digit integral number uniquely as-

signed to each customer.

• Country: Country name. Nominal, the name of the country where each customer re-

sides.

Figure 4.1: Sample of our dataset

4.2 Data Pre-processing

4.2.1 Exploratory Data Analysis (EDA)

During EDA we attempt to gain a better understanding of our data by making use of the

pandas [53] library, which is an effective and versatile tool for data analysis and manipula-

tion, and the plotly[54] library, which will allow us to visualize our data through the use of

interactive high-quality graphs such as bar-charts, pie-charts, scatter plots, etc.

First and foremost, the first thing that we do is get some fundamental information about our

data. To be more precise, we will go over some of our features in order to uncover hidden pat-

terns in data or spot anomalies, both of which can assist us in gaining a deeper understanding

of our data.

Invoice

The values in this column, which were described before in Section 4.1, are six-digit inte-

gers that represent each transaction. According to the data shown in Figure 4.2 , the majority

of the transactions are carried out in the United Kingdom. However, since a single invoice

might include a large number of products, so we need to look at the number of unique invoices

for each country, which is shown in Figure 4.3.

4.2.1 Exploratory Data Analysis (EDA) 39

Figure 4.2: Number of Invoices by Country

Figure 4.3: Number of Unique Invoices by Country

One thing that stands out is the amount of invoices in the UK. The Tables 4.1 and 4.2 are

numerical representations of the graphs that were shown before; they highlight the monopoly

that the UK market has in our data.

40 Chapter 4. Data

Table 4.1: Number of Invoices by Country

Country Number of Invoices Percentage

UK 959983 91.88%

EIRE 17689 1.69%

Germany 17363 1.66%

Total = 1044848

Table 4.2: Number of Unique Invoices by Country

Country Number of Unique Invoices Percentage

UK 49108 91.57%

Germany 1096 2.04%

EIRE 806 1.50%

Total = 53628

Additionally, some of our invoices start with the letter ’C’ or the letter ’A’, which corre-

spond to cancelled or abandoned order respectively. In Figure 4.4 we can see that the percent-

age of invoices which are either cancelled or abandoned is insignificant compared to normal

invoices.

Figure 4.4: Cancelled/Abandoned Invoices vs Normal Invoices

4.2.1 Exploratory Data Analysis (EDA) 41

Quantity

The quantity attribute indicates the number of times a certain product was bought during

a particular transaction. This number should never be lower than 0 from a logical standpoint.

However, if we look at Figure 4.5, we can see that the value of quantity is negative in some

cases. It is clear to us that in each of these instances, either the order was canceled or the

Customer_ID is not available. The proportion of rows in which the ’quantity’ is less than

zero is shown in Figure 4.6. As expected, the percentage of these instances is similar to that

of cancelled orders.

Figure 4.5: Sample of data with negative values in “Quantity”

Figure 4.6: Percentage of negative values in “Quantity”

In our analysis of Quantity feature we came across rows where we have missing values

in Customer_ID. In Figure 4.7 we can see the missing values for all of our features. What

we observe is that Customer_ID has a considerable amount of missing entries. To be more

specific we can refer to Table 4.3.

42 Chapter 4. Data

Figure 4.7: Missing values in each attribute

Table 4.3: Number of Missing values

Feature Number of Missing values Percentage

Customer_ID 235287 22.52%

Description 4275 0.4%

One last significant detail that we should discover about our data is the total number of

unique clients that are exist as well as the distribution of these customers throughout the

various countries. Similar to what we did for Invoice Figure 4.8 and Table 4.4 provide us

with the aforementioned information.

Table 4.4: Unique Customers by Country

Country Number of Unique Customers Percentage

UK 5410 91.05%

Germany 107 1.80%

France 95 1.56%

Total = 5942

4.2.2 Data Cleaning 43

Figure 4.8: Unique Customer by Country

4.2.2 Data Cleaning

The procedure of “data cleaning” refers to the act of preparing our data for further analysis

by removing information that is either incorrect or irrelevant [55]. To be more specific, this

pertains to information that we feel will have a negative impact on the accuracy of our models.

The exploratory study that we carried out in Section 4.2.1 served mostly as preparation for

the following work.

The steps for cleaning our data are:

• Removing rows with “Invoices” that begin with with ’A’ or ’C’.

We saw before that these entries refer to only 1.83% of our data. At the same time we

do not believe that abandoned or cancelled orders at such a small percentage add any

value to our data. On the contrary they could create noise/anomalies that could affect

the efficacy of our models, so we decide to remove them.

• Removing rows with “Quantity” that are less than 0.

For the same reasons, since the percentage of rows that the “Quantity” value is less

than 0 is very small, to be precise 2.16%, we remove these rows as well.

• Removing rows where “Customer_ID” is not available.

Previously, we saw in Table 4.3 that almost one fourth of our data (22.52%) does not

have a value for “Customer_ID”. We are unable to proceed with the data in its current

44 Chapter 4. Data

state since the issues that we will be addressing are related to Customers. Shifting these

transactions to other consumers is one possibility. However, something like that might

cause the conclusions we take from the data to be flawed, so we choose to exclude

them.

• Isolation of UK market.

In observed in Figures 4.3, 4.8 and Tables 4.1, 4.4 most of our invoices and customers

are in the United Kingdom. Since more than 90% of both clients and transactions are

in the UK, we believe that the impact of removing all other Counties is insignificant

and focusing on the UK market will make our data more homogeneous and remove

probable anomalies that could appear in transactions made in other countries.

In Table 4.5 we can see the results of our data cleaning procedure.

Table 4.5: Data after cleaning

Before After

N_rows 1.044.848 711.928

Customers 5942 5353

4.3 Feature Engineering

Feature engineering is the procedure of modifying raw data into features that better de-

scribe the underlying problem to our machine learning models, which ultimately results in

enhanced performance [56]. To put it another way, the process of making our data more

transparent. However, this is a challenging task because different problems call for a differ-

ent approaches.

In our situation, feature engineering is of utmost significance. At this point, our dataset

has 711.928 records, however there are only 5353 unique customers. Ultimately , wewant to

convert the data that we now have into a new dataframe, in which every entry will represent

a different customer (5353 rows). We need to design new features for each customer by

utilizing the data that is already accessible in order to get the outcome that we want.

4.3.1 RFM analysis 45

4.3.1 RFM analysis

RFM analysis is a marketing strategy that is used to statistically rank and categorize

clients based on the recency, frequency, and monetary total of their transaction records [57].

This is done in order to determine which customers are the most valuable and to carry out

tailored marketing campaigns.

In order for us to acquire a better understanding of the RFM analysis and our new features,

we need to examine what each of them represents and how to compute them.

• Recency: Recency simply refers to the number of days that have gone since the last

purchase of a client. To compute Recency we have to subtract the date of the last order

from the last day of our data, which we use as a reference date for all customers.

Recency = Latest_Date− Last_Purchase_Date (4.1)

• Frequency: Frequency is the number of orders a customer has completed in their time

engaged with a business.

Frequency = Number_Of_Orders (4.2)

• Monetary: Monetary reflects to the total amount each client has spent for all their

transactions.

Monetary = Total_Money_Spent (4.3)

After creating these new features and transforming our data so that each row represents

each client, our data has the form depicted in Figure 4.9.

