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ABSTRACT 

Τhe objective of the current thesis is to develop a model for coupled flow and diffusion in 
fibrous porous media. This diploma thesis includes both a literature review and a 
computational section. 

The flow-permeability and the transport of fluids and gases through fibrous media is very 
critical for a lot of industries. As a result, understanding the flow phenomena and 
determining the permeability in fibrous porous media is essential for successful process 
design. For this reason, in the first section an outline of the fundamental principles, theories 
and correlations between significant concepts is presented. 

Following that, two cases of fibrous porous media are discussed and simulations are carried 

out with the help of the open-source package, OpenFoam, to investigate permeability and 

transport phenomena that are influenced by the range of the Peclet number. 

For this purpose, a 2D grid with 500 fibers and a volume fraction equal to 0.2 is designed 
with the help of the open-source program Gmsh. As the flow is incompressible and the fluid 
is Newtonian, "SimpleFoam" is chosen as the most appropriate solver. Three simulations are 
conducted with three different diffusion coefficients in order to investigate how the 
response of a fibrous medium is affected by the change of the Peclet number.  

Subsequently, a second case identical to the first one is presented with the only difference 
of a volume fraction equal to 0.4. The same procedure is used to evaluate the changes in 
permeability that occur as a result of a different volume fraction. 
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Chapter 1 

Introduction 
 

1.1. Motivation  
Flow through fibrous (porous) media is a problem of long-standing interest in engineering 

due to its importance in the manufacturing and process industries. Also, it is of direct 

relevance to several composites forming operations such as liquid molding, pultrusion, and 

autoclave processing (Chen & Papathanasiou, 2008). The flow-permeability and the 

transport of fluids and gases through fibrous media is very important for a lot of industries, 

such us the petroleum industry, as well as engineering, geology, agriculture but also 

biomedical engineering and other applied sciences, such as acoustic designing for the need 

of recording spaces in the music industry. Furthermore, a lot of processes that we take for 

granted, such as filtering and heat sinks or carbon-fiber manufacturing depend greatly on 

the permeability of the material and a lot of research has been devoted on the subject, in 

order to predict the permeability of a fibrous medium (Karakashov et al, 2019). Fibrous 

porous media have received great attention in a wide variety of applications including fuel 

cells, filtration, medical science, and biological transport phenomena. To understand the 

transport phenomena in porous media, a necessary condition is for permeability to be 

measured. 

Understanding the flow phenomena that take place inside the fibrous media at both the 

macroscopic and the microscopic length scales is critical to successful process design. 

Therefore, flow simulation tools are being increasingly used for this purpose and a great deal 

of effort has been given to developing theoretical models for calculating the permeability in 

fibrous porous media (Chen & Papathanasiou, 2007). 

 

1.2. Definitions 
According to Fidjestol and Lewis (1998) Permeability refers to the measuring of how easily a 

liquid or a gas is able to flow through a material. The measure of that ease is described by a 

property of the material called Permeability and it is determined by the depth of the 

penetration or the amount of liquid or gas or chemical substance that is able to pass – 

permeate through the sample material. There are two reasons why permeability is 

important, the first one is to calculate how quickly a substance will enter and flow through 

the sample material and the second is how quickly the substance can be extracted from the 

material (Fidgestol & Lewis, 1998). 

  Krishan Chawla offers a more comprehensive description of what a fibrous material is, in 

his 2016 ‘’Fibrous Materials’’ book. He writes that fibers are extremely important in the 

manufacturing industry and are separated to natural and synthetic. Natural fibers are also 

separated to organic and inorganic; some organic fibers include cotton or wool while some 

natural inorganic fibers include asbestos and basalt. 



1.3. Scope of Current Work 
The present diploma thesis was conducted as a combined literature study of the basic 

concepts of permeability and transport through fibrous media and a computational part 

including simulations with the help of the open-source package, OpenFoam.  

For this reason, basic principles, theories as well as relationships between important 

concepts (i.e., porosity/permeability) are presented in order to provide a better 

understanding.  

Subsequently in the computational study, two cases of flow in fibrous porous media are 
analyzed for a range of the pertinent parameter, namely the Peclet number.  
 

1.4. Outline of Remaining Chapters 
In the following, a literature review is given in the next Chapter {2}. Basic concepts, methods, 

and theory, covering the fundamentals are presented in this section of the thesis. 

Subsequently, previous research, numerical models used in previous works and results are 

given in Chapter {3}. 

This is followed by Chapter {4} which constitutes the computational part in which a 

Newtonian-viscous flow model is described, and a flow simulation tool is being used for this 

purpose. The response of a fibrous medium is investigated and how it is affected by the 

change of the Peclet number.   

Finally, in the last subsection of the computational part conclusions and a future work are 

presented. 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Background & Basic Concepts 
 

2.1. Methods for describing the Permeability of Fibrous Materials 
 

2.1.1. Darcy’s Law 
  

The first scientists to study the property of permeability was Henry Darcy in 1855, measuring 

the permeability of water through sand, and using his experiments and empirical evidence 

to form the law of Darcy: 

(𝑽𝒋)
𝒇

= −
𝑲(𝒋)

𝝁
⋅

𝝏

𝝏𝒙𝒋
[(�̅�)𝒇]

𝒇
  Equation 1 

Where: 

𝐾(𝑗) : Permeability of porous medium at direction [m2]. 

(𝑉𝑗)
𝑓

  : Fluid phase volume average of velocity of injected flow at j direction. [m/s] 

 μ : Dynamic viscosity of the fluid. [kg/m*s] 

 [(�̅�)𝑓]
𝑓

: Fluid intrinsic volume average of injection pressure. [N/m2] 

 

2.1.2. Early Methods    
 

 Some early methods for measuring permeability in fibrous materials can be found in Gebart 

and Lindstorms in polymer materials (1996): 

 Any method for permeability measurements that is applied must be relatively easy to 

perform and analyze and as a result, the majority of the approaches documented in the 

literature are either radial flow or parallel flow type. These strategies can be tweaked in a 

variety of ways. The usage of a stable flow front or a flowing flow front are two examples of 

such variations.  

 There are three methods usually applied for measuring effective permeability ( keff
θ  ) in a 

given direction with a θ angle to the global coordinate system as referred in the (Gebart & 

Lidström, 1996). The first two methods use parallel flow in a rectangular mold, with the 

distinction being whether the flow is transient with a moving flow front or stationary with 

saturated reinforcement. The third method involves injecting liquid into the middle of a flat 

mold and watching the radial flow that results. 

 Ιn the two parallel flow approaches, three different experiments are required, however for 

the radial flow method, only one experiment is required. The below equations present the 

formulas for measuring the effective permeability using the three different methods (Gebart 

& Lidström, 1996). 



• For a parallel flow, saturated reinforcement,  

𝒌𝒆𝒇𝒇
𝜽 =  

𝑸∗𝝁∗𝑳

𝑨∗𝜟𝒑
    Equation 2 

 

• For a parallel flow, moving flow front 

 

𝒌𝒆𝒇𝒇
𝜽 =

𝝁∗(𝟏−𝑽𝒇 )

𝟐∗𝜟𝒑
𝜝𝟏   Equation 3 

 

• For a radial flow,  

 

𝒌𝒆𝒇𝒇
𝜽 =  

𝝁∗(𝟏−𝑽𝒇 )

𝜟𝒑
 
𝟏−𝜶

𝜶
 𝑹𝒐

𝟐𝜝𝟐   Equation 4 

 

Where, the constants B1 and B2 are slopes in least-squares fits of functions of flow-front 

position vs. time and Vf is the fiber volume. Further analysis of how these methods and 

calculations are applied is presented in the (Gebart & Lidström, 1996). 

Experimental results and error analysis found in Gebart and Lidström in polymer materials 

(1996), have shown that none of these methods are better than the others, however a larger 

deflection of the mold was observed with the radial flow method.  

 

2.2. Basic Concepts of Porous Media Theory 
 

 A porous medium is a partition of space into a solid matrix, 𝑀, and a porous matrix, 𝑃, such 

that any point in space, 𝑥, is either part of the solid (𝑥 ∈ 𝑀) or the porous matrix (𝑥 ∈ 𝑃) 

(Hilfer, 1996). The boundary between porous matrix and solid matrix is denoted as Γ. The 

porous matrix, or pore space, is assumed to be saturated with a carrier fluid, while the solid 

matrix is occupied by a solid substance. The carrier fluid is required not to penetrate the 

solid, and the solubility of the tracer in the solid is assumed to be zero. In other words, both 

carrier fluid and tracer will be found in the porous matrix only. Since the properties of both 

the carrier fluid and the tracer differ so strongly in the solid and the porous matrix, the 

geometric characteristics of the porous medium, like its symmetry and connectivity will have 

a large impact on the transport properties of the porous medium. To quantify the geometric 

properties of a given porous medium, it is customary to introduce the characteristic 

function, 𝜒, such that: 

𝝌(𝒙) = {
𝟏   𝒊𝒇 𝒙 ∈ 𝑷
𝟎          𝒆𝒍𝒔𝒆

  Equation 5 

 

One of the most important quantities in the theory of porous media is, the porosity, 𝜑, 

defined by: 



𝝋(𝑽, 𝒙) =
𝟏

𝑽
∫ 𝝌(𝒙)𝒅𝒙

𝑽
, Equation 6 

where 𝑉 denotes a sample of volume 𝑉, centered at position 𝑋. The porosity of a sample is 

thus the ratio of pore volume to sample volume. When evaluated on samples of small 

volume, the porosity necessarily fluctuates strongly with position. This observation suggests 

the introduction of the local porosity distribution as a function that measures the probability 

that a sample of given volume (or length) has a certain porosity. For samples of large 

volume, the fluctuations of the local porosity may decay, and a large-scale limit be obtained. 

In that case, the porous medium is said to be homogenous. Homogeneity of a porous 

medium involves a characteristic length, 𝐿, on which fluctuations of the properties of a 

sample of the porous medium (like porosity) become negligible. This length can usually be 

identified as a typical size of the grains of the solid matrix, a typical pore size, or the 

correlation length of the two-point correlation function. 

 

2.2.1. Porosity and Permeability relationship in fibrous materials 
  

 To control the permeability of fibrous materials and generally porous materials one must 

consider a very important key parameter, 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
Vpore

Vsample
. In the above Vsample is the 

total sample volume and Vpore is the volume not occupied by solid fibers. 

 One of the most comprehensive investigations on the matter is Gebart’s, in 1992, with a 

combination of theoretical, numerical and experimental investigations of the permeability of 

ordered arrays of fibers. Additionally, Koponen et al (1998) report that permeability of 

random-fibers sheets similar to paper and fabrics, is dependent on material porosity and not 

dependent on the placement of the fibers (whether they were randomly placed or not). 

These results agree with Clague et al (2000), in disordered fibrous media which resulted in 

empirically proving a relationship of permeability and porosity, with permeability as a 

function of porosity. 

 Fluid flow analyses in porous media are of great importance in a wide range of industrial 

applications including, transfer molding, filter analysis, transport of underground water and 

pollutants, and hydrocarbon recovery. Permeability is perhaps the most important property 

that characterizes porous media. 

