
Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

1

 UNIVERSITY OF THESSALY

SCHOOL OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND

BIOMEDICAL INFORMATICS

 Thesis

 Advisor

 Georgios Spathoulas

 Laboratory teaching staff

 Lamia, 2021

Enabling blockchain interaction for IoT devices, through a secure

proxy mechanism

Filisia Melissari

UNIVERSITY OF THESSALY

SCHOOL OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND

BIOMEDICAL INFORMATICS

Thesis

Advisor

Georgios Spathoulas

Laboratory teaching staff

Lamia, 2021

Enabling blockchain interaction for IoT devices, through a secure

proxy mechanism

Filisia Melissari

Ημερομηνία: 16/03/2022

 Η Δηλ.

Φιλησία Μελισσάρη

(Υπογραφή)

 (1) «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με
έγγραφη υπεύθυνη δήλωση του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση
τουλάχιστον τριών μηνών. Εάν ο υπαίτιος αυτών των πράξεων σκόπευε να προσπορίσει στον
εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή σκόπευε να βλάψει άλλον,
τιμωρείται με κάθειρξη μέχρι 10 ετών.

Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της διατάξεις της παρ. 6 του άρθρου 22
του Ν. 1599/1986, δηλώνω ότι:

1. Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να τα περικλείω σε

εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη σελίδα. Η αυτολεξεί παράθεση χωρίς

εισαγωγικά χωρίς αναφορά στην πηγή, είναι λογοκλοπή. Πέραν της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται

και η παράφραση εδαφίων από έργα άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς και η

παράθεση στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά στην πηγή. Αναφέρω πάντοτε με

πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, όπως στα παραθέματα.

2. Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται από αναφορά στην πηγή σε

κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι αντιγραφή. Η αναφορά στην πηγή στο τέλος π.χ. μιας

παραγράφου ή μιας σελίδας, δεν δικαιολογεί συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και

παραφρασμένων, και παρουσίασή τους ως δική μου εργασία.

3. Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των παραθεμάτων που μπορώ να

εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε μεγάλο παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ),

προϋποθέτει ειδικές ρυθμίσεις, και όταν δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το

ίδιο και οι πίνακες και τα σχέδια

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής.

The committee:

Georgios Spathoulas, Laboratory teaching staff (advisor)

Athanasios Kakarountas, Professor

Petros Spachos, Assistant Professor

Enabling blockchain interaction for IoT devices, through a secure

proxy mechanism

Filisia Melissari

ABSTRACT

Title: Creating an embedded system for quick and efficient sending of

data in Blockchain applications

Finding a way to send data securely on IoT devices is a challenge that has

been given many solutions during the last years. With more embedded

applications coming up each year, ranging from agriculture to naval

technology, the need for a highly efficient and robust system to do so is

needed now more than ever. Blockchain technology being a

decentralized, secure, and novel way of sharing information, stands as an

interesting answer. This paper proposes the use of a proxy server to help

embedded systems interact with smart contracts in a quick and secure

way. Using a Pycom module as a device that can be registered and,

through the server be able to sign any Ethereum smart contract..

KEYWORDS: blockchain, embedded system, proxy server, security

TABLE OF CONTENTS

1. INTRODUCTION ... 11

2. BACKGROUND ... 11

2.1 BLOCKCHAIN ... 12

2.2 ETHEREUM .. 16

2.2.1 SMART CONTRACTS .. 16

2.2.2 ACCOUNTS ... 17

2.2.3 TRANSACTIONS .. 19

2.2.4 MESSAGES .. 19

2.3 EMBEDDED SYSTEMS .. 20

2.3.1 CHARACTERISTICS .. 20

2.3.2 REQUIREMENTS .. 21

3. RELATED WORK .. 22

4. SYSTEM ARCHITECTURE .. 26

4.1 COMPONENTS .. 27

4.1.1 PROXY SERVER .. 27

4.1.2 DEVICE ... 28

4.1.3 SMART CONTRACT ... 29

4.1.4 ORACLE CONTRACT ... 29

4.1.5 THIRD-PARTY ... 30

4.1.6 MANAGEMENT CONTRACT .. 30

5. IMPLEMENTATION .. 31

5.1 TECHNICAL CHARACTERISTICS ... 31

5.2 PREREQUISITES ... 31

5.3 INITIAL REQUEST .. 32

5.4 PROCESS REQUEST ... 33

5.5 SEND TRANSACTION ... 35

5.6 THIRD-PARTY ... 37

5.6.1 ORACLE ... 39

5.7 REQUEST PAYMENT ... 40

5.7.1 MANAGEMENT .. 40

5.8. COMPLETE REQUEST .. 43

6. SECURITY ANALYSIS ... 44

7. DISCUSSION .. 45

REFERENCES .. 46

CODE ... 48

LIST OF FIGURES

Figure 1 Differences between centralized and distributed ledger [3] 12

Figure 2 Showcase of the origin of Blockchain as a term [4] 13

Figure 3 Transaction verification workflow [1] ... 14

Figure 4 Components of an account [9] ... 18

Figure 5 Dependability aspects of embedded systems .. 21

Figure 6 Efficiency aspects of embedded systems .. 22

Figure 7 Overview of system architecture ... 26

Figure 8 Datagram of an IoT request ... 27

Figure 9 Example of a transaction page from Etherscan ... 39

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

11

1. INTRODUCTION

During the last years, the corporate world, as well as the academic, have

experienced a new trend−incorporating blockchain with a large variety of

applications−and for a good reason. Distributed apps are more secure against

cyberattacks, they can be trusted resources since they are not owned by anyone,

and their data cannot be lost. Another trend in the realm of computer science, is

the Internet of Things; from smart homes to smart cities, automated cars, and

novel ways to do agriculture, IoT can be found everywhere. Considering the

impact these two trends have on modern society, their combination is not less

interesting.

While there have been proposed architectures that combine embedded systems

with blockchain, they usually serve very specific purposes and do not truly enable

the devices to communicate freely with blockchain. The reason that such an

application does not yet exist, is because it is not without challenges. The storage

and cost restrictions that come with distributed apps, the different sets of

restrictions that may come with embedded systems, the finding of a secure

channel of communication between IoT and smart contracts, and the handling of

such a system in an honest, responsible, and reliable way.

This paper proposes an architecture that tries to surpass the above hurdles and

enable for the first time IoT devices to communicate securely with any smart

contract deployed in a network. Specifically, it designs an architecture, analyzes

each component, and provides a demo implementation that succeeds in proving

the concept.

2. BACKGROUND

When Satoshi Nakamoto first introduced blockchain to the world no one could

imagine how much of an impact it could have on society. Today, thirteen years later,

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

12

blockchain is everywhere; with nearly 6000 cryptocurrencies known to existence, a

whole new voting mechanism, and a huge range of innovative applications used in

banking or even healthcare. But what is Blockchain?

2.1 BLOCKCHAIN

Blockchain was first introduced as a mechanism in the Bitcoin white

paper. Bitcoin was the first cryptocurrency created and described as a peer-to-

peer electronic cash system [1]. The motive was to create a completely

distributed banking system that would for the first time remove any third

parties behind transactions, and in doing that reduce a lot of the cost, but at the

same time remain secure, transparent, and attack-proof.

Blockchain describes a distributed digital ledger that stores data of any

kind [2]. Being a distributed system, it is made of a series of nodes, with every

node containing the same data, and having the same rights and authorities, so

that they are all equal. These nodes act as the servers of the Blockchain

network and they control and maintain the ledgers. These can be considered as

data stores that contain the same records. The definition of this mechanism is

Distributed Ledger Technology [3].

Figure 1 Differences between centralized and distributed ledger [3]

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

13

In figure 1, there can be seen the differences between a centralized and

distributed ledger. While in the centralized, every communication goes

through a central authority, that has more rights and is the only node that holds

information about the ledger, in the distributed, things are far different and

follow the technology described above. Communication goes in every

direction and records are shared. The mechanism of these systems is

transparent to every user, as is every record and action within the network. So,

it provides a sense of security that no malicious actions will go unnoticed.

Furthermore, if a node is under attack and its records compromised, the

damage caused will be the least in comparison to the centralized system. The

network itself and its data will be intact and functioning normally. If there was

a central authority that handled every function, and that authority got attacked,

that system would stop working completely and the damage could be

irreplicable.

Using blockchain to describe such a system is not accidental, the

ledgers form a chain that is made of individual blocks of data, and blockchain

is indeed a chain made of blocks.

Figure 2 Showcase of the origin of Blockchain as a term [4]

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

14

The most common thing stored in those blocks is transactions. In the

blockchain realm, a coin is in fact, a chain of transactions. And each owner of

coins holds an address, a public, and a private key. For a transaction to be made,

the owner of the coin must digitally sign the previous transaction and the public

key of the person that the coin is being sold to and finally add these at the end of

the coin’s chain. Then the person receiving the coin has to verify the transaction

by verifying the digital signature with his private key.

Figure 3 Transaction verification workflow [1]

This model seems to have a problem. What if an owner sells the same coin to

two people? Would there be a way for the payees to know that the coin was not

double spent? Satoshi Nakamoto said there is. The solution lies in publicly

announcing every transaction and every network participant agreeing on the

history of the transactions. So, in other words, every party has to have the

complete transactions’ records at any time.

 The way that all the nodes can do that, is through a consensus mechanism.

“A consensus mechanism is a fault-tolerant mechanism used in a blockchain to

reach an agreement on a single state of the network among distributed nodes.