Figure 4.9: Newly formed dataframe

46 Chapter 4. Data

4.3.2 Additional Features

On top of our RFM features and with the help of them, we will create some additional

features that will believe will enhance the performance of our models. These new attributes

are:

• Time_engaged: This feature provides information on the number of days that a client

has been involved with the business. In the context of recency, we were interested in

finding out how much time had passed since the client’s most recent order. In the same

vein, we count the number of days that have gone since the first order.

Time_engaged = Latest_Date− First_Purchase_Date (4.4)

• Active_period:Another“time” characteristic that will be included in our final dataframe

is the amount of time that has passed between the first order placed by each customer

until their most recent order.

Active_period = Last_Purchase_Date− First_Purchase_Date (4.5)

• Time_between: Here, we develop a new feature that, gives us information on the av-

erage amount of time that has elapsed between consecutive orders for each individual

client.

Time_between =
Active_period
Frequency

(4.6)

• Average_transaction_value: In addition to the characteristics that were just stated that

are focused on time, we are going to include a feature that displays the mean amount

of money that each individual client has spent in each transaction.

Average_transaction_value =
Monetary

Frequency
(4.7)

Chapter 5

Approach A: Experiments and Results

5.1 Individual Approach

First, we will make an effort to estimate CLV for each one of our unique customers by

making use of machine learning approaches. Due to the fact that the majority of study focuses

on customer segmentation and aggregate CLV, this is a notion that is not commonly employed

in the associated work that has been undertaken. Nevertheless, we think that this kind of

strategy might be useful, particularly for smaller organizations who have a limited number

of clients and are eager to calculate the worth of each one of those clients individually. That

way businesses are able to design tailor-made marketing campaigns to raise their CLV in the

future.

Ideally, in order to implement such an approach, we would prefer our data to have a target

column that contains the CLV generated by the business. On this basis, we would be able to

easily carry out experiments using the proposed regression models discussed in Chapter 3.

Unfortunately, such a column is not provided in our current data. In order to proceed, we will

begin by generating a pseudo-target column that will represent CLV.

Although this target variable is custom-made, we want it to be somewhat realistic but at

the same time to contain the element of randomness so that our models will not easily recog-

nize a pattern. The CLV will be calculated with the following equation for each customer:

CLV = Gross_Profit−Penalty ∗Months_of_Inactivity (5.1)

where

47

48 Chapter 5. Approach A: Experiments and Results

Gross_Profit = random{35%− 65%} ∗Revenue (5.2)

,

Penalty = random{1%− 5%} ∗Revenue (5.3)

and

Months_of_Inactivity =
Average_Time_Between_Consecutive_Orders

30
(5.4)

With that said, our dataset before moving to our experiments has the form depicted in Figure

5.1.

Figure 5.1: Dataframe with CLV target column

5.2 HyperParameter Tuning

5.2.1 Data Separation

Before continuing any further with the analysis, we first need to divide the original data

into three distinct subsets, which will be referred to as the training, validation and test sets

respectively. In order to do that we utilize the scikit learn library. To illustrate this process we

can refer to Figure 5.2.

The test set is usually refereed to as a hold-out set, since we use it at the end in order to

see how our model performs on unseen data. The rest of the data is split into training and

validation sets. The reason the validation set exists is to evaluate the performance of our

model during training before using it on the test set.

5.2.2 Cross-Validation 49

Figure 5.2: Train-Validation-Test split

Source : https://datascience.stackexchange.com/questions/61467/clarification-on-train-test-

and-val-and-how-to-use-implement-it

However, the performance metrics of the models are extremely dependant exclusively on

these two chunks of data. They are only trained and assessed once, hence their performance

is dependant on a single assessment. This procedure frequently results in overfitting, which

means that we place and excessive amount of emphasis on training our models so that they

perform well on the validation set but perform badly when applied on unseen data (hold-out

set). A good solution could be to train and evaluate on several subsets of the same data and

look at the average performance.

5.2.2 Cross-Validation

The solution to the aforementioned issue is Cross-Validation. The dataset is divided at

random into sets for the purposes of cross-validation. One of these sets is designated as the

test set an the remaining sets are used to train the model. After doing these steps several times

with each of the sets serving as the test set, the final model is constricted by taking the average

of all the models.

One of the most frequently methods of cross-validation is k-fold cross validation, where

k indicates the number of folds in the dataset.

We begin the k-fold cross-validation process by isolation a test/hold-out set from the

dataset. This test/hold-out set will be used for the final assessment of our models after they

are complete. The data remaining, which includes everything besides the hold-out set, is

divided into the specified number of folds(subsets), which is denoted by k. After that, the

50 Chapter 5. Approach A: Experiments and Results

cross-validation iterates through the folds, and at each iteration, one of the k-folds is used

as the validation set, whereas the remaining are used as the training set. This technique is

performed as many times as necessary until each fold has served as a validation set. In Figure

5.3 we can see the procedure carried out for a 5-cross-validation.

Figure 5.3: 5-fold Cross-validation

Source : https://scikit-learn.org/stable/modules/cross_validation.html

5.2.3 Grid-Search

The grid-search technique is the most straightforward for adjusting hyperparameters. In

essence, we create a discrete grid by partitioning the space occupied by combination of these

grid’s values a chance while simultaneously utilizing cross-validation to compute various per-

formance indicators. The ideal combinations of values for the hyperparameters may be found

at the place on the grid that maximizes the average value obtained from the cross-validation

process. Grid-search is an extensive technique that covers all of the possible combination

points, which enables it to locate the most advantageous location inside the domain. How-

ever, the fact that it moves at such a snail’s pace is a significant drawback. Checking each and

every possible combination of the are involves a significant amount of time, which is not al-

ways available. At the same time, since we evaluate our points using k-fold cross-validation,

which takes k training steps, the time needed is even more. Grid search, on the other hand, is

an excellent concept to consider if the goal is to find the optimal combination of values for

the hyperparameters.

5.3 Experiments and Results 51

In order to perform Grid-Search we utilize the scikit-learn library; in particular the Grid-

SearchCV() function [58], that takes as parameters the model, the parameter grid (list of val-

ues to explore for the hyperparameters), the score/loss function, but also the cross-validation

strategy which we previously define using the KFold() function [59] of the scikit-learn li-

brary.

5.3 Experiments and Results

Before starting to experiment with our machine learning models analyzed extensively in

Chapter 3, we first have to split our data into training and test sets. To do that we utilize

the train_test_split() function [60] of the scikit-learn library. We split our 5353 customers

into 4500 (training) and 853 (test) which is equal to 16% of the total customers. In order to

evaluate our models we need a metric that is ideal for our problem. Since we want to predict

CLV, which basically corresponds to an amount of money, we will useMAE.

MAE =

∑n
i=1 |yi − xi|

n
(5.5)

where yi the prediction value and xi the true value. MAE here indicates the amount of money

± x we are off in our prediction.

5.3.1 Linear Regression

We implement Linear Regression utilizing the scikit-learn library and more specifically

the Linear_Regression() function [61]. Furthermore, we apply a 5-fold cross-validation with

Folds of 900 values. The average MAE of the cross-validation is 69.84. After evaluating on

the hold-out set the MAE is 78.85. Table 5.1 shows the results.