  Darcy’s equation (eq.1) has been used to solve a wide range of problems including flow 

through porous media with low Reynolds numbers. Darcy's law's applicability in modeling 

large-scale flow through fibrous media is no longer debatable; nonetheless, the quantitative 

effectiveness of this technique is highly dependent on the quality of available data for K and, 

more significantly, its change throughout the medium. 

 As presented in the (Papathanasiou, 1996), early attempts to predict the permeability of 

porous media with porosity resulted in the well-known Carman-Kozeny equation which has 

the following form for porous media containing spherical particles of radius R: 

𝑲 =  
𝑹𝟐

𝟒∗𝒌
 

𝝋𝟑

(𝟏−𝝋)𝟐  Equation 7 

• K, kozeny constant 



If we define as m the mean hydraulic diameter, 𝑚 =
𝜑𝑉

𝑆
,  the ratio between the volume 

occupied by fluid over the surface area, the above equation becomes: 

𝑲 =  
𝝋 ∗ 𝒎𝟐

𝒌
  Equation 8 

The most obvious disadvantage of the above equation is that when applied for flow 

transverse to regular arrays of mono-disperse fibres, it predicts a finite, non-zero 

permeability at the point when individual fibres lock together forming an impermeable 

network (maximum packing). (Papathanasiou, 1996) 

According to the original hypothesis, k should only be affected by the medium's geometrical 

structure. This is true for isotropic porous media with porosities ranging from 40% to 70%. 

However, outside of this range, and particularly in fibre beds, it has been discovered that k is 

highly dependent on fibre volume fraction, fluid characteristics, and applied pressure drop 

(Skartsis et al., 1992). 

Sangani and Acrivos (Sangani & Acrivos, 1982), Drummond and Tahir (Drummond, 1983), 

Gebart (Gebart, B. R.,1992), and Bruschke and Advani (Bruschke & Advani, 2017), 

established predictive models for the transverse permeability of idealised fibrous media 

consisting of uniformly spaced fibers of equal radius, R.  

For the limiting situations of: (i) low porosity and (ii) high porosity, the Bruschke and Advani 

models were developed. The model for transverse permeability, K, for square packing of 

fibres is as follows: 

At low porosities: 
 

𝑲

𝑹𝟐 =
(𝟏−𝝀𝟐)𝟐

𝟑𝝀𝟑  ∗  (𝟑𝝀
𝒂𝒓𝒄𝒕𝒂𝒏√(𝟏+𝝀)/(𝟏−𝝀)

√𝟏−𝝀𝟐
+

𝝀𝟐

𝟐
+ 𝟏)−𝟏 Equation 9 

 

Where: 
 

𝝀 = √
𝟒(𝟏−𝝋)

𝝅
 Equation 10 

 

At high porosities: 

𝑲

𝑹𝟐 =
𝝀𝒏𝟐

𝟒
 ∗  (𝒍𝒏(𝝀𝒏) −

𝟑

𝟒
+

𝟏

𝝀𝒏𝟐 −
𝟏

𝟒𝝀𝒏𝟒)    Equation 11 

 

Where: 

𝝀𝒏 = √
𝟏

𝟏−𝝋
  Equation 12 

 



In the low porosity zone, Gebart's model in 1992 is applied. For Newtonian fluids, it predicts 

that the transverse permeability will be:  

𝑲

𝑹𝟐 =
𝟏𝟔

𝟗𝝅√𝟐
 ∗  √

(𝟏−𝝋)𝒎𝒂𝒙

𝟏−𝝋
− 𝟏  Equation 13 

 

The indicator max denotes conditions that correspond to the maximum packing. It's worth 

noting that the above equations in the regime of low porosities get nearly identical answers. 

They both have accurate asymptotic behavior in the limit of maximum packing and are in 

good accord with experimental data for Newtonian fluid flow. 

Furthermore as mentioned in (Papathanasiou, 1996), for a wide range of fibre volume 

fractions, comparison of the above models with numerical computations for Newtonian 

fluids has produced good correlation. However, because the theoretical derivations assume 

either a square or a hexagonal packing of the fibres, precise microstructural characteristics 

of the preform cannot be included in the projected effective permeability values. 

 

2.3. Lattice Boltzman method (LBM) for calculating permeability in fibrous 

media 
  

This method was introduced as an alternative meso-scale/continuum level modelling tool. It 

is based on a special version of the continuous Boltzman equation which discretizes time, 

space and velocities and is able to capture clear physics in a system, while using complex 

geometry and nanoscale physics to achieve this (Chung, 2011). 

 This method is able to simulate and thus predict the fluid flow through porous and fibrous 

media and obtain the permeability with different lattice numbers (Li et al, 2016). 

 

Figure 1 The 2D geometry used in the pore-scale simulation, where the symmetric boundary condition is used at 
the top and bottom surfaces (Li et al., 2016) 

 This method is extremely useful since it can predict the flow of a liquid or gas through a 

fibrous material without the need for any mesh generations. 

 



2.4. Hydraulic Permeability of fibrous porous media 
 Darcy’s law as it was described above, defines the viscous hydraulic permeability of fibrous 

porous media, which has been widely studied in previous years. Hydraulic permeability of 

flow has been predicted perpendicularly to one-dimensional circular fibers.  

 In Kuwabara’s model in 1950 this 1D model is based on the unit cell approach and based on 

that, the zero vorticity of the cell has been changed to zero cell boundary shear. There have 

also been various numerical methods, such as the spectral boundary element formation, 

which is able to represent and predict hydraulic permeability in the three-dimensional 

models (Novacovic, 2004). 

 Although the research is copious in computational simulations, there haven’t been a lot of 

analytical studies exploring the geometrical formation factors and how exactly they 

influence hydraulic permeability. Since superfine fibrous materials are becoming more and 

more relevant and more commonly used, these factors are also becoming more relevant. 

2.4.1. Geometry Generation 
  

 Three different methods are commonly used to calculate hydraulic permeability of fibrous 

media, all with various geo-formation factors and slip effect (Shou et al., 2011): 

1) Unit Cell Method 

2) Voronoi Tesellation method 

3) Average volume method 

  In the following sections we will look at the effectiveness of these methods and which ones 

we consider most effective. 

2.4.1.1. Unit Cell Method 

  In order to predict the hydraulic permeability, one would need to describe the geometry of 

fibrous media in great detail, a feat that isn’t always possible, especially with the fibrous 

media of quite complex nature. For this method, to make this calculation process possible, 

the geometrical structure of the fibrous material was assumed to be made of periodical unit 

cells. One-, two-, and three-dimensional systems are used in the process. 

  First of all, the 1D system is examined, since it is able to more intrinsically depict the nature 

of the system, for every fibrous media is made up of long and thin one-dimensional fibers. 

After this is done, then it can also be modeled 2D and 3D later. 

 This method will help us to have a first idea about the geometry of fibrous media. However, 

the information we will receive will not be 100 percent accurate.  

 



 

Figure 2 Unit cell (represented as a square) in a regular parallel fiber array. Source: Shou et al, 2011 

 

2.4.1.2. Voronoi Tesellation Method 

  There are cases where the fibers are placed at random. This makes the flow of the unit cell 

a lot more complex, since the voids are now disordered and in order to visually describe the 

irregular and at random manner of the fiber location, a scientist may use this method. 

  The second method helps a lot in simulating the reality, that is, how the cells are made, as 

their fibers are intricately arranged and so in this way the conclusions, we will draw will be 

closer to reality. 

 

Figure 3 (a) Spatial distribution of particles, and (b) the corresponding Voronoii tesselation of the spatial 
distribution on the left.(Sumbekova et al., 2019) 

 



2.4.1.3. Volume Averaging Method 

  In this method (Shou et al., 2011) one can examine common cases of both two and three 

dimensional fibrous media, which can have both various fiber orientations as well as various 

fiber distributions. Macroscopically speaking fiber arrangement is characterized by high 

anisotropic properties. 

  This method can determine permeability by creating a total drag in which the contribution 

of fibers is added in each direction. This way one can predict the transport properties of a 

fibrous medium on a macroscopic level; however, they must overcome a closure problem in 

order to determine the hydraulic permeability macroscopically within the representative 

elementary volume. 

  One can assume that a fibrous medium can consist of cubic cells which are repetitive, 

which represent the microscopic structure of a fibrous medium. Within every cubic cell 

these fibers can be located and oriented in various ways and directions, and the overall 

orientation of the fibers in each cubic cell can be characterized by fractions of the length of 

the fibers in x, y, or z axis of direction. 

 We notice that the third method is much more specific and we believe that it will help a lot 

in drawing safer conclusions than the previous methods. We believe that by combining the 

three methods, scientists can better understand how fibrous materials work. 

 

Figure 4 3D view of fibrous media based on cubic lattice. Source: Shou et al, 2011 

 

 

 

 



2.5. Coupled Diffusion and Dispersion through Fibrous Media 
 

2.5.1. Background and Motivation 
 

All earlier studies considered that transport of solute molecules through the fibrous media 

occurs by diffusion only. However, when studying the dispersion of a species through a 

fibrous medium, many times fluid flow also contributes.  

Physicists use the term dispersion as a synonym for the spreading of a distribution of mass 

(or energy) in a carrier medium. In the above example, the ink is dispersed in the water by 

diffusion. Dispersion is thus a fundamental mechanism of transport. Other examples of 

dispersion phenomena include the spread of sound waves and the spread of heat. Molecular 

diffusion is not the only mechanism that leads to dispersion. Transport by convection, for 

example, often leads to dispersion, too. To see this, imagine that an ink is poured into a 

river, and convected downstream along with the flowing water. The local velocity of the 

carrier will usually not be constant throughout the river but vary with position. Such velocity 

fluctuations introduce several different dispersion mechanisms. The interplay between 

dispersion and diffusion can be illustrated in the following way: 

 

Diffusion → Dispersion ⇆ Transport ← Convection 

 

Here, arrows should be read as ‘leads to’, and diffusion and convection are mentioned as 

examples of a dispersion- and a transport process, respectively. It is obvious that dispersion 

is a phenomenon of fundamental importance in daily life as well as in engineering. 

Consequently, there is a profound need to quantitatively understand and describe 

dispersion processes. Dispersion phenomena occur in a large variety of situations, and the 

underlying dispersive mechanisms can be of quite different nature. Flow through fixed beds 

is usually steady, such that the velocity of the carrier fluid at a given point does not change 

in time. In this case, studies on tracer dispersion can be divided into three steps: First, the 

geometry of the porous medium is defined. Next, the steady flow of the carrier in the porous 

matrix is calculated. Finally, the transport of a tracer under the combined action of 

molecular diffusion and convection by the steady flow of the carrier is studied. 