These are protocols that make sure all nodes are synchronized with each other and

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

15

agree on transactions, which are legitimate and are added to the blockchain.” As

described by Aggawarl et al. [5] So, there are protocols that networks apply in

order to ensure that information is distributed correctly. They are doing that by

verifying the state of the transactions. Depending on the focus between speed,

storage, safety, and accuracy. To mention a few, proof-of-work (PoW), proof-of-

stake (PoS), delegated proof-of-stake (DPoS), practical Byzantine fault tolerance

(PBFT), proof-of-capacity (PoC), proof-of-activity (PoA), proof-of-publication

(PoP), proof-of-retrievability (PoR), proof-of-importance (PoI), proof-of-burn

(PoB), proof-of-elapsed time (PoET), and proof-of-ownership (PoO). The most

commonly used ones are proof-of-work a proof-of-stake.

Proof-of-work is the protocol used by two of the most famous

cryptocurrencies in the world; Bitcoin and Ethereum. It describes the way that

nodes gain the ability to add new blocks to the chain; they solve complex

cryptographic puzzles. The process of solving is called mining, and it involves

searching for a value that when hashed is going to start with a specific number of

zero bits. The first miner to solve that problem and add a block is given a reward.

Based on that system, if a miner wanted to add a malicious block, he had to be the

best in solving the puzzle. And to be more precise, he would have to own a

computer 51% more powerful than the rest of the network.[6] While that number

might seem high enough for now, in the near future, things are not that certain,

with the emergence of quantum supremacy. And despite the elevated level of

security it provides, it is relatively slow and expensive. These are the reasons that

many cryptocurrencies are moving away from the costly and outdated proof-of-

work to newer protocols.

Proof-of-stake on the other hand does not involve competition. Instead, each

user is assigned a stake, and the creator of the block is chosen randomly by an

algorithm based on that stake. The more coins a user owns, the bigger the stake he

has. The user that has staked his coins is called a validator and it is analogous to

the miner of the PoW mechanism. With this consensus mechanism any barriers

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

16

relating to equipment and electricity costs, disappear, so it is easier to become a

validator. That means that there should be more nodes and therefore a better

decentralized network.

2.2 ETHEREUM

Ethereum was the first blockchain network that came with a complete

programming language. It gave users the freedom to write their own smart

contracts and create distributed applications.

2.2.1 SMART CONTRACTS

Smart contracts are programs that run on the blockchain. They consist of code

and data, and they exist at a specific address on the network. Since they do have

an address, they also own a balance that is controlled by the functions of the

contract. Regular users can interact with them through their functions and make

transactions, but they cannot delete them. From the moment a contract is deployed

on the network it can never be deleted. Any person can write a smart contract and

deploy it. The only perquisites are the right number of Ethers, and knowledge of

Solidity or any other Ethereum smart contract programming language. In fact, a

deployment is basically a transaction. To write a smart contract to the blockchain,

the gas cost is estimated based on the code written and the storage that it is going

to use. After it is calculated, the owner of the contract makes an ether transaction

based on the cost and the deployment completes. Ethereum gave wings to smart

contract development and created a new era for distributed apps, but in reality,

smart contracts are just a type of account.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

17

2.2.2 ACCOUNTS

 Accounts are entities that exist on the Ethereum network, they own balance,

and they can send transactions. There are two types of accounts; externally owned

which are controlled by users, and smart contracts. Both types can send and

receive ethers and interact with smart contracts. Their differences lie in certain

aspects of their functionality; while creating an account is free, smart contract

creation, as explained in the above paragraph, does cost. Furthermore, contracts

cannot initiate transactions themselves, they can only send transactions as a

response triggered by their code. On the other hand, users’ accounts cannot

perform such transactions, only ether or token transfers.

 On a more technical aspect, an account is a 20-byte address and is represented

by four fields: the nonce, the balance, a storage hash, and a code hash. The nonce

is the holder of information about how many transactions have been made from

the account. Its existence is important since it prevents processing the same

transaction twice. The balance is the number of wei that belong to the address.

Before dwelling on to explain the next field, storage hash, it is important to

explain a certain type of component that is essential; the Merkle tree. This tree is a

hash tree, where every leaf is a hash of a data block, and every node is a hash of

the labels of its child nodes’ hashes. It is used to perform verifications on the

contents of large data structures securely and efficiently [8]. Say we make a

transaction and let it be called TA and HA the equivalent hash. The HA hash of the

transaction will be stored on a leaf in the merkle tree. And consider another

transaction TB, and the hash HB stored on another leaf. Together, the adjacent

transactions are getting hashed and form a new hash, their parent node, which

represents both transactions. The process can be repeated until the last hash value

is created and it is called the merkle root. This root holds information about every

transaction and provides easy access for their verification, so the process becomes

simple, and the nodes do not need to download a huge amount of data, but only

block headers. So, the storage hash is the 256-bit hash of the root node of the

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

18

merkle tree of a single account, it encodes its storage contents, and it is empty by

default.

And lastly, the code hash, that while it exists as a field for both types of accounts,

for externally owned ones is an empty string, and the reason being is that it only

makes sense in the use of smart contracts. This hash refers to the code of the

account on the Ethereum Virtual Machine that gets executed every time the

contract gets a message call. In contrast to other fields, it is unchangeable. [7]

Figure 4 Components of an account [9]

 Another component that belongs to an account is a pair of cryptographic keys;

a public key used by others to make a transaction with a certain address, and the

private key that is used to sign the transaction and gives the user ownership of the

funds he holds in his account.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

19

2.2.3 TRANSACTIONS

The Ethereum transactions in reality are signed data packages that contain

messages. The data include information about the signature of the sender, the address

of the recipient, the amount of ether to be transferred, some data if they exist, and two

specific values: STARTGAS and GASPRICE. While the prior three fields are a

standard for every cryptocurrency, the last two were first introduced on the Ethereum

network. Each transaction, depending on its parameters and possibly the script behind

a smart contract method, takes a certain number of computational steps to be

completed. Startgas, refers to the maximum number of such steps, that a transaction is

allowed to take. If that number is surpassed, the transaction gets reverted. Also, every

such step is computationally costly as it may strain the resources of every node on the

network, so a fee is needed to keep the strain in check. That is why the gasprice field

was added. It is the value that represents a fee per computational step. The fees

system apart from keeping the system light has another reason to exist; it protects

from denial-of-service attacks. While smart contract programming was an innovation

that made Ethereum popular in the first place, it also expanded the attack window that

could be caused by malicious code or even by accidental infinite loops.

2.2.4 MESSAGES

As mentioned before, smart contracts do not have the ability to perform

transactions. But another type of similar functionality would be needed for scaling

distributed ethereum apps. That is why messages were introduced. Essentially

messages are not real objects that are serialized, but they exist only within the

execution environment, they are transactions that but with the actors being contracts.

They give the ability to contracts to interact with other contracts. They contain the

same fields like a normal transaction except for the gasprice.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

20

2.3 EMBEDDED SYSTEMS

Embedded systems are computing systems used for specific purposes that are

“embedded” in application environments or other computing systems [10]. They are

made of components that usually involve hardware and software. They can be applied

in a large variety of fields, like consumer electronics, automotive, military, medical,

internet of things, telecommunications, and smart cities.

2.3.1 CHARACTERISTICS

 These systems are single-functioned. Meaning that they serve a specific

purpose and they do it repeatedly. They cannot be used unchanged for any other

operation. Furthermore, they are tightly constrained as per their design metrics. They

have to have a specific cost and size, to be fast enough, perform to a certain standard

and be able to last if on battery. Also, they are reactive in real-time. They have to

react to changes in the system like processing received requests and computing and

serving the results in real-time. Moreover, they are microprocessor or microcontroller-

based and they must have some type of memory like a computer’s ROM, and they

usually involve a user or system’s interface. As would be expected, in order to work

in a system every component has to be connected in some way with at least one other.

 Such systems can be easily customized, they usually cost little and consume

little power as they might have to work autonomously, and they enhance the

performance. On the other side, they are more difficult to develop and market [11].

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

21

Figure 5 Dependability aspects of embedded systems

2.3.2 REQUIREMENTS

The main requirements of embedded systems are to be dependable and

efficient. Being cyber-physical systems, they do interact with the environment and so

dependability is a main issue that could be estimated by some key factors: reliability,

maintainability, availability, safety, security, and survivability. Dependability reflects

the user’s degree of trust in the system, and if it is not fulfilled the system could be

deemed insecure and unreliable. Dependability could be achieved through having

redundant components in case of failure and having secured more than one way to

achieve functionality. Regarding the efficiency of the system, it is reached through the

equilibrium of performance, power, and cost, and it is measurable in contrast with

dependability. The main metrics of valuing efficiency are energy, the optimization for

the code size, the run-time efficiency of the resources, the physical weight, and the

cost. All of these requirements and subfactors should be taken into account when

designing an embedded system.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

22

Figure 6 Efficiency aspects of embedded systems

3. RELATED WORK

M.Shurman et al. [12] propose an architectural guideline to enable the usage of

blockchain in IoT devices. In that system, IoT devices have been configured to be

able to deploy Ethereum smart contracts and rent their service. A client can rent the

device by using either a serial number or a QR code that belongs to that device and by

doing so they buy the service and take its ownership. The role of smart contracts is to

accept offers, manage ownership, and validate the data sent. In this system, someone

can only become a client by renting the device, so users cannot use their own devices,

and the management of the system is done automatically by a deployed smart

contract.

 Huh et al. [13], have developed a blockchain platform to manage IoT devices.

They built a scenario where there are some physical components, namely a

smartphone, and three Raspberry Pis, and these send and retrieve information from

the cyber components that are smart contracts on the Ethereum network. The three

Raspberries are meters to the electric usage of an air conditioner and a lightbulb, and

the smartphone is used to configure an energy policy for the said lightbulb and air

conditioner. There are three processes that run concurrently: the user sets the

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

23

configuration, and it is sent to Ethereum, the devices receive these data periodically,

and they update the contract with the electric usage data they tracked. The proof of

concept was successful, and the system run as designed but a couple of weaknesses

were unearthed; the difficulty to use the design for time-sensitive purposes, due to the

amount of time transactions needed to complete, and the size of the Ethereum client

that would force the usage of a third-party proxy.