Table 5.1: Linear Regression Results

Linear_Regression cross-validation hold-out set

MAE 69.84 78.85

52 Chapter 5. Approach A: Experiments and Results

5.3.2 Ridge Regression

We implement Ridge Regression utilizing the scikit-learn library and more specifically

the Ridge() function [62]. Furthermore, we apply a 5-fold cross-validation with Folds of 900

values. To find the optimal hyperparameter alpha, we grid-search multiple values from 0 to

1000. The average MAE of the cross-validation is 71.68 and the best alpha is 100. After

evaluating on the hold-out set the MAE is 72.94. Table 5.2 shows the results.

Table 5.2: Ridge Regression Results

Ridge_Regression cross-validation hold-out set

MAE 71.68 72.94

5.3.3 Lasso Regression

We implement Lasso Regression utilizing the scikit-learn library and more specifically

the Lasso() function [63]. Furthermore, we apply a 5-fold cross-validation with Folds of 900

values. To find the optimal hyperparameter alpha, we grid-search multiple values from 0 to

1000. The average MAE of the cross-validation is 71.68 and the best alpha is 100. After

evaluating on the hold-out set the MAE is 72.94. Table 5.3 shows the results.

Table 5.3: Lasso Regression Results

Lasso_Regression cross-validation hold-out set

MAE 70.08 67.69

5.3.4 Decision Tree Regression

We implement Decision Tree Regression utilizing the scikit-learn library andmore specif-

ically theDecisionTreeRegressor() function [64]. Furthermore, we apply a 5-fold cross-validation

with Folds of 900 values. To find the optimal hyperparametersmax_depth andmin_samples_leaf,

we grid-search multiple values from 0 to 100 and from 0 to 20 respectively. The averageMAE

of the cross-validation is 89.39, the best max_depth is 30 and the best min_samples_leaf is

3. After evaluating on the hold-out set the MAE is 82.78. Table 5.4 shows the results.

5.3.5 Random Forest Regression 53

Table 5.4: Decision Tree Regression Results

Decision_Tree_Regression cross-validation hold-out set

MAE 89.39 82.78

5.3.5 Random Forest Regression

We implement RandomForest Regression utilizing the scikit-learn library andmore specif-

ically the RandomForestRegressor() function [65]. Furthermore, we apply a 5-fold cross-

validation with Folds of 900 values. To find the optimal hyperparameter n_estimators, we

grid-search multiple values from 0 to 100. The average MAE of the cross-validation is 85.14,

the best n_estimators is 35. After evaluating on the hold-out set the MAE is 47.17. Table 5.5

shows the results.

Table 5.5: Random Forest Regression Results

Random_Forest_Regression cross-validation hold-out set

MAE 85.14 47.17

5.3.6 XGBoost Regression

We implement XGBoost Regression utilizing the scikit-learn interface of the XGBoost

Python Package and more specifically the XGBRegressor() function [66]. Furthermore, we

apply a 5-fold cross-validation with Folds of 900 values. To find the optimal hyperparameter

n_estimators, we grid-search multiple values from 0 to 100. The average MAE of the cross-

validation is 143.39, the best n_estimators is 45. After evaluating on the hold-out set theMAE

is 80.81. Table 5.6 shows the results.

Table 5.6: XGBoost Regression Results

XGBoost_Regression cross-validation hold-out set

MAE 143.39 80.81

5.3.7 Overall

To summarize the above we can refer to Table 5.7

54 Chapter 5. Approach A: Experiments and Results

Table 5.7: Overall Regression Results

MAE

Models cross-validation hold-out set

Linear_Regression 69.84 78.85

Ridge_Regression 71.68 72.94

Lasso_Regression 70.08 67.69

Decision_Tree_Regression 89.39 82.78

Random_Forest_Regression 85.14 47.17

XGBoost_Regression 143.39 80.81

What we observe from our experiments is that from the linear models, Lasso_Regression

has the lowest MAE with 67.69 on average. From all the models Random_Forest performs

the best, predicting the CLV of customers with an average MAE under 50.

Chapter 6

Approach B: Experiments and Results

6.1 Customer Segmentation Approach

We previously discussed the individual approach, where we dealt with a regression prob-

lem in an effort to predict the CLV for each one of our customers. We mentioned that this

strategy is ideal for small businesses that do not have a large number of customer and want

to approach each customer in a unique way. However, most companies with bigger clientele

cannot follow this strategy. Therefore, they have to perform Customer Segmentation in order

to group these customers based on some features. In order to create these clusters we will use

an unsupervised machine learning technique called K-means , which we discussed earlier in

Chapter 3. After creating these clusters we attempt to go one step further in our analysis and

use these clusters as labels in our data and perform classification experiments using, at this

stage, supervised machine learning models in an effort to classify customers in the correct

clusters.

6.2 Clustering

The amount of different clusters that our consumers will be placed in will need to be

decided upon before we can go on to the k-means clustering method. We employ the Elbow

Method, which is a method for identifying the ideal number of clusters in k-means clustering,

in order to do this. In Figure 6.1, we can see a graph in which the x-axis shows the number

of clusters and the y-axis represents the inertia, which is a measurement of how successfully

a dataset was clustered using k-means. It is calculated as the sum of the squared distances

55

56 Chapter 6. Approach B: Experiments and Results

between each sample and their centroids, like we mentioned in Equation 3.20. A model that

has a low inertia and a small number of clusters is considered to be ideal. On the other hand,

this is a trade-off, because as k increases, inertia decreases. We utilize the elbow method to

get the best value for k, which implies that we search for the value of k at which the rate of

inertia reduction begins to slow down (elbow point).

Figure 6.1: Elbow Method

In the above graph we can see that inertia decreases a lot until k = 3 where it begins to

slowly drop as we increase the number of clusters. For that reason we choose to continue our

analysis with 3 clusters.

We implement K-means clustering utilizing the scikit-learn library and more specifically

the KMeans() function [67]. After this process we have the following clusters:

• Cluster 0:
1420

5353
= 26.53% of total customers.

• Cluster 1:
1875

5353
= 35.03% of total customers.

• Cluster 2:
2058

5353
= 38.44% of total customers.

The aforementioned results can also be visualized in Figure 6.2.

6.2 Clustering 57

Figure 6.2: Clusters

We create a new feature in our data to store the cluster to each customer and we name it

Cluster_ID. We can see the new dataframe in Figure 6.3.

Figure 6.3: Dataframe with Clusters

The next step is to understand what these clusters mean. In particular, we would like to

see which cluster represents which kind of customer. To do that we look at the RFM metrics

of the Clusters in Figure 6.4.

What we observe is the following:

• Cluster 0: Low Recency, High Frequency, High Monetary

• Cluster 1: High Recency, Low Frequency, Low Monetary

58 Chapter 6. Approach B: Experiments and Results

Figure 6.4: RFM of Clusters

• Cluster 2: Average Recency, Average Frequency, Average Monetary.

which means that Cluster 0 represents the Best Customers, Cluster 1 represents the Bad

Customers and Cluster 2 represents the Average Customers.

6.3 Classification Performance Metrics

6.3.1 Confusion Matrix

Usually, the performance of classification models is evaluated using a Confusion Matrix.

In the simple case of two classes (Positive, Negative) the confusion matrix is like in Table

6.1.

Table 6.1: Confusion Matrix

Predicted

Positive Negative

Positive True Positive False Negative
Actual

Negative False Positive True Negative

where

• True Positive (TP): the observations predicted as positive and were indeed positive.

• True Negative (TN): the observations predicted as negative and were indeed negative.

6.3.2 Multi-Class Confusion Matrix 59

• False Positive (FP): the observations predicted as positive and were actually negative.