Moreover, transport by diffusion and convection is an interesting phenomenon from a 

scientific point of view: Diffusion is a stochastic process, that is, a diffusing particle has no 

memory about its position at earlier times. Consequently, the process of diffusion is 

irreversible in time. In contrast, convection is a deterministic, and (under certain restrictions) 

completely reversible process. The interplay of two processes so different in nature leads to 

remarkable phenomena, some of which are discussed in this thesis. Finally, it will be seen 

that tracer dispersion is relatively simple to access theoretically. Consequently, a number of 

analytical results exist, and can be checked against the results of experiments and 

simulations. 

 



2.5.2. The Convection-Diffusion Equation 
We start the discussion on microscopic scales, that is, length scales smaller than the 

characteristic length l of the porous medium. These length scales are, however, assumed to 

be large compared to molecular scales, so that the carrier fluid and the tracer can be 

discussed in the frame of continuum mechanics. The derivation of the transport equation 

relies on the principle of conservation of tracer particles. One obtains the partial differential 

equation: (Lawley, 2007) 

 

𝝏𝒄

𝝏𝒕
= −𝜵 ∙ (𝒖𝒄) + 𝑫𝒎𝜵𝟐𝒄 Equation 14 

 

where 𝑐(𝑥, 𝑡) the local molecular concentration, 𝐷𝑚 is the molecular diffusion coefficient, 

𝒖(𝑥, 𝑡) is a single valued vector function that measures the local fluid velocity at position 𝑥 

and time 𝑡. Equation (14) is called convection-diffusion equation since it describes the 

transport of a tracer under the influence of convection and molecular diffusion. It is 

instructive to cast Eq. (14) into dimensionless form by non-dimensionalizing all involved 

quantities according to: 

 

𝒖 → 𝒖 𝑈⁄ , 𝑥 → 𝑥 𝑙⁄ , 𝑡 → 𝑡𝑈 𝑙⁄ , 𝑐 → 𝑐𝑙3,  

 

where 𝑈 is a characteristic flow velocity. In these dimensionless variables Eq. (14) takes the 

form: 

𝝏𝒄

𝝏𝒕
= −𝜵 ∙ (𝒖𝒄) +

𝟏

𝑷𝒆
𝜵𝟐𝒄  Equation 15 

 

The quantity: 

𝑷𝒆 =
𝑼𝒍

𝑫𝒎
    Equation 16 

 

is the Peclet number and compares a typical time scale of diffusion (𝑙2 𝐷𝑚⁄ ) to a typical time 

scale of convection (𝑙 𝑈⁄ ). In the next subsection more information about the Peclet number 

will be presented. 

 

2.5.3. Peclet number 
In many investigations, it's required to describe groundwater flow and solute transport in 

porous media with low permeability, where the rate of transfer owing to flow (convection) is 

similar to the rate of transport due to diffusion. Groundwater flow in these low-permeability 

environments appears to influence the evolution of certain hydrologic, geologic, and 

geochemical systems, as well as the buildup of petroleum and ores. It also appears to play a 

role in the structural evolution of areas of the crust. In the context of garbage disposal, such 



ecosystems are also critical (Neuzil, 1986). Modeling of the hydrogeology of low 

permeability rocks surrounding nuclear waste disposal sites and landfills are good examples. 

In general, convection and diffusion are considered simultaneously when simulating 

transport in porous media. Transport may be dominated by diffusion at low flow velocities, 

but advection may be dominant at high velocities. In either case, a transport model that 

ignores relatively minor terms is easier to implement than one that considers all transport 

mechanisms simultaneously, especially if the model is three-dimensional and/or includes 

simultaneous consideration of multiple and reactive chemical species or parameter 

optimization routines (Garges and Baehr, 1998). As a result, if the medium has a low 

permeability, it's worth seeing if advection should be considered. If not, diffusion alone can 

be used to mimic transport. The head and permeability distribution are not necessary for 

transport simulation in this situation, therefore the computation time can be reduced. 

A Peclet number-based criterion is frequently used to determine if advection transport 

should be included. A Peclet number is a dimensionless number that can be used to 

compare the effectiveness of mass movement by advection to mass transfer via dispersion 

or diffusion (Fetter, 1999). For Peclet numbers less than 1, diffusion is usually considered the 

major transport mode. Unfortunately, there are up to ten alternative definitions of the 

Peclet number in the literature, and these multiple meanings result in highly different Peclet 

number values for a given situation. As a result, ignoring advection based only on a Peclet 

number value less than 1 does not appear to be warranted for every extant Peclet number 

definition. 

Diffusion is consequently much'slower' than convection at large Pe, and convection 

dominates the transport process. Convective transport, on the other hand, is minimal when 

Pe is tiny compared to diffusive transfer. Convective and diffusive transport processes are 

linked by the Péclet number. It's linked to the Prandtl number, which relates momentum 

and thermal transport, and the Reynolds number, which ties inertia and viscous forces 

together. The Péclet number is calculated as follows: 

Pe =
convection transport

diffusion transport
=

𝑢𝐿𝑐ℎ𝑎𝑟

𝐷
. 

 

A second widely used formulation of the Péclet number links convective and heat 

transmission. It is defined as follows: 

Pe =
convection transport

heat transport
=

𝑢𝐿𝑐ℎ𝑎𝑟

𝜆
. 

 

The Péclet number, like the Reynolds number, is not a material constant because it is 

dependent on both the velocity of the flow field and the system's characteristic length L 

char. 

Literature contains a wide range of Peclet number definitions. The fundamental distinction 

between them is in the assumptions regarding solute transport that they are based on. 

Different Peclet number definitions come from different simplifications of the general solute 

transport equation. The effective porosity ne, which is the porosity available for fluid flow or 

advection (Fetter, 2001), and the diffusion accessible porosity n, which is the fraction of the 



total water filled porosity that is available for diffusive transport, are distinguished in the 

general form of the solute transport equation (Horseman et al., 1996). Because the diffusion 

accessible porosity contains a fraction of the immobile water porosity, it may be bigger than 

the effective porosity. As a result, one porosity may be required for calculating advection 

velocity while another may be necessary for determining the rate of mass buildup. Instead 

of using two porosity variables, advective-dispersive transport analysis has traditionally used 

a single lumped value of porosity (Zheng and Bennett, 2002). 

2.5.4. The Navier-Stokes Equation 
The principles of conservation of mass and momentum lead to the continuity and Navier-

Stokes equations: 

𝝏𝝆

𝝏𝒕
+ 𝜵 ∙ (𝝆𝒖) = 𝟎  Equation 17 

 

𝝆 [
𝝏𝒖

𝝏𝒕
+ (𝒖 ∙ 𝜵)𝒖] − 𝜵 ∙ 𝜮 = 𝒇 Equation 18 

where 𝜌 is the density of the fluid, Σ denotes the stress tensor, and 𝒇 the externally applied 

force per unit volume, or body force. To process these equations further, a constitutive 

relation for the stress tensor must be supplied. In Newtonian fluids, for example, the stress 

tensor is a linear function of the velocity gradient, and Newton’s law is valid: 

𝜮 = −𝒑𝒍 + 𝟐𝝁𝑹,  Equation 19 

where 𝑝 is the pressure, l the identity tensor, 𝜆 and 𝜇 are the two coefficients of viscosity, 

and 𝑅 =
{∇𝒖}+{∇𝒖}𝛵

2
 denotes the tensor of rate of strain. Equation (18) is readily cast into 

dimensionless form by non-dimensionalizing all involved quantities with the characteristic 

length / and the characteristic velocity 𝑈 according to: 

 

𝑥 → 𝑥 𝑙⁄ , 𝒖 → 𝒖 𝑈⁄ , 𝑡 → 𝑡𝑈 𝑙⁄ , 𝑝 → 𝑝 (𝑈2𝜌)⁄ ,  𝑓 → 𝑓𝑙 (𝑈2𝜌)⁄ . 

 

In dimensionless variables Eq. (18) takes the form: 

 

𝝏𝒖

𝝏𝒕
= −𝜵𝒑 − (𝒖 ∙ 𝜵)𝒖 +

𝟏

𝑹𝒆
𝜵𝟐𝒖 + 𝒇  Equation 20 

 

where the quantity: 

𝑅𝑒 =
𝜌𝑈𝑙

𝜇
 

is called the Reynolds number. Like the Peclet number, the Reynolds number is an important 

dimensionless quantity that allows one to distinguish between different flow regimes, as 

discussed below. When the left-hand side of eq. 18 vanishes, the flow is referred to as 

steady. In this case, the velocity at any given position is constant in time. Steady state flows 



are often encountered in flow in porous media, since the forces that drive the flow change 

very slowly in time. 

The Reynolds number is one of the most important dimensionless quantities in fluid 

mechanics. It correlates the inertia forces to the viscous forces. The Reynolds number was 

first described by Reynolds in 1883, although others have used the quantity before, e.g., 

Stokes. It is defined as: 

𝑅𝑒 =
inertia forces

viscous forces
=

𝜌𝑢𝐿𝑐ℎ𝑎𝑟

𝜂
=

𝑢𝐿𝑐ℎ𝑎𝑟

𝜈
. 

The Reynolds number is important for describing the transport properties of a fluid or a 

particle moving in a fluid. As an example, for very small organism, e.g., bacteria, the 

Reynolds number is very small, typically in the range of 1 × 10−6. Given the small 

dimensions, these objects do not have a significant inertia and are thus mainly driven by the 

viscous forces of the fluid. As the objects grow larger, their inertia starts to dominate over 

the viscous forces. For most fish, the Reynolds number is in the range of 1 × 105, for a 

human it is in the range of 1 × 106.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

Previous Research 
 

3.1.  Permeability of Fibrous Biomaterials  
 

3.1.1. The objective 
  One important application of fibrous media permeability is in biomedicine, as was 

mentioned above. Collagen is the single most important structural protein in the human 

body, and it is located in the extracellular space of various connective tissues. This protein is 

being examined here due to its fibrous nature and the fact that it is the main component of 

the extra-cellular matrix (DeFrates et al, 2018). 

  Collagen fibers are formed from collagen fibrils that have been hierarchically aggregated 

measuring between half to three μm in diameter (Novacovic et al, 2004). When a human 

joint is stressed and strained beyond its natural range of movement then a tear in the 

ligament might occur, or worse, a rupture. The flow of fluid, in this case, through the 

ligament tissue, is a very important factor in the nutrient absorption rate of the cell and the 

metabolic rate of the waste removal process (Novacovic et al, 2004). 

  Studies have been made to assess the flow inside the ligaments and describe the behavior 

of these biological fluids through the fibrous media of a human ligament. In order to be able 

to study the flow of these fluids a rheological fluid model was adopted in this biological 

application of previous numerical models. 

  Erisken, Papathanasiou, Tsiantis and Karvelas (Erisken et al., 2020) studied the permeability 

of ligament tissue with a computational study on healthy and injured tissues in 2020. In their 

study they used a biological application of a previous numerical model to study the effect 

the collagen fibril diameter has on distribution, and they also studied the hydraulic 

permeability of healthy and injured tissue comparatively, specifically in the ACL tissue 

(Anterior Cruciate Ligament). They hypothesized that due to the injury on the ligament the 

tissue became distorted in structure and as such its permeability would change through the 

ECM (extra cellular matrix). They hoped to use this research to understand the nature of 

injuries and aid in the future healing process of the ligament, which would demand the 

contribution of several factors such as cell function and their contribution to healing as well 

as regulators of the human cells like medical substances, drugs and biomolecules that would 

act as growth factors.  