Samaniego et al. [14], explore the issue of the hosting location of Blockchain

and IoT systems and setting cloud and fog platforms as the solution. In this paper, the

intention of using Blockchain for IoT is the storage and sharing of data and code.

Various experiments were performed to evaluate the performance of using a local

cluster of fog and cloud computing as hosts. Two Edison Arduino boards were used

and a variable number of clients to write to a multichain. The results showcased that

the main issue for performance was not the private multichain but the network chip

and traffic of the board. Then, they tried to evaluate the impact of cloud latency in a

private blockchain network, specifically IBM’s BlueMix. The results revealed a

network latency that could be explained by the use of cloud services, and some

service failures indicated that BlueMix may not be the best solution when using IoT.

The analysis proved network latency as the key factor and fog as the better option

compared to the cloud.

Dorri et al. [15], suggest a secure blockchain-based smart home framework.

The main focus of the paper is on the security and privacy aspects of the

implementation. The architecture consists of three tiers; the smart home which is

consisted of smart devices centrally controlled by a miner, the cloud used by devices

to store and share data, and an overlay network. In the overlay, nodes are grouped into

clusters each with a cluster head that maintains a public blockchain that contains two

lists with information about access and authorization. The clusters contain smart

homes to which smart devices belong, cloud storage, and a service provider. As per

the security aspect, the authors proved that the framework is proofed from DDOS and

linking attacks due to its design using the miner and various access controls. To

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

24

achieve this level of security additional delays can be caused but, their impact does

not affect the availability of the devices. Next, simulations were made to compare the

overhead of the system comparing it to a system without encryption, hashing, and

blockchain. They evaluated the results on three levels: packet and time overhead and

energy consumption. While the performance of the proposed system on all three

levels was worse it was deemed insignificant compared to the level of security

provided.

Pavithran et al. [16], describe some key characteristics that should be taken

into consideration when trying to design the architecture of a blockchain and IoT

system, and the related challenges, and point out security gaps in such frameworks.

The first challenge described is using different devices under the same blockchain,

and the solution proposed would be to standardize the implementation, add policies

on data and apply general regulations. Next, as per the type of the blockchain, they

determined that permissioned networks would work better with IoT devices as their

lighter than permissionless and hybrid. Another challenge mentioned is the volume of

the data produced by sensors and the time and storage restrictions blockchain would

bring. This could be solved by assigning an AI to clear unwanted data. Also, they

mention the importance of securely storing private keys in devices. Furthermore, they

set the security requirements and define problems like the usage of asymmetric key

cryptography and quantum computing, and IoT data reliability. Finally, they

discussed the optimal platform and consensus for IoT and ended up with Hyperledger

Fabric and Practical Byzantine Fault Tolerance (PBFT). They concluded that an

efficient blockchain platform for IoT does not exist yet.

Another literature review was carried out by Kuang et al [17]. They analyze

the solutions that have been proposed by academia, and the methodologies of

integration. They covered thirty-five solutions from peer-reviewed academic papers

that aimed to surpass the challenges of performance and scalability. On issues based

on IoT, they suggested encrypting confidential data before posting them on chain,

making smart contracts extensible if they are used as access controls, since as a type

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

25

of data they are immutable, adding representation of code on blockchain for integrity

and using the PBFT consensus when wanting to achieve real-time monitoring. On the

blockchain infrastructure, they recommended permissioned blockchains as they work

better with IoT and if employing public networks, to use anchoring mechanisms. For

consensus mechanisms, they discouraged the use of proof-of-work and favored proof-

of-stake and PBFT. They identified design defects like using other devices to enhance

computation and risking single point of failure attacks, provided insight on key factors

to consider, and recommended alternatives and solutions.

Christidis et al. [18] also explore the issue of using IoT and blockchain in a

single system. They explored the concepts of blockchain and things working together

in the preliminary stages when not many such implementations existed, and some of

the issues mentioned have been improved or even solved, but some remain, and their

importance is as high as ever. One such issue is the performance throughput and high

latencies in public blockchain networks, especially when the proof-of-work

mechanism is employed. Their research concludes by highlighting the potential that

such a combination could have, automating workflows in unique and secure ways and

cutting costs in the process, and predicted the spread of these applications in several

industries.

Ge et al. [19] proposed a distributed framework that exploits blockchain

technology to communicate in a secure way with UAVs (Unmanned Aerial Vehicles),

protect them from attacks, and let them keep operational autonomy. They created a

new, lightweight blockchain architecture that solves the related issues with

performance and storage and manages to maintain the security and privacy-related

benefits. To achieve this, they implemented a new structure for blocks and

transactions, and a new consensus mechanism inspired by delegated proof-of-stake

that involved reputation evaluation for untrusted drones. They analyzed the security of

the system and proved its reliability and performed experiments that verified it met

throughput data requirements while UAVs retained their self-defense mechanism.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

26

4. SYSTEM ARCHITECTURE

Figure 7 Overview of system architecture

The system architecture involves parties communicating in a decentralized way.

These parties exist both in the physical world, like the IoT device and the server,

and in the Ethereum realm. The proxy server is the intermediary between the IoT

device and the ethereum. There could be several servers all equal to each other,

but, for simplicity, it can be considered a single entity. A brief overview of the

entire system architecture can be seen in Figure 7. Each component and its role

are going to be analyzed in the Components section. The purpose of the system is

to function as an enabler for IoT devices to communicate with Blockchain

Ethereum applications. A user can register multiple IoT devices and interact with

any deployed Ethereum smart contract, and thus the system can have many uses in

several sectors, like agriculture and energy retailing.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

27

4.1 COMPONENTS

4.1.1 PROXY SERVER

Figure 8 Datagram of an IoT request

The proxy server is the mediator and handler for most of the communications

of the system. It interacts with devices, smart contracts, and other third-party

applications. As explained above, while for the demonstration there has been

developed only one server, in reality, the role and the tasks could have been

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

28

distributed between a number of equal servers, and therefore make the system

more decentralized.

 The server uses stream web sockets and listens for communications

from devices. Once communication has been established the server receives

the request and checks whether the device trying to connect has been

registered or not. In the second case, the server refuses the request and

prompts the user to register. In the first case, the proxy starts to process the

request and then proceeds to make a raw transaction or a call to a function

depending on the request. When the transaction has been completed and the

transaction receipt along with any outputs have been retrieved, a message is

created that contains the status of the transaction and the outputs if there are

any. This message will be sent to the device after a series of verifications. At

the same time, another web stream socket service is running, where the server

communicates with a third-party application and is sending the transaction

hash through the channel. Also, the initial request from the device, along with

the transaction hash and the method-id of the function called, are being sent to

the management contract that handles transaction costs, and payments. The

purpose of this transaction is to request payment for the service provided,

namely the gas costs of the interaction and a typical fee. After the successful

retrieval of the payment, the proxy can now proceed to send the message

created containing the outputs to the device, through the initial socket

connection.

4.1.2 DEVICE

The IoT device is the client of the application. The user must first register

the device by sharing a public key and then transact a certain amount of ether

to the management contract that handles the cost of the transactions. After the

registration, the user is free to use the system and interact with his contract of

choice by sharing the ABI of the contract with the proxy server and initiating a

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

29

request. The request will be containing the id of the device, the public key, the

address of the contract, the function which he wishes to use, and the contract

parameters if any. The communication with the proxy server is handled using

web stream sockets. After the successful receival, process, and completion of

the request, the status of the transaction and any outputs will be sent back to

the device and can be used accordingly. Also, the owner of the device will be

charged with the gas costs and a usage fee that will be covered by the amount

deposited into management contract. The rest of the amount can either be

withdrawn or remain as is for future usage of the service.

4.1.3 SMART CONTRACT

The smart contract is the contract that the user wants the device to

communicate with. It must be deployed to the Ethereum Network and the user

must have knowledge of its ABI and address. The size, the functions, and its

parameters are independent of the application and thus any contract can be

used successfully. For purposes of demonstration, there have been developed

and deployed two exemplary contracts.

4.1.4 ORACLE CONTRACT

The oracle contract is providing essential information to the management

contract, which is going to be described below, that is needed to certify that

the parameters of the transaction made, were indeed those that the user

requested, and the transaction was successful. In order to do that, the oracle

receives the transaction receipt from the third-party app, like the transaction

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

30

hash, the id of the method called, the parameters used, and of course the

address of the contract. After successfully storing the information, these can

be retrieved by the management contract as needed.

4.1.5 THIRD-PARTY

The role of this application is to provide information about the transaction

from a trusted source to the oracle contract. It connects to the proxy server and

retrieves the transaction hash. Then, it makes a GET request to the Etherscan

page according to the hash, and through a custom API retrieves specific

information needed. Having certified that the transaction was completed

correctly, it makes a raw transaction to the Oracle contract sending the

information. The application is in a way independent of the server. The only

information asked is the transaction hash to make the request, and the other

party is completely trusted to provide truthful information, making the app

itself act as a trusted source for data to the verification process.

4.1.6 MANAGEMENT CONTRACT

The role of this contract is to verify that the transaction was successful, and

the data provided were exactly what the device requested, and also, to handle

the service payments. The user deposits ethers to this contract to use the

system, and it stores information about the user and his current balance. It

receives payment requests from the proxy server, processes them, and asks the

oracle contract for relevant information about the transaction. Then, it makes a

comparison, and if the transaction was successful and the data restored from

the Etherscan page that the Oracle holds are the same as those that the device

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

31

request contains it can go on to process the payment. To do that, it checks the

current balance of the user whose device made the request. If there is enough

balance, it withdraws the appropriate amount and informs the proxy server

about the completion of the payment. Else, if there is not enough balance, it

also informs the proxy accordingly, so that the device cannot receive the

results. The contract also provides the selection to the user to withdraw from

the amount deposited at any time, making it secure for the users to use the

service and not fear monetary losses.