• False Negative (FN): the observations predicted as negative and were actually posi-

tive.

The table can be normalized such that it contains percentages in addition to the number of

observations, as seen above. In light of this, TP and TN will be stated as the percentages of

the correct categories, and FP and FN will be expressed as the percentages of the wrong clas-

sifications. The following metrics of evaluation are able to be derived from the data included

in the Confusion Matrix:

• Accuracy: It is the most common metric when evaluating a machine learning model

and it describes the percentage of correct predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

• Precision: Describes the probability of the correct classification of a positive observa-

tion. Specifically, it is the ratio of observations correctly classified in label “positive”

to all observations classified in that label.

Precision =
TP

TP + FP
(6.2)

• Recall: It describes the percentage of accurate predictions for our positive observa-

tions. In particular, it is the ratio of observations correctly classified in label “positive”

to all observations that belong in that label.

Recall =
TP

TP + FN
(6.3)

• F1-Score: It is the harmonic mean between recall and precision.

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
(6.4)

6.3.2 Multi-Class Confusion Matrix

In the event that the data may be classified into more than two classes, the value in each

cell (i, j) if the Confusion Matrix (Figure 6.5) represents the number of observations from

class i that were classified in class j. The number of successfully classified observations

60 Chapter 6. Approach B: Experiments and Results

Figure 6.5: Multi-class Confusion Matrix

is represented in the table by the diagonal elements, where (i = j), whereas the number of

observations that were not correctly classified is represented by the reminder elements, where

(i ̸= j).

Calculation the evaluation metrics for a multi-class classification problem can be done

for each class individually, but also as an average that reflects the performance of the model,

using the micro and macro formulas [68]. When computing macro formulas all the classes are

considered equal, whereas in micro formulas more weight is given to classes with the most

elements. Therefore, in cases where the samples are imbalanced we prefer micro formulas.

The following are the types of evaluation metrics we mentioned above.

• Average Accuracy:

Average Accuracy =
1

N

N∑
i=1

TPi + TNi

TPi + FPi + TNi + FNi

(6.5)

• Precision:

Macro_Precision =
1

N

N∑
i=1

TPi

TPi + FPi

(6.6)

Micro_Precision =

∑N
i=1 TPi∑N

i=1(TPi + FPi)
(6.7)

6.4 Classification Experiments and Results 61

• Recall:

Macro_Recall =
1

N

N∑
i=1

TPi

TPi + FNi

(6.8)

Micro_Recall =

∑N
i=1 TPi∑N

i=1(TPi + FNi)
(6.9)

• F1-score:

F1− score(macro or micro) =
2 ∗ Precision ∗Recall

Precision+Recall
(6.10)

6.4 Classification Experiments and Results

In this section we will evaluate various classification models, similar to what we did in

Chapter 5. Similarly, we split our 5353 customers into 4500 (training) and 853 (test). Then

we apply a 5-fold cross-validation with Folds of 900 values in our models and grid-search to

find the best hyperparameters that minimize the accuracy of our classification models. For

each of our models we will measure the accuracy based on the confusion matrix, but at the

same time we will explore in detail the misclassifications. The reason for that is to see if our

models are good in general and in the cases they fail if they overestimate or underestimate

the customer.

1. Overestimation:

• Average Customers classified as Best

• Bad Customers classified as Average or Best

2. Underestimation:

• Average Customers classified as Bad

• Best Customers classified as Average or Bad

62 Chapter 6. Approach B: Experiments and Results

6.4.1 Decision Tree Classification

We implement Decision Tree Classification utilizing the scikit-learn library and more

specifically theDecisionTreeClassifier() function [69]. Furthermore, we apply a 5-fold cross-

validation with Folds of 900 values. To find the optimal hyperparameters max_depth and

min_samples_leaf, we grid-searchmultiple values from 0 to 100 and from 0 to 20 respectively.

The average Accuracy of the cross-validation is 95.71%, the bestmax_depth is 40 and the best

min_samples_leaf is 3. After evaluating on the hold-out set the Accuracy is 95.67% =
816

853
correct classifications. Figure 6.6 and Tables 6.2, 6.3 show the results.

Figure 6.6: Decision Tree Classification

Table 6.2: Decision Tree Classification Results

Decision_Tree_Classification cross-validation hold-out set

Accuracy 95.71% 95.67%

Table 6.3: Decision Tree Misclassified Customers

Decision_Tree_Classification misclassifications overestimations underestimations

Number of Customers 37 16 21

• Out of the 16 overestimations 11 bad customers were classified as average customers

and 5 average customers were classified as best customers.

6.4.2 Random Forest Classification 63

• Out of the 21 underestimations 13 best customers were classified as average customers

and 8 average customers were classified as bad customers.

6.4.2 Random Forest Classification

We implement Random Forest Classification utilizing the scikit-learn library and more

specifically theRandomForestClassifier() function [70]. Furthermore, we apply a 5-fold cross-

validation with Folds of 900 values. To find the optimal hyperparameter n_estimators, we

grid-search multiple values from 0 to 100. The average Accuracy of the cross-validation

is 97.2%, the best n_estimators is 45. After evaluating on the hold-out set the Accuracy is

97.3% =
830

853
correct classifications. Figure 6.7 and Tables 6.4, 6.5 show the results.

Figure 6.7: Random Forest Classification

Table 6.4: Random Forest Classification Results

Random_Forest_Classification cross-validation hold-out set

Accuracy 97.2% 97.3%

Table 6.5: Random Forest Misclassified Customers

Random_Forest_Classification misclassifications overestimations underestimations

Number of Customers 23 12 11

64 Chapter 6. Approach B: Experiments and Results

• Out of the 12 overestimations 10 bad customers were classified as average customers

and 2 average customers were classified as best customers.

• Out of the 11 underestimations 7 best customers were classified as average customers

and 4 average customers were classified as bad customers.

6.4.3 K-Nearest Neighbours Classification

We implement K-Nearest Neighbours Classification utilizing the scikit-learn library and

more specifically the KNeighborsClassifier() function [71]. Furthermore, we apply a 5-fold

cross-validation with Folds of 900 values. To find the optimal hyperparameter n_neighbors,

we grid-search multiple values from 1 to 45. The average Accuracy of the cross-validation is

95%, the best n_neighbors is 5. After evaluating on the hold-out set the Accuracy is 96% =

819

853
correct classifications. Figure 6.8 and Tables 6.6, 6.7 show the results.

Figure 6.8: K-nearest Neighbours Classification

Table 6.6: K-Nearest Neighbours Classification Results

KNN_Classification cross-validation hold-out set

Accuracy 95% 96%

6.4.4 XGBoost Classification 65

Table 6.7: K-Nearest Neighbours Misclassified Customers

KNN_Classification misclassifications overestimations underestimations

Number of Customers 34 21 13

• Out of the 21 overestimations 7 bad customers were classified as average customers

and 14 average customers were classified as best customers.

• Out of the 13 underestimations 10 best customers were classified as average customers

and 3 average customers were classified as bad customers.

6.4.4 XGBoost Classification

We implement XGBoost Regression utilizing the scikit-learn interface of the XGBoost

Python Package and more specifically the XGBClassifier() function [66]. Furthermore, we

apply a 5-fold cross-validation with Folds of 900 values. To find the optimal hyperparameter

n_estimators, we grid-search multiple values from 0 to 100. The average Accuracy of the

cross-validation is 97.64%, the best n_estimators is 45. After evaluating on the hold-out set

the Accuracy is 97.54% =
832

853
correct classifications. Figure 6.9 and Tables 6.8, 6.9 show

the results.