  In order to enhance and better the delivery of said substances and biomolecules and 

control them, and in order to make them more efficient and potent and promote healing as 

well as increase healing speed and quality, one would first need to understand and define 

the flow patterns.  

 

 

 



3.1.2. The method 
  Their methodology was of quite some interest, they used TEM (Transmission Electron 

Microscopy) in order to obtain results that would show the collagen fibril diameter as well as 

the diameter distribution through the images of sectioned ACL tissues. Of course, these 

tissues were bovine but the morphology and topology of human and bovine tissue are 

surprisingly alike and their research could very well have human application.  

  A specimen of 1 cubic mm was obtained from the middle of the tissue section and used for 

TEM characterization. With a uniaxial material testing machine, the researchers created 

injured specimens by attaching the tibia-ACL-Femur joint to the machine and stretching it 

until failure at a rate or 5mm/min, which is the most common physiological strain for 

ligaments/tendons. 

  They measured the collagen filament diameter and the diameter distribution by placing ten 

parallel lines of equal distance on the TEM image and they measured the diameter of the 

fibrils which intersected said lines.  

  As in all areas of our lives, nature teaches us and gives us answers to almost every question 

of our lives as we study it. So here, in the case of collagen, we realize how perfect the human 

body is, as scientists have been able to understand how it is made, so that fluids can 

penetrate tissues. As we know, every human creation copies nature. So, in this case, we 

hope that this component of our body, will give the answers needed to create human 

fibrous materials through which liquids and gases can flow comfortably. 

  A solution method was used for evaluating the flow of the micropolar fluid through the 

filament arrays:  

(�̂� ⋅ 𝜵)�̂� = −𝜵𝒑 +
𝟏

𝑹𝒆
𝜵𝟐�̂� +

𝒎

𝑹𝒆
𝜵 × 𝝎    Equation 21 

 

𝑱𝑵

𝒎
�̂� ⋅ 𝜵𝝎 =

𝟏

𝑹𝒆
𝜵𝟐𝝎 +

𝑵

𝑹𝒆
𝜵 × �̂� − 𝟐

𝑵

𝑹𝒆
𝝎  Equation 22 

 

      

uˆ = velocity vector 

ω= micropolar velocity vector 

*Both of these are scaled to the average velocity of the cross section  

Re = Uref Reynolds number 

N= gradient viscocity 

m= vortex viscocity 

*these three are non-dimensional parameters and they are defined as following, with L 

being the characteristic length of the flow path and ρ being the micropolar fluid density: 

𝑅𝑒 =
𝜌𝑈𝑟𝑒𝑓𝐿

𝜇𝑣+𝑘𝑣
 ,     𝑁 =

𝑘𝑣𝐿2

𝛾
,  𝑚 =

𝑘𝑣

𝜇𝑣+𝑘𝑣
 



All the other parameters were made non-dimensional and were expressed with the 

following: 

�̂� =
𝑢

𝑈𝑟𝑒𝑓
 ,  �̂� →

𝜔𝐿

𝑈𝑟𝑒𝑓
,  𝑝 →

𝑝

𝜌𝑈𝑟𝑒𝑓
2 , 𝐽 →

𝑗

𝐿2 

*ω=micropolar velocity component,  

P= pressure 

J= micro inertia constant 

 

3.1.3.  Results of the study 
  Using the solution of the equations mentioned above they managed to calculate and 

compare/contrast the hydraulic permeability of healthy and injured ligament tissue, always 

with consideration of the Newtonian and the micropolar fluids. 

 

Figure 5 U= Dimensionless fluid speed, as scaled by the division of maximum velocity for a case of micropolar 
under m,N=10. a) Healthy and b) injured tissue, with red = high velocity and blue = low velocity Source: Erisken et 
al, 2020 

 In figure below, the researchers found an increase in hydraulic permeability in healthy 

ligament of 0.75%, as well as observed an increase of the values of the micropolar 

parameters in the cases of injured ligament. In the injured ligament tissue, there was only a 

very slight increase of hydraulic permeability. 

 With m and N = 1, it was found that the permeability of healthy ligament tissue was 10.9% 

higher when compared with the corresponding permeability of the injured tissue and the 

more the values of the micropolar parameters increased so did the permeability, when they 

were increased m, N = 5 and 10 then the increase of permeability was 12.4 % and 13%. 

 In the Newtonian case respectively the rise in hydraulic permeability in both healthy and 

injured ligament tissue was 11.3 %. 

 

 



 

Figure 6 Hydraulic Permeability for Newtonian and micropolar cases under different random distributions for 
healthy and injured tissue 



3.2. Effect of micropolar fluid properties on the hydraulic permeability of 

fibrous biomaterials 
 

In the next section, we will consider a method to look at the effects of the properties of 

micropolar fluids on the hydraulic permeability of fibrous media. 

3.2.1. The objective 
 In 2020 Papathanasiou, Tsiantis and Karvelas carried out a study to explore the effect of the 

micropolar fluid parameters on the hydraulic permeability of fibrous biomaterials. These 

biomaterials were comprised of square arrays of unidirectional fibrils. Specifically, they 

studied collagen, and the fluid flow of biofluids through collagen structures that are not 

described properly by the Newtonian flow model. 

  The researchers proposed that the best way to describe the behavior of these biofluids and 

their microscale structuring and microrotation is by the micropolar fluid model, based on a 

theory of non-Newtonian fluid dynamics.  

  Microfluids have nonsymmetrical stress tensor and can support couple stresses because 

they contain microelements and have an internal microstructure. They also can support 

surface and body couples and can change their shape, size or geometry and rotate on their 

own regardless the rotation of the fluid. These biofluids have a different effect on the 

dimensionless hydraulic permeability inside regularly ordered fibrous biomaterials.  

3.2.2. The method 
  They used OpenFoam in 3-D to frame their simulations or micropolar fluid flow inside fiber 

arrays. The flow they studied was transverse and regularly ordered in a square fiber array. 

They used Gmsh as a mesh generator to create the instructed computational mesh. Their 

results show that as the mesh increased there was practically no difference in the computed 

microrotation values and as such they conducted all simulations by using 25 cells in the z-

direction. 

  They computed the effective permeability of the unit cell through Darcy’s law, as did the 

researchers in the other cases mentioned in this paper: 

𝑲𝒆𝒇𝒇 =
𝑸(𝝁𝒗)𝑳

𝜟𝑷𝑯𝑾
     Equation 23 

 

Keff=Effective Permeability 

Q=computed flowrate 

ΔP=imposed pressure drop 

H and L=dimensions of the unit cell in the x-y plane 

W=dimension in the z direction 

 



3.2.3. Results of the study 
  They validated these models for Newtonian and micropolar fluid flow as well, comparing 

them against other permeability models proposed in the Newtonian case and validated the 

micropolar flow numerical model against planar Poiseuille flow.  

  The results of their studies showed correlation between the values of the micropolar 

parameters an microrotation, more specifically when the first increased so did the second 

and after both values are increased then so does the velocity of the fluid as a result. 

Accompanying these changes is also a change in permeability, which increases alongside the 

other values. 

  As a secondary result they found that increasing the concentration of the microelements of 

the micropolar fluid changed the rate of the heat transfer, increasing it. Similar results of an 

increase in the heat transfer rate are achieved by increasing the Prandtl or the Eckert 

number.  

  Another crucial effect is the effect of the volume fraction on microrotation.  When the 

volume fraction is increased then the microrotation for the same micropolar parameters 

would decrease. By having a larger space to accommodate the microfluid flow there is 

decreased flow resistance. Increasing the volume fraction φ led to an observation of 

increased values of micropolar parameters needed to sustain similar permeability for the 

micropolar model to the parameters of the Newtonian model.  

  They expressed the differences in hydraulic permeability between micropolar and 

Newtonian cases as a function of vortex, spin gradient viscosity and volume fraction. 

 

𝜟𝑲

𝒎
= 𝒂𝑵 + 𝑰(𝝓, 𝒎)    Equation 24 

    

m=Vortex 

N=Spin gradient viscosity 

φ = Volume fraction  

Α= Constant independent on m and N and weak function of φ 

  

 Summarizing, higher porosity led to higher hydraulic permeability of the fibrous biomaterial, 

caused by the increased bio rotation of the substructure of the micropolar fluid. Accordingly, 

lower porosity (decrease in the values of the vortex and the spin gradient viscosity) led to 

lower rates of microrotation and decrease of the hydraulic permeability, when compared to 

the Newtonian model. 

  Lower microrotation values led to a flow deceleration because of the contacts within the 

substructure of the micropolar fluid and the boundaries of the fibrous biomaterials 

examined. 

 



 

3.3. Relationship between the axial flow permeability of fibrous media and the 

microstructure of the model 
 

3.3.1. The objective 
Xiaoming Chen and T.D. Papathanasiou conducted research in 2006 to establish a model for 

the axial hydraulic permeability (K||) of fibrous media that included explicit consideration of 

the microstructure and its variability. 

The researchers investigated axial Stokes flow over many unidirectional, disordered fiber 

arrays in detail, each one comprised entirely of 600 fibers inserted at random. 

A two-dimensional Stokes formula was used to represent Stokes flow in a continuous fibre 

grid in the axial direction. 

The current study was driven by the need to build models that would estimate the axial 

permeability of a fibrous medium based on information of its composition, as a result of the 

expansion of more efficient and timely permeability test procedures. 

Axial flow across unidirectional random fiber arrays is the difficulty researchers looking at 

their study. Theoretical conclusions for such arrays frequently differ significantly from 

practical data acquired in real fibrous media. 

Thus, it is critical to look at the possibility of structure-permeability relationships in 

unstructured fiber arrays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3.2. The method 
 

Permeability parameters should be given at nodal locations or cell centers indicated by the 

area discretization approach to computationally model flow through fibrous preforms. The 

correctness of the permeability data provided is essential for successful analysis. 

Long cylindrical fibers with their axes aligned in the z- direction and geometrical centers 

randomly distributed in the x–y plane constitute the fibrous media investigated. 

 

 

 

Figure 7 Representative volume for unidirectional disordered fiber arrays. (Chen & Papathanasiou, 2007) 

 

 

The Stokes equations are the fundamental equations for creeping Newtonian flow through 

the porous media.  

𝜵𝑷 + 𝝁𝜵𝟐𝑽 = 𝟎   Equation 25 

𝜵𝒗 =  𝟎   Equation 26 

• P: pressure 

• V: velocity vector 

• μ: viscosity 

 

The Representative Volume Elements (RVEs) used in this research were selected to 

represent a range of distributed fibers and created using a Monte-Carlo technique in the 

porosity range 0.45 < φ < 0.90, each constituting of 600 fibers.  