5. IMPLEMENTATION

5.1 TECHNICAL CHARACTERISTICS

For the development of the project the components had the following characteristics:

• Device: Pycom Pysense mounted on an Expansion Board v2.0

• Server: Windows 10/ Intel i7 8th gen/ SSD 256 GB/ 16 GB RAM

5.2 PREREQUISITES

Before diving into the actual operations of the system, some things are assumed to

have been completed. Namely, the registration of a user. Normally, the user would

have to register first in order to use the application. The registration page would

prompt the user to create a username and a password and log into his account to set up

needed information. Then the user would have to add unique ids for his devices, the

ABIs of all the contracts he would like his devices to interact with, the RSA public

keys of his devices that would be used for authentication and add the wallet address

that he could use to pay his fees. Next, he would be prompted to deposit to the address

of the management contract. With everything having succeeded, registration would

have been completed.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

32

The proxy server could manage the registration by saving files posted in directories

per user account and saving all the needed user information in a SQL database.

For the current implementation, we have assumed that a user is already registered, all

his information exists in a database and his needed files are already in the possession

of the proxy server.

5.3 INITIAL REQUEST

Let’s consider a user that has a Pycom device in his possession, with the

characteristics mentioned above in [4.1], and he intends to use the service to interact

with a simple smart contract. To initiate a request, he would have to first build it. The

structure of a request is a string that has several fields separated by the character ‘#’.

The fields have a specific order, but their actual number depends on the number of

arguments of the function that the user wants to interact with. The basic structure

would look like this:

<device_id>#<contract_address>#<function_name>#<argument1>#<argument2>#...#<signature>

The information about the fields can be seen in [Table 1].

Field Name Description

device_id The id of the current device that the user

added upon registration.

contract_address The address of the deployed contract that the

user wants to interact with.

function_name The name of the function that the user wants

to use.

argument An argument of the function to be used.

signature The device_id signed with the private RSA

key of the device.

Table 1 Request fields

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

33

After the request has been correctly formatted the device has to connect to the proxy

server and send the request. To do that, a web socket client has to be initiated and try

to connect to the address and port of the server. This can be done by the following

code snippet in Micropython using the socket library:

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

s.connect((host, port))

After successfully connecting, the user has to send the request to the server by:

s.sendall(request)

Then the request will be received by the proxy server, processed, and eventually

completed if every parameter needed is fulfilled. The device will wait to receive the

results of the transaction on the established socket connection and then once received

close it:

reply=s.recv(4096)

s.close()

5.4 PROCESS REQUEST

The proxy server is a script written in Python 3.9. The first thing it does is open a port

to listen for devices trying to connect and send their requests. A web socket server

needs to be built as seen below:

serversocket = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)

serversocket.setsockopt(usocket.SOL_SOCKET, usocket.SO_REUSEADDR, 1)

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

34

serversocket.bind(("", 6544))

while True:

 (clientsocket, address) = serversocket.accept()

In the above snippet, the server sets the appropriate protocols, as AF_INET to accept

IPv4 addresses, and SOCK_STREAM to use the stream types of sockets, that are

sequenced and two-wayed. Then sets further socket options and binds port 6544 to

listen for device requests. Then every time a device tries to connect the server can

accept the connection and establish a socket with the device. Then the request is

received by using:

request = clientsocket.recv(1000)

At this stage, the function that processes the request parameters is called, namely

decode_requests(). It operates as follows:

1. Splits the request into individual fields

2. Determines if the contract function takes arguments or not and if yes, how

many

3. Formats the individual fields from bytes to their appropriate format and

especially for the arguments it finds the format by crosschecking with the ABI

for their data type

4. Creates the method_id from the function name and arguments.

5. Using the device_id, it retrieves the appropriate information from the database

and formats it for use within Web3.

6. Calls the function to make the transaction with all the arguments formatted

from the previous steps

7. Creates the reply that will be sent back to the device and contains information

about the output of the transaction.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

35

The code of the decode_requests method, as well the complete code of the system can

be seen at the end of the paper.

5.5 SEND TRANSACTION

To connect to an Ethereum client, the use of the Web3 library is obliged. It

enables users to interact with their ethereum nodes of choice. Clients could be local

like Ganache, or remote like in the Ethereum mainnet. For python there is a specific

library web3.py, that is going to be used for the application. Also, the contracts have

been deployed in an Ethereum testnet called Ropsten. While it is used only for

development purposes, it is considered the testnet closest to the main net behavior-

wise. Also, to connect to the Ropsten network, a backend and an API provider are

needed, for that Infura is recommended. By creating a project in Infura, one can

obtain a project key to use to connect to the Ropsten client.

 So, the following line of code establishes an ethereum client as discussed:

w3_ =

Web3(HTTPProvider("https://ropsten.infura.io/v3/cbe831fc4e9a47699e55a

f9141b7930f"))

 The URL seen is provided by Infura and it was used in the specific project.

Then, a contract instance has to be created, that will be used to interact with it. The

contract has to be deployed on the same network using the same Infura key. For the

purposes of demonstration, the smart contract that a user wants to use has been

created in Solidity with compiler version 0.8.0. The code of the exemplary smart

contract can be seen at the end of the paper. So, the creation of the contract instance is

in the below snippet:

entity = w3_.eth.contract(address=contract_address, abi=abi)

Using entity, the transaction can be built.

func = getattr(entity.functions, func_name)

nonce = w3_.eth.get_transaction_count(account_address)

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

36

entity_txn = func(*args).buildTransaction({

 'from': account_address,

 'chainId': 3,

 'value': value,

 'gas': 1000000,

 'gasPrice': w3_.toWei('200', 'gwei'),

 'nonce': nonce,

})

The first line of code selects the function to be called from the contract

instance, based on the name received from the device. On the second line of code, the

nonce of the account of the proxy is retrieved, and then the transaction is built on the

entity_txn. The parameters are described in [Table 2].

Parameter Description

nonce The number of completed transactions of an

account

chainId The number of the chain id of the network.

For example, for Ethereum mainnet it is 1,

for Ropsten Testnet it is 3. For private

networks, it can be customized.

value A number of ether or any denomination to be

sent to contract function. The function has to

be payable, or else the value has to be zero.

gas The cost necessary to complete a transaction.

It can be estimated from the contract ABI.

gasPrice The cost of every computational step, or the

cost per unit of gas. In proof-of-work in

mechanisms, miners prefer to mine

transactions with higher gas prices, so the

highest this field, the quicker the transaction

will be mined.

Table 2 Description of transaction parameters

Afterwards, the transaction is signed using the proxy server’s private key and

sent using the following lines:

signed_txn = w3_.eth.account.sign_transaction(entity_txn,

private_key=priv_key)

tx_hash_b = w3_.eth.send_raw_transaction(signed_txn.rawTransaction)

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

37

If the type of the function the device defined was view, meaning it did not

alter the state of the contract storage, instead of building a transaction to retrieve the

output one can just make a function call like this:

output = func(*args).call()

 Where the output will be what the contract function returned.

In the first case, the hash of the transaction is retrieved and the status of the

transaction along with other information can be tracked on the Etherscan website for

the Ropsten Testnet network [https://ropsten.etherscan.io/]. Also, due to the fact that,

as mentioned before, Ropsten acts like the mainnet and the consensus is proof-of-

work, there are related latencies that cause a specific problem. Since all transactions

are executed from the proxy server’s account, they have the same nonce. This means

that if synchronization is not handled correctly, they might get reverted due to using

the same nonce which will be interpreted as trying to replace a transaction. This

problem is handled by waiting for transactions to be completed before the program

moves on. To do that, a simple comparison is made to check whether the nonce has

changed or not.

5.6 THIRD-PARTY

After the transaction hash has been obtained, the proxy has to notify the third-

party application. This application is another script developed in Python 3.9. To get

the hash from the server it opens a socket connection on a port in the same way as

described in section [4.4]. Then it makes a get request to the Etherscan website,

querying with the hash to get the page with information about the transaction. While

Etherscan does provide an API to make calls, this did not cover the needs of this

application and so a custom API was made. An example of a page as the one

requested can be seen in Figure 9. The fields that need to be gathered are: From, To,

Value, Transaction Fee, Gas Limit, and Gas Used By Transaction. Their description

can be seen in Table 3.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

38

Field Description

From The address of the account sending the

transaction.

To The address of the recipient of the

transaction, it could be either a contract

address or the address of another user.

Value The amount of ether sent along with the

transaction.

Transaction Fee The fee paid to the miner for processing the

transaction.

Gas Limit Maximum amount of gas a transaction is

allowed to consume.

Gas Used by Transaction The amount of gas the transaction ended up

consuming.

Table 3 Description of Etherscan fields used by the Third-Party

Having gathered all the needed fields from Etherscan, the third-party proceeds

to send this information to the Blockchain, making a transaction as described in

section [4.5]. Specifically, there is a smart contract with the purpose of acting as an

oracle and providing necessary information obtained from Etherscan to the Ethereum

network. Blockchain networks in general, while allowing for the development of

distributed apps, they enforce a lot of restrictions. Due to the nature of the network,

data that need to be sourced from somewhere outside of the scope of smart contracts,

are unreachable. For example, not even the current time can be retrieved inside the

code of a smart contract. To solve this problem, oracles are employed. They act as

portals to the real web and serve information needed to the blockchain. For the scope

of this application, the third-party app together with the Oracle smart contract feed

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

39

information from the trusted source, that is Etherscan to the ethereum network. This

data will be needed as a cross-reference to check whether the proxy served the device

as intended. It adds a layer of integrity to the system.