Figure 6.9: XGBoost Classification

66 Chapter 6. Approach B: Experiments and Results

Table 6.8: XGBoost Classification Results

XGBoost_Classification cross-validation hold-out set

Accuracy 97.64% 97.54%

Table 6.9: XGBoost Misclassified Customers

XGBoost_Classification misclassifications overestimations underestimations

Number of Customers 21 9 12

• Out of the 9 overestimations 6 bad customers were classified as average customers and

3 average customers were classified as best customers.

• Out of the 12 underestimations 8 best customers were classified as average customers

and 4 average customers were classified as bad customers.

6.4.5 AdaBoost Classification

We implement AdaBoost Regression utilizing the scikit-learn interface of the XGBoost

Python Package and more specifically the AdaBoostClassifier() function [72]. Furthermore,

we apply a 5-fold cross-validation with Folds of 900 values. To find the optimal hyperparam-

eter n_estimators, we grid-search multiple values from 0 to 100. The average Accuracy of

the cross-validation is 87.96%, the best n_estimators is 45. After evaluating on the hold-out

set the Accuracy is 92.61% =
790

853
correct classifications. Figure 6.10 and Tables 6.10, 6.11

show the results.

Table 6.10: AdaBoost Classification Results

AdaBoost_Classification cross-validation hold-out set

Accuracy 87.96% 92.61%

Table 6.11: AdaBoost Misclassified Customers

AdaBoost_Classification misclassifications overestimations underestimations

Number of Customers 63 19 44

6.4.6 SVM Classification 67

Figure 6.10: AdaBoost Classification

• Out of the 19 overestimations 15 bad customers were classified as average customers

and 4 average customers were classified as best customers.

• Out of the 44 underestimations 21 best customers were classified as average customers

and 23 average customers were classified as bad customers.

6.4.6 SVM Classification

We implement AdaBoost Regression utilizing the scikit-learn interface of the XGBoost

Python Package and more specifically the SVC() function [73]. Furthermore, we apply a 5-

fold cross-validation with Folds of 900 values. To find the optimal hyperparameters C and

kernel, we grid-search multiple values from 1 to 10000 for C and the following kernels:

{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’}. The average Accuracy of the cross-validation is 87.43%,

the best C is 10 and the best kernel is rbf. After evaluating on the hold-out set the Accuracy

is 92.85% =
792

853
correct classifications. Figure 6.11 and Tables 6.12, 6.13 show the results.

Table 6.12: SVM Classification Results

SVM_Classification cross-validation hold-out set

Accuracy 87.43% 92.85%

68 Chapter 6. Approach B: Experiments and Results

Figure 6.11: SVM Classification

Table 6.13: SVM Misclassified Customers

SVM_Classification misclassifications overestimations underestimations

Number of Customers 61 11 50

• Out of the 11 overestimations 5 bad customers were classified as average customers

and 6 average customers were classified as best customers.

• Out of the 50 underestimations 24 best customers were classified as average customers

and 26 average customers were classified as bad customers.

6.4.7 Overall

To summarize the above we can refer to Tables 6.14 and 6.15

6.4.7 Overall 69

Table 6.14: Overall Classification Results

Accuracy

Models cross-validation hold-out set

Decision_Tree_Classification 95.71% 95.67%

Random_Forest_Classification 97.2% 97.3%

KNN_Classification 95% 96%

XGBoost_Classification 97.64% 97.54%

AdaBoost_Classification 87.96% 92.61%

SVM_Classification 87.43% 92.85%

Table 6.15: Overall Misclassification Results

Models misclassifications overestimations underestimations

Decision_Tree_Classification 37 16 21

Random_Forest_Classification 23 12 11

KNN_Classification 34 21 13

XGBoost_Classification 21 9 12

AdaBoost_Classification 63 19 44

SVM_Classification 61 11 50

From the above Tables we observe the following:

• All of our models have high accuracy, which indicates that the clustering conducted in

the previous step was quite successful and the classes are easily distinguished.

• The best performing models are XGBoost Classifier and Random Forest Classifier

with the former having slightly better accuracywith 2 lessmisclassifications.XGBoost

Classifier has the least overestimations, which means that it is the best model when it

comes to not giving more value than needed to customers. On the other hand,Random

Forest Classifier has the least underestimations, which means that it is the best model

when it comes to not undervaluing the customers.

• The worst performing models are AdaBoost Classifier and SVM Classifier with the

former having slightly worse accuracy with 2moremisclassifications. SVMClassifier

70 Chapter 6. Approach B: Experiments and Results

has the most underestimations, which means that it is the worst model when it comes

to not undervaluing the customers.KNNClassifier, although it has an average overall

performance shows a weakness when it comes to overestimations, making it the worst

model when it comes to not giving more value than needed to customers.

Chapter 7

Conclusion

In this section, we will provide a summary of our work by providing the milestones, the

findings, and the contribution to the thesis. In conclusion, we discuss the ways in which we

anticipate expanding upon this work in the future.

7.1 Summary and Conclusions

In this thesis, we begin with an introduction to the theoretical background of machine

learning techniques as well as fundamental concepts regarding Customer Relationship Man-

agement (CRM), such as Customer Lifetime Value (CLV) and Customer Segmentation.

In Chapter 3, we continue by digging into all of the methods used in our research. These

machine learning methods include regression methods used for our individual approach and

clustering/classification methods used for our collective approach. We later focus on ana-

lyzing our data, which we obtained from a public dataset and they represent transactions of

an online retail store. This analysis is all about preparing our data for our experiments in a

way that maximizes the performance of our models. This is accomplished through two key

procedures: data pre-processing and feature engineering.

The experiments for our individual and collective methods are presented in Chapters 5

and 6, respectively. In our individual approach, we start by framing the problem and creating

a target variable (CLV) for our models to predict. The accuracy of our models is measured us-

ing the Mean Absolute Error as a performance metric. The results show that from the Linear

regression models we tested, Lasso was the the most efficient, whilst the Random Forest Re-

gressor appears to be the most efficient overall. In the other approach, we start by utilizing the

71

72 Chapter 7. Conclusion

Kmeans clustering methods, which resulted in the formation of 3 clusters that correspond to 3

types of customers: bad, average and best. We then utilize these clusters as labels and experi-

ment with our classification methods in an attempt to evaluate their performance. We observe

a high accuracy from all of our models which is an indicator that the clustering conducted in

the previous step was quite successful and the classes are easily distinguished. What stands

out is the outstanding performance of the XGBoost and Random Forest Classifiers with only

a few misclassifications.

To contribute to this study further in the future, we may experiment with new datasets that

are relevant to our problem scenarios, as well as enhance our experiment tools by leveraging

deep learning and neural networks.

Bibliography

[1] Huan-Ming Chuang and Chia-Cheng Shen. A study on the applications of data mining

techniques to enhance customer lifetime value — based on the department store indus-

try. 2008 International Conference on Machine Learning and Cybernetics, 1:168–173,

2008.

[2] V. Ravi. Advances in Banking Technology and Management: Impacts of ICT and CRM.

Premier Reference Source Series. Information Science Reference, 2008.

[3] Sunil Gupta and Donald R. Lehmann. Customers as assets. Journal of Interactive

Marketing, 17(1):9–24, 2003.