 

Figure 8 Typical fiber distributions generated by a Monte Carlo procedure, each with 576 fibers: (a) / = 0.5, δmin = 
0.1a; (b) / = 0.7, δmin = 0.1a; (c) / = 0.5, δmin = 0.4a; (d) / = 0.7, dmin = 1.2a (Chen & Papathanasiou, 2007) 

 

 

The MC process begins with a fixed fiber packing configuration (for example, a square array) 

and then perturbs the fiber placements randomly and consecutively. The choice of porosity 

φ and the minimum permissible inter-fiber distance δmin are the main determinants of the 

microstructures formed in this way. 

The porosity, is estimated as: 𝜑 =  1 − 
(𝛮∗𝜋∗𝛼2)

𝛢
 

where N is the quantity of fibers contained, α is the fiber radius, and A is the grid’s area.  

The δmin is the factor that prevents fibers from overlapping throughout the MC process. It is 

determined as the minimum permissible distance between two fiber borders. 

 

 

 

 

 

 



3.3.3. Results of the study 
 

For varying parameters of φ and δmin, fiber distributions are illustrated in the above figure. 

Small δmin values result in more uniform structures, whereas big δmin values result in more 

uniform distributions. When the porosity is high, δmin has a stronger effect on fiber 

aggregation. 

By visualizing the velocity field through the fibers, the impact of fiber arrangement on the 

flow field may be evaluated. Flow fields estimated for axial flows through disordered fiber 

arrays are shown in the below figure. 

Axial flow appears to be aided by the presence of big pores (or flow channels). Despite the 

fact that the two microstructures have the same permeability, the permeability of (a) is 

twice as great as that of (b). 

 

 

 

Figure 9 Contours of vz for axial flow through unidirectional disordered fiber arrays. (a) φ = 0.70, δmin = 0.1a 

 (b) φ = 0.70, δmin = 1.2a (Chen & Papathanasiou, 2007) 



Researchers tried to include another parameter called δ1 to decrease the error in the axial 

permeability estimate. This parameter defines the heterogeneity of the fiber distribution. 

The result they carried out is that K|| is improved by increasing microstructure 

heterogeneity.  

Concluding, the results show that (K||) rises as the microstructure shifts from a uniform to a 

non-uniform dispersion. A microstructural factor was proposed so as to define the 

heterogeneity of the fiber distribution and describe this relationship between (K||) and 

microstructure. 

 

3.4. Variability of the Kozeny constant (kc) in flow through unidirectional fiber 

arrays 
 

3.4.1. The basis 
Xiaoming Chen and Thanasis D. Papathanasiou (Chen & Papathanasiou, 2006) carried out 

research in order to investigate saturated transverse flow over a large number of 

unidirectional fiber arrays and describe the wide range of the Kozeny constant values found 

experimentally. 

The development of theoretical models for predicting permeability in porous media has 

taken a lot of time and effort. 

Fiber arrays are typically characterized as periodic or random arrays of aligned cylinders for 

generating permeability simulations. Darcy's law can be used easily to determine hydraulic 

permeability in certain situations. 

𝑲 =
𝒒

𝑯
∗

𝑳∗𝝁

𝜟𝒑
   Equation 27 

• q: flow rate 

• Δp: pressure drop 

• H: height of unit cell 

• L: length of the unit cell 

 

Unfortunately, it emerges that experimental data for real fiber arrays and simulated results 

have little association (Åström et al., 1992). This is due to the fact that permeability is a 

geometry-dependent feature, and the expected real fiber arrangement is rarely seen. It is 

commonly found in composite materials as depicted in the figure below. 



 

Figure 10 Typical microstructures of unidirectional laminates. (Chen & Papathanasiou, 2006) 

 

3.4.2. The method 
Using a parallel computational technique, researchers studied the effect of fiber packing 

statistics on the transverse permeability of random fiber arrays. Using a Monte–Carlo 

approach, they created a huge number of fiber distributions that are statistically 

homogeneous but have varying degrees of local heterogeneity. They analyzed systems with 

196–900 fibers, porosity (φ) ranging from 0.45–0.8, and minimum inter-fiber distance (δmin) 

ranging from 0.1R to R, R being the fiber radius. The latter variable (δmin) is a crucial 

characteristic that determines the degree of inhomogeneity at the microscale, as we have 

already mentioned in the previous section (Chen & Papathanasiou, 2006). 

Fiber distributions at various porosities and a different δmin are shown in the figure below. It 

can be seen that a low δmin number results in small fiber bundles, making the distribution 

appear more heterogeneous. With higher values of porosity, the effect Is “stronger”. On the 

other side, a high value of δmin results in more homogeneous structures with more 

hexagonal arrangements. 

It is good to point out that the model distributions utilized in this work, while not as complex 

as actual fiber arrangements, do represent a class of distributions that are more closely 

related to them. 



 

Figure 11 Typical computer-generated fiber distributions. Each image consists of 196 fiber cross sections and was 
generated by the MC method, starting from a 14!14 square array. (Chen & Papathanasiou, 2006) 

 

3.4.3. Results of the study  

3.4.3.1. Flow Features 

It is well understood that numerical evaluations of effective characteristics based on small 

systems differ significantly from those relying on bigger systems, implying that the fiber 

distribution becomes more homogeneous as the system grows. 

The below figures taken from (Chen & Papathanasiou, 2006) , each one with a porosity value 

equals to 0.5, δmin equal to 0.1R (radious of fiber) and Nf= 196 and 900 respectively depict 

big flow channels as well as areas of stagnant flow. Stagnant fluid zones are common in 

areas where fibers have clustered together. If the gap is too small, the flow resistance can be 

so high that the flow channel is effectively shut. As a result, the fluid would be driven to pass 

through areas with less resistance. 



 

Figure 12Vector plot for a realization of random fiber array with φ=0.5, dmin=0.1R and Νf=196 (first picture) & 
Nf=900 (second picture). (Chen & Papathanasiou, 2006) 

 

3.4.3.2. Kozeny Constant of fiber arrays 

Generally, the permeability of a fibrous material increases as the porosity increases. A 

considerable dispersion in estimated permeabilities can be detected for different 

simulations of random fiber arrangements at the same porosity value. These dispersions 

suggest that using porosity alone cannot reflect the discrepancies induced by varied fiber 

distributions. 

The Kozeny constant (kc), which appears in the Carman–Kozeny equation, has been widely 

utilized in the literature to highlight the dependency of permeability on the tortuosity of the 

porous media (Chen & Papathanasiou, 2006). To correlate with existing literature 

researchers transformed the permeability data into the dimensionless Kozeny constant using 

the following equations:  

 



𝒌𝒄 =
𝒓

𝒉𝟐

𝜥
∗ 𝝋   Equation 28 

 

𝒓𝒉 =
𝑫∗𝝋

𝟒(𝟏−𝝋)
   Equation 29 

 

• 𝑟ℎ: mean hydraulic radius for systems of cylinders of equal size 

• 𝐷: fiber diameter 

• 𝑘𝑐: Kozeny constant (independent of porosity) 

 

Summarizing, at low porosities, the decrease in permeability caused by increased 

nonuniformity in fiber arrangement. This is not surprising, since researchers have previously 

shown that fiber clusters can obstruct flow paths and delay flow. 

This is based on the argument that reduced <δ1> levels (mean nearest neighbor inter-fiber 

distance) are linked to the production of fiber bundles. Lower porosity levels followed by 

lower permeability (and a larger kc) and higher porosities are accompanied by the 

emergence of huge open areas that result in considerably higher permeability. 

Νon-uniformities in fiber structures are to blame for the observed permeability variances. 

For random fiber arrangements, the Kozeny constant is found to correlate strongly with the 

mean nearest neighbor inter-fiber distance <δ1>. In the examined porosity range, higher 

non-uniformity in fiber grids results to permeability reduction, i.e., larger values of the 

Kozeny constant. 

 

3.5. PMFSS, study of the high-expectation fibrous material  
 One of the materials with great potential that has many applications is PMFSS, Porous Metal 

Fiber Sintered Sheet, a fibrous material that has the ability to be used in the development of 

high-performance fuel cell that is also compact in nature. This can only be done by achieving 

optimization in the PMFSS structural design, which in turn can only be done by evaluating 

the permeability of the medium, for example how the fiber structures affect the transport 

property (Huang et al, 2013). 

 This material is fairly new and is characterized by high porosity and large specific surface as 

well as good mechanical strength, characteristics which allow it to be successfully applied in 

the manufacturing of fuel cells, by using its catalytic ability for support in the gas diffusion 

layer. In order to prime this material and explore its full potential it became necessary to 

explore the correlation between transport properties of the material and pore scale 

morphology, in order to acquire relevant guidelines that would ultimately aid in the 

optimization of both performance and design (Huang et al, 2013). 

 

 



3.5.1. Results of the study 
 As the fluid porosity increased then so did the velocity of the fluid, since it had to pass 

through less fibers and there was less drag force created. When the porosity was the same 

then the velocity of parallel flow was bigger than the velocity of the transverse flow, since 

alignment and direction of the fibers is a factor of permeability.  

Dimensionless permeability 

k/r2 

Parallel Flow (x direction) Transverse Flow (z direction) 

E=90% 2.570 1.372 

E=80% 0.884 0.732 

Figure 13 Calculating Permeability, study results (Huang et al, 2017) 

 These results corroborate with the theory of the analytical model proposed by Spielman 

and Goren (1986), which mention that porosity and fiber arrangement significantly influence 

the transport property. These results are very important in the way that can be powerful 

tools for the optimization of the design and application of fibrous porous media by providing 

information on the optimal fiber arrangement and the optimal selection of flow direction.  

  The simulation method by Huang et al (2017) already is a tool of great importance in the 

construction of fiber structures and design. 

 

3.6. Calculating Permeability of 3D isotropic and oriented fiber networks 
3.6.1. The objective 
  When Stylianopoulos et al (2008) begun their research there wasn’t a lot of work done in 

the field of calculating permeability in 3D random networks. A lot of factors played into that, 

one being that there wasn’t sufficient computation power before that to calculate 

permeability directly via simulations. 

  Now, however, it is entirely possibly to directly construct entire artificial fiber networks and 

the flow within said networks by using a computer simulation. That can only work on small 

scale simulations, however, for the same reasons mentioned above: not enough 

computational power. 

 

3.6.2. The method 
  In order to solve this problem Stylianopoulos et al (2008) developed a correlation that was 

based on a faction of the fiber volume, their radius and their orientation, by performing the 

direct calculations with a finite element method. The networks they applied them on had 

various degrees of orientations and combinations of parallel and perpendicular to a single 

fiber flow or flows perpendicular to an array of fibers and then compared their results to 

their analysis.  



 

Figure 14 Generating the FE mesh from the fiber networks. Source: Stylianopoulos et al, 2008 

   

Stylianopoulos et al (2008) generated nucleation sites at random within a cubic space and 

allowed them to grow in opposite directions along a random vector, growing progressively 

by a unit length until they reached a boundary of the network or another segment. If they 

reached a boundary then they generated a boundary cross-link while if they reached and 

collided with another segment, then they generated an interior cross-link. 