Figure 9 Example of a transaction page from Etherscan

5.6.1 ORACLE

The oracle contract was developed in Solidity version 0.8.0. Its storage

consists of a mapping of structs. In solidity mappings are like dictionaries, they are

arrays of keys and values. This mapping is pubic, meaning it can be accessed by

anyone, and the type of struct it stores is called Receipt and contains information

about a transaction that the third-party sent as discussed above. The receipts can be

accessed by the transaction hashes. Two simple functions have been implemented;

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

40

one to set a receipt, which is the function that the third-party calls to send the data,

and one to get a receipt based on a transaction hash, that is used by a contract that will

be described later. The full code of the oracle contract is attached at the end.

5.7 REQUEST PAYMENT

The proxy server having sent the transaction hash to the third-party app for

verification, proceeds to make a request to be paid for the service provided. To do that

it makes a call to a specific purpose contract called Management. The role of this is to

make verifications and fulfill requests for payment. It is the contract that the users

make deposits to when registering. It also allows for the users to check their balance

on the contract and withdraw from their balance if need be.

5.7.1 MANAGEMENT

The contract’s storage consists of two mappings, one called device_ids that

holds information about to whom does a device belong and deposited_amounts where

the current balance of a user on the contract is stored. Also, there are two types of

structs, the Request and the Signature as seen below:

 struct Request{

 string device_id;

 string contract_address;

 string funcname;

 string method_id;

 }

 struct Signature{

 bytes32 message;

 bytes s;

 bytes e;

 bytes m;

 address payable ver;

 }

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

41

These structs are used to save data sent from the proxy server when making a

call to the request_payment function. The first one is used to save the data that the

proxy server claims to have used to fill the user’s request, along with the device’s id.

The second one is used for verification; its fields are also sent by the proxy server

when making a request and its purpose is going to be analyzed further below. Structs

in solidity can be a necessity since they provide a sophisticated solution to a rather big

problem. Solidity applies a restriction to the number of variables a user can use in a

function. If the threshold is surpassed a compilation error will emerge saying that the

stack is too deep. By using structs, the number of variables used is reduced while the

volume of data stays the same.

 The definition of the request payment function is the following:

 function request_payment(string memory request, string memory txhash,

string memory request_method_id, uint numofargs) external payable

returns(uint)

The function is external meaning it can read call data directly and doesn’t need

to copy them to memory first, which means it is not as expensive as defining it as

public, and since it is not called internally in the contract that definition is preferred.

Also, it is payable. This modifier claims that the function is able to receive ether. The

description for the rest of the parameters can be seen in [Table 4].

Parameter Description

request The full request as sent from the device

txhash The hash of the transaction made on behalf of

the device

request_method_id The method_id of the function called on

behalf of the device. It is calculated using the

sha3 hash of the function definition. e.g.,

func_name(param1, param2)

numofargs It is the number of arguments used in the

function called and is needed only for

processing purposes

Table 4 Description of request_payment function parameters

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

42

Solidity does not have implemented string support, so in order to process the fields of

the device request, another function has been implemented that splits the string based

on a delimiter, which in this case is the character ‘#’. After processing the fields, it

stores them into the structs to be accessed when needed. In order to verify that the

request has been fulfilled according to the user’s wishes, it needs to crosscheck that

the fields of the initial request match the fields used in the actual transaction. So,

request_payment function has to make a call to the oracle contract and specifically to

the function that returns a Receipt based on a transaction hash. As mentioned in

section [1.2.2], smart contracts are allowed to interact with other smart contracts.

There are several ways to achieve that depending on the situation. In this case since

the code of the Oracle contract is accessible, and the version of Solidity is the same on

both contracts, the oracle can be added as an interface to the management contract.

Then using its address to initiate a contract instance inside management, and then the

functions of the oracle can be accessed directly. In this instance the function call is the

following:

(string memory tx_fee, string memory oracle_method_id, string memory

oracle_arguments) = o.get_data(txhash);

Then the comparison can be made and if successful the contract proceeds to

make the rest of the verifications. Another one is to check whether the user has

enough ethers deposited to be able to pay for the transaction and service fees, by

checking with the device id in the device_ids mapping to find the user’s address and

then using that to see the deposited amount in the deposited_amounts mapping. If the

user indeed has enough, it proceeds to make the last verification, that the device’s

identity is correct, and it is not someone else trying to act as the device. To do that,

asymmetric encryption is employed, and to be precise, the RSA algorithm. The device

owns a set of keys and when making a registration it shares the public key with the

proxy server. When making a request the device sends along with the actual

device_id, the device_id signed with its private key. So, the proxy can then get the

exponent and the modulus from the public key and send them along to the

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

43

management contract to make the verification. The contract makes use of a library

published by [source] that is deployed on the same network. This library has a

function that can verify RSA signatures and return zero if they’re valid. The code of

the library is developed in solidity version 0.6.0, which is different from the version

of the management contract. So, to call the library from inside the contract an

interface will not work as it did with the oracle contract. Instead, knowing the

function definition of the library, it can be called like this:

bytes memory payload =

abi.encodeWithSignature("pkcs1Sha256Verify(bytes32,bytes,bytes,bytes)",

_sha256,_s,_e,_m);

 (bool success, bytes memory data) = _addr.delegatecall(payload);

Using the function definition encodeWithSignature creates the encoding in

the appropriate form so that it can be understood by the Ethereum Virtual Machine.

Then it proceeds to make a special type of call that is called delegatecall and is used

for external libraries. The result of the verification is stored in the data variable.

 Finally, if every requirement is fulfilled, it sends the amount of ethers from the

total cost of the service and gas fees to the proxy server account, updates the mapping

deposited_amounts reducing the total balance of the user accordingly, and returns the

status of payment to the proxy server.

5.8. COMPLETE REQUEST

 The proxy server after receiving the status of the payment, if it was successful,

it sends the device the reply that contains the results of the initial request through the

initial socket connection, the result could be encrypted with the private key of the

device for an extra level of security. Otherwise, it informs the device that the request

could not be fulfilled.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

44

6. SECURITY ANALYSIS

The application works end-to-end, and the communications get handled

automatically. It would be interesting to investigate certain scenarios that

would test the level of security and robustness of the architecture.

i. Considering there exists a malicious actor that tries to impersonate the

device of a user knowing its id, in order to use the service at the

expense of someone else. The system, as mentioned before uses RSA

asymmetric keys to verify the identity of the device before charging for

the service and handing back the results. This means, that in order for

the malicious actor to impersonate the device, he has to build the

correct signature. That in turn, means that he has to have knowledge of

the private key of that device. Since the system never owns or

processes that key, its security is out of the scope of the application and

the system can be considered secure against this type of attack.

ii. Considering there is a malicious actor listening to the socket

connection of the proxy server and the device and he alters the device

request to fill his own needs. Even though the request will get handled

by the proxy server, the user is in a place to get knowledge of the

attack and have proof, by cross-checking using Etherscan and the

oracle contract. The oracle contract holds information about every

transaction handled through the service, so the attack could not get

buried. Also, the mechanism that could handle a refund is already in

place. What’s more is that even if the actor succeeded, he would not be

in a place to use the result without knowledge of the device’s private

key, so the attack could be pointless.

iii. In the case that multiple proxies have been employed, as supported by

the architecture, the system is also protected by DDOS attacks. Every

proxy would have the same amount of information, and requests would

be equally distributed so when a single proxy is down, the system

would be fully functional and there would be no loss of data or

requests.

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

45

iv. In the scenario that the proxy server account gets compromised and

wants to charge users without completing requests to make a profit. If

the smart contract calls for some reason did not complete as expected,

then the Etherscan page for the transaction hash would hold a status

that would reflect the failure. So, in the management contract when

checking the fields of the oracle, the verification would also fail, the

user would not get charged, the result would not be sent back, and the

user would be notified.

7. DISCUSSION

A demo of the proposed architecture that works end-to-end enabling devices

to transact with any contract within an ethereum network has been implemented.

However, this implementation is just a sample compared to the scale that could be

achieved based on the system design. This does not mean that limitations don’t

exist. The architecture is dependent on outside sources that are considered to be

trusted. But in case of their failure, the system cannot be protected. Furthermore,

the line between data encryption and integrity is thin. Due to the computational

limitations of ethereum, complex encryption can not be applied on a contract

level, instead better security would be achieved on the proxy server. And yet,

smart contracts due to the fact that their code is accessible to everyone, and their

data cannot be altered, provide better clarity of the process and the state of

information. In future works a demo using multiple proxies could be

implemented, better encryption algorithms and security mechanisms could be

explored and the matter of undependability from other resources to be researched.

46

REFERENCES

[1] S. Nakamoto, "A Peer-to-Peer Electronic Cash System", Bitcoin.org, 2008. [Online].

Available: https://bitcoin.org/bitcoin.pdf

[2] Rodeck and J. Schmidt, "What Is Blockchain?", Forbes.com, 2022. [Online]. Available:

https://www.forbes.com/advisor/investing/what-is-blockchain/

[3] "Distributed Ledger Technologies – SCETA", Sceta.io, 2022. [Online]. Available:

https://sceta.io/distributed-ledger-technologies/

[4] "A Beginner’s Guide to Understanding the Blockchain (Part 1: Introduction to

Blockchain Technology)", Medium, 2022. [Online]. Available:

https://medium.com/coinmonks/a-beginners-guide-to-investing-in-crypto-74781455645/

[5] S. Aggarwal and N. Kumar, "Cryptographic consensus mechanisms", Advances in

Computers, pp. 211-226, 2021. Available: 10.1016/bs.adcom.2020.08.011

[6] "Proof-of-work (PoW) | ethereum.org", ethereum.org, 2022. [Online]. Available:

https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/

[7] "Ethereum accounts | ethereum.org", ethereum.org, 2022. [Online]. Available:

https://ethereum.org/en/developers/docs/accounts/.