[4] Francis J. Mulhern. Customer profitability analysis: Measurement, concentration, and

research directions. Journal of Interactive Marketing, 13(1):25–40, 1999.

[5] J. Brownlee. Basic concepts in machine learning. Retrieved from Machine Learning

Mastery: https://machinelearningmastery.com/basicconcepts-in-machine-learning/,

December 2015.

[6] Jiachen Chen and W. Kenneth Jenkins. Facial recognition with pca and machine learn-

ing methods. In 2017 IEEE 60th International Midwest Symposium on Circuits and

Systems (MWSCAS), pages 973–976, 2017.

[7] Shriansh Srivastava, J. Priyadarshini, Sachin Gopal, Sanchay Gupta, and Har Shobhit

Dayal. Optical character recognition on bank cheques using 2d convolution neural net-

work. In Hasmat Malik, Smriti Srivastava, Yog Raj Sood, and Aamir Ahmad, editors,

Applications of Artificial Intelligence Techniques in Engineering, pages 589–596, Sin-

gapore, 2019. Springer Singapore.

73

74 Bibliography

[8] Claudio Biancalana, Fabio Gasparetti, Alessandro Micarelli, Alfonso Miola, and

Giuseppe Sansonetti. Context-aware movie recommendation based on signal process-

ing and machine learning. 10 2011.

[9] Abhishek Soni, Dharamvir Dharmacharya, Amrindra Pal, Vivek Kumar Srivastava, Ra-

bindra Nath Shaw, and Ankush Ghosh. Design of a Machine Learning-Based Self-

driving Car, pages 139–151. Springer Singapore, Singapore, 2021.

[10] https://www.cs.cornell.edu/courses/cs4780/2018fa/

lectures/lecturenote01_MLsetup.html.

[11] https://builtin.com/data-science/regression-machine-

learning.

[12] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques

(3rd ed.). Elsevier/Morgan Kaufmann, 2012.

[13] Yuanzheng Hu and Marina Sokolova. Explainable multi-class classification of medical

data. 12 2020.

[14] https://analyticsindiamag.com/what-is-extreme-multilabel-

text-classification/.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[16] Xin Jin and Jiawei Han. K-Means Clustering, pages 563–564. Springer US, Boston,

MA, 2010.

[17] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids cluster-

ing. Expert Systems with Applications, 36(2, Part 2):3336–3341, 2009.

[18] Tanvi Gupta and Supriya P Panda. Clustering validation of clara and k-means using

silhouette amp; dunn measures on iris dataset. In 2019 International Conference on

Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), pages 10–

13, 2019.

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote01_MLsetup.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote01_MLsetup.html
https://builtin.com/data-science/regression-machine-learning
https://builtin.com/data-science/regression-machine-learning
https://analyticsindiamag.com/what-is-extreme-multilabel-text-classification/
https://analyticsindiamag.com/what-is-extreme-multilabel-text-classification/

Bibliography 75

[19] Anant Ram, Jalal Sunita, Anand Jalal, and Kumar Manoj. A density based algorithm

for discovering density varied clusters in large spatial databases. International Journal

of Computer Applications, 3, 06 2010.

[20] Mihael Ankerst, Markus Breunig, Hans-Peter Kriegel, and Joerg Sander. Optics: Or-

dering points to identify the clustering structure. volume 28, pages 49–60, 06 1999.

[21] Veselina Bureva, Evdokia Sotirova, Stanislav Popov, Deyan Mavrov, and Velichka

Traneva. Generalized net of cluster analysis process using sting: A statistical infor-

mation grid approach to spatial data mining. pages 239–248, 05 2017.

[22] Marek Chrobak, Christoph Dürr, Aleksander Fabijan, and Bengt Nilsson. Online clique

clustering. Algorithmica, 82:1–28, 04 2020.

[23] D. Baer. Csi: Customer segmentation intelligence for increasing profits.

[24] Gary P. Schneider. page 643. Course Technology Cengage Learning, 2011.

[25] https://blog.magestore.com/magento-ebook-an-introduction-

to-customer-segmentation/.

[26] Randall S. Collica. Customer segmentation and clustering using SAS enterprise miner,

page 1–14. SAS, 2011.

[27] Mark Schmidt. Least squares optimization with l1-norm regularization, 2005.

[28] Husam H. Alkinani, Abo Taleb T. Al-Hameedi, Shari Dunn-Norman, Munir Aldin,

Deepak Gokaraju, Andreina Guedez, and Atheer M. Alattar. Regularized ridge regres-

sion models to estimate static elastic moduli from wireline measurements: Case study

from southern iraq - journal of petroleum exploration and production technology, Dec

2021.

[29] Anuja Nagpal. L1 and l2 regularization methods, Oct 2017. https:

//towardsdatascience.com/l1-and-l2-regularization-

methods-ce25e7fc831c.

[30] Ryan J. Tibshirani and Larry A. Wasserman. Sparsity , the lasso , and friends statistical

machine learning , spring 2017. 2017.

https://blog.magestore.com/magento-ebook-an-introduction-to-customer-segmentation/
https://blog.magestore.com/magento-ebook-an-introduction-to-customer-segmentation/
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c

76 Bibliography

[31] R Muthukrishnan and R Rohini. Lasso: A feature selection technique in predictive

modeling for machine learning. In 2016 IEEE International Conference on Advances

in Computer Applications (ICACA), pages 18–20, 2016.

[32] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, Sep 1995.

[33] Di-Rong Chen, QiangWu, Yiming Ying, and Ding-Xuan Zhou. Support vector machine

soft margin classifiers: Error analysis. Journal of Machine Learning Research, 5:1143–

1175, 09 2004.

[34] Wenjian Wang, Zongben Xu, Wei-Zhen Lu, and Xiaoyun Zhang. Determination of the

spread parameter in the gaussian kernel for classification and regression. Neurocom-

puting, 55:643–663, 10 2003.

[35] Lior Rokach and Oded Maimon. Decision Trees, volume 6, pages 165–192. 01 2005.

[36] Mikhail Moshkov. Time complexity of decision trees. Transactions on Rough Sets,

3:244–459, 01 2005.

[37] Joaquim Sá, João Gama, Raquel Sebastião, and Luís Alexandre. Decision trees using

the minimum entropy-of-error principle. pages 799–807, 09 2009.

[38] T. Suryakanthi. Evaluating the impact of gini index and information gain on classi-

fication using decision tree classifier algorithm*. International Journal of Advanced

Computer Science and Applications, 11, 01 2020.

[39] Bradley Efron and Gail Gong. A leisurely look at the bootstrap, the jackknife, and.

1983.

[40] L Breiman. Random forests. Machine Learning, 45:5–32, 10 2001.

[41] Vladimir Koltchinskii and B. Yu. Three papers on boosting: An introduction. Ann Stat,

32, 02 2004.

[42] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm,

1996.

Bibliography 77

[43] Shebuti Rayana, Wen Zhong, and Leman Akoglu. Sequential ensemble learning for

outlier detection: A bias-variance perspective. pages 1167–1172, 12 2016.

[44] Carlos Valle, Francisco Saravia, Héctor Allende, Raul Monge, and César Fernández.

Parallel approach for ensemble learning with locally coupled neural networks. Neural

Processing Letters, 32:277–291, 12 2010.

[45] Jinsol Lee and Ghassan Alregib. Gradients as a measure of uncertainty in neural net-

works. pages 2416–2420, 10 2020.