  The researchers used SolidWorks software to convert the fiber networks into para-solid 

models and created a model that depicted the fluid phase exclusively of the examined 

fibrous media. They imported the model into Simmetrix software and created the G- mesh, 

using the following conditions: 

*P=Pressure and V= fluid Velocity 

Stokes equation 

𝜵𝑷 + 𝝁𝜵𝟐𝑽 = 𝟎    Equation 30 

 

Continuity equation 

𝜵 ⋅ 𝑽 = 𝟎     Equation 31 

           

 

 

 



3.6.3. Results of the study 
  

 

Figure 15 Calculating permeability for parallel flow. Source: Stylianopoulos et al, 2008 

 

 

Figure 16 Calculating Permeability for transverse flow. Source: Stylianopoulos et al, 2008 

 

  



  Both of the figures above describe results for parallel and transverse flow for a square array 

of fibers. Below are the results for flows parallel and transverse to the preferred fiber 

direction of the moderately oriented networks (on average of five networks): 

 

Figure 17 Permeability calculated for parallel flow to the preferred fiber direction. Source: Stylianopoulos et al, 
2008 

 

Figure 18 Permeability Calculated for flow transverse to the preferred fiber direction 

 

 



 The most important result of this study is that it provides the ability to explain the 

hydrodynamic interactions. This can be done by calculating the contribution of each fiber 

independently and as such provides the means to calculate permeabilities of random 

anisotropic networks, by knowing only the way the fibers of said network are distributed.  

 

3.7. Summary/Conclusion 
 

The conclusion that emerges from analyzing the studies mentioned above is that as 

technology evolves, people can find solutions to serious problems. We observe that the use 

of mathematical models, in combination with the use of tools that help simulate real fibrous 

materials, helps scientists to reach safe conclusions as to whether a material has high 

permeability due to its pores or the arrangement of its fibers. 

Also, through these methods, tests can be done that will help them create such materials 

and use them in various areas of everyday life and industry.  

Ultimately, we believe that a combination of methods rather than a single method would 

help scientists reach more conclusions. 

 Concluding, the use of artificial intelligence in this field helps us to incorporate both, 

features of actual fibrous media, as well as the statistical randomness, which is a key feature 

of such media. Also, we are able to create our own fiber bonding and study every possible 

case we will most likely encounter in the materials. This will help us to replace costly and 

time-consuming physical experiments with “virtual experiments” using computing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 

Computational Part 
 

4.1. Computational fluids dynamics (CFD)  
CFD is a methodology to solve fluid flow problems numerically. The open-source software 

OpenFOAM has been used as the CFD aid in the thesis. Analysis with CFD involves a number 

of distinct steps. First of all, the geometry must be defined and meshed, fluid properties 

have to be inserted and boundary conditions should be set. In the following level, the 

desired method of solving the problem is inserted and the arising equations solved. In the 

final steps, the results are pictured and computed with the help of post-processing tools 

such as Paraview. 

 

 

 

 

 

  



4.2. First Case 
 

4.2.1. Geometry & Mesh 
 

4.2.1.1. GMSH Introduction 

Gmsh is an open-source mesh generator evolved by Christophe Geuzaine and Jean-François 

Remacle. (Geuzaine & Remacle, 2009) 

The Gmsh program was used to produce and generate the two-dimensional grid. Gmsh 

contributes to the following basic functions based on Open-Cascade Technology: 

- Generating a model through geometry creation instructions. 
- The discretization of a model either built in Gmsh itself or in a different program.It 

can make a grid in 1D, 2D and 3D models. 
- The solution of differential equations on the generated discrete models. 
- The ability to modify the results. 

 

4.2.1.2. Definition of the geometry 

Initially, we chose to work with Open-Cascade, and we started building our geometry, 
defining both the surfaces and the physical groups needed for subsequent modeling, as 
shown below. 
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Figure 19 Fiber distribution 

https://en.wikipedia.org/wiki/Mesh_generation


The geometry of our simulation was made in the Gmsh program. In particular, the grid 

below consists of 500 fibers with a radius of r=0.011284, volume fraction = 0.2 and a safe 

distance between the fibers=1.5. The length and the height of the grid is 1 cm while the 

depth is set to W = 0.001 (directions x, y and z in the Cartesian coordinates, respectively). 

Fluid flow in this geometry is considered as 2D from the left side to the right one with a 

velocity equal to 0.01 m/s. 

 

 

Figure 20 GMSH Geometry 

 

 In order to be able to distinguish our volume, we create a geo file with the parameters we 

want. More specifically, after several attempts to carry out the correct meshing, we came up 

with the following appropriate parameters as shown in the figure below. 

 

 

 

Figure 21 mesh parameters 

 

 

 

 

Fluid flow 



After all the above steps have been performed and by giving the last command «Mesh 3; » 

we get the following final result: 

 

 

Figure 22 Final Grid 

 

The above grid consists of 69648 nodes as well as 57312 cells and 84482 points. The statistic 

of the case is depicted below. Also, the mesh of the grid as well as the names of the physical 

groups are reflected at the below figure. 

 

Figure 23 statistics of the geometry 
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Figure 24 Final grid & physical groups 



4.2.2. Case Set Up 
 

4.2.2.1. OpenFOAM Introduction 

OpenFOAM is the free, open source CFD software developed primarily by OpenCFD Ltd since 

2004. It was created by Henry Weller in 1989 under the name “FOAM” and was released 

open source as “OpenFOAM” by Henry Weller, Chris Greenshields, and Mattijs Janssens in 

December 2004. (Nikolakopoulos, 2019) 

OpenFOAM (“Open-source Field Operation and Manipulation”) is a C++ toolbox for the 

development of customized numerical solvers for fluid and continuum mechanical problems, 

as well as pre-/post – processing utilities for the solution of continuum mechanics problems 

including computational fluid dynamics (CFD). (Governance, 2012) 

It is a cell-centered finite volume framework for computational fluid dynamics. OpenFoam 

has several tools for testing cases in many areas. The package can be used to solve many 

mechanical problems. As with many other CFD simulations, it includes three components, 

specifically, pre-processing utilities, Partial Differential Equations (PDE) solvers, and post-

processing tools. 

OpenFOAM is wholly programmed in C++. In combination with the fact that it is an open-

source software, users are potentially able to develop additional tools for their respective 

needs and their demands, in order to satisfy certain specifications. Additionally, it is also 

relatively easy for the independently developed tools to be distributed and utilized by others 

with similar demands or to be developed further by other researchers. (Nikolakopoulos, 

2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.2.2.2. SimpleFoam Solver  

 

OpenFOAM carries different solver approaches to best suit the different simulations. 

SimpleFoam is a steady state solver used to test the motion of incompressible flows. 

The equations that demonstrate the behavior of a fluid are non-linear differential equations. 

These equations are used in Newtonian fluids. There are three equations, the continuity 

equation (32) that depicts the conservation of mass, the momentum or Navier-Stokes 

equation (33) which constitutes the second law of Newton depending on a fluid and include 

the relation between pressure and velocity. Finally, the energy equation (34) that presents 

the heat transference in the fluid. The equations are depicted below: 

 

𝝏𝝆

 𝝏𝒕
 +  𝜵 ·  (𝝆𝒖) =  𝟎      Equation 32 

 

𝝏(𝝆𝒖)

𝝏𝒕
  +  𝝆𝒖 ·  𝜵(𝒖) =  −𝜵𝒑 +  𝝆𝒈 +  𝜵 ·  𝝉   Equation 33 

 

𝝆𝒄 
𝝏𝑻

𝝏𝒕
  +  𝝆𝒄𝒖 ·  𝜵(𝑻) =  𝜵 ·  (𝜿𝜵𝑻) +  𝜱  Equation 34 

 

Ρ is the density of the fluid, t is the temporal variable, p represents the pressure, g depicts 

the acceleration of gravity, τ is the shear-stress tensor, κ is the conductivity of the fluid, T the 

temperature, c the specific heat capacity and Φ expresses the energetic dissipation. 

Due to the incompressibility, the energy equation (34) does not need to be solved, because 

there is no connection between the momentum and continuity equations. Instead, the 

momentum equation is solved, and a pressure adjustment is executed, thus a physical 

pressure is not solved but rather pressure differences are found. (Winter, 2013) 

The first equation (32) presents that the divergence of the velocity may be zero, that means 

that the fluid can’t expand (positive divergence) nor compress (negative divergence). 

The second equation (33), the momentum equation, presents the connection between the 

velocity, pressure, and outer forces of the incompressible fluid. 

 

 

 

 

 

 



4.2.2.2. Fluid Properties 

In addition to the acceptances used to extract these equations, the below assumptions are 

made for this Thesis:  

1. Steady state conditions due to constant density and viscosity ( 𝜕/ 𝜕𝑡 =  0 ) 

2. Incompressible flow (Mach number < 0.3)  

3. 2D flow  

4. Laminar flow (Re<2300) 

 

For our viscosity model we used a Newtonian fluid (for example, water). 

 Therefore, we set: 

 

• Kinematic Viscosity:           v = 10-6 m2 /s2 

• Dynamic viscosity:              μ=1.19 * 10-3 kg/m*s 

• Density:                                ρ = 1 kg/m3 

 

The Reynolds number for our case is computed equal to 225, which confirms our assumption 

for laminar flow. 

 

𝑹𝒆 =   
𝝆𝒖𝑫

𝝁
 =  

𝒖𝑫

 𝝂
 =  

𝟎.𝟎𝟏∗𝟎.𝟎𝟐𝟐𝟓𝟔

𝟏𝒆−𝟔
= 𝟐𝟐𝟓  Equation 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.2.2.3. Boundary Conditions 

The below figure presents the exact case which is simulated with OpenFOAM in parallel. 

 In brief, the 0 folder constitutes the boundary conditions of the parameters at all the 

boundaries in the mesh along with the elementary values of the parameters mentioned 

under the ”0” subfolder at time 0. The constant folder contains a description of the case 

mesh in subdirectory polyMesh and files specifying physical properties for the application 

concerning the transport properties and momentumTransport files. Finally, the system 

folder is for setting parameters associated with the solution procedure itself. It contains at 

least 3 files controlDict, fvSchemes and fvSolution in which time stepping, discretization 

schemes and linear solvers are stated. (Prakash Reddy Samala et al,2015) 
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Figure 25 Openfoam case set-up 



In the next subsection, some functions of each subfolder and snapshots of the case solved 

will be presented in detail.  

0 FOLDER 

The 0 folder as shown in the above flow chart includes the files to specify boundary 

conditions and initial values for pressure (p) and velocity (U) which are usual for any case 

that should be tested. The other parameters range depending on the turbulence model.  

For laminar, incompressible flow, only files including the boundary conditions of U and p are 

required. For turbulence models other variables will be required as well.  

The dimension of the variable is allocated through dimensions in the folder (for instance m/s 

for the velocity). The internal field is set through internalField and the boundary field is given 

through boundaryField. 