[8] “Merkle tree - Wikipedia", En.wikipedia.org, 2022. [Online]. Available:

https://en.wikipedia.org/wiki/Merkle_tree

[9]Takenobu-hs.github.io, 2022. [Online]. Available: https://takenobu-

hs.github.io/downloads/ethereum_evm_illustrated.pdf

[10] D. Serpanos and T. Wolf, "Architecture of network systems overview", Architecture of

Network Systems, pp. 1-9, 2011. Available: 10.1016/b978-0-12-374494-4.00001-3

[11] A. Barkalov, L. Titarenko and M. Mazurkiewicz, Foundations of embedded systems.

p.28.

[12] Shurman, Mohammad & Obeidat, Abed & Al-Shurman, Saif. (2020). Blockchain and

Smart Contract for IoT. 361-366. 10.1109/ICICS49469.2020.239551.

[13] S. Huh, S. Cho and S. Kim, "Managing IoT devices using blockchain platform," 2017 19th
International Conference on Advanced Communication Technology (ICACT), 2017, pp. 464-
467, doi: 10.23919/ICACT.2017.7890132.

[14] M. Samaniego, U. Jamsrandorj and R. Deters, "Blockchain as a Service for IoT," 2016

IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData), 2016, pp. 433-436, doi: 10.1109/iThings-

GreenCom-CPSCom-SmartData.2016.102.

[15] A. Dorri, S. S. Kanhere, R. Jurdak and P. Gauravaram, "Blockchain for IoT security and

privacy: The case study of a smart home," 2017 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), 2017, pp. 618-623, doi:
10.1109/PERCOMW.2017.7917634.

https://bitcoin.org/bitcoin.pdf
https://www.forbes.com/advisor/investing/what-is-blockchain/
https://sceta.io/distributed-ledger-technologies/
https://medium.com/coinmonks/a-beginners-guide-to-investing-in-crypto-74781455645/

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

47

[16] Pavithran, D., Shaalan, K., Al-Karaki, J.N. et al. Towards building a

blockchain framework for IoT. Cluster Comput 23, 2089–2103 (2020).

https://doi.org/10.1007/s10586-020-03059-5

[17]S. K. Lo et al., "Analysis of Blockchain Solutions for IoT: A Systematic Literature Review,"

in IEEE Access, vol. 7, pp. 58822-58835, 2019, doi: 10.1109/ACCESS.2019.2914675.

[18] K. Christidis and M. Devetsikiotis, "Blockchains and Smart Contracts for the Internet of
Things," in IEEE Access, vol. 4, pp. 2292-2303, 2016, doi: 10.1109/ACCESS.2016.2566339.

[19] Ge, C., Ma, X., & Liu, Z. (2020). A semi-autonomous distributed blockchain-based

framework for UAVs system. Journal Of Systems Architecture, 107, 101728.

https://doi.org/10.1016/j.sysarc.2020.101728

https://doi.org/10.1007/s10586-020-03059-5

48

CODE

I. EXEMPLARY SMART CONTRACT

pragma solidity ^0.5.0;

contract Test1 {

 struct Id{

 string name;

 uint am;

 }

 Id;

 function set_id(string memory _name, uint _am) public {

 id.name=_name;

 id.am=_am;

 }

 function get_id() public view returns (string memory, uint) {

 return(id.name, id.am);

 }

}

II. ORACLE SMART CONTRACT

pragma solidity ^0.8.0;

contract Oracle{

 struct Receipt{

 string tx_hash;

 string from;

 string to;

 string value;

 string tx_fee;

 string gas_limit;

 string gas_used;

 string method_id;

 string arguments;

 }

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

49

 bytes tempNum;

 string[] args;

 mapping (string => Receipt) public transactions;

 function set_data2(string memory _tx_hash, string memory _from,

string memory _to, string memory _value, string memory _tx_fee, string

memory _gas_limit, string memory _gas_used, string memory _method_id,

string memory _arguments) public{

 Receipt memory r;

 r.tx_hash = _tx_hash;

 r.from = _from;

 r.to = _to;

 r.value = _value;

 r.tx_fee = _tx_fee;

 r.gas_limit = _gas_limit;

 r.gas_used = _gas_used;

 r.method_id = _method_id;

 r.arguments =_arguments;

 transactions[_tx_hash] = r;

 delete _arguments;

 }

 function get_data(string memory _tx) public view returns(string

memory, string memory, string memory){

 Receipt memory rc = transactions[_tx];

 return(rc. tx_fee, rc.method_id, rc.arguments);

 }

}

III. MANAGEMENT SMART CONTRACT

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract Management{

 address proxy = 0x14DC00aB538480A5512625cBd3D92Ee03fff15fF;

 address payable owner = payable(proxy);

 address oracle_a = 0x386EC2CFF43e9bd5A68310af975EB2FD435B98A4;

 bytes tempNum;

 string[] args;

 Oracle o = Oracle(oracle_a);

 bool checker;

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

50

 bool checkargs;

 bool checkmethod;

 mapping (address => uint) deposited_amounts;

 mapping (uint => address) device_ids;

 function str2num(string memory numString) public pure returns(uint) {

 uint val=0;

 bytes memory stringBytes = bytes(numString);

 for (uint i = 0; i<stringBytes.length; i++) {

 uint exp = stringBytes.length - i;

 bytes1 ival = stringBytes[i];

 uint8 uval = uint8(ival);

 uint jval = uval - uint(0x30);

 val += (uint(jval) * (10**(exp-1)));

 }

 return val;

 }

 function bytes2num(bytes memory numString) public pure returns(uint)

{

 uint val=0;

 for (uint i = 0; i<numString.length; i++) {

 uint exp = numString.length - i;

 bytes1 ival = numString[i];

 uint8 uval = uint8(ival);

 uint jval = uval - uint(0x30);

 val += (uint(jval) * (10**(exp-1)));

 }

 return val;

 }

 function deposit(uint _id) external payable{

 require(msg.value > 0);

 deposited_amounts[msg.sender] = deposited_amounts[msg.sender] +

msg.value;

 device_ids[_id] = msg.sender;

 }

 function splitStr(string memory str, string memory delimiter) public

returns (string[] memory){

 delete args;

 bytes memory b = bytes(str);

 bytes memory delm = bytes(delimiter);

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

51

 for(uint i; i<b.length ; i++){

 if(b[i] != delm[0]) {

 tempNum.push(b[i]);

 }

 else {

 args.push(string(tempNum));

 tempNum = "";

 }

 }

 if(b[b.length-1] != delm[0]) {

 args.push(string(tempNum));

 }

 return args;

 }

 struct Request{

 string device_id;

 string contract_address;

 string funcname;

 string method_id;

 }

 struct Signature{

 bytes32 message;

 bytes s;

 bytes e;

 bytes m;

 address payable ver;

 }

 function request_payment(string memory request, string memory txhash,

string memory request_method_id, uint numofargs) external payable

returns(uint){

 Request memory r;

 Signature memory s;

 string[] memory request_data;

 string[] memory oracle_args;

 uint check=1;

 uint amount;

 request_data = splitStr(request, '#');

 r.device_id=request_data[0];

 //uint dev_id = str2num(request_data[0]);

 address user = device_ids[str2num(request_data[0])];

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

52

 r.contract_address= request_data[1];

 r.funcname= request_data[2];

 r.method_id = request_method_id;

 s.message = sha256(bytes(request_data[0]));

 s.s = bytes(request_data[(3 + numofargs)]);

 s.e = bytes(request_data[(4 + numofargs)]);

 s.m = bytes(request_data[(5 + numofargs)]);

 s.ver = payable(0xF21891F4Eae85a84C4Ff3a3c862E77FE08B85f42);

 (string memory tx_fee, string memory oracle_method_id, string

memory oracle_arguments) = o.get_data(txhash);

 oracle_args = splitStr(oracle_arguments, ' ');

 for(uint i = 3; i<request_data.length; i++){

 for(uint j =0; j<oracle_args.length; j++){

 if(keccak256(abi.encodePacked((request_data[i]))) ==

keccak256(abi.encodePacked((oracle_args[j])))){

 check=1*check;

 }

 }

 }

 if(keccak256(abi.encodePacked((r.method_id))) ==

keccak256(abi.encodePacked((oracle_method_id)))){

 checkmethod = true;

 }

 else{

 checkmethod = false;

 }

 if(check ==1){

 checkargs=true;

 }

 else{

 checkargs=false;

 }

 bool check_sig;

 bytes memory output_ver = check_verification(s);

 if(bytes2num(output_ver) == 0){

 check_sig = true;

 }

 else{

 check_sig = false;

 }

 checker = checkmethod && checkargs && check_sig;

 if(checker == true){

 amount = str2num(tx_fee);

 if(deposited_amounts[user]>=amount){

 (bool success,) = owner.call{value: amount}("");

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

53

 require(success, "Failed to send Ether");

 deposited_amounts[user] = deposited_amounts[user] - amount;

 }

 }

 return(deposited_amounts[user]);

 }

 function get_checker() public view returns(bool){

 return checker;

 }

 function contract_balance() public view returns(uint256){

 return address(this).balance;

 }

 function get_balance(address _user) public view returns(uint256){

 return address(_user).balance;

 }

 function get_deposit_by_user(address user) public view

returns(uint256){

 return deposited_amounts[user];

 }

 function check_verification(Signature memory s) public payable

returns(bytes memory){

 bytes32 _sha256 = s.message;

 bytes memory _s = s.s;

 bytes memory _e = s.e;

 bytes memory _m = s.m;

 address payable _addr = s.ver;

 bytes memory payload =

abi.encodeWithSignature("pkcs1Sha256Verify(bytes32,bytes,bytes,bytes)",

_sha256,_s,_e,_m);