[46] Yuzheng Hu, Licong Lin, and Shange Tang. Second-order information in first-order

optimization methods, 12 2019.

[47] B.W. Silverman andM. C. Jones. E. fix and j.l. hodges(1951): an important contribution

to nonparametric discriminant analysis and density estimation. International Statistical

Review, 57(3):233–247, 1989.

[48] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 13(1):21–27, 1967.

[49] W. Aha, Dennis Kibler, and Marc Albert. Instance-based learning algorithms. Machine

Learning, 6:37–66, 01 1991.

[50] Archana Singh, Avantika Yadav, and Ajay Rana. K-means with three different distance

metrics. International Journal of Computer Applications, 67:13–17, 04 2013.

[51] Mohd Ansari, Anand Prakash, and Mainuddin Siddique. Gravitational K-Means Algo-

rithm, pages 420–429. 05 2020.

[52] Daqing Chen. Online Retail II. UCI Machine Learning Repository, 2019.

[53] WesMcKinney et al. Data structures for statistical computing in python. InProceedings

of the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX, 2010.

[54] Plotly Technologies Inc. Collaborative data science. 2015.

[55] Ratnadeep Deshmukh and Vaishali Wangikar. Data cleaning: Current approaches and

issues. 01 2011.

78 Bibliography

[56] Tara Rawat and Vineeta Khemchandani. Feature engineering (fe) tools and techniques

for better classification performance. 05 2019.

[57] Jo-Ting Wei, Shih-Yen Lin, and Hsin-Hung Wu. A review of the application of rfm

model. African Journal of Business Management December Special Review, 4:4199–

4206, 01 2010.

[58] https://scikit-learn.org/stable/modules/generated/

sklearn.model_selection.GridSearchCV.html.

[59] https://scikit-learn.org/stable/modules/generated/

sklearn.model_selection.KFold.html.

[60] https://scikit-learn.org/stable/modules/generated/

sklearn.model_selection.train_test_split.html.

[61] https://scikit-learn.org/stable/modules/generated/

sklearn.linear_model.LinearRegression.html.

[62] https://scikit-learn.org/stable/modules/generated/

sklearn.linear_model.Ridge.html.

[63] https://scikit-learn.org/stable/modules/generated/

sklearn.linear_model.Lasso.html?highlight=lasso#sklearn.

linear_model.Lasso.

[64] https://scikit-learn.org/stable/modules/generated/

sklearn.tree.DecisionTreeRegressor.html?highlight=

decision#sklearn.tree.DecisionTreeRegressor.

[65] https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.RandomForestRegressor.html?highlight=

random#sklearn.ensemble.RandomForestRegressor.

[66] https://xgboost.readthedocs.io/en/stable/python/python_

intro.html#scikit-learn-interface.

[67] https://scikit-learn.org/stable/modules/generated/

sklearn.cluster.KMeans.html.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html?highlight=lasso#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html?highlight=lasso#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html?highlight=lasso#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html?highlight=decision#sklearn.tree.DecisionTreeRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html?highlight=decision#sklearn.tree.DecisionTreeRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html?highlight=decision#sklearn.tree.DecisionTreeRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?highlight=random#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?highlight=random#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?highlight=random#sklearn.ensemble.RandomForestRegressor
https://xgboost.readthedocs.io/en/stable/python/python_intro.html#scikit-learn-interface
https://xgboost.readthedocs.io/en/stable/python/python_intro.html#scikit-learn-interface
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Bibliography 79

[68] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures

for classification tasks. Information Processing Management, 45:427–437, 07 2009.

[69] https://scikit-learn.org/stable/modules/generated/

sklearn.tree.DecisionTreeClassifier.html.

[70] https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.RandomForestClassifier.html.

[71] https://scikit-learn.org/stable/modules/generated/

sklearn.neighbors.KNeighborsClassifier.html.

[72] https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.AdaBoostClassifier.html.

[73] https://scikit-learn.org/stable/modules/generated/

sklearn.svm.SVC.html.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

APPENDICES

81

Appendix

Code and System Specifications

1 Code

The code written in this thesis, is given in the jupyter notebook that can be accessed via

Github:

https://github.com/argiris98/Diploma-Thesis/blob/main/Diploma_

Thesis.ipynb

We will mention below some key parts of our code.

1.1 Feature Engineering

1 ## df c o n t a i n t s t h e o r i g i n a l d a t a a f t e r pre − p r o c e s s i n g

2 df [’ Revenue ’] = d f [’ Quan t i t y ’] * df [’ P r i c e ’] # c r e a t e r evenue va l u e

3 La t e s t _Da t e = d t . d a t e t im e (2011 , 12 , 10) # L a t e s t Date i n our d a t a

4

5 ## RFM Fe a t u r e s

6

7 f i n a l _ d f = df . groupby (’ Customer_ID ’) . agg ({ ’ I n vo i c eDa t e ’ : lambda x : (

L a t e s t _Da t e − x . max ()) . days ,

8 ’ I n v o i c e ’ : lambda x : x . nun ique () ,

9 ’ Revenue ’ : lambda x : sum (x) }

10)

11 f i n a l _ d f . rename (columns={ ’ I n vo i c eDa t e ’ : ’ Recency ’ ,

12 ’ I n v o i c e ’ : ’ F requency ’ ,

13 ’ Revenue ’ : ’ Monetary ’ } , i n p l a c e = True)

14

83

https://github.com/argiris98/Diploma-Thesis/blob/main/Diploma_Thesis.ipynb
https://github.com/argiris98/Diploma-Thesis/blob/main/Diploma_Thesis.ipynb

84 Appendix. Code and System Specifications

15 ## Add i t i o n a l F e a t u r e s

16 f i n a l _ d f [’ t ime_engaged ’] = L a t e s t _Da t e − df . groupby (’ Customer_ID ’) [’

I n vo i c eDa t e ’] . min ()

17 f i n a l _ d f [’ t ime_engaged ’] = f i n a l _ d f [’ t ime_engaged ’] . d t . days

18 f i n a l _ d f [’ t ime_be tween ’] = f i n a l _ d f [’ t ime_engaged ’] / f i n a l _ d f [’ Frequency ’]

19 f i n a l _ d f [’ a c t i v e _ p e r i o d ’] = d f . groupby (’ Customer_ID ’) [’ I n vo i c eDa t e ’] . max

() − df . groupby (’ Customer_ID ’) [’ I n vo i c eDa t e ’] . min ()

20 f i n a l _ d f [’ a c t i v e _ p e r i o d ’] = f i n a l _ d f [’ a c t i v e _ p e r i o d ’] . d t . days

21 f i n a l _ d f [’ a v g_b a s k e t _ v a l u e ’] = f i n a l _ d f [’ Monetary ’] / f i n a l _ d f [’ Frequency

’]

22 f i n a l _ d f . r e s e t _ i n d e x () . sample (5)

1.2 Regression Example

23 from s k l e a r n . l i n e a r _mod e l impo r t Ridge

24 from s k l e a r n . mod e l _ s e l e c t i o n impo r t GridSearchCV

25 from s k l e a r n . mod e l _ s e l e c t i o n impo r t KFold

26

27 # d e f i n e model

28 model = Ridge ()

29 # d e f i n e e v a l u a t i o n

30 cv = KFold (n _ s p l i t s =5)

31 # d e f i n e s e a r c h space

32 space = d i c t ()