 

 

Figure 26 nuTilda & nut subFolders 



 

 

 

SYSTEM FOLDER 

This folder contains the specifications for the simulation. (Winter, 2013) 

• In the decomposeParDict file the mesh is decomposed into an assigned number of 
parts for parallel simulations and the user can specify which decomposition 
technique will be used and how many processing nodes the mesh will be divided on. 
(Winter, 2013) 
 

• The schemes file allows users to select appropriate discretization schemes 
 

• The fvSolution file contains the linear solvers for the sequential equations are 
assigned. Also the linear solver tolerance and maximum number of iterations are 
assigned here. (Winter, 2013) 
 

• The controlDict file contains time settings to store to the mesh calculated. 

 

Figure 27 u & p subFolders 



  

 

 

 

                                                                                                    

 

 

 

 

Figure 28 fvSolution & decomposeParDict  subFolders 

Figure 29 controlDict & fvSchemes subFolders 



CONSTANT FOLDER 

 

This folder includes specifications for turbulence and fluid properties. Depending on the 

solver chosen, different files need to be described.  

 

• The kind of turbulence model required is established in turbulenceProperties where 
either LES, RAS or laminar model can be selected.  
 

• For incompressible solvers the file transportProperties establishes the behavior of 
the kinematic viscosity ν.  

 

OpenFOAM uses a cell-centered control volume for its calculations. In the polyMesh folder 

files are contained describing the mesh. These files include points, which contain the points 

of the mesh, faces, which contain the faces of the cells, owner, that contains what faces 

belong to a cell and neighbour which contains the information about the connectivity 

between cells. (Winter, 2013) 

 

                                                                                                                    

 

 

 

 

 

 

 

Figure 30 momentumTransport&transportProperties subfolders 



4.2.3. Results  
 

4.2.3.1. Simplefoam 

After the simulation, OpenFoam calculates the value of the flow rate (Q) which is equal, for 

our case, to the value of Q= 9.9995*10-9 m3/s. 

Also, the value of the average patch area is A = 0.01(y) *0.0001(z) =10-6 m2. 

Finally, the average value of the velocity is calculated by the following equation: 

𝒖𝒂𝒗𝒈 =
𝑸

𝑨
= 𝟗. 𝟗𝟗𝟗𝟓 ∗10-3 m/s   Equation 36 

  

Τhe number of Reynolds once again confirms the choice of simplefoam as the most 

appropriate choice because: 

𝑹𝒆 =
𝒖𝒂𝒗𝒈 ∗ 𝑫𝒇𝒊𝒃𝒆𝒓

𝒗
= 𝟐𝟐𝟓   (Laminar flow)  Equation 37 

 

• Uavg = 9.9995 *10-3   m/s 

• Dfiber= 0.02256 m 

• V=10-6 m2/s2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.2.3.2. Paraview  

ParaView is an open-source application used for post-processing and visualizing the results 

from the calculations made by OpenFOAM. It is a multi-platform data analysis made by 

Kitware Inc. and is free to download for any user. The software is very adaptable, being able 

to run on any of the modern operating systems as well as on any computer system ranging 

from smaller personal computers to larger super computers analyzing extremely large 

datasets. (Sihvo, 2014) 

 

 

Figure 31 workbench of paraview 5.6.0 

The above figure shows the workbench of ParaView 5.6.0 that was used for post processing 

for this thesis work. 

When the chosen solver has come to the maximum time steps and the case has been 

recreated, the case files and results can be seen in the software ParaView or any other post-

processing application. 

A sample of how the results can be viewed is seen in the below figures which depict the 

velocity profile at the end of the grid. 

 

Figure 32 Velocity Profile (1) 



 

Figure 33 velocity profile (2) 

 

4.2.4. Residence Time Distribution (RTD) 
The residence time distribution (RTD) is a probability distribution function that describes the 

time a particle could spend inside the grid. The residence time distribution (RTD) function, 

introduced firstly by Danckwerts in 1953, is a useful tool to investigate the time a material 

spends inside a grid. (Verclyte, 2012) 

 The distribution of residence times is represented by an exit age distribution, E(t), and a 

cumulative residence time distribution function, F(t). The area under the curve of the graph 

of tracer concentration against time is normalized by dividing the concentration values by 

the total area under the curve, thus giving the E(t) values. (Verclyte, 2012) 

 

 

Figure 34 RTD Diagram, (Tutorial Ten Residence Time Distribution, 2018) 

 

𝑬(𝒕) =
𝑪(𝒕)

∫ 𝑪(𝒕)𝒅𝒕
∞

𝟎

=
𝒕𝒓𝒂𝒄𝒆𝒓 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝒂𝒕 𝒕𝒊𝒎𝒆 𝒕

𝑻𝒐𝒕𝒂𝒍 𝒕𝒓𝒂𝒄𝒆𝒓 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏
  Equation 38 

 

 

Since all tracer elements will leave the grid at some point, RTD satisfies the following 

relationship: (Tutorial Ten Residence Time Distribution, 2018) 



 

𝑭(𝒕) = ∫ 𝑬(𝒕)𝒅𝒕 = 𝟏 
∞

𝟎
  Equation 39 

 

The Residence Time Distribution (RTD) is derived from placing an inert tracer into the system 

at t = 0 and calculating the tracer concentration in the outlet. The particle should not react. 

The physical properties of the tracer may be similar to the ones of the fluid, and it should 

not influence the flow behavior of the fluid in the system.  

The tracers are small particles with density equal to 1 kg/m3 (similar to fluid’s density) and in 

simulations are depicted as colored materials. 

In a continuous laminar flow system, an RTD function can be used only if the velocity 

distribution in the grid is known and there is enough knowledge to predict the flow of every 

fluid tracer. 

 

4.2.4.1. ScalarTransportFoam Solver 

As in the (Horvat, 2016) is presented, Scalar transport equation models a combination of 

convection and diffusion transport of scalar. Equation in standard form can analytically be 

expressed as: 

𝝏𝑻

𝝏𝒕
  + 𝜵 · (𝒖𝑻) − 𝜵 · (𝑫𝝉𝜵𝜯) =  𝒒𝒗   Equation 40 

Where Τ is the transported scalar variable, u is the convective velocity and Dτ is the diffusion 

coefficient.  

The term on right hand side of Eq. (40) represents sources or sinks of the transported scalar 

Τ. Sources and sinks account for non-transport effects such as local volume production and 

destruction of Τ. (Horvat, 2016) 

 In standard form of scalar transport equation four characteristic terms are presented: • 

term 
𝜕𝑇

𝜕𝑡
 is the temporal derivative of transported scalar which represents inertia of the 

system, • term ∇·(uT) is the convection term which represents the convective transport of 

scalar T by the velocity field u, •term ∇·(Dτ∇Τ) is the diffusion term which represents 

transport of scalar Τ based on its spatial gradient and diffusivity Dτ, • term qv represents 

sources and sinks of transported scalar T. (Horvat, 2016) 

The scalarTransportFoam solver determines a convection-diffusion scalar transport equation 

without source terms.  As a result, eq.40 can be expressed as: 

𝝏𝑻

𝝏𝒕
  + 𝜵 · (𝒖𝑻) − 𝜵 · (𝑫𝝉𝜵𝜯) =  𝟎  Equation 41 

 

 

 



4.2.4.2. Boundary Conditions 

Simulations were executed using the scalarTransportFoam solver. This is used to visualize 

the distribution of the tracer concentration throughout the system.  

In order to accomplish the scalarTransportFoam simulation, the velocity folder is copied 

from the last step of the simpleFoam simulation, in to the “u/0 “subfolder of the 

scalarTransportFoam simulation case.  

The below figure constitutes the exact case which is simulated with OpenFOAM in parallel. 
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Figure 35 OpenFoam Case Set-Up 



0 FOLDER 

As we already explained at the description of the simplefoam solver, and for 

scalarTransportFoam, the”0” file includes two files namely one for the velocity field and the 

other for the concentration/scalar field. But the initial and boundary conditions were 

determined only for the scalar field while the velocity file is copied from the simpleFoam 

case at the simulation latest time, as we already said. (Mekonnen, 2016.) 

 

 

Figure 36 T SubFolder 

 

CONSTANT FOLDER 

For the scalarTransportFoam case, the only asset that must be defined is the diffusion 

coefficient of the tracer which is saved in the transportProperties dictionary. 

 

 

Figure 37 TransportProperties 

 

 



SYSTEM FOLDER 

This folder contains the details for the simulation. The functions of each subfolder remain 

the same as presented in detail at a previous section. 

Figure 38 DecomposeParDict                                                       Figure 39 controlDict 

                                                                                                       

Figure 40 fvSlution                                                                        Figure 41 fvSchemes 

 

   

 

 



4.2.4.3. Peclet Number 

The parameter that basically controls the diffusive behavior in the interior of the grid is the 

Peclet number. 

𝑷𝒆 =
𝒖∗𝑳

𝑫𝝉
     Equation 42 

It is evident that the value of the transfer coefficient increases by increasing Peclet number 

because the latter depends on the value of the diffusion coefficient, which increases with a 

decreasing Peclet number. 

In our case, in which we already have defined the parameters above, the Peclet number is 

computed from the equation below: 

 

𝑷𝒆 =
𝒖∗𝑳

𝑫𝝉
=

𝟎.𝟎𝟏∗𝟎.𝟎𝟏

𝟎.𝟎𝟏
= 𝟎. 𝟎𝟏 Equation 43 

 

 

4.2.4.4. Results 

In our case, we will study the effect of the Peclet number which implies the effect of the 

diffusion coefficient of the tracer which is stored in the transportProperties /constant folder, 

as we already mentioned. 

Three simulations will be done with three different diffusion coefficients and, as a result, 

three Peclet numbers.  

In this thesis, the results of velocity field are shown in the previous section throughout the 

entire geometry for the simpleFoam simulation. In this section the distribution of the tracer 

concentration will be presented graphically for scalarTransportFoam simulations during the 

tracer was injected. 

Simulation 1 

Firstly, the distribution of the tracer concentration inside the grid will be researched, when 

the tracer was injected using the value of velocity field derived from the simpleFoam 

simulation. Also, the value of concentration field acquired from the first 

scalarTransportFoam simulation for the T field was used with a diffusion coefficient equal to 

0.01 which leads to a Peclet number = 0.01. 

The time required for the tracer to be transferred to the output of the grid based on the 

above boundary conditions is estimated at 0.065 s after many tests in OpenFoam 

/scalarTransportFoam solver.  

The time step is dt = 0.0005 and as a result the time steps which are depicted on the x-axis 

(horizontal) in the figure below are: 

 



𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔 =
𝒆𝒏𝒅𝒕𝒊𝒎𝒆−𝒔𝒕𝒂𝒓𝒕𝒕𝒊𝒎𝒆

𝒅𝒕
=

𝟎.𝟎𝟔𝟓

𝟎.𝟎𝟎𝟎𝟓
= 𝟏𝟑𝟎  Equation 44 

 

The diagram below shows the concentrations taken for each time step at the output, divided 

by an average patch area A = 10-6, since the concentration may not be the same everywhere 

because of different flow velocities. 