 (bool success, bytes memory data) = _addr.delegatecall(payload);

 require(success);

 return data;

 }

}

interface Oracle{

 function set_data2(string memory _tx_hash, string memory _from,

string memory _to, string memory _value, string memory _tx_fee, string

memory _gas_limit, string memory _gas_used, string memory _method_id,

string memory _arguments) external;

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

54

 function get_data(string memory _tx) external view returns(string

memory, string memory, string memory);

}

IV. DATABASE MAKER

import sqlite3

from sqlite3 import Error

def create_connection(db_file):

 """ create a database connection to the SQLite database

 specified by db_file

 :param db_file: database file

 :return: Connection object or None

 """

 conn = None

 try:

 conn = sqlite3.connect(db_file)

 return conn

 except Error as e:

 print(e)

 return conn

def create_table(conn, create_table_sql):

 """ create a table from the create_table_sql statement

 :param conn: Connection object

 :param create_table_sql: a CREATE TABLE statement

 :return:

 """

 try:

 c = conn.cursor()

 c.execute(create_table_sql)

 except Error as e:

 print(e)

def main():

 database = r"users.db"

 sql_create_users_table = """ CREATE TABLE IF NOT EXISTS users (

 user_id text PRIMARY KEY,

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

55

 password text NOT NULL,

 account_address text NOT NULL,

 pk text NOT NULL

); """

 sql_create_devices_table = """CREATE TABLE IF NOT EXISTS devices (

 device_id integer PRIMARY KEY,

 user_id text NOT NULL,

 FOREIGN KEY (user_id) REFERENCES

users (user_id)

);"""

 # create a database connection

 conn = create_connection(database)

 # create tables

 if conn is not None:

 # create projects table

 create_table(conn, sql_create_users_table)

 # create tasks table

 create_table(conn, sql_create_devices_table)

 else:

 print("Error! cannot create the database connection.")

if __name__ == '__main__':

 main()

V. PROXY SERVER

from web3 import Web3, HTTPProvider

import json

import sqlite3

from sqlite3 import Error

import usocket

import time

from hexbytes import HexBytes

import itertools, sys

spinner = itertools.cycle(['-', '/', '|', '\\'])

import os

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

56

account_address_str = os.getenv('ACCOUNT_ADDRESS')

management_address_str = os.getenv('MANAGEMENT_ADDRESS')

pk_str = os.getenv('PK')

def format_address(add):

 """

 Function that correctly formats an address for web3 usage

 :param add: The address before

 :return: The address formatted

 """

 before = "".join(add)

 address = Web3.toChecksumAddress(before.lower())

 return address

def format_key(pk):

 """

 Function that correctly formats a private key for web3 usage

 :param pk: The private key before

 :return: The private key formatted

 """

 before = "".join(pk)

 private_key = bytes.fromhex(before)

 return private_key

creates a connection to the database

def create_connection(db_file):

 """ create a database connection to the SQLite database

 specified by db_file

 :param db_file: database file

 :return: Connection object or None

 """

 conn = None

 try:

 conn = sqlite3.connect(db_file)

 except Error as e:

 print(e)

 return conn

def query_info(conn, device_id):

 """

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

57

 Retrieves account information from database

 :param conn: the connection to the database

 :param device_id: The id of the device

 :return: the account information retrieved

 """

 cur = conn.cursor()

 query_id = "SELECT user_id FROM devices WHERE device_id =" +

str(device_id)

 cur.execute(query_id)

 user_id = "".join(cur.fetchone())

 query_account = "SELECT account_address FROM users WHERE user_id =

'" + user_id + "'"

 cur.execute(query_account)

 account_address_fromdb = cur.fetchone()

 account_address_before = "".join(account_address_fromdb)

 query_pk = "SELECT pk FROM users WHERE user_id ='" + user_id + "'"

 cur.execute(query_pk)

 private_key_before = "".join(cur.fetchone())

 return account_address_before, private_key_before

def extract_user_info(device_id):

 """

 Given a the id of user provides the account address and private key

correctly formatted

 :param device_id: The id of the device

 :return: The formatted information about the account and key

 """

 database = r"users.db"

 # create a database connection

 conn = create_connection(database)

 with conn:

 db_info = query_info(conn, device_id)

 account_address = Web3.toChecksumAddress(db_info[0].lower())

 priv_key = bytes.fromhex(db_info[1])

 info = (account_address, priv_key)

 return info

def spinning_cursor():

 while True:

 for cursor in '|/-\\':

 yield cursor

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

58

def send_txhash(txhash):

 """

 This method recieves a transaction hash and using web sockets sends

it to the third-party

 :param txhash: The hash of the transaction sent

 :return: None

 """

 with usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM) as s:

 s.connect(('127.0.0.1', 6533))

 s.send(txhash)

 s.close()

def checking_nonce():

 """

 This function retrieves information about the nonce of the account

the server uses to transact

 :return: The nonce retrieved from web3

 """

 w3_ =

Web3(HTTPProvider("https://ropsten.infura.io/v3/cbe831fc4e9a47699e55af9

141b7930f"))

 nonce =

w3_.eth.get_transaction_count('0x14DC00aB538480A5512625cBd3D92Ee03fff15

fF')

 return nonce

def contract1(contract_address, priv_key, account_address, func_name,

args, abi):

 """

 This function sends a raw transaction to a contract or makes a call

to a contract depending on the parameters

 :param contract_address: The address of the contract to interact

with

 :param priv_key: The private key of the account to make the

transaction

 :param account_address: The address of the account to make the

transaction

 :param func_name: The name of the function to call/interact with

 :param args: A list of the arguments to be used

 :param abi: The abi of the contract

 :return: The output of the call, the hash of the transaction

performed, the hash of the transaction in bytes and

 the nonce of the account before making the transaction

 """

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

59

 w3_ =

Web3(HTTPProvider("https://ropsten.infura.io/v3/cbe831fc4e9a47699e55af9

141b7930f"))

 entity = w3_.eth.contract(address=contract_address, abi=abi)

 func = getattr(entity.functions, func_name)

 time.sleep(10)

 nonce = w3_.eth.get_transaction_count(account_address)

 if func_name =="request_payment":

 value = w3_.toWei('100', 'gwei')

 else:

 value = 0

 print(f"Trying to transact with {func_name} and nonce is {nonce}")

 entity_txn = func(*args).buildTransaction({

 'from': account_address,

 'chainId': 3,

 'value': value,

 'gas': 3000000,

 'gasPrice': w3_.toWei('200', 'gwei'),

 'nonce': nonce,

 })

 signed_txn = w3_.eth.account.sign_transaction(entity_txn,

private_key=priv_key)

 tx_hash_b = w3_.eth.send_raw_transaction(signed_txn.rawTransaction)

 if func_name == 'request_payment':

 output = []

 else:

 output = func(*args).call()

 while w3_.eth.get_transaction_count(account_address) == nonce:

 sys.stdout.write(next(spinner)) # write the next character

 sys.stdout.flush() # flush stdout buffer (actual character

display)

 sys.stdout.write('\b') # erase the last written char

 #time.sleep(2)

 print(f"Out of loop and nonce is

{w3_.eth.get_transaction_count(account_address)}")

 tx_hash = bytes(HexBytes(tx_hash_b)).hex()

 return [output, tx_hash, tx_hash_b, nonce]

takes the data received from Pycom and formats them

data[0] -> device id, data[1] -> private key for end to end

encryption

def decode_request(request):

 """

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

60

 This function formats device requests, fulfils them, and informs

the third-party about the transaction hash

 :param request: The received request

 :return: The formatted reply to the device with the outcome, the

transaction hash, the id of the method called,

 and the nonce of the account when the transaction was made

 """

 reply = bytearray()

 args = []

 priv_key = format_key(pk_str)

 account_address = format_address(account_address_str)

 data = request.decode().split("#")

 print(data)

 num_of_args = len(data)

 num_of_method_args = num_of_args - 6

 print('length of data is ' + str(num_of_args))

 device_id_b = data[0].encode('utf-8')

 device_id = device_id_b.decode('utf-8')

 contract_address_before_b = data[1].encode('utf-8')

 contract_address_before = contract_address_before_b.decode('utf-8')

 func_name_b = data[2].encode('utf-8')

 func_name = func_name_b.decode('utf-8')

 pos = "build\contracts" + chr(92) + contract_address_before +

".json"

 with open(pos) as f:

 info_json = json.load(f)

 abi = info_json["abi"]

 types = []

 index = 0

 str_for_id = func_name + '('

 int_types = {'int256', 'uint256'}

 for i in info_json["abi"]:

 for j in i.get('inputs'):

 types.insert(index, j.get('type'))

 if index != ((num_of_args-3) - 4):

 str_for_id = str_for_id + types[index] + ','

 else:

 str_for_id = str_for_id + types[index] + ')'

 index += 1

 for i in range(3, num_of_args-3):

 if types[i - 3] in int_types:

 args.insert(i - 3, int(data[i]))

 else:

 args.insert(i - 3, data[i])

 print(args)

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

61

 print(str_for_id)

 w3 = Web3()

 method_id = w3.sha3(text=str_for_id)[0:4].hex()

 print(method_id)

 account_address = extract_user_info(device_id)[0]

 priv_key = extract_user_info(device_id)[1]

 contract_address =

Web3.toChecksumAddress(contract_address_before.lower())

 result = contract1(contract_address, priv_key, account_address,

func_name, args, abi)

 send_txhash(result[2])

 reply.extend(

 b'The function called was ' + func_name.encode('utf-8') + b'

and the result was ' + bytes(str(result[0]),

 'utf-8'))

 return [reply, result[1], method_id, result[3], num_of_method_args]

Set up server socket

def main():

 management_address = format_address(management_address_str)

 priv_key = format_key(pk_str)

 serversocket = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)

 serversocket.setsockopt(usocket.SOL_SOCKET, usocket.SO_REUSEADDR,

1)

 serversocket.bind(("", 6544))

 # Accept maximum of 5 connections at the same time

 print("Listening..")

 serversocket.listen(2)

 # Unique data to send back

 while True:

 # Accept the connection of the clients

 print("accepting..")