33 space [’ a l p h a ’] = [1 , 10 , 20 ,50 ,100]

34 # d e f i n e s e a r c h

35 s e a r c h = GridSearchCV (model , space , s c o r i n g = ’ n eg_mean_ ab s o l u t e _ e r r o r ’ ,

n_ j ob s =−1 , cv=cv)

36 # ex e cu t e s e a r c h

37 r e s u l t = s e a r c h . f i t (X_ t r a i n , y _ t r a i n)

38 # summarize r e s u l t

39 p r i n t (’ Bes t Score : %s ’ % r e s u l t . b e s t _ s c o r e _)

40 p r i n t (’ Bes t Hype rpa r ame t e r s : %s ’ % r e s u l t . b e s t _pa r ams_)

41 c l f = Ridge (a l p h a =100) #model wi th b e s t Hype rpa r ame t e r s

42 c l f . f i t (X_ t r a i n , y _ t r a i n)

43 y_ha t = c l f . p r e d i c t (X_ t e s t) # p r e d i c t i o n s

44 d i f f e r e n c e _ a r r a y = abs (np . s u b t r a c t (y_ha t , np . a r r a y (y _ t e s t)))

45 mae = d i f f e r e n c e _ a r r a y . mean () # mean a b s o l u t e e r r o r

1.3 Clustering 85

46 p r i n t (mae)

1.3 Clustering

47 ks = range (1 , 12) ## Elbow Method t o f i n d op t ima l k

48 i n e r t i a s = []

49 f o r k i n ks :

50 # C r e a t e KMeans c l u s t e r s

51 kc = KMeans (n _ c l u s t e r s =k , r a ndom_s t a t e =42)

52 kc . f i t (c l u s t e r _ d f _ s c a l e d)

53 i n e r t i a s . append (kc . i n e r t i a _)

54

55 # P l o t ks vs i n e r t i a s

56 f , ax = p l t . s u b p l o t s (f i g s i z e =(15 , 8))

57 p l t . p l o t (ks , i n e r t i a s , ’−o ’)

58 p l t . x l a b e l (’Number o f c l u s t e r s , k ’)

59 p l t . y l a b e l (’ I n e r t i a ’)

60 p l t . x t i c k s (ks)

61 p l t . s t y l e . use (’ g g p l o t ’)

62 p l t . t i t l e (’ I d e a l number o f c l u s t e r s f o r KMeans? ’)

63 p l t . show ()

64 # Kmeans C l u s t e r i n g wi th k =3

65 kmeans = KMeans (n _ c l u s t e r s = 3) . f i t (c l u s t e r _ d f _ s c a l e d)

66 kmeans . f i t _ p r e d i c t (c l u s t e r _ d f _ s c a l e d)

67 l a b e l s = kmeans . l a b e l s _

68 c l u s t e r _ d f [’ C l u s t e r ID ’]= l a b e l s # a s s i g n t h e c l u s t e r s t o cu s t ome r s unde r ’

C l u s t e r ID ’ column

1.4 Classification Example

69 from s k l e a r n . ensemble impo r t R a n d omFo r e s tC l a s s i f i e r

70 # d e f i n e model

71 model = Ran d omFo r e s tC l a s s i f i e r ()

72 # d e f i n e e v a l u a t i o n

73 cv = KFold (n _ s p l i t s =5)

74 # d e f i n e s e a r c h space

75 space = d i c t ()

86 Appendix. Code and System Specifications

76 space [’ n _ e s t im a t o r s ’] =

[1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 2 0 , 2 5 , 3 0 , 3 5 , 4 0 , 4 5]

77 # d e f i n e s e a r c h

78 s e a r c h = GridSearchCV (model , space , s c o r i n g = ’ a c cu r a cy ’ , n_ j ob s =−1 , cv=cv)

79 # ex e cu t e s e a r c h

80 r e s u l t = s e a r c h . f i t (X_ t r a i n , y _ t r a i n)

81 # summarize r e s u l t

82 p r i n t (’ Bes t Score : %s ’ % r e s u l t . b e s t _ s c o r e _)

83 p r i n t (’ Bes t Hype rpa r ame t e r s : %s ’ % r e s u l t . b e s t _pa r ams_)

84 # RF c l a s s i f i e r w i th b e s t h y p e r p a r ame t e r s

85 c l f = R a n d omFo r e s tC l a s s i f i e r (n _ e s t im a t o r s =45)

86 c l f . f i t (X_ t r a i n , y _ t r a i n)

87 y_ha t = c l f . p r e d i c t (X_ t e s t) # p r e d i c t i o n s

88

89 from s k l e a r n . m e t r i c s impo r t c o n f u s i o n _ma t r i x

90 c f = c o n f u s i o n _ma t r i x (y _ t e s t , y_ha t)

91 p r i n t (s n s . heatmap (cf , anno t =True , cmap= ’ Blues ’ , fmt= ’ ’)) # c o n f u s i o n ma t r i x

92 p r i n t (’ \ n C l a s s i f i c a t i o n Repor t \ n ’) # r e p o r t (Accuracy , Reca l l , P r e c i s i o n , F1−

s c o r e

93 p r i n t (c l a s s i f i c a t i o n _ r e p o r t (y _ t e s t , y_ha t))

2 System Specifications

The thesis was run on a personal computer with the following specifications:

• Processor (CPU): Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz 2.50 GHz

• RAM: 16 GB

• System type: 64-bit operating system, x64-based processor

• Hard Drive: 512GB SSD

• Graphics Card: NVIDIA GeForce GTX 860M

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Subject of the thesis
	Contribution

	Thesis Synopsis

	Theoretical Background
	Introduction to Machine Learning
	Supervised Learning
	Regression Analysis
	Evaluating Regression Analysis
	Classification Analysis

	Unsupervised Learning
	Cluster Analysis

	Customer Lifetime Value (CLV)
	Calculation of CLV
	Importance of CLV

	Customer Segmentation

	Overview of the proposed methods
	Linear Regression Models
	Linear Regression
	Ridge Regression
	Lasso Regression

	Support Vector Machines (SVM)
	Linearly Separable Problems
	Non-Linearly Separable Problems

	Decision Trees
	Bagging and Boosting Algorithms
	Bagging
	Random Forest
	Boosting
	Boosting Algorithms

	K-Nearest Neighbours (KNN)
	K-Means Clustering

	Data
	Dataset
	Data Pre-processing
	Exploratory Data Analysis (EDA)
	Data Cleaning

	Feature Engineering
	RFM analysis
	Additional Features

	Approach A: Experiments and Results
	Individual Approach
	HyperParameter Tuning
	Data Separation
	Cross-Validation
	Grid-Search

	Experiments and Results
	Linear Regression
	Ridge Regression
	Lasso Regression
	Decision Tree Regression
	Random Forest Regression
	XGBoost Regression
	Overall

	Approach B: Experiments and Results
	Customer Segmentation Approach
	Clustering
	Classification Performance Metrics
	Confusion Matrix
	Multi-Class Confusion Matrix

	Classification Experiments and Results
	Decision Tree Classification
	Random Forest Classification
	K-Nearest Neighbours Classification
	XGBoost Classification
	AdaBoost Classification
	SVM Classification
	Overall

	Conclusion
	Summary and Conclusions

	Bibliography
	APPENDICES
	Appendix Code and System Specifications
	Code
	Feature Engineering
	Regression Example
	Clustering
	Classification Example

	System Specifications