 

Figure 42 Tracer concentration of the first simulation 

 

Furthermore, a second diagram could be plotted to evaluate the residence time distribution 

(RTD) which results from differences in concentration between time steps. 

 

 

Figure 43 RTD Diagram of the first simulation 
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Simulation 2 

 

Subsequently, the second simulation concerns to a diffusion number Dτ = 0.0001 which 

leads to a Peclet number: 

𝑷𝒆 =
𝒖∗𝑳

𝑫𝒕
=

𝟎.𝟎𝟏∗𝟎.𝟎𝟏

𝟎.𝟎𝟎𝟎𝟏
= 𝟏     Equation 45 

The time calculated in this case that the substance needs to be transported at the output of 

the gird is estimated at approximately 1.8 s. 

𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔 =
𝒆𝒏𝒅𝒕𝒊𝒎𝒆−𝒔𝒕𝒂𝒓𝒕𝒕𝒊𝒎𝒆

𝒅𝒕
=

𝟏.𝟖

𝟎.𝟏
= 𝟏𝟖   Equation 46 

The change of the diffusion coefficient of the tracer is stored in the transportProperties 

/constant folder, as we already mentioned is depicted below. 

 

 

Figure 44 Change of Diffusion Coefficient in the second simulation 

 

 

 

 

 

 

 

 

 

 

 

 



The tracer’s concentration distribution as well as the RTD diagram is shown below: 

 

 

Figure 45 Tracer concentration of the second simulation 

 

 

Figure 46 RTD Diagram of the second simulation 
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Simulation 3 

 

Finally, a third simulation will be conducted with an even smaller diffusion coefficient 

equaling Dτ =0.000001 which leads to a Peclet number:  

𝑷𝒆 =
𝒖∗𝑳

𝑫𝒕
=

𝟎.𝟎𝟏∗𝟎.𝟎𝟏

𝟎.𝟎𝟎𝟎𝟎𝟎𝟏
= 𝟏𝟎𝟎     Equation 47 

The time calculated needed in this case to transport the substance to the output of the 

system is estimated at 2.2 s. The time step is dt = 0.1, so the time steps recorded on the x-

axis (horizontal) are: 

𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔 =
𝒆𝒏𝒅𝒕𝒊𝒎𝒆−𝒔𝒕𝒂𝒓𝒕𝒕𝒊𝒎𝒆

𝒅𝒕
=

𝟐.𝟐

𝟎.𝟏
= 𝟐𝟐   Equation 48 

 

The changes of the diffusion coefficient of the tracer as well as the new ControlDict 

dictionary are depicted below: 

 

 

Figure 47 Change of Diffusion Coefficient in the third simulation 

 

 

  

 

 



 

Figure 48 Tracer concentration of the third simulation 

 

 

Figure 49 RTD Diagram of the third simulation 
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4.3. Second Case 
 

The aim of this thesis is to study the transport through fibrous media. In this context, we are 

interested to see how the response of a fibrous medium to a step-change in inlet 

concentration, is affected by its microstructure, specifically the effect of volume fraction and 

Peclet number.  

The first case which had been presented in detail in the previous section describes the 

simulations done with the help of SimpleFoam & ScalarTransporFoam solver to study the 

transport as well as the effect of the diffusion number. 

A second case will be conducted with a different volume fraction. As we already mentioned, 

the volume fraction in the first case is equal to φ=0.2. For the second case, all the other 

parameters will remain constant and only the volume fraction will be defined with a value of 

φ = 0.4. 

The same procedure will be followed exactly as previously, and the results will be presented 

below. 

4.3.1.  Geometry & Mesh 

The geometry of our simulation was made in the Gmsh program. The below grid consists of 

500 fibers with a radius of r=0.015554, volume fraction = 0.4 and a safe distance between 

the fibers=1.5. The length and the height of the grid is 1 cm while the depth is set to W = 

0.001 (directions x, y, and z in the Cartesian coordinates, respectively). Fluid flow in this 

geometry is considered as 2D from the left side to the right one with a velocity equal to 0.01 

m/s. 

The physical groups needed for subsequent modeling as well as the parameters needed to 

carry out the correct meshing remain the same as previously in the first case. 
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Figure 50 Fiber Distribution 



The below figures depict the result of the meshed grid as well as the statistics of this case.  

 

Figure 51 Statistics of the grid 

 

 

Figure 52 Final grid 

 

 



4.3.2. Results 

4.3.2.1. SimpleFoam 

After the simulation, Openfoam calculates the value of the flow rate (Q) which, in our case, 

equals to Q= 9.9998*10-9 m3/s. 

Also, the value of the average patch area is A = 0.01(y) *0.0001(z) =10-6 m2 as we mentioned 

in the first case. 

Finally, the average value of the velocity is calculated at the price of: 

 

𝒖𝒂𝒗𝒈 =
𝑸

𝑨
= 𝟗. 𝟗𝟗𝟗𝟖 ∗10-3 m/s   Equation 49 

 

Τhe number of Reynolds once again confirms the choice of simplefoam as the most 

appropriate choice because: 

 

𝑹𝒆 =
𝒖𝒂𝒗𝒈 ∗ 𝑫𝒇𝒊𝒃𝒆𝒓

𝒗
= 𝟑𝟎𝟖  (Laminar flow)  Equation 50 

 

 

• Uavg = 9.9998 *10-3   m/s 

• Dfiber= 0.031108 m 

• V=10-6 m2/s2 
 

 

 

 

 

 

 

 

 

 

 

 

 



4.3.2.2.  Paraview 

 

In order to view the case files and results graphically, the below figures show the workbench 

of ParaView 5.6.0 that was used for post processing for this thesis work. 

A sample of how the results can be viewed is seen in the below figures which depict the 

velocity profile at the end of the grid. 

 

 

Figure 53 Velocity Profile (1) 

 

 

Figure 54 Velocity Profile (2) 

 



4.3.3. Residence Time Distribution (RTD) 

4.3.3.1.  Results 

In the second case, the effect of the Peclet number which implies the effect of the diffusion 

coefficient of the tracer will be studied, as previous. 

The boundary conditions as well as the 0/constant/system folders remain the same with the 

only difference of the velocity field. 

The final result of velocity field is shown in the previous section throughout the entire 

geometry for the simpleFoam simulation with a volume fraction (φ) equal to 0.4.  

Three simulations will be done with three different diffusion coefficients and, as a result, 

three Peclet numbers.  

Pe =
𝑢 ∗ 𝐿

D𝜏
=

0.01 ∗ 0.01

0.01
= 0.01  (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1) 

Pe =
𝑢 ∗ 𝐿

D𝜏
=

0.01 ∗ 0.01

0.0001
= 1  (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2) 

Pe =
𝑢 ∗ 𝐿

D𝜏
=

0.01 ∗ 0.01

0.000001
= 100  (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3 ) 

In this section the distribution of the tracer concentration and the Residence Time 

Distribution (RTD) diagrams will be presented graphically for scalarTransportFoam 

simulations during the tracer was injected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Simulation 1 

With a Peclet number equal to 0.01, the time required for the tracer to be transferred to the 

output of the grid based on the above boundary conditions is estimated at 0.085 s after 

many tests in openfoam /scalarTransportFoam solver.  

 

𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔 =
𝒆𝒏𝒅𝒕𝒊𝒎𝒆−𝒔𝒕𝒂𝒓𝒕𝒕𝒊𝒎𝒆

𝒅𝒕
=

𝟎.𝟎𝟖𝟓

𝟎.𝟎𝟎𝟓
= 𝟏𝟕  Equation 51 

 

The diagram below shows the concentrations taken for each time step at the output, divided 

by an average patch area A = 10-6, since the concentration may not be the same everywhere 

because of different flow velocities. 

 

 

 

Figure 55 Tracer concentration of the first simulation 
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Furthermore, a second diagram could be plotted to evaluate the residence time distribution 

(RTD) which results from differences in concentration between time steps. 

 

 

Figure 56 RTD Diagram of the first simulation 
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Simulation 2  

 

With a Peclet number equal to 1, the time estimated for the tracer to be transferred is 2.2 s. 

𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔 =
𝒆𝒏𝒅𝒕𝒊𝒎𝒆−𝒔𝒕𝒂𝒓𝒕𝒕𝒊𝒎𝒆

𝒅𝒕
=

𝟐.𝟐

𝟎.𝟏
= 𝟐𝟐  Equation 52 

 

 

Figure 57 Tracer concentration of the second simulation 

 

 

Figure 58 RTD Diagram of the second simulation 

 

 

 

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30

co
n

ce
n

tr
at

io
n

time steps

Distribution of the Tracer 
Concentration

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 5 10 15 20 25 30

d
c

time steps

RTD



Simulation 3 

 

Finally, with a Peclet number equal to 100 the time required is 2.2 s for the tracer to be 

transferred at the end of the grid and the total time steps are:  

𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔 =
𝒆𝒏𝒅𝒕𝒊𝒎𝒆−𝒔𝒕𝒂𝒓𝒕𝒕𝒊𝒎𝒆

𝒅𝒕
=

𝟐.𝟐

𝟎.𝟏
= 𝟐𝟐  Equation 53 

 

 

Figure 59 Tracer concentration of the third simulation 

 

 

 

Figure 60 RTD Diagram of the third simulation 
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4.4. Conclusions & Future Work 
 

The design of the tracer injection was conducted by computation of fluid dynamics 

modeling. Two cases were studied with the same boundary conditions but a different 

volume fraction. The two models contained two parts; firstly, velocity was calculated using 

the simpleFoam solver and then transport of the tracer (passive scalar) was evaluated using 

the scalarTransportFoam solver for three different diffusion coefficients for each case. 

From the above simulations we can conclude that the value of the diffusion coefficient has a 

significant effect on the transport of the tracer.  

When the Peclet number is small (simulation 1), diffusion must be considered because of the 

greater impact of the diffusion coefficient compared to the flow velocity. The transfer takes 

place not only with the velocity of the flow field but also with the diffusion mechanism. 

For larger Peclet numbers (simulations 2&3), the diffusion coefficient is decreased 

significantly and as a result the substance is transported in a much shorter time than it 

would be transported by diffusion alone. 

Also, from the second case we can conclude that volume fraction has an impact on the 

response of a fibrous medium. As the volume fraction of the fibers increased then the 

velocity of the fluid decreased, since it had to pass through less available space and the 

transfer took place in a longer time. As we have already mentioned in the results of previous 

research, at low porosity levels, the decrease in permeability caused by increased 

nonuniformity in fiber arrangement. This is not surprising, since researchers have previously 

shown that fiber clusters can obstruct flow paths and delay flow. 

Therefore, many different simulations and tests have been left for the future because of 

absence of time (for instance, the simulations with real data are very complicated, requiring 

much time to finish even a unique run due to a grid consists of million cells). Future work 

needs deeper analysis and work of the transport case as well as a better comprehension of 

how diffusion and volume fraction can affect the response of a flow through fibrous media. 

The preparatory results of these experiments do not seem to be sufficient, and deeper 

analysis is still vital to realize the above techniques. 
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