 (clientsocket, address) = serversocket.accept()

 print('Connection from', address)

 request = clientsocket.recv(1000)

 print('Got %s', request)

 returned = decode_request(request)

 reply = returned[0]

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

62

 tx = "0x" + returned[1]

 request_data = request.decode()

 pos = "build\contracts" + chr(92) + "Management.json"

 with open(pos) as f:

 info_json = json.load(f)

 abi = info_json["abi"]

 print(request_data + ' ' + tx)

 method_id = returned[2].split('0x')[1]

 print(method_id)

 first_nonce = returned[3]

 num_of_args = returned[4]

 while checking_nonce() != first_nonce+2:

 print(f'Checking nonce... {str(checking_nonce()}')

 time.sleep(2)

 status = contract1(management_address, priv_key,

account_address, 'request_payment', [request_data, tx, method_id,

num_of_args], abi)

 if status == True:

 print("sending reply...")

 print(reply)

 clientsocket.sendall(reply)

 else:

 clientsocket.sendall(b'Error in request payment.')

 clientsocket.close()

VI. THIRD PARTY

import requests

import json

from bs4 import BeautifulSoup

import xmltojson

import usocket

from hexbytes import HexBytes

import time

from web3 import Web3, HTTPProvider

from textwrap import wrap

import os

tag_dict = ['spanTxHash', 'spanFromAdd', 'spanToAdd',

'ContentPlaceHolder1_spanValue', 'ContentPlaceHolder1_spanTxFee',

 'ContentPlaceHolder1_spanGasLimit',

'ContentPlaceHolder1_spanGasUsedByTxn', 'inputdata']

header = {

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

63

 "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169

Safari/537.36",

 'referer': 'https://www.google.com/'

}

account_address_str = os.getenv('ACCOUNT_ADDRESS')

management_address_str = os.getenv('ORACLE_ADDRESS')

pk_str = os.getenv('PK')

def get_txhash():

 """

 Function that receives the hash of a transaction from the proxy

server

 :return: The transaction hash received

 """

 ssocket = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)

 ssocket.setsockopt(usocket.SOL_SOCKET, usocket.SO_REUSEADDR, 1)

 ssocket.bind(('', 6533))

 print("Listening to proxy server...")

 ssocket.listen(1)

 print("Accepting..")

 (csocket, address) = ssocket.accept()

 btxhash = csocket.recv(1000)

 ssocket.close()

 print('Got %s', btxhash)

 txhash = bytes(HexBytes(btxhash)).hex()

 return txhash

def format_address(add):

 """

 Function that correctly formats an address for web3 usage

 :param add: The address before

 :return: The address formatted

 """

 before = "".join(add)

 address = Web3.toChecksumAddress(before.lower())

 return address

def format_key(pk):

 """

 Function that correctly formats a private key for web3 usage

 :param pk: The private key before

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

64

 :return: The private key formatted

 """

 before = "".join(pk)

 private_key = bytes.fromhex(before)

 return private_key

def oracle_data(contract_address, priv_key, account_address, func_name,

args, abi):

 w3_ =

Web3(HTTPProvider("https://ropsten.infura.io/v3/cbe831fc4e9a47699e55af9

141b7930f"))

 entity = w3_.eth.contract(address=contract_address, abi=abi)

 func = getattr(entity.functions, func_name)

 nonce = w3_.eth.get_transaction_count(account_address)

 print('before transaction the nonce is: ' + str(nonce))

 entity_txn = func(*args).buildTransaction({

 'from': account_address,

 'chainId': 3,

 'gas': 3000000,

 'gasPrice': w3_.toWei('200', 'gwei'),

 'nonce': nonce,

 })

 signed_txn = w3_.eth.account.sign_transaction(entity_txn,

private_key=priv_key)

 tx_hash = w3_.eth.send_raw_transaction(signed_txn.rawTransaction)

 while w3_.eth.get_transaction_count(account_address) == nonce:

 time.sleep(1)

 return tx_hash

def formatting_input(inputdata):

 arguments = ""

 if inputdata[0] == 'F':

 method_name = inputdata.split()[1]

 w3 = Web3()

 method_id = w3.sha3(text=method_name)[0:4].hex()

 return method_id, arguments

 else:

 method_id = (inputdata.split('0x')[1]).split('0')[0]

 rest = (inputdata.split('0x')[1]).split(method_id)[1]

 tobesorted = wrap(rest, 64)

 times = len(tobesorted)

 print(tobesorted)

 for i in range(1, times, 2):

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

65

 if tobesorted[i][0] == '0':

 decoded1 =

int.from_bytes((bytes.fromhex(tobesorted[i])), byteorder='big')

 else:

 decoded1 =

(bytes.fromhex(tobesorted[i].split('0')[0])).decode('utf-8')

 arguments = arguments + str(decoded1) + ' '

 return method_id, arguments

def main():

 account_address = format_address(account_address_str)

 contract_address = format_address(contract_address_str)

 priv_key = format_key()

 pos = "build\contracts" + chr(92) + "Oracle.json"

 with open(pos) as f:

 info_json = json.load(f)

 abi = info_json["abi"]

 func_name = "set_data2"

 func_name_get = "get_data"

 tx = get_txhash()

 print(tx)

 tx_url_front = "https://ropsten.etherscan.io/tx/0x"

 tx_url = tx_url_front + tx

 print(tx_url)

 time.sleep(15)

 status = 0

 while status != 1:

 r_status = requests.get(url=tx_url, headers=header)

 # checking if status is pending, if it is the status class will

be col-md-9 and if successful it'll be col col-md 9

 soup = BeautifulSoup(r_status.text, "html.parser")

 status_line = soup.find("div", {"class": "col col-md-9"}) # if

this cannot be found then status is pending

 print(status_line)

 if status_line is None:

 status = 0

 time.sleep(5)

 else:

 status = 1

 # status is success

 r = requests.get(url=tx_url,

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

66

 headers=header)

 jsonlist = []

 html_doc = r.text

 soup = BeautifulSoup(r.text, "html.parser")

 for _id in tag_dict:

 wline = soup.find(id=_id)

 print(_id)

 print(wline)

 with open("sample2.html", "w") as html_file2:

 html_file2.write(str(wline))

 with open("sample2.html", "r") as html_file2:

 html = html_file2.read()

 json_ = xmltojson.parse(html)

 with open("data.json", "w") as file:

 json.dump(json_, file)

 jsonlist.append(json_)

 names = ['Transaction Hash', 'From', 'To', 'Value', 'Transaction

Fee', 'Gas Limit', 'Gas Used by Transaction']

 print(jsonlist)

 data = {}

 y = 0

 for x in names:

 mdict = json.loads(jsonlist[y])

 ndict = mdict['span']

 print(x)

 print(y)

 try:

 data[x] = (ndict['#text'])

 except:

 try:

 print("entered except")

 nndict = ndict['span']

 data[x] = (nndict['#text'])

 except:

 nndict = ndict['i']

 print("Transaction is still pending...")

 status = 1

 y += 1

 mdict = json.loads(jsonlist[y])

 ndict = mdict['textarea']

 # data['Data'] = (ndict['#text'])

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

67

 inputdata = (ndict['#text'])

 formatted_input_data = formatting_input(inputdata) #

formatted_input_data[0] will be the method_id and [1] the arguments

 data['Method_id'] = formatted_input_data[0]

 print(formatted_input_data[1])

 data['Arguments'] = formatted_input_data[1]

 print(data['Arguments'])

 print(type(data['Arguments']))

 print(data)

 data['Value'] = data['Value'].split('($')[1]

 data['Value'] = data['Value'].split(')')[0]

 data['Transaction Fee'] = data['Transaction Fee'].split(' Ether

($0.00)')[0]

 data['Transaction Fee'] = data['Transaction Fee'].split('0')[1]

 dummy = data['Transaction Fee']

 num = 0

 for i in range(0, len(dummy)):

 if dummy[i] == '0':

 num += 1

 else:

 break

 data['Transaction Fee'] = data['Transaction Fee'][num-1:

len(dummy)-1]

 args = []

 for x in data:

 args.append(data[x])

 args_get =

['0x53c2db9715da55d34a1db5be86afcc440c9827649cb163db1a2e366f66d4fc36']

 print((oracle_data(contract_address, priv_key, account_address,

func_name, args, abi)).hex())

VII. EXEMPLARY DEVICE CODE

import socket

import _thread

import time

import uerrno

Creating an embedded system for quick and efficient sending of data in blockchain applications

Filisia Melissari

68

host = '192.168.1.23'

port = 6544

contract_test_1 = "0x3cEb3729F84493ca0a8282552a107c99BF1AEfCB"

contract_test_2 = "0xd3179E7FCc8bbf0c4065d33B958Efd55fe7D5Bd8"

print('Creating socket..')

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect to remote server

print('# Connecting to server')

s.connect((host , port))

Send data to remote server

print('# Data encoded for the request: device id, contract_address,

function name, parameters, signature')

request =

"7#0x3cEb3729F84493ca0a8282552a107c99BF1AEfCB#gset_id#maria#1417#0x5B38

Da6a701c568545dCfcB03FcB875f56beddC4"

s.sendall(request)

Receive data

print('# Receive data from server')

reply = s.recv(1000)

reply_decoded = reply.decode('utf-8')

print(reply_decoded)

s.close()

